Sample records for nonparametric statistical analysis

  1. CADDIS Volume 4. Data Analysis: PECBO Appendix - R Scripts for Non-Parametric Regressions

    EPA Pesticide Factsheets

    Script for computing nonparametric regression analysis. Overview of using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, statistical scripts.

  2. Nonparametric Residue Analysis of Dynamic PET Data With Application to Cerebral FDG Studies in Normals.

    PubMed

    O'Sullivan, Finbarr; Muzi, Mark; Spence, Alexander M; Mankoff, David M; O'Sullivan, Janet N; Fitzgerald, Niall; Newman, George C; Krohn, Kenneth A

    2009-06-01

    Kinetic analysis is used to extract metabolic information from dynamic positron emission tomography (PET) uptake data. The theory of indicator dilutions, developed in the seminal work of Meier and Zierler (1954), provides a probabilistic framework for representation of PET tracer uptake data in terms of a convolution between an arterial input function and a tissue residue. The residue is a scaled survival function associated with tracer residence in the tissue. Nonparametric inference for the residue, a deconvolution problem, provides a novel approach to kinetic analysis-critically one that is not reliant on specific compartmental modeling assumptions. A practical computational technique based on regularized cubic B-spline approximation of the residence time distribution is proposed. Nonparametric residue analysis allows formal statistical evaluation of specific parametric models to be considered. This analysis needs to properly account for the increased flexibility of the nonparametric estimator. The methodology is illustrated using data from a series of cerebral studies with PET and fluorodeoxyglucose (FDG) in normal subjects. Comparisons are made between key functionals of the residue, tracer flux, flow, etc., resulting from a parametric (the standard two-compartment of Phelps et al. 1979) and a nonparametric analysis. Strong statistical evidence against the compartment model is found. Primarily these differences relate to the representation of the early temporal structure of the tracer residence-largely a function of the vascular supply network. There are convincing physiological arguments against the representations implied by the compartmental approach but this is the first time that a rigorous statistical confirmation using PET data has been reported. The compartmental analysis produces suspect values for flow but, notably, the impact on the metabolic flux, though statistically significant, is limited to deviations on the order of 3%-4%. The general advantage of the nonparametric residue analysis is the ability to provide a valid kinetic quantitation in the context of studies where there may be heterogeneity or other uncertainty about the accuracy of a compartmental model approximation of the tissue residue.

  3. EEG Correlates of Fluctuation in Cognitive Performance in an Air Traffic Control Task

    DTIC Science & Technology

    2014-11-01

    using non-parametric statistical analysis to identify neurophysiological patterns due to the time-on-task effect. Significant changes in EEG power...EEG, Cognitive Performance, Power Spectral Analysis , Non-Parametric Analysis Document is available to the public through the Internet...3 Performance Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 EEG

  4. Using a DEA Management Tool through a Nonparametric Approach: An Examination of Urban-Rural Effects on Thai School Efficiency

    ERIC Educational Resources Information Center

    Kantabutra, Sangchan

    2009-01-01

    This paper examines urban-rural effects on public upper-secondary school efficiency in northern Thailand. In the study, efficiency was measured by a nonparametric technique, data envelopment analysis (DEA). Urban-rural effects were examined through a Mann-Whitney nonparametric statistical test. Results indicate that urban schools appear to have…

  5. Nonparametric functional data estimation applied to ozone data: prediction and extreme value analysis.

    PubMed

    Quintela-del-Río, Alejandro; Francisco-Fernández, Mario

    2011-02-01

    The study of extreme values and prediction of ozone data is an important topic of research when dealing with environmental problems. Classical extreme value theory is usually used in air-pollution studies. It consists in fitting a parametric generalised extreme value (GEV) distribution to a data set of extreme values, and using the estimated distribution to compute return levels and other quantities of interest. Here, we propose to estimate these values using nonparametric functional data methods. Functional data analysis is a relatively new statistical methodology that generally deals with data consisting of curves or multi-dimensional variables. In this paper, we use this technique, jointly with nonparametric curve estimation, to provide alternatives to the usual parametric statistical tools. The nonparametric estimators are applied to real samples of maximum ozone values obtained from several monitoring stations belonging to the Automatic Urban and Rural Network (AURN) in the UK. The results show that nonparametric estimators work satisfactorily, outperforming the behaviour of classical parametric estimators. Functional data analysis is also used to predict stratospheric ozone concentrations. We show an application, using the data set of mean monthly ozone concentrations in Arosa, Switzerland, and the results are compared with those obtained by classical time series (ARIMA) analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. A nonparametric analysis of plot basal area growth using tree based models

    Treesearch

    G. L. Gadbury; H. K. lyer; H. T. Schreuder; C. Y. Ueng

    1997-01-01

    Tree based statistical models can be used to investigate data structure and predict future observations. We used nonparametric and nonlinear models to reexamine the data sets on tree growth used by Bechtold et al. (1991) and Ruark et al. (1991). The growth data were collected by Forest Inventory and Analysis (FIA) teams from 1962 to 1972 (4th cycle) and 1972 to 1982 (...

  7. Statistical analysis of water-quality data containing multiple detection limits II: S-language software for nonparametric distribution modeling and hypothesis testing

    USGS Publications Warehouse

    Lee, L.; Helsel, D.

    2007-01-01

    Analysis of low concentrations of trace contaminants in environmental media often results in left-censored data that are below some limit of analytical precision. Interpretation of values becomes complicated when there are multiple detection limits in the data-perhaps as a result of changing analytical precision over time. Parametric and semi-parametric methods, such as maximum likelihood estimation and robust regression on order statistics, can be employed to model distributions of multiply censored data and provide estimates of summary statistics. However, these methods are based on assumptions about the underlying distribution of data. Nonparametric methods provide an alternative that does not require such assumptions. A standard nonparametric method for estimating summary statistics of multiply-censored data is the Kaplan-Meier (K-M) method. This method has seen widespread usage in the medical sciences within a general framework termed "survival analysis" where it is employed with right-censored time-to-failure data. However, K-M methods are equally valid for the left-censored data common in the geosciences. Our S-language software provides an analytical framework based on K-M methods that is tailored to the needs of the earth and environmental sciences community. This includes routines for the generation of empirical cumulative distribution functions, prediction or exceedance probabilities, and related confidence limits computation. Additionally, our software contains K-M-based routines for nonparametric hypothesis testing among an unlimited number of grouping variables. A primary characteristic of K-M methods is that they do not perform extrapolation and interpolation. Thus, these routines cannot be used to model statistics beyond the observed data range or when linear interpolation is desired. For such applications, the aforementioned parametric and semi-parametric methods must be used.

  8. Rediscovery of Good-Turing estimators via Bayesian nonparametrics.

    PubMed

    Favaro, Stefano; Nipoti, Bernardo; Teh, Yee Whye

    2016-03-01

    The problem of estimating discovery probabilities originated in the context of statistical ecology, and in recent years it has become popular due to its frequent appearance in challenging applications arising in genetics, bioinformatics, linguistics, designs of experiments, machine learning, etc. A full range of statistical approaches, parametric and nonparametric as well as frequentist and Bayesian, has been proposed for estimating discovery probabilities. In this article, we investigate the relationships between the celebrated Good-Turing approach, which is a frequentist nonparametric approach developed in the 1940s, and a Bayesian nonparametric approach recently introduced in the literature. Specifically, under the assumption of a two parameter Poisson-Dirichlet prior, we show that Bayesian nonparametric estimators of discovery probabilities are asymptotically equivalent, for a large sample size, to suitably smoothed Good-Turing estimators. As a by-product of this result, we introduce and investigate a methodology for deriving exact and asymptotic credible intervals to be associated with the Bayesian nonparametric estimators of discovery probabilities. The proposed methodology is illustrated through a comprehensive simulation study and the analysis of Expressed Sequence Tags data generated by sequencing a benchmark complementary DNA library. © 2015, The International Biometric Society.

  9. TRAN-STAT: statistics for environmental transuranic studies, July 1978, Number 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This issue is concerned with nonparametric procedures for (1) estimating the central tendency of a population, (2) describing data sets through estimating percentiles, (3) estimating confidence limits for the median and other percentiles, (4) estimating tolerance limits and associated numbers of samples, and (5) tests of significance and associated procedures for a variety of testing situations (counterparts to t-tests and analysis of variance). Some characteristics of several nonparametric tests are illustrated using the NAEG /sup 241/Am aliquot data presented and discussed in the April issue of TRAN-STAT. Some of the statistical terms used here are defined in a glossary. Themore » reference list also includes short descriptions of nonparametric books. 31 references, 3 figures, 1 table.« less

  10. Nonparametric estimation and testing of fixed effects panel data models

    PubMed Central

    Henderson, Daniel J.; Carroll, Raymond J.; Li, Qi

    2009-01-01

    In this paper we consider the problem of estimating nonparametric panel data models with fixed effects. We introduce an iterative nonparametric kernel estimator. We also extend the estimation method to the case of a semiparametric partially linear fixed effects model. To determine whether a parametric, semiparametric or nonparametric model is appropriate, we propose test statistics to test between the three alternatives in practice. We further propose a test statistic for testing the null hypothesis of random effects against fixed effects in a nonparametric panel data regression model. Simulations are used to examine the finite sample performance of the proposed estimators and the test statistics. PMID:19444335

  11. A nonparametric spatial scan statistic for continuous data.

    PubMed

    Jung, Inkyung; Cho, Ho Jin

    2015-10-20

    Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.

  12. Local kernel nonparametric discriminant analysis for adaptive extraction of complex structures

    NASA Astrophysics Data System (ADS)

    Li, Quanbao; Wei, Fajie; Zhou, Shenghan

    2017-05-01

    The linear discriminant analysis (LDA) is one of popular means for linear feature extraction. It usually performs well when the global data structure is consistent with the local data structure. Other frequently-used approaches of feature extraction usually require linear, independence, or large sample condition. However, in real world applications, these assumptions are not always satisfied or cannot be tested. In this paper, we introduce an adaptive method, local kernel nonparametric discriminant analysis (LKNDA), which integrates conventional discriminant analysis with nonparametric statistics. LKNDA is adept in identifying both complex nonlinear structures and the ad hoc rule. Six simulation cases demonstrate that LKNDA have both parametric and nonparametric algorithm advantages and higher classification accuracy. Quartic unilateral kernel function may provide better robustness of prediction than other functions. LKNDA gives an alternative solution for discriminant cases of complex nonlinear feature extraction or unknown feature extraction. At last, the application of LKNDA in the complex feature extraction of financial market activities is proposed.

  13. A Nonparametric Test for Homogeneity of Variances: Application to GPAs of Students across Academic Majors

    ERIC Educational Resources Information Center

    Bakir, Saad T.

    2010-01-01

    We propose a nonparametric (or distribution-free) procedure for testing the equality of several population variances (or scale parameters). The proposed test is a modification of Bakir's (1989, Commun. Statist., Simul-Comp., 18, 757-775) analysis of means by ranks (ANOMR) procedure for testing the equality of several population means. A proof is…

  14. Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model

    NASA Astrophysics Data System (ADS)

    Feng, Jinchao; Lansford, Joshua; Mironenko, Alexander; Pourkargar, Davood Babaei; Vlachos, Dionisios G.; Katsoulakis, Markos A.

    2018-03-01

    We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data). The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.

  15. Can Percentiles Replace Raw Scores in the Statistical Analysis of Test Data?

    ERIC Educational Resources Information Center

    Zimmerman, Donald W.; Zumbo, Bruno D.

    2005-01-01

    Educational and psychological testing textbooks typically warn of the inappropriateness of performing arithmetic operations and statistical analysis on percentiles instead of raw scores. This seems inconsistent with the well-established finding that transforming scores to ranks and using nonparametric methods often improves the validity and power…

  16. Randomization Procedures Applied to Analysis of Ballistic Data

    DTIC Science & Technology

    1991-06-01

    test,;;15. NUMBER OF PAGES data analysis; computationally intensive statistics ; randomization tests; permutation tests; 16 nonparametric statistics ...be 0.13. 8 Any reasonable statistical procedure would fail to support the notion of improvement of dynamic over standard indexing based on this data ...AD-A238 389 TECHNICAL REPORT BRL-TR-3245 iBRL RANDOMIZATION PROCEDURES APPLIED TO ANALYSIS OF BALLISTIC DATA MALCOLM S. TAYLOR BARRY A. BODT - JUNE

  17. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography.

    PubMed

    Packham, B; Barnes, G; Dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D

    2016-06-01

    Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have  >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p  <  0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity.

  18. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography

    PubMed Central

    Packham, B; Barnes, G; dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D

    2016-01-01

    Abstract Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have  >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p  <  0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity. PMID:27203477

  19. Cluster-level statistical inference in fMRI datasets: The unexpected behavior of random fields in high dimensions.

    PubMed

    Bansal, Ravi; Peterson, Bradley S

    2018-06-01

    Identifying regional effects of interest in MRI datasets usually entails testing a priori hypotheses across many thousands of brain voxels, requiring control for false positive findings in these multiple hypotheses testing. Recent studies have suggested that parametric statistical methods may have incorrectly modeled functional MRI data, thereby leading to higher false positive rates than their nominal rates. Nonparametric methods for statistical inference when conducting multiple statistical tests, in contrast, are thought to produce false positives at the nominal rate, which has thus led to the suggestion that previously reported studies should reanalyze their fMRI data using nonparametric tools. To understand better why parametric methods may yield excessive false positives, we assessed their performance when applied both to simulated datasets of 1D, 2D, and 3D Gaussian Random Fields (GRFs) and to 710 real-world, resting-state fMRI datasets. We showed that both the simulated 2D and 3D GRFs and the real-world data contain a small percentage (<6%) of very large clusters (on average 60 times larger than the average cluster size), which were not present in 1D GRFs. These unexpectedly large clusters were deemed statistically significant using parametric methods, leading to empirical familywise error rates (FWERs) as high as 65%: the high empirical FWERs were not a consequence of parametric methods failing to model spatial smoothness accurately, but rather of these very large clusters that are inherently present in smooth, high-dimensional random fields. In fact, when discounting these very large clusters, the empirical FWER for parametric methods was 3.24%. Furthermore, even an empirical FWER of 65% would yield on average less than one of those very large clusters in each brain-wide analysis. Nonparametric methods, in contrast, estimated distributions from those large clusters, and therefore, by construct rejected the large clusters as false positives at the nominal FWERs. Those rejected clusters were outlying values in the distribution of cluster size but cannot be distinguished from true positive findings without further analyses, including assessing whether fMRI signal in those regions correlates with other clinical, behavioral, or cognitive measures. Rejecting the large clusters, however, significantly reduced the statistical power of nonparametric methods in detecting true findings compared with parametric methods, which would have detected most true findings that are essential for making valid biological inferences in MRI data. Parametric analyses, in contrast, detected most true findings while generating relatively few false positives: on average, less than one of those very large clusters would be deemed a true finding in each brain-wide analysis. We therefore recommend the continued use of parametric methods that model nonstationary smoothness for cluster-level, familywise control of false positives, particularly when using a Cluster Defining Threshold of 2.5 or higher, and subsequently assessing rigorously the biological plausibility of the findings, even for large clusters. Finally, because nonparametric methods yielded a large reduction in statistical power to detect true positive findings, we conclude that the modest reduction in false positive findings that nonparametric analyses afford does not warrant a re-analysis of previously published fMRI studies using nonparametric techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A Unifying Framework for Teaching Nonparametric Statistical Tests

    ERIC Educational Resources Information Center

    Bargagliotti, Anna E.; Orrison, Michael E.

    2014-01-01

    Increased importance is being placed on statistics at both the K-12 and undergraduate level. Research divulging effective methods to teach specific statistical concepts is still widely sought after. In this paper, we focus on best practices for teaching topics in nonparametric statistics at the undergraduate level. To motivate the work, we…

  1. Applications of non-parametric statistics and analysis of variance on sample variances

    NASA Technical Reports Server (NTRS)

    Myers, R. H.

    1981-01-01

    Nonparametric methods that are available for NASA-type applications are discussed. An attempt will be made here to survey what can be used, to attempt recommendations as to when each would be applicable, and to compare the methods, when possible, with the usual normal-theory procedures that are avavilable for the Gaussion analog. It is important here to point out the hypotheses that are being tested, the assumptions that are being made, and limitations of the nonparametric procedures. The appropriateness of doing analysis of variance on sample variances are also discussed and studied. This procedure is followed in several NASA simulation projects. On the surface this would appear to be reasonably sound procedure. However, difficulties involved center around the normality problem and the basic homogeneous variance assumption that is mase in usual analysis of variance problems. These difficulties discussed and guidelines given for using the methods.

  2. Application of Semiparametric Spline Regression Model in Analyzing Factors that In uence Population Density in Central Java

    NASA Astrophysics Data System (ADS)

    Sumantari, Y. D.; Slamet, I.; Sugiyanto

    2017-06-01

    Semiparametric regression is a statistical analysis method that consists of parametric and nonparametric regression. There are various approach techniques in nonparametric regression. One of the approach techniques is spline. Central Java is one of the most densely populated province in Indonesia. Population density in this province can be modeled by semiparametric regression because it consists of parametric and nonparametric component. Therefore, the purpose of this paper is to determine the factors that in uence population density in Central Java using the semiparametric spline regression model. The result shows that the factors which in uence population density in Central Java is Family Planning (FP) active participants and district minimum wage.

  3. The Importance of Practice in the Development of Statistics.

    DTIC Science & Technology

    1983-01-01

    RESOLUTION TEST CHART NATIONAL BUREAU OIF STANDARDS 1963 -A NRC Technical Summary Report #2471 C THE IMORTANCE OF PRACTICE IN to THE DEVELOPMENT OF STATISTICS...component analysis, bioassay, limits for a ratio, quality control, sampling inspection, non-parametric tests , transformation theory, ARIMA time series...models, sequential tests , cumulative sum charts, data analysis plotting techniques, and a resolution of the Bayes - frequentist controversy. It appears

  4. Teaching Nonparametric Statistics Using Student Instrumental Values.

    ERIC Educational Resources Information Center

    Anderson, Jonathan W.; Diddams, Margaret

    Nonparametric statistics are often difficult to teach in introduction to statistics courses because of the lack of real-world examples. This study demonstrated how teachers can use differences in the rankings and ratings of undergraduate and graduate values to discuss: (1) ipsative and normative scaling; (2) uses of the Mann-Whitney U-test; and…

  5. Efficiency Analysis of Public Universities in Thailand

    ERIC Educational Resources Information Center

    Kantabutra, Saranya; Tang, John C. S.

    2010-01-01

    This paper examines the performance of Thai public universities in terms of efficiency, using a non-parametric approach called data envelopment analysis. Two efficiency models, the teaching efficiency model and the research efficiency model, are developed and the analysis is conducted at the faculty level. Further statistical analyses are also…

  6. A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Llamazares, Álvaro; Belmonte, Jordina; Delgado, Rosario; De Linares, Concepción

    2014-04-01

    Airborne pollen records are a suitable indicator for the study of climate change. The present work focuses on the role of annual pollen indices for the detection of bioclimatic trends through the analysis of the aerobiological spectra of 11 taxa of great biogeographical relevance in Catalonia over an 18-year period (1994-2011), by means of different parametric and non-parametric statistical methods. Among others, two non-parametric rank-based statistical tests were performed for detecting monotonic trends in time series data of the selected airborne pollen types and we have observed that they have similar power in detecting trends. Except for those cases in which the pollen data can be well-modeled by a normal distribution, it is better to apply non-parametric statistical methods to aerobiological studies. Our results provide a reliable representation of the pollen trends in the region and suggest that greater pollen quantities are being liberated to the atmosphere in the last years, specially by Mediterranean taxa such as Pinus, Total Quercus and Evergreen Quercus, although the trends may differ geographically. Longer aerobiological monitoring periods are required to corroborate these results and survey the increasing levels of certain pollen types that could exert an impact in terms of public health.

  7. A Bayesian nonparametric method for prediction in EST analysis

    PubMed Central

    Lijoi, Antonio; Mena, Ramsés H; Prünster, Igor

    2007-01-01

    Background Expressed sequence tags (ESTs) analyses are a fundamental tool for gene identification in organisms. Given a preliminary EST sample from a certain library, several statistical prediction problems arise. In particular, it is of interest to estimate how many new genes can be detected in a future EST sample of given size and also to determine the gene discovery rate: these estimates represent the basis for deciding whether to proceed sequencing the library and, in case of a positive decision, a guideline for selecting the size of the new sample. Such information is also useful for establishing sequencing efficiency in experimental design and for measuring the degree of redundancy of an EST library. Results In this work we propose a Bayesian nonparametric approach for tackling statistical problems related to EST surveys. In particular, we provide estimates for: a) the coverage, defined as the proportion of unique genes in the library represented in the given sample of reads; b) the number of new unique genes to be observed in a future sample; c) the discovery rate of new genes as a function of the future sample size. The Bayesian nonparametric model we adopt conveys, in a statistically rigorous way, the available information into prediction. Our proposal has appealing properties over frequentist nonparametric methods, which become unstable when prediction is required for large future samples. EST libraries, previously studied with frequentist methods, are analyzed in detail. Conclusion The Bayesian nonparametric approach we undertake yields valuable tools for gene capture and prediction in EST libraries. The estimators we obtain do not feature the kind of drawbacks associated with frequentist estimators and are reliable for any size of the additional sample. PMID:17868445

  8. How to Compare Parametric and Nonparametric Person-Fit Statistics Using Real Data

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2017-01-01

    Person-fit assessment (PFA) is concerned with uncovering atypical test performance as reflected in the pattern of scores on individual items on a test. Existing person-fit statistics (PFSs) include both parametric and nonparametric statistics. Comparison of PFSs has been a popular research topic in PFA, but almost all comparisons have employed…

  9. Exploring Rating Quality in Rater-Mediated Assessments Using Mokken Scale Analysis

    ERIC Educational Resources Information Center

    Wind, Stefanie A.; Engelhard, George, Jr.

    2016-01-01

    Mokken scale analysis is a probabilistic nonparametric approach that offers statistical and graphical tools for evaluating the quality of social science measurement without placing potentially inappropriate restrictions on the structure of a data set. In particular, Mokken scaling provides a useful method for evaluating important measurement…

  10. Spectral analysis method for detecting an element

    DOEpatents

    Blackwood, Larry G [Idaho Falls, ID; Edwards, Andrew J [Idaho Falls, ID; Jewell, James K [Idaho Falls, ID; Reber, Edward L [Idaho Falls, ID; Seabury, Edward H [Idaho Falls, ID

    2008-02-12

    A method for detecting an element is described and which includes the steps of providing a gamma-ray spectrum which has a region of interest which corresponds with a small amount of an element to be detected; providing nonparametric assumptions about a shape of the gamma-ray spectrum in the region of interest, and which would indicate the presence of the element to be detected; and applying a statistical test to the shape of the gamma-ray spectrum based upon the nonparametric assumptions to detect the small amount of the element to be detected.

  11. A SAS macro for testing differences among three or more independent groups using Kruskal-Wallis and Nemenyi tests.

    PubMed

    Liu, Yuewei; Chen, Weihong

    2012-02-01

    As a nonparametric method, the Kruskal-Wallis test is widely used to compare three or more independent groups when an ordinal or interval level of data is available, especially when the assumptions of analysis of variance (ANOVA) are not met. If the Kruskal-Wallis statistic is statistically significant, Nemenyi test is an alternative method for further pairwise multiple comparisons to locate the source of significance. Unfortunately, most popular statistical packages do not integrate the Nemenyi test, which is not easy to be calculated by hand. We described the theory and applications of the Kruskal-Wallis and Nemenyi tests, and presented a flexible SAS macro to implement the two tests. The SAS macro was demonstrated by two examples from our cohort study in occupational epidemiology. It provides a useful tool for SAS users to test the differences among three or more independent groups using a nonparametric method.

  12. Robust multivariate nonparametric tests for detection of two-sample location shift in clinical trials

    PubMed Central

    Jiang, Xuejun; Guo, Xu; Zhang, Ning; Wang, Bo

    2018-01-01

    This article presents and investigates performance of a series of robust multivariate nonparametric tests for detection of location shift between two multivariate samples in randomized controlled trials. The tests are built upon robust estimators of distribution locations (medians, Hodges-Lehmann estimators, and an extended U statistic) with both unscaled and scaled versions. The nonparametric tests are robust to outliers and do not assume that the two samples are drawn from multivariate normal distributions. Bootstrap and permutation approaches are introduced for determining the p-values of the proposed test statistics. Simulation studies are conducted and numerical results are reported to examine performance of the proposed statistical tests. The numerical results demonstrate that the robust multivariate nonparametric tests constructed from the Hodges-Lehmann estimators are more efficient than those based on medians and the extended U statistic. The permutation approach can provide a more stringent control of Type I error and is generally more powerful than the bootstrap procedure. The proposed robust nonparametric tests are applied to detect multivariate distributional difference between the intervention and control groups in the Thai Healthy Choices study and examine the intervention effect of a four-session motivational interviewing-based intervention developed in the study to reduce risk behaviors among youth living with HIV. PMID:29672555

  13. Goodness-Of-Fit Test for Nonparametric Regression Models: Smoothing Spline ANOVA Models as Example.

    PubMed

    Teran Hidalgo, Sebastian J; Wu, Michael C; Engel, Stephanie M; Kosorok, Michael R

    2018-06-01

    Nonparametric regression models do not require the specification of the functional form between the outcome and the covariates. Despite their popularity, the amount of diagnostic statistics, in comparison to their parametric counter-parts, is small. We propose a goodness-of-fit test for nonparametric regression models with linear smoother form. In particular, we apply this testing framework to smoothing spline ANOVA models. The test can consider two sources of lack-of-fit: whether covariates that are not currently in the model need to be included, and whether the current model fits the data well. The proposed method derives estimated residuals from the model. Then, statistical dependence is assessed between the estimated residuals and the covariates using the HSIC. If dependence exists, the model does not capture all the variability in the outcome associated with the covariates, otherwise the model fits the data well. The bootstrap is used to obtain p-values. Application of the method is demonstrated with a neonatal mental development data analysis. We demonstrate correct type I error as well as power performance through simulations.

  14. Mapping the Structure-Function Relationship in Glaucoma and Healthy Patients Measured with Spectralis OCT and Humphrey Perimetry

    PubMed Central

    Muñoz–Negrete, Francisco J.; Oblanca, Noelia; Rebolleda, Gema

    2018-01-01

    Purpose To study the structure-function relationship in glaucoma and healthy patients assessed with Spectralis OCT and Humphrey perimetry using new statistical approaches. Materials and Methods Eighty-five eyes were prospectively selected and divided into 2 groups: glaucoma (44) and healthy patients (41). Three different statistical approaches were carried out: (1) factor analysis of the threshold sensitivities (dB) (automated perimetry) and the macular thickness (μm) (Spectralis OCT), subsequently applying Pearson's correlation to the obtained regions, (2) nonparametric regression analysis relating the values in each pair of regions that showed significant correlation, and (3) nonparametric spatial regressions using three models designed for the purpose of this study. Results In the glaucoma group, a map that relates structural and functional damage was drawn. The strongest correlation with visual fields was observed in the peripheral nasal region of both superior and inferior hemigrids (r = 0.602 and r = 0.458, resp.). The estimated functions obtained with the nonparametric regressions provided the mean sensitivity that corresponds to each given macular thickness. These functions allowed for accurate characterization of the structure-function relationship. Conclusions Both maps and point-to-point functions obtained linking structure and function damage contribute to a better understanding of this relationship and may help in the future to improve glaucoma diagnosis. PMID:29850196

  15. Monitoring the Level of Students' GPAs over Time

    ERIC Educational Resources Information Center

    Bakir, Saad T.; McNeal, Bob

    2010-01-01

    A nonparametric (or distribution-free) statistical quality control chart is used to monitor the cumulative grade point averages (GPAs) of students over time. The chart is designed to detect any statistically significant positive or negative shifts in student GPAs from a desired target level. This nonparametric control chart is based on the…

  16. Statistical methods used in articles published by the Journal of Periodontal and Implant Science.

    PubMed

    Choi, Eunsil; Lyu, Jiyoung; Park, Jinyoung; Kim, Hae-Young

    2014-12-01

    The purposes of this study were to assess the trend of use of statistical methods including parametric and nonparametric methods and to evaluate the use of complex statistical methodology in recent periodontal studies. This study analyzed 123 articles published in the Journal of Periodontal & Implant Science (JPIS) between 2010 and 2014. Frequencies and percentages were calculated according to the number of statistical methods used, the type of statistical method applied, and the type of statistical software used. Most of the published articles considered (64.4%) used statistical methods. Since 2011, the percentage of JPIS articles using statistics has increased. On the basis of multiple counting, we found that the percentage of studies in JPIS using parametric methods was 61.1%. Further, complex statistical methods were applied in only 6 of the published studies (5.0%), and nonparametric statistical methods were applied in 77 of the published studies (38.9% of a total of 198 studies considered). We found an increasing trend towards the application of statistical methods and nonparametric methods in recent periodontal studies and thus, concluded that increased use of complex statistical methodology might be preferred by the researchers in the fields of study covered by JPIS.

  17. LANDSCAPE STRUCTURE AND ESTUARINE CONDITION IN THE MID-ATLANTIC REGION OF THE UNITED STATES: I. DEVELOPING QUANTITATIVE RELATIONSHIPS

    EPA Science Inventory

    In a previously published study, quantitative relationships were developed between landscape metrics and sediment contamination for 25 small estuarine systems within Chesapeake Bay. Nonparametric statistical analysis (rank transformation) was used to develop an empirical relation...

  18. Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses

    PubMed Central

    Callahan, Ben J.; Sankaran, Kris; Fukuyama, Julia A.; McMurdie, Paul J.; Holmes, Susan P.

    2016-01-01

    High-throughput sequencing of PCR-amplified taxonomic markers (like the 16S rRNA gene) has enabled a new level of analysis of complex bacterial communities known as microbiomes. Many tools exist to quantify and compare abundance levels or OTU composition of communities in different conditions. The sequencing reads have to be denoised and assigned to the closest taxa from a reference database. Common approaches use a notion of 97% similarity and normalize the data by subsampling to equalize library sizes. In this paper, we show that statistical models allow more accurate abundance estimates. By providing a complete workflow in R, we enable the user to do sophisticated downstream statistical analyses, whether parametric or nonparametric. We provide examples of using the R packages dada2, phyloseq, DESeq2, ggplot2 and vegan to filter, visualize and test microbiome data. We also provide examples of supervised analyses using random forests and nonparametric testing using community networks and the ggnetwork package. PMID:27508062

  19. Statistical analysis of the electric energy production from photovoltaic conversion using mobile and fixed constructions

    NASA Astrophysics Data System (ADS)

    Bugała, Artur; Bednarek, Karol; Kasprzyk, Leszek; Tomczewski, Andrzej

    2017-10-01

    The paper presents the most representative - from the three-year measurement time period - characteristics of daily and monthly electricity production from a photovoltaic conversion using modules installed in a fixed and 2-axis tracking construction. Results are presented for selected summer, autumn, spring and winter days. Analyzed measuring stand is located on the roof of the Faculty of Electrical Engineering Poznan University of Technology building. The basic parameters of the statistical analysis like mean value, standard deviation, skewness, kurtosis, median, range, or coefficient of variation were used. It was found that the asymmetry factor can be useful in the analysis of the daily electricity production from a photovoltaic conversion. In order to determine the repeatability of monthly electricity production, occurring between the summer, and summer and winter months, a non-parametric Mann-Whitney U test was used as a statistical solution. In order to analyze the repeatability of daily peak hours, describing the largest value of the hourly electricity production, a non-parametric Kruskal-Wallis test was applied as an extension of the Mann-Whitney U test. Based on the analysis of the electric energy distribution from a prepared monitoring system it was found that traditional forecasting methods of the electricity production from a photovoltaic conversion, like multiple regression models, should not be the preferred methods of the analysis.

  20. Treatment of Selective Mutism: A Best-Evidence Synthesis.

    ERIC Educational Resources Information Center

    Stone, Beth Pionek; Kratochwill, Thomas R.; Sladezcek, Ingrid; Serlin, Ronald C.

    2002-01-01

    Presents systematic analysis of the major treatment approaches used for selective mutism. Based on nonparametric statistical tests of effect sizes, major findings include the following: treatment of selective mutism is more effective than no treatment; behaviorally oriented treatment approaches are more effective than no treatment; and no…

  1. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis.

    PubMed

    Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A

    2015-05-01

    Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A Monte Carlo Study of the Effect of Item Characteristic Curve Estimation on the Accuracy of Three Person-Fit Statistics

    ERIC Educational Resources Information Center

    St-Onge, Christina; Valois, Pierre; Abdous, Belkacem; Germain, Stephane

    2009-01-01

    To date, there have been no studies comparing parametric and nonparametric Item Characteristic Curve (ICC) estimation methods on the effectiveness of Person-Fit Statistics (PFS). The primary aim of this study was to determine if the use of ICCs estimated by nonparametric methods would increase the accuracy of item response theory-based PFS for…

  3. [The research protocol VI: How to choose the appropriate statistical test. Inferential statistics].

    PubMed

    Flores-Ruiz, Eric; Miranda-Novales, María Guadalupe; Villasís-Keever, Miguel Ángel

    2017-01-01

    The statistical analysis can be divided in two main components: descriptive analysis and inferential analysis. An inference is to elaborate conclusions from the tests performed with the data obtained from a sample of a population. Statistical tests are used in order to establish the probability that a conclusion obtained from a sample is applicable to the population from which it was obtained. However, choosing the appropriate statistical test in general poses a challenge for novice researchers. To choose the statistical test it is necessary to take into account three aspects: the research design, the number of measurements and the scale of measurement of the variables. Statistical tests are divided into two sets, parametric and nonparametric. Parametric tests can only be used if the data show a normal distribution. Choosing the right statistical test will make it easier for readers to understand and apply the results.

  4. LSAT Dimensionality Analysis for the December 1991, June 1992, and October 1992 Administrations. Statistical Report. LSAC Research Report Series.

    ERIC Educational Resources Information Center

    Douglas, Jeff; Kim, Hae-Rim; Roussos, Louis; Stout, William; Zhang, Jinming

    An extensive nonparametric dimensionality analysis of latent structure was conducted on three forms of the Law School Admission Test (LSAT) (December 1991, June 1992, and October 1992) using the DIMTEST model in confirmatory analyses and using DIMTEST, FAC, DETECT, HCA, PROX, and a genetic algorithm in exploratory analyses. Results indicate that…

  5. Analysis of Parasite and Other Skewed Counts

    PubMed Central

    Alexander, Neal

    2012-01-01

    Objective To review methods for the statistical analysis of parasite and other skewed count data. Methods Statistical methods for skewed count data are described and compared, with reference to those used over a ten year period of Tropical Medicine and International Health. Two parasitological datasets are used for illustration. Results Ninety papers were identified, 89 with descriptive and 60 with inferential analysis. A lack of clarity is noted in identifying measures of location, in particular the Williams and geometric mean. The different measures are compared, emphasizing the legitimacy of the arithmetic mean for skewed data. In the published papers, the t test and related methods were often used on untransformed data, which is likely to be invalid. Several approaches to inferential analysis are described, emphasizing 1) non-parametric methods, while noting that they are not simply comparisons of medians, and 2) generalized linear modelling, in particular with the negative binomial distribution. Additional methods, such as the bootstrap, with potential for greater use are described. Conclusions Clarity is recommended when describing transformations and measures of location. It is suggested that non-parametric methods and generalized linear models are likely to be sufficient for most analyses. PMID:22943299

  6. NONPARAMETRIC MANOVA APPROACHES FOR NON-NORMAL MULTIVARIATE OUTCOMES WITH MISSING VALUES

    PubMed Central

    He, Fanyin; Mazumdar, Sati; Tang, Gong; Bhatia, Triptish; Anderson, Stewart J.; Dew, Mary Amanda; Krafty, Robert; Nimgaonkar, Vishwajit; Deshpande, Smita; Hall, Martica; Reynolds, Charles F.

    2017-01-01

    Between-group comparisons often entail many correlated response variables. The multivariate linear model, with its assumption of multivariate normality, is the accepted standard tool for these tests. When this assumption is violated, the nonparametric multivariate Kruskal-Wallis (MKW) test is frequently used. However, this test requires complete cases with no missing values in response variables. Deletion of cases with missing values likely leads to inefficient statistical inference. Here we extend the MKW test to retain information from partially-observed cases. Results of simulated studies and analysis of real data show that the proposed method provides adequate coverage and superior power to complete-case analyses. PMID:29416225

  7. On an additive partial correlation operator and nonparametric estimation of graphical models.

    PubMed

    Lee, Kuang-Yao; Li, Bing; Zhao, Hongyu

    2016-09-01

    We introduce an additive partial correlation operator as an extension of partial correlation to the nonlinear setting, and use it to develop a new estimator for nonparametric graphical models. Our graphical models are based on additive conditional independence, a statistical relation that captures the spirit of conditional independence without having to resort to high-dimensional kernels for its estimation. The additive partial correlation operator completely characterizes additive conditional independence, and has the additional advantage of putting marginal variation on appropriate scales when evaluating interdependence, which leads to more accurate statistical inference. We establish the consistency of the proposed estimator. Through simulation experiments and analysis of the DREAM4 Challenge dataset, we demonstrate that our method performs better than existing methods in cases where the Gaussian or copula Gaussian assumption does not hold, and that a more appropriate scaling for our method further enhances its performance.

  8. On an additive partial correlation operator and nonparametric estimation of graphical models

    PubMed Central

    Li, Bing; Zhao, Hongyu

    2016-01-01

    Abstract We introduce an additive partial correlation operator as an extension of partial correlation to the nonlinear setting, and use it to develop a new estimator for nonparametric graphical models. Our graphical models are based on additive conditional independence, a statistical relation that captures the spirit of conditional independence without having to resort to high-dimensional kernels for its estimation. The additive partial correlation operator completely characterizes additive conditional independence, and has the additional advantage of putting marginal variation on appropriate scales when evaluating interdependence, which leads to more accurate statistical inference. We establish the consistency of the proposed estimator. Through simulation experiments and analysis of the DREAM4 Challenge dataset, we demonstrate that our method performs better than existing methods in cases where the Gaussian or copula Gaussian assumption does not hold, and that a more appropriate scaling for our method further enhances its performance. PMID:29422689

  9. Parametric vs. non-parametric statistics of low resolution electromagnetic tomography (LORETA).

    PubMed

    Thatcher, R W; North, D; Biver, C

    2005-01-01

    This study compared the relative statistical sensitivity of non-parametric and parametric statistics of 3-dimensional current sources as estimated by the EEG inverse solution Low Resolution Electromagnetic Tomography (LORETA). One would expect approximately 5% false positives (classification of a normal as abnormal) at the P < .025 level of probability (two tailed test) and approximately 1% false positives at the P < .005 level. EEG digital samples (2 second intervals sampled 128 Hz, 1 to 2 minutes eyes closed) from 43 normal adult subjects were imported into the Key Institute's LORETA program. We then used the Key Institute's cross-spectrum and the Key Institute's LORETA output files (*.lor) as the 2,394 gray matter pixel representation of 3-dimensional currents at different frequencies. The mean and standard deviation *.lor files were computed for each of the 2,394 gray matter pixels for each of the 43 subjects. Tests of Gaussianity and different transforms were computed in order to best approximate a normal distribution for each frequency and gray matter pixel. The relative sensitivity of parametric vs. non-parametric statistics were compared using a "leave-one-out" cross validation method in which individual normal subjects were withdrawn and then statistically classified as being either normal or abnormal based on the remaining subjects. Log10 transforms approximated Gaussian distribution in the range of 95% to 99% accuracy. Parametric Z score tests at P < .05 cross-validation demonstrated an average misclassification rate of approximately 4.25%, and range over the 2,394 gray matter pixels was 27.66% to 0.11%. At P < .01 parametric Z score cross-validation false positives were 0.26% and ranged from 6.65% to 0% false positives. The non-parametric Key Institute's t-max statistic at P < .05 had an average misclassification error rate of 7.64% and ranged from 43.37% to 0.04% false positives. The nonparametric t-max at P < .01 had an average misclassification rate of 6.67% and ranged from 41.34% to 0% false positives of the 2,394 gray matter pixels for any cross-validated normal subject. In conclusion, adequate approximation to Gaussian distribution and high cross-validation can be achieved by the Key Institute's LORETA programs by using a log10 transform and parametric statistics, and parametric normative comparisons had lower false positive rates than the non-parametric tests.

  10. Technical Topic 3.2.2.d Bayesian and Non-Parametric Statistics: Integration of Neural Networks with Bayesian Networks for Data Fusion and Predictive Modeling

    DTIC Science & Technology

    2016-05-31

    and included explosives such as TATP, HMTD, RDX, RDX, ammonium nitrate , potassium perchlorate, potassium nitrate , sugar, and TNT. The approach...Distribution Unlimited UU UU UU UU 31-05-2016 15-Apr-2014 14-Jan-2015 Final Report: Technical Topic 3.2.2. d Bayesian and Non- parametric Statistics...of Papers published in non peer-reviewed journals: Final Report: Technical Topic 3.2.2. d Bayesian and Non-parametric Statistics: Integration of Neural

  11. When the Single Matters more than the Group (II): Addressing the Problem of High False Positive Rates in Single Case Voxel Based Morphometry Using Non-parametric Statistics.

    PubMed

    Scarpazza, Cristina; Nichols, Thomas E; Seramondi, Donato; Maumet, Camille; Sartori, Giuseppe; Mechelli, Andrea

    2016-01-01

    In recent years, an increasing number of studies have used Voxel Based Morphometry (VBM) to compare a single patient with a psychiatric or neurological condition of interest against a group of healthy controls. However, the validity of this approach critically relies on the assumption that the single patient is drawn from a hypothetical population with a normal distribution and variance equal to that of the control group. In a previous investigation, we demonstrated that family-wise false positive error rate (i.e., the proportion of statistical comparisons yielding at least one false positive) in single case VBM are much higher than expected (Scarpazza et al., 2013). Here, we examine whether the use of non-parametric statistics, which does not rely on the assumptions of normal distribution and equal variance, would enable the investigation of single subjects with good control of false positive risk. We empirically estimated false positive rates (FPRs) in single case non-parametric VBM, by performing 400 statistical comparisons between a single disease-free individual and a group of 100 disease-free controls. The impact of smoothing (4, 8, and 12 mm) and type of pre-processing (Modulated, Unmodulated) was also examined, as these factors have been found to influence FPRs in previous investigations using parametric statistics. The 400 statistical comparisons were repeated using two independent, freely available data sets in order to maximize the generalizability of the results. We found that the family-wise error rate was 5% for increases and 3.6% for decreases in one data set; and 5.6% for increases and 6.3% for decreases in the other data set (5% nominal). Further, these results were not dependent on the level of smoothing and modulation. Therefore, the present study provides empirical evidence that single case VBM studies with non-parametric statistics are not susceptible to high false positive rates. The critical implication of this finding is that VBM can be used to characterize neuroanatomical alterations in individual subjects as long as non-parametric statistics are employed.

  12. The Statistical Consulting Center for Astronomy (SCCA)

    NASA Technical Reports Server (NTRS)

    Akritas, Michael

    2001-01-01

    The process by which raw astronomical data acquisition is transformed into scientifically meaningful results and interpretation typically involves many statistical steps. Traditional astronomy limits itself to a narrow range of old and familiar statistical methods: means and standard deviations; least-squares methods like chi(sup 2) minimization; and simple nonparametric procedures such as the Kolmogorov-Smirnov tests. These tools are often inadequate for the complex problems and datasets under investigations, and recent years have witnessed an increased usage of maximum-likelihood, survival analysis, multivariate analysis, wavelet and advanced time-series methods. The Statistical Consulting Center for Astronomy (SCCA) assisted astronomers with the use of sophisticated tools, and to match these tools with specific problems. The SCCA operated with two professors of statistics and a professor of astronomy working together. Questions were received by e-mail, and were discussed in detail with the questioner. Summaries of those questions and answers leading to new approaches were posted on the Web (www.state.psu.edu/ mga/SCCA). In addition to serving individual astronomers, the SCCA established a Web site for general use that provides hypertext links to selected on-line public-domain statistical software and services. The StatCodes site (www.astro.psu.edu/statcodes) provides over 200 links in the areas of: Bayesian statistics; censored and truncated data; correlation and regression, density estimation and smoothing, general statistics packages and information; image analysis; interactive Web tools; multivariate analysis; multivariate clustering and classification; nonparametric analysis; software written by astronomers; spatial statistics; statistical distributions; time series analysis; and visualization tools. StatCodes has received a remarkable high and constant hit rate of 250 hits/week (over 10,000/year) since its inception in mid-1997. It is of interest to scientists both within and outside of astronomy. The most popular sections are multivariate techniques, image analysis, and time series analysis. Hundreds of copies of the ASURV, SLOPES and CENS-TAU codes developed by SCCA scientists were also downloaded from the StatCodes site. In addition to formal SCCA duties, SCCA scientists continued a variety of related activities in astrostatistics, including refereeing of statistically oriented papers submitted to the Astrophysical Journal, talks in meetings including Feigelson's talk to science journalists entitled "The reemergence of astrostatistics" at the American Association for the Advancement of Science meeting, and published papers of astrostatistical content.

  13. Surgical Treatment for Discogenic Low-Back Pain: Lumbar Arthroplasty Results in Superior Pain Reduction and Disability Level Improvement Compared With Lumbar Fusion

    PubMed Central

    2007-01-01

    Background The US Food and Drug Administration approved the Charité artificial disc on October 26, 2004. This approval was based on an extensive analysis and review process; 20 years of disc usage worldwide; and the results of a prospective, randomized, controlled clinical trial that compared lumbar artificial disc replacement to fusion. The results of the investigational device exemption (IDE) study led to a conclusion that clinical outcomes following lumbar arthroplasty were at least as good as outcomes from fusion. Methods The author performed a new analysis of the Visual Analog Scale pain scores and the Oswestry Disability Index scores from the Charité artificial disc IDE study and used a nonparametric statistical test, because observed data distributions were not normal. The analysis included all of the enrolled subjects in both the nonrandomized and randomized phases of the study. Results Subjects from both the treatment and control groups improved from the baseline situation (P < .001) at all follow-up times (6 weeks to 24 months). Additionally, these pain and disability levels with artificial disc replacement were superior (P < .05) to the fusion treatment at all follow-up times including 2 years. Conclusions The a priori statistical plan for an IDE study may not adequately address the final distribution of the data. Therefore, statistical analyses more appropriate to the distribution may be necessary to develop meaningful statistical conclusions from the study. A nonparametric statistical analysis of the Charité artificial disc IDE outcomes scores demonstrates superiority for lumbar arthroplasty versus fusion at all follow-up time points to 24 months. PMID:25802574

  14. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.

    PubMed

    Karabatsos, George

    2017-02-01

    Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.

  15. SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.

    PubMed

    Chu, Annie; Cui, Jenny; Dinov, Ivo D

    2009-03-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models.

  16. Evaluating sufficient similarity for drinking-water disinfection by-product (DBP) mixtures with bootstrap hypothesis test procedures.

    PubMed

    Feder, Paul I; Ma, Zhenxu J; Bull, Richard J; Teuschler, Linda K; Rice, Glenn

    2009-01-01

    In chemical mixtures risk assessment, the use of dose-response data developed for one mixture to estimate risk posed by a second mixture depends on whether the two mixtures are sufficiently similar. While evaluations of similarity may be made using qualitative judgments, this article uses nonparametric statistical methods based on the "bootstrap" resampling technique to address the question of similarity among mixtures of chemical disinfectant by-products (DBP) in drinking water. The bootstrap resampling technique is a general-purpose, computer-intensive approach to statistical inference that substitutes empirical sampling for theoretically based parametric mathematical modeling. Nonparametric, bootstrap-based inference involves fewer assumptions than parametric normal theory based inference. The bootstrap procedure is appropriate, at least in an asymptotic sense, whether or not the parametric, distributional assumptions hold, even approximately. The statistical analysis procedures in this article are initially illustrated with data from 5 water treatment plants (Schenck et al., 2009), and then extended using data developed from a study of 35 drinking-water utilities (U.S. EPA/AMWA, 1989), which permits inclusion of a greater number of water constituents and increased structure in the statistical models.

  17. Algorithm for Identifying Erroneous Rain-Gauge Readings

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2005-01-01

    An algorithm analyzes rain-gauge data to identify statistical outliers that could be deemed to be erroneous readings. Heretofore, analyses of this type have been performed in burdensome manual procedures that have involved subjective judgements. Sometimes, the analyses have included computational assistance for detecting values falling outside of arbitrary limits. The analyses have been performed without statistically valid knowledge of the spatial and temporal variations of precipitation within rain events. In contrast, the present algorithm makes it possible to automate such an analysis, makes the analysis objective, takes account of the spatial distribution of rain gauges in conjunction with the statistical nature of spatial variations in rainfall readings, and minimizes the use of arbitrary criteria. The algorithm implements an iterative process that involves nonparametric statistics.

  18. Assessing the Kansas water-level monitoring program: An example of the application of classical statistics to a geological problem

    USGS Publications Warehouse

    Davis, J.C.

    2000-01-01

    Geologists may feel that geological data are not amenable to statistical analysis, or at best require specialized approaches such as nonparametric statistics and geostatistics. However, there are many circumstances, particularly in systematic studies conducted for environmental or regulatory purposes, where traditional parametric statistical procedures can be beneficial. An example is the application of analysis of variance to data collected in an annual program of measuring groundwater levels in Kansas. Influences such as well conditions, operator effects, and use of the water can be assessed and wells that yield less reliable measurements can be identified. Such statistical studies have resulted in yearly improvements in the quality and reliability of the collected hydrologic data. Similar benefits may be achieved in other geological studies by the appropriate use of classical statistical tools.

  19. Analyzing Single-Molecule Time Series via Nonparametric Bayesian Inference

    PubMed Central

    Hines, Keegan E.; Bankston, John R.; Aldrich, Richard W.

    2015-01-01

    The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data. PMID:25650922

  20. An Exploratory Data Analysis System for Support in Medical Decision-Making

    PubMed Central

    Copeland, J. A.; Hamel, B.; Bourne, J. R.

    1979-01-01

    An experimental system was developed to allow retrieval and analysis of data collected during a study of neurobehavioral correlates of renal disease. After retrieving data organized in a relational data base, simple bivariate statistics of parametric and nonparametric nature could be conducted. An “exploratory” mode in which the system provided guidance in selection of appropriate statistical analyses was also available to the user. The system traversed a decision tree using the inherent qualities of the data (e.g., the identity and number of patients, tests, and time epochs) to search for the appropriate analyses to employ.

  1. Parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method of ledre profile attributes

    NASA Astrophysics Data System (ADS)

    Hastuti, S.; Harijono; Murtini, E. S.; Fibrianto, K.

    2018-03-01

    This current study is aimed to investigate the use of parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method. Ledre as Bojonegoro unique local food product was used as point of interest, in which 319 panelists were involved in the study. The result showed that ledre is characterized as easy-crushed texture, sticky in mouth, stingy sensation and easy to swallow. It has also strong banana flavour with brown in colour. Compared to eggroll and semprong, ledre has more variances in terms of taste as well the roll length. As RATA questionnaire is designed to collect categorical data, non-parametric approach is the common statistical procedure. However, similar results were also obtained as parametric approach, regardless the fact of non-normal distributed data. Thus, it suggests that parametric approach can be applicable for consumer study with large number of respondents, even though it may not satisfy the assumption of ANOVA (Analysis of Variances).

  2. Robust variable selection method for nonparametric differential equation models with application to nonlinear dynamic gene regulatory network analysis.

    PubMed

    Lu, Tao

    2016-01-01

    The gene regulation network (GRN) evaluates the interactions between genes and look for models to describe the gene expression behavior. These models have many applications; for instance, by characterizing the gene expression mechanisms that cause certain disorders, it would be possible to target those genes to block the progress of the disease. Many biological processes are driven by nonlinear dynamic GRN. In this article, we propose a nonparametric differential equation (ODE) to model the nonlinear dynamic GRN. Specially, we address following questions simultaneously: (i) extract information from noisy time course gene expression data; (ii) model the nonlinear ODE through a nonparametric smoothing function; (iii) identify the important regulatory gene(s) through a group smoothly clipped absolute deviation (SCAD) approach; (iv) test the robustness of the model against possible shortening of experimental duration. We illustrate the usefulness of the model and associated statistical methods through a simulation and a real application examples.

  3. Radioactivity Registered With a Small Number of Events

    NASA Astrophysics Data System (ADS)

    Zlokazov, Victor; Utyonkov, Vladimir

    2018-02-01

    The synthesis of superheavy elements asks for the analysis of low statistics experimental data presumably obeying an unknown exponential distribution and to take the decision whether they originate from one source or have admixtures. Here we analyze predictions following from non-parametrical methods, employing only such fundamental sample properties as the sample mean, the median and the mode.

  4. Twenty-five years of maximum-entropy principle

    NASA Astrophysics Data System (ADS)

    Kapur, J. N.

    1983-04-01

    The strengths and weaknesses of the maximum entropy principle (MEP) are examined and some challenging problems that remain outstanding at the end of the first quarter century of the principle are discussed. The original formalism of the MEP is presented and its relationship to statistical mechanics is set forth. The use of MEP for characterizing statistical distributions, in statistical inference, nonlinear spectral analysis, transportation models, population density models, models for brand-switching in marketing and vote-switching in elections is discussed. Its application to finance, insurance, image reconstruction, pattern recognition, operations research and engineering, biology and medicine, and nonparametric density estimation is considered.

  5. A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence

    USDA-ARS?s Scientific Manuscript database

    Parametric non-linear regression (PNR) techniques commonly are used to develop weed seedling emergence models. Such techniques, however, require statistical assumptions that are difficult to meet. To examine and overcome these limitations, we compared PNR with a nonparametric estimation technique. F...

  6. Identification and estimation of survivor average causal effects.

    PubMed

    Tchetgen Tchetgen, Eric J

    2014-09-20

    In longitudinal studies, outcomes ascertained at follow-up are typically undefined for individuals who die prior to the follow-up visit. In such settings, outcomes are said to be truncated by death and inference about the effects of a point treatment or exposure, restricted to individuals alive at the follow-up visit, could be biased even if as in experimental studies, treatment assignment were randomized. To account for truncation by death, the survivor average causal effect (SACE) defines the effect of treatment on the outcome for the subset of individuals who would have survived regardless of exposure status. In this paper, the author nonparametrically identifies SACE by leveraging post-exposure longitudinal correlates of survival and outcome that may also mediate the exposure effects on survival and outcome. Nonparametric identification is achieved by supposing that the longitudinal data arise from a certain nonparametric structural equations model and by making the monotonicity assumption that the effect of exposure on survival agrees in its direction across individuals. A novel weighted analysis involving a consistent estimate of the survival process is shown to produce consistent estimates of SACE. A data illustration is given, and the methods are extended to the context of time-varying exposures. We discuss a sensitivity analysis framework that relaxes assumptions about independent errors in the nonparametric structural equations model and may be used to assess the extent to which inference may be altered by a violation of key identifying assumptions. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

  7. Identification and estimation of survivor average causal effects

    PubMed Central

    Tchetgen, Eric J Tchetgen

    2014-01-01

    In longitudinal studies, outcomes ascertained at follow-up are typically undefined for individuals who die prior to the follow-up visit. In such settings, outcomes are said to be truncated by death and inference about the effects of a point treatment or exposure, restricted to individuals alive at the follow-up visit, could be biased even if as in experimental studies, treatment assignment were randomized. To account for truncation by death, the survivor average causal effect (SACE) defines the effect of treatment on the outcome for the subset of individuals who would have survived regardless of exposure status. In this paper, the author nonparametrically identifies SACE by leveraging post-exposure longitudinal correlates of survival and outcome that may also mediate the exposure effects on survival and outcome. Nonparametric identification is achieved by supposing that the longitudinal data arise from a certain nonparametric structural equations model and by making the monotonicity assumption that the effect of exposure on survival agrees in its direction across individuals. A novel weighted analysis involving a consistent estimate of the survival process is shown to produce consistent estimates of SACE. A data illustration is given, and the methods are extended to the context of time-varying exposures. We discuss a sensitivity analysis framework that relaxes assumptions about independent errors in the nonparametric structural equations model and may be used to assess the extent to which inference may be altered by a violation of key identifying assumptions. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24889022

  8. Advanced statistical methods for improved data analysis of NASA astrophysics missions

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.

    1992-01-01

    The investigators under this grant studied ways to improve the statistical analysis of astronomical data. They looked at existing techniques, the development of new techniques, and the production and distribution of specialized software to the astronomical community. Abstracts of nine papers that were produced are included, as well as brief descriptions of four software packages. The articles that are abstracted discuss analytical and Monte Carlo comparisons of six different linear least squares fits, a (second) paper on linear regression in astronomy, two reviews of public domain software for the astronomer, subsample and half-sample methods for estimating sampling distributions, a nonparametric estimation of survival functions under dependent competing risks, censoring in astronomical data due to nondetections, an astronomy survival analysis computer package called ASURV, and improving the statistical methodology of astronomical data analysis.

  9. Speeding Up Non-Parametric Bootstrap Computations for Statistics Based on Sample Moments in Small/Moderate Sample Size Applications

    PubMed Central

    Chaibub Neto, Elias

    2015-01-01

    In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson’s sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling. PMID:26125965

  10. A note on the correlation between circular and linear variables with an application to wind direction and air temperature data in a Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Lototzis, M.; Papadopoulos, G. K.; Droulia, F.; Tseliou, A.; Tsiros, I. X.

    2018-04-01

    There are several cases where a circular variable is associated with a linear one. A typical example is wind direction that is often associated with linear quantities such as air temperature and air humidity. The analysis of a statistical relationship of this kind can be tested by the use of parametric and non-parametric methods, each of which has its own advantages and drawbacks. This work deals with correlation analysis using both the parametric and the non-parametric procedure on a small set of meteorological data of air temperature and wind direction during a summer period in a Mediterranean climate. Correlations were examined between hourly, daily and maximum-prevailing values, under typical and non-typical meteorological conditions. Both tests indicated a strong correlation between mean hourly wind directions and mean hourly air temperature, whereas mean daily wind direction and mean daily air temperature do not seem to be correlated. In some cases, however, the two procedures were found to give quite dissimilar levels of significance on the rejection or not of the null hypothesis of no correlation. The simple statistical analysis presented in this study, appropriately extended in large sets of meteorological data, may be a useful tool for estimating effects of wind on local climate studies.

  11. Tests of Mediation: Paradoxical Decline in Statistical Power as a Function of Mediator Collinearity

    PubMed Central

    Beasley, T. Mark

    2013-01-01

    Increasing the correlation between the independent variable and the mediator (a coefficient) increases the effect size (ab) for mediation analysis; however, increasing a by definition increases collinearity in mediation models. As a result, the standard error of product tests increase. The variance inflation due to increases in a at some point outweighs the increase of the effect size (ab) and results in a loss of statistical power. This phenomenon also occurs with nonparametric bootstrapping approaches because the variance of the bootstrap distribution of ab approximates the variance expected from normal theory. Both variances increase dramatically when a exceeds the b coefficient, thus explaining the power decline with increases in a. Implications for statistical analysis and applied researchers are discussed. PMID:24954952

  12. Nonparametric analysis of bivariate gap time with competing risks.

    PubMed

    Huang, Chiung-Yu; Wang, Chenguang; Wang, Mei-Cheng

    2016-09-01

    This article considers nonparametric methods for studying recurrent disease and death with competing risks. We first point out that comparisons based on the well-known cumulative incidence function can be confounded by different prevalence rates of the competing events, and that comparisons of the conditional distribution of the survival time given the failure event type are more relevant for investigating the prognosis of different patterns of recurrence disease. We then propose nonparametric estimators for the conditional cumulative incidence function as well as the conditional bivariate cumulative incidence function for the bivariate gap times, that is, the time to disease recurrence and the residual lifetime after recurrence. To quantify the association between the two gap times in the competing risks setting, a modified Kendall's tau statistic is proposed. The proposed estimators for the conditional bivariate cumulative incidence distribution and the association measure account for the induced dependent censoring for the second gap time. Uniform consistency and weak convergence of the proposed estimators are established. Hypothesis testing procedures for two-sample comparisons are discussed. Numerical simulation studies with practical sample sizes are conducted to evaluate the performance of the proposed nonparametric estimators and tests. An application to data from a pancreatic cancer study is presented to illustrate the methods developed in this article. © 2016, The International Biometric Society.

  13. A Nonparametric Framework for Comparing Trends and Gaps across Tests

    ERIC Educational Resources Information Center

    Ho, Andrew Dean

    2009-01-01

    Problems of scale typically arise when comparing test score trends, gaps, and gap trends across different tests. To overcome some of these difficulties, test score distributions on the same score scale can be represented by nonparametric graphs or statistics that are invariant under monotone scale transformations. This article motivates and then…

  14. A Nonparametric K-Sample Test for Equality of Slopes.

    ERIC Educational Resources Information Center

    Penfield, Douglas A.; Koffler, Stephen L.

    1986-01-01

    The development of a nonparametric K-sample test for equality of slopes using Puri's generalized L statistic is presented. The test is recommended when the assumptions underlying the parametric model are violated. This procedure replaces original data with either ranks (for data with heavy tails) or normal scores (for data with light tails).…

  15. A Note on the Assumption of Identical Distributions for Nonparametric Tests of Location

    ERIC Educational Resources Information Center

    Nordstokke, David W.; Colp, S. Mitchell

    2018-01-01

    Often, when testing for shift in location, researchers will utilize nonparametric statistical tests in place of their parametric counterparts when there is evidence or belief that the assumptions of the parametric test are not met (i.e., normally distributed dependent variables). An underlying and often unattended to assumption of nonparametric…

  16. Nonparametric method for failures diagnosis in the actuating subsystem of aircraft control system

    NASA Astrophysics Data System (ADS)

    Terentev, M. N.; Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.

    2018-02-01

    In this paper we design a nonparametric method for failures diagnosis in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on analytical nonparametric one-step-ahead state prediction approach. This makes it possible to predict the behavior of unidentified and failure dynamic systems, to weaken the requirements to control signals, and to reduce the diagnostic time and problem complexity.

  17. A Nonparametric Statistical Approach to the Validation of Computer Simulation Models

    DTIC Science & Technology

    1985-11-01

    Ballistic Research Laboratory, the Experimental Design and Analysis Branch of the Systems Engineering and Concepts Analysis Division was funded to...2 Winter. E M. Wisemiler. D P. azd UjiharmJ K. Venrgcation ad Validatiot of Engineering Simulatiots with Minimal D2ta." Pmeedinr’ of the 1976 Summer...used by numerous authors. Law%6 has augmented their approach with specific suggestions for each of the three stage’s: 1. develop high face-validity

  18. Statistics Anxiety and Business Statistics: The International Student

    ERIC Educational Resources Information Center

    Bell, James A.

    2008-01-01

    Does the international student suffer from statistics anxiety? To investigate this, the Statistics Anxiety Rating Scale (STARS) was administered to sixty-six beginning statistics students, including twelve international students and fifty-four domestic students. Due to the small number of international students, nonparametric methods were used to…

  19. Common Scientific and Statistical Errors in Obesity Research

    PubMed Central

    George, Brandon J.; Beasley, T. Mark; Brown, Andrew W.; Dawson, John; Dimova, Rositsa; Divers, Jasmin; Goldsby, TaShauna U.; Heo, Moonseong; Kaiser, Kathryn A.; Keith, Scott; Kim, Mimi Y.; Li, Peng; Mehta, Tapan; Oakes, J. Michael; Skinner, Asheley; Stuart, Elizabeth; Allison, David B.

    2015-01-01

    We identify 10 common errors and problems in the statistical analysis, design, interpretation, and reporting of obesity research and discuss how they can be avoided. The 10 topics are: 1) misinterpretation of statistical significance, 2) inappropriate testing against baseline values, 3) excessive and undisclosed multiple testing and “p-value hacking,” 4) mishandling of clustering in cluster randomized trials, 5) misconceptions about nonparametric tests, 6) mishandling of missing data, 7) miscalculation of effect sizes, 8) ignoring regression to the mean, 9) ignoring confirmation bias, and 10) insufficient statistical reporting. We hope that discussion of these errors can improve the quality of obesity research by helping researchers to implement proper statistical practice and to know when to seek the help of a statistician. PMID:27028280

  20. SOCR Analyses – an Instructional Java Web-based Statistical Analysis Toolkit

    PubMed Central

    Chu, Annie; Cui, Jenny; Dinov, Ivo D.

    2011-01-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test. The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website. In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models. PMID:21546994

  1. Investigation of a Nonparametric Procedure for Assessing Goodness-of-Fit in Item Response Theory

    ERIC Educational Resources Information Center

    Wells, Craig S.; Bolt, Daniel M.

    2008-01-01

    Tests of model misfit are often performed to validate the use of a particular model in item response theory. Douglas and Cohen (2001) introduced a general nonparametric approach for detecting misfit under the two-parameter logistic model. However, the statistical properties of their approach, and empirical comparisons to other methods, have not…

  2. Comparison of Salmonella enteritidis phage types isolated from layers and humans in Belgium in 2005.

    PubMed

    Welby, Sarah; Imberechts, Hein; Riocreux, Flavien; Bertrand, Sophie; Dierick, Katelijne; Wildemauwe, Christa; Hooyberghs, Jozef; Van der Stede, Yves

    2011-08-01

    The aim of this study was to investigate the available results for Belgium of the European Union coordinated monitoring program (2004/665 EC) on Salmonella in layers in 2005, as well as the results of the monthly outbreak reports of Salmonella Enteritidis in humans in 2005 to identify a possible statistical significant trend in both populations. Separate descriptive statistics and univariate analysis were carried out and the parametric and/or non-parametric hypothesis tests were conducted. A time cluster analysis was performed for all Salmonella Enteritidis phage types (PTs) isolated. The proportions of each Salmonella Enteritidis PT in layers and in humans were compared and the monthly distribution of the most common PT, isolated in both populations, was evaluated. The time cluster analysis revealed significant clusters during the months May and June for layers and May, July, August, and September for humans. PT21, the most frequently isolated PT in both populations in 2005, seemed to be responsible of these significant clusters. PT4 was the second most frequently isolated PT. No significant difference was found for the monthly trend evolution of both PT in both populations based on parametric and non-parametric methods. A similar monthly trend of PT distribution in humans and layers during the year 2005 was observed. The time cluster analysis and the statistical significance testing confirmed these results. Moreover, the time cluster analysis showed significant clusters during the summer time and slightly delayed in time (humans after layers). These results suggest a common link between the prevalence of Salmonella Enteritidis in layers and the occurrence of the pathogen in humans. Phage typing was confirmed to be a useful tool for identifying temporal trends.

  3. A Powerful Test for Comparing Multiple Regression Functions.

    PubMed

    Maity, Arnab

    2012-09-01

    In this article, we address the important problem of comparison of two or more population regression functions. Recently, Pardo-Fernández, Van Keilegom and González-Manteiga (2007) developed test statistics for simple nonparametric regression models: Y(ij) = θ(j)(Z(ij)) + σ(j)(Z(ij))∊(ij), based on empirical distributions of the errors in each population j = 1, … , J. In this paper, we propose a test for equality of the θ(j)(·) based on the concept of generalized likelihood ratio type statistics. We also generalize our test for other nonparametric regression setups, e.g, nonparametric logistic regression, where the loglikelihood for population j is any general smooth function [Formula: see text]. We describe a resampling procedure to obtain the critical values of the test. In addition, we present a simulation study to evaluate the performance of the proposed test and compare our results to those in Pardo-Fernández et al. (2007).

  4. An appraisal of statistical procedures used in derivation of reference intervals.

    PubMed

    Ichihara, Kiyoshi; Boyd, James C

    2010-11-01

    When conducting studies to derive reference intervals (RIs), various statistical procedures are commonly applied at each step, from the planning stages to final computation of RIs. Determination of the necessary sample size is an important consideration, and evaluation of at least 400 individuals in each subgroup has been recommended to establish reliable common RIs in multicenter studies. Multiple regression analysis allows identification of the most important factors contributing to variation in test results, while accounting for possible confounding relationships among these factors. Of the various approaches proposed for judging the necessity of partitioning reference values, nested analysis of variance (ANOVA) is the likely method of choice owing to its ability to handle multiple groups and being able to adjust for multiple factors. Box-Cox power transformation often has been used to transform data to a Gaussian distribution for parametric computation of RIs. However, this transformation occasionally fails. Therefore, the non-parametric method based on determination of the 2.5 and 97.5 percentiles following sorting of the data, has been recommended for general use. The performance of the Box-Cox transformation can be improved by introducing an additional parameter representing the origin of transformation. In simulations, the confidence intervals (CIs) of reference limits (RLs) calculated by the parametric method were narrower than those calculated by the non-parametric approach. However, the margin of difference was rather small owing to additional variability in parametrically-determined RLs introduced by estimation of parameters for the Box-Cox transformation. The parametric calculation method may have an advantage over the non-parametric method in allowing identification and exclusion of extreme values during RI computation.

  5. Short-term monitoring of benzene air concentration in an urban area: a preliminary study of application of Kruskal-Wallis non-parametric test to assess pollutant impact on global environment and indoor.

    PubMed

    Mura, Maria Chiara; De Felice, Marco; Morlino, Roberta; Fuselli, Sergio

    2010-01-01

    In step with the need to develop statistical procedures to manage small-size environmental samples, in this work we have used concentration values of benzene (C6H6), concurrently detected by seven outdoor and indoor monitoring stations over 12 000 minutes, in order to assess the representativeness of collected data and the impact of the pollutant on indoor environment. Clearly, the former issue is strictly connected to sampling-site geometry, which proves critical to correctly retrieving information from analysis of pollutants of sanitary interest. Therefore, according to current criteria for network-planning, single stations have been interpreted as nodes of a set of adjoining triangles; then, a) node pairs have been taken into account in order to estimate pollutant stationarity on triangle sides, as well as b) node triplets, to statistically associate data from air-monitoring with the corresponding territory area, and c) node sextuplets, to assess the impact probability of the outdoor pollutant on indoor environment for each area. Distributions from the various node combinations are all non-Gaussian, in the consequently, Kruskal-Wallis (KW) non-parametric statistics has been exploited to test variability on continuous density function from each pair, triplet and sextuplet. Results from the above-mentioned statistical analysis have shown randomness of site selection, which has not allowed a reliable generalization of monitoring data to the entire selected territory, except for a single "forced" case (70%); most important, they suggest a possible procedure to optimize network design.

  6. Nonparametric Statistics Test Software Package.

    DTIC Science & Technology

    1983-09-01

    statis- tics because of their acceptance in the academic world, the availability of computer support, and flexibility in model builling. Nonparametric...25 I1l,lCELL WRITE(NCF,12 ) IvE (I ,RCCT(I) 122 FORMAT(IlXt 3(H5 9 1) IF( IeLT *NCELL) WRITE (NOF1123 J PARTV(I1J 123 FORMAT( Xll----’,FIo.3J 25 CONT

  7. Nonparametric projections of forest and rangeland condition indicators: A technical document supporting the 2005 USDA Forest Service RPA Assessment Update

    Treesearch

    John Hof; Curtis Flather; Tony Baltic; Rudy King

    2006-01-01

    The 2005 Forest and Rangeland Condition Indicator Model is a set of classification trees for forest and rangeland condition indicators at the national scale. This report documents the development of the database and the nonparametric statistical estimation for this analytical structure, with emphasis on three special characteristics of condition indicator production...

  8. Temporal changes and variability in temperature series over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Suhaila, Jamaludin

    2015-02-01

    With the current concern over climate change, the descriptions on how temperature series changed over time are very useful. Annual mean temperature has been analyzed for several stations over Peninsular Malaysia. Non-parametric statistical techniques such as Mann-Kendall test and Theil-Sen slope estimation are used primarily for assessing the significance and detection of trends, while a nonparametric Pettitt's test and sequential Mann-Kendall test are adopted to detect any abrupt climate change. Statistically significance increasing trends for annual mean temperature are detected for almost all studied stations with the magnitude of significant trend varied from 0.02°C to 0.05°C per year. The results shows that climate over Peninsular Malaysia is getting warmer than before. In addition, the results of the abrupt changes in temperature using Pettitt's and sequential Mann-Kendall test reveal the beginning of trends which can be related to El Nino episodes that occur in Malaysia. In general, the analysis results can help local stakeholders and water managers to understand the risks and vulnerabilities related to climate change in terms of mean events in the region.

  9. Statistical methods for astronomical data with upper limits. II - Correlation and regression

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Nelson, P. I.

    1986-01-01

    Statistical methods for calculating correlations and regressions in bivariate censored data where the dependent variable can have upper or lower limits are presented. Cox's regression and the generalization of Kendall's rank correlation coefficient provide significant levels of correlations, and the EM algorithm, under the assumption of normally distributed errors, and its nonparametric analog using the Kaplan-Meier estimator, give estimates for the slope of a regression line. Monte Carlo simulations demonstrate that survival analysis is reliable in determining correlations between luminosities at different bands. Survival analysis is applied to CO emission in infrared galaxies, X-ray emission in radio galaxies, H-alpha emission in cooling cluster cores, and radio emission in Seyfert galaxies.

  10. Examination of influential observations in penalized spline regression

    NASA Astrophysics Data System (ADS)

    Türkan, Semra

    2013-10-01

    In parametric or nonparametric regression models, the results of regression analysis are affected by some anomalous observations in the data set. Thus, detection of these observations is one of the major steps in regression analysis. These observations are precisely detected by well-known influence measures. Pena's statistic is one of them. In this study, Pena's approach is formulated for penalized spline regression in terms of ordinary residuals and leverages. The real data and artificial data are used to see illustrate the effectiveness of Pena's statistic as to Cook's distance on detecting influential observations. The results of the study clearly reveal that the proposed measure is superior to Cook's Distance to detect these observations in large data set.

  11. STATISTICAL ESTIMATION AND VISUALIZATION OF GROUND-WATER CONTAMINATION DATA

    EPA Science Inventory

    This work presents methods of visualizing and animating statistical estimates of ground water and/or soil contamination over a region from observations of the contaminant for that region. The primary statistical methods used to produce the regional estimates are nonparametric re...

  12. Statistical Models and Inference Procedures for Structural and Materials Reliability

    DTIC Science & Technology

    1990-12-01

    as an official Department of the Army positio~n, policy, or decision, unless sD designated by other documentazion. 12a. DISTRIBUTION /AVAILABILITY...Some general stress-strength models were also developed and applied to the failure of systems subject to cyclic loading. Involved in the failure of...process control ideas and sequential design and analysis methods. Finally, smooth nonparametric quantile .wJ function estimators were studied. All of

  13. A hybrid method in combining treatment effects from matched and unmatched studies.

    PubMed

    Byun, Jinyoung; Lai, Dejian; Luo, Sheng; Risser, Jan; Tung, Betty; Hardy, Robert J

    2013-12-10

    The most common data structures in the biomedical studies have been matched or unmatched designs. Data structures resulting from a hybrid of the two may create challenges for statistical inferences. The question may arise whether to use parametric or nonparametric methods on the hybrid data structure. The Early Treatment for Retinopathy of Prematurity study was a multicenter clinical trial sponsored by the National Eye Institute. The design produced data requiring a statistical method of a hybrid nature. An infant in this multicenter randomized clinical trial had high-risk prethreshold retinopathy of prematurity that was eligible for treatment in one or both eyes at entry into the trial. During follow-up, recognition visual acuity was accessed for both eyes. Data from both eyes (matched) and from only one eye (unmatched) were eligible to be used in the trial. The new hybrid nonparametric method is a meta-analysis based on combining the Hodges-Lehmann estimates of treatment effects from the Wilcoxon signed rank and rank sum tests. To compare the new method, we used the classic meta-analysis with the t-test method to combine estimates of treatment effects from the paired and two sample t-tests. We used simulations to calculate the empirical size and power of the test statistics, as well as the bias, mean square and confidence interval width of the corresponding estimators. The proposed method provides an effective tool to evaluate data from clinical trials and similar comparative studies. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method.

    PubMed

    Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A

    2017-06-30

    Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. How to Deal with Interval-Censored Data Practically while Assessing the Progression-Free Survival: A Step-by-Step Guide Using SAS and R Software.

    PubMed

    Dugué, Audrey Emmanuelle; Pulido, Marina; Chabaud, Sylvie; Belin, Lisa; Gal, Jocelyn

    2016-12-01

    We describe how to estimate progression-free survival while dealing with interval-censored data in the setting of clinical trials in oncology. Three procedures with SAS and R statistical software are described: one allowing for a nonparametric maximum likelihood estimation of the survival curve using the EM-ICM (Expectation and Maximization-Iterative Convex Minorant) algorithm as described by Wellner and Zhan in 1997; a sensitivity analysis procedure in which the progression time is assigned (i) at the midpoint, (ii) at the upper limit (reflecting the standard analysis when the progression time is assigned at the first radiologic exam showing progressive disease), or (iii) at the lower limit of the censoring interval; and finally, two multiple imputations are described considering a uniform or the nonparametric maximum likelihood estimation (NPMLE) distribution. Clin Cancer Res; 22(23); 5629-35. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Analysis of censored data.

    PubMed

    Lucijanic, Marko; Petrovecki, Mladen

    2012-01-01

    Analyzing events over time is often complicated by incomplete, or censored, observations. Special non-parametric statistical methods were developed to overcome difficulties in summarizing and comparing censored data. Life-table (actuarial) method and Kaplan-Meier method are described with an explanation of survival curves. For the didactic purpose authors prepared a workbook based on most widely used Kaplan-Meier method. It should help the reader understand how Kaplan-Meier method is conceptualized and how it can be used to obtain statistics and survival curves needed to completely describe a sample of patients. Log-rank test and hazard ratio are also discussed.

  17. Nonparametric estimation of benchmark doses in environmental risk assessment

    PubMed Central

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Summary An important statistical objective in environmental risk analysis is estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response in a dose-response experiment. In such settings, representations of the risk are traditionally based on a parametric dose-response model. It is a well-known concern, however, that if the chosen parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result. We apply a nonparametric approach for calculating benchmark doses, based on an isotonic regression method for dose-response estimation with quantal-response data (Bhattacharya and Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a short simulation study. An example from cancer risk assessment illustrates the calculations. PMID:23914133

  18. Are the Nonparametric Person-Fit Statistics More Powerful than Their Parametric Counterparts? Revisiting the Simulations in Karabatsos (2003)

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2017-01-01

    Karabatsos compared the power of 36 person-fit statistics using receiver operating characteristics curves and found the "H[superscript T]" statistic to be the most powerful in identifying aberrant examinees. He found three statistics, "C", "MCI", and "U3", to be the next most powerful. These four statistics,…

  19. Statistics 101 for Radiologists.

    PubMed

    Anvari, Arash; Halpern, Elkan F; Samir, Anthony E

    2015-10-01

    Diagnostic tests have wide clinical applications, including screening, diagnosis, measuring treatment effect, and determining prognosis. Interpreting diagnostic test results requires an understanding of key statistical concepts used to evaluate test efficacy. This review explains descriptive statistics and discusses probability, including mutually exclusive and independent events and conditional probability. In the inferential statistics section, a statistical perspective on study design is provided, together with an explanation of how to select appropriate statistical tests. Key concepts in recruiting study samples are discussed, including representativeness and random sampling. Variable types are defined, including predictor, outcome, and covariate variables, and the relationship of these variables to one another. In the hypothesis testing section, we explain how to determine if observed differences between groups are likely to be due to chance. We explain type I and II errors, statistical significance, and study power, followed by an explanation of effect sizes and how confidence intervals can be used to generalize observed effect sizes to the larger population. Statistical tests are explained in four categories: t tests and analysis of variance, proportion analysis tests, nonparametric tests, and regression techniques. We discuss sensitivity, specificity, accuracy, receiver operating characteristic analysis, and likelihood ratios. Measures of reliability and agreement, including κ statistics, intraclass correlation coefficients, and Bland-Altman graphs and analysis, are introduced. © RSNA, 2015.

  20. Research design and statistical methods in Pakistan Journal of Medical Sciences (PJMS).

    PubMed

    Akhtar, Sohail; Shah, Syed Wadood Ali; Rafiq, M; Khan, Ajmal

    2016-01-01

    This article compares the study design and statistical methods used in 2005, 2010 and 2015 of Pakistan Journal of Medical Sciences (PJMS). Only original articles of PJMS were considered for the analysis. The articles were carefully reviewed for statistical methods and designs, and then recorded accordingly. The frequency of each statistical method and research design was estimated and compared with previous years. A total of 429 articles were evaluated (n=74 in 2005, n=179 in 2010, n=176 in 2015) in which 171 (40%) were cross-sectional and 116 (27%) were prospective study designs. A verity of statistical methods were found in the analysis. The most frequent methods include: descriptive statistics (n=315, 73.4%), chi-square/Fisher's exact tests (n=205, 47.8%) and student t-test (n=186, 43.4%). There was a significant increase in the use of statistical methods over time period: t-test, chi-square/Fisher's exact test, logistic regression, epidemiological statistics, and non-parametric tests. This study shows that a diverse variety of statistical methods have been used in the research articles of PJMS and frequency improved from 2005 to 2015. However, descriptive statistics was the most frequent method of statistical analysis in the published articles while cross-sectional study design was common study design.

  1. Granger causality revisited

    PubMed Central

    Friston, Karl J.; Bastos, André M.; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir

    2014-01-01

    This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality — providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes — as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling. PMID:25003817

  2. The Probability of Exceedance as a Nonparametric Person-Fit Statistic for Tests of Moderate Length

    ERIC Educational Resources Information Center

    Tendeiro, Jorge N.; Meijer, Rob R.

    2013-01-01

    To classify an item score pattern as not fitting a nonparametric item response theory (NIRT) model, the probability of exceedance (PE) of an observed response vector x can be determined as the sum of the probabilities of all response vectors that are, at most, as likely as x, conditional on the test's total score. Vector x is to be considered…

  3. The chi-square test of independence.

    PubMed

    McHugh, Mary L

    2013-01-01

    The Chi-square statistic is a non-parametric (distribution free) tool designed to analyze group differences when the dependent variable is measured at a nominal level. Like all non-parametric statistics, the Chi-square is robust with respect to the distribution of the data. Specifically, it does not require equality of variances among the study groups or homoscedasticity in the data. It permits evaluation of both dichotomous independent variables, and of multiple group studies. Unlike many other non-parametric and some parametric statistics, the calculations needed to compute the Chi-square provide considerable information about how each of the groups performed in the study. This richness of detail allows the researcher to understand the results and thus to derive more detailed information from this statistic than from many others. The Chi-square is a significance statistic, and should be followed with a strength statistic. The Cramer's V is the most common strength test used to test the data when a significant Chi-square result has been obtained. Advantages of the Chi-square include its robustness with respect to distribution of the data, its ease of computation, the detailed information that can be derived from the test, its use in studies for which parametric assumptions cannot be met, and its flexibility in handling data from both two group and multiple group studies. Limitations include its sample size requirements, difficulty of interpretation when there are large numbers of categories (20 or more) in the independent or dependent variables, and tendency of the Cramer's V to produce relative low correlation measures, even for highly significant results.

  4. The analysis of professional competencies of a lecturer in adult education.

    PubMed

    Žeravíková, Iveta; Tirpáková, Anna; Markechová, Dagmar

    2015-01-01

    In this article, we present the andragogical research project and evaluation of its results using nonparametric statistical methods and the semantic differential method. The presented research was realized in the years 2012-2013 in the dissertation of I. Žeravíková: Analysis of professional competencies of lecturer and creating his competence profile (Žeravíková 2013), and its purpose was based on the analysis of work activities of a lecturer to identify his most important professional competencies and to create a suggestion of competence profile of a lecturer in adult education.

  5. Using exogenous variables in testing for monotonic trends in hydrologic time series

    USGS Publications Warehouse

    Alley, William M.

    1988-01-01

    One approach that has been used in performing a nonparametric test for monotonic trend in a hydrologic time series consists of a two-stage analysis. First, a regression equation is estimated for the variable being tested as a function of an exogenous variable. A nonparametric trend test such as the Kendall test is then performed on the residuals from the equation. By analogy to stagewise regression and through Monte Carlo experiments, it is demonstrated that this approach will tend to underestimate the magnitude of the trend and to result in some loss in power as a result of ignoring the interaction between the exogenous variable and time. An alternative approach, referred to as the adjusted variable Kendall test, is demonstrated to generally have increased statistical power and to provide more reliable estimates of the trend slope. In addition, the utility of including an exogenous variable in a trend test is examined under selected conditions.

  6. Non-parametric model selection for subject-specific topological organization of resting-state functional connectivity.

    PubMed

    Ferrarini, Luca; Veer, Ilya M; van Lew, Baldur; Oei, Nicole Y L; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, J

    2011-06-01

    In recent years, graph theory has been successfully applied to study functional and anatomical connectivity networks in the human brain. Most of these networks have shown small-world topological characteristics: high efficiency in long distance communication between nodes, combined with highly interconnected local clusters of nodes. Moreover, functional studies performed at high resolutions have presented convincing evidence that resting-state functional connectivity networks exhibits (exponentially truncated) scale-free behavior. Such evidence, however, was mostly presented qualitatively, in terms of linear regressions of the degree distributions on log-log plots. Even when quantitative measures were given, these were usually limited to the r(2) correlation coefficient. However, the r(2) statistic is not an optimal estimator of explained variance, when dealing with (truncated) power-law models. Recent developments in statistics have introduced new non-parametric approaches, based on the Kolmogorov-Smirnov test, for the problem of model selection. In this work, we have built on this idea to statistically tackle the issue of model selection for the degree distribution of functional connectivity at rest. The analysis, performed at voxel level and in a subject-specific fashion, confirmed the superiority of a truncated power-law model, showing high consistency across subjects. Moreover, the most highly connected voxels were found to be consistently part of the default mode network. Our results provide statistically sound support to the evidence previously presented in literature for a truncated power-law model of resting-state functional connectivity. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Multiple Hypothesis Testing for Experimental Gingivitis Based on Wilcoxon Signed Rank Statistics

    PubMed Central

    Preisser, John S.; Sen, Pranab K.; Offenbacher, Steven

    2011-01-01

    Dental research often involves repeated multivariate outcomes on a small number of subjects for which there is interest in identifying outcomes that exhibit change in their levels over time as well as to characterize the nature of that change. In particular, periodontal research often involves the analysis of molecular mediators of inflammation for which multivariate parametric methods are highly sensitive to outliers and deviations from Gaussian assumptions. In such settings, nonparametric methods may be favored over parametric ones. Additionally, there is a need for statistical methods that control an overall error rate for multiple hypothesis testing. We review univariate and multivariate nonparametric hypothesis tests and apply them to longitudinal data to assess changes over time in 31 biomarkers measured from the gingival crevicular fluid in 22 subjects whereby gingivitis was induced by temporarily withholding tooth brushing. To identify biomarkers that can be induced to change, multivariate Wilcoxon signed rank tests for a set of four summary measures based upon area under the curve are applied for each biomarker and compared to their univariate counterparts. Multiple hypothesis testing methods with choice of control of the false discovery rate or strong control of the family-wise error rate are examined. PMID:21984957

  8. Statistical inference based on the nonparametric maximum likelihood estimator under double-truncation.

    PubMed

    Emura, Takeshi; Konno, Yoshihiko; Michimae, Hirofumi

    2015-07-01

    Doubly truncated data consist of samples whose observed values fall between the right- and left- truncation limits. With such samples, the distribution function of interest is estimated using the nonparametric maximum likelihood estimator (NPMLE) that is obtained through a self-consistency algorithm. Owing to the complicated asymptotic distribution of the NPMLE, the bootstrap method has been suggested for statistical inference. This paper proposes a closed-form estimator for the asymptotic covariance function of the NPMLE, which is computationally attractive alternative to bootstrapping. Furthermore, we develop various statistical inference procedures, such as confidence interval, goodness-of-fit tests, and confidence bands to demonstrate the usefulness of the proposed covariance estimator. Simulations are performed to compare the proposed method with both the bootstrap and jackknife methods. The methods are illustrated using the childhood cancer dataset.

  9. Neural network representation and learning of mappings and their derivatives

    NASA Technical Reports Server (NTRS)

    White, Halbert; Hornik, Kurt; Stinchcombe, Maxwell; Gallant, A. Ronald

    1991-01-01

    Discussed here are recent theorems proving that artificial neural networks are capable of approximating an arbitrary mapping and its derivatives as accurately as desired. This fact forms the basis for further results establishing the learnability of the desired approximations, using results from non-parametric statistics. These results have potential applications in robotics, chaotic dynamics, control, and sensitivity analysis. An example involving learning the transfer function and its derivatives for a chaotic map is discussed.

  10. Nonparametric analysis of Minnesota spruce and aspen tree data and LANDSAT data

    NASA Technical Reports Server (NTRS)

    Scott, D. W.; Jee, R.

    1984-01-01

    The application of nonparametric methods in data-intensive problems faced by NASA is described. The theoretical development of efficient multivariate density estimators and the novel use of color graphics workstations are reviewed. The use of nonparametric density estimates for data representation and for Bayesian classification are described and illustrated. Progress in building a data analysis system in a workstation environment is reviewed and preliminary runs presented.

  11. Use of Brain MRI Atlases to Determine Boundaries of Age-Related Pathology: The Importance of Statistical Method

    PubMed Central

    Dickie, David Alexander; Job, Dominic E.; Gonzalez, David Rodriguez; Shenkin, Susan D.; Wardlaw, Joanna M.

    2015-01-01

    Introduction Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient’s brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ±standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer’s disease (AD) patients. Methods Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55–90 years), we created: a mean ±SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients. Results The parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25–45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes. Discussion To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we conclude that the statistical method used for construction of brain MRI atlases should be selected taking into account the population and aim under study. Parametric methods are generally robust for defining central tendencies, e.g., means, of brain structure. Nonparametric methods are advisable when studying the limits of brain structure in ageing and neurodegenerative disease. PMID:26023913

  12. An ANOVA approach for statistical comparisons of brain networks.

    PubMed

    Fraiman, Daniel; Fraiman, Ricardo

    2018-03-16

    The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.

  13. Nonparametric test of consistency between cosmological models and multiband CMB measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghamousa, Amir; Shafieloo, Arman, E-mail: amir@apctp.org, E-mail: shafieloo@kasi.re.kr

    2015-06-01

    We present a novel approach to test the consistency of the cosmological models with multiband CMB data using a nonparametric approach. In our analysis we calibrate the REACT (Risk Estimation and Adaptation after Coordinate Transformation) confidence levels associated with distances in function space (confidence distances) based on the Monte Carlo simulations in order to test the consistency of an assumed cosmological model with observation. To show the applicability of our algorithm, we confront Planck 2013 temperature data with concordance model of cosmology considering two different Planck spectra combination. In order to have an accurate quantitative statistical measure to compare betweenmore » the data and the theoretical expectations, we calibrate REACT confidence distances and perform a bias control using many realizations of the data. Our results in this work using Planck 2013 temperature data put the best fit ΛCDM model at 95% (∼ 2σ) confidence distance from the center of the nonparametric confidence set while repeating the analysis excluding the Planck 217 × 217 GHz spectrum data, the best fit ΛCDM model shifts to 70% (∼ 1σ) confidence distance. The most prominent features in the data deviating from the best fit ΛCDM model seems to be at low multipoles  18 < ℓ < 26 at greater than 2σ, ℓ ∼ 750 at ∼1 to 2σ and ℓ ∼ 1800 at greater than 2σ level. Excluding the 217×217 GHz spectrum the feature at ℓ ∼ 1800 becomes substantially less significance at ∼1 to 2σ confidence level. Results of our analysis based on the new approach we propose in this work are in agreement with other analysis done using alternative methods.« less

  14. Robustness of S1 statistic with Hodges-Lehmann for skewed distributions

    NASA Astrophysics Data System (ADS)

    Ahad, Nor Aishah; Yahaya, Sharipah Soaad Syed; Yin, Lee Ping

    2016-10-01

    Analysis of variance (ANOVA) is a common use parametric method to test the differences in means for more than two groups when the populations are normally distributed. ANOVA is highly inefficient under the influence of non- normal and heteroscedastic settings. When the assumptions are violated, researchers are looking for alternative such as Kruskal-Wallis under nonparametric or robust method. This study focused on flexible method, S1 statistic for comparing groups using median as the location estimator. S1 statistic was modified by substituting the median with Hodges-Lehmann and the default scale estimator with the variance of Hodges-Lehmann and MADn to produce two different test statistics for comparing groups. Bootstrap method was used for testing the hypotheses since the sampling distributions of these modified S1 statistics are unknown. The performance of the proposed statistic in terms of Type I error was measured and compared against the original S1 statistic, ANOVA and Kruskal-Wallis. The propose procedures show improvement compared to the original statistic especially under extremely skewed distribution.

  15. Modelling the Effects of Land-Use Changes on Climate: a Case Study on Yamula DAM

    NASA Astrophysics Data System (ADS)

    Köylü, Ü.; Geymen, A.

    2016-10-01

    Dams block flow of rivers and cause artificial water reservoirs which affect the climate and the land use characteristics of the river basin. In this research, the effect of the huge water body obtained by Yamula Dam in Kızılırmak Basin is analysed over surrounding spatial's land use and climate change. Mann Kendal non-parametrical statistical test, Theil&Sen Slope method, Inverse Distance Weighting (IDW), Soil Conservation Service-Curve Number (SCS-CN) methods are integrated for spatial and temporal analysis of the research area. For this research humidity, temperature, wind speed, precipitation observations which are collected in 16 weather stations nearby Kızılırmak Basin are analyzed. After that these statistical information is combined by GIS data over years. An application is developed for GIS analysis in Python Programming Language and integrated with ArcGIS software. Statistical analysis calculated in the R Project for Statistical Computing and integrated with developed application. According to the statistical analysis of extracted time series of meteorological parameters, statistical significant spatiotemporal trends are observed for climate change and land use characteristics. In this study, we indicated the effect of big dams in local climate on semi-arid Yamula Dam.

  16. Research design and statistical methods in Pakistan Journal of Medical Sciences (PJMS)

    PubMed Central

    Akhtar, Sohail; Shah, Syed Wadood Ali; Rafiq, M.; Khan, Ajmal

    2016-01-01

    Objective: This article compares the study design and statistical methods used in 2005, 2010 and 2015 of Pakistan Journal of Medical Sciences (PJMS). Methods: Only original articles of PJMS were considered for the analysis. The articles were carefully reviewed for statistical methods and designs, and then recorded accordingly. The frequency of each statistical method and research design was estimated and compared with previous years. Results: A total of 429 articles were evaluated (n=74 in 2005, n=179 in 2010, n=176 in 2015) in which 171 (40%) were cross-sectional and 116 (27%) were prospective study designs. A verity of statistical methods were found in the analysis. The most frequent methods include: descriptive statistics (n=315, 73.4%), chi-square/Fisher’s exact tests (n=205, 47.8%) and student t-test (n=186, 43.4%). There was a significant increase in the use of statistical methods over time period: t-test, chi-square/Fisher’s exact test, logistic regression, epidemiological statistics, and non-parametric tests. Conclusion: This study shows that a diverse variety of statistical methods have been used in the research articles of PJMS and frequency improved from 2005 to 2015. However, descriptive statistics was the most frequent method of statistical analysis in the published articles while cross-sectional study design was common study design. PMID:27022365

  17. An empirical likelihood ratio test robust to individual heterogeneity for differential expression analysis of RNA-seq.

    PubMed

    Xu, Maoqi; Chen, Liang

    2018-01-01

    The individual sample heterogeneity is one of the biggest obstacles in biomarker identification for complex diseases such as cancers. Current statistical models to identify differentially expressed genes between disease and control groups often overlook the substantial human sample heterogeneity. Meanwhile, traditional nonparametric tests lose detailed data information and sacrifice the analysis power, although they are distribution free and robust to heterogeneity. Here, we propose an empirical likelihood ratio test with a mean-variance relationship constraint (ELTSeq) for the differential expression analysis of RNA sequencing (RNA-seq). As a distribution-free nonparametric model, ELTSeq handles individual heterogeneity by estimating an empirical probability for each observation without making any assumption about read-count distribution. It also incorporates a constraint for the read-count overdispersion, which is widely observed in RNA-seq data. ELTSeq demonstrates a significant improvement over existing methods such as edgeR, DESeq, t-tests, Wilcoxon tests and the classic empirical likelihood-ratio test when handling heterogeneous groups. It will significantly advance the transcriptomics studies of cancers and other complex disease. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. An entropy-based nonparametric test for the validation of surrogate endpoints.

    PubMed

    Miao, Xiaopeng; Wang, Yong-Cheng; Gangopadhyay, Ashis

    2012-06-30

    We present a nonparametric test to validate surrogate endpoints based on measure of divergence and random permutation. This test is a proposal to directly verify the Prentice statistical definition of surrogacy. The test does not impose distributional assumptions on the endpoints, and it is robust to model misspecification. Our simulation study shows that the proposed nonparametric test outperforms the practical test of the Prentice criterion in terms of both robustness of size and power. We also evaluate the performance of three leading methods that attempt to quantify the effect of surrogate endpoints. The proposed method is applied to validate magnetic resonance imaging lesions as the surrogate endpoint for clinical relapses in a multiple sclerosis trial. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Nonparametric estimation of plant density by the distance method

    USGS Publications Warehouse

    Patil, S.A.; Burnham, K.P.; Kovner, J.L.

    1979-01-01

    A relation between the plant density and the probability density function of the nearest neighbor distance (squared) from a random point is established under fairly broad conditions. Based upon this relationship, a nonparametric estimator for the plant density is developed and presented in terms of order statistics. Consistency and asymptotic normality of the estimator are discussed. An interval estimator for the density is obtained. The modifications of this estimator and its variance are given when the distribution is truncated. Simulation results are presented for regular, random and aggregated populations to illustrate the nonparametric estimator and its variance. A numerical example from field data is given. Merits and deficiencies of the estimator are discussed with regard to its robustness and variance.

  20. Using Cochran's Z Statistic to Test the Kernel-Smoothed Item Response Function Differences between Focal and Reference Groups

    ERIC Educational Resources Information Center

    Zheng, Yinggan; Gierl, Mark J.; Cui, Ying

    2010-01-01

    This study combined the kernel smoothing procedure and a nonparametric differential item functioning statistic--Cochran's Z--to statistically test the difference between the kernel-smoothed item response functions for reference and focal groups. Simulation studies were conducted to investigate the Type I error and power of the proposed…

  1. Non-parametric methods for cost-effectiveness analysis: the central limit theorem and the bootstrap compared.

    PubMed

    Nixon, Richard M; Wonderling, David; Grieve, Richard D

    2010-03-01

    Cost-effectiveness analyses (CEA) alongside randomised controlled trials commonly estimate incremental net benefits (INB), with 95% confidence intervals, and compute cost-effectiveness acceptability curves and confidence ellipses. Two alternative non-parametric methods for estimating INB are to apply the central limit theorem (CLT) or to use the non-parametric bootstrap method, although it is unclear which method is preferable. This paper describes the statistical rationale underlying each of these methods and illustrates their application with a trial-based CEA. It compares the sampling uncertainty from using either technique in a Monte Carlo simulation. The experiments are repeated varying the sample size and the skewness of costs in the population. The results showed that, even when data were highly skewed, both methods accurately estimated the true standard errors (SEs) when sample sizes were moderate to large (n>50), and also gave good estimates for small data sets with low skewness. However, when sample sizes were relatively small and the data highly skewed, using the CLT rather than the bootstrap led to slightly more accurate SEs. We conclude that while in general using either method is appropriate, the CLT is easier to implement, and provides SEs that are at least as accurate as the bootstrap. (c) 2009 John Wiley & Sons, Ltd.

  2. Mapping Quantitative Traits in Unselected Families: Algorithms and Examples

    PubMed Central

    Dupuis, Josée; Shi, Jianxin; Manning, Alisa K.; Benjamin, Emelia J.; Meigs, James B.; Cupples, L. Adrienne; Siegmund, David

    2009-01-01

    Linkage analysis has been widely used to identify from family data genetic variants influencing quantitative traits. Common approaches have both strengths and limitations. Likelihood ratio tests typically computed in variance component analysis can accommodate large families but are highly sensitive to departure from normality assumptions. Regression-based approaches are more robust but their use has primarily been restricted to nuclear families. In this paper, we develop methods for mapping quantitative traits in moderately large pedigrees. Our methods are based on the score statistic which in contrast to the likelihood ratio statistic, can use nonparametric estimators of variability to achieve robustness of the false positive rate against departures from the hypothesized phenotypic model. Because the score statistic is easier to calculate than the likelihood ratio statistic, our basic mapping methods utilize relatively simple computer code that performs statistical analysis on output from any program that computes estimates of identity-by-descent. This simplicity also permits development and evaluation of methods to deal with multivariate and ordinal phenotypes, and with gene-gene and gene-environment interaction. We demonstrate our methods on simulated data and on fasting insulin, a quantitative trait measured in the Framingham Heart Study. PMID:19278016

  3. Nonparametric identification of nonlinear dynamic systems using a synchronisation-based method

    NASA Astrophysics Data System (ADS)

    Kenderi, Gábor; Fidlin, Alexander

    2014-12-01

    The present study proposes an identification method for highly nonlinear mechanical systems that does not require a priori knowledge of the underlying nonlinearities to reconstruct arbitrary restoring force surfaces between degrees of freedom. This approach is based on the master-slave synchronisation between a dynamic model of the system as the slave and the real system as the master using measurements of the latter. As the model synchronises to the measurements, it becomes an observer of the real system. The optimal observer algorithm in a least-squares sense is given by the Kalman filter. Using the well-known state augmentation technique, the Kalman filter can be turned into a dual state and parameter estimator to identify parameters of a priori characterised nonlinearities. The paper proposes an extension of this technique towards nonparametric identification. A general system model is introduced by describing the restoring forces as bilateral spring-dampers with time-variant coefficients, which are estimated as augmented states. The estimation procedure is followed by an a posteriori statistical analysis to reconstruct noise-free restoring force characteristics using the estimated states and their estimated variances. Observability is provided using only one measured mechanical quantity per degree of freedom, which makes this approach less demanding in the number of necessary measurement signals compared with truly nonparametric solutions, which typically require displacement, velocity and acceleration signals. Additionally, due to the statistical rigour of the procedure, it successfully addresses signals corrupted by significant measurement noise. In the present paper, the method is described in detail, which is followed by numerical examples of one degree of freedom (1DoF) and 2DoF mechanical systems with strong nonlinearities of vibro-impact type to demonstrate the effectiveness of the proposed technique.

  4. [Diversity and frequency of scientific research design and statistical methods in the "Arquivos Brasileiros de Oftalmologia": a systematic review of the "Arquivos Brasileiros de Oftalmologia"--1993-2002].

    PubMed

    Crosta, Fernando; Nishiwaki-Dantas, Maria Cristina; Silvino, Wilmar; Dantas, Paulo Elias Correa

    2005-01-01

    To verify the frequency of study design, applied statistical analysis and approval by institutional review offices (Ethics Committee) of articles published in the "Arquivos Brasileiros de Oftalmologia" during a 10-year interval, with later comparative and critical analysis by some of the main international journals in the field of Ophthalmology. Systematic review without metanalysis was performed. Scientific papers published in the "Arquivos Brasileiros de Oftalmologia" between January 1993 and December 2002 were reviewed by two independent reviewers and classified according to the applied study design, statistical analysis and approval by the institutional review offices. To categorize those variables, a descriptive statistical analysis was used. After applying inclusion and exclusion criteria, 584 articles for evaluation of statistical analysis and, 725 articles for evaluation of study design were reviewed. Contingency table (23.10%) was the most frequently applied statistical method, followed by non-parametric tests (18.19%), Student's t test (12.65%), central tendency measures (10.60%) and analysis of variance (9.81%). Of 584 reviewed articles, 291 (49.82%) presented no statistical analysis. Observational case series (26.48%) was the most frequently used type of study design, followed by interventional case series (18.48%), observational case description (13.37%), non-random clinical study (8.96%) and experimental study (8.55%). We found a higher frequency of observational clinical studies, lack of statistical analysis in almost half of the published papers. Increase in studies with approval by institutional review Ethics Committee was noted since it became mandatory in 1996.

  5. Non-parametric wall model and methods of identifying boundary conditions for moments in gas flow equations

    NASA Astrophysics Data System (ADS)

    Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent

    2018-03-01

    In this paper, we use the molecular dynamics simulation method to study gas-wall boundary conditions. Discrete scattering information of gas molecules at the wall surface is obtained from collision simulations. The collision data can be used to identify the accommodation coefficients for parametric wall models such as Maxwell and Cercignani-Lampis scattering kernels. Since these scattering kernels are based on a limited number of accommodation coefficients, we adopt non-parametric statistical methods to construct the kernel to overcome these issues. Different from parametric kernels, the non-parametric kernels require no parameter (i.e. accommodation coefficients) and no predefined distribution. We also propose approaches to derive directly the Navier friction and Kapitza thermal resistance coefficients as well as other interface coefficients associated with moment equations from the non-parametric kernels. The methods are applied successfully to systems composed of CH4 or CO2 and graphite, which are of interest to the petroleum industry.

  6. Assessing statistical differences between parameters estimates in Partial Least Squares path modeling.

    PubMed

    Rodríguez-Entrena, Macario; Schuberth, Florian; Gelhard, Carsten

    2018-01-01

    Structural equation modeling using partial least squares (PLS-SEM) has become a main-stream modeling approach in various disciplines. Nevertheless, prior literature still lacks a practical guidance on how to properly test for differences between parameter estimates. Whereas existing techniques such as parametric and non-parametric approaches in PLS multi-group analysis solely allow to assess differences between parameters that are estimated for different subpopulations, the study at hand introduces a technique that allows to also assess whether two parameter estimates that are derived from the same sample are statistically different. To illustrate this advancement to PLS-SEM, we particularly refer to a reduced version of the well-established technology acceptance model.

  7. Supratentorial lesions contribute to trigeminal neuralgia in multiple sclerosis.

    PubMed

    Fröhlich, Kilian; Winder, Klemens; Linker, Ralf A; Engelhorn, Tobias; Dörfler, Arnd; Lee, De-Hyung; Hilz, Max J; Schwab, Stefan; Seifert, Frank

    2018-06-01

    Background It has been proposed that multiple sclerosis lesions afflicting the pontine trigeminal afferents contribute to trigeminal neuralgia in multiple sclerosis. So far, there are no imaging studies that have evaluated interactions between supratentorial lesions and trigeminal neuralgia in multiple sclerosis patients. Methods We conducted a retrospective study and sought multiple sclerosis patients with trigeminal neuralgia and controls in a local database. Multiple sclerosis lesions were manually outlined and transformed into stereotaxic space. We determined the lesion overlap and performed a voxel-wise subtraction analysis. Secondly, we conducted a voxel-wise non-parametric analysis using the Liebermeister test. Results From 12,210 multiple sclerosis patient records screened, we identified 41 patients with trigeminal neuralgia. The voxel-wise subtraction analysis yielded associations between trigeminal neuralgia and multiple sclerosis lesions in the pontine trigeminal afferents, as well as larger supratentorial lesion clusters in the contralateral insula and hippocampus. The non-parametric statistical analysis using the Liebermeister test yielded similar areas to be associated with multiple sclerosis-related trigeminal neuralgia. Conclusions Our study confirms previous data on associations between multiple sclerosis-related trigeminal neuralgia and pontine lesions, and showed for the first time an association with lesions in the insular region, a region involved in pain processing and endogenous pain modulation.

  8. omicsNPC: Applying the Non-Parametric Combination Methodology to the Integrative Analysis of Heterogeneous Omics Data

    PubMed Central

    Karathanasis, Nestoras; Tsamardinos, Ioannis

    2016-01-01

    Background The advance of omics technologies has made possible to measure several data modalities on a system of interest. In this work, we illustrate how the Non-Parametric Combination methodology, namely NPC, can be used for simultaneously assessing the association of different molecular quantities with an outcome of interest. We argue that NPC methods have several potential applications in integrating heterogeneous omics technologies, as for example identifying genes whose methylation and transcriptional levels are jointly deregulated, or finding proteins whose abundance shows the same trends of the expression of their encoding genes. Results We implemented the NPC methodology within “omicsNPC”, an R function specifically tailored for the characteristics of omics data. We compare omicsNPC against a range of alternative methods on simulated as well as on real data. Comparisons on simulated data point out that omicsNPC produces unbiased / calibrated p-values and performs equally or significantly better than the other methods included in the study; furthermore, the analysis of real data show that omicsNPC (a) exhibits higher statistical power than other methods, (b) it is easily applicable in a number of different scenarios, and (c) its results have improved biological interpretability. Conclusions The omicsNPC function competitively behaves in all comparisons conducted in this study. Taking into account that the method (i) requires minimal assumptions, (ii) it can be used on different studies designs and (iii) it captures the dependences among heterogeneous data modalities, omicsNPC provides a flexible and statistically powerful solution for the integrative analysis of different omics data. PMID:27812137

  9. Normal Approximations to the Distributions of the Wilcoxon Statistics: Accurate to What "N"? Graphical Insights

    ERIC Educational Resources Information Center

    Bellera, Carine A.; Julien, Marilyse; Hanley, James A.

    2010-01-01

    The Wilcoxon statistics are usually taught as nonparametric alternatives for the 1- and 2-sample Student-"t" statistics in situations where the data appear to arise from non-normal distributions, or where sample sizes are so small that we cannot check whether they do. In the past, critical values, based on exact tail areas, were…

  10. Statistical Package User’s Guide.

    DTIC Science & Technology

    1980-08-01

    261 C. STACH Nonparametric Descriptive Statistics ... ......... ... 265 D. CHIRA Coefficient of Concordance...135 I.- -a - - W 7- Test Data: This program was tested using data from John Neter and William Wasserman, Applied Linear Statistical Models: Regression...length of data file e. new fileý name (not same as raw data file) 5. Printout as optioned for only. Comments: Ranked data are used for program CHIRA

  11. A Nonparametric Geostatistical Method For Estimating Species Importance

    Treesearch

    Andrew J. Lister; Rachel Riemann; Michael Hoppus

    2001-01-01

    Parametric statistical methods are not always appropriate for conducting spatial analyses of forest inventory data. Parametric geostatistical methods such as variography and kriging are essentially averaging procedures, and thus can be affected by extreme values. Furthermore, non normal distributions violate the assumptions of analyses in which test statistics are...

  12. Technical Note: The Initial Stages of Statistical Data Analysis

    PubMed Central

    Tandy, Richard D.

    1998-01-01

    Objective: To provide an overview of several important data-related considerations in the design stage of a research project and to review the levels of measurement and their relationship to the statistical technique chosen for the data analysis. Background: When planning a study, the researcher must clearly define the research problem and narrow it down to specific, testable questions. The next steps are to identify the variables in the study, decide how to group and treat subjects, and determine how to measure, and the underlying level of measurement of, the dependent variables. Then the appropriate statistical technique can be selected for data analysis. Description: The four levels of measurement in increasing complexity are nominal, ordinal, interval, and ratio. Nominal data are categorical or “count” data, and the numbers are treated as labels. Ordinal data can be ranked in a meaningful order by magnitude. Interval data possess the characteristics of ordinal data and also have equal distances between levels. Ratio data have a natural zero point. Nominal and ordinal data are analyzed with nonparametric statistical techniques and interval and ratio data with parametric statistical techniques. Advantages: Understanding the four levels of measurement and when it is appropriate to use each is important in determining which statistical technique to use when analyzing data. PMID:16558489

  13. [Linkage analysis of susceptibility loci in 2 target chromosomes in pedigrees with paranoid schizophrenia and undifferentiated schizophrenia].

    PubMed

    Zeng, Li-ping; Hu, Zheng-mao; Mu, Li-li; Mei, Gui-sen; Lu, Xiu-ling; Zheng, Yong-jun; Li, Pei-jian; Zhang, Ying-xue; Pan, Qian; Long, Zhi-gao; Dai, He-ping; Zhang, Zhuo-hua; Xia, Jia-hui; Zhao, Jing-ping; Xia, Kun

    2011-06-01

    To investigate the relationship of susceptibility loci in chromosomes 1q21-25 and 6p21-25 and schizophrenia subtypes in Chinese population. A genomic scan and parametric and non-parametric analyses were performed on 242 individuals from 36 schizophrenia pedigrees, including 19 paranoid schizophrenia and 17 undifferentiated schizophrenia pedigrees, from Henan province of China using 5 microsatellite markers in the chromosome region 1q21-25 and 8 microsatellite markers in the chromosome region 6p21-25, which were the candidates of previous studies. All affected subjects were diagnosed and typed according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revised (DSM-IV-TR; American Psychiatric Association, 2000). All subjects signed informed consent. In chromosome 1, parametric analysis under the dominant inheritance mode of all 36 pedigrees showed that the maximum multi-point heterogeneity Log of odds score method (HLOD) score was 1.33 (α = 0.38). The non-parametric analysis and the single point and multi-point nonparametric linkage (NPL) scores suggested linkage at D1S484, D1S2878, and D1S196. In the 19 paranoid schizophrenias pedigrees, linkage was not observed for any of the 5 markers. In the 17 undifferentiated schizophrenia pedigrees, the multi-point NPL score was 1.60 (P= 0.0367) at D1S484. The single point NPL score was 1.95(P= 0.0145) and the multi-point NPL score was 2.39 (P= 0.0041) at D1S2878. Additionally, the multi-point NPL score was 1.74 (P= 0.0255) at D1S196. These same three loci showed suggestive linkage during the integrative analysis of all 36 pedigrees. In chromosome 6, parametric linkage analysis under the dominant and recessive inheritance and the non-parametric linkage analysis of all 36 pedigrees and the 17 undifferentiated schizophrenia pedigrees, linkage was not observed for any of the 8 markers. In the 19 paranoid schizophrenias pedigrees, parametric analysis showed that under recessive inheritance mode the maximum single-point HLOD score was 1.26 (α = 0.40) and the multi-point HLOD was 1.12 (α = 0.38) at D6S289 in the chromosome 6p23. In nonparametric analysis, the single-point NPL score was 1.52 (P= 0.0402) and the multi-point NPL score was 1.92 (P= 0.0206) at D6S289. Susceptibility genes correlated with undifferentiated schizophrenia pedigrees from D1S484, D1S2878, D1S196 loci, and those correlated with paranoid schizophrenia pedigrees from D6S289 locus are likely present in chromosome regions 1q23.3 and 1q24.2, and chromosome region 6p23, respectively.

  14. Privacy-preserving Kruskal-Wallis test.

    PubMed

    Guo, Suxin; Zhong, Sheng; Zhang, Aidong

    2013-10-01

    Statistical tests are powerful tools for data analysis. Kruskal-Wallis test is a non-parametric statistical test that evaluates whether two or more samples are drawn from the same distribution. It is commonly used in various areas. But sometimes, the use of the method is impeded by privacy issues raised in fields such as biomedical research and clinical data analysis because of the confidential information contained in the data. In this work, we give a privacy-preserving solution for the Kruskal-Wallis test which enables two or more parties to coordinately perform the test on the union of their data without compromising their data privacy. To the best of our knowledge, this is the first work that solves the privacy issues in the use of the Kruskal-Wallis test on distributed data. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Characterizing chaotic melodies in automatic music composition

    NASA Astrophysics Data System (ADS)

    Coca, Andrés E.; Tost, Gerard O.; Zhao, Liang

    2010-09-01

    In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests.

  16. On an Additive Semigraphoid Model for Statistical Networks With Application to Pathway Analysis.

    PubMed

    Li, Bing; Chun, Hyonho; Zhao, Hongyu

    2014-09-01

    We introduce a nonparametric method for estimating non-gaussian graphical models based on a new statistical relation called additive conditional independence, which is a three-way relation among random vectors that resembles the logical structure of conditional independence. Additive conditional independence allows us to use one-dimensional kernel regardless of the dimension of the graph, which not only avoids the curse of dimensionality but also simplifies computation. It also gives rise to a parallel structure to the gaussian graphical model that replaces the precision matrix by an additive precision operator. The estimators derived from additive conditional independence cover the recently introduced nonparanormal graphical model as a special case, but outperform it when the gaussian copula assumption is violated. We compare the new method with existing ones by simulations and in genetic pathway analysis.

  17. A nonparametric smoothing method for assessing GEE models with longitudinal binary data.

    PubMed

    Lin, Kuo-Chin; Chen, Yi-Ju; Shyr, Yu

    2008-09-30

    Studies involving longitudinal binary responses are widely applied in the health and biomedical sciences research and frequently analyzed by generalized estimating equations (GEE) method. This article proposes an alternative goodness-of-fit test based on the nonparametric smoothing approach for assessing the adequacy of GEE fitted models, which can be regarded as an extension of the goodness-of-fit test of le Cessie and van Houwelingen (Biometrics 1991; 47:1267-1282). The expectation and approximate variance of the proposed test statistic are derived. The asymptotic distribution of the proposed test statistic in terms of a scaled chi-squared distribution and the power performance of the proposed test are discussed by simulation studies. The testing procedure is demonstrated by two real data. Copyright (c) 2008 John Wiley & Sons, Ltd.

  18. A PDF-based classification of gait cadence patterns in patients with amyotrophic lateral sclerosis.

    PubMed

    Wu, Yunfeng; Ng, Sin Chun

    2010-01-01

    Amyotrophic lateral sclerosis (ALS) is a type of neurological disease due to the degeneration of motor neurons. During the course of such a progressive disease, it would be difficult for ALS patients to regulate normal locomotion, so that the gait stability becomes perturbed. This paper presents a pilot statistical study on the gait cadence (or stride interval) in ALS, based on the statistical analysis method. The probability density functions (PDFs) of stride interval were first estimated with the nonparametric Parzen-window method. We computed the mean of the left-foot stride interval and the modified Kullback-Leibler divergence (MKLD) from the PDFs estimated. The analysis results suggested that both of these two statistical parameters were significantly altered in ALS, and the least-squares support vector machine (LS-SVM) may effectively distinguish the stride patterns between the ALS patients and healthy controls, with an accurate rate of 82.8% and an area of 0.87 under the receiver operating characteristic curve.

  19. Incorporating Nonparametric Statistics into Delphi Studies in Library and Information Science

    ERIC Educational Resources Information Center

    Ju, Boryung; Jin, Tao

    2013-01-01

    Introduction: The Delphi technique is widely used in library and information science research. However, many researchers in the field fail to employ standard statistical tests when using this technique. This makes the technique vulnerable to criticisms of its reliability and validity. The general goal of this article is to explore how…

  20. Nonparametric Bayesian predictive distributions for future order statistics

    Treesearch

    Richard A. Johnson; James W. Evans; David W. Green

    1999-01-01

    We derive the predictive distribution for a specified order statistic, determined from a future random sample, under a Dirichlet process prior. Two variants of the approach are treated and some limiting cases studied. A practical application to monitoring the strength of lumber is discussed including choices of prior expectation and comparisons made to a Bayesian...

  1. Nonparametric method for failures detection and localization in the actuating subsystem of aircraft control system

    NASA Astrophysics Data System (ADS)

    Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.

    2018-02-01

    In this paper we design a nonparametric method for failures detection and localization in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on algebraic solvability conditions for the aircraft model identification problem. This makes it possible to significantly increase the efficiency of detection and localization problem solution by completely eliminating errors, associated with aircraft model uncertainties.

  2. A semi-nonparametric Poisson regression model for analyzing motor vehicle crash data.

    PubMed

    Ye, Xin; Wang, Ke; Zou, Yajie; Lord, Dominique

    2018-01-01

    This paper develops a semi-nonparametric Poisson regression model to analyze motor vehicle crash frequency data collected from rural multilane highway segments in California, US. Motor vehicle crash frequency on rural highway is a topic of interest in the area of transportation safety due to higher driving speeds and the resultant severity level. Unlike the traditional Negative Binomial (NB) model, the semi-nonparametric Poisson regression model can accommodate an unobserved heterogeneity following a highly flexible semi-nonparametric (SNP) distribution. Simulation experiments are conducted to demonstrate that the SNP distribution can well mimic a large family of distributions, including normal distributions, log-gamma distributions, bimodal and trimodal distributions. Empirical estimation results show that such flexibility offered by the SNP distribution can greatly improve model precision and the overall goodness-of-fit. The semi-nonparametric distribution can provide a better understanding of crash data structure through its ability to capture potential multimodality in the distribution of unobserved heterogeneity. When estimated coefficients in empirical models are compared, SNP and NB models are found to have a substantially different coefficient for the dummy variable indicating the lane width. The SNP model with better statistical performance suggests that the NB model overestimates the effect of lane width on crash frequency reduction by 83.1%.

  3. Molecular activity prediction by means of supervised subspace projection based ensembles of classifiers.

    PubMed

    Cerruela García, G; García-Pedrajas, N; Luque Ruiz, I; Gómez-Nieto, M Á

    2018-03-01

    This paper proposes a method for molecular activity prediction in QSAR studies using ensembles of classifiers constructed by means of two supervised subspace projection methods, namely nonparametric discriminant analysis (NDA) and hybrid discriminant analysis (HDA). We studied the performance of the proposed ensembles compared to classical ensemble methods using four molecular datasets and eight different models for the representation of the molecular structure. Using several measures and statistical tests for classifier comparison, we observe that our proposal improves the classification results with respect to classical ensemble methods. Therefore, we show that ensembles constructed using supervised subspace projections offer an effective way of creating classifiers in cheminformatics.

  4. An Instructional Module on Mokken Scale Analysis

    ERIC Educational Resources Information Center

    Wind, Stefanie A.

    2017-01-01

    Mokken scale analysis (MSA) is a probabilistic-nonparametric approach to item response theory (IRT) that can be used to evaluate fundamental measurement properties with less strict assumptions than parametric IRT models. This instructional module provides an introduction to MSA as a probabilistic-nonparametric framework in which to explore…

  5. Constructing a cosmological model-independent Hubble diagram of type Ia supernovae with cosmic chronometers

    NASA Astrophysics Data System (ADS)

    Li, Zhengxiang; Gonzalez, J. E.; Yu, Hongwei; Zhu, Zong-Hong; Alcaniz, J. S.

    2016-02-01

    We apply two methods, i.e., the Gaussian processes and the nonparametric smoothing procedure, to reconstruct the Hubble parameter H (z ) as a function of redshift from 15 measurements of the expansion rate obtained from age estimates of passively evolving galaxies. These reconstructions enable us to derive the luminosity distance to a certain redshift z , calibrate the light-curve fitting parameters accounting for the (unknown) intrinsic magnitude of type Ia supernova (SNe Ia), and construct cosmological model-independent Hubble diagrams of SNe Ia. In order to test the compatibility between the reconstructed functions of H (z ), we perform a statistical analysis considering the latest SNe Ia sample, the so-called joint light-curve compilation. We find that, for the Gaussian processes, the reconstructed functions of Hubble parameter versus redshift, and thus the following analysis on SNe Ia calibrations and cosmological implications, are sensitive to prior mean functions. However, for the nonparametric smoothing method, the reconstructed functions are not dependent on initial guess models, and consistently require high values of H0, which are in excellent agreement with recent measurements of this quantity from Cepheids and other local distance indicators.

  6. Bayesian Nonparametric Statistical Inference for Shock Models and Wear Processes.

    DTIC Science & Technology

    1979-12-01

    Naval Research under Contract N00014-75-C-0781 and the National Science Foundation under Grant MCS78-01422 with the University of California...SUPPLEMENTARY NOTES Also supported by the National Science Foundation under Grant MCS78-01422. It. 96Y WORDS MOCa’t"u a’ iVWae" side if n*0eaem7 imW~ 149001 b Wek...Barlow and Proschan (1975), among others. The analogy of the shock model in risk and acturial analysis has been given by BUhlmann (1970, Chapter 2

  7. Comparing nonparametric Bayesian tree priors for clonal reconstruction of tumors.

    PubMed

    Deshwar, Amit G; Vembu, Shankar; Morris, Quaid

    2015-01-01

    Statistical machine learning methods, especially nonparametric Bayesian methods, have become increasingly popular to infer clonal population structure of tumors. Here we describe the treeCRP, an extension of the Chinese restaurant process (CRP), a popular construction used in nonparametric mixture models, to infer the phylogeny and genotype of major subclonal lineages represented in the population of cancer cells. We also propose new split-merge updates tailored to the subclonal reconstruction problem that improve the mixing time of Markov chains. In comparisons with the tree-structured stick breaking prior used in PhyloSub, we demonstrate superior mixing and running time using the treeCRP with our new split-merge procedures. We also show that given the same number of samples, TSSB and treeCRP have similar ability to recover the subclonal structure of a tumor…

  8. Rank-based permutation approaches for non-parametric factorial designs.

    PubMed

    Umlauft, Maria; Konietschke, Frank; Pauly, Markus

    2017-11-01

    Inference methods for null hypotheses formulated in terms of distribution functions in general non-parametric factorial designs are studied. The methods can be applied to continuous, ordinal or even ordered categorical data in a unified way, and are based only on ranks. In this set-up Wald-type statistics and ANOVA-type statistics are the current state of the art. The first method is asymptotically exact but a rather liberal statistical testing procedure for small to moderate sample size, while the latter is only an approximation which does not possess the correct asymptotic α level under the null. To bridge these gaps, a novel permutation approach is proposed which can be seen as a flexible generalization of the Kruskal-Wallis test to all kinds of factorial designs with independent observations. It is proven that the permutation principle is asymptotically correct while keeping its finite exactness property when data are exchangeable. The results of extensive simulation studies foster these theoretical findings. A real data set exemplifies its applicability. © 2017 The British Psychological Society.

  9. Practical statistics in pain research.

    PubMed

    Kim, Tae Kyun

    2017-10-01

    Pain is subjective, while statistics related to pain research are objective. This review was written to help researchers involved in pain research make statistical decisions. The main issues are related with the level of scales that are often used in pain research, the choice of statistical methods between parametric or nonparametric statistics, and problems which arise from repeated measurements. In the field of pain research, parametric statistics used to be applied in an erroneous way. This is closely related with the scales of data and repeated measurements. The level of scales includes nominal, ordinal, interval, and ratio scales. The level of scales affects the choice of statistics between parametric or non-parametric methods. In the field of pain research, the most frequently used pain assessment scale is the ordinal scale, which would include the visual analogue scale (VAS). There used to be another view, however, which considered the VAS to be an interval or ratio scale, so that the usage of parametric statistics would be accepted practically in some cases. Repeated measurements of the same subjects always complicates statistics. It means that measurements inevitably have correlations between each other, and would preclude the application of one-way ANOVA in which independence between the measurements is necessary. Repeated measures of ANOVA (RMANOVA), however, would permit the comparison between the correlated measurements as long as the condition of sphericity assumption is satisfied. Conclusively, parametric statistical methods should be used only when the assumptions of parametric statistics, such as normality and sphericity, are established.

  10. Evaluating the statistical methodology of randomized trials on dentin hypersensitivity management.

    PubMed

    Matranga, Domenica; Matera, Federico; Pizzo, Giuseppe

    2017-12-27

    The present study aimed to evaluate the characteristics and quality of statistical methodology used in clinical studies on dentin hypersensitivity management. An electronic search was performed for data published from 2009 to 2014 by using PubMed, Ovid/MEDLINE, and Cochrane Library databases. The primary search terms were used in combination. Eligibility criteria included randomized clinical trials that evaluated the efficacy of desensitizing agents in terms of reducing dentin hypersensitivity. A total of 40 studies were considered eligible for assessment of quality statistical methodology. The four main concerns identified were i) use of nonparametric tests in the presence of large samples, coupled with lack of information about normality and equality of variances of the response; ii) lack of P-value adjustment for multiple comparisons; iii) failure to account for interactions between treatment and follow-up time; and iv) no information about the number of teeth examined per patient and the consequent lack of cluster-specific approach in data analysis. Owing to these concerns, statistical methodology was judged as inappropriate in 77.1% of the 35 studies that used parametric methods. Additional studies with appropriate statistical analysis are required to obtain appropriate assessment of the efficacy of desensitizing agents.

  11. Non-Gaussian Distributions Affect Identification of Expression Patterns, Functional Annotation, and Prospective Classification in Human Cancer Genomes

    PubMed Central

    Marko, Nicholas F.; Weil, Robert J.

    2012-01-01

    Introduction Gene expression data is often assumed to be normally-distributed, but this assumption has not been tested rigorously. We investigate the distribution of expression data in human cancer genomes and study the implications of deviations from the normal distribution for translational molecular oncology research. Methods We conducted a central moments analysis of five cancer genomes and performed empiric distribution fitting to examine the true distribution of expression data both on the complete-experiment and on the individual-gene levels. We used a variety of parametric and nonparametric methods to test the effects of deviations from normality on gene calling, functional annotation, and prospective molecular classification using a sixth cancer genome. Results Central moments analyses reveal statistically-significant deviations from normality in all of the analyzed cancer genomes. We observe as much as 37% variability in gene calling, 39% variability in functional annotation, and 30% variability in prospective, molecular tumor subclassification associated with this effect. Conclusions Cancer gene expression profiles are not normally-distributed, either on the complete-experiment or on the individual-gene level. Instead, they exhibit complex, heavy-tailed distributions characterized by statistically-significant skewness and kurtosis. The non-Gaussian distribution of this data affects identification of differentially-expressed genes, functional annotation, and prospective molecular classification. These effects may be reduced in some circumstances, although not completely eliminated, by using nonparametric analytics. This analysis highlights two unreliable assumptions of translational cancer gene expression analysis: that “small” departures from normality in the expression data distributions are analytically-insignificant and that “robust” gene-calling algorithms can fully compensate for these effects. PMID:23118863

  12. Publication Bias in Meta-Analysis: Confidence Intervals for Rosenthal's Fail-Safe Number.

    PubMed

    Fragkos, Konstantinos C; Tsagris, Michail; Frangos, Christos C

    2014-01-01

    The purpose of the present paper is to assess the efficacy of confidence intervals for Rosenthal's fail-safe number. Although Rosenthal's estimator is highly used by researchers, its statistical properties are largely unexplored. First of all, we developed statistical theory which allowed us to produce confidence intervals for Rosenthal's fail-safe number. This was produced by discerning whether the number of studies analysed in a meta-analysis is fixed or random. Each case produces different variance estimators. For a given number of studies and a given distribution, we provided five variance estimators. Confidence intervals are examined with a normal approximation and a nonparametric bootstrap. The accuracy of the different confidence interval estimates was then tested by methods of simulation under different distributional assumptions. The half normal distribution variance estimator has the best probability coverage. Finally, we provide a table of lower confidence intervals for Rosenthal's estimator.

  13. Publication Bias in Meta-Analysis: Confidence Intervals for Rosenthal's Fail-Safe Number

    PubMed Central

    Fragkos, Konstantinos C.; Tsagris, Michail; Frangos, Christos C.

    2014-01-01

    The purpose of the present paper is to assess the efficacy of confidence intervals for Rosenthal's fail-safe number. Although Rosenthal's estimator is highly used by researchers, its statistical properties are largely unexplored. First of all, we developed statistical theory which allowed us to produce confidence intervals for Rosenthal's fail-safe number. This was produced by discerning whether the number of studies analysed in a meta-analysis is fixed or random. Each case produces different variance estimators. For a given number of studies and a given distribution, we provided five variance estimators. Confidence intervals are examined with a normal approximation and a nonparametric bootstrap. The accuracy of the different confidence interval estimates was then tested by methods of simulation under different distributional assumptions. The half normal distribution variance estimator has the best probability coverage. Finally, we provide a table of lower confidence intervals for Rosenthal's estimator. PMID:27437470

  14. Inference in the age of big data: Future perspectives on neuroscience.

    PubMed

    Bzdok, Danilo; Yeo, B T Thomas

    2017-07-15

    Neuroscience is undergoing faster changes than ever before. Over 100 years our field qualitatively described and invasively manipulated single or few organisms to gain anatomical, physiological, and pharmacological insights. In the last 10 years neuroscience spawned quantitative datasets of unprecedented breadth (e.g., microanatomy, synaptic connections, and optogenetic brain-behavior assays) and size (e.g., cognition, brain imaging, and genetics). While growing data availability and information granularity have been amply discussed, we direct attention to a less explored question: How will the unprecedented data richness shape data analysis practices? Statistical reasoning is becoming more important to distill neurobiological knowledge from healthy and pathological brain measurements. We argue that large-scale data analysis will use more statistical models that are non-parametric, generative, and mixing frequentist and Bayesian aspects, while supplementing classical hypothesis testing with out-of-sample predictions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Hydrogeology and water quality of glacial-drift aquifers in the Bemidji-Bagley area, Beltrami, Clearwater, Cass, and Hubbard counties, Minnesota

    USGS Publications Warehouse

    Stark, J.R.; Busch, J.P.; Deters, M.H.

    1991-01-01

    The Kruskil-Wallis test, a nonparametric that for 12 of the 21 constituents sampled in groups in the unconfined-drift aquifer, a of these constituents and land use was found statistical technique, indicated common in all land-use type relation between the concentration to be statistically significant.

  16. Estimating and comparing microbial diversity in the presence of sequencing errors

    PubMed Central

    Chiu, Chun-Huo

    2016-01-01

    Estimating and comparing microbial diversity are statistically challenging due to limited sampling and possible sequencing errors for low-frequency counts, producing spurious singletons. The inflated singleton count seriously affects statistical analysis and inferences about microbial diversity. Previous statistical approaches to tackle the sequencing errors generally require different parametric assumptions about the sampling model or about the functional form of frequency counts. Different parametric assumptions may lead to drastically different diversity estimates. We focus on nonparametric methods which are universally valid for all parametric assumptions and can be used to compare diversity across communities. We develop here a nonparametric estimator of the true singleton count to replace the spurious singleton count in all methods/approaches. Our estimator of the true singleton count is in terms of the frequency counts of doubletons, tripletons and quadrupletons, provided these three frequency counts are reliable. To quantify microbial alpha diversity for an individual community, we adopt the measure of Hill numbers (effective number of taxa) under a nonparametric framework. Hill numbers, parameterized by an order q that determines the measures’ emphasis on rare or common species, include taxa richness (q = 0), Shannon diversity (q = 1, the exponential of Shannon entropy), and Simpson diversity (q = 2, the inverse of Simpson index). A diversity profile which depicts the Hill number as a function of order q conveys all information contained in a taxa abundance distribution. Based on the estimated singleton count and the original non-singleton frequency counts, two statistical approaches (non-asymptotic and asymptotic) are developed to compare microbial diversity for multiple communities. (1) A non-asymptotic approach refers to the comparison of estimated diversities of standardized samples with a common finite sample size or sample completeness. This approach aims to compare diversity estimates for equally-large or equally-complete samples; it is based on the seamless rarefaction and extrapolation sampling curves of Hill numbers, specifically for q = 0, 1 and 2. (2) An asymptotic approach refers to the comparison of the estimated asymptotic diversity profiles. That is, this approach compares the estimated profiles for complete samples or samples whose size tends to be sufficiently large. It is based on statistical estimation of the true Hill number of any order q ≥ 0. In the two approaches, replacing the spurious singleton count by our estimated count, we can greatly remove the positive biases associated with diversity estimates due to spurious singletons and also make fair comparisons across microbial communities, as illustrated in our simulation results and in applying our method to analyze sequencing data from viral metagenomes. PMID:26855872

  17. Separating the Air Quality Impact of a Major Highway and Nearby Sources by Nonparametric Trajectory Analysis

    EPA Science Inventory

    Nonparametric Trajectory Analysis (NTA), a receptor-oriented model, was used to assess the impact of local sources of air pollution at monitoring sites located adjacent to highway I-15 in Las Vegas, NV. Measurements of black carbon, carbon monoxide, nitrogen oxides, and sulfur di...

  18. Estimating technical efficiency in the hospital sector with panel data: a comparison of parametric and non-parametric techniques.

    PubMed

    Siciliani, Luigi

    2006-01-01

    Policy makers are increasingly interested in developing performance indicators that measure hospital efficiency. These indicators may give the purchasers of health services an additional regulatory tool to contain health expenditure. Using panel data, this study compares different parametric (econometric) and non-parametric (linear programming) techniques for the measurement of a hospital's technical efficiency. This comparison was made using a sample of 17 Italian hospitals in the years 1996-9. Highest correlations are found in the efficiency scores between the non-parametric data envelopment analysis under the constant returns to scale assumption (DEA-CRS) and several parametric models. Correlation reduces markedly when using more flexible non-parametric specifications such as data envelopment analysis under the variable returns to scale assumption (DEA-VRS) and the free disposal hull (FDH) model. Correlation also generally reduces when moving from one output to two-output specifications. This analysis suggests that there is scope for developing performance indicators at hospital level using panel data, but it is important that extensive sensitivity analysis is carried out if purchasers wish to make use of these indicators in practice.

  19. Evaluation of statistical treatments of left-censored environmental data using coincident uncensored data sets: I. Summary statistics

    USGS Publications Warehouse

    Antweiler, Ronald C.; Taylor, Howard E.

    2008-01-01

    The main classes of statistical treatment of below-detection limit (left-censored) environmental data for the determination of basic statistics that have been used in the literature are substitution methods, maximum likelihood, regression on order statistics (ROS), and nonparametric techniques. These treatments, along with using all instrument-generated data (even those below detection), were evaluated by examining data sets in which the true values of the censored data were known. It was found that for data sets with less than 70% censored data, the best technique overall for determination of summary statistics was the nonparametric Kaplan-Meier technique. ROS and the two substitution methods of assigning one-half the detection limit value to censored data or assigning a random number between zero and the detection limit to censored data were adequate alternatives. The use of these two substitution methods, however, requires a thorough understanding of how the laboratory censored the data. The technique of employing all instrument-generated data - including numbers below the detection limit - was found to be less adequate than the above techniques. At high degrees of censoring (greater than 70% censored data), no technique provided good estimates of summary statistics. Maximum likelihood techniques were found to be far inferior to all other treatments except substituting zero or the detection limit value to censored data.

  20. Empirically Estimable Classification Bounds Based on a Nonparametric Divergence Measure

    PubMed Central

    Berisha, Visar; Wisler, Alan; Hero, Alfred O.; Spanias, Andreas

    2015-01-01

    Information divergence functions play a critical role in statistics and information theory. In this paper we show that a non-parametric f-divergence measure can be used to provide improved bounds on the minimum binary classification probability of error for the case when the training and test data are drawn from the same distribution and for the case where there exists some mismatch between training and test distributions. We confirm the theoretical results by designing feature selection algorithms using the criteria from these bounds and by evaluating the algorithms on a series of pathological speech classification tasks. PMID:26807014

  1. SPICE: exploration and analysis of post-cytometric complex multivariate datasets.

    PubMed

    Roederer, Mario; Nozzi, Joshua L; Nason, Martha C

    2011-02-01

    Polychromatic flow cytometry results in complex, multivariate datasets. To date, tools for the aggregate analysis of these datasets across multiple specimens grouped by different categorical variables, such as demographic information, have not been optimized. Often, the exploration of such datasets is accomplished by visualization of patterns with pie charts or bar charts, without easy access to statistical comparisons of measurements that comprise multiple components. Here we report on algorithms and a graphical interface we developed for these purposes. In particular, we discuss thresholding necessary for accurate representation of data in pie charts, the implications for display and comparison of normalized versus unnormalized data, and the effects of averaging when samples with significant background noise are present. Finally, we define a statistic for the nonparametric comparison of complex distributions to test for difference between groups of samples based on multi-component measurements. While originally developed to support the analysis of T cell functional profiles, these techniques are amenable to a broad range of datatypes. Published 2011 Wiley-Liss, Inc.

  2. Parasites as valuable stock markers for fisheries in Australasia, East Asia and the Pacific Islands.

    PubMed

    Lester, R J G; Moore, B R

    2015-01-01

    Over 30 studies in Australasia, East Asia and the Pacific Islands region have collected and analysed parasite data to determine the ranges of individual fish, many leading to conclusions about stock delineation. Parasites used as biological tags have included both those known to have long residence times in the fish and those thought to be relatively transient. In many cases the parasitological conclusions have been supported by other methods especially analysis of the chemical constituents of otoliths, and to a lesser extent, genetic data. In analysing parasite data, authors have applied multiple different statistical methodologies, including summary statistics, and univariate and multivariate approaches. Recently, a growing number of researchers have found non-parametric methods, such as analysis of similarities and cluster analysis, to be valuable. Future studies into the residence times, life cycles and geographical distributions of parasites together with more robust analytical methods will yield much important information to clarify stock structures in the area.

  3. Observed changes in relative humidity and dew point temperature in coastal regions of Iran

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh Talaee, P.; Sabziparvar, A. A.; Tabari, Hossein

    2012-12-01

    The analysis of trends in hydroclimatic parameters and assessment of their statistical significance have recently received a great concern to clarify whether or not there is an obvious climate change. In the current study, parametric linear regression and nonparametric Mann-Kendall tests were applied for detecting annual and seasonal trends in the relative humidity (RH) and dew point temperature ( T dew) time series at ten coastal weather stations in Iran during 1966-2005. The serial structure of the data was considered, and the significant serial correlations were eliminated using the trend-free pre-whitening method. The results showed that annual RH increased by 1.03 and 0.28 %/decade at the northern and southern coastal regions of the country, respectively, while annual T dew increased by 0.29 and 0.15°C per decade at the northern and southern regions, respectively. The significant trends were frequent in the T dew series, but they were observed only at 2 out of the 50 RH series. The results showed that the difference between the results of the parametric and nonparametric tests was small, although the parametric test detected larger significant trends in the RH and T dew time series. Furthermore, the differences between the results of the trend tests were not related to the normality of the statistical distribution.

  4. Does bad inference drive out good?

    PubMed

    Marozzi, Marco

    2015-07-01

    The (mis)use of statistics in practice is widely debated, and a field where the debate is particularly active is medicine. Many scholars emphasize that a large proportion of published medical research contains statistical errors. It has been noted that top class journals like Nature Medicine and The New England Journal of Medicine publish a considerable proportion of papers that contain statistical errors and poorly document the application of statistical methods. This paper joins the debate on the (mis)use of statistics in the medical literature. Even though the validation process of a statistical result may be quite elusive, a careful assessment of underlying assumptions is central in medicine as well as in other fields where a statistical method is applied. Unfortunately, a careful assessment of underlying assumptions is missing in many papers, including those published in top class journals. In this paper, it is shown that nonparametric methods are good alternatives to parametric methods when the assumptions for the latter ones are not satisfied. A key point to solve the problem of the misuse of statistics in the medical literature is that all journals have their own statisticians to review the statistical method/analysis section in each submitted paper. © 2015 Wiley Publishing Asia Pty Ltd.

  5. Confidence intervals for single-case effect size measures based on randomization test inversion.

    PubMed

    Michiels, Bart; Heyvaert, Mieke; Meulders, Ann; Onghena, Patrick

    2017-02-01

    In the current paper, we present a method to construct nonparametric confidence intervals (CIs) for single-case effect size measures in the context of various single-case designs. We use the relationship between a two-sided statistical hypothesis test at significance level α and a 100 (1 - α) % two-sided CI to construct CIs for any effect size measure θ that contain all point null hypothesis θ values that cannot be rejected by the hypothesis test at significance level α. This method of hypothesis test inversion (HTI) can be employed using a randomization test as the statistical hypothesis test in order to construct a nonparametric CI for θ. We will refer to this procedure as randomization test inversion (RTI). We illustrate RTI in a situation in which θ is the unstandardized and the standardized difference in means between two treatments in a completely randomized single-case design. Additionally, we demonstrate how RTI can be extended to other types of single-case designs. Finally, we discuss a few challenges for RTI as well as possibilities when using the method with other effect size measures, such as rank-based nonoverlap indices. Supplementary to this paper, we provide easy-to-use R code, which allows the user to construct nonparametric CIs according to the proposed method.

  6. kruX: matrix-based non-parametric eQTL discovery.

    PubMed

    Qi, Jianlong; Asl, Hassan Foroughi; Björkegren, Johan; Michoel, Tom

    2014-01-14

    The Kruskal-Wallis test is a popular non-parametric statistical test for identifying expression quantitative trait loci (eQTLs) from genome-wide data due to its robustness against variations in the underlying genetic model and expression trait distribution, but testing billions of marker-trait combinations one-by-one can become computationally prohibitive. We developed kruX, an algorithm implemented in Matlab, Python and R that uses matrix multiplications to simultaneously calculate the Kruskal-Wallis test statistic for several millions of marker-trait combinations at once. KruX is more than ten thousand times faster than computing associations one-by-one on a typical human dataset. We used kruX and a dataset of more than 500k SNPs and 20k expression traits measured in 102 human blood samples to compare eQTLs detected by the Kruskal-Wallis test to eQTLs detected by the parametric ANOVA and linear model methods. We found that the Kruskal-Wallis test is more robust against data outliers and heterogeneous genotype group sizes and detects a higher proportion of non-linear associations, but is more conservative for calling additive linear associations. kruX enables the use of robust non-parametric methods for massive eQTL mapping without the need for a high-performance computing infrastructure and is freely available from http://krux.googlecode.com.

  7. A framework for multivariate data-based at-site flood frequency analysis: Essentiality of the conjugal application of parametric and nonparametric approaches

    NASA Astrophysics Data System (ADS)

    Vittal, H.; Singh, Jitendra; Kumar, Pankaj; Karmakar, Subhankar

    2015-06-01

    In watershed management, flood frequency analysis (FFA) is performed to quantify the risk of flooding at different spatial locations and also to provide guidelines for determining the design periods of flood control structures. The traditional FFA was extensively performed by considering univariate scenario for both at-site and regional estimation of return periods. However, due to inherent mutual dependence of the flood variables or characteristics [i.e., peak flow (P), flood volume (V) and flood duration (D), which are random in nature], analysis has been further extended to multivariate scenario, with some restrictive assumptions. To overcome the assumption of same family of marginal density function for all flood variables, the concept of copula has been introduced. Although, the advancement from univariate to multivariate analyses drew formidable attention to the FFA research community, the basic limitation was that the analyses were performed with the implementation of only parametric family of distributions. The aim of the current study is to emphasize the importance of nonparametric approaches in the field of multivariate FFA; however, the nonparametric distribution may not always be a good-fit and capable of replacing well-implemented multivariate parametric and multivariate copula-based applications. Nevertheless, the potential of obtaining best-fit using nonparametric distributions might be improved because such distributions reproduce the sample's characteristics, resulting in more accurate estimations of the multivariate return period. Hence, the current study shows the importance of conjugating multivariate nonparametric approach with multivariate parametric and copula-based approaches, thereby results in a comprehensive framework for complete at-site FFA. Although the proposed framework is designed for at-site FFA, this approach can also be applied to regional FFA because regional estimations ideally include at-site estimations. The framework is based on the following steps: (i) comprehensive trend analysis to assess nonstationarity in the observed data; (ii) selection of the best-fit univariate marginal distribution with a comprehensive set of parametric and nonparametric distributions for the flood variables; (iii) multivariate frequency analyses with parametric, copula-based and nonparametric approaches; and (iv) estimation of joint and various conditional return periods. The proposed framework for frequency analysis is demonstrated using 110 years of observed data from Allegheny River at Salamanca, New York, USA. The results show that for both univariate and multivariate cases, the nonparametric Gaussian kernel provides the best estimate. Further, we perform FFA for twenty major rivers over continental USA, which shows for seven rivers, all the flood variables followed nonparametric Gaussian kernel; whereas for other rivers, parametric distributions provide the best-fit either for one or two flood variables. Thus the summary of results shows that the nonparametric method cannot substitute the parametric and copula-based approaches, but should be considered during any at-site FFA to provide the broadest choices for best estimation of the flood return periods.

  8. Application of nonparametric regression methods to study the relationship between NO2 concentrations and local wind direction and speed at background sites.

    PubMed

    Donnelly, Aoife; Misstear, Bruce; Broderick, Brian

    2011-02-15

    Background concentrations of nitrogen dioxide (NO(2)) are not constant but vary temporally and spatially. The current paper presents a powerful tool for the quantification of the effects of wind direction and wind speed on background NO(2) concentrations, particularly in cases where monitoring data are limited. In contrast to previous studies which applied similar methods to sites directly affected by local pollution sources, the current study focuses on background sites with the aim of improving methods for predicting background concentrations adopted in air quality modelling studies. The relationship between measured NO(2) concentration in air at three such sites in Ireland and locally measured wind direction has been quantified using nonparametric regression methods. The major aim was to analyse a method for quantifying the effects of local wind direction on background levels of NO(2) in Ireland. The method was expanded to include wind speed as an added predictor variable. A Gaussian kernel function is used in the analysis and circular statistics employed for the wind direction variable. Wind direction and wind speed were both found to have a statistically significant effect on background levels of NO(2) at all three sites. Frequently environmental impact assessments are based on short term baseline monitoring producing a limited dataset. The presented non-parametric regression methods, in contrast to the frequently used methods such as binning of the data, allow concentrations for missing data pairs to be estimated and distinction between spurious and true peaks in concentrations to be made. The methods were found to provide a realistic estimation of long term concentration variation with wind direction and speed, even for cases where the data set is limited. Accurate identification of the actual variation at each location and causative factors could be made, thus supporting the improved definition of background concentrations for use in air quality modelling studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Variable selection for marginal longitudinal generalized linear models.

    PubMed

    Cantoni, Eva; Flemming, Joanna Mills; Ronchetti, Elvezio

    2005-06-01

    Variable selection is an essential part of any statistical analysis and yet has been somewhat neglected in the context of longitudinal data analysis. In this article, we propose a generalized version of Mallows's C(p) (GC(p)) suitable for use with both parametric and nonparametric models. GC(p) provides an estimate of a measure of model's adequacy for prediction. We examine its performance with popular marginal longitudinal models (fitted using GEE) and contrast results with what is typically done in practice: variable selection based on Wald-type or score-type tests. An application to real data further demonstrates the merits of our approach while at the same time emphasizing some important robust features inherent to GC(p).

  10. Astrophysical data analysis with information field theory

    NASA Astrophysics Data System (ADS)

    Enßlin, Torsten

    2014-12-01

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.

  11. A Study of Specific Fracture Energy at Percussion Drilling

    NASA Astrophysics Data System (ADS)

    A, Shadrina; T, Kabanova; V, Krets; L, Saruev

    2014-08-01

    The paper presents experimental studies of rock failure provided by percussion drilling. Quantification and qualitative analysis were carried out to estimate critical values of rock failure depending on the hammer pre-impact velocity, types of drill bits and cylindrical hammer parameters (weight, length, diameter), and turn angle of a drill bit. Obtained data in this work were compared with obtained results by other researchers. The particle-size distribution in granite-cutting sludge was analyzed in this paper. Statistical approach (Spearmen's rank-order correlation, multiple regression analysis with dummy variables, Kruskal-Wallis nonparametric test) was used to analyze the drilling process. Experimental data will be useful for specialists engaged in simulation and illustration of rock failure.

  12. Statistical modelling of software reliability

    NASA Technical Reports Server (NTRS)

    Miller, Douglas R.

    1991-01-01

    During the six-month period from 1 April 1991 to 30 September 1991 the following research papers in statistical modeling of software reliability appeared: (1) A Nonparametric Software Reliability Growth Model; (2) On the Use and the Performance of Software Reliability Growth Models; (3) Research and Development Issues in Software Reliability Engineering; (4) Special Issues on Software; and (5) Software Reliability and Safety.

  13. Statistical Theory for the "RCT-YES" Software: Design-Based Causal Inference for RCTs. NCEE 2015-4011

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2015-01-01

    This report presents the statistical theory underlying the "RCT-YES" software that estimates and reports impacts for RCTs for a wide range of designs used in social policy research. The report discusses a unified, non-parametric design-based approach for impact estimation using the building blocks of the Neyman-Rubin-Holland causal…

  14. Scale-Free Nonparametric Factor Analysis: A User-Friendly Introduction with Concrete Heuristic Examples.

    ERIC Educational Resources Information Center

    Mittag, Kathleen Cage

    Most researchers using factor analysis extract factors from a matrix of Pearson product-moment correlation coefficients. A method is presented for extracting factors in a non-parametric way, by extracting factors from a matrix of Spearman rho (rank correlation) coefficients. It is possible to factor analyze a matrix of association such that…

  15. Modeling Predictors of Duties Not Including Flying Status.

    PubMed

    Tvaryanas, Anthony P; Griffith, Converse

    2018-01-01

    The purpose of this study was to reuse available datasets to conduct an analysis of potential predictors of U.S. Air Force aircrew nonavailability in terms of being in "duties not to include flying" (DNIF) status. This study was a retrospective cohort analysis of U.S. Air Force aircrew on active duty during the period from 2003-2012. Predictor variables included age, Air Force Specialty Code (AFSC), clinic location, diagnosis, gender, pay grade, and service component. The response variable was DNIF duration. Nonparametric methods were used for the exploratory analysis and parametric methods were used for model building and statistical inference. Out of a set of 783 potential predictor variables, 339 variables were identified from the nonparametric exploratory analysis for inclusion in the parametric analysis. Of these, 54 variables had significant associations with DNIF duration in the final model fitted to the validation data set. The predicted results of this model for DNIF duration had a correlation of 0.45 with the actual number of DNIF days. Predictor variables included age, 6 AFSCs, 7 clinic locations, and 40 primary diagnosis categories. Specific demographic (i.e., age), occupational (i.e., AFSC), and health (i.e., clinic location and primary diagnosis category) DNIF drivers were identified. Subsequent research should focus on the application of primary, secondary, and tertiary prevention measures to ameliorate the potential impact of these DNIF drivers where possible.Tvaryanas AP, Griffith C Jr. Modeling predictors of duties not including flying status. Aerosp Med Hum Perform. 2018; 89(1):52-57.

  16. Frequency Analysis Using Bootstrap Method and SIR Algorithm for Prevention of Natural Disasters

    NASA Astrophysics Data System (ADS)

    Kim, T.; Kim, Y. S.

    2017-12-01

    The frequency analysis of hydrometeorological data is one of the most important factors in response to natural disaster damage, and design standards for a disaster prevention facilities. In case of frequency analysis of hydrometeorological data, it assumes that observation data have statistical stationarity, and a parametric method considering the parameter of probability distribution is applied. For a parametric method, it is necessary to sufficiently collect reliable data; however, snowfall observations are needed to compensate for insufficient data in Korea, because of reducing the number of days for snowfall observations and mean maximum daily snowfall depth due to climate change. In this study, we conducted the frequency analysis for snowfall using the Bootstrap method and SIR algorithm which are the resampling methods that can overcome the problems of insufficient data. For the 58 meteorological stations distributed evenly in Korea, the probability of snowfall depth was estimated by non-parametric frequency analysis using the maximum daily snowfall depth data. The results show that probabilistic daily snowfall depth by frequency analysis is decreased at most stations, and most stations representing the rate of change were found to be consistent in both parametric and non-parametric frequency analysis. This study shows that the resampling methods can do the frequency analysis of the snowfall depth that has insufficient observed samples, which can be applied to interpretation of other natural disasters such as summer typhoons with seasonal characteristics. Acknowledgment.This research was supported by a grant(MPSS-NH-2015-79) from Disaster Prediction and Mitigation Technology Development Program funded by Korean Ministry of Public Safety and Security(MPSS).

  17. Tips and Tricks for Successful Application of Statistical Methods to Biological Data.

    PubMed

    Schlenker, Evelyn

    2016-01-01

    This chapter discusses experimental design and use of statistics to describe characteristics of data (descriptive statistics) and inferential statistics that test the hypothesis posed by the investigator. Inferential statistics, based on probability distributions, depend upon the type and distribution of the data. For data that are continuous, randomly and independently selected, as well as normally distributed more powerful parametric tests such as Student's t test and analysis of variance (ANOVA) can be used. For non-normally distributed or skewed data, transformation of the data (using logarithms) may normalize the data allowing use of parametric tests. Alternatively, with skewed data nonparametric tests can be utilized, some of which rely on data that are ranked prior to statistical analysis. Experimental designs and analyses need to balance between committing type 1 errors (false positives) and type 2 errors (false negatives). For a variety of clinical studies that determine risk or benefit, relative risk ratios (random clinical trials and cohort studies) or odds ratios (case-control studies) are utilized. Although both use 2 × 2 tables, their premise and calculations differ. Finally, special statistical methods are applied to microarray and proteomics data, since the large number of genes or proteins evaluated increase the likelihood of false discoveries. Additional studies in separate samples are used to verify microarray and proteomic data. Examples in this chapter and references are available to help continued investigation of experimental designs and appropriate data analysis.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Richard O.

    The application of statistics to environmental pollution monitoring studies requires a knowledge of statistical analysis methods particularly well suited to pollution data. This book fills that need by providing sampling plans, statistical tests, parameter estimation procedure techniques, and references to pertinent publications. Most of the statistical techniques are relatively simple, and examples, exercises, and case studies are provided to illustrate procedures. The book is logically divided into three parts. Chapters 1, 2, and 3 are introductory chapters. Chapters 4 through 10 discuss field sampling designs and Chapters 11 through 18 deal with a broad range of statistical analysis procedures. Somemore » statistical techniques given here are not commonly seen in statistics book. For example, see methods for handling correlated data (Sections 4.5 and 11.12), for detecting hot spots (Chapter 10), and for estimating a confidence interval for the mean of a lognormal distribution (Section 13.2). Also, Appendix B lists a computer code that estimates and tests for trends over time at one or more monitoring stations using nonparametric methods (Chapters 16 and 17). Unfortunately, some important topics could not be included because of their complexity and the need to limit the length of the book. For example, only brief mention could be made of time series analysis using Box-Jenkins methods and of kriging techniques for estimating spatial and spatial-time patterns of pollution, although multiple references on these topics are provided. Also, no discussion of methods for assessing risks from environmental pollution could be included.« less

  19. Multi-object segmentation using coupled nonparametric shape and relative pose priors

    NASA Astrophysics Data System (ADS)

    Uzunbas, Mustafa Gökhan; Soldea, Octavian; Çetin, Müjdat; Ünal, Gözde; Erçil, Aytül; Unay, Devrim; Ekin, Ahmet; Firat, Zeynep

    2009-02-01

    We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes.

  20. Detection of semi-volatile organic compounds in permeable ...

    EPA Pesticide Factsheets

    Abstract The Edison Environmental Center (EEC) has a research and demonstration permeable parking lot comprised of three different permeable systems: permeable asphalt, porous concrete and interlocking concrete permeable pavers. Water quality and quantity analysis has been ongoing since January, 2010. This paper describes a subset of the water quality analysis, analysis of semivolatile organic compounds (SVOCs) to determine if hydrocarbons were in water infiltrated through the permeable surfaces. SVOCs were analyzed in samples collected from 11 dates over a 3 year period, from 2/8/2010 to 4/1/2013.Results are broadly divided into three categories: 42 chemicals were never detected; 12 chemicals (11 chemical test) were detected at a rate of less than 10% or less; and 22 chemicals were detected at a frequency of 10% or greater (ranging from 10% to 66.5% detections). Fundamental and exploratory statistical analyses were performed on these latter analyses results by grouping results by surface type. The statistical analyses were limited due to low frequency of detections and dilutions of samples which impacted detection limits. The infiltrate data through three permeable surfaces were analyzed as non-parametric data by the Kaplan-Meier estimation method for fundamental statistics; there were some statistically observable difference in concentration between pavement types when using Tarone-Ware Comparison Hypothesis Test. Additionally Spearman Rank order non-parame

  1. Establishment of Biological Reference Intervals and Reference Curve for Urea by Exploratory Parametric and Non-Parametric Quantile Regression Models.

    PubMed

    Sarkar, Rajarshi

    2013-07-01

    The validity of the entire renal function tests as a diagnostic tool depends substantially on the Biological Reference Interval (BRI) of urea. Establishment of BRI of urea is difficult partly because exclusion criteria for selection of reference data are quite rigid and partly due to the compartmentalization considerations regarding age and sex of the reference individuals. Moreover, construction of Biological Reference Curve (BRC) of urea is imperative to highlight the partitioning requirements. This a priori study examines the data collected by measuring serum urea of 3202 age and sex matched individuals, aged between 1 and 80 years, by a kinetic UV Urease/GLDH method on a Roche Cobas 6000 auto-analyzer. Mann-Whitney U test of the reference data confirmed the partitioning requirement by both age and sex. Further statistical analysis revealed the incompatibility of the data for a proposed parametric model. Hence the data was non-parametrically analysed. BRI was found to be identical for both sexes till the 2(nd) decade, and the BRI for males increased progressively 6(th) decade onwards. Four non-parametric models were postulated for construction of BRC: Gaussian kernel, double kernel, local mean and local constant, of which the last one generated the best-fitting curves. Clinical decision making should become easier and diagnostic implications of renal function tests should become more meaningful if this BRI is followed and the BRC is used as a desktop tool in conjunction with similar data for serum creatinine.

  2. Sample Skewness as a Statistical Measurement of Neuronal Tuning Sharpness

    PubMed Central

    Samonds, Jason M.; Potetz, Brian R.; Lee, Tai Sing

    2014-01-01

    We propose using the statistical measurement of the sample skewness of the distribution of mean firing rates of a tuning curve to quantify sharpness of tuning. For some features, like binocular disparity, tuning curves are best described by relatively complex and sometimes diverse functions, making it difficult to quantify sharpness with a single function and parameter. Skewness provides a robust nonparametric measure of tuning curve sharpness that is invariant with respect to the mean and variance of the tuning curve and is straightforward to apply to a wide range of tuning, including simple orientation tuning curves and complex object tuning curves that often cannot even be described parametrically. Because skewness does not depend on a specific model or function of tuning, it is especially appealing to cases of sharpening where recurrent interactions among neurons produce sharper tuning curves that deviate in a complex manner from the feedforward function of tuning. Since tuning curves for all neurons are not typically well described by a single parametric function, this model independence additionally allows skewness to be applied to all recorded neurons, maximizing the statistical power of a set of data. We also compare skewness with other nonparametric measures of tuning curve sharpness and selectivity. Compared to these other nonparametric measures tested, skewness is best used for capturing the sharpness of multimodal tuning curves defined by narrow peaks (maximum) and broad valleys (minima). Finally, we provide a more formal definition of sharpness using a shape-based information gain measure and derive and show that skewness is correlated with this definition. PMID:24555451

  3. The use of generalized linear models and generalized estimating equations in bioarchaeological studies.

    PubMed

    Nikita, Efthymia

    2014-03-01

    The current article explores whether the application of generalized linear models (GLM) and generalized estimating equations (GEE) can be used in place of conventional statistical analyses in the study of ordinal data that code an underlying continuous variable, like entheseal changes. The analysis of artificial data and ordinal data expressing entheseal changes in archaeological North African populations gave the following results. Parametric and nonparametric tests give convergent results particularly for P values <0.1, irrespective of whether the underlying variable is normally distributed or not under the condition that the samples involved in the tests exhibit approximately equal sizes. If this prerequisite is valid and provided that the samples are of equal variances, analysis of covariance may be adopted. GLM are not subject to constraints and give results that converge to those obtained from all nonparametric tests. Therefore, they can be used instead of traditional tests as they give the same amount of information as them, but with the advantage of allowing the study of the simultaneous impact of multiple predictors and their interactions and the modeling of the experimental data. However, GLM should be replaced by GEE for the study of bilateral asymmetry and in general when paired samples are tested, because GEE are appropriate for correlated data. Copyright © 2013 Wiley Periodicals, Inc.

  4. Analysis of Statistical Methods and Errors in the Articles Published in the Korean Journal of Pain

    PubMed Central

    Yim, Kyoung Hoon; Han, Kyoung Ah; Park, Soo Young

    2010-01-01

    Background Statistical analysis is essential in regard to obtaining objective reliability for medical research. However, medical researchers do not have enough statistical knowledge to properly analyze their study data. To help understand and potentially alleviate this problem, we have analyzed the statistical methods and errors of articles published in the Korean Journal of Pain (KJP), with the intention to improve the statistical quality of the journal. Methods All the articles, except case reports and editorials, published from 2004 to 2008 in the KJP were reviewed. The types of applied statistical methods and errors in the articles were evaluated. Results One hundred and thirty-nine original articles were reviewed. Inferential statistics and descriptive statistics were used in 119 papers and 20 papers, respectively. Only 20.9% of the papers were free from statistical errors. The most commonly adopted statistical method was the t-test (21.0%) followed by the chi-square test (15.9%). Errors of omission were encountered 101 times in 70 papers. Among the errors of omission, "no statistics used even though statistical methods were required" was the most common (40.6%). The errors of commission were encountered 165 times in 86 papers, among which "parametric inference for nonparametric data" was the most common (33.9%). Conclusions We found various types of statistical errors in the articles published in the KJP. This suggests that meticulous attention should be given not only in the applying statistical procedures but also in the reviewing process to improve the value of the article. PMID:20552071

  5. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.

    PubMed

    Oostenveld, Robert; Fries, Pascal; Maris, Eric; Schoffelen, Jan-Mathijs

    2011-01-01

    This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages.

  6. It's all relative: ranking the diversity of aquatic bacterial communities.

    PubMed

    Shaw, Allison K; Halpern, Aaron L; Beeson, Karen; Tran, Bao; Venter, J Craig; Martiny, Jennifer B H

    2008-09-01

    The study of microbial diversity patterns is hampered by the enormous diversity of microbial communities and the lack of resources to sample them exhaustively. For many questions about richness and evenness, however, one only needs to know the relative order of diversity among samples rather than total diversity. We used 16S libraries from the Global Ocean Survey to investigate the ability of 10 diversity statistics (including rarefaction, non-parametric, parametric, curve extrapolation and diversity indices) to assess the relative diversity of six aquatic bacterial communities. Overall, we found that the statistics yielded remarkably similar rankings of the samples for a given sequence similarity cut-off. This correspondence, despite the different underlying assumptions of the statistics, suggests that diversity statistics are a useful tool for ranking samples of microbial diversity. In addition, sequence similarity cut-off influenced the diversity ranking of the samples, demonstrating that diversity statistics can also be used to detect differences in phylogenetic structure among microbial communities. Finally, a subsampling analysis suggests that further sequencing from these particular clone libraries would not have substantially changed the richness rankings of the samples.

  7. Anger and depression levels of mothers with premature infants in the neonatal intensive care unit.

    PubMed

    Kardaşözdemir, Funda; AKGüN Şahin, Zümrüt

    2016-02-04

    The aim of this study was to examine anger and depression levels of mothers who had a premature infant in the NICU, and all factors affecting the situation. This descriptive study was performed in the level I and II units of NICU at three state hospitals in Turkey. The data was collected with a demographic questionnaire, "Beck Depression Inventory" and "Anger Expression Scale". Descriptive statistics, parametric and nonparametric statistical tests and Pearson correlation were used in the data analysis. Mothers whose infants are under care in NICU have moderate depression. It has also been determined that mothers' educational level, income level and gender of infants were statistically significant (p <0.05). A positive relationship between depression and trait anger scores was found to be statistically significant. A negative relationship existed between depression and anger-control scores for the mothers, which was statistically significant (p <0.05). Due to the results of research, recommended that mothers who are at risk of depression and anger in the NICU evaluated by nurses and these nurses to develop their consulting roles.

  8. Estimation and model selection of semiparametric multivariate survival functions under general censorship.

    PubMed

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2010-07-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root- n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.

  9. Estimation and model selection of semiparametric multivariate survival functions under general censorship

    PubMed Central

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2013-01-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided. PMID:24790286

  10. Geometric analysis and restitution of digital multispectral scanner data arrays

    NASA Technical Reports Server (NTRS)

    Baker, J. R.; Mikhail, E. M.

    1975-01-01

    An investigation was conducted to define causes of geometric defects within digital multispectral scanner (MSS) data arrays, to analyze the resulting geometric errors, and to investigate restitution methods to correct or reduce these errors. Geometric transformation relationships for scanned data, from which collinearity equations may be derived, served as the basis of parametric methods of analysis and restitution of MSS digital data arrays. The linearization of these collinearity equations is presented. Algorithms considered for use in analysis and restitution included the MSS collinearity equations, piecewise polynomials based on linearized collinearity equations, and nonparametric algorithms. A proposed system for geometric analysis and restitution of MSS digital data arrays was used to evaluate these algorithms, utilizing actual MSS data arrays. It was shown that collinearity equations and nonparametric algorithms both yield acceptable results, but nonparametric algorithms possess definite advantages in computational efficiency. Piecewise polynomials were found to yield inferior results.

  11. Descriptive quantitative analysis of hallux abductovalgus transverse plane radiographic parameters.

    PubMed

    Meyr, Andrew J; Myers, Adam; Pontious, Jane

    2014-01-01

    Although the transverse plane radiographic parameters of the first intermetatarsal angle (IMA), hallux abductus angle (HAA), and the metatarsal-sesamoid position (MSP) form the basis of preoperative procedure selection and postoperative surgical evaluation of the hallux abductovalgus deformity, the so-called normal values of these measurements have not been well established. The objectives of the present study were to (1) evaluate the descriptive statistics of the first IMA, HAA, and MSP from a large patient population and (2) to determine an objective basis for defining "normal" versus "abnormal" measurements. Anteroposterior foot radiographs from 373 consecutive patients without a history of previous foot and ankle surgery and/or trauma were evaluated for the measurements of the first IMA, HAA, and MSP. The results revealed a mean measurement of 9.93°, 17.59°, and position 3.63 for the first IMA, HAA, and MSP, respectively. An advanced descriptive analysis demonstrated data characteristics of both parametric and nonparametric distributions. Furthermore, clear differentiations in deformity progression were appreciated when the variables were graphically depicted against each other. This could represent a quantitative basis for defining "normal" versus "abnormal" values. From the results of the present study, we have concluded that these radiographic parameters can be more conservatively reported and analyzed using nonparametric descriptive and comparative statistics within medical studies and that the combination of a first IMA, HAA, and MSP at or greater than approximately 10°, 18°, and position 4, respectively, appears to be an objective "tipping point" in terms of deformity progression and might represent an upper limit of acceptable in terms of surgical deformity correction. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  12. A non-parametric peak calling algorithm for DamID-Seq.

    PubMed

    Li, Renhua; Hempel, Leonie U; Jiang, Tingbo

    2015-01-01

    Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS) of double sex (DSX)-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID) technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq). One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only). After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1) reads resampling; 2) reads scaling (normalization) and computing signal-to-noise fold changes; 3) filtering; 4) Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC). We also used irreproducible discovery rate (IDR) analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.

  13. The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data

    NASA Astrophysics Data System (ADS)

    Peres, Leonardo de Faria; Lucena, Andrews José de; Rotunno Filho, Otto Corrêa; França, José Ricardo de Almeida

    2018-02-01

    The aim of this work is to study urban heat island (UHI) in Metropolitan Area of Rio de Janeiro (MARJ) based on the analysis of land-surface temperature (LST) and land-use patterns retrieved from Landsat-5/Thematic Mapper (TM), Landsat-7/Enhanced Thematic Mapper Plus (ETM+) and Landsat-8/Operational Land Imager (OLI) and Thermal Infrared Sensors (TIRS) data covering a 32-year period between 1984 and 2015. LST temporal evolution is assessed by comparing the average LST composites for 1984-1999 and 2000-2015 where the parametric Student t-test was conducted at 5% significance level to map the pixels where LST for the more recent period is statistically significantly greater than the previous one. The non-parametric Mann-Whitney-Wilcoxon rank sum test has also confirmed at the same 5% significance level that the more recent period (2000-2015) has higher LST values. UHI intensity between ;urban; and ;rural/urban low density; (;vegetation;) areas for 1984-1999 and 2000-2015 was established and confirmed by both parametric and non-parametric tests at 1% significance level as 3.3 °C (5.1 °C) and 4.4 °C (7.1 °C), respectively. LST has statistically significantly (p-value < 0.01) increased over time in two of three land cover classes (;urban; and ;urban low density;), respectively by 1.9 °C and 0.9 °C, except in ;vegetation; class. A spatial analysis was also performed to identify the urban pixels within MARJ where UHI is more intense by subtracting the LST of these pixels from the LST mean value of ;vegetation; land-use class.

  14. Effects of a soy-based dietary supplement compared with low-dose hormone therapy on the urogenital system: a randomized, double-blind, controlled clinical trial.

    PubMed

    Carmignani, Lucio O; Pedro, Adriana Orcesi; Montemor, Eliana B; Arias, Victor A; Costa-Paiva, Lucia H; Pinto-Neto, Aarão M

    2015-07-01

    This study aims to compare the effects of a soy-based dietary supplement, low-dose hormone therapy (HT), and placebo on the urogenital system in postmenopausal women. In this double-blind, randomized, placebo-controlled trial, 60 healthy postmenopausal women aged 40 to 60 years (mean time since menopause, 4.1 y) were randomized into three groups: a soy dietary supplement group (90 mg of isoflavone), a low-dose HT group (1 mg of estradiol plus 0.5 mg of norethisterone), and a placebo group. Urinary, vaginal, and sexual complaints were evaluated using the urogenital subscale of the Menopause Rating Scale. Vaginal maturation value was calculated. Transvaginal sonography was performed to evaluate endometrial thickness. Genital bleeding pattern was assessed. Statistical analysis was performed using χ(2) test, Fisher's exact test, paired Student's t test, Kruskal-Wallis test, Kruskal-Wallis nonparametric test, and analysis of variance. For intergroup comparisons, Kruskal-Wallis nonparametric test (followed by Mann-Whitney U test) was used. Vaginal dryness improved significantly in the soy and HT groups (P = 0.04). Urinary and sexual symptoms did not change with treatment in the three groups. After 16 weeks of treatment, there was a significant increase in maturation value only in the HT group (P < 0.01). Vaginal pH decreased only in this group (P < 0.01). There were no statistically significant differences in endometrial thickness between the three groups, and the adverse effects evaluated were similar. This study shows that a soy-based dietary supplement used for 16 weeks fails to exert estrogenic action on the urogenital tract but improves vaginal dryness.

  15. Reference Charts for Fetal Cerebellar Vermis Height: A Prospective Cross-Sectional Study of 10605 Fetuses

    PubMed Central

    Cignini, Pietro; Giorlandino, Maurizio; Brutti, Pierpaolo; Mangiafico, Lucia; Aloisi, Alessia; Giorlandino, Claudio

    2016-01-01

    Objective To establish reference charts for fetal cerebellar vermis height in an unselected population. Methods A prospective cross-sectional study between September 2009 and December 2014 was carried out at ALTAMEDICA Fetal–Maternal Medical Centre, Rome, Italy. Of 25203 fetal biometric measurements, 12167 (48%) measurements of the cerebellar vermis were available. After excluding 1562 (12.8%) measurements, a total of 10605 (87.2%) fetuses were considered and analyzed once only. Parametric and nonparametric quantile regression models were used for the statistical analysis. In order to evaluate the robustness of the proposed reference charts regarding various distributional assumptions on the ultrasound measurements at hand, we compared the gestational age-specific reference curves we produced through the statistical methods used. Normal mean height based on parametric and nonparametric methods were defined for each week of gestation and the regression equation expressing the height of the cerebellar vermis as a function of gestational age was calculated. Finally the correlation between dimension/gestation was measured. Results The mean height of the cerebellar vermis was 12.7mm (SD, 1.6mm; 95% confidence interval, 12.7–12.8mm). The regression equation expressing the height of the CV as a function of the gestational age was: height (mm) = -4.85+0.78 x gestational age. The correlation between dimension/gestation was expressed by the coefficient r = 0.87. Conclusion This is the first prospective cross-sectional study on fetal cerebellar vermis biometry with such a large sample size reported in literature. It is a detailed statistical survey and contains new centile-based reference charts for fetal height of cerebellar vermis measurements. PMID:26812238

  16. Leveraging Genomic Annotations and Pleiotropic Enrichment for Improved Replication Rates in Schizophrenia GWAS

    PubMed Central

    Wang, Yunpeng; Thompson, Wesley K.; Schork, Andrew J.; Holland, Dominic; Chen, Chi-Hua; Bettella, Francesco; Desikan, Rahul S.; Li, Wen; Witoelar, Aree; Zuber, Verena; Devor, Anna; Nöthen, Markus M.; Rietschel, Marcella; Chen, Qiang; Werge, Thomas; Cichon, Sven; Weinberger, Daniel R.; Djurovic, Srdjan; O’Donovan, Michael; Visscher, Peter M.; Andreassen, Ole A.; Dale, Anders M.

    2016-01-01

    Most of the genetic architecture of schizophrenia (SCZ) has not yet been identified. Here, we apply a novel statistical algorithm called Covariate-Modulated Mixture Modeling (CM3), which incorporates auxiliary information (heterozygosity, total linkage disequilibrium, genomic annotations, pleiotropy) for each single nucleotide polymorphism (SNP) to enable more accurate estimation of replication probabilities, conditional on the observed test statistic (“z-score”) of the SNP. We use a multiple logistic regression on z-scores to combine information from auxiliary information to derive a “relative enrichment score” for each SNP. For each stratum of these relative enrichment scores, we obtain nonparametric estimates of posterior expected test statistics and replication probabilities as a function of discovery z-scores, using a resampling-based approach that repeatedly and randomly partitions meta-analysis sub-studies into training and replication samples. We fit a scale mixture of two Gaussians model to each stratum, obtaining parameter estimates that minimize the sum of squared differences of the scale-mixture model with the stratified nonparametric estimates. We apply this approach to the recent genome-wide association study (GWAS) of SCZ (n = 82,315), obtaining a good fit between the model-based and observed effect sizes and replication probabilities. We observed that SNPs with low enrichment scores replicate with a lower probability than SNPs with high enrichment scores even when both they are genome-wide significant (p < 5x10-8). There were 693 and 219 independent loci with model-based replication rates ≥80% and ≥90%, respectively. Compared to analyses not incorporating relative enrichment scores, CM3 increased out-of-sample yield for SNPs that replicate at a given rate. This demonstrates that replication probabilities can be more accurately estimated using prior enrichment information with CM3. PMID:26808560

  17. Comparing two correlated C indices with right-censored survival outcome: a one-shot nonparametric approach

    PubMed Central

    Kang, Le; Chen, Weijie; Petrick, Nicholas A.; Gallas, Brandon D.

    2014-01-01

    The area under the receiver operating characteristic (ROC) curve (AUC) is often used as a summary index of the diagnostic ability in evaluating biomarkers when the clinical outcome (truth) is binary. When the clinical outcome is right-censored survival time, the C index, motivated as an extension of AUC, has been proposed by Harrell as a measure of concordance between a predictive biomarker and the right-censored survival outcome. In this work, we investigate methods for statistical comparison of two diagnostic or predictive systems, of which they could either be two biomarkers or two fixed algorithms, in terms of their C indices. We adopt a U-statistics based C estimator that is asymptotically normal and develop a nonparametric analytical approach to estimate the variance of the C estimator and the covariance of two C estimators. A z-score test is then constructed to compare the two C indices. We validate our one-shot nonparametric method via simulation studies in terms of the type I error rate and power. We also compare our one-shot method with resampling methods including the jackknife and the bootstrap. Simulation results show that the proposed one-shot method provides almost unbiased variance estimations and has satisfactory type I error control and power. Finally, we illustrate the use of the proposed method with an example from the Framingham Heart Study. PMID:25399736

  18. kruX: matrix-based non-parametric eQTL discovery

    PubMed Central

    2014-01-01

    Background The Kruskal-Wallis test is a popular non-parametric statistical test for identifying expression quantitative trait loci (eQTLs) from genome-wide data due to its robustness against variations in the underlying genetic model and expression trait distribution, but testing billions of marker-trait combinations one-by-one can become computationally prohibitive. Results We developed kruX, an algorithm implemented in Matlab, Python and R that uses matrix multiplications to simultaneously calculate the Kruskal-Wallis test statistic for several millions of marker-trait combinations at once. KruX is more than ten thousand times faster than computing associations one-by-one on a typical human dataset. We used kruX and a dataset of more than 500k SNPs and 20k expression traits measured in 102 human blood samples to compare eQTLs detected by the Kruskal-Wallis test to eQTLs detected by the parametric ANOVA and linear model methods. We found that the Kruskal-Wallis test is more robust against data outliers and heterogeneous genotype group sizes and detects a higher proportion of non-linear associations, but is more conservative for calling additive linear associations. Conclusion kruX enables the use of robust non-parametric methods for massive eQTL mapping without the need for a high-performance computing infrastructure and is freely available from http://krux.googlecode.com. PMID:24423115

  19. Parametric and nonparametric Granger causality testing: Linkages between international stock markets

    NASA Astrophysics Data System (ADS)

    De Gooijer, Jan G.; Sivarajasingham, Selliah

    2008-04-01

    This study investigates long-term linear and nonlinear causal linkages among eleven stock markets, six industrialized markets and five emerging markets of South-East Asia. We cover the period 1987-2006, taking into account the on-set of the Asian financial crisis of 1997. We first apply a test for the presence of general nonlinearity in vector time series. Substantial differences exist between the pre- and post-crisis period in terms of the total number of significant nonlinear relationships. We then examine both periods, using a new nonparametric test for Granger noncausality and the conventional parametric Granger noncausality test. One major finding is that the Asian stock markets have become more internationally integrated after the Asian financial crisis. An exception is the Sri Lankan market with almost no significant long-term linear and nonlinear causal linkages with other markets. To ensure that any causality is strictly nonlinear in nature, we also examine the nonlinear causal relationships of VAR filtered residuals and VAR filtered squared residuals for the post-crisis sample. We find quite a few remaining significant bi- and uni-directional causal nonlinear relationships in these series. Finally, after filtering the VAR-residuals with GARCH-BEKK models, we show that the nonparametric test statistics are substantially smaller in both magnitude and statistical significance than those before filtering. This indicates that nonlinear causality can, to a large extent, be explained by simple volatility effects.

  20. Unveiling acoustic physics of the CMB using nonparametric estimation of the temperature angular power spectrum for Planck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghamousa, Amir; Shafieloo, Arman; Arjunwadkar, Mihir

    2015-02-01

    Estimation of the angular power spectrum is one of the important steps in Cosmic Microwave Background (CMB) data analysis. Here, we present a nonparametric estimate of the temperature angular power spectrum for the Planck 2013 CMB data. The method implemented in this work is model-independent, and allows the data, rather than the model, to dictate the fit. Since one of the main targets of our analysis is to test the consistency of the ΛCDM model with Planck 2013 data, we use the nuisance parameters associated with the best-fit ΛCDM angular power spectrum to remove foreground contributions from the data atmore » multipoles ℓ ≥50. We thus obtain a combined angular power spectrum data set together with the full covariance matrix, appropriately weighted over frequency channels. Our subsequent nonparametric analysis resolves six peaks (and five dips) up to ℓ ∼1850 in the temperature angular power spectrum. We present uncertainties in the peak/dip locations and heights at the 95% confidence level. We further show how these reflect the harmonicity of acoustic peaks, and can be used for acoustic scale estimation. Based on this nonparametric formalism, we found the best-fit ΛCDM model to be at 36% confidence distance from the center of the nonparametric confidence set—this is considerably larger than the confidence distance (9%) derived earlier from a similar analysis of the WMAP 7-year data. Another interesting result of our analysis is that at low multipoles, the Planck data do not suggest any upturn, contrary to the expectation based on the integrated Sachs-Wolfe contribution in the best-fit ΛCDM cosmology.« less

  1. Linkage mapping of beta 2 EEG waves via non-parametric regression.

    PubMed

    Ghosh, Saurabh; Begleiter, Henri; Porjesz, Bernice; Chorlian, David B; Edenberg, Howard J; Foroud, Tatiana; Goate, Alison; Reich, Theodore

    2003-04-01

    Parametric linkage methods for analyzing quantitative trait loci are sensitive to violations in trait distributional assumptions. Non-parametric methods are relatively more robust. In this article, we modify the non-parametric regression procedure proposed by Ghosh and Majumder [2000: Am J Hum Genet 66:1046-1061] to map Beta 2 EEG waves using genome-wide data generated in the COGA project. Significant linkage findings are obtained on chromosomes 1, 4, 5, and 15 with findings at multiple regions on chromosomes 4 and 15. We analyze the data both with and without incorporating alcoholism as a covariate. We also test for epistatic interactions between regions of the genome exhibiting significant linkage with the EEG phenotypes and find evidence of epistatic interactions between a region each on chromosome 1 and chromosome 4 with one region on chromosome 15. While regressing out the effect of alcoholism does not affect the linkage findings, the epistatic interactions become statistically insignificant. Copyright 2003 Wiley-Liss, Inc.

  2. Application of meta-analysis methods for identifying proteomic expression level differences.

    PubMed

    Amess, Bob; Kluge, Wolfgang; Schwarz, Emanuel; Haenisch, Frieder; Alsaif, Murtada; Yolken, Robert H; Leweke, F Markus; Guest, Paul C; Bahn, Sabine

    2013-07-01

    We present new statistical approaches for identification of proteins with expression levels that are significantly changed when applying meta-analysis to two or more independent experiments. We showed that the Euclidean distance measure has reduced risk of false positives compared to the rank product method. Our Ψ-ranking method has advantages over the traditional fold-change approach by incorporating both the fold-change direction as well as the p-value. In addition, the second novel method, Π-ranking, considers the ratio of the fold-change and thus integrates all three parameters. We further improved the latter by introducing our third technique, Σ-ranking, which combines all three parameters in a balanced nonparametric approach. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Statistical methods to estimate treatment effects from multichannel electroencephalography (EEG) data in clinical trials.

    PubMed

    Ma, Junshui; Wang, Shubing; Raubertas, Richard; Svetnik, Vladimir

    2010-07-15

    With the increasing popularity of using electroencephalography (EEG) to reveal the treatment effect in drug development clinical trials, the vast volume and complex nature of EEG data compose an intriguing, but challenging, topic. In this paper the statistical analysis methods recommended by the EEG community, along with methods frequently used in the published literature, are first reviewed. A straightforward adjustment of the existing methods to handle multichannel EEG data is then introduced. In addition, based on the spatial smoothness property of EEG data, a new category of statistical methods is proposed. The new methods use a linear combination of low-degree spherical harmonic (SPHARM) basis functions to represent a spatially smoothed version of the EEG data on the scalp, which is close to a sphere in shape. In total, seven statistical methods, including both the existing and the newly proposed methods, are applied to two clinical datasets to compare their power to detect a drug effect. Contrary to the EEG community's recommendation, our results suggest that (1) the nonparametric method does not outperform its parametric counterpart; and (2) including baseline data in the analysis does not always improve the statistical power. In addition, our results recommend that (3) simple paired statistical tests should be avoided due to their poor power; and (4) the proposed spatially smoothed methods perform better than their unsmoothed versions. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Benchmark dose analysis via nonparametric regression modeling

    PubMed Central

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Estimation of benchmark doses (BMDs) in quantitative risk assessment traditionally is based upon parametric dose-response modeling. It is a well-known concern, however, that if the chosen parametric model is uncertain and/or misspecified, inaccurate and possibly unsafe low-dose inferences can result. We describe a nonparametric approach for estimating BMDs with quantal-response data based on an isotonic regression method, and also study use of corresponding, nonparametric, bootstrap-based confidence limits for the BMD. We explore the confidence limits’ small-sample properties via a simulation study, and illustrate the calculations with an example from cancer risk assessment. It is seen that this nonparametric approach can provide a useful alternative for BMD estimation when faced with the problem of parametric model uncertainty. PMID:23683057

  5. Associations between host characteristics and antimicrobial resistance of Salmonella typhimurium.

    PubMed

    Ruddat, I; Tietze, E; Ziehm, D; Kreienbrock, L

    2014-10-01

    A collection of Salmonella Typhimurium isolates obtained from sporadic salmonellosis cases in humans from Lower Saxony, Germany between June 2008 and May 2010 was used to perform an exploratory risk-factor analysis on antimicrobial resistance (AMR) using comprehensive host information on sociodemographic attributes, medical history, food habits and animal contact. Multivariate resistance profiles of minimum inhibitory concentrations for 13 antimicrobial agents were analysed using a non-parametric approach with multifactorial models adjusted for phage types. Statistically significant associations were observed for consumption of antimicrobial agents, region type and three factors on egg-purchasing behaviour, indicating that besides antimicrobial use the proximity to other community members, health consciousness and other lifestyle-related attributes may play a role in the dissemination of resistances. Furthermore, a statistically significant increase in AMR from the first study year to the second year was observed.

  6. Clinical competence of Guatemalan and Mexican physicians for family dysfunction management.

    PubMed

    Cabrera-Pivaral, Carlos Enrique; Orozco-Valerio, María de Jesús; Celis-de la Rosa, Alfredo; Covarrubias-Bermúdez, María de Los Ángeles; Zavala-González, Marco Antonio

    2017-01-01

    To evaluate the clinical competence of Mexican and Guatemalan physicians to management the family dysfunction. Cross comparative study in four care units first in Guadalajara, Mexico, and four in Guatemala, Guatemala, based on a purposeful sampling, involving 117 and 100 physicians, respectively. Clinical competence evaluated by validated instrument integrated for 187 items. Non-parametric descriptive and inferential statistical analysis was performed. The percentage of Mexican physicians with high clinical competence was 13.7%, medium 53%, low 24.8% and defined by random 8.5%. For the Guatemalan physicians'14% was high, average 63%, and 23% defined by random. There were no statistically significant differences between healthcare country units, but between the medium of Mexicans (0.55) and Guatemalans (0.55) (p = 0.02). The proportion of the high clinical competency of Mexican physicians' was as Guatemalans.

  7. Density-based empirical likelihood procedures for testing symmetry of data distributions and K-sample comparisons.

    PubMed

    Vexler, Albert; Tanajian, Hovig; Hutson, Alan D

    In practice, parametric likelihood-ratio techniques are powerful statistical tools. In this article, we propose and examine novel and simple distribution-free test statistics that efficiently approximate parametric likelihood ratios to analyze and compare distributions of K groups of observations. Using the density-based empirical likelihood methodology, we develop a Stata package that applies to a test for symmetry of data distributions and compares K -sample distributions. Recognizing that recent statistical software packages do not sufficiently address K -sample nonparametric comparisons of data distributions, we propose a new Stata command, vxdbel, to execute exact density-based empirical likelihood-ratio tests using K samples. To calculate p -values of the proposed tests, we use the following methods: 1) a classical technique based on Monte Carlo p -value evaluations; 2) an interpolation technique based on tabulated critical values; and 3) a new hybrid technique that combines methods 1 and 2. The third, cutting-edge method is shown to be very efficient in the context of exact-test p -value computations. This Bayesian-type method considers tabulated critical values as prior information and Monte Carlo generations of test statistic values as data used to depict the likelihood function. In this case, a nonparametric Bayesian method is proposed to compute critical values of exact tests.

  8. Mapping Findspots of Roman Military Brickstamps in Mogontiacum (Mainz) and Archaeometrical Analysis

    NASA Astrophysics Data System (ADS)

    Dolata, Jens; Mucha, Hans-Joachim; Bartel, Hans-Georg

    Mainz was a Roman settlement that was established as an important military outpost in 13 BC. Almost 100 years later Mainz, the ancient Mogontiacum, became the seat of the administrative centre of the Roman Province of Germania Superior. About 3,500 brickstamps concerning to the period until the fall of the Roman Empire in the fifth century AD have been found in archaeological excavations. These documents have to be investigated based on several methods for a better understanding the history. Here the focus is on an application of spatial statistical analysis in archaeology. Concretely, about 250 sites have to be investigated. So, we compare maps of different periods graphically by nonparametric density estimation. Here different weights of the sites according to the radius of the finding area are taken into account. Moreover we can test whether archaeological segmentation is statistically significant or not. In combination of smooth mapping, testing and looking for dated brickstamps there is a good chance to achieve new sources for the Roman history of Mainz.

  9. Updating estimates of low streamflow statistics to account for possible trends

    NASA Astrophysics Data System (ADS)

    Blum, A. G.; Archfield, S. A.; Hirsch, R. M.; Vogel, R. M.; Kiang, J. E.; Dudley, R. W.

    2017-12-01

    Given evidence of both increasing and decreasing trends in low flows in many streams, methods are needed to update estimators of low flow statistics used in water resources management. One such metric is the 10-year annual low-flow statistic (7Q10) calculated as the annual minimum seven-day streamflow which is exceeded in nine out of ten years on average. Historical streamflow records may not be representative of current conditions at a site if environmental conditions are changing. We present a new approach to frequency estimation under nonstationary conditions that applies a stationary nonparametric quantile estimator to a subset of the annual minimum flow record. Monte Carlo simulation experiments were used to evaluate this approach across a range of trend and no trend scenarios. Relative to the standard practice of using the entire available streamflow record, use of a nonparametric quantile estimator combined with selection of the most recent 30 or 50 years for 7Q10 estimation were found to improve accuracy and reduce bias. Benefits of data subset selection approaches were greater for higher magnitude trends annual minimum flow records with lower coefficients of variation. A nonparametric trend test approach for subset selection did not significantly improve upon always selecting the last 30 years of record. At 174 stream gages in the Chesapeake Bay region, 7Q10 estimators based on the most recent 30 years of flow record were compared to estimators based on the entire period of record. Given the availability of long records of low streamflow, using only a subset of the flow record ( 30 years) can be used to update 7Q10 estimators to better reflect current streamflow conditions.

  10. Summarizing techniques that combine three non-parametric scores to detect disease-associated 2-way SNP-SNP interactions.

    PubMed

    Sengupta Chattopadhyay, Amrita; Hsiao, Ching-Lin; Chang, Chien Ching; Lian, Ie-Bin; Fann, Cathy S J

    2014-01-01

    Identifying susceptibility genes that influence complex diseases is extremely difficult because loci often influence the disease state through genetic interactions. Numerous approaches to detect disease-associated SNP-SNP interactions have been developed, but none consistently generates high-quality results under different disease scenarios. Using summarizing techniques to combine a number of existing methods may provide a solution to this problem. Here we used three popular non-parametric methods-Gini, absolute probability difference (APD), and entropy-to develop two novel summary scores, namely principle component score (PCS) and Z-sum score (ZSS), with which to predict disease-associated genetic interactions. We used a simulation study to compare performance of the non-parametric scores, the summary scores, the scaled-sum score (SSS; used in polymorphism interaction analysis (PIA)), and the multifactor dimensionality reduction (MDR). The non-parametric methods achieved high power, but no non-parametric method outperformed all others under a variety of epistatic scenarios. PCS and ZSS, however, outperformed MDR. PCS, ZSS and SSS displayed controlled type-I-errors (<0.05) compared to GS, APDS, ES (>0.05). A real data study using the genetic-analysis-workshop 16 (GAW 16) rheumatoid arthritis dataset identified a number of interesting SNP-SNP interactions. © 2013 Elsevier B.V. All rights reserved.

  11. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data

    PubMed Central

    Oostenveld, Robert; Fries, Pascal; Maris, Eric; Schoffelen, Jan-Mathijs

    2011-01-01

    This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages. PMID:21253357

  12. Assessment of Dimensionality in Social Science Subtest

    ERIC Educational Resources Information Center

    Ozbek Bastug, Ozlem Yesim

    2012-01-01

    Most of the literature on dimensionality focused on either comparison of parametric and nonparametric dimensionality detection procedures or showing the effectiveness of one type of procedure. There is no known study to shown how to do combined parametric and nonparametric dimensionality analysis on real data. The current study is aimed to fill…

  13. Measuring Youth Development: A Nonparametric Cross-Country "Youth Welfare Index"

    ERIC Educational Resources Information Center

    Chaaban, Jad M.

    2009-01-01

    This paper develops an empirical methodology for the construction of a synthetic multi-dimensional cross-country comparison of the performance of governments around the world in improving the livelihood of their younger population. The devised "Youth Welfare Index" is based on the nonparametric Data Envelopment Analysis (DEA) methodology and…

  14. Evaluation of centrifuged bone marrow on bone regeneration around implants in rabbit tibia.

    PubMed

    Betoni, Walter; Queiroz, Thallita P; Luvizuto, Eloá R; Valentini-Neto, Rodolpho; Garcia-Júnior, Idelmo R; Bernabé, Pedro F E

    2012-12-01

    To evaluate the bone regeneration of cervical defects produced around titanium implants filled with blood clot and filled with centrifuged bone marrow (CBM) by means of histomorphometric analysis. Twelve rabbits received 2 titanium implants in each right tibia, with the upper cortical prepared with a 5-mm drill and the lower cortex with a 3-mm-diameter drill. Euthanasia was performed to allow analysis at 7, 21, and 60 days after operation. The samples were embedded in light curing resin, cut and stained with alizarin red and Stevenel blue for a histomorphometric analysis of the bone-to-implant contact (BIC) and the bone area around implant (BA). The values obtained were statistically analyzed using the nonparametric Kruskal-Wallis test (P = 0.05). At 60 days postoperation, the groups had their cervical defects completely filled by neoformed bone tissue. There was no statistically significant difference between the groups regarding BIC and BA during the analyzed periods. There was no difference in the bone repair of periimplant cervical defects with or without the use of CBM.

  15. [Changes in cerebrospinal fluid in patients with tuberculosis of the central nervous system].

    PubMed

    Jedrychowski, Michał; Garlicki, Aleksander

    2008-01-01

    The aim of the study was to analyze the parameters of the cerebrospinal fluid in patients with tuberculosis of the central nervous system confirmed by culture or molecular methods, in comparison to patients without such confirmation. The analysis of medical documentation of 13 patients with CNS tuberculosis, 10 male and 3 female who were hospitalized at the Clinic of Infectious Diseases in Kraków in years 2001-2006 was performed. Following parameters of the cerebrospinal fluid were taken into account in both groups of patients: cytologic analysis, protein, glucose and chloride concentration. Statistical analysis was done using the non-parametric Mann-Whitney U test. The only parameter for which statistically significant difference between the two groups of patients was found was the level of glucose in CSF (p<0.05). Lower glucose concentration was observed in the group with etiologically confirmed CNS tuberculosis. Moreover additional localisation of tuberculosis was observed in this group of patients. Introduction of the molecular biology methods in diagnosis allowed to detect the etiologic factor more often.

  16. Multidimensional analysis of data obtained in experiments with X-ray emulsion chambers and extensive air showers

    NASA Technical Reports Server (NTRS)

    Chilingaryan, A. A.; Galfayan, S. K.; Zazyan, M. Z.; Dunaevsky, A. M.

    1985-01-01

    Nonparametric statistical methods are used to carry out the quantitative comparison of the model and the experimental data. The same methods enable one to select the events initiated by the heavy nuclei and to calculate the portion of the corresponding events. For this purpose it is necessary to have the data on artificial events describing the experiment sufficiently well established. At present, the model with the small scaling violation in the fragmentation region is the closest to the experiments. Therefore, the treatment of gamma families obtained in the Pamir' experiment is being carried out at present with the application of these models.

  17. Are age and ethics related?

    PubMed

    Sikula, A; Costa, A D

    1994-11-01

    Ethical values of 171 college students at California State University, Chico, were measured, using a subset of the Rokeach (1968, 1971) Value Survey. Nonparametric statistical analysis, four value measures, and four different consistent tests of significance and probability showed, surprisingly, that the younger students were more ethical than the older students. College students under 21 scored significantly higher ethically on three out of the four measures. Younger college students valued equality, freedom, and honesty more than their older classmates did. Surprisingly also, the younger students were significantly more concerned with being helpful and intellectual and were less involved in pursuing an exciting life and in social recognition than were the older students.

  18. A Selective Review of Group Selection in High-Dimensional Models

    PubMed Central

    Huang, Jian; Breheny, Patrick; Ma, Shuangge

    2013-01-01

    Grouping structures arise naturally in many statistical modeling problems. Several methods have been proposed for variable selection that respect grouping structure in variables. Examples include the group LASSO and several concave group selection methods. In this article, we give a selective review of group selection concerning methodological developments, theoretical properties and computational algorithms. We pay particular attention to group selection methods involving concave penalties. We address both group selection and bi-level selection methods. We describe several applications of these methods in nonparametric additive models, semiparametric regression, seemingly unrelated regressions, genomic data analysis and genome wide association studies. We also highlight some issues that require further study. PMID:24174707

  19. A bias-corrected estimator in multiple imputation for missing data.

    PubMed

    Tomita, Hiroaki; Fujisawa, Hironori; Henmi, Masayuki

    2018-05-29

    Multiple imputation (MI) is one of the most popular methods to deal with missing data, and its use has been rapidly increasing in medical studies. Although MI is rather appealing in practice since it is possible to use ordinary statistical methods for a complete data set once the missing values are fully imputed, the method of imputation is still problematic. If the missing values are imputed from some parametric model, the validity of imputation is not necessarily ensured, and the final estimate for a parameter of interest can be biased unless the parametric model is correctly specified. Nonparametric methods have been also proposed for MI, but it is not so straightforward as to produce imputation values from nonparametrically estimated distributions. In this paper, we propose a new method for MI to obtain a consistent (or asymptotically unbiased) final estimate even if the imputation model is misspecified. The key idea is to use an imputation model from which the imputation values are easily produced and to make a proper correction in the likelihood function after the imputation by using the density ratio between the imputation model and the true conditional density function for the missing variable as a weight. Although the conditional density must be nonparametrically estimated, it is not used for the imputation. The performance of our method is evaluated by both theory and simulation studies. A real data analysis is also conducted to illustrate our method by using the Duke Cardiac Catheterization Coronary Artery Disease Diagnostic Dataset. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Order-restricted inference for means with missing values.

    PubMed

    Wang, Heng; Zhong, Ping-Shou

    2017-09-01

    Missing values appear very often in many applications, but the problem of missing values has not received much attention in testing order-restricted alternatives. Under the missing at random (MAR) assumption, we impute the missing values nonparametrically using kernel regression. For data with imputation, the classical likelihood ratio test designed for testing the order-restricted means is no longer applicable since the likelihood does not exist. This article proposes a novel method for constructing test statistics for assessing means with an increasing order or a decreasing order based on jackknife empirical likelihood (JEL) ratio. It is shown that the JEL ratio statistic evaluated under the null hypothesis converges to a chi-bar-square distribution, whose weights depend on missing probabilities and nonparametric imputation. Simulation study shows that the proposed test performs well under various missing scenarios and is robust for normally and nonnormally distributed data. The proposed method is applied to an Alzheimer's disease neuroimaging initiative data set for finding a biomarker for the diagnosis of the Alzheimer's disease. © 2017, The International Biometric Society.

  1. Statistical inference for tumor growth inhibition T/C ratio.

    PubMed

    Wu, Jianrong

    2010-09-01

    The tumor growth inhibition T/C ratio is commonly used to quantify treatment effects in drug screening tumor xenograft experiments. The T/C ratio is converted to an antitumor activity rating using an arbitrary cutoff point and often without any formal statistical inference. Here, we applied a nonparametric bootstrap method and a small sample likelihood ratio statistic to make a statistical inference of the T/C ratio, including both hypothesis testing and a confidence interval estimate. Furthermore, sample size and power are also discussed for statistical design of tumor xenograft experiments. Tumor xenograft data from an actual experiment were analyzed to illustrate the application.

  2. Application of survival analysis methodology to the quantitative analysis of LC-MS proteomics data.

    PubMed

    Tekwe, Carmen D; Carroll, Raymond J; Dabney, Alan R

    2012-08-01

    Protein abundance in quantitative proteomics is often based on observed spectral features derived from liquid chromatography mass spectrometry (LC-MS) or LC-MS/MS experiments. Peak intensities are largely non-normal in distribution. Furthermore, LC-MS-based proteomics data frequently have large proportions of missing peak intensities due to censoring mechanisms on low-abundance spectral features. Recognizing that the observed peak intensities detected with the LC-MS method are all positive, skewed and often left-censored, we propose using survival methodology to carry out differential expression analysis of proteins. Various standard statistical techniques including non-parametric tests such as the Kolmogorov-Smirnov and Wilcoxon-Mann-Whitney rank sum tests, and the parametric survival model and accelerated failure time-model with log-normal, log-logistic and Weibull distributions were used to detect any differentially expressed proteins. The statistical operating characteristics of each method are explored using both real and simulated datasets. Survival methods generally have greater statistical power than standard differential expression methods when the proportion of missing protein level data is 5% or more. In particular, the AFT models we consider consistently achieve greater statistical power than standard testing procedures, with the discrepancy widening with increasing missingness in the proportions. The testing procedures discussed in this article can all be performed using readily available software such as R. The R codes are provided as supplemental materials. ctekwe@stat.tamu.edu.

  3. Assessment of circadian rhythms of both skin temperature and motor activity in infants during the first 6 months of life.

    PubMed

    Zornoza-Moreno, Matilde; Fuentes-Hernández, Silvia; Sánchez-Solis, Manuel; Rol, María Ángeles; Larqué, Elvira; Madrid, Juan Antonio

    2011-05-01

    The authors developed a method useful for home measurement of temperature, activity, and sleep rhythms in infants under normal-living conditions during their first 6 mos of life. In addition, parametric and nonparametric tests for assessing circadian system maturation in these infants were compared. Anthropometric parameters plus ankle skin temperature and activity were evaluated in 10 infants by means of two data loggers, Termochron iButton (DS1291H, Maxim Integrated Products, Sunnyvale, CA) for temperature and HOBO Pendant G (Hobo Pendant G Acceleration, UA-004-64, Onset Computer Corporation, Bourne, MA) for motor activity, located in special baby socks specifically designed for the study. Skin temperature and motor activity were recorded over 3 consecutive days at 15 days, 1, 3, and 6 mos of age. Circadian rhythms of skin temperature and motor activity appeared at 3 mos in most babies. Mean skin temperature decreased significantly by 3 mos of life relative to previous measurements (p = .0001), whereas mean activity continued to increase during the first 6 mos. For most of the parameters analyzed, statistically significant changes occurred at 3-6 mos relative to 0.5-1 mo of age. Major differences were found using nonparametric tests. Intradaily variability in motor activity decreased significantly at 6 mos of age relative to previous measurements, and followed a similar trend for temperature; interdaily stability increased significantly at 6 mos of age relative to previous measurements for both variables; relative amplitude increased significantly at 6 mos for temperature and at 3 mos for activity, both with respect to previous measurements. A high degree of correlation was found between chronobiological parametric and nonparametric tests for mean and mesor and also for relative amplitude versus the cosinor-derived amplitude. However, the correlation between parametric and nonparametric equivalent indices (acrophase and midpoint of M5, interdaily stability and Rayleigh test, or intradaily variability and P(1)/P(ultradian)) despite being significant, was lower for both temperature and activity. The circadian function index (CFI index), based on the integrated variable temperature-activity, increased gradually with age and was statistically significant at 6 mos of age. At 6 mos, 90% of the infants' rest period coincided with the standard sleep period of their parents, defined from 23:00 to 07:00 h (dichotomic index I < O; when I < O = 100%, there is a complete coincidence between infant nocturnal rest period and the standard rest period), whereas at 15 days of life the coincidence was only 75%. The combination of thermometry and actimetry using data loggers placed in infants' socks is a reliable method for assessing both variables and also sleep rhythms in infants under ambulatory conditions, with minimal disturbance. Using this methodological approach, circadian rhythms of skin temperature and motor activity appeared by 3 mos in most babies. Nonparametric tests provided more reliable information than cosinor analysis for circadian rhythm assessment in infants.

  4. Fuzzy interval Finite Element/Statistical Energy Analysis for mid-frequency analysis of built-up systems with mixed fuzzy and interval parameters

    NASA Astrophysics Data System (ADS)

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan

    2016-10-01

    This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.

  5. Study design and statistical analysis of data in human population studies with the micronucleus assay.

    PubMed

    Ceppi, Marcello; Gallo, Fabio; Bonassi, Stefano

    2011-01-01

    The most common study design performed in population studies based on the micronucleus (MN) assay, is the cross-sectional study, which is largely performed to evaluate the DNA damaging effects of exposure to genotoxic agents in the workplace, in the environment, as well as from diet or lifestyle factors. Sample size is still a critical issue in the design of MN studies since most recent studies considering gene-environment interaction, often require a sample size of several hundred subjects, which is in many cases difficult to achieve. The control of confounding is another major threat to the validity of causal inference. The most popular confounders considered in population studies using MN are age, gender and smoking habit. Extensive attention is given to the assessment of effect modification, given the increasing inclusion of biomarkers of genetic susceptibility in the study design. Selected issues concerning the statistical treatment of data have been addressed in this mini-review, starting from data description, which is a critical step of statistical analysis, since it allows to detect possible errors in the dataset to be analysed and to check the validity of assumptions required for more complex analyses. Basic issues dealing with statistical analysis of biomarkers are extensively evaluated, including methods to explore the dose-response relationship among two continuous variables and inferential analysis. A critical approach to the use of parametric and non-parametric methods is presented, before addressing the issue of most suitable multivariate models to fit MN data. In the last decade, the quality of statistical analysis of MN data has certainly evolved, although even nowadays only a small number of studies apply the Poisson model, which is the most suitable method for the analysis of MN data.

  6. Proceedings of the Conference on the Design of Experiments (23rd) S

    DTIC Science & Technology

    1978-07-01

    of Statistics, Carnegie-Mellon University. * [12] Duran , B. S . (1976). A survey of nonparametric tests for scale. Comunications in Statistics A5, 1287...the twenty-third Design of Experiments Conference was the U. S . Army Combat Development Experimentation Command, Fort Ord, California. Excellent...Availability Prof. G. E. P. Box Time Series Modelling University of Wisconsin Dr. Churchill Eisenhart was recipient this year of the Samuel S . Wilks Memorial

  7. Learning and understanding the Kruskal-Wallis one-way analysis-of-variance-by-ranks test for differences among three or more independent groups.

    PubMed

    Chan, Y; Walmsley, R P

    1997-12-01

    When several treatment methods are available for the same problem, many clinicians are faced with the task of deciding which treatment to use. Many clinicians may have conducted informal "mini-experiments" on their own to determine which treatment is best suited for the problem. These results are usually not documented or reported in a formal manner because many clinicians feel that they are "statistically challenged." Another reason may be because clinicians do not feel they have controlled enough test conditions to warrant analysis. In this update, a statistic is described that does not involve complicated statistical assumptions, making it a simple and easy-to-use statistical method. This update examines the use of two statistics and does not deal with other issues that could affect clinical research such as issues affecting credibility. For readers who want a more in-depth examination of this topic, references have been provided. The Kruskal-Wallis one-way analysis-of-variance-by-ranks test (or H test) is used to determine whether three or more independent groups are the same or different on some variable of interest when an ordinal level of data or an interval or ratio level of data is available. A hypothetical example will be presented to explain when and how to use this statistic, how to interpret results using the statistic, the advantages and disadvantages of the statistic, and what to look for in a written report. This hypothetical example will involve the use of ratio data to demonstrate how to choose between using the nonparametric H test and the more powerful parametric F test.

  8. A weighted U-statistic for genetic association analyses of sequencing data.

    PubMed

    Wei, Changshuai; Li, Ming; He, Zihuai; Vsevolozhskaya, Olga; Schaid, Daniel J; Lu, Qing

    2014-12-01

    With advancements in next-generation sequencing technology, a massive amount of sequencing data is generated, which offers a great opportunity to comprehensively investigate the role of rare variants in the genetic etiology of complex diseases. Nevertheless, the high-dimensional sequencing data poses a great challenge for statistical analysis. The association analyses based on traditional statistical methods suffer substantial power loss because of the low frequency of genetic variants and the extremely high dimensionality of the data. We developed a Weighted U Sequencing test, referred to as WU-SEQ, for the high-dimensional association analysis of sequencing data. Based on a nonparametric U-statistic, WU-SEQ makes no assumption of the underlying disease model and phenotype distribution, and can be applied to a variety of phenotypes. Through simulation studies and an empirical study, we showed that WU-SEQ outperformed a commonly used sequence kernel association test (SKAT) method when the underlying assumptions were violated (e.g., the phenotype followed a heavy-tailed distribution). Even when the assumptions were satisfied, WU-SEQ still attained comparable performance to SKAT. Finally, we applied WU-SEQ to sequencing data from the Dallas Heart Study (DHS), and detected an association between ANGPTL 4 and very low density lipoprotein cholesterol. © 2014 WILEY PERIODICALS, INC.

  9. The effects of compensatory workplace exercises to reduce work-related stress and musculoskeletal pain1

    PubMed Central

    de Freitas-Swerts, Fabiana Cristina Taubert; Robazzi, Maria Lúcia do Carmo Cruz

    2014-01-01

    OBJECTIVES: to assess the effect of a compensatory workplace exercise program on workers with the purpose of reducing work-related stress and musculoskeletal pain. METHOD: quasi-experimental research with quantitative analysis of the data, involving 30 administrative workers from a Higher Education Public Institution. For data collection, questionnaires were used to characterize the workers, as well as the Workplace Stress Scale and the Corlett Diagram. The research took place in three stages: first: pre-test with the application of the questionnaires to the subjects; second: Workplace Exercise taking place twice a week, for 15 minutes, during a period of 10 weeks; third: post-test in which the subjects answered the questionnaires again. For data analysis, the descriptive statistics and non-parametric statistics were used through the Wilcoxon Test. RESULTS: work-related stress was present in the assessed workers, but there was no statistically significant reduction in the scores after undergoing Workplace Exercise. However, there was a statistically significant pain reduction in the neck, cervical, upper, middle and lower back, right thigh, left leg, right ankle and feet. CONCLUSION: the Workplace Exercise promoted a significant pain reduction in the spine, but did not result in a significant reduction in the levels of work-related stress. PMID:25296147

  10. Nonparametric Bayesian clustering to detect bipolar methylated genomic loci.

    PubMed

    Wu, Xiaowei; Sun, Ming-An; Zhu, Hongxiao; Xie, Hehuang

    2015-01-16

    With recent development in sequencing technology, a large number of genome-wide DNA methylation studies have generated massive amounts of bisulfite sequencing data. The analysis of DNA methylation patterns helps researchers understand epigenetic regulatory mechanisms. Highly variable methylation patterns reflect stochastic fluctuations in DNA methylation, whereas well-structured methylation patterns imply deterministic methylation events. Among these methylation patterns, bipolar patterns are important as they may originate from allele-specific methylation (ASM) or cell-specific methylation (CSM). Utilizing nonparametric Bayesian clustering followed by hypothesis testing, we have developed a novel statistical approach to identify bipolar methylated genomic regions in bisulfite sequencing data. Simulation studies demonstrate that the proposed method achieves good performance in terms of specificity and sensitivity. We used the method to analyze data from mouse brain and human blood methylomes. The bipolar methylated segments detected are found highly consistent with the differentially methylated regions identified by using purified cell subsets. Bipolar DNA methylation often indicates epigenetic heterogeneity caused by ASM or CSM. With allele-specific events filtered out or appropriately taken into account, our proposed approach sheds light on the identification of cell-specific genes/pathways under strong epigenetic control in a heterogeneous cell population.

  11. Enabling a Comprehensive Teaching Strategy: Video Lectures

    ERIC Educational Resources Information Center

    Brecht, H. David; Ogilby, Suzanne M.

    2008-01-01

    This study empirically tests the feasibility and effectiveness of video lectures as a form of video instruction that enables a comprehensive teaching strategy used throughout a traditional classroom course. It examines student use patterns and the videos' effects on student learning, using qualitative and nonparametric statistical analyses of…

  12. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 906 (Sky Research, Inc.)

    DTIC Science & Technology

    2008-08-01

    DEMONSTRATOR’S FIELD PERSONNEL Geophysicist: Craig Hyslop Geophysicist: John Jacobsen Geophysicist: Rob Mehl 3.7 DEMONSTRATOR’S FIELD...Practical Nonparametric Statistics, W.J. Conover, John Wiley & Sons, 1980 , pages 144 through 151. APPENDIX F. ABBREVIATIONS F-1 (Page F-2

  13. A Statistician's View of Upcoming Grand Challenges

    NASA Astrophysics Data System (ADS)

    Meng, Xiao Li

    2010-01-01

    In this session we have seen some snapshots of the broad spectrum of challenges, in this age of huge, complex, computer-intensive models, data, instruments,and questions. These challenges bridge astronomy at many wavelengths; basic physics; machine learning; -- and statistics. At one end of our spectrum, we think of 'compressing' the data with non-parametric methods. This raises the question of creating 'pseudo-replicas' of the data for uncertainty estimates. What would be involved in, e.g. boot-strap and related methods? Somewhere in the middle are these non-parametric methods for encapsulating the uncertainty information. At the far end, we find more model-based approaches, with the physics model embedded in the likelihood and analysis. The other distinctive problem is really the 'black-box' problem, where one has a complicated e.g. fundamental physics-based computer code, or 'black box', and one needs to know how changing the parameters at input -- due to uncertainties of any kind -- will map to changing the output. All of these connect to challenges in complexity of data and computation speed. Dr. Meng will highlight ways to 'cut corners' with advanced computational techniques, such as Parallel Tempering and Equal Energy methods. As well, there are cautionary tales of running automated analysis with real data -- where "30 sigma" outliers due to data artifacts can be more common than the astrophysical event of interest.

  14. Does Private Tutoring Work? The Effectiveness of Private Tutoring: A Nonparametric Bounds Analysis

    ERIC Educational Resources Information Center

    Hof, Stefanie

    2014-01-01

    Private tutoring has become popular throughout the world. However, evidence for the effect of private tutoring on students' academic outcome is inconclusive; therefore, this paper presents an alternative framework: a nonparametric bounds method. The present examination uses, for the first time, a large representative data-set in a European setting…

  15. Estimation of Spatial Dynamic Nonparametric Durbin Models with Fixed Effects

    ERIC Educational Resources Information Center

    Qian, Minghui; Hu, Ridong; Chen, Jianwei

    2016-01-01

    Spatial panel data models have been widely studied and applied in both scientific and social science disciplines, especially in the analysis of spatial influence. In this paper, we consider the spatial dynamic nonparametric Durbin model (SDNDM) with fixed effects, which takes the nonlinear factors into account base on the spatial dynamic panel…

  16. Nonparametric Item Response Curve Estimation with Correction for Measurement Error

    ERIC Educational Resources Information Center

    Guo, Hongwen; Sinharay, Sandip

    2011-01-01

    Nonparametric or kernel regression estimation of item response curves (IRCs) is often used in item analysis in testing programs. These estimates are biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. Accuracy of this estimation is a concern theoretically and operationally.…

  17. Machine learning patterns for neuroimaging-genetic studies in the cloud.

    PubMed

    Da Mota, Benoit; Tudoran, Radu; Costan, Alexandru; Varoquaux, Gaël; Brasche, Goetz; Conrod, Patricia; Lemaitre, Herve; Paus, Tomas; Rietschel, Marcella; Frouin, Vincent; Poline, Jean-Baptiste; Antoniu, Gabriel; Thirion, Bertrand

    2014-01-01

    Brain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represents a great computational challenge. Fortunately, increasing computational power in distributed architectures can be harnessed, if new neuroinformatics infrastructures are designed and training to use these new tools is provided. Combining a MapReduce framework (TomusBLOB) with machine learning algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with non-parametric statistics on high-dimensional data. End-users describe the statistical procedure to perform and can then test the model on their own computers before running the very same code in the cloud at a larger scale. We illustrate the potential of our approach on real data with an experiment showing how the functional signal in subcortical brain regions can be significantly fit with genome-wide genotypes. This experiment demonstrates the scalability and the reliability of our framework in the cloud with a 2 weeks deployment on hundreds of virtual machines.

  18. Improved spatial regression analysis of diffusion tensor imaging for lesion detection during longitudinal progression of multiple sclerosis in individual subjects

    NASA Astrophysics Data System (ADS)

    Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui

    2016-03-01

    Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.

  19. A Statistical Approach for Testing Cross-Phenotype Effects of Rare Variants

    PubMed Central

    Broadaway, K. Alaine; Cutler, David J.; Duncan, Richard; Moore, Jacob L.; Ware, Erin B.; Jhun, Min A.; Bielak, Lawrence F.; Zhao, Wei; Smith, Jennifer A.; Peyser, Patricia A.; Kardia, Sharon L.R.; Ghosh, Debashis; Epstein, Michael P.

    2016-01-01

    Increasing empirical evidence suggests that many genetic variants influence multiple distinct phenotypes. When cross-phenotype effects exist, multivariate association methods that consider pleiotropy are often more powerful than univariate methods that model each phenotype separately. Although several statistical approaches exist for testing cross-phenotype effects for common variants, there is a lack of similar tests for gene-based analysis of rare variants. In order to fill this important gap, we introduce a statistical method for cross-phenotype analysis of rare variants using a nonparametric distance-covariance approach that compares similarity in multivariate phenotypes to similarity in rare-variant genotypes across a gene. The approach can accommodate both binary and continuous phenotypes and further can adjust for covariates. Our approach yields a closed-form test whose significance can be evaluated analytically, thereby improving computational efficiency and permitting application on a genome-wide scale. We use simulated data to demonstrate that our method, which we refer to as the Gene Association with Multiple Traits (GAMuT) test, provides increased power over competing approaches. We also illustrate our approach using exome-chip data from the Genetic Epidemiology Network of Arteriopathy. PMID:26942286

  20. Sensitivity to imputation models and assumptions in receiver operating characteristic analysis with incomplete data

    PubMed Central

    Karakaya, Jale; Karabulut, Erdem; Yucel, Recai M.

    2015-01-01

    Modern statistical methods using incomplete data have been increasingly applied in a wide variety of substantive problems. Similarly, receiver operating characteristic (ROC) analysis, a method used in evaluating diagnostic tests or biomarkers in medical research, has also been increasingly popular problem in both its development and application. While missing-data methods have been applied in ROC analysis, the impact of model mis-specification and/or assumptions (e.g. missing at random) underlying the missing data has not been thoroughly studied. In this work, we study the performance of multiple imputation (MI) inference in ROC analysis. Particularly, we investigate parametric and non-parametric techniques for MI inference under common missingness mechanisms. Depending on the coherency of the imputation model with the underlying data generation mechanism, our results show that MI generally leads to well-calibrated inferences under ignorable missingness mechanisms. PMID:26379316

  1. Comparing two correlated C indices with right-censored survival outcome: a one-shot nonparametric approach.

    PubMed

    Kang, Le; Chen, Weijie; Petrick, Nicholas A; Gallas, Brandon D

    2015-02-20

    The area under the receiver operating characteristic curve is often used as a summary index of the diagnostic ability in evaluating biomarkers when the clinical outcome (truth) is binary. When the clinical outcome is right-censored survival time, the C index, motivated as an extension of area under the receiver operating characteristic curve, has been proposed by Harrell as a measure of concordance between a predictive biomarker and the right-censored survival outcome. In this work, we investigate methods for statistical comparison of two diagnostic or predictive systems, of which they could either be two biomarkers or two fixed algorithms, in terms of their C indices. We adopt a U-statistics-based C estimator that is asymptotically normal and develop a nonparametric analytical approach to estimate the variance of the C estimator and the covariance of two C estimators. A z-score test is then constructed to compare the two C indices. We validate our one-shot nonparametric method via simulation studies in terms of the type I error rate and power. We also compare our one-shot method with resampling methods including the jackknife and the bootstrap. Simulation results show that the proposed one-shot method provides almost unbiased variance estimations and has satisfactory type I error control and power. Finally, we illustrate the use of the proposed method with an example from the Framingham Heart Study. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Developing nurse leaders: a program enhancing staff nurse leadership skills and professionalism.

    PubMed

    Abraham, Pauline J

    2011-01-01

    This study aims to determine whether participation in the Nursing Leadership Perspectives Program (NLPP) at Mayo Clinic in Rochester, Minnesota, produced a change in leadership skills, increased professional activities, leadership promotion, and retention rates of participants. The NLPP is an educational program designed to enhance leadership skills and promote professionalism of registered nurses. The 6-month program provides participants with theoretical knowledge, core competencies, and opportunities to practice application of leadership skills. Outcome metrics were collected from registered nurses who completed the program (n = 15). Data analysis included descriptive and nonparametric methods. Participants reported statistically significant changes in their leadership skills after participation in the program (P = .007) on the Leadership Practices Inventory. Changes in professional behavior were also statistically significant as rated by the Nursing Activity Scale (P = .001). Participants demonstrated a change in leadership skills and professional behavior following the program.

  3. Sample size in psychological research over the past 30 years.

    PubMed

    Marszalek, Jacob M; Barber, Carolyn; Kohlhart, Julie; Holmes, Cooper B

    2011-04-01

    The American Psychological Association (APA) Task Force on Statistical Inference was formed in 1996 in response to a growing body of research demonstrating methodological issues that threatened the credibility of psychological research, and made recommendations to address them. One issue was the small, even dramatically inadequate, size of samples used in studies published by leading journals. The present study assessed the progress made since the Task Force's final report in 1999. Sample sizes reported in four leading APA journals in 1955, 1977, 1995, and 2006 were compared using nonparametric statistics, while data from the last two waves were fit to a hierarchical generalized linear growth model for more in-depth analysis. Overall, results indicate that the recommendations for increasing sample sizes have not been integrated in core psychological research, although results slightly vary by field. This and other implications are discussed in the context of current methodological critique and practice.

  4. A Comparison of Didactic and Inquiry Teaching Methods in a Rural Community College Earth Science Course

    NASA Astrophysics Data System (ADS)

    Beam, Margery Elizabeth

    The combination of increasing enrollment and the importance of providing transfer students a solid foundation in science calls for science faculty to evaluate teaching methods in rural community colleges. The purpose of this study was to examine and compare the effectiveness of two teaching methods, inquiry teaching methods and didactic teaching methods, applied in a rural community college earth science course. Two groups of students were taught the same content via inquiry and didactic teaching methods. Analysis of quantitative data included a non-parametric ranking statistical testing method in which the difference between the rankings and the median of the post-test scores was analyzed for significance. Results indicated there was not a significant statistical difference between the teaching methods for the group of students participating in the research. The practical and educational significance of this study provides valuable perspectives on teaching methods and student learning styles in rural community colleges.

  5. Empirical estimation of a distribution function with truncated and doubly interval-censored data and its application to AIDS studies.

    PubMed

    Sun, J

    1995-09-01

    In this paper we discuss the non-parametric estimation of a distribution function based on incomplete data for which the measurement origin of a survival time or the date of enrollment in a study is known only to belong to an interval. Also the survival time of interest itself is observed from a truncated distribution and is known only to lie in an interval. To estimate the distribution function, a simple self-consistency algorithm, a generalization of Turnbull's (1976, Journal of the Royal Statistical Association, Series B 38, 290-295) self-consistency algorithm, is proposed. This method is then used to analyze two AIDS cohort studies, for which direct use of the EM algorithm (Dempster, Laird and Rubin, 1976, Journal of the Royal Statistical Association, Series B 39, 1-38), which is computationally complicated, has previously been the usual method of the analysis.

  6. Iterative Assessment of Statistically-Oriented and Standard Algorithms for Determining Muscle Onset with Intramuscular Electromyography.

    PubMed

    Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A

    2017-12-01

    The onset of muscle activity, as measured by electromyography (EMG), is a commonly applied metric in biomechanics. Intramuscular EMG is often used to examine deep musculature and there are currently no studies examining the effectiveness of algorithms for intramuscular EMG onset. The present study examines standard surface EMG onset algorithms (linear envelope, Teager-Kaiser Energy Operator, and sample entropy) and novel algorithms (time series mean-variance analysis, sequential/batch processing with parametric and nonparametric methods, and Bayesian changepoint analysis). Thirteen male and 5 female subjects had intramuscular EMG collected during isolated biceps brachii and vastus lateralis contractions, resulting in 103 trials. EMG onset was visually determined twice by 3 blinded reviewers. Since the reliability of visual onset was high (ICC (1,1) : 0.92), the mean of the 6 visual assessments was contrasted with the algorithmic approaches. Poorly performing algorithms were stepwise eliminated via (1) root mean square error analysis, (2) algorithm failure to identify onset/premature onset, (3) linear regression analysis, and (4) Bland-Altman plots. The top performing algorithms were all based on Bayesian changepoint analysis of rectified EMG and were statistically indistinguishable from visual analysis. Bayesian changepoint analysis has the potential to produce more reliable, accurate, and objective intramuscular EMG onset results than standard methodologies.

  7. Significance testing of clinical data using virus dynamics models with a Markov chain Monte Carlo method: application to emergence of lamivudine-resistant hepatitis B virus.

    PubMed Central

    Burroughs, N J; Pillay, D; Mutimer, D

    1999-01-01

    Bayesian analysis using a virus dynamics model is demonstrated to facilitate hypothesis testing of patterns in clinical time-series. Our Markov chain Monte Carlo implementation demonstrates that the viraemia time-series observed in two sets of hepatitis B patients on antiviral (lamivudine) therapy, chronic carriers and liver transplant patients, are significantly different, overcoming clinical trial design differences that question the validity of non-parametric tests. We show that lamivudine-resistant mutants grow faster in transplant patients than in chronic carriers, which probably explains the differences in emergence times and failure rates between these two sets of patients. Incorporation of dynamic models into Bayesian parameter analysis is of general applicability in medical statistics. PMID:10643081

  8. A Deterministic Annealing Approach to Clustering AIRS Data

    NASA Technical Reports Server (NTRS)

    Guillaume, Alexandre; Braverman, Amy; Ruzmaikin, Alexander

    2012-01-01

    We will examine the validity of means and standard deviations as a basis for climate data products. We will explore the conditions under which these two simple statistics are inadequate summaries of the underlying empirical probability distributions by contrasting them with a nonparametric, method called Deterministic Annealing technique

  9. Computer Games: Increase Learning in an Interactive Multidisciplinary Environment.

    ERIC Educational Resources Information Center

    Betz, Joseph A.

    1996-01-01

    Discusses the educational uses of computer games and simulations and describes a study conducted at the State University of New York College at Farmingdale that used the computer game "Sim City 2000." Highlights include whole systems learning, problem solving, student performance, nonparametric statistics, and treatment of experimental…

  10. Standardized UXO Technology Demonstration Site Blind Grid Record No. 904 (Sky Research, Inc.). EM61 MKII/Towed Array

    DTIC Science & Technology

    2008-09-01

    DEMONSTRATOR’S FIELD PERSONNEL Geophysicist: Craig Hyslop Geophysicist: John Jacobsen Geophysicist: Rob Mehl 3.7 DEMONSTRATOR’S FIELD SURVEYING...Yuma Proving Ground Soil Survey Report, May 2003. 5. Practical Nonparametric Statistics, W.J. Conover, John Wiley & Sons, 1980 , pages 144 through

  11. Quality Improvement: Does the Air Force Systems Command Practice What It Preaches

    DTIC Science & Technology

    1990-03-01

    without his assistance in getting supplies, computers, and plotters. Another special thanks goes to my committee chairman. Dr Stephen Blank. who provided...N.J.: Prentice-Hall. 1986). 166. 5. Ibid.. 181. 6. Sidney Siegel. Nonparametric Statistics for the Behavioral Sciences (New York: Mc- Graw -Hill. 1956

  12. Triangles in ROC space: History and theory of "nonparametric" measures of sensitivity and response bias.

    PubMed

    Macmillan, N A; Creelman, C D

    1996-06-01

    Can accuracy and response bias in two-stimulus, two-response recognition or detection experiments be measured nonparametrically? Pollack and Norman (1964) answered this question affirmatively for sensitivity, Hodos (1970) for bias: Both proposed measures based on triangular areas in receiver-operating characteristic space. Their papers, and especially a paper by Grier (1971) that provided computing formulas for the measures, continue to be heavily cited in a wide range of content areas. In our sample of articles, most authors described triangle-based measures as making fewer assumptions than measures associated with detection theory. However, we show that statistics based on products or ratios of right triangle areas, including a recently proposed bias index and a not-yetproposed but apparently plausible sensitivity index, are consistent with a decision process based on logistic distributions. Even the Pollack and Norman measure, which is based on non-right triangles, is approximately logistic for low values of sensitivity. Simple geometric models for sensitivity and bias are not nonparametric, even if their implications are not acknowledged in the defining publications.

  13. Measurement Error in Nonparametric Item Response Curve Estimation. Research Report. ETS RR-11-28

    ERIC Educational Resources Information Center

    Guo, Hongwen; Sinharay, Sandip

    2011-01-01

    Nonparametric, or kernel, estimation of item response curve (IRC) is a concern theoretically and operationally. Accuracy of this estimation, often used in item analysis in testing programs, is biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. In this study, we investigate…

  14. [Do we always correctly interpret the results of statistical nonparametric tests].

    PubMed

    Moczko, Jerzy A

    2014-01-01

    Mann-Whitney, Wilcoxon, Kruskal-Wallis and Friedman tests create a group of commonly used tests to analyze the results of clinical and laboratory data. These tests are considered to be extremely flexible and their asymptotic relative efficiency exceeds 95 percent. Compared with the corresponding parametric tests they do not require checking the fulfillment of the conditions such as the normality of data distribution, homogeneity of variance, the lack of correlation means and standard deviations, etc. They can be used both in the interval and or-dinal scales. The article presents an example Mann-Whitney test, that does not in any case the choice of these four nonparametric tests treated as a kind of gold standard leads to correct inference.

  15. Nonparametric Methods in Astronomy: Think, Regress, Observe—Pick Any Three

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles L.; Jermyn, Adam S.

    2018-02-01

    Telescopes are much more expensive than astronomers, so it is essential to minimize required sample sizes by using the most data-efficient statistical methods possible. However, the most commonly used model-independent techniques for finding the relationship between two variables in astronomy are flawed. In the worst case they can lead without warning to subtly yet catastrophically wrong results, and even in the best case they require more data than necessary. Unfortunately, there is no single best technique for nonparametric regression. Instead, we provide a guide for how astronomers can choose the best method for their specific problem and provide a python library with both wrappers for the most useful existing algorithms and implementations of two new algorithms developed here.

  16. Hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis method for mid-frequency analysis of built-up systems with epistemic uncertainties

    NASA Astrophysics Data System (ADS)

    Yin, Shengwen; Yu, Dejie; Yin, Hui; Lü, Hui; Xia, Baizhan

    2017-09-01

    Considering the epistemic uncertainties within the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model when it is used for the response analysis of built-up systems in the mid-frequency range, the hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis (ETFE/SEA) model is established by introducing the evidence theory. Based on the hybrid ETFE/SEA model and the sub-interval perturbation technique, the hybrid Sub-interval Perturbation and Evidence Theory-based Finite Element/Statistical Energy Analysis (SIP-ETFE/SEA) approach is proposed. In the hybrid ETFE/SEA model, the uncertainty in the SEA subsystem is modeled by a non-parametric ensemble, while the uncertainty in the FE subsystem is described by the focal element and basic probability assignment (BPA), and dealt with evidence theory. Within the hybrid SIP-ETFE/SEA approach, the mid-frequency response of interest, such as the ensemble average of the energy response and the cross-spectrum response, is calculated analytically by using the conventional hybrid FE/SEA method. Inspired by the probability theory, the intervals of the mean value, variance and cumulative distribution are used to describe the distribution characteristics of mid-frequency responses of built-up systems with epistemic uncertainties. In order to alleviate the computational burdens for the extreme value analysis, the sub-interval perturbation technique based on the first-order Taylor series expansion is used in ETFE/SEA model to acquire the lower and upper bounds of the mid-frequency responses over each focal element. Three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method.

  17. Quantification of 18FDG in the Normal Colon-A First Step in Investigating Whether Its Presence Is a Marker of a Physiological Process.

    PubMed

    Bardhan, Karna D; Cullis, James; Williams, Nigel R; Arasaradnam, Ramesh P; Wilson, Adrian J

    2016-01-01

    The visibility of the colon in positron emission tomography (PET) scans of patients without gastrointestinal disease indicating the presence of 18F Fluorodeoxyglucose (18FDG) is well recognised, but unquantified and unexplained. In this paper a qualitative scoring system was applied to PET scans from 30 randomly selected patients without gastrointestinal disease to detect the presence of 18FDG in 4 different sections of the colon and then both the total pixel value and the pixel value per unit length of each section of the colon were determined to quantify the amount of 18FDG from a randomly selected subset of 10 of these patients. Analysis of the qualitative scores using a non-parametric ANOVA showed that all sections of the colon contained 18FDG but there were differences in the amount of 18FDG present between sections (p<0.05). Wilcoxon matched-pair signed-rank tests between pairs of segments showed statistically significant differences between all pairs (p<0.05) with the exception of the caecum and ascending colon and the descending colon. The same non-parametric statistical analysis of the quantitative measures showed no difference in the total amount of 18FDG between sections (p>0.05), but a difference in the amount/unit length between sections (p<0.01) with only the caecum and ascending colon and the descending colon having a statistically significant difference (p<0.05). These results are consistent since the eye is drawn to focal localisation of the 18FDG when qualitatively scoring the scans. The presence of 18FDG in the colon is counterintuitive since it must be passing from the blood to the lumen through the colonic wall. There is no active mechanism to achieve this and therefore we hypothesise that the transport is a passive process driven by the concentration gradient of 18FDG across the colonic wall. This hypothesis is consistent with the results obtained from the qualitative and quantitative measures analysed.

  18. Quantification of 18FDG in the Normal Colon—A First Step in Investigating Whether Its Presence Is a Marker of a Physiological Process

    PubMed Central

    Bardhan, Karna D.; Cullis, James; Williams, Nigel R.; Arasaradnam, Ramesh P.; Wilson, Adrian J.

    2016-01-01

    The visibility of the colon in positron emission tomography (PET) scans of patients without gastrointestinal disease indicating the presence of 18F Fluorodeoxyglucose (18FDG) is well recognised, but unquantified and unexplained. In this paper a qualitative scoring system was applied to PET scans from 30 randomly selected patients without gastrointestinal disease to detect the presence of 18FDG in 4 different sections of the colon and then both the total pixel value and the pixel value per unit length of each section of the colon were determined to quantify the amount of 18FDG from a randomly selected subset of 10 of these patients. Analysis of the qualitative scores using a non-parametric ANOVA showed that all sections of the colon contained 18FDG but there were differences in the amount of 18FDG present between sections (p<0.05). Wilcoxon matched-pair signed-rank tests between pairs of segments showed statistically significant differences between all pairs (p<0.05) with the exception of the caecum and ascending colon and the descending colon. The same non-parametric statistical analysis of the quantitative measures showed no difference in the total amount of 18FDG between sections (p>0.05), but a difference in the amount/unit length between sections (p<0.01) with only the caecum and ascending colon and the descending colon having a statistically significant difference (p<0.05). These results are consistent since the eye is drawn to focal localisation of the 18FDG when qualitatively scoring the scans. The presence of 18FDG in the colon is counterintuitive since it must be passing from the blood to the lumen through the colonic wall. There is no active mechanism to achieve this and therefore we hypothesise that the transport is a passive process driven by the concentration gradient of 18FDG across the colonic wall. This hypothesis is consistent with the results obtained from the qualitative and quantitative measures analysed. PMID:26821281

  19. Use of change detection in assessing development plans - A Philippine example. [aircraft/Landsat remote sensing information system for regional planning

    NASA Technical Reports Server (NTRS)

    Coiner, J. C.; Bruce, R. C.

    1978-01-01

    An aircraft/Landsat change-detection study conducted 1948-1972 on Marinduque Province, Republic of the Philippines, is discussed, and a procedure using both remote sensing and information systems for collection, spatial analysis, and display of periodic data is described. Each of the 4,008 25-hectare cells representing Marinduque were observed, and changes in and between variables were measured and tested using nonparametric statistics to determine the effect of specific land cover changes. Procedures using Landsat data to obtain a more continuous updating of the data base are considered. The system permits storage and comparison of historical and current data.

  20. Analysis of survival data from telemetry projects

    USGS Publications Warehouse

    Bunck, C.M.; Winterstein, S.R.; Pollock, K.H.

    1985-01-01

    Telemetry techniques can be used to study the survival rates of animal populations and are particularly suitable for species or settings for which band recovery models are not. Statistical methods for estimating survival rates and parameters of survival distributions from observations of radio-tagged animals will be described. These methods have been applied to medical and engineering studies and to the study of nest success. Estimates and tests based on discrete models, originally introduced by Mayfield, and on continuous models, both parametric and nonparametric, will be described. Generalizations, including staggered entry of subjects into the study and identification of mortality factors will be considered. Additional discussion topics will include sample size considerations, relocation frequency for subjects, and use of covariates.

  1. Kruskal-Wallis test: BASIC computer program to perform nonparametric one-way analysis of variance and multiple comparisons on ranks of several independent samples.

    PubMed

    Theodorsson-Norheim, E

    1986-08-01

    Multiple t tests at a fixed p level are frequently used to analyse biomedical data where analysis of variance followed by multiple comparisons or the adjustment of the p values according to Bonferroni would be more appropriate. The Kruskal-Wallis test is a nonparametric 'analysis of variance' which may be used to compare several independent samples. The present program is written in an elementary subset of BASIC and will perform Kruskal-Wallis test followed by multiple comparisons between the groups on practically any computer programmable in BASIC.

  2. Development and Validation of a Brief Version of the Dyadic Adjustment Scale With a Nonparametric Item Analysis Model

    ERIC Educational Resources Information Center

    Sabourin, Stephane; Valois, Pierre; Lussier, Yvan

    2005-01-01

    The main purpose of the current research was to develop an abbreviated form of the Dyadic Adjustment Scale (DAS) with nonparametric item response theory. The authors conducted 5 studies, with a total participation of 8,256 married or cohabiting individuals. Results showed that the item characteristic curves behaved in a monotonically increasing…

  3. Statistical testing and power analysis for brain-wide association study.

    PubMed

    Gong, Weikang; Wan, Lin; Lu, Wenlian; Ma, Liang; Cheng, Fan; Cheng, Wei; Grünewald, Stefan; Feng, Jianfeng

    2018-04-05

    The identification of connexel-wise associations, which involves examining functional connectivities between pairwise voxels across the whole brain, is both statistically and computationally challenging. Although such a connexel-wise methodology has recently been adopted by brain-wide association studies (BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and depression, the multiple correction and power analysis methods designed specifically for connexel-wise analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework for connexel-wise significance testing based on the Gaussian random field theory. It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference methods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate and increase statistical power by appropriately utilizing the spatial information of fMRI data. Importantly, our method bypasses the need of non-parametric permutation to correct for multiple comparison, thus, it can efficiently tackle large datasets with high resolution fMRI images. The utility of our method is shown in a case-control study. Our approach can identify altered functional connectivities in a major depression disorder dataset, whereas existing methods fail. A software package is available at https://github.com/weikanggong/BWAS. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Complementary nonparametric analysis of covariance for logistic regression in a randomized clinical trial setting.

    PubMed

    Tangen, C M; Koch, G G

    1999-03-01

    In the randomized clinical trial setting, controlling for covariates is expected to produce variance reduction for the treatment parameter estimate and to adjust for random imbalances of covariates between the treatment groups. However, for the logistic regression model, variance reduction is not obviously obtained. This can lead to concerns about the assumptions of the logistic model. We introduce a complementary nonparametric method for covariate adjustment. It provides results that are usually compatible with expectations for analysis of covariance. The only assumptions required are based on randomization and sampling arguments. The resulting treatment parameter is a (unconditional) population average log-odds ratio that has been adjusted for random imbalance of covariates. Data from a randomized clinical trial are used to compare results from the traditional maximum likelihood logistic method with those from the nonparametric logistic method. We examine treatment parameter estimates, corresponding standard errors, and significance levels in models with and without covariate adjustment. In addition, we discuss differences between unconditional population average treatment parameters and conditional subpopulation average treatment parameters. Additional features of the nonparametric method, including stratified (multicenter) and multivariate (multivisit) analyses, are illustrated. Extensions of this methodology to the proportional odds model are also made.

  5. A Model Fit Statistic for Generalized Partial Credit Model

    ERIC Educational Resources Information Center

    Liang, Tie; Wells, Craig S.

    2009-01-01

    Investigating the fit of a parametric model is an important part of the measurement process when implementing item response theory (IRT), but research examining it is limited. A general nonparametric approach for detecting model misfit, introduced by J. Douglas and A. S. Cohen (2001), has exhibited promising results for the two-parameter logistic…

  6. Standardized UXO Technology Demonstration Site Open Field Scoring Record No. 905 (Sky Research, Inc.) EM61 MKII/Towed Array

    DTIC Science & Technology

    2008-09-01

    day timeframe. 3.6 DEMONSTRATOR’S FIELD PERSONNEL Geophysicist: Craig Hyslop Geophysicist: John Jacobsen Geophysicist: Rob Mehl 3.7...Practical Nonparametric Statistics, W.J. Conover, John Wiley & Sons, 1980 , pages 144 through 151. F-1 (Page F-2 Blank) APPENDIX F

  7. Learning Patterns as Criterion for Forming Work Groups in 3D Simulation Learning Environments

    ERIC Educational Resources Information Center

    Maria Cela-Ranilla, Jose; Molías, Luis Marqués; Cervera, Mercè Gisbert

    2016-01-01

    This study analyzes the relationship between the use of learning patterns as a grouping criterion to develop learning activities in the 3D simulation environment at University. Participants included 72 Spanish students from the Education and Marketing disciplines. Descriptive statistics and non-parametric tests were conducted. The process was…

  8. Using R to Simulate Permutation Distributions for Some Elementary Experimental Designs

    ERIC Educational Resources Information Center

    Eudey, T. Lynn; Kerr, Joshua D.; Trumbo, Bruce E.

    2010-01-01

    Null distributions of permutation tests for two-sample, paired, and block designs are simulated using the R statistical programming language. For each design and type of data, permutation tests are compared with standard normal-theory and nonparametric tests. These examples (often using real data) provide for classroom discussion use of metrics…

  9. Non-parametric early seizure detection in an animal model of temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    Talathi, Sachin S.; Hwang, Dong-Uk; Spano, Mark L.; Simonotto, Jennifer; Furman, Michael D.; Myers, Stephen M.; Winters, Jason T.; Ditto, William L.; Carney, Paul R.

    2008-03-01

    The performance of five non-parametric, univariate seizure detection schemes (embedding delay, Hurst scale, wavelet scale, nonlinear autocorrelation and variance energy) were evaluated as a function of the sampling rate of EEG recordings, the electrode types used for EEG acquisition, and the spatial location of the EEG electrodes in order to determine the applicability of the measures in real-time closed-loop seizure intervention. The criteria chosen for evaluating the performance were high statistical robustness (as determined through the sensitivity and the specificity of a given measure in detecting a seizure) and the lag in seizure detection with respect to the seizure onset time (as determined by visual inspection of the EEG signal by a trained epileptologist). An optimality index was designed to evaluate the overall performance of each measure. For the EEG data recorded with microwire electrode array at a sampling rate of 12 kHz, the wavelet scale measure exhibited better overall performance in terms of its ability to detect a seizure with high optimality index value and high statistics in terms of sensitivity and specificity.

  10. Estimation of spline function in nonparametric path analysis based on penalized weighted least square (PWLS)

    NASA Astrophysics Data System (ADS)

    Fernandes, Adji Achmad Rinaldo; Solimun, Arisoesilaningsih, Endang

    2017-12-01

    The aim of this research is to estimate the spline in Path Analysis-based on Nonparametric Regression using Penalized Weighted Least Square (PWLS) approach. Approach used is Reproducing Kernel Hilbert Space at sobolev space. Nonparametric path analysis model on the equation y1 i=f1.1(x1 i)+ε1 i; y2 i=f1.2(x1 i)+f2.2(y1 i)+ε2 i; i =1 ,2 ,…,n Nonparametric Path Analysis which meet the criteria of minimizing PWLS min fw .k∈W2m[aw .k,bw .k], k =1 ,2 { (2n ) -1(y˜-f ˜ ) TΣ-1(y ˜-f ˜ ) + ∑k =1 2 ∑w =1 2 λw .k ∫aw .k bw .k [fw.k (m )(xi) ] 2d xi } is f ˜^=Ay ˜ with A=T1(T1TU1-1∑-1T1)-1T1TU1-1∑-1+V1U1-1∑-1[I-T1(T1TU1-1∑-1T1)-1T1TU1-1∑-1] columnalign="left">+T2(T2TU2-1∑-1T2)-1T2TU2-1∑-1+V2U2-1∑-1[I1-T2(T2TU2-1∑-1T2) -1T2TU2-1∑-1

  11. PHOXTRACK-a tool for interpreting comprehensive datasets of post-translational modifications of proteins.

    PubMed

    Weidner, Christopher; Fischer, Cornelius; Sauer, Sascha

    2014-12-01

    We introduce PHOXTRACK (PHOsphosite-X-TRacing Analysis of Causal Kinases), a user-friendly freely available software tool for analyzing large datasets of post-translational modifications of proteins, such as phosphorylation, which are commonly gained by mass spectrometry detection. In contrast to other currently applied data analysis approaches, PHOXTRACK uses full sets of quantitative proteomics data and applies non-parametric statistics to calculate whether defined kinase-specific sets of phosphosite sequences indicate statistically significant concordant differences between various biological conditions. PHOXTRACK is an efficient tool for extracting post-translational information of comprehensive proteomics datasets to decipher key regulatory proteins and to infer biologically relevant molecular pathways. PHOXTRACK will be maintained over the next years and is freely available as an online tool for non-commercial use at http://phoxtrack.molgen.mpg.de. Users will also find a tutorial at this Web site and can additionally give feedback at https://groups.google.com/d/forum/phoxtrack-discuss. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Short-term forecasting of meteorological time series using Nonparametric Functional Data Analysis (NPFDA)

    NASA Astrophysics Data System (ADS)

    Curceac, S.; Ternynck, C.; Ouarda, T.

    2015-12-01

    Over the past decades, a substantial amount of research has been conducted to model and forecast climatic variables. In this study, Nonparametric Functional Data Analysis (NPFDA) methods are applied to forecast air temperature and wind speed time series in Abu Dhabi, UAE. The dataset consists of hourly measurements recorded for a period of 29 years, 1982-2010. The novelty of the Functional Data Analysis approach is in expressing the data as curves. In the present work, the focus is on daily forecasting and the functional observations (curves) express the daily measurements of the above mentioned variables. We apply a non-linear regression model with a functional non-parametric kernel estimator. The computation of the estimator is performed using an asymmetrical quadratic kernel function for local weighting based on the bandwidth obtained by a cross validation procedure. The proximities between functional objects are calculated by families of semi-metrics based on derivatives and Functional Principal Component Analysis (FPCA). Additionally, functional conditional mode and functional conditional median estimators are applied and the advantages of combining their results are analysed. A different approach employs a SARIMA model selected according to the minimum Akaike (AIC) and Bayessian (BIC) Information Criteria and based on the residuals of the model. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE), relative RMSE, BIAS and relative BIAS. The results indicate that the NPFDA models provide more accurate forecasts than the SARIMA models. Key words: Nonparametric functional data analysis, SARIMA, time series forecast, air temperature, wind speed

  13. Transforming Parent-Child Interaction in Family Routines: Longitudinal Analysis with Families of Children with Developmental Disabilities.

    PubMed

    Lucyshyn, Joseph M; Fossett, Brenda; Bakeman, Roger; Cheremshynski, Christy; Miller, Lynn; Lohrmann, Sharon; Binnendyk, Lauren; Khan, Sophia; Chinn, Stephen; Kwon, Samantha; Irvin, Larry K

    2015-12-01

    The efficacy and consequential validity of an ecological approach to behavioral intervention with families of children with developmental disabilities was examined. The approach aimed to transform coercive into constructive parent-child interaction in family routines. Ten families participated, including 10 mothers and fathers and 10 children 3-8 years old with developmental disabilities. Thirty-six family routines were selected (2 to 4 per family). Dependent measures included child problem behavior, routine steps completed, and coercive and constructive parent-child interaction. For each family, a single case, multiple baseline design was employed with three phases: baseline, intervention, and follow-up. Visual analysis evaluated the functional relation between intervention and improvements in child behavior and routine participation. Nonparametric tests across families evaluated the statistical significance of these improvements. Sequential analyses within families and univariate analyses across families examined changes from baseline to intervention in the percentage and odds ratio of coercive and constructive parent-child interaction. Multiple baseline results documented functional or basic effects for 8 of 10 families. Nonparametric tests showed these changes to be significant. Follow-up showed durability at 11 to 24 months postintervention. Sequential analyses documented the transformation of coercive into constructive processes for 9 of 10 families. Univariate analyses across families showed significant improvements in 2- and 4-step coercive and constructive processes but not in odds ratio. Results offer evidence of the efficacy of the approach and consequential validity of the ecological unit of analysis, parent-child interaction in family routines. Future studies should improve efficiency, and outcomes for families experiencing family systems challenges.

  14. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography.

    PubMed

    Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60-90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity.

  15. Risk analysis for autonomous underwater vehicle operations in extreme environments.

    PubMed

    Brito, Mario Paulo; Griffiths, Gwyn; Challenor, Peter

    2010-12-01

    Autonomous underwater vehicles (AUVs) are used increasingly to explore hazardous marine environments. Risk assessment for such complex systems is based on subjective judgment and expert knowledge as much as on hard statistics. Here, we describe the use of a risk management process tailored to AUV operations, the implementation of which requires the elicitation of expert judgment. We conducted a formal judgment elicitation process where eight world experts in AUV design and operation were asked to assign a probability of AUV loss given the emergence of each fault or incident from the vehicle's life history of 63 faults and incidents. After discussing methods of aggregation and analysis, we show how the aggregated risk estimates obtained from the expert judgments were used to create a risk model. To estimate AUV survival with mission distance, we adopted a statistical survival function based on the nonparametric Kaplan-Meier estimator. We present theoretical formulations for the estimator, its variance, and confidence limits. We also present a numerical example where the approach is applied to estimate the probability that the Autosub3 AUV would survive a set of missions under Pine Island Glacier, Antarctica in January-March 2009. © 2010 Society for Risk Analysis.

  16. Post-fire debris flow prediction in Western United States: Advancements based on a nonparametric statistical technique

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, E. I.; Destro, E.; Bhuiyan, M. A. E.; Borga, M., Sr.; Anagnostou, E. N.

    2017-12-01

    Fire disasters affect modern societies at global scale inducing significant economic losses and human casualties. In addition to their direct impacts they have various adverse effects on hydrologic and geomorphologic processes of a region due to the tremendous alteration of the landscape characteristics (vegetation, soil properties etc). As a consequence, wildfires often initiate a cascade of hazards such as flash floods and debris flows that usually follow the occurrence of a wildfire thus magnifying the overall impact in a region. Post-fire debris flows (PFDF) is one such type of hazards frequently occurring in Western United States where wildfires are a common natural disaster. Prediction of PDFD is therefore of high importance in this region and over the last years a number of efforts from United States Geological Survey (USGS) and National Weather Service (NWS) have been focused on the development of early warning systems that will help mitigate PFDF risk. This work proposes a prediction framework that is based on a nonparametric statistical technique (random forests) that allows predicting the occurrence of PFDF at regional scale with a higher degree of accuracy than the commonly used approaches that are based on power-law thresholds and logistic regression procedures. The work presented is based on a recently released database from USGS that reports a total of 1500 storms that triggered and did not trigger PFDF in a number of fire affected catchments in Western United States. The database includes information on storm characteristics (duration, accumulation, max intensity etc) and other auxiliary information of land surface properties (soil erodibility index, local slope etc). Results show that the proposed model is able to achieve a satisfactory prediction accuracy (threat score > 0.6) superior of previously published prediction frameworks highlighting the potential of nonparametric statistical techniques for development of PFDF prediction systems.

  17. Temperature, Not Fine Particulate Matter (PM2.5), is Causally Associated with Short-Term Acute Daily Mortality Rates: Results from One Hundred United States Cities

    PubMed Central

    Cox, Tony; Popken, Douglas; Ricci, Paolo F

    2013-01-01

    Exposures to fine particulate matter (PM2.5) in air (C) have been suspected of contributing causally to increased acute (e.g., same-day or next-day) human mortality rates (R). We tested this causal hypothesis in 100 United States cities using the publicly available NMMAPS database. Although a significant, approximately linear, statistical C-R association exists in simple statistical models, closer analysis suggests that it is not causal. Surprisingly, conditioning on other variables that have been extensively considered in previous analyses (usually using splines or other smoothers to approximate their effects), such as month of the year and mean daily temperature, suggests that they create strong, nonlinear confounding that explains the statistical association between PM2.5 and mortality rates in this data set. As this finding disagrees with conventional wisdom, we apply several different techniques to examine it. Conditional independence tests for potential causation, non-parametric classification tree analysis, Bayesian Model Averaging (BMA), and Granger-Sims causality testing, show no evidence that PM2.5 concentrations have any causal impact on increasing mortality rates. This apparent absence of a causal C-R relation, despite their statistical association, has potentially important implications for managing and communicating the uncertain health risks associated with, but not necessarily caused by, PM2.5 exposures. PMID:23983662

  18. Inference of median difference based on the Box-Cox model in randomized clinical trials.

    PubMed

    Maruo, K; Isogawa, N; Gosho, M

    2015-05-10

    In randomized clinical trials, many medical and biological measurements are not normally distributed and are often skewed. The Box-Cox transformation is a powerful procedure for comparing two treatment groups for skewed continuous variables in terms of a statistical test. However, it is difficult to directly estimate and interpret the location difference between the two groups on the original scale of the measurement. We propose a helpful method that infers the difference of the treatment effect on the original scale in a more easily interpretable form. We also provide statistical analysis packages that consistently include an estimate of the treatment effect, covariance adjustments, standard errors, and statistical hypothesis tests. The simulation study that focuses on randomized parallel group clinical trials with two treatment groups indicates that the performance of the proposed method is equivalent to or better than that of the existing non-parametric approaches in terms of the type-I error rate and power. We illustrate our method with cluster of differentiation 4 data in an acquired immune deficiency syndrome clinical trial. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Different modes of data processing and statistical testing applied to the same set of pharmaco-EEG recordings: effects on the evaluation of a selective and reversible MAO A inhibitor (brofaromine).

    PubMed

    Reimann, I W; Jobert, M; Gleiter, C H; Turri, M; Bieck, P R; Herrmann, W M

    1996-01-01

    The comparison of two different modes of data processing and two different approaches to statistical testing both applied to the same set of EEG recordings was the main objective of this pharmacological study. Brofaromine (CGP 11,305 A), a new selective and reversible monoamine oxidase type A inhibitor was used as an example for investigating a potentially antidepressant drug in clinical development. The two modes of pharmaco-EEG (PEEG) data processing differed mainly in the sampling frequency and definition of spectral parameters. Patterns of significant changes were noted in terms of descriptive data analysis using either a nonparametric Wilcoxon signed-rank test or an ANOVA of transformed data, as suggested by Conover and Iman. These data clearly demonstrate that slight discrepancies in the results may simply arise from differences in data processing and statistical approach applied. In spite of these discrepancies, the pattern of brofaromine-induced PEEG changes was very similar regardless of the mode of data handling used.

  20. Effects of bacterial infestation caused by human wastes on the skin structures of Mugil platanus Günther, 1880 (Mugilidae).

    PubMed

    Langer, S L; Vargas, V M F; Flores-Lopes, F; Malabarba, L R

    2009-05-01

    Manifestation of infectious pathologies in fishes usually increases in environments where organic wastes are disposed. Specimens of Mugil platanus Günther, 1880 and water samples collected at three points of the Tramandaí river were analyzed during a one year period. The macroscopic observation revealed ulcerations in the caudal peduncle area covered with a mass of amorphous and whitened tissues. Histopathologic analysis showed the presence of negative gram bacteria, probably responsible for alterations of the normal structure of the epidermic tissues. Non-parametric statistical analysis for ammonia concentration showed a significant variation among the three collected spots as well as in the multiple comparison between two spots. In this study, we describe cutaneous lesions observed in Mugil platanus specimens and tested their correlation with environmental ammonia concentration.

  1. Compressive Network Analysis

    PubMed Central

    Jiang, Xiaoye; Yao, Yuan; Liu, Han; Guibas, Leonidas

    2014-01-01

    Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: network data analysis and compressed sensing. From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely Randon basis pursuit in homogeneous spaces. Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets. PMID:25620806

  2. Identification of trends in rainfall, rainy days and 24 h maximum rainfall over subtropical Assam in Northeast India

    NASA Astrophysics Data System (ADS)

    Jhajharia, Deepak; Yadav, Brijesh K.; Maske, Sunil; Chattopadhyay, Surajit; Kar, Anil K.

    2012-01-01

    Trends in rainfall, rainy days and 24 h maximum rainfall are investigated using the Mann-Kendall non-parametric test at twenty-four sites of subtropical Assam located in the northeastern region of India. The trends are statistically confirmed by both the parametric and non-parametric methods and the magnitudes of significant trends are obtained through the linear regression test. In Assam, the average monsoon rainfall (rainy days) during the monsoon months of June to September is about 1606 mm (70), which accounts for about 70% (64%) of the annual rainfall (rainy days). On monthly time scales, sixteen and seventeen sites (twenty-one sites each) witnessed decreasing trends in the total rainfall (rainy days), out of which one and three trends (seven trends each) were found to be statistically significant in June and July, respectively. On the other hand, seventeen sites witnessed increasing trends in rainfall in the month of September, but none were statistically significant. In December (February), eighteen (twenty-two) sites witnessed decreasing (increasing) trends in total rainfall, out of which five (three) trends were statistically significant. For the rainy days during the months of November to January, twenty-two or more sites witnessed decreasing trends in Assam, but for nine (November), twelve (January) and eighteen (December) sites, these trends were statistically significant. These observed changes in rainfall, although most time series are not convincing as they show predominantly no significance, along with the well-reported climatic warming in monsoon and post-monsoon seasons may have implications for human health and water resources management over bio-diversity rich Northeast India.

  3. Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data.

    PubMed

    Rohrer, Sebastian G; Baumann, Knut

    2009-02-01

    Refined nearest neighbor analysis was recently introduced for the analysis of virtual screening benchmark data sets. It constitutes a technique from the field of spatial statistics and provides a mathematical framework for the nonparametric analysis of mapped point patterns. Here, refined nearest neighbor analysis is used to design benchmark data sets for virtual screening based on PubChem bioactivity data. A workflow is devised that purges data sets of compounds active against pharmaceutically relevant targets from unselective hits. Topological optimization using experimental design strategies monitored by refined nearest neighbor analysis functions is applied to generate corresponding data sets of actives and decoys that are unbiased with regard to analogue bias and artificial enrichment. These data sets provide a tool for Maximum Unbiased Validation (MUV) of virtual screening methods. The data sets and a software package implementing the MUV design workflow are freely available at http://www.pharmchem.tu-bs.de/lehre/baumann/MUV.html.

  4. Headache in acute ischaemic stroke: a lesion mapping study.

    PubMed

    Seifert, Christian L; Schönbach, Etienne M; Magon, Stefano; Gross, Elena; Zimmer, Claus; Förschler, Anette; Tölle, Thomas R; Mühlau, Mark; Sprenger, Till; Poppert, Holger

    2016-01-01

    Headache is a common symptom in acute ischaemic stroke, but the underlying mechanisms are incompletely understood. The aim of this lesion mapping study was to identify brain regions, which are related to the development of headache in acute ischaemic stroke. Patients with acute ischaemic stroke (n = 100) were assessed by brain MRI at 3 T including diffusion weighted imaging. We included 50 patients with stroke and headache as well as 50 patients with stroke but no headache symptoms. Infarcts were manually outlined and images were transformed into standard stereotaxic space using non-linear warping. Voxel-wise overlap and subtraction analyses of lesions as well as non-parametric statistics were conducted. The same analyses were carried out by flipping of left-sided lesions, so that all strokes were transformed to the same hemisphere. Between the headache group as well as the non-headache there was no difference in infarct volumes, in the distribution of affected vascular beds or in the clinical severity of strokes. The headache phenotype was tension-type like in most cases. Subtraction analysis revealed that in headache sufferers infarctions were more often distributed in two well-known areas of the central pain matrix: the insula and the somatosensory cortex. This result was confirmed in the flipped analysis and by non-parametric statistical testing (whole brain corrected P-value < 0.01). To the best of our knowledge, this is the first lesion mapping study investigating potential lesional patterns associated with headache in acute ischaemic stroke. Insular strokes turned out to be strongly associated with headache. As the insular cortex is a well-established region in pain processing, our results suggest that, at least in a subgroup of patients, acute stroke-related headache might be centrally driven. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Multivariate meta-analysis: a robust approach based on the theory of U-statistic.

    PubMed

    Ma, Yan; Mazumdar, Madhu

    2011-10-30

    Meta-analysis is the methodology for combining findings from similar research studies asking the same question. When the question of interest involves multiple outcomes, multivariate meta-analysis is used to synthesize the outcomes simultaneously taking into account the correlation between the outcomes. Likelihood-based approaches, in particular restricted maximum likelihood (REML) method, are commonly utilized in this context. REML assumes a multivariate normal distribution for the random-effects model. This assumption is difficult to verify, especially for meta-analysis with small number of component studies. The use of REML also requires iterative estimation between parameters, needing moderately high computation time, especially when the dimension of outcomes is large. A multivariate method of moments (MMM) is available and is shown to perform equally well to REML. However, there is a lack of information on the performance of these two methods when the true data distribution is far from normality. In this paper, we propose a new nonparametric and non-iterative method for multivariate meta-analysis on the basis of the theory of U-statistic and compare the properties of these three procedures under both normal and skewed data through simulation studies. It is shown that the effect on estimates from REML because of non-normal data distribution is marginal and that the estimates from MMM and U-statistic-based approaches are very similar. Therefore, we conclude that for performing multivariate meta-analysis, the U-statistic estimation procedure is a viable alternative to REML and MMM. Easy implementation of all three methods are illustrated by their application to data from two published meta-analysis from the fields of hip fracture and periodontal disease. We discuss ideas for future research based on U-statistic for testing significance of between-study heterogeneity and for extending the work to meta-regression setting. Copyright © 2011 John Wiley & Sons, Ltd.

  6. A nonparametric test for Markovianity in the illness-death model.

    PubMed

    Rodríguez-Girondo, Mar; de Uña-Álvarez, Jacobo

    2012-12-30

    Multistate models are useful tools for modeling disease progression when survival is the main outcome, but several intermediate events of interest are observed during the follow-up time. The illness-death model is a special multistate model with important applications in the biomedical literature. It provides a suitable representation of the individual's history when a unique intermediate event can be experienced before the main event of interest. Nonparametric estimation of transition probabilities in this and other multistate models is usually performed through the Aalen-Johansen estimator under a Markov assumption. The Markov assumption claims that given the present state, the future evolution of the illness is independent of the states previously visited and the transition times among them. However, this assumption fails in some applications, leading to inconsistent estimates. In this paper, we provide a new approach for testing Markovianity in the illness-death model. The new method is based on measuring the future-past association along time. This results in a detailed inspection of the process, which often reveals a non-Markovian behavior with different trends in the association measure. A test of significance for zero future-past association at each time point is introduced, and a significance trace is proposed accordingly. Besides, we propose a global test for Markovianity based on a supremum-type test statistic. The finite sample performance of the test is investigated through simulations. We illustrate the new method through the analysis of two biomedical data analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Evaluating Cellular Polyfunctionality with a Novel Polyfunctionality Index

    PubMed Central

    Larsen, Martin; Sauce, Delphine; Arnaud, Laurent; Fastenackels, Solène; Appay, Victor; Gorochov, Guy

    2012-01-01

    Functional evaluation of naturally occurring or vaccination-induced T cell responses in mice, men and monkeys has in recent years advanced from single-parameter (e.g. IFN-γ-secretion) to much more complex multidimensional measurements. Co-secretion of multiple functional molecules (such as cytokines and chemokines) at the single-cell level is now measurable due primarily to major advances in multiparametric flow cytometry. The very extensive and complex datasets generated by this technology raise the demand for proper analytical tools that enable the analysis of combinatorial functional properties of T cells, hence polyfunctionality. Presently, multidimensional functional measures are analysed either by evaluating all combinations of parameters individually or by summing frequencies of combinations that include the same number of simultaneous functions. Often these evaluations are visualized as pie charts. Whereas pie charts effectively represent and compare average polyfunctionality profiles of particular T cell subsets or patient groups, they do not document the degree or variation of polyfunctionality within a group nor does it allow more sophisticated statistical analysis. Here we propose a novel polyfunctionality index that numerically evaluates the degree and variation of polyfuntionality, and enable comparative and correlative parametric and non-parametric statistical tests. Moreover, it allows the usage of more advanced statistical approaches, such as cluster analysis. We believe that the polyfunctionality index will render polyfunctionality an appropriate end-point measure in future studies of T cell responsiveness. PMID:22860124

  8. Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures

    PubMed Central

    Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.

    2014-01-01

    Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE. PMID:24727289

  9. Nonparametric bootstrap analysis with applications to demographic effects in demand functions.

    PubMed

    Gozalo, P L

    1997-12-01

    "A new bootstrap proposal, labeled smooth conditional moment (SCM) bootstrap, is introduced for independent but not necessarily identically distributed data, where the classical bootstrap procedure fails.... A good example of the benefits of using nonparametric and bootstrap methods is the area of empirical demand analysis. In particular, we will be concerned with their application to the study of two important topics: what are the most relevant effects of household demographic variables on demand behavior, and to what extent present parametric specifications capture these effects." excerpt

  10. Key statistical and analytical issues for evaluating treatment effects in periodontal research.

    PubMed

    Tu, Yu-Kang; Gilthorpe, Mark S

    2012-06-01

    Statistics is an indispensible tool for evaluating treatment effects in clinical research. Due to the complexities of periodontal disease progression and data collection, statistical analyses for periodontal research have been a great challenge for both clinicians and statisticians. The aim of this article is to provide an overview of several basic, but important, statistical issues related to the evaluation of treatment effects and to clarify some common statistical misconceptions. Some of these issues are general, concerning many disciplines, and some are unique to periodontal research. We first discuss several statistical concepts that have sometimes been overlooked or misunderstood by periodontal researchers. For instance, decisions about whether to use the t-test or analysis of covariance, or whether to use parametric tests such as the t-test or its non-parametric counterpart, the Mann-Whitney U-test, have perplexed many periodontal researchers. We also describe more advanced methodological issues that have sometimes been overlooked by researchers. For instance, the phenomenon of regression to the mean is a fundamental issue to be considered when evaluating treatment effects, and collinearity amongst covariates is a conundrum that must be resolved when explaining and predicting treatment effects. Quick and easy solutions to these methodological and analytical issues are not always available in the literature, and careful statistical thinking is paramount when conducting useful and meaningful research. © 2012 John Wiley & Sons A/S.

  11. Resting-state networks in healthy adult subjects: a comparison between a 32-element and an 8-element phased array head coil at 3.0 Tesla.

    PubMed

    Paolini, Marco; Keeser, Daniel; Ingrisch, Michael; Werner, Natalie; Kindermann, Nicole; Reiser, Maximilian; Blautzik, Janusch

    2015-05-01

    Little research exists on the influence of a magnetic resonance imaging (MRI) head coil's channel count on measured resting-state functional connectivity. To compare a 32-element (32ch) and an 8-element (8ch) phased array head coil with respect to their potential to detect functional connectivity within resting-state networks. Twenty-six healthy adults (mean age, 21.7 years; SD, 2.1 years) underwent resting-state functional MRI at 3.0 Tesla with both coils using equal standard imaging parameters and a counterbalanced design. Independent component analysis (ICA) at different model orders and a dual regression approach were performed. Voxel-wise non-parametric statistical between-group contrasts were determined using permutation-based non-parametric inference. Phantom measurements demonstrated a generally higher image signal-to-noise ratio using the 32ch head coil. However, the results showed no significant differences between corresponding resting-state networks derived from both coils (p < 0.05, FWE-corrected). Using the identical standard acquisition parameters, the 32ch head coil does not offer any significant advantages in detecting ICA-based functional connectivity within RSNs. © The Foundation Acta Radiologica 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Effects of ageing on orofacial fine force control and its relationship with parallel change in sensory perception.

    PubMed

    Etter, Nicole M; Mckeon, Patrick O; Dressler, Emily V; Andreatta, Richard D

    2017-05-03

    Current theoretical models suggest the importance of a bidirectional relationship between sensation and production in the vocal tract to maintain lifelong speech skills. The purpose of this study was to assess age-related changes in orofacial skilled force production and to begin defining the orofacial perception-action relationship in healthy adults. Low-level orofacial force control measures (reaction time, rise time, peak force, mean hold force (N) and force hold SD) were collected from 60 adults (19-84 years). Non-parametric Kruskal Wallis tests were performed to identify statistical differences between force and group demographics. Non-parametric Spearman's rank correlations were completed to compare force measures against previously published sensory data from the same cohort of participants. Significant group differences in force control were found for age, sex, speech usage and smoking status. Significant correlational relationships were identified between labial vibrotactile thresholds and several low-level force control measures collected during step and ramp-and-hold conditions. These findings demonstrate age-related alterations in orofacial force production. Furthermore, correlational analysis suggests as vibrotactile detection thresholds increase, the ability to maintain low-level force control accuracy decreases. Possible clinical applications and treatment consequences of these findings for speech disorders in the ageing population are provided.

  13. Nonparametric methods for analyzing recurrent gap time data with application to infections after hematopoietic cell transplant.

    PubMed

    Lee, Chi Hyun; Luo, Xianghua; Huang, Chiung-Yu; DeFor, Todd E; Brunstein, Claudio G; Weisdorf, Daniel J

    2016-06-01

    Infection is one of the most common complications after hematopoietic cell transplantation. Many patients experience infectious complications repeatedly after transplant. Existing statistical methods for recurrent gap time data typically assume that patients are enrolled due to the occurrence of an event of interest, and subsequently experience recurrent events of the same type; moreover, for one-sample estimation, the gap times between consecutive events are usually assumed to be identically distributed. Applying these methods to analyze the post-transplant infection data will inevitably lead to incorrect inferential results because the time from transplant to the first infection has a different biological meaning than the gap times between consecutive recurrent infections. Some unbiased yet inefficient methods include univariate survival analysis methods based on data from the first infection or bivariate serial event data methods based on the first and second infections. In this article, we propose a nonparametric estimator of the joint distribution of time from transplant to the first infection and the gap times between consecutive infections. The proposed estimator takes into account the potentially different distributions of the two types of gap times and better uses the recurrent infection data. Asymptotic properties of the proposed estimators are established. © 2015, The International Biometric Society.

  14. Nonparametric methods for analyzing recurrent gap time data with application to infections after hematopoietic cell transplant

    PubMed Central

    Lee, Chi Hyun; Huang, Chiung-Yu; DeFor, Todd E.; Brunstein, Claudio G.; Weisdorf, Daniel J.

    2015-01-01

    Summary Infection is one of the most common complications after hematopoietic cell transplantation. Many patients experience infectious complications repeatedly after transplant. Existing statistical methods for recurrent gap time data typically assume that patients are enrolled due to the occurrence of an event of interest, and subsequently experience recurrent events of the same type; moreover, for one-sample estimation, the gap times between consecutive events are usually assumed to be identically distributed. Applying these methods to analyze the post-transplant infection data will inevitably lead to incorrect inferential results because the time from transplant to the first infection has a different biological meaning than the gap times between consecutive recurrent infections. Some unbiased yet inefficient methods include univariate survival analysis methods based on data from the first infection or bivariate serial event data methods based on the first and second infections. In this paper, we propose a nonparametric estimator of the joint distribution of time from transplant to the first infection and the gap times between consecutive infections. The proposed estimator takes into account the potentially different distributions of the two types of gap times and better uses the recurrent infection data. Asymptotic properties of the proposed estimators are established. PMID:26575402

  15. Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes.

    PubMed

    Xu, Xiaoguang; Kypraios, Theodore; O'Neill, Philip D

    2016-10-01

    This paper considers novel Bayesian non-parametric methods for stochastic epidemic models. Many standard modeling and data analysis methods use underlying assumptions (e.g. concerning the rate at which new cases of disease will occur) which are rarely challenged or tested in practice. To relax these assumptions, we develop a Bayesian non-parametric approach using Gaussian Processes, specifically to estimate the infection process. The methods are illustrated with both simulated and real data sets, the former illustrating that the methods can recover the true infection process quite well in practice, and the latter illustrating that the methods can be successfully applied in different settings. © The Author 2016. Published by Oxford University Press.

  16. Statistical variation in progressive scrambling

    NASA Astrophysics Data System (ADS)

    Clark, Robert D.; Fox, Peter C.

    2004-07-01

    The two methods most often used to evaluate the robustness and predictivity of partial least squares (PLS) models are cross-validation and response randomization. Both methods may be overly optimistic for data sets that contain redundant observations, however. The kinds of perturbation analysis widely used for evaluating model stability in the context of ordinary least squares regression are only applicable when the descriptors are independent of each other and errors are independent and normally distributed; neither assumption holds for QSAR in general and for PLS in particular. Progressive scrambling is a novel, non-parametric approach to perturbing models in the response space in a way that does not disturb the underlying covariance structure of the data. Here, we introduce adjustments for two of the characteristic values produced by a progressive scrambling analysis - the deprecated predictivity (Q_s^{ast^2}) and standard error of prediction (SDEP s * ) - that correct for the effect of introduced perturbation. We also explore the statistical behavior of the adjusted values (Q_0^{ast^2} and SDEP 0 * ) and the sensitivity to perturbation (d q 2/d r yy ' 2). It is shown that the three statistics are all robust for stable PLS models, in terms of the stochastic component of their determination and of their variation due to sampling effects involved in training set selection.

  17. Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data.

    PubMed

    Tan, Qihua; Thomassen, Mads; Burton, Mark; Mose, Kristian Fredløv; Andersen, Klaus Ejner; Hjelmborg, Jacob; Kruse, Torben

    2017-06-06

    Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.

  18. A Simple Effect Size Estimator for Single Case Designs Using WinBUGS

    ERIC Educational Resources Information Center

    Rindskopf, David; Shadish, William; Hedges, Larry

    2012-01-01

    Data from single case designs (SCDs) have traditionally been analyzed by visual inspection rather than statistical models. As a consequence, effect sizes have been of little interest. Lately, some effect-size estimators have been proposed, but most are either (i) nonparametric, and/or (ii) based on an analogy incompatible with effect sizes from…

  19. Analysis of the chronic lower limb injuries occurrence in step aerobic instructors in relation to their working step class profile: a three year longitudinal prospective study.

    PubMed

    Malliou, P; Rokka, S; Beneka, A; Gioftsidou, A; Mavromoustakos, S; Godolias, G

    2014-01-01

    There is limited information on injury patterns in Step Aerobic Instructors (SAI) who exclusively execute "step" aerobic classes. To record the type and the anatomical position in relation to diagnosis of muscular skeletal injuries in step aerobic instructors. Also, to analyse the days of absence due to chronic injury in relation to weekly working hours, height of the step platform, working experience and working surface and footwear during the step class. The Step Aerobic Instructors Injuries Questionnaire was developed, and then validity and reliability indices were calculated. 63 SAI completed the questionnaire. For the statistical analysis of the data, the method used was the analysis of frequencies, the non-parametric test χ^{2} (chi square distribution), correlation and linear and logistic regressions analysis from the SPSS statistical package. 63 SAI reported 115 injuries that required more than 2 days absence from step aerobic classes. The chronic lower extremity injuries were 73.5%, with the leg pain, the anterior knee pain, the plantar tendinopathy and the Achilles tendinopathy being most common overuse syndromes. The working hours, the platform height, the years of aerobic dance seem to affect the days of absence due to chronic lower limb injury occurrence in SAI.

  20. Appraisal of within- and between-laboratory reproducibility of non-radioisotopic local lymph node assay using flow cytometry, LLNA:BrdU-FCM: comparison of OECD TG429 performance standard and statistical evaluation.

    PubMed

    Yang, Hyeri; Na, Jihye; Jang, Won-Hee; Jung, Mi-Sook; Jeon, Jun-Young; Heo, Yong; Yeo, Kyung-Wook; Jo, Ji-Hoon; Lim, Kyung-Min; Bae, SeungJin

    2015-05-05

    Mouse local lymph node assay (LLNA, OECD TG429) is an alternative test replacing conventional guinea pig tests (OECD TG406) for the skin sensitization test but the use of a radioisotopic agent, (3)H-thymidine, deters its active dissemination. New non-radioisotopic LLNA, LLNA:BrdU-FCM employs a non-radioisotopic analog, 5-bromo-2'-deoxyuridine (BrdU) and flow cytometry. For an analogous method, OECD TG429 performance standard (PS) advises that two reference compounds be tested repeatedly and ECt(threshold) values obtained must fall within acceptable ranges to prove within- and between-laboratory reproducibility. However, this criteria is somewhat arbitrary and sample size of ECt is less than 5, raising concerns about insufficient reliability. Here, we explored various statistical methods to evaluate the reproducibility of LLNA:BrdU-FCM with stimulation index (SI), the raw data for ECt calculation, produced from 3 laboratories. Descriptive statistics along with graphical representation of SI was presented. For inferential statistics, parametric and non-parametric methods were applied to test the reproducibility of SI of a concurrent positive control and the robustness of results were investigated. Descriptive statistics and graphical representation of SI alone could illustrate the within- and between-laboratory reproducibility. Inferential statistics employing parametric and nonparametric methods drew similar conclusion. While all labs passed within- and between-laboratory reproducibility criteria given by OECD TG429 PS based on ECt values, statistical evaluation based on SI values showed that only two labs succeeded in achieving within-laboratory reproducibility. For those two labs that satisfied the within-lab reproducibility, between-laboratory reproducibility could be also attained based on inferential as well as descriptive statistics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Neighbor-Dependent Ramachandran Probability Distributions of Amino Acids Developed from a Hierarchical Dirichlet Process Model

    PubMed Central

    Mitra, Rajib; Jordan, Michael I.; Dunbrack, Roland L.

    2010-01-01

    Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1) input data size and criteria for structure inclusion (resolution, R-factor, etc.); 2) filtering of suspect conformations and outliers using B-factors or other features; 3) secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included); 4) the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5) whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately) have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp. PMID:20442867

  2. Evaluation of standardized and applied variables in predicting treatment outcomes of polytrauma patients.

    PubMed

    Aksamija, Goran; Mulabdic, Adi; Rasic, Ismar; Muhovic, Samir; Gavric, Igor

    2011-01-01

    Polytrauma is defined as an injury where they are affected by at least two different organ systems or body, with at least one life-threatening injuries. Given the multilevel model care of polytrauma patients within KCUS are inevitable weaknesses in the management of this category of patients. To determine the dynamics of existing procedures in treatment of polytrauma patients on admission to KCUS, and based on statistical analysis of variables applied to determine and define the factors that influence the final outcome of treatment, and determine their mutual relationship, which may result in eliminating the flaws in the approach to the problem. The study was based on 263 polytrauma patients. Parametric and non-parametric statistical methods were used. Basic statistics were calculated, based on the calculated parameters for the final achievement of research objectives, multicoleration analysis, image analysis, discriminant analysis and multifactorial analysis were used. From the universe of variables for this study we selected sample of n = 25 variables, of which the first two modular, others belong to the common measurement space (n = 23) and in this paper defined as a system variable methods, procedures and assessments of polytrauma patients. After the multicoleration analysis, since the image analysis gave a reliable measurement results, we started the analysis of eigenvalues, that is defining the factors upon which they obtain information about the system solve the problem of the existing model and its correlation with treatment outcome. The study singled out the essential factors that determine the current organizational model of care, which may affect the treatment and better outcome of polytrauma patients. This analysis has shown the maximum correlative relationships between these practices and contributed to development guidelines that are defined by isolated factors.

  3. BLIND EXTRACTION OF AN EXOPLANETARY SPECTRUM THROUGH INDEPENDENT COMPONENT ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldmann, I. P.; Tinetti, G.; Hollis, M. D. J.

    2013-03-20

    Blind-source separation techniques are used to extract the transmission spectrum of the hot-Jupiter HD189733b recorded by the Hubble/NICMOS instrument. Such a 'blind' analysis of the data is based on the concept of independent component analysis. The detrending of Hubble/NICMOS data using the sole assumption that nongaussian systematic noise is statistically independent from the desired light-curve signals is presented. By not assuming any prior or auxiliary information but the data themselves, it is shown that spectroscopic errors only about 10%-30% larger than parametric methods can be obtained for 11 spectral bins with bin sizes of {approx}0.09 {mu}m. This represents a reasonablemore » trade-off between a higher degree of objectivity for the non-parametric methods and smaller standard errors for the parametric de-trending. Results are discussed in light of previous analyses published in the literature. The fact that three very different analysis techniques yield comparable spectra is a strong indication of the stability of these results.« less

  4. Non-parametric directionality analysis - Extension for removal of a single common predictor and application to time series.

    PubMed

    Halliday, David M; Senik, Mohd Harizal; Stevenson, Carl W; Mason, Rob

    2016-08-01

    The ability to infer network structure from multivariate neuronal signals is central to computational neuroscience. Directed network analyses typically use parametric approaches based on auto-regressive (AR) models, where networks are constructed from estimates of AR model parameters. However, the validity of using low order AR models for neurophysiological signals has been questioned. A recent article introduced a non-parametric approach to estimate directionality in bivariate data, non-parametric approaches are free from concerns over model validity. We extend the non-parametric framework to include measures of directed conditional independence, using scalar measures that decompose the overall partial correlation coefficient summatively by direction, and a set of functions that decompose the partial coherence summatively by direction. A time domain partial correlation function allows both time and frequency views of the data to be constructed. The conditional independence estimates are conditioned on a single predictor. The framework is applied to simulated cortical neuron networks and mixtures of Gaussian time series data with known interactions. It is applied to experimental data consisting of local field potential recordings from bilateral hippocampus in anaesthetised rats. The framework offers a non-parametric approach to estimation of directed interactions in multivariate neuronal recordings, and increased flexibility in dealing with both spike train and time series data. The framework offers a novel alternative non-parametric approach to estimate directed interactions in multivariate neuronal recordings, and is applicable to spike train and time series data. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of censoring trace-level water-quality data on trend-detection capability

    USGS Publications Warehouse

    Gilliom, R.J.; Hirsch, R.M.; Gilroy, E.J.

    1984-01-01

    Monte Carlo experiments were used to evaluate whether trace-level water-quality data that are routinely censored (not reported) contain valuable information for trend detection. Measurements are commonly censored if they fall below a level associated with some minimum acceptable level of reliability (detection limit). Trace-level organic data were simulated with best- and worst-case estimates of measurement uncertainty, various concentrations and degrees of linear trend, and different censoring rules. The resulting classes of data were subjected to a nonparametric statistical test for trend. For all classes of data evaluated, trends were most effectively detected in uncensored data as compared to censored data even when the data censored were highly unreliable. Thus, censoring data at any concentration level may eliminate valuable information. Whether or not valuable information for trend analysis is, in fact, eliminated by censoring of actual rather than simulated data depends on whether the analytical process is in statistical control and bias is predictable for a particular type of chemical analyses.

  6. Identification of curriculum content for a renewable energy graduate degree program

    NASA Astrophysics Data System (ADS)

    Haughery, John R.

    There currently exists a disconnect between renewable energy industry workforce needs and academic program proficiencies. This is evidenced by an absence of clear curriculum content on renewable energy graduate program websites. The purpose of this study was to identify a set of curriculum content for graduate degrees in renewable energy. At the conclusion, a clear list of 42 content items was identified and statistically ranked. The content items identified were based on a review of literature from government initiatives, professional society's body of knowledge, and related research studies. Leaders and experts in the field of renewable energy and sustainability were surveyed, using a five-point Likert-Scale model. This allowed each item's importance level to be analyzed and prioritized based on non-parametric statistical analysis methods. The study found seven competency items to be very important , 30 to be important, and five to be somewhat important. The results were also appropriate for use as a framework in developing or improving renewable energy graduate programs.

  7. Nonparametric predictive inference for combining diagnostic tests with parametric copula

    NASA Astrophysics Data System (ADS)

    Muhammad, Noryanti; Coolen, F. P. A.; Coolen-Maturi, T.

    2017-09-01

    Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine and health care. The Receiver Operating Characteristic (ROC) curve is a popular statistical tool for describing the performance of diagnostic tests. The area under the ROC curve (AUC) is often used as a measure of the overall performance of the diagnostic test. In this paper, we interest in developing strategies for combining test results in order to increase the diagnostic accuracy. We introduce nonparametric predictive inference (NPI) for combining two diagnostic test results with considering dependence structure using parametric copula. NPI is a frequentist statistical framework for inference on a future observation based on past data observations. NPI uses lower and upper probabilities to quantify uncertainty and is based on only a few modelling assumptions. While copula is a well-known statistical concept for modelling dependence of random variables. A copula is a joint distribution function whose marginals are all uniformly distributed and it can be used to model the dependence separately from the marginal distributions. In this research, we estimate the copula density using a parametric method which is maximum likelihood estimator (MLE). We investigate the performance of this proposed method via data sets from the literature and discuss results to show how our method performs for different family of copulas. Finally, we briefly outline related challenges and opportunities for future research.

  8. Exponential series approaches for nonparametric graphical models

    NASA Astrophysics Data System (ADS)

    Janofsky, Eric

    Markov Random Fields (MRFs) or undirected graphical models are parsimonious representations of joint probability distributions. This thesis studies high-dimensional, continuous-valued pairwise Markov Random Fields. We are particularly interested in approximating pairwise densities whose logarithm belongs to a Sobolev space. For this problem we propose the method of exponential series which approximates the log density by a finite-dimensional exponential family with the number of sufficient statistics increasing with the sample size. We consider two approaches to estimating these models. The first is regularized maximum likelihood. This involves optimizing the sum of the log-likelihood of the data and a sparsity-inducing regularizer. We then propose a variational approximation to the likelihood based on tree-reweighted, nonparametric message passing. This approximation allows for upper bounds on risk estimates, leverages parallelization and is scalable to densities on hundreds of nodes. We show how the regularized variational MLE may be estimated using a proximal gradient algorithm. We then consider estimation using regularized score matching. This approach uses an alternative scoring rule to the log-likelihood, which obviates the need to compute the normalizing constant of the distribution. For general continuous-valued exponential families, we provide parameter and edge consistency results. As a special case we detail a new approach to sparse precision matrix estimation which has statistical performance competitive with the graphical lasso and computational performance competitive with the state-of-the-art glasso algorithm. We then describe results for model selection in the nonparametric pairwise model using exponential series. The regularized score matching problem is shown to be a convex program; we provide scalable algorithms based on consensus alternating direction method of multipliers (ADMM) and coordinate-wise descent. We use simulations to compare our method to others in the literature as well as the aforementioned TRW estimator.

  9. Comparative study of some robust statistical methods: weighted, parametric, and nonparametric linear regression of HPLC convoluted peak responses using internal standard method in drug bioavailability studies.

    PubMed

    Korany, Mohamed A; Maher, Hadir M; Galal, Shereen M; Ragab, Marwa A A

    2013-05-01

    This manuscript discusses the application and the comparison between three statistical regression methods for handling data: parametric, nonparametric, and weighted regression (WR). These data were obtained from different chemometric methods applied to the high-performance liquid chromatography response data using the internal standard method. This was performed on a model drug Acyclovir which was analyzed in human plasma with the use of ganciclovir as internal standard. In vivo study was also performed. Derivative treatment of chromatographic response ratio data was followed by convolution of the resulting derivative curves using 8-points sin x i polynomials (discrete Fourier functions). This work studies and also compares the application of WR method and Theil's method, a nonparametric regression (NPR) method with the least squares parametric regression (LSPR) method, which is considered the de facto standard method used for regression. When the assumption of homoscedasticity is not met for analytical data, a simple and effective way to counteract the great influence of the high concentrations on the fitted regression line is to use WR method. WR was found to be superior to the method of LSPR as the former assumes that the y-direction error in the calibration curve will increase as x increases. Theil's NPR method was also found to be superior to the method of LSPR as the former assumes that errors could occur in both x- and y-directions and that might not be normally distributed. Most of the results showed a significant improvement in the precision and accuracy on applying WR and NPR methods relative to LSPR.

  10. Nonparametric spirometry reference values for Hispanic Americans.

    PubMed

    Glenn, Nancy L; Brown, Vanessa M

    2011-02-01

    Recent literature sites ethnic origin as a major factor in developing pulmonary function reference values. Extensive studies established reference values for European and African Americans, but not for Hispanic Americans. The Third National Health and Nutrition Examination Survey defines Hispanic as individuals of Spanish speaking cultures. While no group was excluded from the target population, sample size requirements only allowed inclusion of individuals who identified themselves as Mexican Americans. This research constructs nonparametric reference value confidence intervals for Hispanic American pulmonary function. The method is applicable to all ethnicities. We use empirical likelihood confidence intervals to establish normal ranges for reference values. Its major advantage: it is model free, but shares asymptotic properties of model based methods. Statistical comparisons indicate that empirical likelihood interval lengths are comparable to normal theory intervals. Power and efficiency studies agree with previously published theoretical results.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavanaugh, J.E.; McQuarrie, A.D.; Shumway, R.H.

    Conventional methods for discriminating between earthquakes and explosions at regional distances have concentrated on extracting specific features such as amplitude and spectral ratios from the waveforms of the P and S phases. We consider here an optimum nonparametric classification procedure derived from the classical approach to discriminating between two Gaussian processes with unequal spectra. Two robust variations based on the minimum discrimination information statistic and Renyi's entropy are also considered. We compare the optimum classification procedure with various amplitude and spectral ratio discriminants and show that its performance is superior when applied to a small population of 8 land-based earthquakesmore » and 8 mining explosions recorded in Scandinavia. Several parametric characterizations of the notion of complexity based on modeling earthquakes and explosions as autoregressive or modulated autoregressive processes are also proposed and their performance compared with the nonparametric and feature extraction approaches.« less

  12. A functional U-statistic method for association analysis of sequencing data.

    PubMed

    Jadhav, Sneha; Tong, Xiaoran; Lu, Qing

    2017-11-01

    Although sequencing studies hold great promise for uncovering novel variants predisposing to human diseases, the high dimensionality of the sequencing data brings tremendous challenges to data analysis. Moreover, for many complex diseases (e.g., psychiatric disorders) multiple related phenotypes are collected. These phenotypes can be different measurements of an underlying disease, or measurements characterizing multiple related diseases for studying common genetic mechanism. Although jointly analyzing these phenotypes could potentially increase the power of identifying disease-associated genes, the different types of phenotypes pose challenges for association analysis. To address these challenges, we propose a nonparametric method, functional U-statistic method (FU), for multivariate analysis of sequencing data. It first constructs smooth functions from individuals' sequencing data, and then tests the association of these functions with multiple phenotypes by using a U-statistic. The method provides a general framework for analyzing various types of phenotypes (e.g., binary and continuous phenotypes) with unknown distributions. Fitting the genetic variants within a gene using a smoothing function also allows us to capture complexities of gene structure (e.g., linkage disequilibrium, LD), which could potentially increase the power of association analysis. Through simulations, we compared our method to the multivariate outcome score test (MOST), and found that our test attained better performance than MOST. In a real data application, we apply our method to the sequencing data from Minnesota Twin Study (MTS) and found potential associations of several nicotine receptor subunit (CHRN) genes, including CHRNB3, associated with nicotine dependence and/or alcohol dependence. © 2017 WILEY PERIODICALS, INC.

  13. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography

    PubMed Central

    Tweedell, Andrew J.; Haynes, Courtney A.

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60–90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity. PMID:28489897

  14. Guidelines for the design and statistical analysis of experiments in papers submitted to ATLA.

    PubMed

    Festing, M F

    2001-01-01

    In vitro experiments need to be well designed and correctly analysed if they are to achieve their full potential to replace the use of animals in research. An "experiment" is a procedure for collecting scientific data in order to answer a hypothesis, or to provide material for generating new hypotheses, and differs from a survey because the scientist has control over the treatments that can be applied. Most experiments can be classified into one of a few formal designs, the most common being completely randomised, and randomised block designs. These are quite common with in vitro experiments, which are often replicated in time. Some experiments involve a single independent (treatment) variable, while other "factorial" designs simultaneously vary two or more independent variables, such as drug treatment and cell line. Factorial designs often provide additional information at little extra cost. Experiments need to be carefully planned to avoid bias, be powerful yet simple, provide for a valid statistical analysis and, in some cases, have a wide range of applicability. Virtually all experiments need some sort of statistical analysis in order to take account of biological variation among the experimental subjects. Parametric methods using the t test or analysis of variance are usually more powerful than non-parametric methods, provided the underlying assumptions of normality of the residuals and equal variances are approximately valid. The statistical analyses of data from a completely randomised design, and from a randomised-block design are demonstrated in Appendices 1 and 2, and methods of determining sample size are discussed in Appendix 3. Appendix 4 gives a checklist for authors submitting papers to ATLA.

  15. Simultaneous use of multiplex ligation-dependent probe amplification assay and flow cytometric DNA ploidy analysis in patients with acute leukemia.

    PubMed

    Reyes-Núñez, Virginia; Galo-Hooker, Evelyn; Pérez-Romano, Beatriz; Duque, Ricardo E; Ruiz-Arguelles, Alejandro; Garcés-Eisele, Javier

    2018-01-01

    The aim of this work was to simultaneously use multiplex ligation-dependent probe amplification (MLPA) assay and flow cytometric DNA ploidy analysis (FPA) to detect aneuploidy in patients with newly diagnosed acute leukemia. MLPA assay and propidium iodide FPA were used to test samples from 53 consecutive patients with newly diagnosed acute leukemia referred to our laboratory for immunophenotyping. Results were compared by nonparametric statistics. The combined use of both methods significantly increased the rate of detection of aneuploidy as compared to that obtained by each method alone. The limitations of one method are somehow countervailed by the other and vice versa. MPLA and FPA yield different yet complementary information concerning aneuploidy in acute leukemia. The simultaneous use of both methods might be recommended in the clinical setting. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.

  16. Spatial Point Pattern Analysis of Neurons Using Ripley's K-Function in 3D

    PubMed Central

    Jafari-Mamaghani, Mehrdad; Andersson, Mikael; Krieger, Patrik

    2010-01-01

    The aim of this paper is to apply a non-parametric statistical tool, Ripley's K-function, to analyze the 3-dimensional distribution of pyramidal neurons. Ripley's K-function is a widely used tool in spatial point pattern analysis. There are several approaches in 2D domains in which this function is executed and analyzed. Drawing consistent inferences on the underlying 3D point pattern distributions in various applications is of great importance as the acquisition of 3D biological data now poses lesser of a challenge due to technological progress. As of now, most of the applications of Ripley's K-function in 3D domains do not focus on the phenomenon of edge correction, which is discussed thoroughly in this paper. The main goal is to extend the theoretical and practical utilization of Ripley's K-function and corresponding tests based on bootstrap resampling from 2D to 3D domains. PMID:20577588

  17. GMHDIF: A Computer Program for Detecting DIF in Dichotomous and Polytomous Items Using Generalized Mantel-Haenszel Statistics

    ERIC Educational Resources Information Center

    Fidalgo, Angel M.

    2011-01-01

    Mantel-Haenszel (MH) methods constitute one of the most popular nonparametric differential item functioning (DIF) detection procedures. GMHDIF has been developed to provide an easy-to-use program for conducting DIF analyses. Some of the advantages of this program are that (a) it performs two-stage DIF analyses in multiple groups simultaneously;…

  18. Human Rights Event Detection from Heterogeneous Social Media Graphs.

    PubMed

    Chen, Feng; Neill, Daniel B

    2015-03-01

    Human rights organizations are increasingly monitoring social media for identification, verification, and documentation of human rights violations. Since manual extraction of events from the massive amount of online social network data is difficult and time-consuming, we propose an approach for automated, large-scale discovery and analysis of human rights-related events. We apply our recently developed Non-Parametric Heterogeneous Graph Scan (NPHGS), which models social media data such as Twitter as a heterogeneous network (with multiple different node types, features, and relationships) and detects emerging patterns in the network, to identify and characterize human rights events. NPHGS efficiently maximizes a nonparametric scan statistic (an aggregate measure of anomalousness) over connected subgraphs of the heterogeneous network to identify the most anomalous network clusters. It summarizes each event with information such as type of event, geographical locations, time, and participants, and provides documentation such as links to videos and news reports. Building on our previous work that demonstrates the utility of NPHGS for civil unrest prediction and rare disease outbreak detection, we present an analysis of human rights events detected by NPHGS using two years of Twitter data from Mexico. NPHGS was able to accurately detect relevant clusters of human rights-related tweets prior to international news sources, and in some cases, prior to local news reports. Analysis of social media using NPHGS could enhance the information-gathering missions of human rights organizations by pinpointing specific abuses, revealing events and details that may be blocked from traditional media sources, and providing evidence of emerging patterns of human rights violations. This could lead to more timely, targeted, and effective advocacy, as well as other potential interventions.

  19. Meta-analysis of genome-wide linkage studies in BMI and obesity.

    PubMed

    Saunders, Catherine L; Chiodini, Benedetta D; Sham, Pak; Lewis, Cathryn M; Abkevich, Victor; Adeyemo, Adebowale A; de Andrade, Mariza; Arya, Rector; Berenson, Gerald S; Blangero, John; Boehnke, Michael; Borecki, Ingrid B; Chagnon, Yvon C; Chen, Wei; Comuzzie, Anthony G; Deng, Hong-Wen; Duggirala, Ravindranath; Feitosa, Mary F; Froguel, Philippe; Hanson, Robert L; Hebebrand, Johannes; Huezo-Dias, Patricia; Kissebah, Ahmed H; Li, Weidong; Luke, Amy; Martin, Lisa J; Nash, Matthew; Ohman, Miina; Palmer, Lyle J; Peltonen, Leena; Perola, Markus; Price, R Arlen; Redline, Susan; Srinivasan, Sathanur R; Stern, Michael P; Stone, Steven; Stringham, Heather; Turner, Stephen; Wijmenga, Cisca; Collier, David A

    2007-09-01

    The objective was to provide an overall assessment of genetic linkage data of BMI and BMI-defined obesity using a nonparametric genome scan meta-analysis. We identified 37 published studies containing data on over 31,000 individuals from more than >10,000 families and obtained genome-wide logarithm of the odds (LOD) scores, non-parametric linkage (NPL) scores, or maximum likelihood scores (MLS). BMI was analyzed in a pooled set of all studies, as a subgroup of 10 studies that used BMI-defined obesity, and for subgroups ascertained through type 2 diabetes, hypertension, or subjects of European ancestry. Bins at chromosome 13q13.2- q33.1, 12q23-q24.3 achieved suggestive evidence of linkage to BMI in the pooled analysis and samples ascertained for hypertension. Nominal evidence of linkage to these regions and suggestive evidence for 11q13.3-22.3 were also observed for BMI-defined obesity. The FTO obesity gene locus at 16q12.2 also showed nominal evidence for linkage. However, overall distribution of summed rank p values <0.05 is not different from that expected by chance. The strongest evidence was obtained in the families ascertained for hypertension at 9q31.1-qter and 12p11.21-q23 (p < 0.01). Despite having substantial statistical power, we did not unequivocally implicate specific loci for BMI or obesity. This may be because genes influencing adiposity are of very small effect, with substantial genetic heterogeneity and variable dependence on environmental factors. However, the observation that the FTO gene maps to one of the highest ranking bins for obesity is interesting and, while not a validation of this approach, indicates that other potential loci identified in this study should be investigated further.

  20. Evidence for a strong sulfur-aromatic interaction derived from crystallographic data.

    PubMed

    Zauhar, R J; Colbert, C L; Morgan, R S; Welsh, W J

    2000-03-01

    We have uncovered new evidence for a significant interaction between divalent sulfur atoms and aromatic rings. Our study involves a statistical analysis of interatomic distances and other geometric descriptors derived from entries in the Cambridge Crystallographic Database (F. H. Allen and O. Kennard, Chem. Design Auto. News, 1993, Vol. 8, pp. 1 and 31-37). A set of descriptors was defined sufficient in number and type so as to elucidate completely the preferred geometry of interaction between six-membered aromatic carbon rings and divalent sulfurs for all crystal structures of nonmetal-bearing organic compounds present in the database. In order to test statistical significance, analogous probability distributions for the interaction of the moiety X-CH(2)-X with aromatic rings were computed, and taken a priori to correspond to the null hypothesis of no significant interaction. Tests of significance were carried our pairwise between probability distributions of sulfur-aromatic interaction descriptors and their CH(2)-aromatic analogues using the Smirnov-Kolmogorov nonparametric test (W. W. Daniel, Applied Nonparametric Statistics, Houghton-Mifflin: Boston, New York, 1978, pp. 276-286), and in all cases significance at the 99% confidence level or better was observed. Local maxima of the probability distributions were used to define a preferred geometry of interaction between the divalent sulfur moiety and the aromatic ring. Molecular mechanics studies were performed in an effort to better understand the physical basis of the interaction. This study confirms observations based on statistics of interaction of amino acids in protein crystal structures (R. S. Morgan, C. E. Tatsch, R. H. Gushard, J. M. McAdon, and P. K. Warme, International Journal of Peptide Protein Research, 1978, Vol. 11, pp. 209-217; R. S. Morgan and J. M. McAdon, International Journal of Peptide Protein Research, 1980, Vol. 15, pp. 177-180; K. S. C. Reid, P. F. Lindley, and J. M. Thornton, FEBS Letters, 1985, Vol. 190, pp. 209-213), as well as studies involving molecular mechanics (G. Nemethy and H. A. Scheraga, Biochemistry and Biophysics Research Communications, 1981, Vol. 98, pp. 482-487) and quantum chemical calculations (B. V. Cheney, M. W. Schulz, and J. Cheney, Biochimica Biophysica Acta, 1989, Vol. 996, pp.116-124; J. Pranata, Bioorganic Chemistry, 1997, Vol. 25, pp. 213-219)-all of which point to the possible importance of the sulfur-aromatic interaction. However, the preferred geometry of the interaction, as determined from our analysis of the small-molecule crystal data, differs significantly from that found by other approaches. Copyright 2000 John Wiley & Sons, Inc.

  1. The Dundee Ready Education Environment Measure (DREEM): a review of its adoption and use.

    PubMed

    Miles, Susan; Swift, Louise; Leinster, Sam J

    2012-01-01

    The Dundee Ready Education Environment Measure (DREEM) was published in 1997 as a tool to evaluate educational environments of medical schools and other health training settings and a recent review concluded that it was the most suitable such instrument. This study aimed to review the settings and purposes to which the DREEM has been applied and the approaches used to analyse and report it, with a view to guiding future users towards appropriate methodology. A systematic literature review was conducted using the Web of Knowledge databases of all articles reporting DREEM data between 1997 and 4 January 2011. The review found 40 publications, using data from 20 countries. DREEM is used in evaluation for diagnostic purposes, comparison between different groups and comparison with ideal/expected scores. A variety of non-parametric and parametric statistical methods have been applied, but their use is inconsistent. DREEM has been used internationally for different purposes and is regarded as a useful tool by users. However, reporting and analysis differs between publications. This lack of uniformity makes comparison between institutions difficult. Most users of DREEM are not statisticians and there is a need for informed guidelines on its reporting and statistical analysis.

  2. Detecting trend on ecological river status - how to deal with short incomplete bioindicator time series? Methodological and operational issues

    NASA Astrophysics Data System (ADS)

    Cernesson, Flavie; Tournoud, Marie-George; Lalande, Nathalie

    2018-06-01

    Among the various parameters monitored in river monitoring networks, bioindicators provide very informative data. Analysing time variations in bioindicator data is tricky for water managers because the data sets are often short, irregular, and non-normally distributed. It is then a challenging methodological issue for scientists, as it is in Saône basin (30 000 km2, France) where, between 1998 and 2010, among 812 IBGN (French macroinvertebrate bioindicator) monitoring stations, only 71 time series have got more than 10 data values and were studied here. Combining various analytical tools (three parametric and non-parametric statistical tests plus a graphical analysis), 45 IBGN time series were classified as stationary and 26 as non-stationary (only one of which showing a degradation). Series from sampling stations located within the same hydroecoregion showed similar trends, while river size classes seemed to be non-significant to explain temporal trends. So, from a methodological point of view, combining statistical tests and graphical analysis is a relevant option when striving to improve trend detection. Moreover, it was possible to propose a way to summarise series in order to analyse links between ecological river quality indicators and land use stressors.

  3. Trend analysis of annual precipitation of Mauritius for the period 1981-2010

    NASA Astrophysics Data System (ADS)

    Raja, Nussaïbah B.; Aydin, Olgu

    2018-04-01

    This study researched the precipitation variability across 53 meteorological stations in Mauritius and different subregions of the island, over a 30-year study period (1981-2010). Time series was investigated for each 5-year interval and also for the whole study period. Non-parametric Mann-Kendall and Spearman's rho statistical tests were used to detect trends in annual precipitation. A mix of positive (increasing) and negative (decreasing) trends was highlighted for the 5-year interval analysis. The statistical tests nevertheless agreed on the overall trend for Mauritius and the subregions. Most regions showed a decrease in precipitation during the period 1996-2000. This is attributed to the 1998-2000 drought period which was brought about by a moderate La Niña event. In general, an increase in precipitation levels was observed across the country during the study period. This increase is the result of an increase in extreme precipitation events in the region. On the other hand, two subregions, both located in the highlands, experienced a decline in precipitation levels. Since most of the reservoirs in Mauritius are located in these two subregions, this implies serious consequences for water availability in the country if existing storage capacities are kept.

  4. Exploiting Complexity Information for Brain Activation Detection

    PubMed Central

    Zhang, Yan; Liang, Jiali; Lin, Qiang; Hu, Zhenghui

    2016-01-01

    We present a complexity-based approach for the analysis of fMRI time series, in which sample entropy (SampEn) is introduced as a quantification of the voxel complexity. Under this hypothesis the voxel complexity could be modulated in pertinent cognitive tasks, and it changes through experimental paradigms. We calculate the complexity of sequential fMRI data for each voxel in two distinct experimental paradigms and use a nonparametric statistical strategy, the Wilcoxon signed rank test, to evaluate the difference in complexity between them. The results are compared with the well known general linear model based Statistical Parametric Mapping package (SPM12), where a decided difference has been observed. This is because SampEn method detects brain complexity changes in two experiments of different conditions and the data-driven method SampEn evaluates just the complexity of specific sequential fMRI data. Also, the larger and smaller SampEn values correspond to different meanings, and the neutral-blank design produces higher predictability than threat-neutral. Complexity information can be considered as a complementary method to the existing fMRI analysis strategies, and it may help improving the understanding of human brain functions from a different perspective. PMID:27045838

  5. Comparative effects of conjugated linoleic acid (CLA) and linoleic acid (LA) on the oxidoreduction status in THP-1 macrophages.

    PubMed

    Rybicka, Marta; Stachowska, Ewa; Gutowska, Izabela; Parczewski, Miłosz; Baśkiewicz, Magdalena; Machaliński, Bogusław; Boroń-Kaczmarska, Anna; Chlubek, Dariusz

    2011-04-27

    The aim of this study was to investigate the effect of conjugated linoleic acids (CLAs) on macrophage reactive oxygen species synthesis and the activity and expression of antioxidant enzymes, catalase (Cat), glutathione peroxidase (GPx), and superoxide dismutase (SOD). The macrophages were obtained from the THP-1 monocytic cell line. Cells were incubated with the addition of cis-9,trans-11 CLA or trans-10,cis-12 CLA or linoleic acid. Reactive oxygen species (ROS) formation was estimated by flow cytometry. Enzymes activity was measured spectrophotometrically. The antioxidant enzyme mRNA expression was estimated by real-time reverse transcriptase polymerase chain reaction (RT-PCR). Statistical analysis was based on nonparametric statistical tests [Friedman analysis of variation (ANOVA) and Wilcoxon signed-rank test]. cis-9,trans-11 CLA significantly increased the activity of Cat, while trans-10,cis-12 CLA notably influenced GPx activity. Both isomers significantly decreased mRNA expression for Cat. Only trans-10,cis-12 significantly influenced mRNA for SOD-2 expression. The CLAs activate processes of the ROS formation in macrophages. Adverse metabolic effects of each isomer action were observed.

  6. The Impact of Arts Activity on Nursing Staff Well-Being: An Intervention in the Workplace

    PubMed Central

    Karpavičiūtė, Simona; Macijauskienė, Jūratė

    2016-01-01

    Over 59 million workers are employed in the healthcare sector globally, with a daily risk of being exposed to a complex variety of health and safety hazards. The purpose of this study was to investigate the impact of arts activity on the well-being of nursing staff. During October–December 2014, 115 nursing staff working in a hospital, took part in this study, which lasted for 10 weeks. The intervention group (n = 56) took part in silk painting activities once a week. Data was collected using socio-demographic questions, the Warwick-Edinburgh Mental Well-Being Scale, Short Form—36 Health Survey questionnaire, Reeder stress scale, and Multidimensional fatigue inventory (before and after art activities in both groups). Statistical data analysis included descriptive statistics (frequency, percentage, mean, standard deviation), non-parametric statistics analysis (Man Whitney U Test; Wilcoxon signed—ranks test), Fisher’s exact test and reliability analysis (Cronbach’s Alpha). The level of significance was set at p ≤ 0.05. In the intervention group, there was a tendency for participation in arts activity having a positive impact on their general health and mental well-being, reducing stress and fatigue, awaking creativity and increasing a sense of community at work. The control group did not show any improvements. Of the intervention group 93% reported enjoyment, with 75% aspiring to continue arts activity in the future. This research suggests that arts activity, as a workplace intervention, can be used to promote nursing staff well-being at work. PMID:27104550

  7. Analyzing the efficiency of small and medium-sized enterprises of a national technology innovation research and development program.

    PubMed

    Park, Sungmin

    2014-01-01

    This study analyzes the efficiency of small and medium-sized enterprises (SMEs) of a national technology innovation research and development (R&D) program. In particular, an empirical analysis is presented that aims to answer the following question: "Is there a difference in the efficiency between R&D collaboration types and between government R&D subsidy sizes?" Methodologically, the efficiency of a government-sponsored R&D project (i.e., GSP) is measured by Data Envelopment Analysis (DEA), and a nonparametric analysis of variance method, the Kruskal-Wallis (KW) test is adopted to see if the efficiency differences between R&D collaboration types and between government R&D subsidy sizes are statistically significant. This study's major findings are as follows. First, contrary to our hypothesis, when we controlled the influence of government R&D subsidy size, there was no statistically significant difference in the efficiency between R&D collaboration types. However, the R&D collaboration type, "SME-University-Laboratory" Joint-Venture was superior to the others, achieving the largest median and the smallest interquartile range of DEA efficiency scores. Second, the differences in the efficiency were statistically significant between government R&D subsidy sizes, and the phenomenon of diseconomies of scale was identified on the whole. As the government R&D subsidy size increases, the central measures of DEA efficiency scores were reduced, but the dispersion measures rather tended to get larger.

  8. Kendall-Theil Robust Line (KTRLine--version 1.0)-A Visual Basic Program for Calculating and Graphing Robust Nonparametric Estimates of Linear-Regression Coefficients Between Two Continuous Variables

    USGS Publications Warehouse

    Granato, Gregory E.

    2006-01-01

    The Kendall-Theil Robust Line software (KTRLine-version 1.0) is a Visual Basic program that may be used with the Microsoft Windows operating system to calculate parameters for robust, nonparametric estimates of linear-regression coefficients between two continuous variables. The KTRLine software was developed by the U.S. Geological Survey, in cooperation with the Federal Highway Administration, for use in stochastic data modeling with local, regional, and national hydrologic data sets to develop planning-level estimates of potential effects of highway runoff on the quality of receiving waters. The Kendall-Theil robust line was selected because this robust nonparametric method is resistant to the effects of outliers and nonnormality in residuals that commonly characterize hydrologic data sets. The slope of the line is calculated as the median of all possible pairwise slopes between points. The intercept is calculated so that the line will run through the median of input data. A single-line model or a multisegment model may be specified. The program was developed to provide regression equations with an error component for stochastic data generation because nonparametric multisegment regression tools are not available with the software that is commonly used to develop regression models. The Kendall-Theil robust line is a median line and, therefore, may underestimate total mass, volume, or loads unless the error component or a bias correction factor is incorporated into the estimate. Regression statistics such as the median error, the median absolute deviation, the prediction error sum of squares, the root mean square error, the confidence interval for the slope, and the bias correction factor for median estimates are calculated by use of nonparametric methods. These statistics, however, may be used to formulate estimates of mass, volume, or total loads. The program is used to read a two- or three-column tab-delimited input file with variable names in the first row and data in subsequent rows. The user may choose the columns that contain the independent (X) and dependent (Y) variable. A third column, if present, may contain metadata such as the sample-collection location and date. The program screens the input files and plots the data. The KTRLine software is a graphical tool that facilitates development of regression models by use of graphs of the regression line with data, the regression residuals (with X or Y), and percentile plots of the cumulative frequency of the X variable, Y variable, and the regression residuals. The user may individually transform the independent and dependent variables to reduce heteroscedasticity and to linearize data. The program plots the data and the regression line. The program also prints model specifications and regression statistics to the screen. The user may save and print the regression results. The program can accept data sets that contain up to about 15,000 XY data points, but because the program must sort the array of all pairwise slopes, the program may be perceptibly slow with data sets that contain more than about 1,000 points.

  9. Genetic Algorithm Based Framework for Automation of Stochastic Modeling of Multi-Season Streamflows

    NASA Astrophysics Data System (ADS)

    Srivastav, R. K.; Srinivasan, K.; Sudheer, K.

    2009-05-01

    Synthetic streamflow data generation involves the synthesis of likely streamflow patterns that are statistically indistinguishable from the observed streamflow data. The various kinds of stochastic models adopted for multi-season streamflow generation in hydrology are: i) parametric models which hypothesize the form of the periodic dependence structure and the distributional form a priori (examples are PAR, PARMA); disaggregation models that aim to preserve the correlation structure at the periodic level and the aggregated annual level; ii) Nonparametric models (examples are bootstrap/kernel based methods), which characterize the laws of chance, describing the stream flow process, without recourse to prior assumptions as to the form or structure of these laws; (k-nearest neighbor (k-NN), matched block bootstrap (MABB)); non-parametric disaggregation model. iii) Hybrid models which blend both parametric and non-parametric models advantageously to model the streamflows effectively. Despite many of these developments that have taken place in the field of stochastic modeling of streamflows over the last four decades, accurate prediction of the storage and the critical drought characteristics has been posing a persistent challenge to the stochastic modeler. This is partly because, usually, the stochastic streamflow model parameters are estimated by minimizing a statistically based objective function (such as maximum likelihood (MLE) or least squares (LS) estimation) and subsequently the efficacy of the models is being validated based on the accuracy of prediction of the estimates of the water-use characteristics, which requires large number of trial simulations and inspection of many plots and tables. Still accurate prediction of the storage and the critical drought characteristics may not be ensured. In this study a multi-objective optimization framework is proposed to find the optimal hybrid model (blend of a simple parametric model, PAR(1) model and matched block bootstrap (MABB) ) based on the explicit objective functions of minimizing the relative bias and relative root mean square error in estimating the storage capacity of the reservoir. The optimal parameter set of the hybrid model is obtained based on the search over a multi- dimensional parameter space (involving simultaneous exploration of the parametric (PAR(1)) as well as the non-parametric (MABB) components). This is achieved using the efficient evolutionary search based optimization tool namely, non-dominated sorting genetic algorithm - II (NSGA-II). This approach helps in reducing the drudgery involved in the process of manual selection of the hybrid model, in addition to predicting the basic summary statistics dependence structure, marginal distribution and water-use characteristics accurately. The proposed optimization framework is used to model the multi-season streamflows of River Beaver and River Weber of USA. In case of both the rivers, the proposed GA-based hybrid model yields a much better prediction of the storage capacity (where simultaneous exploration of both parametric and non-parametric components is done) when compared with the MLE-based hybrid models (where the hybrid model selection is done in two stages, thus probably resulting in a sub-optimal model). This framework can be further extended to include different linear/non-linear hybrid stochastic models at other temporal and spatial scales as well.

  10. Immunity to Salmonella typhi: considerations relevant to measurement of cellular immunity in typhoid-endemic regions.

    PubMed Central

    Murphy, J R; Wasserman, S S; Baqar, S; Schlesinger, L; Ferreccio, C; Lindberg, A A; Levine, M M

    1989-01-01

    Experiments were performed in Baltimore, Maryland and in Santiago, Chile, to determine the level of Salmonella typhi antigen-driven in vitro lymphocyte replication response which signifies specific acquired immunity to this bacterium and to determine the best method of data analysis and form of data presentation. Lymphocyte replication was measured as incorporation of 3H-thymidine into desoxyribonucleic acid. Data (ct/min/culture) were analyzed in raw form and following log transformation, by non-parametric and parametric statistical procedures. A preference was developed for log-transformed data and discriminant analysis. Discriminant analysis of log-transformed data revealed 3H-thymidine incorporation rates greater than 3,433 for particulate S. typhi, Ty2 antigen stimulated cultures signified acquired immunity at a sensitivity and specificity of 82.7; for soluble S. typhi O polysaccharide antigen-stimulated cultures, ct/min/culture values of greater than 1,237 signified immunity (sensitivity and specificity 70.5%). PMID:2702777

  11. HRV analysis in local anesthesia using Continuous Wavelet Transform (CWT).

    PubMed

    Shafqat, K; Pal, S K; Kumari, S; Kyriacou, P A

    2011-01-01

    Spectral analysis of Heart Rate Variability (HRV) is used for the assessment of cardiovascular autonomic control. In this study Continuous Wavelet Transform (CWT) has been used to evaluate the effect of local anesthesia on HRV parameters in a group of fourteen patients undergoing axillary brachial plexus block. A new method which takes signal characteristics into account has been presented for the estimation of the variable boundaries associated with the low and the high frequency band of the HRV signal. The variable boundary method might be useful in cases when the power related to respiration component extends beyond the traditionally excepted range of the high frequency band (0.15-0.4 Hz). The statistical analysis (non-parametric Wilcoxon signed rank test) showed that the LF/HF ratio decreased within an hour of the application of the brachial plexus block compared to the values fifteen minutes prior to the application of the block. These changes were observed in thirteen of the fourteen patients included in this study.

  12. A Mokken scale analysis of the peer physical examination questionnaire.

    PubMed

    Vaughan, Brett; Grace, Sandra

    2018-01-01

    Peer physical examination (PPE) is a teaching and learning strategy utilised in most health profession education programs. Perceptions of participating in PPE have been described in the literature, focusing on areas of the body students are willing, or unwilling, to examine. A small number of questionnaires exist to evaluate these perceptions, however none have described the measurement properties that may allow them to be used longitudinally. The present study undertook a Mokken scale analysis of the Peer Physical Examination Questionnaire (PPEQ) to evaluate its dimensionality and structure when used with Australian osteopathy students. Students enrolled in Year 1 of the osteopathy programs at Victoria University (Melbourne, Australia) and Southern Cross University (Lismore, Australia) were invited to complete the PPEQ prior to their first practical skills examination class. R, an open-source statistics program, was used to generate the descriptive statistics and perform a Mokken scale analysis. Mokken scale analysis is a non-parametric item response theory approach that is used to cluster items measuring a latent construct. Initial analysis suggested the PPEQ did not form a single scale. Further analysis identified three subscales: 'comfort', 'concern', and 'professionalism and education'. The properties of each subscale suggested they were unidimensional with variable internal structures. The 'comfort' subscale was the strongest of the three identified. All subscales demonstrated acceptable reliability estimation statistics (McDonald's omega > 0.75) supporting the calculation of a sum score for each subscale. The subscales identified are consistent with the literature. The 'comfort' subscale may be useful to longitudinally evaluate student perceptions of PPE. Further research is required to evaluate changes with PPE and the utility of the questionnaire with other health profession education programs.

  13. Generalized reduced rank latent factor regression for high dimensional tensor fields, and neuroimaging-genetic applications

    PubMed Central

    Tao, Chenyang; Nichols, Thomas E.; Hua, Xue; Ching, Christopher R.K.; Rolls, Edmund T.; Thompson, Paul M.; Feng, Jianfeng

    2017-01-01

    We propose a generalized reduced rank latent factor regression model (GRRLF) for the analysis of tensor field responses and high dimensional covariates. The model is motivated by the need from imaging-genetic studies to identify genetic variants that are associated with brain imaging phenotypes, often in the form of high dimensional tensor fields. GRRLF identifies from the structure in the data the effective dimensionality of the data, and then jointly performs dimension reduction of the covariates, dynamic identification of latent factors, and nonparametric estimation of both covariate and latent response fields. After accounting for the latent and covariate effects, GRLLF performs a nonparametric test on the remaining factor of interest. GRRLF provides a better factorization of the signals compared with common solutions, and is less susceptible to overfitting because it exploits the effective dimensionality. The generality and the flexibility of GRRLF also allow various statistical models to be handled in a unified framework and solutions can be efficiently computed. Within the field of neuroimaging, it improves the sensitivity for weak signals and is a promising alternative to existing approaches. The operation of the framework is demonstrated with both synthetic datasets and a real-world neuroimaging example in which the effects of a set of genes on the structure of the brain at the voxel level were measured, and the results compared favorably with those from existing approaches. PMID:27666385

  14. Comparative Assessment of Copper, Iron, and Zinc Contents in Selected Indian (Assam) and South African (Thohoyandou) Tea (Camellia sinensis L.) Samples and Their Infusion: A Quest for Health Risks to Consumer.

    PubMed

    Karak, Tanmoy; Paul, Ranjit Kumar; Kutu, Funso Raphael; Mehra, Aradhana; Khare, Puja; Dutta, Amrit Kumar; Bora, Krishnamoni; Boruah, Romesh Kumar

    2017-02-01

    The current study aims to assess the infusion pattern of three important micronutrients namely copper (Cu), iron (Fe), and zinc (Zn) contents from black tea samples produced in Assam (India) and Thohoyandou (South Africa). Average daily intakes and hazardous quotient were reported for these micronutrients. Total content for Cu, Fe, and Zn varied from 2.25 to 48.82 mg kg -1 , 14.75 to 148.18 mg kg -1 , and 28.48 to 106.68 mg kg -1 , respectively. The average contents of each of the three micronutrients were higher in tea leaves samples collected from South Africa than those from India while the contents in tea infusions in Indian samples were higher than in South African tea samples. Results of this study revealed that the consumption of 600 mL tea infusion produced from 24 g of made tea per day may be beneficial to human in terms of these micronutrients content. Application of nonparametric tests revealed that most of the data sets do not satisfy the normality assumptions. Hence, the use of both parametric and nonparametric statistical analysis that subsequently revealed significant differences in elemental contents among Indian and South African tea.

  15. Testing independence of bivariate interval-censored data using modified Kendall's tau statistic.

    PubMed

    Kim, Yuneung; Lim, Johan; Park, DoHwan

    2015-11-01

    In this paper, we study a nonparametric procedure to test independence of bivariate interval censored data; for both current status data (case 1 interval-censored data) and case 2 interval-censored data. To do it, we propose a score-based modification of the Kendall's tau statistic for bivariate interval-censored data. Our modification defines the Kendall's tau statistic with expected numbers of concordant and disconcordant pairs of data. The performance of the modified approach is illustrated by simulation studies and application to the AIDS study. We compare our method to alternative approaches such as the two-stage estimation method by Sun et al. (Scandinavian Journal of Statistics, 2006) and the multiple imputation method by Betensky and Finkelstein (Statistics in Medicine, 1999b). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Statistical modelling of networked human-automation performance using working memory capacity.

    PubMed

    Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja

    2014-01-01

    This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.

  17. Experimental and environmental factors affect spurious detection of ecological thresholds

    USGS Publications Warehouse

    Daily, Jonathan P.; Hitt, Nathaniel P.; Smith, David; Snyder, Craig D.

    2012-01-01

    Threshold detection methods are increasingly popular for assessing nonlinear responses to environmental change, but their statistical performance remains poorly understood. We simulated linear change in stream benthic macroinvertebrate communities and evaluated the performance of commonly used threshold detection methods based on model fitting (piecewise quantile regression [PQR]), data partitioning (nonparametric change point analysis [NCPA]), and a hybrid approach (significant zero crossings [SiZer]). We demonstrated that false detection of ecological thresholds (type I errors) and inferences on threshold locations are influenced by sample size, rate of linear change, and frequency of observations across the environmental gradient (i.e., sample-environment distribution, SED). However, the relative importance of these factors varied among statistical methods and between inference types. False detection rates were influenced primarily by user-selected parameters for PQR (τ) and SiZer (bandwidth) and secondarily by sample size (for PQR) and SED (for SiZer). In contrast, the location of reported thresholds was influenced primarily by SED. Bootstrapped confidence intervals for NCPA threshold locations revealed strong correspondence to SED. We conclude that the choice of statistical methods for threshold detection should be matched to experimental and environmental constraints to minimize false detection rates and avoid spurious inferences regarding threshold location.

  18. Evaluation of model-based versus non-parametric monaural noise-reduction approaches for hearing aids.

    PubMed

    Harlander, Niklas; Rosenkranz, Tobias; Hohmann, Volker

    2012-08-01

    Single channel noise reduction has been well investigated and seems to have reached its limits in terms of speech intelligibility improvement, however, the quality of such schemes can still be advanced. This study tests to what extent novel model-based processing schemes might improve performance in particular for non-stationary noise conditions. Two prototype model-based algorithms, a speech-model-based, and a auditory-model-based algorithm were compared to a state-of-the-art non-parametric minimum statistics algorithm. A speech intelligibility test, preference rating, and listening effort scaling were performed. Additionally, three objective quality measures for the signal, background, and overall distortions were applied. For a better comparison of all algorithms, particular attention was given to the usage of the similar Wiener-based gain rule. The perceptual investigation was performed with fourteen hearing-impaired subjects. The results revealed that the non-parametric algorithm and the auditory model-based algorithm did not affect speech intelligibility, whereas the speech-model-based algorithm slightly decreased intelligibility. In terms of subjective quality, both model-based algorithms perform better than the unprocessed condition and the reference in particular for highly non-stationary noise environments. Data support the hypothesis that model-based algorithms are promising for improving performance in non-stationary noise conditions.

  19. L-statistics for Repeated Measurements Data With Application to Trimmed Means, Quantiles and Tolerance Intervals.

    PubMed

    Assaad, Houssein I; Choudhary, Pankaj K

    2013-01-01

    The L -statistics form an important class of estimators in nonparametric statistics. Its members include trimmed means and sample quantiles and functions thereof. This article is devoted to theory and applications of L -statistics for repeated measurements data, wherein the measurements on the same subject are dependent and the measurements from different subjects are independent. This article has three main goals: (a) Show that the L -statistics are asymptotically normal for repeated measurements data. (b) Present three statistical applications of this result, namely, location estimation using trimmed means, quantile estimation and construction of tolerance intervals. (c) Obtain a Bahadur representation for sample quantiles. These results are generalizations of similar results for independently and identically distributed data. The practical usefulness of these results is illustrated by analyzing a real data set involving measurement of systolic blood pressure. The properties of the proposed point and interval estimators are examined via simulation.

  20. A Method for Assessing Change in Attitude: The McNemar Test.

    ERIC Educational Resources Information Center

    Ciechalski, Joseph C.; Pinkney, James W.; Weaver, Florence S.

    This paper illustrates the use of the McNemar Test, using a hypothetical problem. The McNemar Test is a nonparametric statistical test that is a type of chi square test using dependent, rather than independent, samples to assess before-after designs in which each subject is used as his or her own control. Results of the McNemar test make it…

  1. Nonparametric Conditional Estimation

    DTIC Science & Technology

    1987-02-01

    the data because the statistician has complete control over the method. It is especially reasonable when there is a bone fide loss function to which...For example, the sample mean is m(Fn). Most calculations that statisticians perform on a set of data can be expressed as statistical functionals on...of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering

  2. 10th Conference on Bayesian Nonparametrics

    DTIC Science & Technology

    2016-05-08

    RETURN YOUR FORM TO THE ABOVE ADDRESS. North Carolina State University 2701 Sullivan Drive Admin Srvcs III, Box 7514 Raleigh, NC 27695 -7514 ABSTRACT...the conference. The findings from the conference is widely disseminated. The conference web site displays slides of the talks presented in the...being published by the Electronic Journal of Statistics consisting of about 20 papers read at the conference. The conference web site displays

  3. rSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data.

    PubMed

    Shi, Yang; Chinnaiyan, Arul M; Jiang, Hui

    2015-07-01

    High-throughput sequencing of transcriptomes (RNA-Seq) has become a powerful tool to study gene expression. Here we present an R package, rSeqNP, which implements a non-parametric approach to test for differential expression and splicing from RNA-Seq data. rSeqNP uses permutation tests to access statistical significance and can be applied to a variety of experimental designs. By combining information across isoforms, rSeqNP is able to detect more differentially expressed or spliced genes from RNA-Seq data. The R package with its source code and documentation are freely available at http://www-personal.umich.edu/∼jianghui/rseqnp/. jianghui@umich.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Assessing T cell clonal size distribution: a non-parametric approach.

    PubMed

    Bolkhovskaya, Olesya V; Zorin, Daniil Yu; Ivanchenko, Mikhail V

    2014-01-01

    Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.

  5. Trends in selected streamflow statistics at 19 long-term streamflow-gaging stations indicative of outflows from Texas to Arkansas, Louisiana, Galveston Bay, and the Gulf of Mexico, 1922-2009

    USGS Publications Warehouse

    Barbie, Dana L.; Wehmeyer, Loren L.

    2012-01-01

    Trends in selected streamflow statistics during 1922-2009 were evaluated at 19 long-term streamflow-gaging stations considered indicative of outflows from Texas to Arkansas, Louisiana, Galveston Bay, and the Gulf of Mexico. The U.S. Geological Survey, in cooperation with the Texas Water Development Board, evaluated streamflow data from streamflow-gaging stations with more than 50 years of record that were active as of 2009. The outflows into Arkansas and Louisiana were represented by 3 streamflow-gaging stations, and outflows into the Gulf of Mexico, including Galveston Bay, were represented by 16 streamflow-gaging stations. Monotonic trend analyses were done using the following three streamflow statistics generated from daily mean values of streamflow: (1) annual mean daily discharge, (2) annual maximum daily discharge, and (3) annual minimum daily discharge. The trend analyses were based on the nonparametric Kendall's Tau test, which is useful for the detection of monotonic upward or downward trends with time. A total of 69 trend analyses by Kendall's Tau were computed - 19 periods of streamflow multiplied by the 3 streamflow statistics plus 12 additional trend analyses because the periods of record for 2 streamflow-gaging stations were divided into periods representing pre- and post-reservoir impoundment. Unless otherwise described, each trend analysis used the entire period of record for each streamflow-gaging station. The monotonic trend analysis detected 11 statistically significant downward trends, 37 instances of no trend, and 21 statistically significant upward trends. One general region studied, which seemingly has relatively more upward trends for many of the streamflow statistics analyzed, includes the rivers and associated creeks and bayous to Galveston Bay in the Houston metropolitan area. Lastly, the most western river basins considered (the Nueces and Rio Grande) had statistically significant downward trends for many of the streamflow statistics analyzed.

  6. Hammerstein system represention of financial volatility processes

    NASA Astrophysics Data System (ADS)

    Capobianco, E.

    2002-05-01

    We show new modeling aspects of stock return volatility processes, by first representing them through Hammerstein Systems, and by then approximating the observed and transformed dynamics with wavelet-based atomic dictionaries. We thus propose an hybrid statistical methodology for volatility approximation and non-parametric estimation, and aim to use the information embedded in a bank of volatility sources obtained by decomposing the observed signal with multiresolution techniques. Scale dependent information refers both to market activity inherent to different temporally aggregated trading horizons, and to a variable degree of sparsity in representing the signal. A decomposition of the expansion coefficients in least dependent coordinates is then implemented through Independent Component Analysis. Based on the described steps, the features of volatility can be more effectively detected through global and greedy algorithms.

  7. Linkage analysis of chromosome 22q12-13 in a United Kingdom/Icelandic sample of 23 multiplex schizophrenia families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalsi, G.; Read, T.; Butler, R.

    A possible linkage to a genetic subtype of schizophrenia and related disorders has been reported on the long arm of chromosome 22 at q12-13. However formal statistical tests in a combined sample could not reject homogeneity and prove that there was linked subgroup of families. We have studied 23 schizophrenia pedigrees to test whether some multiplex schizophrenia families may be linked to the microsatellite markers D22S274 and D22S283 which span the 22q12-13 region. Two point followed by multipoint lod and non-parametric linkage analyses under the assumption of heterogeneity provided no evidence for linkage over the relevant region. 16 refs., 4more » tabs.« less

  8. Irradiation-hyperthermia in canine hemangiopericytomas: large-animal model for therapeutic response.

    PubMed

    Richardson, R C; Anderson, V L; Voorhees, W D; Blevins, W E; Inskeep, T K; Janas, W; Shupe, R E; Babbs, C F

    1984-11-01

    Results of irradiation-hyperthermia treatment in 11 dogs with naturally occurring hemangiopericytoma were reported. Similarities of canine and human hemangiopericytomas were described. Orthovoltage X-irradiation followed by microwave-induced hyperthermia resulted in a 91% objective response rate. A statistical procedure was given to evaluate quantitatively the clinical behavior of locally invasive, nonmetastatic tumors in dogs that were undergoing therapy for control of local disease. The procedure used a small sample size and demonstrated distribution of the data on a scaled response as well as transformation of the data through classical parametric and nonparametric statistical methods. These statistical methods set confidence limits on the population mean and placed tolerance limits on a population percentage. Application of the statistical methods to human and animal clinical trials was apparent.

  9. What Teachers Should Know About the Bootstrap: Resampling in the Undergraduate Statistics Curriculum

    PubMed Central

    Hesterberg, Tim C.

    2015-01-01

    Bootstrapping has enormous potential in statistics education and practice, but there are subtle issues and ways to go wrong. For example, the common combination of nonparametric bootstrapping and bootstrap percentile confidence intervals is less accurate than using t-intervals for small samples, though more accurate for larger samples. My goals in this article are to provide a deeper understanding of bootstrap methods—how they work, when they work or not, and which methods work better—and to highlight pedagogical issues. Supplementary materials for this article are available online. [Received December 2014. Revised August 2015] PMID:27019512

  10. Statistical methods for estimating normal blood chemistry ranges and variance in rainbow trout (Salmo gairdneri), Shasta Strain

    USGS Publications Warehouse

    Wedemeyer, Gary A.; Nelson, Nancy C.

    1975-01-01

    Gaussian and nonparametric (percentile estimate and tolerance interval) statistical methods were used to estimate normal ranges for blood chemistry (bicarbonate, bilirubin, calcium, hematocrit, hemoglobin, magnesium, mean cell hemoglobin concentration, osmolality, inorganic phosphorus, and pH for juvenile rainbow (Salmo gairdneri, Shasta strain) trout held under defined environmental conditions. The percentile estimate and Gaussian methods gave similar normal ranges, whereas the tolerance interval method gave consistently wider ranges for all blood variables except hemoglobin. If the underlying frequency distribution is unknown, the percentile estimate procedure would be the method of choice.

  11. The Breslow estimator of the nonparametric baseline survivor function in Cox's regression model: some heuristics.

    PubMed

    Hanley, James A

    2008-01-01

    Most survival analysis textbooks explain how the hazard ratio parameters in Cox's life table regression model are estimated. Fewer explain how the components of the nonparametric baseline survivor function are derived. Those that do often relegate the explanation to an "advanced" section and merely present the components as algebraic or iterative solutions to estimating equations. None comment on the structure of these estimators. This note brings out a heuristic representation that may help to de-mystify the structure.

  12. A parametric interpretation of Bayesian Nonparametric Inference from Gene Genealogies: Linking ecological, population genetics and evolutionary processes.

    PubMed

    Ponciano, José Miguel

    2017-11-22

    Using a nonparametric Bayesian approach Palacios and Minin (2013) dramatically improved the accuracy, precision of Bayesian inference of population size trajectories from gene genealogies. These authors proposed an extension of a Gaussian Process (GP) nonparametric inferential method for the intensity function of non-homogeneous Poisson processes. They found that not only the statistical properties of the estimators were improved with their method, but also, that key aspects of the demographic histories were recovered. The authors' work represents the first Bayesian nonparametric solution to this inferential problem because they specify a convenient prior belief without a particular functional form on the population trajectory. Their approach works so well and provides such a profound understanding of the biological process, that the question arises as to how truly "biology-free" their approach really is. Using well-known concepts of stochastic population dynamics, here I demonstrate that in fact, Palacios and Minin's GP model can be cast as a parametric population growth model with density dependence and environmental stochasticity. Making this link between population genetics and stochastic population dynamics modeling provides novel insights into eliciting biologically meaningful priors for the trajectory of the effective population size. The results presented here also bring novel understanding of GP as models for the evolution of a trait. Thus, the ecological principles foundation of Palacios and Minin (2013)'s prior adds to the conceptual and scientific value of these authors' inferential approach. I conclude this note by listing a series of insights brought about by this connection with Ecology. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  13. A multi-instrument non-parametric reconstruction of the electron pressure profile in the galaxy cluster CLJ1226.9+3332

    NASA Astrophysics Data System (ADS)

    Romero, C.; McWilliam, M.; Macías-Pérez, J.-F.; Adam, R.; Ade, P.; André, P.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; de Petris, M.; Désert, F.-X.; Doyle, S.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Lestrade, J.-F.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Roussel, H.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2018-04-01

    Context. In the past decade, sensitive, resolved Sunyaev-Zel'dovich (SZ) studies of galaxy clusters have become common. Whereas many previous SZ studies have parameterized the pressure profiles of galaxy clusters, non-parametric reconstructions will provide insights into the thermodynamic state of the intracluster medium. Aim. We seek to recover the non-parametric pressure profiles of the high redshift (z = 0.89) galaxy cluster CLJ 1226.9+3332 as inferred from SZ data from the MUSTANG, NIKA, Bolocam, and Planck instruments, which all probe different angular scales. Methods: Our non-parametric algorithm makes use of logarithmic interpolation, which under the assumption of ellipsoidal symmetry is analytically integrable. For MUSTANG, NIKA, and Bolocam we derive a non-parametric pressure profile independently and find good agreement among the instruments. In particular, we find that the non-parametric profiles are consistent with a fitted generalized Navaro-Frenk-White (gNFW) profile. Given the ability of Planck to constrain the total signal, we include a prior on the integrated Compton Y parameter as determined by Planck. Results: For a given instrument, constraints on the pressure profile diminish rapidly beyond the field of view. The overlap in spatial scales probed by these four datasets is therefore critical in checking for consistency between instruments. By using multiple instruments, our analysis of CLJ 1226.9+3332 covers a large radial range, from the central regions to the cluster outskirts: 0.05 R500 < r < 1.1 R500. This is a wider range of spatial scales than is typically recovered by SZ instruments. Similar analyses will be possible with the new generation of SZ instruments such as NIKA2 and MUSTANG2.

  14. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification.

    PubMed

    Fan, Jianqing; Feng, Yang; Jiang, Jiancheng; Tong, Xin

    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing.

  15. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification

    PubMed Central

    Feng, Yang; Jiang, Jiancheng; Tong, Xin

    2015-01-01

    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing. PMID:27185970

  16. Modelling lecturer performance index of private university in Tulungagung by using survival analysis with multivariate adaptive regression spline

    NASA Astrophysics Data System (ADS)

    Hasyim, M.; Prastyo, D. D.

    2018-03-01

    Survival analysis performs relationship between independent variables and survival time as dependent variable. In fact, not all survival data can be recorded completely by any reasons. In such situation, the data is called censored data. Moreover, several model for survival analysis requires assumptions. One of the approaches in survival analysis is nonparametric that gives more relax assumption. In this research, the nonparametric approach that is employed is Multivariate Regression Adaptive Spline (MARS). This study is aimed to measure the performance of private university’s lecturer. The survival time in this study is duration needed by lecturer to obtain their professional certificate. The results show that research activities is a significant factor along with developing courses material, good publication in international or national journal, and activities in research collaboration.

  17. Estimating trends in the global mean temperature record

    NASA Astrophysics Data System (ADS)

    Poppick, Andrew; Moyer, Elisabeth J.; Stein, Michael L.

    2017-06-01

    Given uncertainties in physical theory and numerical climate simulations, the historical temperature record is often used as a source of empirical information about climate change. Many historical trend analyses appear to de-emphasize physical and statistical assumptions: examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for internal variability in nonparametric rather than parametric ways. However, given a limited data record and the presence of internal variability, estimating radiatively forced temperature trends in the historical record necessarily requires some assumptions. Ostensibly empirical methods can also involve an inherent conflict in assumptions: they require data records that are short enough for naive trend models to be applicable, but long enough for long-timescale internal variability to be accounted for. In the context of global mean temperatures, empirical methods that appear to de-emphasize assumptions can therefore produce misleading inferences, because the trend over the twentieth century is complex and the scale of temporal correlation is long relative to the length of the data record. We illustrate here how a simple but physically motivated trend model can provide better-fitting and more broadly applicable trend estimates and can allow for a wider array of questions to be addressed. In particular, the model allows one to distinguish, within a single statistical framework, between uncertainties in the shorter-term vs. longer-term response to radiative forcing, with implications not only on historical trends but also on uncertainties in future projections. We also investigate the consequence on inferred uncertainties of the choice of a statistical description of internal variability. While nonparametric methods may seem to avoid making explicit assumptions, we demonstrate how even misspecified parametric statistical methods, if attuned to the important characteristics of internal variability, can result in more accurate uncertainty statements about trends.

  18. Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures.

    PubMed

    Schloss, Patrick D; Handelsman, Jo

    2006-10-01

    The recent advent of tools enabling statistical inferences to be drawn from comparisons of microbial communities has enabled the focus of microbial ecology to move from characterizing biodiversity to describing the distribution of that biodiversity. Although statistical tools have been developed to compare community structures across a phylogenetic tree, we lack tools to compare the memberships and structures of two communities at a particular operational taxonomic unit (OTU) definition. Furthermore, current tests of community structure do not indicate the similarity of the communities but only report the probability of a statistical hypothesis. Here we present a computer program, SONS, which implements nonparametric estimators for the fraction and richness of OTUs shared between two communities.

  19. Practical Applicability of Exact and Approximate Forms of the Randomization Test for Two Independent Samples.

    DTIC Science & Technology

    1987-09-01

    long been recognized as powerful nonparametric statistical methods since the introduction of the principal ideas by R.A. Fisher in 1935 . Even when...couldIatal eoand1rmSncepriet ::’x.OUld st:ll have to he - epre -erte-.. I-Itma’v in any: ph,:sIcal computing devl’:c by a C\\onux ot bit,Aa n. the

  20. A Study of Birnbaum's Theory of the Relationship between the Constructs of Leadership and Organization as Depicted in His Higher Education Models of Organizational Functioning: A Contextual Leadership Paradigm for Higher Education

    ERIC Educational Resources Information Center

    Douglas, Pamela A.

    2013-01-01

    This quantitative, nonexperimental study used survey research design and nonparametric statistics to investigate Birnbaum's (1988) theory that there is a relationship between the constructs of leadership and organization, as depicted in his five higher education models of organizational functioning: bureaucratic, collegial, political,…

  1. 3D Simulation as a Learning Environment for Acquiring the Skill of Self-Management: An Experience Involving Spanish University Students of Education

    ERIC Educational Resources Information Center

    Cela-Ranilla, Jose María; Esteve-Gonzalez, Vanessa; Esteve-Mon, Francesc; Gisbert-Cervera, Merce

    2014-01-01

    In this study we analyze how 57 Spanish university students of Education developed a learning process in a virtual world by conducting activities that involved the skill of self-management. The learning experience comprised a serious game designed in a 3D simulation environment. Descriptive statistics and non-parametric tests were used in the…

  2. The limitations of simple gene set enrichment analysis assuming gene independence.

    PubMed

    Tamayo, Pablo; Steinhardt, George; Liberzon, Arthur; Mesirov, Jill P

    2016-02-01

    Since its first publication in 2003, the Gene Set Enrichment Analysis method, based on the Kolmogorov-Smirnov statistic, has been heavily used, modified, and also questioned. Recently a simplified approach using a one-sample t-test score to assess enrichment and ignoring gene-gene correlations was proposed by Irizarry et al. 2009 as a serious contender. The argument criticizes Gene Set Enrichment Analysis's nonparametric nature and its use of an empirical null distribution as unnecessary and hard to compute. We refute these claims by careful consideration of the assumptions of the simplified method and its results, including a comparison with Gene Set Enrichment Analysis's on a large benchmark set of 50 datasets. Our results provide strong empirical evidence that gene-gene correlations cannot be ignored due to the significant variance inflation they produced on the enrichment scores and should be taken into account when estimating gene set enrichment significance. In addition, we discuss the challenges that the complex correlation structure and multi-modality of gene sets pose more generally for gene set enrichment methods. © The Author(s) 2012.

  3. The NWRA Classification Infrastructure: description and extension to the Discriminant Analysis Flare Forecasting System (DAFFS)

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, Graham; Wagner, Eric

    2018-04-01

    A classification infrastructure built upon Discriminant Analysis (DA) has been developed at NorthWest Research Associates for examining the statistical differences between samples of two known populations. Originating to examine the physical differences between flare-quiet and flare-imminent solar active regions, we describe herein some details of the infrastructure including: parametrization of large datasets, schemes for handling "null" and "bad" data in multi-parameter analysis, application of non-parametric multi-dimensional DA, an extension through Bayes' theorem to probabilistic classification, and methods invoked for evaluating classifier success. The classifier infrastructure is applicable to a wide range of scientific questions in solar physics. We demonstrate its application to the question of distinguishing flare-imminent from flare-quiet solar active regions, updating results from the original publications that were based on different data and much smaller sample sizes. Finally, as a demonstration of "Research to Operations" efforts in the space-weather forecasting context, we present the Discriminant Analysis Flare Forecasting System (DAFFS), a near-real-time operationally-running solar flare forecasting tool that was developed from the research-directed infrastructure.

  4. Wavelet Filtering to Reduce Conservatism in Aeroservoelastic Robust Stability Margins

    NASA Technical Reports Server (NTRS)

    Brenner, Marty; Lind, Rick

    1998-01-01

    Wavelet analysis for filtering and system identification was used to improve the estimation of aeroservoelastic stability margins. The conservatism of the robust stability margins was reduced with parametric and nonparametric time-frequency analysis of flight data in the model validation process. Nonparametric wavelet processing of data was used to reduce the effects of external desirableness and unmodeled dynamics. Parametric estimates of modal stability were also extracted using the wavelet transform. Computation of robust stability margins for stability boundary prediction depends on uncertainty descriptions derived from the data for model validation. F-18 high Alpha Research Vehicle aeroservoelastic flight test data demonstrated improved robust stability prediction by extension of the stability boundary beyond the flight regime.

  5. Exploring the Link Between Streamflow Trends and Climate Change in Indiana, USA

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Kam, J.; Thurner, K.; Merwade, V.

    2007-12-01

    Streamflow trends in Indiana are evaluated for 85 USGS streamflow gaging stations that have continuous unregulated streamflow records varying from 10 to 80 years. The trends are analyzed by using the non-parametric Mann-Kendall test with prior trend-free pre-whitening to remove serial correlation in the data. Bootstrap method is used to establish field significance of the results. Trends are computed for 12 streamflow statistics to include low-, medium- (median and mean flow), and high-flow conditions on annual and seasonal time step. The analysis is done for six study periods, ranging from 10 years to more than 65 years, all ending in 2003. The trends in annual average streamflow, for 50 years study period, are compared with annual average precipitation trends from 14 National Climatic Data Center (NCDC) stations in Indiana, that have 50 years of continuous daily record. The results show field significant positive trends in annual low and medium streamflow statistics at majority of gaging stations for study periods that include 40 or more years of records. In seasonal analysis, all flow statistics in summer and fall (low flow seasons), and only low flow statistics in winter and spring (high flow seasons) are showing positive trends. No field significant trends in annual and seasonal flow statistics are observed for study periods that include 25 or fewer years of records, except for northern Indiana where localized negative trends are observed in 10 and 15 years study periods. Further, stream flow trends are found to be highly correlated with precipitation trends on annual time step. No apparent climate change signal is observed in Indiana stream flow records.

  6. Multivariate Statistical Analysis of Water Quality data in Indian River Lagoon, Florida

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, M.; Ye, M.

    2015-12-01

    The Indian River Lagoon, is part of the longest barrier island complex in the United States, is a region of particular concern to the environmental scientist because of the rapid rate of human development throughout the region and the geographical position in between the colder temperate zone and warmer sub-tropical zone. Thus, the surface water quality analysis in this region always brings the newer information. In this present study, multivariate statistical procedures were applied to analyze the spatial and temporal water quality in the Indian River Lagoon over the period 1998-2013. Twelve parameters have been analyzed on twelve key water monitoring stations in and beside the lagoon on monthly datasets (total of 27,648 observations). The dataset was treated using cluster analysis (CA), principle component analysis (PCA) and non-parametric trend analysis. The CA was used to cluster twelve monitoring stations into four groups, with stations on the similar surrounding characteristics being in the same group. The PCA was then applied to the similar groups to find the important water quality parameters. The principal components (PCs), PC1 to PC5 was considered based on the explained cumulative variances 75% to 85% in each cluster groups. Nutrient species (phosphorus and nitrogen), salinity, specific conductivity and erosion factors (TSS, Turbidity) were major variables involved in the construction of the PCs. Statistical significant positive or negative trends and the abrupt trend shift were detected applying Mann-Kendall trend test and Sequential Mann-Kendall (SQMK), for each individual stations for the important water quality parameters. Land use land cover change pattern, local anthropogenic activities and extreme climate such as drought might be associated with these trends. This study presents the multivariate statistical assessment in order to get better information about the quality of surface water. Thus, effective pollution control/management of the surface waters can be undertaken.

  7. Semiparametric mixed-effects analysis of PK/PD models using differential equations.

    PubMed

    Wang, Yi; Eskridge, Kent M; Zhang, Shunpu

    2008-08-01

    Motivated by the use of semiparametric nonlinear mixed-effects modeling on longitudinal data, we develop a new semiparametric modeling approach to address potential structural model misspecification for population pharmacokinetic/pharmacodynamic (PK/PD) analysis. Specifically, we use a set of ordinary differential equations (ODEs) with form dx/dt = A(t)x + B(t) where B(t) is a nonparametric function that is estimated using penalized splines. The inclusion of a nonparametric function in the ODEs makes identification of structural model misspecification feasible by quantifying the model uncertainty and provides flexibility for accommodating possible structural model deficiencies. The resulting model will be implemented in a nonlinear mixed-effects modeling setup for population analysis. We illustrate the method with an application to cefamandole data and evaluate its performance through simulations.

  8. Toward the improvement in fetal monitoring during labor with the inclusion of maternal heart rate analysis.

    PubMed

    Gonçalves, Hernâni; Pinto, Paula; Silva, Manuela; Ayres-de-Campos, Diogo; Bernardes, João

    2016-04-01

    Fetal heart rate (FHR) monitoring is used routinely in labor, but conventional methods have a limited capacity to detect fetal hypoxia/acidosis. An exploratory study was performed on the simultaneous assessment of maternal heart rate (MHR) and FHR variability, to evaluate their evolution during labor and their capacity to detect newborn acidemia. MHR and FHR were simultaneously recorded in 51 singleton term pregnancies during the last two hours of labor and compared with newborn umbilical artery blood (UAB) pH. Linear/nonlinear indices were computed separately for MHR and FHR. Interaction between MHR and FHR was quantified through the same indices on FHR-MHR and through their correlation and cross-entropy. Univariate and bivariate statistical analysis included nonparametric confidence intervals and statistical tests, receiver operating characteristic curves and linear discriminant analysis. Progression of labor was associated with a significant increase in most MHR and FHR linear indices, whereas entropy indices decreased. FHR alone and in combination with MHR as FHR-MHR evidenced the highest auROC values for prediction of fetal acidemia, with 0.76 and 0.88 for the UAB pH thresholds 7.20 and 7.15, respectively. The inclusion of MHR on bivariate analysis achieved sensitivity and specificity values of nearly 100 and 89.1%, respectively. These results suggest that simultaneous analysis of MHR and FHR may improve the identification of fetal acidemia compared with FHR alone, namely during the last hour of labor.

  9. Curve Boxplot: Generalization of Boxplot for Ensembles of Curves.

    PubMed

    Mirzargar, Mahsa; Whitaker, Ross T; Kirby, Robert M

    2014-12-01

    In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.

  10. Genome-wide regression and prediction with the BGLR statistical package.

    PubMed

    Pérez, Paulino; de los Campos, Gustavo

    2014-10-01

    Many modern genomic data analyses require implementing regressions where the number of parameters (p, e.g., the number of marker effects) exceeds sample size (n). Implementing these large-p-with-small-n regressions poses several statistical and computational challenges, some of which can be confronted using Bayesian methods. This approach allows integrating various parametric and nonparametric shrinkage and variable selection procedures in a unified and consistent manner. The BGLR R-package implements a large collection of Bayesian regression models, including parametric variable selection and shrinkage methods and semiparametric procedures (Bayesian reproducing kernel Hilbert spaces regressions, RKHS). The software was originally developed for genomic applications; however, the methods implemented are useful for many nongenomic applications as well. The response can be continuous (censored or not) or categorical (either binary or ordinal). The algorithm is based on a Gibbs sampler with scalar updates and the implementation takes advantage of efficient compiled C and Fortran routines. In this article we describe the methods implemented in BGLR, present examples of the use of the package, and discuss practical issues emerging in real-data analysis. Copyright © 2014 by the Genetics Society of America.

  11. Preliminary evidence for linkage to chromosome 1q31-32, 10q23.3, and 16p13.3 in a South African cohort with bipolar disorder.

    PubMed

    Savitz, Jonathan; Cupido, Cinda-Lee; Ramesar, Raj Kumar

    2007-04-05

    Although the genetic variants predisposing to the development of bipolar disorder (BPD) have yet to be conclusively identified, replicated reports of linkage to particular chromosomal regions have been encouraging. Here we carried out a non-parametric linkage analysis of nine of these candidate loci in a unique South African sample of 47 BPD pedigrees (N = 350). Three polymorphic markers per region of interest (3 x 9) were typed in a Caucasian cohort of Afrikaner and British origin. Statistically significant evidence for linkage was obtained at 1q31-32, 10q23.3, and 16p13.3 with maximum NPL scores of 2.52, 2.01, and 1.84, respectively. Our results add to the growing evidence that these chromosomal regions harbor genetic variants that play a role in the development of bipolar spectrum illness. Negative results were obtained for the remaining six candidate loci, possibly due to limited statistical power. (c) 2006 Wiley-Liss, Inc.

  12. Preliminary study on pharmacokinetics of dacarbazine and fotemustine in glioblastoma multiforme patients does not indicate gender-specific differences.

    PubMed

    Fazeny-Dörner, Barbara; Mader, Robert M; Piribauer, Maria; Rizovski, Blanka; Stögermaier, Barbara; Marosi, Christine

    2004-06-01

    Twelve patients (six female and six male) with histologically proven glioblastoma multiforme were investigated during the administration of the first cycle of dacarbazine (D; 200 mg/m) and fotemustine (F; 100 mg/m). In total, 18 blood samples were collected for pharmacokinetic analysis (maximum plasma concentration, area under the concentration-time curve and total clearance) of D and F at 14 time points during therapy. D, its metabolite 5-aminoimidazole-4-carboxamide and F were evaluated by reversed-phase HPLC. For statistical calculations, groups were compared by the non-parametric Wilcoxon test. p<0.05 was considered statistically significant. No significant gender-dependent differences were observed in the pharmacokinetics of D and F. An additional response re-evaluation of 100 patients (50 female and 50 male) with glioblastoma multiforme, treated at our institution with D and F, gave no hint of any gender-dependent different response rates. We conclude that there is no evidence, neither from pharmacokinetic nor from our clinical data, to consider different dosages of D and F in female and male patients with glioblastoma multiforme.

  13. A global goodness-of-fit test for receiver operating characteristic curve analysis via the bootstrap method.

    PubMed

    Zou, Kelly H; Resnic, Frederic S; Talos, Ion-Florin; Goldberg-Zimring, Daniel; Bhagwat, Jui G; Haker, Steven J; Kikinis, Ron; Jolesz, Ferenc A; Ohno-Machado, Lucila

    2005-10-01

    Medical classification accuracy studies often yield continuous data based on predictive models for treatment outcomes. A popular method for evaluating the performance of diagnostic tests is the receiver operating characteristic (ROC) curve analysis. The main objective was to develop a global statistical hypothesis test for assessing the goodness-of-fit (GOF) for parametric ROC curves via the bootstrap. A simple log (or logit) and a more flexible Box-Cox normality transformations were applied to untransformed or transformed data from two clinical studies to predict complications following percutaneous coronary interventions (PCIs) and for image-guided neurosurgical resection results predicted by tumor volume, respectively. We compared a non-parametric with a parametric binormal estimate of the underlying ROC curve. To construct such a GOF test, we used the non-parametric and parametric areas under the curve (AUCs) as the metrics, with a resulting p value reported. In the interventional cardiology example, logit and Box-Cox transformations of the predictive probabilities led to satisfactory AUCs (AUC=0.888; p=0.78, and AUC=0.888; p=0.73, respectively), while in the brain tumor resection example, log and Box-Cox transformations of the tumor size also led to satisfactory AUCs (AUC=0.898; p=0.61, and AUC=0.899; p=0.42, respectively). In contrast, significant departures from GOF were observed without applying any transformation prior to assuming a binormal model (AUC=0.766; p=0.004, and AUC=0.831; p=0.03), respectively. In both studies the p values suggested that transformations were important to consider before applying any binormal model to estimate the AUC. Our analyses also demonstrated and confirmed the predictive values of different classifiers for determining the interventional complications following PCIs and resection outcomes in image-guided neurosurgery.

  14. Phenotypic characterization of X-linked retinoschisis: Clinical, electroretinography, and optical coherence tomography variables

    PubMed Central

    Neriyanuri, Srividya; Dhandayuthapani, Sudha; Arunachalam, Jayamuruga Pandian; Raman, Rajiv

    2016-01-01

    Aims: To study the phenotypic characteristics of X-linked retinoschisis (XLRS) and report the clinical, electroretinogram (ERG), and optical coherence tomography (OCT) variables in Indian eyes. Design: A retrospective study. Materials and Methods: Medical records of 21 patients with retinoschisis who were genetically confirmed to have RS1 mutation were reviewed. The phenotype characterization included the age of onset, best-corrected visual acuity, refractive error, fundus findings, OCT, and ERG. Statistical Analysis Used: Data from both the eyes were used for analysis. A P < 0.05 was set as statistical significance. Data were not normally distributed (P < 0.05, Shapiro wilk); hence, nonparametric tests were used for statistical analysis. Results: All were males whose mean age of presentation was 9 years. Visual acuity was moderately impaired (median 0.6 logMAR, interquartile range: 0.47, 1) in these eyes with a hyperopic refractive error of median +1.75 Ds (interquartile range: +0.50 Ds, +4.25 Ds). About 54.7% of the eyes had both foveal and peripheral schisis, isolated foveal schisis was seen in 28.5% of the eyes, and schisis with retinal detachment was seen in 16.6% of the eyes. The inner nuclear layer was found to be commonly involved in the schisis, followed by outer nuclear and plexiform layers as evident on OCT. On ERG, a- and b-wave amplitudes were significantly reduced in eyes with foveal and peripheral schisis when compared to the eyes with only foveal schisis (P < 0.05). Conclusions: XLRS has phenotypic heterogeneity as evident on OCT, ERG, and clinical findings. PMID:27609164

  15. Combined non-parametric and parametric approach for identification of time-variant systems

    NASA Astrophysics Data System (ADS)

    Dziedziech, Kajetan; Czop, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz

    2018-03-01

    Identification of systems, structures and machines with variable physical parameters is a challenging task especially when time-varying vibration modes are involved. The paper proposes a new combined, two-step - i.e. non-parametric and parametric - modelling approach in order to determine time-varying vibration modes based on input-output measurements. Single-degree-of-freedom (SDOF) vibration modes from multi-degree-of-freedom (MDOF) non-parametric system representation are extracted in the first step with the use of time-frequency wavelet-based filters. The second step involves time-varying parametric representation of extracted modes with the use of recursive linear autoregressive-moving-average with exogenous inputs (ARMAX) models. The combined approach is demonstrated using system identification analysis based on the experimental mass-varying MDOF frame-like structure subjected to random excitation. The results show that the proposed combined method correctly captures the dynamics of the analysed structure, using minimum a priori information on the model.

  16. Model Robust Calibration: Method and Application to Electronically-Scanned Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Walker, Eric L.; Starnes, B. Alden; Birch, Jeffery B.; Mays, James E.

    2010-01-01

    This article presents the application of a recently developed statistical regression method to the controlled instrument calibration problem. The statistical method of Model Robust Regression (MRR), developed by Mays, Birch, and Starnes, is shown to improve instrument calibration by reducing the reliance of the calibration on a predetermined parametric (e.g. polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from the predetermined parametric model to be augmented by a certain portion of a fit to the residuals from the initial regression using a nonparametric (locally parametric) regression technique. The method is demonstrated for the absolute scale calibration of silicon-based pressure transducers.

  17. Invariance in the recurrence of large returns and the validation of models of price dynamics

    NASA Astrophysics Data System (ADS)

    Chang, Lo-Bin; Geman, Stuart; Hsieh, Fushing; Hwang, Chii-Ruey

    2013-08-01

    Starting from a robust, nonparametric definition of large returns (“excursions”), we study the statistics of their occurrences, focusing on the recurrence process. The empirical waiting-time distribution between excursions is remarkably invariant to year, stock, and scale (return interval). This invariance is related to self-similarity of the marginal distributions of returns, but the excursion waiting-time distribution is a function of the entire return process and not just its univariate probabilities. Generalized autoregressive conditional heteroskedasticity (GARCH) models, market-time transformations based on volume or trades, and generalized (Lévy) random-walk models all fail to fit the statistical structure of excursions.

  18. Out-of-Sample Extensions for Non-Parametric Kernel Methods.

    PubMed

    Pan, Binbin; Chen, Wen-Sheng; Chen, Bo; Xu, Chen; Lai, Jianhuang

    2017-02-01

    Choosing suitable kernels plays an important role in the performance of kernel methods. Recently, a number of studies were devoted to developing nonparametric kernels. Without assuming any parametric form of the target kernel, nonparametric kernel learning offers a flexible scheme to utilize the information of the data, which may potentially characterize the data similarity better. The kernel methods using nonparametric kernels are referred to as nonparametric kernel methods. However, many nonparametric kernel methods are restricted to transductive learning, where the prediction function is defined only over the data points given beforehand. They have no straightforward extension for the out-of-sample data points, and thus cannot be applied to inductive learning. In this paper, we show how to make the nonparametric kernel methods applicable to inductive learning. The key problem of out-of-sample extension is how to extend the nonparametric kernel matrix to the corresponding kernel function. A regression approach in the hyper reproducing kernel Hilbert space is proposed to solve this problem. Empirical results indicate that the out-of-sample performance is comparable to the in-sample performance in most cases. Experiments on face recognition demonstrate the superiority of our nonparametric kernel method over the state-of-the-art parametric kernel methods.

  19. Tempo-spatial analysis of Fennoscandian intraplate seismicity

    NASA Astrophysics Data System (ADS)

    Roberts, Roland; Lund, Björn

    2017-04-01

    Coupled spatial-temporal patterns of the occurrence of earthquakes in Fennoscandia are analysed using non-parametric methods. The occurrence of larger events is unambiguously and very strongly temporally clustered, with major implications for the assessment of seismic hazard in areas such as Fennoscandia. In addition, there is a clear pattern of geographical migration of activity. Data from the Swedish National Seismic Network and a collated international catalogue are analysed. Results show consistent patterns on different spatial and temporal scales. We are currently investigating these patterns in order to assess the statistical significance of the tempo-spatial patterns, and to what extent these may be consistent with stress transfer mechanism such as coulomb stress and pore fluid migration. Indications are that some further mechanism is necessary in order to explain the data, perhaps related to post-glacial uplift, which is up to 1cm/year.

  20. Effect of Leu-enkephalin and delta sleep inducing peptide (DSIP) on endogenous noradrenaline release by rat brain synaptosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lozhanets, V.V.; Anosov, A.K.

    1986-01-01

    The nonapeptide delta-sleep inducing peptide (DSIP) causes specific changes in the encephalogram of recipient animals: It prolongs the phase of long-wave or delta sleep. The cellular mechanism of action of DSIP has not yet been explained. To test the hyporhesis that this peptide or its degradation product may be presynaptic regulators of catecholamine release, the action of Leu-enkephaline, DSIP, and amino acids composing DSIP on release of endogenous noradrenalin (NA) from synaptosomes during depolarization was compared. Subcellular fractions from cerebral hemisphere of noninbred male albino rats were isolated. Lactate dehydrogenase activity was determined in the suspension of synaptosomes before andmore » after addition of 0.5% Triton X-100. The results were subjected to statistical analysis, using the Wilcoxon-Mann-Whitney nonparametric test.« less

  1. Testing jumps via false discovery rate control.

    PubMed

    Yen, Yu-Min

    2013-01-01

    Many recently developed nonparametric jump tests can be viewed as multiple hypothesis testing problems. For such multiple hypothesis tests, it is well known that controlling type I error often makes a large proportion of erroneous rejections, and such situation becomes even worse when the jump occurrence is a rare event. To obtain more reliable results, we aim to control the false discovery rate (FDR), an efficient compound error measure for erroneous rejections in multiple testing problems. We perform the test via the Barndorff-Nielsen and Shephard (BNS) test statistic, and control the FDR with the Benjamini and Hochberg (BH) procedure. We provide asymptotic results for the FDR control. From simulations, we examine relevant theoretical results and demonstrate the advantages of controlling the FDR. The hybrid approach is then applied to empirical analysis on two benchmark stock indices with high frequency data.

  2. Improved statistical assessment of a long-term groundwater-quality dataset with a non-parametric permutation method

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.

    2016-12-01

    The Waste Isolation Pilot Plant (WIPP) is the only deep geological repository for transuranic waste in the United States. As the Science Advisor for the WIPP, Sandia National Laboratories annually evaluates site data against trigger values (TVs), metrics whose violation is indicative of conditions that may impact long-term repository performance. This study focuses on a groundwater-quality dataset used to redesign a TV for the Culebra Dolomite Member (Culebra) of the Permian-age Rustler Formation. Prior to this study, a TV violation occurred if the concentration of a major ion fell outside a range defined as the mean +/- two standard deviations. The ranges were thought to denote conditions that 95% of future values would fall within. Groundwater-quality data used in evaluating compliance, however, are rarely normally distributed. To create a more robust Culebra groundwater-quality TV, this study employed the randomization test, a non-parametric permutation method. Recent groundwater compositions considered TV violations under the original ion concentration ranges are now interpreted as false positives in light of the insignificant p-values calculated with the randomization test. This work highlights that the normality assumption can weaken as the size of a groundwater-quality dataset grows over time. Non-parametric permutation methods are an attractive option because no assumption about the statistical distribution is required and calculating all combinations of the data is an increasingly tractable problem with modern workstations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy. SAND2016-7306A

  3. Exploring Rating Quality in Rater-Mediated Assessments Using Mokken Scale Analysis

    PubMed Central

    Wind, Stefanie A.; Engelhard, George

    2015-01-01

    Mokken scale analysis is a probabilistic nonparametric approach that offers statistical and graphical tools for evaluating the quality of social science measurement without placing potentially inappropriate restrictions on the structure of a data set. In particular, Mokken scaling provides a useful method for evaluating important measurement properties, such as invariance, in contexts where response processes are not well understood. Because rater-mediated assessments involve complex interactions among many variables, including assessment contexts, student artifacts, rubrics, individual rater characteristics, and others, rater-assigned scores are suitable candidates for Mokken scale analysis. The purposes of this study are to describe a suite of indices that can be used to explore the psychometric quality of data from rater-mediated assessments and to illustrate the substantive interpretation of Mokken-based statistics and displays in this context. Techniques that are commonly used in polytomous applications of Mokken scaling are adapted for use with rater-mediated assessments, with a focus on the substantive interpretation related to individual raters. Overall, the findings suggest that indices of rater monotonicity, rater scalability, and invariant rater ordering based on Mokken scaling provide diagnostic information at the level of individual raters related to the requirements for invariant measurement. These Mokken-based indices serve as an additional suite of diagnostic tools for exploring the quality of data from rater-mediated assessments that can supplement rating quality indices based on parametric models. PMID:29795883

  4. CORNAS: coverage-dependent RNA-Seq analysis of gene expression data without biological replicates.

    PubMed

    Low, Joel Z B; Khang, Tsung Fei; Tammi, Martti T

    2017-12-28

    In current statistical methods for calling differentially expressed genes in RNA-Seq experiments, the assumption is that an adjusted observed gene count represents an unknown true gene count. This adjustment usually consists of a normalization step to account for heterogeneous sample library sizes, and then the resulting normalized gene counts are used as input for parametric or non-parametric differential gene expression tests. A distribution of true gene counts, each with a different probability, can result in the same observed gene count. Importantly, sequencing coverage information is currently not explicitly incorporated into any of the statistical models used for RNA-Seq analysis. We developed a fast Bayesian method which uses the sequencing coverage information determined from the concentration of an RNA sample to estimate the posterior distribution of a true gene count. Our method has better or comparable performance compared to NOISeq and GFOLD, according to the results from simulations and experiments with real unreplicated data. We incorporated a previously unused sequencing coverage parameter into a procedure for differential gene expression analysis with RNA-Seq data. Our results suggest that our method can be used to overcome analytical bottlenecks in experiments with limited number of replicates and low sequencing coverage. The method is implemented in CORNAS (Coverage-dependent RNA-Seq), and is available at https://github.com/joel-lzb/CORNAS .

  5. Further evidence for the increased power of LOD scores compared with nonparametric methods.

    PubMed

    Durner, M; Vieland, V J; Greenberg, D A

    1999-01-01

    In genetic analysis of diseases in which the underlying model is unknown, "model free" methods-such as affected sib pair (ASP) tests-are often preferred over LOD-score methods, although LOD-score methods under the correct or even approximately correct model are more powerful than ASP tests. However, there might be circumstances in which nonparametric methods will outperform LOD-score methods. Recently, Dizier et al. reported that, in some complex two-locus (2L) models, LOD-score methods with segregation analysis-derived parameters had less power to detect linkage than ASP tests. We investigated whether these particular models, in fact, represent a situation that ASP tests are more powerful than LOD scores. We simulated data according to the parameters specified by Dizier et al. and analyzed the data by using a (a) single locus (SL) LOD-score analysis performed twice, under a simple dominant and a recessive mode of inheritance (MOI), (b) ASP methods, and (c) nonparametric linkage (NPL) analysis. We show that SL analysis performed twice and corrected for the type I-error increase due to multiple testing yields almost as much linkage information as does an analysis under the correct 2L model and is more powerful than either the ASP method or the NPL method. We demonstrate that, even for complex genetic models, the most important condition for linkage analysis is that the assumed MOI at the disease locus being tested is approximately correct, not that the inheritance of the disease per se is correctly specified. In the analysis by Dizier et al., segregation analysis led to estimates of dominance parameters that were grossly misspecified for the locus tested in those models in which ASP tests appeared to be more powerful than LOD-score analyses.

  6. Development of welding emission factors for Cr and Cr(VI) with a confidence level.

    PubMed

    Serageldin, Mohamed; Reeves, David W

    2009-05-01

    Knowledge of the emission rate and release characteristics is necessary for estimating pollutant fate and transport. Because emission measurements at a facility's fence line are generally not readily available, environmental agencies in many countries are using emission factors (EFs) to indicate the quantity of certain pollutants released into the atmosphere from operations such as welding. The amount of fumes and metals generated from a welding process is dependent on many parameters, such as electrode composition, voltage, and current. Because test reports on fume generation provide different levels of detail, a common approach was used to give a test report a quality rating on the basis of several highly subjective criteria; however, weighted average EFs generated in this way are not meant to reflect data precision or to be used for a refined risk analysis. The 95% upper confidence limit (UCL) of the unknown population mean was used in this study to account for the uncertainty in the EF test data. Several parametric UCLs were computed and compared for multiple welding EFs associated with several mild, stainless, and alloy steels. Also, several nonparametric statistical methods, including several bootstrap procedures, were used to compute 95% UCLs. For the nonparametric methods, a distribution for calculating the mean, standard deviation, and other statistical parameters for a dataset does not need to be assumed. There were instances when the sample size was small and instances when EFs for an electrode/process combination were not found. Those two points are addressed in this paper. Finally, this paper is an attempt to deal with the uncertainty in the value of a mean EF for an electrode/process combination that is based on test data from several laboratories. Welding EFs developed with a defined level of confidence may be used as input parameters for risk assessment.

  7. Effects of alopecia on body image and quality of life of Turkish cancer women with or without headscarf.

    PubMed

    Erol, Ozgul; Can, Gulbeyaz; Aydıner, Adnan

    2012-10-01

    The aim of this study was to find out the effects of chemotherapy-related alopecia on body image and quality of life of Turkish women who have cancer with or without headscarves and factors affecting them. This descriptive study was conducted with 204 women who received chemotherapy at the Istanbul University Institute of Oncology, Turkey. The Patient Description Form, Body Image Scale and Nightingale Symptom Assessment Scale were used in data collection. Statistical analyses were performed using descriptive statistics and non-parametric tests. Logistic regression analysis was done to predict the factors affecting body image and quality of life of the patients. No difference was found between women wearing headscarves and those who did not in respect of their body image. However, women who wore headscarves who had no alopecia felt less dissatisfied with their scars, and women not wearing headscarves who had no alopecia have been feeling less self-conscious, less dissatisfied with their appearance. There was difference in terms of quality of life: women wearing headscarves had worse physical, psychological and general well-being than others. Although there were many important factors, multivariate analysis showed that for body image, having alopecia and wearing headscarves; and for quality of life, having alopecia were the variables that had considerable effects.

  8. Hybrid modeling as a QbD/PAT tool in process development: an industrial E. coli case study.

    PubMed

    von Stosch, Moritz; Hamelink, Jan-Martijn; Oliveira, Rui

    2016-05-01

    Process understanding is emphasized in the process analytical technology initiative and the quality by design paradigm to be essential for manufacturing of biopharmaceutical products with consistent high quality. A typical approach to developing a process understanding is applying a combination of design of experiments with statistical data analysis. Hybrid semi-parametric modeling is investigated as an alternative method to pure statistical data analysis. The hybrid model framework provides flexibility to select model complexity based on available data and knowledge. Here, a parametric dynamic bioreactor model is integrated with a nonparametric artificial neural network that describes biomass and product formation rates as function of varied fed-batch fermentation conditions for high cell density heterologous protein production with E. coli. Our model can accurately describe biomass growth and product formation across variations in induction temperature, pH and feed rates. The model indicates that while product expression rate is a function of early induction phase conditions, it is negatively impacted as productivity increases. This could correspond with physiological changes due to cytoplasmic product accumulation. Due to the dynamic nature of the model, rational process timing decisions can be made and the impact of temporal variations in process parameters on product formation and process performance can be assessed, which is central for process understanding.

  9. Statistical detection of geographic clusters of resistant Escherichia coli in a regional network with WHONET and SaTScan.

    PubMed

    Park, Rachel; O'Brien, Thomas F; Huang, Susan S; Baker, Meghan A; Yokoe, Deborah S; Kulldorff, Martin; Barrett, Craig; Swift, Jamie; Stelling, John

    2016-11-01

    While antimicrobial resistance threatens the prevention, treatment, and control of infectious diseases, systematic analysis of routine microbiology laboratory test results worldwide can alert new threats and promote timely response. This study explores statistical algorithms for recognizing geographic clustering of multi-resistant microbes within a healthcare network and monitoring the dissemination of new strains over time. Escherichia coli antimicrobial susceptibility data from a three-year period stored in WHONET were analyzed across ten facilities in a healthcare network utilizing SaTScan's spatial multinomial model with two models for defining geographic proximity. We explored geographic clustering of multi-resistance phenotypes within the network and changes in clustering over time. Geographic clustering identified from both latitude/longitude and non-parametric facility groupings geographic models were similar, while the latter was offers greater flexibility and generalizability. Iterative application of the clustering algorithms suggested the possible recognition of the initial appearance of invasive E. coli ST131 in the clinical database of a single hospital and subsequent dissemination to others. Systematic analysis of routine antimicrobial resistance susceptibility test results supports the recognition of geographic clustering of microbial phenotypic subpopulations with WHONET and SaTScan, and iterative application of these algorithms can detect the initial appearance in and dissemination across a region prompting early investigation, response, and containment measures.

  10. School furniture and work surface lighting impacts on the body posture of Paraíba's public school students.

    PubMed

    da Silva, Luiz Bueno; Coutinho, Antonio Souto; da Costa Eulálio, Eliza Juliana; Soares, Elaine Victor Gonçalves

    2012-01-01

    The main objective of this study is to evaluate the impact of school furniture and work surface lighting on the body posture of public Middle School students from Paraíba (Brazil). The survey was carried out in two public schools and the target population for the study included 8th grade groups involving a total of 31 students. Brazilian standards for lighting levels, the CEBRACE standards for furniture measurements and the Postural Assessment Software (SAPO) for the postural misalignment assay were adopted for the measurements comparison. The statistic analysis includes analyses of parametric and non-parametric correlations. The results show that the students' most affected parts of the body were the spine, the regions of the knees and head and neck, with 90% of the total number of students presenting postural misalignment. The lighting levels were usually found below 300 lux, below recommended levels. The statistic analysis show that the more adequate the furniture seems to be to the user, the less the user will complain of pain. Such results indicate the need of investments in more suitable school furniture and structural reforms aimed at improving the lighting in the classrooms, which could fulfill the students' profile and reduce their complaints.

  11. Food expenditure share analysis of household: Case study of food reserved garden area program in Bone Bolango regency of Gorontalo province

    NASA Astrophysics Data System (ADS)

    Buri, N.; Mantau, Z.

    2018-05-01

    The share of food expenditure is one of food security indicator in communities. It also can be used as an indicator of the success of rural development. The aim of this research was to find the share of food expenditure of farm households before and after the program of Food Reserved Garden Area (KRPL/FRGA) in Suwawa and Tilongkabila districtat Bone Bolango Regency of Gorontalo Province. Analysis method used share of food expenditure method. The method measure the ratio of food expenditure and total expenditure of household for a month. Statistical test used a non-parametric method, especially The Wilcoxon Test (two paired samples test). The results found that KRPL program in Ulanta Village of Suwawa district did not significantly affect the share of food expenditure of farm household. While in the South Tunggulo village of Tilongkabila district, FRGA program significantly affected the share of food expenditure.

  12. Optoelectronic scanning system upgrade by energy center localization methods

    NASA Astrophysics Data System (ADS)

    Flores-Fuentes, W.; Sergiyenko, O.; Rodriguez-Quiñonez, J. C.; Rivas-López, M.; Hernández-Balbuena, D.; Básaca-Preciado, L. C.; Lindner, L.; González-Navarro, F. F.

    2016-11-01

    A problem of upgrading an optoelectronic scanning system with digital post-processing of the signal based on adequate methods of energy center localization is considered. An improved dynamic triangulation analysis technique is proposed by an example of industrial infrastructure damage detection. A modification of our previously published method aimed at searching for the energy center of an optoelectronic signal is described. Application of the artificial intelligence algorithm of compensation for the error of determining the angular coordinate in calculating the spatial coordinate through dynamic triangulation is demonstrated. Five energy center localization methods are developed and tested to select the best method. After implementation of these methods, digital compensation for the measurement error, and statistical data analysis, a non-parametric behavior of the data is identified. The Wilcoxon signed rank test is applied to improve the result further. For optical scanning systems, it is necessary to detect a light emitter mounted on the infrastructure being investigated to calculate its spatial coordinate by the energy center localization method.

  13. Assessment of levels of otoacoustic emission response in neonates with perinatal asphyxia☆

    PubMed Central

    Ribeiro, Georgea Espindola; da Silva, Daniela Polo Camargo; Montovani, Jair Cortez

    2014-01-01

    Objective: To evaluate the effects of perinatal asphyxia on the level of the response to transient otoacoustic emissions in infants. Methods: Otoacoustic emissions in 154 neonates were performed: 54 infants who suffered asphyxia at birth, measured by Apgar score and medical diagnosis, and 100 infants without risk were compared. Scores less than 4 in the first minute and/or less than 6 in the fifth minute were considered as "low Apgar". Statistical analysis of the data was performed using the Kruskal, Wilcoxon, and Mann-Whitney nonparametric tests. Results: Lower levels of response were observed in transient otoacoustic emission in the group that suffered perinatal asphyxia, with significant values for the frequencies 2,000, 3,000, and 4,000 Hz in the right ear, and 2,000 and 4,000 Hz in the left ear. Conclusions: The analysis of the intrinsic characteristics of the otoacoustic emissions evidenced low performance of outer hair cells in neonates who had perinatal asphyxia, which may affect the development of listening skills in this population. PMID:25479848

  14. Bayesian Nonparametric Prediction and Statistical Inference

    DTIC Science & Technology

    1989-09-07

    Kadane, J. (1980), "Bayesian decision theory and the sim- plification of models," in Evaluation of Econometric Models, J. Kmenta and J. Ramsey , eds...the random model and weighted least squares regression," in Evaluation of Econometric Models, ed. by J. Kmenta and J. Ramsey , Academic Press, 197-217...likelihood function. On the other hand, H. Jeffreys’s theory of hypothesis testing covers the most important situations in which the prior is not diffuse. See

  15. Some New Approaches to Multivariate Probability Distributions.

    DTIC Science & Technology

    1986-12-01

    Krishnaiah (1977). The following example may serve as an illustration of this point. EXAMPLE 2. (Fre^*chet’s bivariate continuous distribution...the error in the theorem of "" Prakasa Rao (1974) and to Dr. P.R. Krishnaiah for his valuable comments on the initial draft, his monumental patience and...M. and Proschan, F. (1984). Nonparametric Concepts and Methods in Reliability, Handbook of Statistics, 4, 613-655, (eds. P.R. Krishnaiah and P.K

  16. Alternative Matching Scores to Control Type I Error of the Mantel-Haenszel Procedure for DIF in Dichotomously Scored Items Conforming to 3PL IRT and Nonparametric 4PBCB Models

    ERIC Educational Resources Information Center

    Monahan, Patrick O.; Ankenmann, Robert D.

    2010-01-01

    When the matching score is either less than perfectly reliable or not a sufficient statistic for determining latent proficiency in data conforming to item response theory (IRT) models, Type I error (TIE) inflation may occur for the Mantel-Haenszel (MH) procedure or any differential item functioning (DIF) procedure that matches on summed-item…

  17. Microstructure and mineral composition of dental enamel of permanent and deciduous teeth.

    PubMed

    De Menezes Oliveira, Maria Angélica Hueb; Torres, Carolina Paes; Gomes-Silva, Jaciara Miranda; Chinelatti, Michelle Alexandra; De Menezes, Fernando Carlos Hueb; Palma-Dibb, Regina Guenka; Borsatto, Maria Cristina

    2010-05-01

    This study evaluated and compared in vitro the microstructure and mineral composition of permanent and deciduous teeth's dental enamel. Sound third molars (n = 12) and second primary molars (n = 12) were selected and randomly assigned to the following groups, according to the analysis method performed (n = 4): Scanning electron microscopy (SEM), X-Ray diffraction (XRD) and Energy dispersive X-ray spectrometer (EDS). Qualitative and quantitative comparisons of the dental enamel were done. The microscopic findings were analyzed statistically by a nonparametric test (Kruskal-Wallis). The measurements of the prisms number and thickness were done in SEM photomicrographs. The relative amounts of calcium (Ca) and phosphorus (P) were determined by EDS investigation. Chemical phases present in both types of teeth were observed by the XRD analysis. The mean thickness measurements observed in the deciduous teeth enamel was 1.14 mm and in the permanent teeth enamel was 2.58 mm. The mean rod head diameter in deciduous teeth was statistically similar to that of permanent teeth enamel, and a slightly decrease from the outer enamel surface to the region next to the enamel-dentine junction was assessed. The numerical density of enamel rods was higher in the deciduous teeth, mainly near EDJ, that showed statistically significant difference. The percentage of Ca and P was higher in the permanent teeth enamel. The primary enamel structure showed a lower level of Ca and P, thinner thickness and higher numerical density of rods. (c) 2009 Wiley-Liss, Inc.

  18. Normality of raw data in general linear models: The most widespread myth in statistics

    USGS Publications Warehouse

    Kery, Marc; Hatfield, Jeff S.

    2003-01-01

    In years of statistical consulting for ecologists and wildlife biologists, by far the most common misconception we have come across has been the one about normality in general linear models. These comprise a very large part of the statistical models used in ecology and include t tests, simple and multiple linear regression, polynomial regression, and analysis of variance (ANOVA) and covariance (ANCOVA). There is a widely held belief that the normality assumption pertains to the raw data rather than to the model residuals. We suspect that this error may also occur in countless published studies, whenever the normality assumption is tested prior to analysis. This may lead to the use of nonparametric alternatives (if there are any), when parametric tests would indeed be appropriate, or to use of transformations of raw data, which may introduce hidden assumptions such as multiplicative effects on the natural scale in the case of log-transformed data. Our aim here is to dispel this myth. We very briefly describe relevant theory for two cases of general linear models to show that the residuals need to be normally distributed if tests requiring normality are to be used, such as t and F tests. We then give two examples demonstrating that the distribution of the response variable may be nonnormal, and yet the residuals are well behaved. We do not go into the issue of how to test normality; instead we display the distributions of response variables and residuals graphically.

  19. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder.

    PubMed

    Guo, Hao; Cao, Xiaohua; Liu, Zhifen; Li, Haifang; Chen, Junjie; Zhang, Kerang

    2012-12-05

    Resting state functional brain networks have been widely studied in brain disease research. However, it is currently unclear whether abnormal resting state functional brain network metrics can be used with machine learning for the classification of brain diseases. Resting state functional brain networks were constructed for 28 healthy controls and 38 major depressive disorder patients by thresholding partial correlation matrices of 90 regions. Three nodal metrics were calculated using graph theory-based approaches. Nonparametric permutation tests were then used for group comparisons of topological metrics, which were used as classified features in six different algorithms. We used statistical significance as the threshold for selecting features and measured the accuracies of six classifiers with different number of features. A sensitivity analysis method was used to evaluate the importance of different features. The result indicated that some of the regions exhibited significantly abnormal nodal centralities, including the limbic system, basal ganglia, medial temporal, and prefrontal regions. Support vector machine with radial basis kernel function algorithm and neural network algorithm exhibited the highest average accuracy (79.27 and 78.22%, respectively) with 28 features (P<0.05). Correlation analysis between feature importance and the statistical significance of metrics was investigated, and the results revealed a strong positive correlation between them. Overall, the current study demonstrated that major depressive disorder is associated with abnormal functional brain network topological metrics and statistically significant nodal metrics can be successfully used for feature selection in classification algorithms.

  20. Easy and accurate variance estimation of the nonparametric estimator of the partial area under the ROC curve and its application.

    PubMed

    Yu, Jihnhee; Yang, Luge; Vexler, Albert; Hutson, Alan D

    2016-06-15

    The receiver operating characteristic (ROC) curve is a popular technique with applications, for example, investigating an accuracy of a biomarker to delineate between disease and non-disease groups. A common measure of accuracy of a given diagnostic marker is the area under the ROC curve (AUC). In contrast with the AUC, the partial area under the ROC curve (pAUC) looks into the area with certain specificities (i.e., true negative rate) only, and it can be often clinically more relevant than examining the entire ROC curve. The pAUC is commonly estimated based on a U-statistic with the plug-in sample quantile, making the estimator a non-traditional U-statistic. In this article, we propose an accurate and easy method to obtain the variance of the nonparametric pAUC estimator. The proposed method is easy to implement for both one biomarker test and the comparison of two correlated biomarkers because it simply adapts the existing variance estimator of U-statistics. In this article, we show accuracy and other advantages of the proposed variance estimation method by broadly comparing it with previously existing methods. Further, we develop an empirical likelihood inference method based on the proposed variance estimator through a simple implementation. In an application, we demonstrate that, depending on the inferences by either the AUC or pAUC, we can make a different decision on a prognostic ability of a same set of biomarkers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Major strengths and weaknesses of the lod score method.

    PubMed

    Ott, J

    2001-01-01

    Strengths and weaknesses of the lod score method for human genetic linkage analysis are discussed. The main weakness is its requirement for the specification of a detailed inheritance model for the trait. Various strengths are identified. For example, the lod score (likelihood) method has optimality properties when the trait to be studied is known to follow a Mendelian mode of inheritance. The ELOD is a useful measure for information content of the data. The lod score method can emulate various "nonparametric" methods, and this emulation is equivalent to the nonparametric methods. Finally, the possibility of building errors into the analysis will prove to be essential for the large amount of linkage and disequilibrium data expected in the near future.

  2. [Detection of quadratic phase coupling between EEG signal components by nonparamatric and parametric methods of bispectral analysis].

    PubMed

    Schmidt, K; Witte, H

    1999-11-01

    Recently the assumption of the independence of individual frequency components in a signal has been rejected, for example, for the EEG during defined physiological states such as sleep or sedation [9, 10]. Thus, the use of higher-order spectral analysis capable of detecting interrelations between individual signal components has proved useful. The aim of the present study was to investigate the quality of various non-parametric and parametric estimation algorithms using simulated as well as true physiological data. We employed standard algorithms available for the MATLAB. The results clearly show that parametric bispectral estimation is superior to non-parametric estimation in terms of the quality of peak localisation and the discrimination from other peaks.

  3. A SAS(®) macro implementation of a multiple comparison post hoc test for a Kruskal-Wallis analysis.

    PubMed

    Elliott, Alan C; Hynan, Linda S

    2011-04-01

    The Kruskal-Wallis (KW) nonparametric analysis of variance is often used instead of a standard one-way ANOVA when data are from a suspected non-normal population. The KW omnibus procedure tests for some differences between groups, but provides no specific post hoc pair wise comparisons. This paper provides a SAS(®) macro implementation of a multiple comparison test based on significant Kruskal-Wallis results from the SAS NPAR1WAY procedure. The implementation is designed for up to 20 groups at a user-specified alpha significance level. A Monte-Carlo simulation compared this nonparametric procedure to commonly used parametric multiple comparison tests. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. ELECTROMYOGRAPHIC EVALUATION OF MASTICATION AND SWALLOWING IN ELDERLY INDIVIDUALS WITH MANDIBULAR FIXED IMPLANTSUPPORTED PROSTHESES

    PubMed Central

    Berretin-Felix, Giédre; Nary, Hugo; Padovani, Carlos Roberto; Trindade, Alceu Sergio; Machado, Wellington Monteiro

    2008-01-01

    This study evaluated the effect of implant-supported oral rehabilitation in the mandible on the electromyographic activity during mastication and swallowing in edentulous elderly individuals. Fifteen patients aged more than 60 years were evaluated, being 10 females and 5 males. All patients were edentulous, wore removable complete dentures on both dental arches, and had the mandibular dentures replaced by implant-supported prostheses. All patients were submitted to electromyographic evaluation of the masseter, superior orbicularis oris muscles, and the submental muscles, before surgery and 3, 6 and 18 months postoperatively, using foods of different textures. The results obtained at the different periods were analyzed statistically by Kruskal-Wallis non-parametric test. Statistical analysis showed that only the masseter muscle had a significant loss in electromyographic activity (p<0.001), with a tendency of similar response for the submental muscles. Moreover, there was an increase in the activity of the orbicularis oris muscle during rubber chewing after treatment, yet without statistically significant difference. Mandibular fixed implant-supported prostheses in elderly individuals revealed a decrease in electromyographic amplitude for the masseter muscles during swallowing, which may indicate adaptation to new conditions of stability provided by fixation of the complete denture in the mandibular arch. PMID:19089202

  5. Statistical monitoring of the hand, foot and mouth disease in China.

    PubMed

    Zhang, Jingnan; Kang, Yicheng; Yang, Yang; Qiu, Peihua

    2015-09-01

    In a period starting around 2007, the Hand, Foot, and Mouth Disease (HFMD) became wide-spreading in China, and the Chinese public health was seriously threatened. To prevent the outbreak of infectious diseases like HFMD, effective disease surveillance systems would be especially helpful to give signals of disease outbreaks as early as possible. Statistical process control (SPC) charts provide a major statistical tool in industrial quality control for detecting product defectives in a timely manner. In recent years, SPC charts have been used for disease surveillance. However, disease surveillance data often have much more complicated structures, compared to the data collected from industrial production lines. Major challenges, including lack of in-control data, complex seasonal effects, and spatio-temporal correlations, make the surveillance data difficult to handle. In this article, we propose a three-step procedure for analyzing disease surveillance data, and our procedure is demonstrated using the HFMD data collected during 2008-2009 in China. Our method uses nonparametric longitudinal data and time series analysis methods to eliminate the possible impact of seasonality and temporal correlation before the disease incidence data are sequentially monitored by a SPC chart. At both national and provincial levels, our proposed method can effectively detect the increasing trend of disease incidence rate before the disease becomes wide-spreading. © 2015, The International Biometric Society.

  6. Modelling fourier regression for time series data- a case study: modelling inflation in foods sector in Indonesia

    NASA Astrophysics Data System (ADS)

    Prahutama, Alan; Suparti; Wahyu Utami, Tiani

    2018-03-01

    Regression analysis is an analysis to model the relationship between response variables and predictor variables. The parametric approach to the regression model is very strict with the assumption, but nonparametric regression model isn’t need assumption of model. Time series data is the data of a variable that is observed based on a certain time, so if the time series data wanted to be modeled by regression, then we should determined the response and predictor variables first. Determination of the response variable in time series is variable in t-th (yt), while the predictor variable is a significant lag. In nonparametric regression modeling, one developing approach is to use the Fourier series approach. One of the advantages of nonparametric regression approach using Fourier series is able to overcome data having trigonometric distribution. In modeling using Fourier series needs parameter of K. To determine the number of K can be used Generalized Cross Validation method. In inflation modeling for the transportation sector, communication and financial services using Fourier series yields an optimal K of 120 parameters with R-square 99%. Whereas if it was modeled by multiple linear regression yield R-square 90%.

  7. Applications of quantum entropy to statistics

    NASA Astrophysics Data System (ADS)

    Silver, R. N.; Martz, H. F.

    This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to hierarchical Bayes methods.

  8. Adolescent cigarette smoking and health risk behavior.

    PubMed

    Busen, N H; Modeland, V; Kouzekanani, K

    2001-06-01

    During the past 30 years, tobacco use among adolescents has substantially increased, resulting in major health problems associated with tobacco consumption. The purpose of this study was to identify adolescent smoking behaviors and to determine the relationship among smoking, specific demographic variables, and health risk behaviors. The sample consisted of 93 self-selecting adolescents. An ex post facto design was used for this study and data were analyzed by using nonparametric statistics. Findings included a statistically significant relationship between lifetime cigarette use and ethnicity. Statistically significant relationships were also found among current cigarette use and ethnicity, alcohol use, marijuana use, suicidal thoughts, and age at first sexual intercourse. Nurses and other providers must recognize that cigarette smoking may indicate other risk behaviors common among adolescents. Copyright 2001 by W.B. Saunders Company

  9. Risk analysis in cohort studies with heterogeneous strata. A global chi2-test for dose-response relationship, generalizing the Mantel-Haenszel procedure.

    PubMed

    Ahlborn, W; Tuz, H J; Uberla, K

    1990-03-01

    In cohort studies the Mantel-Haenszel estimator ORMH is computed from sample data and is used as a point estimator of relative risk. Test-based confidence intervals are estimated with the help of the asymptotic chi-squared distributed MH-statistic chi 2MHS. The Mantel-extension-chi-squared is used as a test statistic for a dose-response relationship. Both test statistics--the Mantel-Haenszel-chi as well as the Mantel-extension-chi--assume homogeneity of risk across strata, which is rarely present. Also an extended nonparametric statistic, proposed by Terpstra, which is based on the Mann-Whitney-statistics assumes homogeneity of risk across strata. We have earlier defined four risk measures RRkj (k = 1,2,...,4) in the population and considered their estimates and the corresponding asymptotic distributions. In order to overcome the homogeneity assumption we use the delta-method to get "test-based" confidence intervals. Because the four risk measures RRkj are presented as functions of four weights gik we give, consequently, the asymptotic variances of these risk estimators also as functions of the weights gik in a closed form. Approximations to these variances are given. For testing a dose-response relationship we propose a new class of chi 2(1)-distributed global measures Gk and the corresponding global chi 2-test. In contrast to the Mantel-extension-chi homogeneity of risk across strata must not be assumed. These global test statistics are of the Wald type for composite hypotheses.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. The platelet activating factor acetyl hydrolase, oxidized low-density lipoprotein, paraoxonase 1 and arylesterase levels in treated and untreated patients with polycystic ovary syndrome.

    PubMed

    Carlioglu, Ayse; Kaygusuz, Ikbal; Karakurt, Feridun; Gumus, Ilknur Inegol; Uysal, Aysel; Kasapoglu, Benan; Armutcu, Ferah; Uysal, Sema; Keskin, Esra Aktepe; Koca, Cemile

    2014-11-01

    To evaluate the platelet activating factor acetyl hydrolyze (PAF-AH), oxidized low-density lipoprotein (ox-LDL), paraoxonase 1 (PON1), arylesterase (ARE) levels and the effects of metformin and Diane-35 (ethinyl oestradiol + cyproterone acetate) therapies on these parameters and to determine the PON1 polymorphisms among PCOS patients. Ninety patients with PCOS, age 30, and body mass index-matched healthy controls were included in the study. Patients were divided into three groups: metformin treatment, Diane-35 treatment and no medication groups. The treatment with metformin or Diane-35 was continued for 6 months and all subjects were evaluated with clinical and biochemical parameters 6 months later. One-way Anova test, t test and non-parametric Mann-Whitney U tests were used for statistical analysis. PAF-AH and ox-LDL levels were statistically significantly higher in untreated PCOS patients than controls, and they were statistically significantly lower in patients treated with metformin or Diane-35 than untreated PCOS patients. In contrast, there were lower PON1 (not statistically significant) and ARE (statistically significant) levels in untreated PCOS patients than the control group and they significantly increased after metformin and Diane-35 treatments. In PCOS patients serum PON1 levels for QQ, QR and RR phenotypes were statistically significantly lower than the control group. In patients with PCOS, proatherogenic markers increase. The treatment of PCOS with metformin or Diane-35 had positive effects on lipid profile, increased PON1 level, which is a protector from atherosclerosis and decreased the proatherogenic PAF-AH and ox-LDL levels.

  11. Sample size considerations for clinical research studies in nuclear cardiology.

    PubMed

    Chiuzan, Cody; West, Erin A; Duong, Jimmy; Cheung, Ken Y K; Einstein, Andrew J

    2015-12-01

    Sample size calculation is an important element of research design that investigators need to consider in the planning stage of the study. Funding agencies and research review panels request a power analysis, for example, to determine the minimum number of subjects needed for an experiment to be informative. Calculating the right sample size is crucial to gaining accurate information and ensures that research resources are used efficiently and ethically. The simple question "How many subjects do I need?" does not always have a simple answer. Before calculating the sample size requirements, a researcher must address several aspects, such as purpose of the research (descriptive or comparative), type of samples (one or more groups), and data being collected (continuous or categorical). In this article, we describe some of the most frequent methods for calculating the sample size with examples from nuclear cardiology research, including for t tests, analysis of variance (ANOVA), non-parametric tests, correlation, Chi-squared tests, and survival analysis. For the ease of implementation, several examples are also illustrated via user-friendly free statistical software.

  12. Working to eat: Vulnerability, food insecurity, and obesity among migrant and seasonal farmworker families.

    PubMed

    Borre, Kristen; Ertle, Luke; Graff, Mariaelisa

    2010-04-01

    Food insecurity and obesity have potential health consequences for migrant and seasonal farm workers (MSFW). Thirty-six Latino MSFW working in eastern North Carolina whose children attended Migrant Head Start completed interviews, focus groups and home visits. Content analysis, nutrient analysis, and non-parametric statistical analysis produced results. MSFW (63.8%) families were food insecure; of those, 34.7% experienced hunger. 32% of pre-school children were food insecure. Food secure families spent more money on food. Obesity was prevalent in adults and children but the relationship to food insecurity remains unclear. Strategies to reduce risk of foods insecurity were employed by MSFW, but employer and community assistance is needed to reduce their risk. Food insecurity is rooted in the cultural lifestyle of farmwork, poverty, and dependency. MSFW obesity and food insecurity require further study to determine the relationship with migration and working conditions. Networking and social support are important for MSFW families to improve food security. Policies and community/workplace interventions could reduce risk of food insecurity and improve the health of workers. (c) 2010 Wiley-Liss, Inc.

  13. Nonparametric methods for drought severity estimation at ungauged sites

    NASA Astrophysics Data System (ADS)

    Sadri, S.; Burn, D. H.

    2012-12-01

    The objective in frequency analysis is, given extreme events such as drought severity or duration, to estimate the relationship between that event and the associated return periods at a catchment. Neural networks and other artificial intelligence approaches in function estimation and regression analysis are relatively new techniques in engineering, providing an attractive alternative to traditional statistical models. There are, however, few applications of neural networks and support vector machines in the area of severity quantile estimation for drought frequency analysis. In this paper, we compare three methods for this task: multiple linear regression, radial basis function neural networks, and least squares support vector regression (LS-SVR). The area selected for this study includes 32 catchments in the Canadian Prairies. From each catchment drought severities are extracted and fitted to a Pearson type III distribution, which act as observed values. For each method-duration pair, we use a jackknife algorithm to produce estimated values at each site. The results from these three approaches are compared and analyzed, and it is found that LS-SVR provides the best quantile estimates and extrapolating capacity.

  14. Some analysis on the diurnal variation of rainfall over the Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Gill, T.; Perng, S.; Hughes, A.

    1981-01-01

    Data collected from the GARP Atlantic Tropical Experiment (GATE) was examined. The data were collected from 10,000 grid points arranged as a 100 x 100 array; each grid covered a 4 square km area. The amount of rainfall was measured every 15 minutes during the experiment periods using c-band radars. Two types of analyses were performed on the data: analysis of diurnal variation was done on each of grid points based on the rainfall averages at noon and at midnight, and time series analysis on selected grid points based on the hourly averages of rainfall. Since there are no known distribution model which best describes the rainfall amount, nonparametric methods were used to examine the diurnal variation. Kolmogorov-Smirnov test was used to test if the rainfalls at noon and at midnight have the same statistical distribution. Wilcoxon signed-rank test was used to test if the noon rainfall is heavier than, equal to, or lighter than the midnight rainfall. These tests were done on each of the 10,000 grid points at which the data are available.

  15. Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat

    PubMed Central

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-01-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882

  16. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    PubMed

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  17. The Infinitesimal Jackknife with Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Preacher, Kristopher J.; Jennrich, Robert I.

    2012-01-01

    The infinitesimal jackknife, a nonparametric method for estimating standard errors, has been used to obtain standard error estimates in covariance structure analysis. In this article, we adapt it for obtaining standard errors for rotated factor loadings and factor correlations in exploratory factor analysis with sample correlation matrices. Both…

  18. Nonparametric evaluation of birth cohort trends in disease rates.

    PubMed

    Tarone, R E; Chu, K C

    2000-01-01

    Although interpretation of age-period-cohort analyses is complicated by the non-identifiability of maximum likelihood estimates, changes in the slope of the birth-cohort effect curve are identifiable and have potential aetiologic significance. A nonparametric test for a change in the slope of the birth-cohort trend has been developed. The test is a generalisation of the sign test and is based on permutational distributions. A method for identifying interactions between age and calendar-period effects is also presented. The nonparametric method is shown to be powerful in detecting changes in the slope of the birth-cohort trend, although its power can be reduced considerably by calendar-period patterns of risk. The method identifies a previously unidentified decrease in the birth-cohort risk of lung-cancer mortality from 1912 to 1919, which appears to reflect a reduction in the initiation of smoking by young men at the beginning of the Great Depression (1930s). The method also detects an interaction between age and calendar period in leukemia mortality rates, reflecting the better response of children to chemotherapy. The proposed nonparametric method provides a data analytic approach, which is a useful adjunct to log-linear Poisson analysis of age-period-cohort models, either in the initial model building stage, or in the final interpretation stage.

  19. Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data

    PubMed Central

    Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao

    2012-01-01

    Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions. PMID:23645976

  20. Joint nonparametric correction estimator for excess relative risk regression in survival analysis with exposure measurement error

    PubMed Central

    Wang, Ching-Yun; Cullings, Harry; Song, Xiao; Kopecky, Kenneth J.

    2017-01-01

    SUMMARY Observational epidemiological studies often confront the problem of estimating exposure-disease relationships when the exposure is not measured exactly. In the paper, we investigate exposure measurement error in excess relative risk regression, which is a widely used model in radiation exposure effect research. In the study cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies a generalized version of the classical additive measurement error model, but it may or may not have repeated measurements. In addition, an instrumental variable is available for individuals in a subset of the whole cohort. We develop a nonparametric correction (NPC) estimator using data from the subcohort, and further propose a joint nonparametric correction (JNPC) estimator using all observed data to adjust for exposure measurement error. An optimal linear combination estimator of JNPC and NPC is further developed. The proposed estimators are nonparametric, which are consistent without imposing a covariate or error distribution, and are robust to heteroscedastic errors. Finite sample performance is examined via a simulation study. We apply the developed methods to data from the Radiation Effects Research Foundation, in which chromosome aberration is used to adjust for the effects of radiation dose measurement error on the estimation of radiation dose responses. PMID:29354018

  1. Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data.

    PubMed

    Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao

    2013-01-01

    Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions.

  2. Robust neural network with applications to credit portfolio data analysis.

    PubMed

    Feng, Yijia; Li, Runze; Sudjianto, Agus; Zhang, Yiyun

    2010-01-01

    In this article, we study nonparametric conditional quantile estimation via neural network structure. We proposed an estimation method that combines quantile regression and neural network (robust neural network, RNN). It provides good smoothing performance in the presence of outliers and can be used to construct prediction bands. A Majorization-Minimization (MM) algorithm was developed for optimization. Monte Carlo simulation study is conducted to assess the performance of RNN. Comparison with other nonparametric regression methods (e.g., local linear regression and regression splines) in real data application demonstrate the advantage of the newly proposed procedure.

  3. Bayesian Nonparametric Ordination for the Analysis of Microbial Communities.

    PubMed

    Ren, Boyu; Bacallado, Sergio; Favaro, Stefano; Holmes, Susan; Trippa, Lorenzo

    2017-01-01

    Human microbiome studies use sequencing technologies to measure the abundance of bacterial species or Operational Taxonomic Units (OTUs) in samples of biological material. Typically the data are organized in contingency tables with OTU counts across heterogeneous biological samples. In the microbial ecology community, ordination methods are frequently used to investigate latent factors or clusters that capture and describe variations of OTU counts across biological samples. It remains important to evaluate how uncertainty in estimates of each biological sample's microbial distribution propagates to ordination analyses, including visualization of clusters and projections of biological samples on low dimensional spaces. We propose a Bayesian analysis for dependent distributions to endow frequently used ordinations with estimates of uncertainty. A Bayesian nonparametric prior for dependent normalized random measures is constructed, which is marginally equivalent to the normalized generalized Gamma process, a well-known prior for nonparametric analyses. In our prior, the dependence and similarity between microbial distributions is represented by latent factors that concentrate in a low dimensional space. We use a shrinkage prior to tune the dimensionality of the latent factors. The resulting posterior samples of model parameters can be used to evaluate uncertainty in analyses routinely applied in microbiome studies. Specifically, by combining them with multivariate data analysis techniques we can visualize credible regions in ecological ordination plots. The characteristics of the proposed model are illustrated through a simulation study and applications in two microbiome datasets.

  4. A nonparametric method to generate synthetic populations to adjust for complex sampling design features.

    PubMed

    Dong, Qi; Elliott, Michael R; Raghunathan, Trivellore E

    2014-06-01

    Outside of the survey sampling literature, samples are often assumed to be generated by a simple random sampling process that produces independent and identically distributed (IID) samples. Many statistical methods are developed largely in this IID world. Application of these methods to data from complex sample surveys without making allowance for the survey design features can lead to erroneous inferences. Hence, much time and effort have been devoted to develop the statistical methods to analyze complex survey data and account for the sample design. This issue is particularly important when generating synthetic populations using finite population Bayesian inference, as is often done in missing data or disclosure risk settings, or when combining data from multiple surveys. By extending previous work in finite population Bayesian bootstrap literature, we propose a method to generate synthetic populations from a posterior predictive distribution in a fashion inverts the complex sampling design features and generates simple random samples from a superpopulation point of view, making adjustment on the complex data so that they can be analyzed as simple random samples. We consider a simulation study with a stratified, clustered unequal-probability of selection sample design, and use the proposed nonparametric method to generate synthetic populations for the 2006 National Health Interview Survey (NHIS), and the Medical Expenditure Panel Survey (MEPS), which are stratified, clustered unequal-probability of selection sample designs.

  5. A nonparametric method to generate synthetic populations to adjust for complex sampling design features

    PubMed Central

    Dong, Qi; Elliott, Michael R.; Raghunathan, Trivellore E.

    2017-01-01

    Outside of the survey sampling literature, samples are often assumed to be generated by a simple random sampling process that produces independent and identically distributed (IID) samples. Many statistical methods are developed largely in this IID world. Application of these methods to data from complex sample surveys without making allowance for the survey design features can lead to erroneous inferences. Hence, much time and effort have been devoted to develop the statistical methods to analyze complex survey data and account for the sample design. This issue is particularly important when generating synthetic populations using finite population Bayesian inference, as is often done in missing data or disclosure risk settings, or when combining data from multiple surveys. By extending previous work in finite population Bayesian bootstrap literature, we propose a method to generate synthetic populations from a posterior predictive distribution in a fashion inverts the complex sampling design features and generates simple random samples from a superpopulation point of view, making adjustment on the complex data so that they can be analyzed as simple random samples. We consider a simulation study with a stratified, clustered unequal-probability of selection sample design, and use the proposed nonparametric method to generate synthetic populations for the 2006 National Health Interview Survey (NHIS), and the Medical Expenditure Panel Survey (MEPS), which are stratified, clustered unequal-probability of selection sample designs. PMID:29200608

  6. Kernel-based whole-genome prediction of complex traits: a review.

    PubMed

    Morota, Gota; Gianola, Daniel

    2014-01-01

    Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.

  7. Detecting correlation changes in multivariate time series: A comparison of four non-parametric change point detection methods.

    PubMed

    Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Grassmann, Mariel; Ceulemans, Eva

    2017-06-01

    Change point detection in multivariate time series is a complex task since next to the mean, the correlation structure of the monitored variables may also alter when change occurs. DeCon was recently developed to detect such changes in mean and\\or correlation by combining a moving windows approach and robust PCA. However, in the literature, several other methods have been proposed that employ other non-parametric tools: E-divisive, Multirank, and KCP. Since these methods use different statistical approaches, two issues need to be tackled. First, applied researchers may find it hard to appraise the differences between the methods. Second, a direct comparison of the relative performance of all these methods for capturing change points signaling correlation changes is still lacking. Therefore, we present the basic principles behind DeCon, E-divisive, Multirank, and KCP and the corresponding algorithms, to make them more accessible to readers. We further compared their performance through extensive simulations using the settings of Bulteel et al. (Biological Psychology, 98 (1), 29-42, 2014) implying changes in mean and in correlation structure and those of Matteson and James (Journal of the American Statistical Association, 109 (505), 334-345, 2014) implying different numbers of (noise) variables. KCP emerged as the best method in almost all settings. However, in case of more than two noise variables, only DeCon performed adequately in detecting correlation changes.

  8. A Rational Analysis of the Acquisition of Multisensory Representations

    ERIC Educational Resources Information Center

    Yildirim, Ilker; Jacobs, Robert A.

    2012-01-01

    How do people learn multisensory, or amodal, representations, and what consequences do these representations have for perceptual performance? We address this question by performing a rational analysis of the problem of learning multisensory representations. This analysis makes use of a Bayesian nonparametric model that acquires latent multisensory…

  9. Non-parametric characterization of long-term rainfall time series

    NASA Astrophysics Data System (ADS)

    Tiwari, Harinarayan; Pandey, Brij Kishor

    2018-03-01

    The statistical study of rainfall time series is one of the approaches for efficient hydrological system design. Identifying, and characterizing long-term rainfall time series could aid in improving hydrological systems forecasting. In the present study, eventual statistics was applied for the long-term (1851-2006) rainfall time series under seven meteorological regions of India. Linear trend analysis was carried out using Mann-Kendall test for the observed rainfall series. The observed trend using the above-mentioned approach has been ascertained using the innovative trend analysis method. Innovative trend analysis has been found to be a strong tool to detect the general trend of rainfall time series. Sequential Mann-Kendall test has also been carried out to examine nonlinear trends of the series. The partial sum of cumulative deviation test is also found to be suitable to detect the nonlinear trend. Innovative trend analysis, sequential Mann-Kendall test and partial cumulative deviation test have potential to detect the general as well as nonlinear trend for the rainfall time series. Annual rainfall analysis suggests that the maximum changes in mean rainfall is 11.53% for West Peninsular India, whereas the maximum fall in mean rainfall is 7.8% for the North Mountainous Indian region. The innovative trend analysis method is also capable of finding the number of change point available in the time series. Additionally, we have performed von Neumann ratio test and cumulative deviation test to estimate the departure from homogeneity. Singular spectrum analysis has been applied in this study to evaluate the order of departure from homogeneity in the rainfall time series. Monsoon season (JS) of North Mountainous India and West Peninsular India zones has higher departure from homogeneity and singular spectrum analysis shows the results to be in coherence with the same.

  10. Kinetic Analysis of Dynamic Positron Emission Tomography Data using Open-Source Image Processing and Statistical Inference Tools.

    PubMed

    Hawe, David; Hernández Fernández, Francisco R; O'Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O'Sullivan, Finbarr

    2012-05-01

    In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue. In statistical terms, the residue function is essentially a survival function - a familiar life-time data construct. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as flow, flux, volume of distribution and transit time summaries. This review emphasises a nonparametric approach to the estimation of the residue based on a piecewise linear form. Rapid implementation of this by quadratic programming is described. The approach provides a reference for statistical assessment of widely used one- and two-compartmental model forms. We illustrate the method with data from two of the most well-established PET radiotracers, (15)O-H(2)O and (18)F-fluorodeoxyglucose, used for assessment of blood perfusion and glucose metabolism respectively. The presentation illustrates the use of two open-source tools, AMIDE and R, for PET scan manipulation and model inference.

  11. Target Identification Using Harmonic Wavelet Based ISAR Imaging

    NASA Astrophysics Data System (ADS)

    Shreyamsha Kumar, B. K.; Prabhakar, B.; Suryanarayana, K.; Thilagavathi, V.; Rajagopal, R.

    2006-12-01

    A new approach has been proposed to reduce the computations involved in the ISAR imaging, which uses harmonic wavelet-(HW) based time-frequency representation (TFR). Since the HW-based TFR falls into a category of nonparametric time-frequency (T-F) analysis tool, it is computationally efficient compared to parametric T-F analysis tools such as adaptive joint time-frequency transform (AJTFT), adaptive wavelet transform (AWT), and evolutionary AWT (EAWT). Further, the performance of the proposed method of ISAR imaging is compared with the ISAR imaging by other nonparametric T-F analysis tools such as short-time Fourier transform (STFT) and Choi-Williams distribution (CWD). In the ISAR imaging, the use of HW-based TFR provides similar/better results with significant (92%) computational advantage compared to that obtained by CWD. The ISAR images thus obtained are identified using a neural network-based classification scheme with feature set invariant to translation, rotation, and scaling.

  12. Component isolation for multi-component signal analysis using a non-parametric gaussian latent feature model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Peng, Zhike; Dong, Xingjian; Zhang, Wenming; Clifton, David A.

    2018-03-01

    A challenge in analysing non-stationary multi-component signals is to isolate nonlinearly time-varying signals especially when they are overlapped in time and frequency plane. In this paper, a framework integrating time-frequency analysis-based demodulation and a non-parametric Gaussian latent feature model is proposed to isolate and recover components of such signals. The former aims to remove high-order frequency modulation (FM) such that the latter is able to infer demodulated components while simultaneously discovering the number of the target components. The proposed method is effective in isolating multiple components that have the same FM behavior. In addition, the results show that the proposed method is superior to generalised demodulation with singular-value decomposition-based method, parametric time-frequency analysis with filter-based method and empirical model decomposition base method, in recovering the amplitude and phase of superimposed components.

  13. The challenge for genetic epidemiologists: how to analyze large numbers of SNPs in relation to complex diseases.

    PubMed

    Heidema, A Geert; Boer, Jolanda M A; Nagelkerke, Nico; Mariman, Edwin C M; van der A, Daphne L; Feskens, Edith J M

    2006-04-21

    Genetic epidemiologists have taken the challenge to identify genetic polymorphisms involved in the development of diseases. Many have collected data on large numbers of genetic markers but are not familiar with available methods to assess their association with complex diseases. Statistical methods have been developed for analyzing the relation between large numbers of genetic and environmental predictors to disease or disease-related variables in genetic association studies. In this commentary we discuss logistic regression analysis, neural networks, including the parameter decreasing method (PDM) and genetic programming optimized neural networks (GPNN) and several non-parametric methods, which include the set association approach, combinatorial partitioning method (CPM), restricted partitioning method (RPM), multifactor dimensionality reduction (MDR) method and the random forests approach. The relative strengths and weaknesses of these methods are highlighted. Logistic regression and neural networks can handle only a limited number of predictor variables, depending on the number of observations in the dataset. Therefore, they are less useful than the non-parametric methods to approach association studies with large numbers of predictor variables. GPNN on the other hand may be a useful approach to select and model important predictors, but its performance to select the important effects in the presence of large numbers of predictors needs to be examined. Both the set association approach and random forests approach are able to handle a large number of predictors and are useful in reducing these predictors to a subset of predictors with an important contribution to disease. The combinatorial methods give more insight in combination patterns for sets of genetic and/or environmental predictor variables that may be related to the outcome variable. As the non-parametric methods have different strengths and weaknesses we conclude that to approach genetic association studies using the case-control design, the application of a combination of several methods, including the set association approach, MDR and the random forests approach, will likely be a useful strategy to find the important genes and interaction patterns involved in complex diseases.

  14. Biostatistics Series Module 3: Comparing Groups: Numerical Variables.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Numerical data that are normally distributed can be analyzed with parametric tests, that is, tests which are based on the parameters that define a normal distribution curve. If the distribution is uncertain, the data can be plotted as a normal probability plot and visually inspected, or tested for normality using one of a number of goodness of fit tests, such as the Kolmogorov-Smirnov test. The widely used Student's t-test has three variants. The one-sample t-test is used to assess if a sample mean (as an estimate of the population mean) differs significantly from a given population mean. The means of two independent samples may be compared for a statistically significant difference by the unpaired or independent samples t-test. If the data sets are related in some way, their means may be compared by the paired or dependent samples t-test. The t-test should not be used to compare the means of more than two groups. Although it is possible to compare groups in pairs, when there are more than two groups, this will increase the probability of a Type I error. The one-way analysis of variance (ANOVA) is employed to compare the means of three or more independent data sets that are normally distributed. Multiple measurements from the same set of subjects cannot be treated as separate, unrelated data sets. Comparison of means in such a situation requires repeated measures ANOVA. It is to be noted that while a multiple group comparison test such as ANOVA can point to a significant difference, it does not identify exactly between which two groups the difference lies. To do this, multiple group comparison needs to be followed up by an appropriate post hoc test. An example is the Tukey's honestly significant difference test following ANOVA. If the assumptions for parametric tests are not met, there are nonparametric alternatives for comparing data sets. These include Mann-Whitney U-test as the nonparametric counterpart of the unpaired Student's t-test, Wilcoxon signed-rank test as the counterpart of the paired Student's t-test, Kruskal-Wallis test as the nonparametric equivalent of ANOVA and the Friedman's test as the counterpart of repeated measures ANOVA.

  15. Local Linear Regression for Data with AR Errors.

    PubMed

    Li, Runze; Li, Yan

    2009-07-01

    In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.

  16. Comparison Analysis of Recognition Algorithms of Forest-Cover Objects on Hyperspectral Air-Borne and Space-Borne Images

    NASA Astrophysics Data System (ADS)

    Kozoderov, V. V.; Kondranin, T. V.; Dmitriev, E. V.

    2017-12-01

    The basic model for the recognition of natural and anthropogenic objects using their spectral and textural features is described in the problem of hyperspectral air-borne and space-borne imagery processing. The model is based on improvements of the Bayesian classifier that is a computational procedure of statistical decision making in machine-learning methods of pattern recognition. The principal component method is implemented to decompose the hyperspectral measurements on the basis of empirical orthogonal functions. Application examples are shown of various modifications of the Bayesian classifier and Support Vector Machine method. Examples are provided of comparing these classifiers and a metrical classifier that operates on finding the minimal Euclidean distance between different points and sets in the multidimensional feature space. A comparison is also carried out with the " K-weighted neighbors" method that is close to the nonparametric Bayesian classifier.

  17. The comet assay for the evaluation of genotoxic potential of landfill leachate.

    PubMed

    Widziewicz, Kamila; Kalka, Joanna; Skonieczna, Magdalena; Madej, Paweł

    2012-01-01

    Genotoxic assessment of landfill leachate before and after biological treatment was conducted with two human cell lines (Me45 and NHDF) and Daphnia magna somatic cells. The alkali version of comet assay was used to examine genotoxicity of leachate by DNA strand breaks analysis and its repair dynamics. The leachate samples were collected from Zabrze landfill, situated in the Upper Silesian Industrial District, Poland. Statistically significant differences (Kruskal-Wallice ANOVA rank model) were observed between DNA strand breaks in cells incubated with leachate before and after treatment (P < 0.001). Nonparametric Friedman ANOVA confirmed time-reliable and concentration-reliable cells response to leachate concentration. Examinations of chemical properties showed a marked decrease in leachate parameters after treatment which correlate to reduced genotoxicity towards tested cells. Obtained results demonstrate that biological cotreatment of leachate together with municipal wastewater is an efficient method for its genotoxic potential reduction; however, treated leachate still possessed genotoxic character.

  18. The Comet Assay for the Evaluation of Genotoxic Potential of Landfill Leachate

    PubMed Central

    Widziewicz, Kamila; Kalka, Joanna; Skonieczna, Magdalena; Madej, Paweł

    2012-01-01

    Genotoxic assessment of landfill leachate before and after biological treatment was conducted with two human cell lines (Me45 and NHDF) and Daphnia magna somatic cells. The alkali version of comet assay was used to examine genotoxicity of leachate by DNA strand breaks analysis and its repair dynamics. The leachate samples were collected from Zabrze landfill, situated in the Upper Silesian Industrial District, Poland. Statistically significant differences (Kruskal-Wallice ANOVA rank model) were observed between DNA strand breaks in cells incubated with leachate before and after treatment (P < 0.001). Nonparametric Friedman ANOVA confirmed time-reliable and concentration-reliable cells response to leachate concentration. Examinations of chemical properties showed a marked decrease in leachate parameters after treatment which correlate to reduced genotoxicity towards tested cells. Obtained results demonstrate that biological cotreatment of leachate together with municipal wastewater is an efficient method for its genotoxic potential reduction; however, treated leachate still possessed genotoxic character. PMID:22666120

  19. Student Bedtimes, Academic Performance, and Health in a Residential High School.

    PubMed

    Wernette, Maliah J; Emory, Jan

    2017-08-01

    Inadequate sleep among adolescents is considered an epidemic in the United States. Late night bedtimes could be an important factor in academic performance and health with consequences continuing throughout adulthood. The purpose of this study was to explore the relationships between late night bedtimes, academic performance (grade point average [GPA]), and utilization of health care (school nurse visits) in a residential high school. The data were collected from archival records for one academic semester. The statistical analysis employed the nonparametric Pearson's correlation coefficient ( r) with the standard level of significance (α = .05). Positive and inverse linear relationships were found between bedtime and school nurse visits ( p < .00001) and bedtime and GPA ( p = .007). The findings suggest students' late night bedtimes may be related to increased school nurse visits and lower academic performance. Adolescent late night bedtimes may be an important consideration for academic success and maintaining health in residential high schools.

  20. A Bayesian Measurment Error Model for Misaligned Radiographic Data

    DOE PAGES

    Lennox, Kristin P.; Glascoe, Lee G.

    2013-09-06

    An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. The data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error inmore » addition to heteroscedasticity to address this problem. We also use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online.« less

  1. Inducible nitric oxide expression correlates with the level of inflammation in periapical cysts.

    PubMed

    Matsumoto, Mariza Akemi; Ribeiro, Daniel Araki

    2007-10-01

    In an attempt to elucidate if inducible nitric oxide expression (iNOS) is correlated with the level of inflammation in periapical cysts with accuracy, the goal of this study was to evaluate the expression of iNOS in these ones. 30 cases were included in this study being iNOS evaluated by means of immunohistochemistry. Statistical analysis was performed by Kruskal-Wallis non-parametric test followed by the post-hoc Dunn's test. iNOS stain was detected throughout the epithelium, subepithelial fibroblasts and macrophages in all cases, indistinctly. Nevertheless, iNOS immunostaining in periapical cysts was different according to the levels of inflammation, being the strongest effect associated with intense inflammatory infiltrate. Taken together, our results indicate that immunoreactivity of iNOS was expressed in several cellular types present in periapical cyst, being positively correlated with the level of inflammation. Therefore, iNOS expression plays an important role in the pathogenesis of periapical cysts.

  2. Machine Learning for Treatment Assignment: Improving Individualized Risk Attribution

    PubMed Central

    Weiss, Jeremy; Kuusisto, Finn; Boyd, Kendrick; Liu, Jie; Page, David

    2015-01-01

    Clinical studies model the average treatment effect (ATE), but apply this population-level effect to future individuals. Due to recent developments of machine learning algorithms with useful statistical guarantees, we argue instead for modeling the individualized treatment effect (ITE), which has better applicability to new patients. We compare ATE-estimation using randomized and observational analysis methods against ITE-estimation using machine learning, and describe how the ITE theoretically generalizes to new population distributions, whereas the ATE may not. On a synthetic data set of statin use and myocardial infarction (MI), we show that a learned ITE model improves true ITE estimation and outperforms the ATE. We additionally argue that ITE models should be learned with a consistent, nonparametric algorithm from unweighted examples and show experiments in favor of our argument using our synthetic data model and a real data set of D-penicillamine use for primary biliary cirrhosis. PMID:26958271

  3. Machine Learning for Treatment Assignment: Improving Individualized Risk Attribution.

    PubMed

    Weiss, Jeremy; Kuusisto, Finn; Boyd, Kendrick; Liu, Jie; Page, David

    2015-01-01

    Clinical studies model the average treatment effect (ATE), but apply this population-level effect to future individuals. Due to recent developments of machine learning algorithms with useful statistical guarantees, we argue instead for modeling the individualized treatment effect (ITE), which has better applicability to new patients. We compare ATE-estimation using randomized and observational analysis methods against ITE-estimation using machine learning, and describe how the ITE theoretically generalizes to new population distributions, whereas the ATE may not. On a synthetic data set of statin use and myocardial infarction (MI), we show that a learned ITE model improves true ITE estimation and outperforms the ATE. We additionally argue that ITE models should be learned with a consistent, nonparametric algorithm from unweighted examples and show experiments in favor of our argument using our synthetic data model and a real data set of D-penicillamine use for primary biliary cirrhosis.

  4. Family members' satisfaction with care and decision-making in intensive care units and post-stay follow-up needs-a cross-sectional survey study.

    PubMed

    Frivold, Gro; Slettebø, Åshild; Heyland, Daren K; Dale, Bjørg

    2018-01-01

    The aim of this study was to explore family members' satisfaction with care and decision-making during the intensive care units stay and their follow-up needs after the patient's discharge or death. A cross-sectional survey study was conducted. Family members of patients recently treated in an ICU were participating. The questionnaire contented of background variables, the instrument Family Satisfaction in ICU (FS-ICU 24) and questions about follow-up needs. Descriptive and non-parametric statistics and a multiple linear regression were used in the analysis. A total of 123 (47%) relatives returned the questionnaire. Satisfaction with care was higher scored than satisfaction with decision-making. Follow- up needs after the ICU stay was reported by 19 (17%) of the participants. Gender and length of the ICU stay were shown as factors identified to predict follow-up needs.

  5. The Evolution of Your Success Lies at the Centre of Your Co-Authorship Network

    PubMed Central

    Servia-Rodríguez, Sandra; Noulas, Anastasios; Mascolo, Cecilia; Fernández-Vilas, Ana; Díaz-Redondo, Rebeca P.

    2015-01-01

    Collaboration among scholars and institutions is progressively becoming essential to the success of research grant procurement and to allow the emergence and evolution of scientific disciplines. Our work focuses on analysing if the volume of collaborations of one author together with the relevance of his collaborators is somewhat related to his research performance over time. In order to prove this relation we collected the temporal distributions of scholars’ publications and citations from the Google Scholar platform and the co-authorship network (of Computer Scientists) underlying the well-known DBLP bibliographic database. By the application of time series clustering, social network analysis and non-parametric statistics, we observe that scholars with similar publications (citations) patterns also tend to have a similar centrality in the co-authorship network. To our knowledge, this is the first work that considers success evolution with respect to co-authorship. PMID:25760732

  6. Describing spatial pattern in stream networks: A practical approach

    USGS Publications Warehouse

    Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.

    2005-01-01

    The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.

  7. A geostatistical approach for describing spatial pattern in stream networks

    USGS Publications Warehouse

    Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.

    2005-01-01

    The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.

  8. Evaluating the features of the brain waves to quantify ADHD improvement by neurofeedback.

    PubMed

    Dehghanpour, Peyman; Einalou, Zahra

    2017-10-23

    Attention-deficit/hyperactivity disorder (ADHD), as one of the most common neurological disorders in children and adolescents, is characterized by decentralization, slow learning, distraction and hyperactivity. Studies have shown that in addition to medication, neurofeedback training can also be used to partially control the brain activity of these patients. In this study, using the brain signals processing before and after the treatment in 10 children treated by neurofeedback, the changes were evaluated by non-parametric statistical analysis and impact of neurofeedback on brain frequency bands was investigated. Finally, the results were compared with the protocols introduced in this paper and before researches. The results of Kruskal-Wallis test showed an approximately significant increase in the relative power of gamma and an approximately significant reduction in the ratio of relative power of alpha/beta. It represents the emotional response, elicited by the successful learning and diminished ratio of slow learning to active learning respectively.

  9. An improved nonparametric lower bound of species richness via a modified good-turing frequency formula.

    PubMed

    Chiu, Chun-Huo; Wang, Yi-Ting; Walther, Bruno A; Chao, Anne

    2014-09-01

    It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265-270) for individual-based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good-Turing frequency formula, we derive an approximate formula for the first-order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators. © 2014, The International Biometric Society.

  10. Network structure exploration in networks with node attributes

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Wang, Xiaolong; Bu, Junzhao; Tang, Buzhou; Xiang, Xin

    2016-05-01

    Complex networks provide a powerful way to represent complex systems and have been widely studied during the past several years. One of the most important tasks of network analysis is to detect structures (also called structural regularities) embedded in networks by determining group number and group partition. Most of network structure exploration models only consider network links. However, in real world networks, nodes may have attributes that are useful for network structure exploration. In this paper, we propose a novel Bayesian nonparametric (BNP) model to explore structural regularities in networks with node attributes, called Bayesian nonparametric attribute (BNPA) model. This model does not only take full advantage of both links between nodes and node attributes for group partition via shared hidden variables, but also determine group number automatically via the Bayesian nonparametric theory. Experiments conducted on a number of real and synthetic networks show that our BNPA model is able to automatically explore structural regularities in networks with node attributes and is competitive with other state-of-the-art models.

  11. Non-Parametric Collision Probability for Low-Velocity Encounters

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2007-01-01

    An implicit, but not necessarily obvious, assumption in all of the current techniques for assessing satellite collision probability is that the relative position uncertainty is perfectly correlated in time. If there is any mis-modeling of the dynamics in the propagation of the relative position error covariance matrix, time-wise de-correlation of the uncertainty will increase the probability of collision over a given time interval. The paper gives some examples that illustrate this point. This paper argues that, for the present, Monte Carlo analysis is the best available tool for handling low-velocity encounters, and suggests some techniques for addressing the issues just described. One proposal is for the use of a non-parametric technique that is widely used in actuarial and medical studies. The other suggestion is that accurate process noise models be used in the Monte Carlo trials to which the non-parametric estimate is applied. A further contribution of this paper is a description of how the time-wise decorrelation of uncertainty increases the probability of collision.

  12. VOXEL-LEVEL MAPPING OF TRACER KINETICS IN PET STUDIES: A STATISTICAL APPROACH EMPHASIZING TISSUE LIFE TABLES.

    PubMed

    O'Sullivan, Finbarr; Muzi, Mark; Mankoff, David A; Eary, Janet F; Spence, Alexander M; Krohn, Kenneth A

    2014-06-01

    Most radiotracers used in dynamic positron emission tomography (PET) scanning act in a linear time-invariant fashion so that the measured time-course data are a convolution between the time course of the tracer in the arterial supply and the local tissue impulse response, known as the tissue residue function. In statistical terms the residue is a life table for the transit time of injected radiotracer atoms. The residue provides a description of the tracer kinetic information measurable by a dynamic PET scan. Decomposition of the residue function allows separation of rapid vascular kinetics from slower blood-tissue exchanges and tissue retention. For voxel-level analysis, we propose that residues be modeled by mixtures of nonparametrically derived basis residues obtained by segmentation of the full data volume. Spatial and temporal aspects of diagnostics associated with voxel-level model fitting are emphasized. Illustrative examples, some involving cancer imaging studies, are presented. Data from cerebral PET scanning with 18 F fluoro-deoxyglucose (FDG) and 15 O water (H2O) in normal subjects is used to evaluate the approach. Cross-validation is used to make regional comparisons between residues estimated using adaptive mixture models with more conventional compartmental modeling techniques. Simulations studies are used to theoretically examine mean square error performance and to explore the benefit of voxel-level analysis when the primary interest is a statistical summary of regional kinetics. The work highlights the contribution that multivariate analysis tools and life-table concepts can make in the recovery of local metabolic information from dynamic PET studies, particularly ones in which the assumptions of compartmental-like models, with residues that are sums of exponentials, might not be certain.

  13. Probit vs. semi-nonparametric estimation: examining the role of disability on institutional entry for older adults.

    PubMed

    Sharma, Andy

    2017-06-01

    The purpose of this study was to showcase an advanced methodological approach to model disability and institutional entry. Both of these are important areas to investigate given the on-going aging of the United States population. By 2020, approximately 15% of the population will be 65 years and older. Many of these older adults will experience disability and require formal care. A probit analysis was employed to determine which disabilities were associated with admission into an institution (i.e. long-term care). Since this framework imposes strong distributional assumptions, misspecification leads to inconsistent estimators. To overcome such a short-coming, this analysis extended the probit framework by employing an advanced semi-nonparamertic maximum likelihood estimation utilizing Hermite polynomial expansions. Specification tests show semi-nonparametric estimation is preferred over probit. In terms of the estimates, semi-nonparametric ratios equal 42 for cognitive difficulty, 64 for independent living, and 111 for self-care disability while probit yields much smaller estimates of 19, 30, and 44, respectively. Public health professionals can use these results to better understand why certain interventions have not shown promise. Equally important, healthcare workers can use this research to evaluate which type of treatment plans may delay institutionalization and improve the quality of life for older adults. Implications for rehabilitation With on-going global aging, understanding the association between disability and institutional entry is important in devising successful rehabilitation interventions. Semi-nonparametric is preferred to probit and shows ambulatory and cognitive impairments present high risk for institutional entry (long-term care). Informal caregiving and home-based care require further examination as forms of rehabilitation/therapy for certain types of disabilities.

  14. Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event

    DOE PAGES

    Brown, Cameron S.; Zhang, Hongbin; Kucukboyaci, Vefa; ...

    2016-09-07

    VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was used to simulate a typical pressurized water reactor (PWR) full core response with 17x17 fuel assemblies for a main steam line break (MSLB) accident scenario with the most reactive rod cluster control assembly stuck out of the core. The accident scenario was initiated at the hot zero power (HZP) at the end of the first fuel cycle with return to power state points that were determined by amore » system analysis code and the most limiting state point was chosen for core analysis. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this way, 59 full core simulations were performed to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. The results show that this typical PWR core remains within MDNBR safety limits for the MSLB accident.« less

  15. Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Cameron S.; Zhang, Hongbin; Kucukboyaci, Vefa

    VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was used to simulate a typical pressurized water reactor (PWR) full core response with 17x17 fuel assemblies for a main steam line break (MSLB) accident scenario with the most reactive rod cluster control assembly stuck out of the core. The accident scenario was initiated at the hot zero power (HZP) at the end of the first fuel cycle with return to power state points that were determined by amore » system analysis code and the most limiting state point was chosen for core analysis. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this way, 59 full core simulations were performed to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. The results show that this typical PWR core remains within MDNBR safety limits for the MSLB accident.« less

  16. Simulation-based sensitivity analysis for non-ignorably missing data.

    PubMed

    Yin, Peng; Shi, Jian Q

    2017-01-01

    Sensitivity analysis is popular in dealing with missing data problems particularly for non-ignorable missingness, where full-likelihood method cannot be adopted. It analyses how sensitively the conclusions (output) may depend on assumptions or parameters (input) about missing data, i.e. missing data mechanism. We call models with the problem of uncertainty sensitivity models. To make conventional sensitivity analysis more useful in practice we need to define some simple and interpretable statistical quantities to assess the sensitivity models and make evidence based analysis. We propose a novel approach in this paper on attempting to investigate the possibility of each missing data mechanism model assumption, by comparing the simulated datasets from various MNAR models with the observed data non-parametrically, using the K-nearest-neighbour distances. Some asymptotic theory has also been provided. A key step of this method is to plug in a plausibility evaluation system towards each sensitivity parameter, to select plausible values and reject unlikely values, instead of considering all proposed values of sensitivity parameters as in the conventional sensitivity analysis method. The method is generic and has been applied successfully to several specific models in this paper including meta-analysis model with publication bias, analysis of incomplete longitudinal data and mean estimation with non-ignorable missing data.

  17. Estimation from PET data of transient changes in dopamine concentration induced by alcohol: support for a non-parametric signal estimation method

    NASA Astrophysics Data System (ADS)

    Constantinescu, C. C.; Yoder, K. K.; Kareken, D. A.; Bouman, C. A.; O'Connor, S. J.; Normandin, M. D.; Morris, E. D.

    2008-03-01

    We previously developed a model-independent technique (non-parametric ntPET) for extracting the transient changes in neurotransmitter concentration from paired (rest & activation) PET studies with a receptor ligand. To provide support for our method, we introduced three hypotheses of validation based on work by Endres and Carson (1998 J. Cereb. Blood Flow Metab. 18 1196-210) and Yoder et al (2004 J. Nucl. Med. 45 903-11), and tested them on experimental data. All three hypotheses describe relationships between the estimated free (synaptic) dopamine curves (FDA(t)) and the change in binding potential (ΔBP). The veracity of the FDA(t) curves recovered by nonparametric ntPET is supported when the data adhere to the following hypothesized behaviors: (1) ΔBP should decline with increasing DA peak time, (2) ΔBP should increase as the strength of the temporal correlation between FDA(t) and the free raclopride (FRAC(t)) curve increases, (3) ΔBP should decline linearly with the effective weighted availability of the receptor sites. We analyzed regional brain data from 8 healthy subjects who received two [11C]raclopride scans: one at rest, and one during which unanticipated IV alcohol was administered to stimulate dopamine release. For several striatal regions, nonparametric ntPET was applied to recover FDA(t), and binding potential values were determined. Kendall rank-correlation analysis confirmed that the FDA(t) data followed the expected trends for all three validation hypotheses. Our findings lend credence to our model-independent estimates of FDA(t). Application of nonparametric ntPET may yield important insights into how alterations in timing of dopaminergic neurotransmission are involved in the pathologies of addiction and other psychiatric disorders.

  18. Wall finish selection in hospital design: a survey of facility managers.

    PubMed

    Lavy, Sarel; Dixit, Manish K

    2012-01-01

    This paper seeks to analyze healthcare facility managers' perceptions regarding the materials used for interior wall finishes and the criteria used to select them. It also examines differences in wall finish materials and the selection process in three major hospital spaces: emergency, surgery, and in-patient units. These findings are compared with healthcare designers' perceptions on similar issues, as currently documented in the literature. Hospital design and the materials used for hospital construction have a considerable effect on the environment and health of patients. A 2002 survey revealed which characteristics healthcare facility designers consider when selecting materials for healthcare facilities; however, no similar study has examined the views of facility managers on building finish selection. A 22-question survey questionnaire was distributed to 210 facility managers of metropolitan, for-profit hospitals in Texas; IRB approval was obtained. Respondents were asked to rank 10 interior wall finish materials and 11 selection criteria for wall finishes. Data from 48 complete questionnaires were analyzed using descriptive statistics and nonparametric statistical analysis methods. The study found no statistically significant differences in terms of wall finish materials or the characteristics for material selection in the three major spaces studied. It identified facility managers' four most-preferred wall finish materials and the five-most preferred characteristics, with a statistical confidence level of greater than 95%. The paper underscores the importance of incorporating all perspectives: facility designers and facility managers should work together toward achieving common organizational goals.

  19. Restoration of MRI data for intensity non-uniformities using local high order intensity statistics

    PubMed Central

    Hadjidemetriou, Stathis; Studholme, Colin; Mueller, Susanne; Weiner, Michael; Schuff, Norbert

    2008-01-01

    MRI at high magnetic fields (>3.0 T) is complicated by strong inhomogeneous radio-frequency fields, sometimes termed the “bias field”. These lead to non-biological intensity non-uniformities across the image. They can complicate further image analysis such as registration and tissue segmentation. Existing methods for intensity uniformity restoration have been optimized for 1.5 T, but they are less effective for 3.0 T MRI, and not at all satisfactory for higher fields. Also, many of the existing restoration algorithms require a brain template or use a prior atlas, which can restrict their practicalities. In this study an effective intensity uniformity restoration algorithm has been developed based on non-parametric statistics of high order local intensity co-occurrences. These statistics are restored with a non-stationary Wiener filter. The algorithm also assumes a smooth non-uniformity and is stable. It does not require a prior atlas and is robust to variations in anatomy. In geriatric brain imaging it is robust to variations such as enlarged ventricles and low contrast to noise ratio. The co-occurrence statistics improve robustness to whole head images with pronounced non-uniformities present in high field acquisitions. Its significantly improved performance and lower time requirements have been demonstrated by comparing it to the very commonly used N3 algorithm on BrainWeb MR simulator images as well as on real 4 T human head images. PMID:18621568

  20. On the Mean Squared Error of Nonparametric Quantile Estimators under Random Right-Censorship.

    DTIC Science & Technology

    1986-09-01

    SECURITY CI.ASSIFICATION lb. RESTRICTIVE MARKINGS UNCLASSIFIED 2a, SECURITY CLASSIFICATION AUTHORITY 3 . OISTRIBUTIONIAVAILASIL.ITY OF REPORT P16e 2b...UNCLASSIPIEO/UNLIMITEO 3 SAME AS RPT". 0 OTIC USERS 1 UNCLASSIFIED p." " 22. NAME OP RESPONSIBLE INOIVIOUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL...in Section 3 , and the result for the kernel estimator Qn is derived in Section 4. It should be k. mentioned that the order statistic methods used by

  1. H2(15)O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus.

    PubMed

    Zumsteg, D; Wennberg, R A; Treyer, V; Buck, A; Wieser, H G

    2005-11-22

    The authors evaluated the feasibility and source localization utility of H2(15)O or 13NH3 PET and low-resolution electromagnetic tomography (LORETA) in three patients with partial status epilepticus (SE). Results were correlated with findings from intraoperative electrocorticographic recordings and surgical outcomes. PET studies of cerebral blood flow and noninvasive source modeling with LORETA using statistical nonparametric mapping provided useful information for localizing the ictal activity in patients with partial SE.

  2. Estimation of variance in Cox's regression model with shared gamma frailties.

    PubMed

    Andersen, P K; Klein, J P; Knudsen, K M; Tabanera y Palacios, R

    1997-12-01

    The Cox regression model with a shared frailty factor allows for unobserved heterogeneity or for statistical dependence between the observed survival times. Estimation in this model when the frailties are assumed to follow a gamma distribution is reviewed, and we address the problem of obtaining variance estimates for regression coefficients, frailty parameter, and cumulative baseline hazards using the observed nonparametric information matrix. A number of examples are given comparing this approach with fully parametric inference in models with piecewise constant baseline hazards.

  3. Equipment Health Monitoring with Non-Parametric Statistics for Online Early Detection and Scoring of Degradation

    DTIC Science & Technology

    2014-10-02

    defined by Eqs. (3)–(4) (Greenwell & Finch , 2004) (Kar & Mohanty, 2006). The p value provides the metric for novelty scoring. p = QKS(z) = 2 ∞∑ j=1 (−1...provides early detection of degradation and ability to score its significance in order to inform maintenance planning and consequently reduce disruption ...actionable information, sig- nals are typically processed from raw measurements into a reduced dimension novelty summary value that may be more easily

  4. The analysis of incontinence episodes and other count data in patients with overactive bladder by Poisson and negative binomial regression.

    PubMed

    Martina, R; Kay, R; van Maanen, R; Ridder, A

    2015-01-01

    Clinical studies in overactive bladder have traditionally used analysis of covariance or nonparametric methods to analyse the number of incontinence episodes and other count data. It is known that if the underlying distributional assumptions of a particular parametric method do not hold, an alternative parametric method may be more efficient than a nonparametric one, which makes no assumptions regarding the underlying distribution of the data. Therefore, there are advantages in using methods based on the Poisson distribution or extensions of that method, which incorporate specific features that provide a modelling framework for count data. One challenge with count data is overdispersion, but methods are available that can account for this through the introduction of random effect terms in the modelling, and it is this modelling framework that leads to the negative binomial distribution. These models can also provide clinicians with a clearer and more appropriate interpretation of treatment effects in terms of rate ratios. In this paper, the previously used parametric and non-parametric approaches are contrasted with those based on Poisson regression and various extensions in trials evaluating solifenacin and mirabegron in patients with overactive bladder. In these applications, negative binomial models are seen to fit the data well. Copyright © 2014 John Wiley & Sons, Ltd.

  5. The local administration of parathyroid hormone encourages the healing of bone defects in the rat calvaria: Micro-computed tomography, histological and histomorphometric evaluation.

    PubMed

    Auersvald, Caroline Moreira; Santos, Felipe Rychuv; Nakano, Mayara Mytie; Leoni, Graziela Bianchi; de Sousa Neto, Manoel Damião; Scariot, Rafaela; Giovanini, Allan Fernando; Deliberador, Tatiana Miranda

    2017-07-01

    To evaluate the effect of a single-dose local administration of PTH on bone healing in rat calvarial bone defects by means of micro-computed tomography, histological and histomorphometric analysis. Critical-size cranial osteotomy defects were created in 42 male rats. The animals were randomly divided into 3 groups. In the C Group, the bone defect was only filled with a blood clot. In the S Group, it was filled with a collagen sponge and covered with bovine cortical membrane. In the PTH Group, the defect was filled with a collagen sponge soaked with PTH and covered with bovine cortical membrane. The groups were further split in two for euthanasia 15 and 60days post-surgery. Data was statistically analyzed with t-tests for independent samples or the nonparametric Mann-Whitney test when applicable. Intragroup comparisons were analyzed with paired t-tests (p<0.05). Micro-CT analysis results did not demonstrate statistically significant intergroup differences. At 15days post-surgery, the histomorphometric analysis showed that the PTH Group exhibited a significantly higher percentage of bone formation compared with the S Group. At 60days post-surgery, a higher percentage of new bone was observed in the PTH group. The results suggest that the local administration of PTH encouraged the bone healing in critical-size calvarial defects in rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The dose-response of salvage radiotherapy following radical prostatectomy: A systematic review and meta-analysis.

    PubMed

    King, Christopher R

    2016-11-01

    To date neither the optimal radiotherapy dose nor the existence of a dose-response has been established for salvage RT (SRT). A systematic review from 1996 to 2015 and meta-analysis was performed to identify the pathologic, clinical and treatment factors associated with relapse-free survival (RFS) after SRT (uniformly defined as a PSA>0.2ng/mL or rising above post-SRT nadir). A sigmoidal dose-response curve was objectively fitted and a non-parametric statistical test used to determine significance. 71 studies (10,034 patients) satisfied the meta-analysis criteria. SRT dose (p=0.0001), PSA prior to SRT (p=0.0009), ECE+ (p=0.039) and SV+ (p=0.046) had significant associations with RFS. Statistical analyses confirmed the independence of SRT dose-response. Omission of series with ADT did not alter results. Dose-response is well fit by a sigmoidal curve (p=0.0001) with a TCD 50 of 65.8Gy, with a dose of 70Gy achieving 58.4% RFS vs. 38.5% for 60Gy. A 2.0% [95% CI 1.1-3.2] improvement in RFS is achieved for each Gy. The SRT dose-response remarkably parallels that for definitive RT of localized disease. This study provides level 2a evidence for dose-escalated SRT>70Gy. The presence of an SRT dose-response for microscopic disease supports the hypothesis that prostate cancer is inherently radio-resistant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Identifying training needs of logging truck drivers using a skill inventory.

    PubMed

    Carnahan, B J

    2004-11-01

    The purpose of this research was to determine if the Driver Skill Inventory (DSI) could be used to characterize the self-assessed driving performance of commercial logging truck drivers. The DSI requires respondents to subjectively evaluate their own ability in regard to 15 different driving skills. The DSI responses of 1000 logging truck drivers were collected across three southeastern states. The underlying hypothesis in the current study was that DSI responses of these drivers would have similar reliability and factor structure as those DSI responses collected from non-commercial drivers in previous studies. Factor analysis of the data confirmed this hypothesis. Statistical analysis revealed that low self-ratings on various safety skill items within the DSI inventory were associated with: (1) inconsistency in using seat belts, (2) inconsistency in performing pre-trip inspections on logging trucks, and (3) committing moving violations. Conversely, high self-ratings ratings on various perceptual-motor skill items were associated with these same at-risk behaviors. The perceptual-motor skill items were also positively associated with negative attitudes toward driving regulations and the number of moving violations incurred over a three-year period. Non-parametric statistical analysis revealed that self-assessments were lowest for DSI skills pertaining to controlling one's anger while driving and managing the truck through a skid or slide. Results of the study confirmed that the DSI can be successfully applied to commercial logging truck drivers as part of an overall comprehensive training needs assessment.

  8. K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics.

    PubMed

    Lin, Jie; Adjeroh, Donald A; Jiang, Bing-Hua; Jiang, Yue

    2018-05-15

    Alignment-free sequence comparison methods can compute the pairwise similarity between a huge number of sequences much faster than sequence-alignment based methods. We propose a new non-parametric alignment-free sequence comparison method, called K2, based on the Kendall statistics. Comparing to the other state-of-the-art alignment-free comparison methods, K2 demonstrates competitive performance in generating the phylogenetic tree, in evaluating functionally related regulatory sequences, and in computing the edit distance (similarity/dissimilarity) between sequences. Furthermore, the K2 approach is much faster than the other methods. An improved method, K2*, is also proposed, which is able to determine the appropriate algorithmic parameter (length) automatically, without first considering different values. Comparative analysis with the state-of-the-art alignment-free sequence similarity methods demonstrates the superiority of the proposed approaches, especially with increasing sequence length, or increasing dataset sizes. The K2 and K2* approaches are implemented in the R language as a package and is freely available for open access (http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz). yueljiang@163.com. Supplementary data are available at Bioinformatics online.

  9. Analysis of data on large explosive eruptions of stratovolcanoes to constrain under-recording and eruption rates

    NASA Astrophysics Data System (ADS)

    Rougier, Jonty; Cashman, Kathy; Sparks, Stephen

    2016-04-01

    We have analysed the Large Magnitude Explosive Volcanic Eruptions database (LaMEVE) for volcanoes that classify as stratovolcanoes. A non-parametric statistical approach is used to assess the global recording rate for large (M4+). The approach imposes minimal structure on the shape of the recording rate through time. We find that the recording rates have declined rapidly, going backwards in time. Prior to 1600 they are below 50%, and prior to 1100 they are below 20%. Even in the recent past, e.g. the 1800s, they are likely to be appreciably less than 100%.The assessment for very large (M5+) eruptions is more uncertain, due to the scarcity of events. Having taken under-recording into account the large-eruption rates of stratovolcanoes are modelled exchangeably, in order to derive an informative prior distribution as an input into a subsequent volcano-by-volcano hazard assessment. The statistical model implies that volcano-by-volcano predictions can be grouped by the number of recorded large eruptions. Further, it is possible to combine all volcanoes together into a global large eruption prediction, with an M4+ rate computed from the LaMEVE database of 0.57/yr.

  10. Microbial contamination and disinfection methods of pacifiers.

    PubMed

    Nelson-Filho, Paulo; Louvain, Márcia Costa; Macari, Soraia; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Queiroz, Alexandra Mussolino de; Gaton-Hernández, Patrícia; Silva, Léa Assed Bezerra da

    2015-10-01

    To evaluate the microbial contamination of pacifiers by Mutans Streptococci(MS) and the efficacy of different methods for their disinfection. Twenty-eight children were assigned to a 4-stage changeover system with a 1-week interval. In each stage, children received a new pacifier and the parents were instructed to maintain their normal habits for 1 week. After this time, the pacifiers were subjected to the following 4 disinfection methods: spraying with 0.12% chlorhexidine solution, Brushtox or sterile tap water, and immersion in boiling tap water for 15 minutes. Microbiological culture for MS and Scanning Electron Microscopy (SEM) were performed. The results were analyzed statistically by Friedman's non-parametric test (a=0.05). The 0.12% chlorhexidine spray was statistically similar to the boiling water (p>0.05) and more effective than the Brushtox spray and control (p<0.05). The analysis of SEM showed the formation of a cariogenic biofilm in all groups with positive culture. Pacifiers become contaminated by MS after their use by children and should be disinfected routinely. Spraying with a 0.12% chlorhexidine solution and immersion in boiling water promoted better disinfection of the pacifiers compared with a commercial antiseptic toothbrush cleanser (Brushtox).

  11. Influence of concentration, time and method of application of citric acid and sodium citrate in root conditioning

    PubMed Central

    CAVASSIM, Rodrigo; LEITE, Fábio Renato Manzolli; ZANDIM, Daniela Leal; DANTAS, Andrea Abi Rached; RACHED, Ricardo Samih Georges Abi; SAMPAIO, José Eduardo Cezar

    2012-01-01

    Objective The aim of this study was to establish the parameters of concentration, time and mode of application of citric acid and sodium citrate in relation to root conditioning. Material and Methods A total of 495 samples were obtained and equally distributed among 11 groups (5 for testing different concentrations of citric acid, 5 for testing different concentrations of sodium citrate and 1 control group). After laboratorial processing, the samples were analyzed under scanning electron microscopy. A previously calibrated and blind examiner evaluated micrographs of the samples. Non-parametric statistical analysis was performed to analyze the data obtained. Results Brushing 25% citric acid for 3 min, promoted greater exposure of collagen fibers in comparison with the brushing of 1% citric acid for 1 minute and its topical application at 1% for 3 min. Sodium citrate exposed collagen fibers in a few number of samples. Conclusion Despite the lack of statistical significance, better results for collagen exposure were obtained with brushing application of 25% citric acid for 3 min than with other application parameter. Sodium citrate produced a few number of samples with collagen exposure, so it is not indicated for root conditioning. PMID:22858707

  12. Trends and associated uncertainty in the global mean temperature record

    NASA Astrophysics Data System (ADS)

    Poppick, A. N.; Moyer, E. J.; Stein, M.

    2016-12-01

    Physical models suggest that the Earth's mean temperature warms in response to changing CO2 concentrations (and hence increased radiative forcing); given physical uncertainties in this relationship, the historical temperature record is a source of empirical information about global warming. A persistent thread in many analyses of the historical temperature record, however, is the reliance on methods that appear to deemphasize both physical and statistical assumptions. Examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for natural variability in nonparametric rather than parametric ways. We show here that methods that deemphasize assumptions can limit the scope of analysis and can lead to misleading inferences, particularly in the setting considered where the data record is relatively short and the scale of temporal correlation is relatively long. A proposed model that is simple but physically informed provides a more reliable estimate of trends and allows a broader array of questions to be addressed. In accounting for uncertainty, we also illustrate how parametric statistical models that are attuned to the important characteristics of natural variability can be more reliable than ostensibly more flexible approaches.

  13. A comparison of United States and United Kingdom EQ-5D health states valuations using a nonparametric Bayesian method.

    PubMed

    Kharroubi, Samer A; O'Hagan, Anthony; Brazier, John E

    2010-07-10

    Cost-effectiveness analysis of alternative medical treatments relies on having a measure of effectiveness, and many regard the quality adjusted life year (QALY) to be the current 'gold standard.' In order to compute QALYs, we require a suitable system for describing a person's health state, and a utility measure to value the quality of life associated with each possible state. There are a number of different health state descriptive systems, and we focus here on one known as the EQ-5D. Data for estimating utilities for different health states have a number of features that mean care is necessary in statistical modelling.There is interest in the extent to which valuations of health may differ between different countries and cultures, but few studies have compared preference values of health states obtained from different countries. This article applies a nonparametric model to estimate and compare EQ-5D health state valuation data obtained from two countries using Bayesian methods. The data set is the US and UK EQ-5D valuation studies where a sample of 42 states defined by the EQ-5D was valued by representative samples of the general population from each country using the time trade-off technique. We estimate a utility function across both countries which explicitly accounts for the differences between them, and is estimated using the data from both countries. The article discusses the implications of these results for future applications of the EQ-5D and for further work in this field. Copyright 2010 John Wiley & Sons, Ltd.

  14. One-shot estimate of MRMC variance: AUC.

    PubMed

    Gallas, Brandon D

    2006-03-01

    One popular study design for estimating the area under the receiver operating characteristic curve (AUC) is the one in which a set of readers reads a set of cases: a fully crossed design in which every reader reads every case. The variability of the subsequent reader-averaged AUC has two sources: the multiple readers and the multiple cases (MRMC). In this article, we present a nonparametric estimate for the variance of the reader-averaged AUC that is unbiased and does not use resampling tools. The one-shot estimate is based on the MRMC variance derived by the mechanistic approach of Barrett et al. (2005), as well as the nonparametric variance of a single-reader AUC derived in the literature on U statistics. We investigate the bias and variance properties of the one-shot estimate through a set of Monte Carlo simulations with simulated model observers and images. The different simulation configurations vary numbers of readers and cases, amounts of image noise and internal noise, as well as how the readers are constructed. We compare the one-shot estimate to a method that uses the jackknife resampling technique with an analysis of variance model at its foundation (Dorfman et al. 1992). The name one-shot highlights that resampling is not used. The one-shot and jackknife estimators behave similarly, with the one-shot being marginally more efficient when the number of cases is small. We have derived a one-shot estimate of the MRMC variance of AUC that is based on a probabilistic foundation with limited assumptions, is unbiased, and compares favorably to an established estimate.

  15. A review of statistical issues with progression-free survival as an interval-censored time-to-event endpoint.

    PubMed

    Sun, Xing; Li, Xiaoyun; Chen, Cong; Song, Yang

    2013-01-01

    Frequent rise of interval-censored time-to-event data in randomized clinical trials (e.g., progression-free survival [PFS] in oncology) challenges statistical researchers in the pharmaceutical industry in various ways. These challenges exist in both trial design and data analysis. Conventional statistical methods treating intervals as fixed points, which are generally practiced by pharmaceutical industry, sometimes yield inferior or even flawed analysis results in extreme cases for interval-censored data. In this article, we examine the limitation of these standard methods under typical clinical trial settings and further review and compare several existing nonparametric likelihood-based methods for interval-censored data, methods that are more sophisticated but robust. Trial design issues involved with interval-censored data comprise another topic to be explored in this article. Unlike right-censored survival data, expected sample size or power for a trial with interval-censored data relies heavily on the parametric distribution of the baseline survival function as well as the frequency of assessments. There can be substantial power loss in trials with interval-censored data if the assessments are very infrequent. Such an additional dependency controverts many fundamental assumptions and principles in conventional survival trial designs, especially the group sequential design (e.g., the concept of information fraction). In this article, we discuss these fundamental changes and available tools to work around their impacts. Although progression-free survival is often used as a discussion point in the article, the general conclusions are equally applicable to other interval-censored time-to-event endpoints.

  16. Environmental monitoring study of linear alkylbenzene sulfonates and insoluble soap in Spanish sewage sludge samples.

    PubMed

    Cantarero, Samuel; Zafra-Gómez, Alberto; Ballesteros, Oscar; Navalón, Alberto; Reis, Marco S; Saraiva, Pedro M; Vílchez, José L

    2011-01-01

    In this work we present a monitoring study of linear alkylbenzene sulfonates (LAS) and insoluble soap performed on Spanish sewage sludge samples. This work focuses on finding statistical relations between LAS concentrations and insoluble soap in sewage sludge samples and variables related to wastewater treatment plants such as water hardness, population and treatment type. It is worth to mention that 38 samples, collected from different Spanish regions, were studied. The statistical tool we used was Principal Component Analysis (PC), in order to reduce the number of response variables. The analysis of variance (ANOVA) test and a non-parametric test such as the Kruskal-Wallis test were also studied through the estimation of the p-value (probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true) in order to study possible relations between the concentration of both analytes and the rest of variables. We also compared LAS and insoluble soap behaviors. In addition, the results obtained for LAS (mean value) were compared with the limit value proposed by the future Directive entitled "Working Document on Sludge". According to the results, the mean obtained for soap and LAS was 26.49 g kg(-1) and 6.15 g kg(-1) respectively. It is worth noting that LAS mean was significantly higher than the limit value (2.6 g kg(-1)). In addition, LAS and soap concentrations depend largely on water hardness. However, only LAS concentration depends on treatment type.

  17. Estimating current and future streamflow characteristics at ungaged sites, central and eastern Montana, with application to evaluating effects of climate change on fish populations

    USGS Publications Warehouse

    Sando, Roy; Chase, Katherine J.

    2017-03-23

    A common statistical procedure for estimating streamflow statistics at ungaged locations is to develop a relational model between streamflow and drainage basin characteristics at gaged locations using least squares regression analysis; however, least squares regression methods are parametric and make constraining assumptions about the data distribution. The random forest regression method provides an alternative nonparametric method for estimating streamflow characteristics at ungaged sites and requires that the data meet fewer statistical conditions than least squares regression methods.Random forest regression analysis was used to develop predictive models for 89 streamflow characteristics using Precipitation-Runoff Modeling System simulated streamflow data and drainage basin characteristics at 179 sites in central and eastern Montana. The predictive models were developed from streamflow data simulated for current (baseline, water years 1982–99) conditions and three future periods (water years 2021–38, 2046–63, and 2071–88) under three different climate-change scenarios. These predictive models were then used to predict streamflow characteristics for baseline conditions and three future periods at 1,707 fish sampling sites in central and eastern Montana. The average root mean square error for all predictive models was about 50 percent. When streamflow predictions at 23 fish sampling sites were compared to nearby locations with simulated data, the mean relative percent difference was about 43 percent. When predictions were compared to streamflow data recorded at 21 U.S. Geological Survey streamflow-gaging stations outside of the calibration basins, the average mean absolute percent error was about 73 percent.

  18. Essential fatty acids for premenstrual syndrome and their effect on prolactin and total cholesterol levels: a randomized, double blind, placebo-controlled study

    PubMed Central

    2011-01-01

    Objective To evaluate the effectiveness and safety of polyunsaturated fatty acids for the treatment of the premenstrual syndrome (PMS) using a graded symptom scale and to assess the effect of this treatment on basal plasma levels of prolactin and total cholesterol. Methods A randomized, double-blind, placebo-controlled study was conducted with 120 women with PMS divided into three groups and treated with 1 or 2 grams of the medication or placebo. Symptoms were recorded over a 6-month period using the Prospective Record of the Impact and Severity of Menstruation (PRISM) calendar. Total cholesterol and prolactin levels were measured. Analysis of variance (ANOVA), Pearson's chi-square test, Wilcoxon's nonparametric signed-rank test for paired samples and the Mann-Whitney nonparametric test for independent samples were used in the statistical analysis. Results There were no differences in age, marital status, schooling or ethnicity between the groups. In the group treated with 1 gram of the medication, a significant reduction was found when the median PRISM score recorded in the luteal phase at baseline (99) was compared with the median score recorded in the 3rd month (58) and in the 6th month of evaluation (35). In the 2-gram group, these differences were even more significant (baseline score: 98; 3rd month: 48; 6th month: 28). In the placebo group, there was a significant reduction at the 3rd but not at the 6th month (baseline: 96.5; 3rd month: 63.5; 6th month: 62). The difference between the phases of the menstrual cycle was greater in the 2-gram group compared to the group treated with 1 gram of the medication. There were no statistically significant differences in prolactin or total cholesterol levels between baseline values and those recorded after six months of treatment. Conclusion The difference between the groups using the medication and the placebo group with respect to the improvement in symptomatology appears to indicate the effectiveness of the drug. Improvement in symptoms was higher when the 2-gram dose was used. This medication was not associated with any changes in prolactin or total cholesterol levels in these women. PMID:21241460

  19. Theory and Application of DNA Histogram Analysis.

    ERIC Educational Resources Information Center

    Bagwell, Charles Bruce

    The underlying principles and assumptions associated with DNA histograms are discussed along with the characteristics of fluorescent probes. Information theory was described and used to calculate the information content of a DNA histogram. Two major types of DNA histogram analyses are proposed: parametric and nonparametric analysis. Three levels…

  20. HBCU Efficiency and Endowments: An Exploratory Analysis

    ERIC Educational Resources Information Center

    Coupet, Jason; Barnum, Darold

    2010-01-01

    Discussions of efficiency among Historically Black Colleges and Universities (HBCUs) are often missing in academic conversations. This article seeks to assess efficiency of individual HBCUs using Data Envelopment Analysis (DEA), a non-parametric technique that can synthesize multiple inputs and outputs to determine a single efficiency score for…

  1. Topographic optic disc analysis by Heidelberg retinal tomography in ocular Behcet's disease.

    PubMed

    Berker, Nilufer; Elgin, Ufuk; Ozdal, Pinar; Batman, Aygen; Soykan, Emel; Ozkan, Seyhan S

    2007-09-01

    To compare the topographic characteristics of the optic discs in patients with severe and mild ocular Behçet's disease by using Heidelberg retinal tomographaphy (HRT). This prospective study included 47 eyes of 47 patients with ocular BD who were being followed-up at the Uveitis Clinic of the Ankara Ulucanlar Eye Research Hospital, Ankara, Turkey. The patients were divided into two groups. Group 1 consisted of 21 eyes with mild uveitis, and group 2 consisted of 26 eyes with severe uveitis. All patients underwent topographic optic disc analysis by HRT II, and the quantitative optic disc parameters of both groups were compared by non-parametric Mann-Whitney U test. The mean cup volume, rim volume, cup area, disc area and cup depth in group 1 were found to be statistically significantly greater than those in group 2 (p<0.0001, p = 0.03, p = 0.021, p = 0.01 and p = 0.017, respectively), while the difference between the mean cup-to-disc ratios in group 1 and group 2 were found to be statistically insignificant (p = 0.148). A relationship was found between the severity of ocular BD and optic disc topography determined by HRT. In eyes with smaller optic discs, uveitis was observed to have a more severe course with more frequent relapses than those with larger discs.

  2. Comparison of somatotype values of football players in two professional league football teams according to the positions.

    PubMed

    Orhan, Ozlem; Sagir, Mehmet; Zorba, Erdal

    2013-06-01

    This study compared the somatotype values of football players according to their playing positions. The study aimed to determine the physical profiles of players and to analyze the relationships between somatotypes and playing positions. Study participants were members of two teams in the Turkey Professional Football League, Gençlerbirligi Sports Team (GB) (N = 24) and Gençlerbirligi Oftas Sports Team (GBO) (N = 24). Anthropometric measurements of the players were performed according to techniques suggested by the Anthropometric Standardization Reference Manual (ASRM) and International Biological Program (IBP). In somatotype calculations, triceps, subscapular, supraspinale and calf skinfold thickness, humerus bicondylar, femur bicondylar, biceps circumference, calf circumference and body weight and height were used. Statistical analysis of the data was performed using the Graph Pad prism Version 5.00 for Windows (Graph Pad Software, San Diego California USA); somatotype calculations and analyses used the Somatotype 1.1 program and graphical representations of the results were produced. Analysis of non-parametric (two independent samples) Mann-Whitney U Test of the player data showed that there were no statistically significant differences between the two teams. The measurements indicated that, when all of the GB and GBO players were evaluated collectively, their average somatotypes were balanced mesomorph. The somatotypes of GBO goalkeepers were generally ectomorphic mesomorph; GB goalkeepers were balanced mesomorphic, although they were slightly endomorphic.

  3. Nonlinear analysis of pupillary dynamics.

    PubMed

    Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo

    2016-02-01

    Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (p<0.001). Our results suggest that (a) pupil size at constant light condition is characterized by nonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.

  4. Low level laser therapy (AlGaInP) applied at 5J/cm2 reduces the proliferation of Staphylococcus aureus MRSA in infected wounds and intact skin of rats*

    PubMed Central

    Silva, Daniela Conceição Gomes Gonçalves e; Plapler, Helio; da Costa, Mateus Matiuzzi; Silva, Silvio Romero Gonçalves e; de Sá, Maria da Conceição Aquino; Silva, Benedito Sávio Lima e

    2013-01-01

    BACKGROUND Laser therapy is a low cost, non-invasive procedure with good healing results. Doubts exist as to whether laser therapy action on microorganisms can justify research aimed at investigating its possible effects on bacteria-infected wounds. OBJECTIVE To assess the effect of low intensity laser on the rate of bacterial contamination in infected wounds in the skin of rats. METHODS An experimental study using 56 male Wistar rats. The animals were randomly divided into eight groups of seven each. Those in the "infected" groups were infected by Staphylococcus aureus MRSA in the dorsal region. Red laser diode (AlGaInP) 658nm, 5J/cm2 was used to treat the animals in the "treated" groups in scan for 3 consecutive days. Samples were drawn before inoculating bacteria and following laser treatment. For statistical analysis we used the nonparametric Wilcoxon (paired data) method with a significance level of p <0.05. RESULTS The statistical analysis of median values showed that the groups submitted to laser treatment had low bacterial proliferation. CONCLUSION The laser (AlGaInP), with a dose of 5J/cm2 in both intact skin and in wounds of rats infected with Staphylococcus aureus MRSA, is shown to reduce bacterial proliferation. PMID:23539003

  5. Statistical detection of geographic clusters of resistant Escherichia coli in a regional network with WHONET and SaTScan

    PubMed Central

    Park, Rachel; O'Brien, Thomas F.; Huang, Susan S.; Baker, Meghan A.; Yokoe, Deborah S.; Kulldorff, Martin; Barrett, Craig; Swift, Jamie; Stelling, John

    2016-01-01

    Objectives While antimicrobial resistance threatens the prevention, treatment, and control of infectious diseases, systematic analysis of routine microbiology laboratory test results worldwide can alert new threats and promote timely response. This study explores statistical algorithms for recognizing geographic clustering of multi-resistant microbes within a healthcare network and monitoring the dissemination of new strains over time. Methods Escherichia coli antimicrobial susceptibility data from a three-year period stored in WHONET were analyzed across ten facilities in a healthcare network utilizing SaTScan's spatial multinomial model with two models for defining geographic proximity. We explored geographic clustering of multi-resistance phenotypes within the network and changes in clustering over time. Results Geographic clustering identified from both latitude/longitude and non-parametric facility groupings geographic models were similar, while the latter was offers greater flexibility and generalizability. Iterative application of the clustering algorithms suggested the possible recognition of the initial appearance of invasive E. coli ST131 in the clinical database of a single hospital and subsequent dissemination to others. Conclusion Systematic analysis of routine antimicrobial resistance susceptibility test results supports the recognition of geographic clustering of microbial phenotypic subpopulations with WHONET and SaTScan, and iterative application of these algorithms can detect the initial appearance in and dissemination across a region prompting early investigation, response, and containment measures. PMID:27530311

  6. Discrimination of common Mediterranean plant species using field spectroradiometry

    NASA Astrophysics Data System (ADS)

    Manevski, Kiril; Manakos, Ioannis; Petropoulos, George P.; Kalaitzidis, Chariton

    2011-12-01

    Field spectroradiometry of land surface objects supports remote sensing analysis, facilitates the discrimination of vegetation species, and enhances the mapping efficiency. Especially in the Mediterranean, spectral discrimination of common vegetation types, such as phrygana and maquis species, remains a challenge. Both phrygana and maquis may be used as a direct indicator for grazing management, fire history and severity, and the state of the wider ecosystem equilibrium. This study aims to investigate the capability of field spectroradiometry supporting remote sensing analysis of the land cover of a characteristic Mediterranean area. Five common Mediterranean maquis and phrygana species were examined. Spectra acquisition was performed during an intensive field campaign deployed in spring 2010, supported by a novel platform MUFSPEM@MED (Mobile Unit for Field SPEctral Measurements at the MEDiterranean) for high canopy measurements. Parametric and non-parametric statistical tests have been applied to the continuum-removed reflectance of the species in the visible to shortwave infrared spectral range. Interpretation of the results indicated distinct discrimination between the studied species at specific spectral regions. Statistically significant wavelengths were principally found in both the visible and the near infrared regions of the electromagnetic spectrum. Spectral bands in the shortwave infrared demonstrated significant discrimination features for the examined species adapted to Mediterranean drought. All in all, results confirmed the prospect for a more accurate mapping of the species spatial distribution using remote sensing imagery coupled with in situ spectral information.

  7. Statistical analysis of trends in monthly precipitation at the Limbang River Basin, Sarawak (NW Borneo), Malaysia

    NASA Astrophysics Data System (ADS)

    Krishnan, M. V. Ninu; Prasanna, M. V.; Vijith, H.

    2018-05-01

    Effect of climate change in a region can be characterised by the analysis of rainfall trends. In the present research, monthly rainfall trends at Limbang River Basin (LRB) in Sarawak, Malaysia for a period of 45 years (1970-2015) were characterised through the non-parametric Mann-Kendall and Spearman's Rho tests and relative seasonality index. Statistically processed monthly rainfall of 12 well distributed rain gauging stations in LRB shows almost equal amount of rainfall in all months. Mann-Kendall and Spearman's Rho tests revealed a specific pattern of rainfall trend with a definite boundary marked in the months of January and August with positive trends in all stations. Among the stations, Limbang DID, Long Napir and Ukong showed positive (increasing) trends in all months with a maximum increase of 4.06 mm/year (p = 0.01) in November. All other stations showed varying trends (both increasing and decreasing). Significant (p = 0.05) decreasing trend was noticed in Ulu Medalam and Setuan during September (- 1.67 and - 1.79 mm/year) and October (- 1.59 and - 1.68 mm/year) in Mann-Kendall and Spearman's Rho tests. Spatial pattern of monthly rainfall trends showed two clusters of increasing rainfalls (maximas) in upper and lower part of the river basin separated with a dominant decreasing rainfall corridor. The results indicate a generally increasing trend of rainfall in Sarawak, Borneo.

  8. Verification of forecast ensembles in complex terrain including observation uncertainty

    NASA Astrophysics Data System (ADS)

    Dorninger, Manfred; Kloiber, Simon

    2017-04-01

    Traditionally, verification means to verify a forecast (ensemble) with the truth represented by observations. The observation errors are quite often neglected arguing that they are small when compared to the forecast error. In this study as part of the MesoVICT (Mesoscale Verification Inter-comparison over Complex Terrain) project it will be shown, that observation errors have to be taken into account for verification purposes. The observation uncertainty is estimated from the VERA (Vienna Enhanced Resolution Analysis) and represented via two analysis ensembles which are compared to the forecast ensemble. For the whole study results from COSMO-LEPS provided by Arpae-SIMC Emilia-Romagna are used as forecast ensemble. The time period covers the MesoVICT core case from 20-22 June 2007. In a first step, all ensembles are investigated concerning their distribution. Several tests have been executed (Kolmogorov-Smirnov-Test, Finkelstein-Schafer Test, Chi-Square Test etc.) showing no exact mathematical distribution. So the main focus is on non-parametric statistics (e.g. Kernel density estimation, Boxplots etc.) and also the deviation between "forced" normal distributed data and the kernel density estimations. In a next step the observational deviations due to the analysis ensembles are analysed. In a first approach scores are multiple times calculated with every single ensemble member from the analysis ensemble regarded as "true" observation. The results are presented as boxplots for the different scores and parameters. Additionally, the bootstrapping method is also applied to the ensembles. These possible approaches to incorporating observational uncertainty into the computation of statistics will be discussed in the talk.

  9. Procedures for determination of detection limits: application to high-performance liquid chromatography analysis of fat-soluble vitamins in human serum.

    PubMed

    Browne, Richard W; Whitcomb, Brian W

    2010-07-01

    Problems in the analysis of laboratory data commonly arise in epidemiologic studies in which biomarkers subject to lower detection thresholds are used. Various thresholds exist including limit of detection (LOD), limit of quantification (LOQ), and limit of blank (LOB). Choosing appropriate strategies for dealing with data affected by such limits relies on proper understanding of the nature of the detection limit and its determination. In this paper, we demonstrate experimental and statistical procedures generally used for estimating different detection limits according to standard procedures in the context of analysis of fat-soluble vitamins and micronutrients in human serum. Fat-soluble vitamins and micronutrients were analyzed by high-performance liquid chromatography with diode array detection. A simulated serum matrix blank was repeatedly analyzed for determination of LOB parametrically by using the observed blank distribution as well as nonparametrically by using ranks. The LOD was determined by combining information regarding the LOB with data from repeated analysis of standard reference materials (SRMs), diluted to low levels; from LOB to 2-3 times LOB. The LOQ was determined experimentally by plotting the observed relative standard deviation (RSD) of SRM replicates compared with the concentration, where the LOQ is the concentration at an RSD of 20%. Experimental approaches and example statistical procedures are given for determination of LOB, LOD, and LOQ. These quantities are reported for each measured analyte. For many analyses, there is considerable information available below the LOQ. Epidemiologic studies must understand the nature of these detection limits and how they have been estimated for appropriate treatment of affected data.

  10. Seasonal trend analysis and ARIMA modeling of relative humidity and wind speed time series around Yamula Dam

    NASA Astrophysics Data System (ADS)

    Eymen, Abdurrahman; Köylü, Ümran

    2018-02-01

    Local climate change is determined by analysis of long-term recorded meteorological data. In the statistical analysis of the meteorological data, the Mann-Kendall rank test, which is one of the non-parametrical tests, has been used; on the other hand, for determining the power of the trend, Theil-Sen method has been used on the data obtained from 16 meteorological stations. The stations cover the provinces of Kayseri, Sivas, Yozgat, and Nevşehir in the Central Anatolia region of Turkey. Changes in land-use affect local climate. Dams are structures that cause major changes on the land. Yamula Dam is located 25 km northwest of Kayseri. The dam has huge water body which is approximately 85 km2. The mentioned tests have been used for detecting the presence of any positive or negative trend in meteorological data. The meteorological data in relation to the seasonal average, maximum, and minimum values of the relative humidity and seasonal average wind speed have been organized as time series and the tests have been conducted accordingly. As a result of these tests, the following have been identified: increase was observed in minimum relative humidity values in the spring, summer, and autumn seasons. As for the seasonal average wind speed, decrease was detected for nine stations in all seasons, whereas increase was observed in four stations. After the trend analysis, pre-dam mean relative humidity time series were modeled with Autoregressive Integrated Moving Averages (ARIMA) model which is statistical modeling tool. Post-dam relative humidity values were predicted by ARIMA models.

  11. Analysis Of The Land Surface Temperature And NDVI Using MODIS Data On The Arctic Tundra During The Last Decade

    NASA Astrophysics Data System (ADS)

    Mattar, C.; Duran-Alarcon, C.; Jimenez-Munoz, J. C.; Sobrino, J. A.

    2013-12-01

    The arctic tundra is one of the most sensible biome to climate conditions which has experienced important changes in the spatial distribution of temperature and vegetation in the last decades. In this paper we analyzed the spatio-temporal trend of the Land Surface Temperature (LST) and the Normalized Difference Vegetation Index (NDVI) over the arctic tundra biome during the last decade (2001-2012) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) land products MOD11C3 (LST) and MOD13C2 (NDVI) were used. Anomalies for each variable were analyzed at monthly level, and the magnitude and statistical significance of the trends were computed using the non-parametric tests of Sen's Slope and Mann-Kendal respectively. The results obtained from MODIS LST data showed a significant increase (p-value < 0.05) on surface temperature over the arctic tundra in the last decade. In the case of the NDVI, the trend was positive (increase on NDVI) but statistically not significant (p-value < 0.05). All tundra regions defined in the Circumpolar Arctic Vegetation Map have presented positive and statistically significant trends in NDVI and LST. Values of trends obtained from MODIS data over all the tundra regions were +1.10 [°C/dec] in the case of LST and +0.005 [NDVI value/dec] in the case of NDVI.

  12. [Clinical profile of cytomegalovirus (CMV) enterocolitis in acquired immunodeficiency syndrome].

    PubMed

    De Lima, D B; Fernandes, O; Gomes, V R; Da Silva, E J; De Pinho, P R; De Paiva, D D

    2000-01-01

    To determine the clinical profile of CMV colitis in AIDS patients, comparing clinical, endoscopic parameters and survival time between 2 groups of AIDS patients having chronic diarrhea. Group A being CMV colitis and group B without CMV colitis. 48 patients with diarrhea that lasted more than 30 days, being 27 in Group A and 21 in Group B, were studied. Age, risk factors, interval time between the diagnosis of HIV infection and the beginning of diarrhea, hematochesia, the endoscopic findings and life table in both groups, were analysed. All of them were diagnosed by stool culture and stools for ovum and parasites, along colonoscopy with biopsies. The unpaired t test was used to assess statistical significance of differences observed in the means of continuous and the chi-square with Yates correction for non-parametric variables. The survival curves were assessed by the Kaplan-Meier and the Mantel-Haenszel's tests. A P value of less than 0,05 was considered to indicate statistical significance. The mucosal lesions associated with the CMV infection are typically ulcerative on a background of hemorrhagic erythema 14 (51,8%) p < 0,01. The life table analysis disclosed shorter survival time in the CMV colitis group 0,005> P>0,001. The others studied data did not achieve statistical significance. AIDS patients with CMV colitis have a poorer long-term survival. Among the colonoscopic findings, ulcerations with hemorrhagic background were the most common lesions.

  13. Proceedings of the Third Annual Symposium on Mathematical Pattern Recognition and Image Analysis

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1985-01-01

    Topics addressed include: multivariate spline method; normal mixture analysis applied to remote sensing; image data analysis; classifications in spatially correlated environments; probability density functions; graphical nonparametric methods; subpixel registration analysis; hypothesis integration in image understanding systems; rectification of satellite scanner imagery; spatial variation in remotely sensed images; smooth multidimensional interpolation; and optimal frequency domain textural edge detection filters.

  14. How to Evaluate Phase Differences between Trial Groups in Ongoing Electrophysiological Signals

    PubMed Central

    VanRullen, Rufin

    2016-01-01

    A growing number of studies endeavor to reveal periodicities in sensory and cognitive functions, by comparing the distribution of ongoing (pre-stimulus) oscillatory phases between two (or more) trial groups reflecting distinct experimental outcomes. A systematic relation between the phase of spontaneous electrophysiological signals, before a stimulus is even presented, and the eventual result of sensory or cognitive processing for that stimulus, would be indicative of an intrinsic periodicity in the underlying neural process. Prior studies of phase-dependent perception have used a variety of analytical methods to measure and evaluate phase differences, and there is currently no established standard practice in this field. The present report intends to remediate this need, by systematically comparing the statistical power of various measures of “phase opposition” between two trial groups, in a number of real and simulated experimental situations. Seven measures were evaluated: one parametric test (circular Watson-Williams test), and three distinct measures of phase opposition (phase bifurcation index, phase opposition sum, and phase opposition product) combined with two procedures for non-parametric statistical testing (permutation, or a combination of z-score and permutation). While these are obviously not the only existing or conceivable measures, they have all been used in recent studies. All tested methods performed adequately on a previously published dataset (Busch et al., 2009). On a variety of artificially constructed datasets, no single measure was found to surpass all others, but instead the suitability of each measure was contingent on several experimental factors: the time, frequency, and depth of oscillatory phase modulation; the absolute and relative amplitudes of post-stimulus event-related potentials for the two trial groups; the absolute and relative trial numbers for the two groups; and the number of permutations used for non-parametric testing. The concurrent use of two phase opposition measures, the parametric Watson-Williams test and a non-parametric test based on summing inter-trial coherence values for the two trial groups, appears to provide the most satisfactory outcome in all situations tested. Matlab code is provided to automatically compute these phase opposition measures. PMID:27683543

  15. Design of a sediment data-collection program in Kansas as affected by time trends

    USGS Publications Warehouse

    Jordan, P.R.

    1985-01-01

    Data collection programs need to be re-examined periodically in order to insure their usefulness, efficiency, and applicability. The possibility of time trends in sediment concentration, in particular, makes the examination with new statistical techniques desirable. After adjusting sediment concentrations for their relation to streamflow rates and by using a seasonal adaptation of Kendall 's nonparametric statistical test, time trends of flow-adjusted concentrations were detected for 11 of the 38 sediment records tested that were not affected by large reservoirs. Ten of the 11 trends were toward smaller concentrations; only 1 was toward larger concentrations. Of the apparent trends that were not statistically significant (0.05 level) using data available, nearly all were toward smaller concentrations. Because the reason for the lack of statistical significance of an apparent trend may be inadequacy of data rather than absence of trend and because of the prevalence of apparent trends in one direction, the assumption was made that a time trend may be present at any station. This assumption can significantly affect the design of a sediment data collection program. Sudden decreases (step trends) in flow-adjusted sediment concentrations were found at all stations that were short distances downstream from large reservoirs and that had adequate data for a seasonal adaptation of Wilcoxon 's nonparametric statistical test. Examination of sediment records in the 1984 data collection program of the Kansas Water Office indicated 13 stations that can be discontinued temporarily because data are now adequate. Data collection could be resumed in 1992 when new data may be needed because of possible time trends. New data are needed at eight previously operated stations where existing data may be inadequate or misleading because of time trends. Operational changes may be needed at some stations, such as hiring contract observers or installing automatic pumping samplers. Implementing the changes in the program can provide a substantial increase in the quantity of useful information on stream sediment for the same funding as the 1984 level. (Author 's abstract)

  16. Potential linkage for schizophrenia on chromosome 22q12-q13: A replication study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwab, S.G.; Bondy, B.; Wildenauer, D.B.

    1995-10-09

    In an attempt to replicate a potential linkage on chromosome 22q12-q13.1 reported by Pulver et al., we have analyzed 4 microsatellite markers which span this chromosomal region, including the IL2RB locus, for linkage with schizophrenia in 30 families from Israel and Germany. Linkage analysis by pairwise lod score analysis as well as by multipoint analysis did not provide evidence for a single major gene locus. However, a lod score of Z{sub max} = 0.612 was obtained for a dominant model of inheritance with the marker D22S304 at recombination fraction 0.2 by pairwise analysis. In addition, using a nonparametric method, sibmore » pair analysis, a P value of 0.068 corresponding to a lod score of 0.48 was obtained for this marker. This finding, together with those of Pulver et al., is suggestive of a genetic factor in this region, predisposing for schizophrenia in a subset of families. Further studies using nonparametric methods should be conducted in order to clarify this point. 32 refs., 1 fig., 4 tabs.« less

  17. Nonparametric Estimation of Standard Errors in Covariance Analysis Using the Infinitesimal Jackknife

    ERIC Educational Resources Information Center

    Jennrich, Robert I.

    2008-01-01

    The infinitesimal jackknife provides a simple general method for estimating standard errors in covariance structure analysis. Beyond its simplicity and generality what makes the infinitesimal jackknife method attractive is that essentially no assumptions are required to produce consistent standard error estimates, not even the requirement that the…

  18. A Bayesian Nonparametric Meta-Analysis Model

    ERIC Educational Resources Information Center

    Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G.

    2015-01-01

    In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall…

  19. Exploring Incomplete Rating Designs with Mokken Scale Analysis

    ERIC Educational Resources Information Center

    Wind, Stefanie A.; Patil, Yogendra J.

    2018-01-01

    Recent research has explored the use of models adapted from Mokken scale analysis as a nonparametric approach to evaluating rating quality in educational performance assessments. A potential limiting factor to the widespread use of these techniques is the requirement for complete data, as practical constraints in operational assessment systems…

  20. VARIABLE SELECTION IN NONPARAMETRIC ADDITIVE MODELS

    PubMed Central

    Huang, Jian; Horowitz, Joel L.; Wei, Fengrong

    2010-01-01

    We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is “small” relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expansions with B-spline bases. With this approximation, the problem of component selection becomes that of selecting the groups of coefficients in the expansion. We apply the adaptive group Lasso to select nonzero components, using the group Lasso to obtain an initial estimator and reduce the dimension of the problem. We give conditions under which the group Lasso selects a model whose number of components is comparable with the underlying model, and the adaptive group Lasso selects the nonzero components correctly with probability approaching one as the sample size increases and achieves the optimal rate of convergence. The results of Monte Carlo experiments show that the adaptive group Lasso procedure works well with samples of moderate size. A data example is used to illustrate the application of the proposed method. PMID:21127739

Top