Science.gov

Sample records for nonperturbative running coupling

  1. AdS/QCD, LIight-Front Holography, and the Non-perturbative Running Coupling

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy; Deur, Alexandre; /Jefferson Lab

    2010-04-29

    The combination of Anti-de Sitter space (AdS) methods with light-front (LF) holography provides a remarkably accurate first approximation for the spectra and wavefunctions of meson and baryon light-quark bound states. The resulting bound-state Hamiltonian equation of motion in QCD leads to relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. The eigenvalues give the hadronic spectrum, and the eigenmodes represent the probability distributions of the hadronic constituents at a given scale. A positive-sign confining dilaton background modifying AdS space gives a very good account of meson and baryon spectroscopy and form factors. The light-front holographic mapping of this model also leads to a non-perturbative effective coupling {alpha}{sub s}{sup Ads} (Q{sup 2}) which agrees with the effective charge defined by the Bjorken sum rule and lattice simulations. It displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD.

  2. The QCD running coupling

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-09-01

    We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and

  3. The QCD running coupling

    DOE PAGES

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-05-09

    Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled

  4. The QCD running coupling

    SciTech Connect

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-05-09

    Here, we review present knowledge on $\\alpha_{s}$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $\\alpha_s(Q^2)$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $\\alpha_s(Q^2)$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $\\alpha_s(Q^2)$ in the high momentum transfer domain of QCD. We review how $\\alpha_s$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $\\alpha_s(Q^2)$ in the low momentum transfer domain, where there has been no consensus on how to define $\\alpha_s(Q^2)$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled regime and its prediction

  5. A nonperturbative light-front coupled-cluster method

    NASA Astrophysics Data System (ADS)

    Hiller, J. R.

    2012-10-01

    The nonperturbative Hamiltonian eigenvalue problem for bound states of a quantum field theory is formulated in terms of Dirac's light-front coordinates and then approximated by the exponential-operator technique of the many-body coupled-cluster method. This approximation eliminates any need for the usual approximation of Fock-space truncation. Instead, the exponentiated operator is truncated, and the terms retained are determined by a set of nonlinear integral equations. These equations are solved simultaneously with an effective eigenvalue problem in the valence sector, where the number of constituents is small. Matrix elements can be calculated, with extensions of techniques from standard coupled-cluster theory, to obtain form factors and other observables.

  6. Nonperturbative Quark Mass and Coupling Renormalization in Two Flavor QCD

    NASA Astrophysics Data System (ADS)

    Blum, Thomas Charles

    1995-01-01

    Nonperturbative bare quark mass and coupling renormalization is studied for two flavor quantum chromodynamics (QCD). In particular, the beta function for the case of Kogut-Susskind quarks is determined over the parameter space of existing lattice (spectrum) simulations from the existing spectrum data. This beta function is combined with a series of finite temperature lattice simulations (N_{t} = 4 ) to calculate the interaction measure, varepsilon-3p, which together with the pressure yields the thermal equation of state. A method of computing the asymmetry, or Karsch, coefficients, is also given. These coefficients give the parameter renormalizations for anisotropic lattices. However, for the three points in parameter space that we studied (one using Wilson fermions and two using Kogut-Susskind fermions), a clear determination of the asymmetry coefficients could not be made because of the remarkable fact that ratios of masses measured in different directions on lattices with anisotropic couplings were Euclidean invariant.

  7. Non-perturbative running of renormalization constants from correlators in coordinate space using step scaling

    NASA Astrophysics Data System (ADS)

    Cichy, Krzysztof; Jansen, Karl; Korcyl, Piotr

    2016-12-01

    Working in a quenched setup with Wilson twisted mass valence fermions, we explore the possibility to compute non-perturbatively the step scaling function using the coordinate (X-space) renormalization scheme. This scheme has the advantage of being on-shell and gauge invariant. The step scaling method allows us to calculate the running of the renormalization constants of quark bilinear operators. We describe here the details of this calculation. The aim of this exploratory study is to identify the feasibility of the X-space scheme when used in small volume simulations required by the step scaling technique. Eventually, we translate our final results to the continuum MS ‾ scheme and compare against four-loop analytic formulae finding satisfactory agreement.

  8. Non-Perturbative QCD Coupling and Beta Function from Light Front Holography

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; Deur, Alexandre; /Jefferson Lab

    2010-05-26

    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q{sup 2}). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on {alpha}{sub s}{sup AdS} (Q{sup 2}).

  9. Nonperturbative QCD Coupling and its $\\beta$-function from Light-Front Holography

    SciTech Connect

    Brodskey, Stanley J.; de Teramond, Guy; Deur, Alexandre P.

    2010-05-28

    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling $\\alpha_s^{AdS}(Q^2)$. It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale $ \\sim 1$ GeV. The resulting $\\beta$-function appears to capture the essential characteristics of the full $\\beta$-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on $\\alpha_s^{AdS}(Q^2)$.

  10. Nonperturbative QCD Coupling and its $$\\beta$$-function from Light-Front Holography

    DOE PAGES

    Brodskey, Stanley J.; de Teramond, Guy; Deur, Alexandre P.

    2010-05-28

    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective couplingmore » $$\\alpha_s^{AdS}(Q^2)$$. It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale $$ \\sim 1$$ GeV. The resulting $$\\beta$$-function appears to capture the essential characteristics of the full $$\\beta$$-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on $$\\alpha_s^{AdS}(Q^2)$$.« less

  11. Ghost-gluon running coupling, power corrections, and the determination of {lambda}{sub MS}

    SciTech Connect

    Boucaud, Ph.; Leroy, J. P.; Le Yaouanc, A.; Micheli, J.; Pene, O.; De Soto, F.; Rodriguez-Quintero, J.

    2009-01-01

    We compute a formula including operator-product expansion power corrections to describe the running of a QCD coupling nonperturbatively defined through the ghost and gluon dressing functions. This turns out to be rather accurate. We propose the 'plateau' procedure to compute {lambda}{sub MS} from the lattice computation of the running coupling constant. We show a good agreement between the different methods which have been used to estimate {lambda}{sub MS}{sup N{sub f}}{sup =0}. We argue that {lambda}{sub MS} or the strong coupling constant computed with different lattice spacings may be used to estimate the lattice spacing ratio.

  12. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime

    NASA Astrophysics Data System (ADS)

    Forn-Díaz, P.; García-Ripoll, J. J.; Peropadre, B.; Orgiazzi, J.-L.; Yurtalan, M. A.; Belyansky, R.; Wilson, C. M.; Lupascu, A.

    2017-01-01

    The study of light-matter interaction has led to important advances in quantum optics and enabled numerous technologies. Over recent decades, progress has been made in increasing the strength of this interaction at the single-photon level. More recently, a major achievement has been the demonstration of the so-called strong coupling regime, a key advancement enabling progress in quantum information science. Here, we demonstrate light-matter interaction over an order of magnitude stronger than previously reported, reaching the nonperturbative regime of ultrastrong coupling (USC). We achieve this using a superconducting artificial atom tunably coupled to the electromagnetic continuum of a one-dimensional waveguide. For the largest coupling, the spontaneous emission rate of the atom exceeds its transition frequency. In this USC regime, the description of atom and light as distinct entities breaks down, and a new description in terms of hybrid states is required. Beyond light-matter interaction itself, the tunability of our system makes it a promising tool to study a number of important physical systems, such as the well-known spin-boson and Kondo models.

  13. BFKL equation with running QCD coupling and HERA data

    NASA Astrophysics Data System (ADS)

    Levin, Eugene; Potashnikova, Irina

    2014-02-01

    In this paper we developed approach based on the BFKL evolution in ln( Q 2). We show that the simplest diffusion approximation with running QCD coupling is able to describe the HERA experimental data on the deep inelastic structure function with good χ2 /d .o .f . ≈ 1 .3. From our description of the experimental data we learned several lessons; (i) the non-perturbative physics at long distances started to show up at Q 2 = 0 .25 GeV2; (ii) the scattering amplitude at Q 2 = 0 .25 GeV2 cannot be written as sum of soft Pomeron and the secondary Reggeon but the Pomeron interactions should be taken into account; (iii) the Pomeron interactions can be reduced to the enhanced diagrams and, therefore, we do not see any needs for the shadowing corrections at HERA energies; and (iv) we demonstrated that the shadowing correction could be sizable at higher than HERA energies without any contradiction with our initial conditions.

  14. AdS/QCD, Light-Front Holography, and the Nonperturbative Running Coupling

    SciTech Connect

    Stanley J. Brodsky, Guy F. de Téramond, Alexandre Deur

    2010-11-01

    We have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form Factors $H_{Im}$ and $\\tilde{H}_{Im}$ with uncertainties, in average, of the order of 30%.

  15. Status of Higgs couplings after run 1 of the LHC

    NASA Astrophysics Data System (ADS)

    Bernon, Jérémy; Dumont, Béranger; Kraml, Sabine

    2014-10-01

    We provide an update of the global fits of the couplings of the 125.5 GeV Higgs boson using all publicly available experimental results from run 1 of the LHC as per summer 2014. The fits are done by means of the new public code Lilith 1.0. We present a selection of results given in terms of signal strengths, reduced couplings, and for the two-Higgs-doublet models of type I and II.

  16. Intersegmental coupling and recovery from perturbations in freely running cockroaches.

    PubMed

    Couzin-Fuchs, Einat; Kiemel, Tim; Gal, Omer; Ayali, Amir; Holmes, Philip

    2015-01-15

    Cockroaches are remarkably stable runners, exhibiting rapid recovery from external perturbations. To uncover the mechanisms behind this important behavioral trait, we recorded leg kinematics of freely running animals in both undisturbed and perturbed trials. Functional coupling underlying inter-leg coordination was monitored before and during localized perturbations, which were applied to single legs via magnetic impulses. The resulting transient effects on all legs and the recovery times to normal pre-perturbation kinematics were studied. We estimated coupling architecture and strength by fitting experimental data to a six-leg-unit phase oscillator model. Using maximum-likelihood techniques, we found that a network with nearest-neighbor inter-leg coupling best fitted the data and that, although coupling strengths vary among preparations, the overall inputs entering each leg are approximately balanced and consistent. Simulations of models with different coupling strengths encountering perturbations suggest that the coupling schemes estimated from our experiments allow animals relatively fast and uniform recoveries from perturbations.

  17. Coupled-bunch instabilities of the Tevatron at Run II

    SciTech Connect

    K. Y. Ng

    2003-03-06

    The longitudinal and transverse coupled-bunch instabilities of the Tevatron at Run II are addressed in two scenarios. The first scenario corresponds to the present Run II condition: 36 proton bunches on 36 antiprotons. Each proton bunch contains 1.7 x 10{sup 11} particles with a rms bunch length 60 cm. The second scenario is for the future upgrade when there are 108 proton bunches colliding with 108 antiproton bunches. Each proton bunch contains 2.7 x 10{sup 11} particles with a rms bunch length 50 cm. The analysis shows that the growth rates of transverse coupled-bunch instabilities are slow and will be damped by a small betatron tune spread. On the other hand, growth rates of longitudinal coupled-bunch instabilities will be fast especially for the 108-by-108 scenario.

  18. Five-Loop Running of the QCD Coupling Constant.

    PubMed

    Baikov, P A; Chetyrkin, K G; Kühn, J H

    2017-02-24

    We analytically compute the five-loop term in the beta function which governs the running of α_{s}-the quark-gluon coupling constant in QCD. The new term leads to a reduction of the theory uncertainty in α_{s} taken at the Z-boson scale as extracted from the τ-lepton decays as well as to new, improved by one more order of perturbation theory, predictions for the effective coupling constants of the standard model Higgs boson to gluons and for its total decay rate to the quark-antiquark pairs.

  19. Intersegmental coupling and recovery from perturbations in freely running cockroaches

    PubMed Central

    Couzin-Fuchs, Einat; Kiemel, Tim; Gal, Omer; Ayali, Amir; Holmes, Philip

    2015-01-01

    Cockroaches are remarkably stable runners, exhibiting rapid recovery from external perturbations. To uncover the mechanisms behind this important behavioral trait, we recorded leg kinematics of freely running animals in both undisturbed and perturbed trials. Functional coupling underlying inter-leg coordination was monitored before and during localized perturbations, which were applied to single legs via magnetic impulses. The resulting transient effects on all legs and the recovery times to normal pre-perturbation kinematics were studied. We estimated coupling architecture and strength by fitting experimental data to a six-leg-unit phase oscillator model. Using maximum-likelihood techniques, we found that a network with nearest-neighbor inter-leg coupling best fitted the data and that, although coupling strengths vary among preparations, the overall inputs entering each leg are approximately balanced and consistent. Simulations of models with different coupling strengths encountering perturbations suggest that the coupling schemes estimated from our experiments allow animals relatively fast and uniform recoveries from perturbations. PMID:25609786

  20. Nonperturbative QCD corrections to electroweak observables

    SciTech Connect

    Dru B Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-12-01

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we will examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We will then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we will mention applications to the Adler function, the determination of the strong coupling constant and QCD corrections to muonic-hydrogen.

  1. Impact of dispersed coupling strength on the free running periods of circadian rhythms

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Rohling, Jos H. T.; Liang, Xiaoming; Yang, Huijie

    2016-03-01

    The dominant endogenous clock, named the suprachiasmatic nucleus (SCN), regulates circadian rhythms of behavioral and physiological activity in mammals. One of the main characteristics of the SCN is that the animal maintains a circadian rhythm with a period close to 24 h in the absence of a daily light-dark cycle (called the free running period). The free running period varies among species due to heterogeneity of the SCN network. Previous studies have shown that the heterogeneity in cellular coupling as well as in intrinsic neuronal periods shortens the free running period. Furthermore, as derived from experiments, one neuron's coupling strength is negatively associated with its period. It is unknown what the effects of this association between coupling strength and period are on the free running period and how the heterogeneity in coupling strength influences this free running period. In the present study we found that in the presence of a negative relationship between one neuron's coupling strength and its period, surprisingly, the dispersion of coupling strengths increases the free running period. Our present finding may shed new light on the understanding of the heterogeneous SCN network and provides an alternative explanation for the diversity of free running periods between species.

  2. Asymptotics of QCD traveling waves with fluctuations and running coupling effects

    NASA Astrophysics Data System (ADS)

    Beuf, Guillaume

    2008-09-01

    Extending the Balitsky-Kovchegov (BK) equation independently to running coupling or to fluctuation effects due to pomeron loops is known to lead in both cases to qualitative changes of the traveling-wave asymptotic solutions. In this paper we study the extension of the forward BK equation, including both running coupling and fluctuations effects, extending the method developed for the fixed coupling case [E. Brunet, B. Derrida, A.H. Mueller, S. Munier, Phys. Rev. E 73 (2006) 056126, cond-mat/0512021]. We derive the exact asymptotic behavior in rapidity of the probabilistic distribution of the saturation scale.

  3. Perturbative and nonperturbative aspects of jet quenching in near-critical quark-gluon plasmas

    NASA Astrophysics Data System (ADS)

    Xu, Jiechen

    In this thesis, we construct two QCD based energy loss models to perform quantitative analysis of jet quenching observables in ultra-relativistic nucleus-nucleus collisions at RHIC and the LHC. We first build up a perturbative QCD based CUJET2.0 jet flavor tomography model that couples the dynamical running coupling DGLV opacity series to bulk data constrained relativistic viscous hydrodynamic backgrounds. It solves the strong heavy quark energy loss puzzle at RHIC and explains the surprising transparency of the quark-gluon plasma (QGP) at the LHC. The observed azimuthal anisotropy of hard leading hadrons requires a path dependent jet-medium coupling in CUJET2.0 that implies physics of nonperturbative origin. To explore the nonperturbative chromo-electric and chromo-magnetic structure of the strongly-coupled QGP through jet probes, we build up a new CUJET3.0 framework that includes in CUJET2.0 both Polyakov loop suppressed semi-QGP chromo-electric charges and emergent chromo-magnetic monopoles in the critical transition regime. CUJET3.0 quantitatively describes the anisotropic hadron suppression at RHIC and the LHC. More significantly, it provides a robust connection between the long wavelength ``perfect fluidity'' of the QGP and the short distance jet transport in the QGP. This framework paves the way for ``measuring'' both perturbative and nonperturbative properties of the QGP, and more importantly for probing color confinement through jet quenching.

  4. Infrared Fixed Point in the Strong Running Coupling: Unraveling the ΔI = 1/2 Puzzle in K-Decays

    NASA Astrophysics Data System (ADS)

    Crewther, R. J.; Tunstall, Lewis C.

    2013-08-01

    In this paper, we present an explanation for the ΔI = 1/2 rule in K-decays based on the premise of an infrared fixed point αIR in the running coupling αs of quantum chromodynamics (QCD) for three light quarks u, d, s. At the fixed point, the quark condensate <\\bar {q}q> vac !=q 0 spontaneously breaks scale and chiral SU(3)L×SU(3)R symmetry. Consequently, the low-lying spectrum contains nine Nambu-Goldstone bosons: π, K, η and a QCD dilaton σ. We identify σ as the f0(500) resonance and construct a chiral-scale perturbation theory χPTσ for low-energy amplitudes expanded in αs about αIR. The ΔI = 1/2 rule emerges in the leading order of χPTσ through a σ-pole term KS→σ→ππ, with a gKSσ coupling fixed by data on γγ→π0π0 and KS→γγ. We also determine RIR ≈5 for the nonperturbative Drell-Yan ratio at αIR.

  5. PROGRESS IN TUNE, COUPLING, AND CHROMATICITY MEASUREMENT AND FEEDBACK DURING RHIC RUN 7

    SciTech Connect

    CAMERON,P.; DELLAPENNA, A.; HOFF, L.; LUO, Y.; MARUSIC, A.; SCHULTHEISS, C.; TEPIKIAN, S.; ET AL.

    2007-06-25

    Tune feedback was first implemented in RHIC in 2002, as a specialist activity. The transition of the tune feedback system to full operational status was impeded by dynamic range problems, as well as by overall loop instabilities driven by large coupling. The dynamic range problem was solved by the CERN development of the Direct Diode Detection Analog Front End. Continuous measurement of all projections of the betatron eigenmodes made possible the world's first implementation of coupling feedback during beam acceleration, resolving the problem of overall loop instabilities. Simultaneous tune and coupling feedbacks were utilized as specialist activities for ramp development during the 2006 RHIC run. At the beginning of the 2007 RHIC run there remained two obstacles to making these feedbacks fully operational in RHIC - chromaticity measurement and control, and the presence of strong harmonics of the power line frequency in the betatron spectrum. We report on progress in tune, coupling, and chromaticity measurement and feedback, and discuss the relevance of our results to LHC commissioning.

  6. Entanglement in quantum impurity problems is nonperturbative

    NASA Astrophysics Data System (ADS)

    Saleur, H.; Schmitteckert, P.; Vasseur, R.

    2013-08-01

    We study the entanglement entropy of a region of length 2L with the remainder of an infinite one-dimensional gapless quantum system in the case where the region is centered on a quantum impurity. The coupling to this impurity is not scale invariant, and the physics involves a crossover between weak- and strong-coupling regimes. While the impurity contribution to the entanglement has been computed numerically in the past, little is known analytically about it, since in particular the methods of conformal invariance cannot be applied because of the presence of a crossover length. We show in this paper that the small coupling expansion of the entanglement entropy in this problem is quite generally plagued by strong infrared divergences, implying a nonperturbative dependence on the coupling. The large coupling expansion turns out to be better behaved, thanks to powerful results from the boundary CFT formulation and, in some cases, the underlying integrability of the problem. However, it is clear that this expansion does not capture well the crossover physics. In the integrable case—which includes problems such as an XXZ chain with a modified link, the interacting resonant level model or the anisotropic Kondo model—a nonperturbative approach is in principle possible using form factors. We adapt in this paper the ideas of Cardy [J. Stat. Phys.JSTPBS0022-471510.1007/s10955-007-9422-x 130, 129 (2008)] and Castro-Alvaredo and Doyon [J. Stat. Phys.JSTPBS0022-471510.1007/s10955-008-9664-2 134, 105 (2009)] to the gapless case and show that, in the rather simple case of the resonant level model, and after some additional renormalizations, the form-factors approach yields remarkably accurate results for the entanglement all the way from short to large distances. This is confirmed by detailed comparison with numerical simulations. Both our form factor and numerical results are compatible with a nonperturbative form at short distance.

  7. On the interface between perturbative and nonperturbative QCD

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-06-01

    The QCD running coupling αs (Q2) sets the strength of the interactions of quarks and gluons as a function of the momentum transfer Q. The Q2 dependence of the coupling is required to describe hadronic interactions at both large and short distances. In this article we adopt the light-front holographic approach to strongly-coupled QCD, a formalism which incorporates confinement, predicts the spectroscopy of hadrons composed of light quarks, and describes the low-Q2 analytic behavior of the strong coupling αs (Q2). The high-Q2 dependence of the coupling αs (Q2) is specified by perturbative QCD and its renormalization group equation. The matching of the high and low Q2 regimes of αs (Q2) then determines the scale Q0 which sets the interface between perturbative and nonperturbative hadron dynamics. The value of Q0 can be used to set the factorization scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of distribution amplitudes. We discuss the scheme-dependence of the value of Q0 and the infrared fixed-point of the QCD coupling. Our analysis is carried out for the MS ‾, g1, MOM and V renormalization schemes. Our results show that the discrepancies on the value of αs at large distance seen in the literature can be explained by different choices of renormalization schemes. We also provide the formulae to compute αs (Q2) over the entire range of space-like momentum transfer for the different renormalization schemes discussed in this article.

  8. The non-perturbative unquenched quark model

    NASA Astrophysics Data System (ADS)

    Entern, D. R.; Ortega, P. G.; Fernández, F.

    2017-03-01

    In recent years states in the quarkonium spectrum not expected in the naive quark model have appeared and created a lot of interest. In the theoretical side the study of the effect of meson-meson thresholds in the spectrum have been performed in different approximations. In a quark model framework, and in the spirit of the Cornell model, when a meson-meson threshold is included, the coupling to all the quark-antiquark states have to be considered. In practice only the closest states are included perturbatively. In this contribution we will present a framework in which we couple quark-antiquark states with meson-meson states non-perturbatively, taking into account effectively the coupling to all quark-antiquark states. The method will be applied to the study of the X(3872) and a comparison with the perturbative calculation will be performed.

  9. Stable strange quark matter objects with running masses and coupling constant

    NASA Astrophysics Data System (ADS)

    Xia, Cheng-Jun; Zhou, Shan-Gui

    2017-03-01

    We improve our recently proposed unified description for strange quark matter (SQM) objects, in the way that analytical expressions are derived and used to calculate the distribution of particles inside an SQM object. In the improved model, the computational time is greatly reduced without losing accuracy. The properties of SQM objects are then investigated by adopting perturbative quantum chromodynamics (pQCD) with running quark masses and coupling constant. Aside from the increase of masses and radii of strange stars, it is found that the perturbative interactions also make the electric field on the surface stronger and extends deeper into the core, while small SQM objects become less compact and more positively charged. These may affect the experimental searches of SQM.

  10. Developing a run-time coupling between ESP-r and TRNSYS

    NASA Astrophysics Data System (ADS)

    Jost, Romain

    Rigorous modeling is essential to design buildings and deliver the next advances in energy efficiency and on-site renewable energy production. A great variety of energy simulation programs exists but they are, for the most part, specialized in one particular domain and they do not allow a complete analysis. Because all domains (heating, cooling, ventilation, lighting, acoustic) are interconnected and there is no global simulation environment existing that covers all of the system particularities with the same flexibility, it is often appropriate to proceed with software combination and/or coupling. This Master thesis describes the implementation of a run-time coupling between TRNSYS and ESP-r. In order to minimize the modifications to the source codes and create a tool able to support future development of each program, new components that receive and pass data to the other program were implemented in the two software programs. A multi DLL structure enables the coupling and exchange of information. A third piece of software, the Harmonizer, launches TRNSYS and ESP-r DLLS and manages the exchange of data. It is also responsible of the convergence handling and controls that both programs march through time together time step after time step. A new category of components, the Data Exchanger Types was implemented in TRNSYS. These components can work as standard TRNSYS Types and exchange data through their inputs and outputs but they can also impose the solver to continue iterating. This capability is essential to force TRNSYS to do more calculations at a specific time step when it has converged but co-simulation convergence requires more iterations. A component of this new category, Type 130, was created specifically for the coupling with ESP-r. Type 130 exchanges data with the Harmonizer on one side and with the TRNSYS network of Types on the other side. Testing of basic data exchange validates the data exchange method and the coupling. The co-simulator is able to

  11. Horizon Run 4 Simulation: Coupled Evolution of Galaxies and Large-Scale Structures of the Universe

    NASA Astrophysics Data System (ADS)

    Kim, Juhan; Park, Changbom; L'Huillier, Benjamin; Hong, Sungwook E.

    2015-08-01

    The Horizon Run 4 is a cosmological N-body simulation designed for the study of coupled evolution between galaxies and large-scale structures of the Universe, and for the test of galaxy formation models. Using 6300^3 gravitating particles in a cubic box of L_{box} = 3150 h^{-1} Mpc, we build a dense forest of halo merger trees to trace the halo merger history with a halo mass resolution scale down to M_s = 2.7 × 10^{11} h^{-1} M_⊙. We build a set of particle and halo data, which can serve as testbeds for comparison of cosmological models and gravitational theories with observations. We find that the FoF halo mass function shows a substantial deviation from the universal form with tangible redshift evolution of amplitude and shape. At higher redshifts, the amplitude of the mass function is lower, and the functional form is shifted toward larger values of ln (1/σ). We also find that the baryonic acoustic oscillation feature in the two-point correlation funct-ion of mock galaxies becomes broader with a peak position moving to smaller scales and the peak amplitude decreasing for increasing directional cosine mu compared to the linear predictions. From the halo merger trees built from halo data at 75 redshifts, we measure the half-mass epoch of halos and find that less massive halos tend to reach half of their current mass at higher redshifts. Simulation outputs including snapshot data, past lightcone space data, and halo merger data are available at http://sdss.kias.re.kr/astro/Horizon-Run4

  12. Gravitational contributions to the running Yang-Mills coupling in large extra-dimensional brane worlds

    NASA Astrophysics Data System (ADS)

    Ebert, Dietmar; Plefka, Jan; Rodigast, Andreas

    2009-02-01

    We study the question of a modification of the running gauge coupling of Yang-Mills theories due to quantum gravitational effects in a compact large extra dimensional brane world scenario with a low energy quantum gravity scale. The ADD scenario is applied for a D = d+δ dimensional space-time in which gravitons freely propagate, whereas the non-abelian gauge fields are confined to a d-dimensional brane. The extra dimensions are taken to be toroidal and the transverse fluctuation modes (branons) of the brane are taken into account. On this basis we have calculated the one-loop corrections due to virtual Kaluza-Klein graviton and branon modes for the gluon two- and three-point functions in an effective field theory treatment. Applying momentum cut-off regularization we find that for a d = 4 brane the leading gravitational divergencies cancel irrespective of the number of extra dimensions δ, generalizing previous results in the absence of extra-dimensions. Hence, again the Yang-Mills β-function receives no gravitational corrections at one-loop. This is no longer true in a `universal' extra dimensional scenario with a d > 4 dimensional brane. Moreover, the subleading power-law gravitational divergencies induce higher-dimensional counterterms, which we establish in our scheme. Interestingly, for d = 4 these gravitationally induced counterterms are of the form recently considered in non-abelian Lee-Wick extensions of the standard model—now with a possible mass scale in the TeV range due to the presence of large extra dimensions.

  13. Nonperturbative light-front Hamiltonian methods

    NASA Astrophysics Data System (ADS)

    Hiller, J. R.

    2016-09-01

    We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.

  14. Nonperturbative Regulator for Chiral Gauge Theories?

    NASA Astrophysics Data System (ADS)

    Grabowska, Dorota M.; Kaplan, David B.

    2016-05-01

    We propose a nonperturbative gauge-invariant regulator for d -dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in d +1 dimensions with quantum gauge fields that reside on one d -dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local d -dimensional interpretation only if the chiral fermion representation is anomaly free. A physical realization of this construction would imply the existence of mirror fermions in the standard model that are invisible except for interactions induced by vacuum topology, and which could gravitate differently than conventional matter.

  15. Theory of hadronic nonperturbative models

    SciTech Connect

    Coester, F.; Polyzou, W.N.

    1995-08-01

    As more data probing hadron structure become available hadron models based on nonperturbative relativistic dynamics will be increasingly important for their interpretation. Relativistic Hamiltonian dynamics of few-body systems (constituent-quark models) and many-body systems (parton models) provides a precisely defined approach and a useful phenomenology. However such models lack a quantitative foundation in quantum field theory. The specification of a quantum field theory by a Euclidean action provides a basis for the construction of nonperturbative models designed to maintain essential features of the field theory. For finite systems it is possible to satisfy axioms which guarantee the existence of a Hilbert space with a unitary representation of the Poincare group and the spectral condition which ensures that the spectrum of the four-momentum operator is in the forward light cone. The separate axiom which guarantees locality of the field operators can be weakened for the construction for few-body models. In this context we are investigating algebraic and analytic properties of model Schwinger functions. This approach promises insight into the relations between hadronic models based on relativistic Hamiltonian dynamics on one hand and Bethe-Salpeter Green`s-function equations on the other.

  16. The Power of Auditory-Motor Synchronization in Sports: Enhancing Running Performance by Coupling Cadence with the Right Beats

    PubMed Central

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants’ cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants’ cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli –which was most salient during the metronome condition– helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner’s cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by

  17. Non-perturbative String Theory from Water Waves

    SciTech Connect

    Iyer, Ramakrishnan; Johnson, Clifford V.; Pennington, Jeffrey S.; /SLAC

    2012-06-14

    We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.

  18. Variational perturbation theory and nonperturbative calculations in QCD

    SciTech Connect

    Solovtsova, O. P.

    2013-10-15

    A nonperturbative approach based on the variational perturbation theory in quantum chromodynamics is developed. The variational series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. The approach suggested takes into account the summation of threshold singularities and the involvement of nonperturbative light quark masses. Phenomenological applications of this approach to describe physical quantities connected with the hadronic {tau}-decay data: the R{sub {tau}} ratio, the light-quark Adler function, and the smeared R{sub {Delta}} function are presented. The description of examined quantities includes an infrared region and, therefore, they cannot be directly calculated within the standard perturbation theory. It is shown that in spite of this fact the approach suggested gives a rather good result for these quantities down to the lowest energy scale.

  19. Explicit solutions for effective four- and five-loop QCD running coupling

    NASA Astrophysics Data System (ADS)

    Cvetič, Gorazd; Kondrashuk, Igor

    2011-12-01

    We start with the explicit solution, in terms of the Lambert W function, of the renormalization group equation (RGE) for the gauge coupling in the supersymmetric Yang-Mills theory described by the well-known NSVZ β-function. We then construct a class of β-functions for which the RGE can be solved in terms of the Lambert W function. These β-functions are expressed in terms of a function which is a truncated Laurent series in the inverse u of the gauge coupling a ≡ α/π. The parameters in the Laurent series can be adjusted so that the first coefficients of the Taylor expansion of the β-function in the gauge coupling a reproduce the four-loop or five-loop QCD (or SQCD) β-function.

  20. Running coupling constant of ten-flavor QCD with the Schroedinger functional method

    SciTech Connect

    Hayakawa, M.; Uno, S.; Ishikawa, K.-I.; Osaki, Y.; Takeda, S.; Yamada, N.

    2011-04-01

    The walking technicolor theory attempts to realize electroweak symmetry breaking as the spontaneous chiral symmetry breakdown caused by the gauge dynamics with slowly varying gauge coupling constant and large mass anomalous dimension. Many-flavor QCD theories are candidates owning these features. We focus on the SU(3) gauge theory with ten flavors of massless fermions in the fundamental representation, and compute the gauge coupling constant in the Schroedinger functional scheme. Numerical simulation is performed with O(a)-unimproved lattice action, and the continuum limit is taken in linear in lattice spacing. We observe evidence that this theory possesses an infrared fixed point.

  1. Multi-Run Quantum Error Correction in Coupled Electron-Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Rahimi Darabad, Robabeh; Park, Daniel K.; Baugh, Jonathan; Laflamme, Raymond

    2013-03-01

    It has been a milestone in realizing quantum computing, to enhance our control over physical systems so that making quantum processors performing accurately and precisely in presence of environmental noise. For practical uses, quantum error correction should be employed in multi-run cycles in order to keep the encoded qubit, that is carrying the information, safe from noise. We have been working towards implementing multi-run quantum error correction in molecular systems that involve electron and nuclear spins. Electron spins of a molecular sample are used for pumping up the nuclear spin polarizations, in addition to addressing and manipulating the nuclear spins. The required experimental conditions for having access to refreshable ancilla qubits are very much enhanced by a careful design of the molecular sample. We report the progress and prospects towards overcoming the experimental challenges in terms of sample preparation; irradiation imposed free electron samples, free radical molecular spin systems, and triplet state photoexcitable co-crystal samples. Industry of Canada, and CIFAR

  2. Supersymmetry and Nonperturbative Aspects in Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Donets, Evgueni E.; Tsulaia, Mirian M.

    The important question of the modern superstring and M - theories is the problem of the spontaneous breakdown of the supersymmetry. We consider the dynamical (nonperturbative) breaking of supersymmetry, caused by gravitational and Yang-Mills (YM) instantons in quantum cosmology.

  3. Controlling quark mass determinations non-perturbatively in three-flavour QCD

    NASA Astrophysics Data System (ADS)

    Campos, Isabel; Fritzsch, Patrick; Pena, Carlos; Preti, David; Ramos, Alberto; Vladikas, Anastassios

    2017-03-01

    The determination of quark masses from lattice QCD simulations requires a non-perturbative renormalization procedure and subsequent scale evolution to high energies, where a conversion to the commonly used \\overline {{{MS}}} scheme can be safely established. We present our results for the non-perturbative running of renormalized quark masses in Nf = 3 QCD between the electroweak and a hadronic energy scale, where lattice simulations are at our disposal. Recent theoretical advances in combination with well-established techniques allows to follow the scale evolution to very high statistical accuracy, and full control of systematic effects.

  4. Analytic, nonperturbative, almost exact QED: The two-point functions

    SciTech Connect

    Fried, H. M.; Gabellini, Y.

    2009-03-15

    Based on the choice of a special gauge, in which a useful form of scaling invariance holds, a new method is suggested for the analytic, nonperturbative calculation of the n-point functions of QED. A modified functional analysis is employed in configuration space, where the dressed electron and photon propagators (in quenched approximation) are each found to be simple products of the relevant free propagator with an appropriate function of configuration space variables containing all powers of the square of the coupling constant.

  5. Particle multiplicities in lead-lead collisions at the CERN large hadron collider from nonlinear evolution with running coupling corrections.

    PubMed

    Albacete, Javier L

    2007-12-31

    We present predictions for the pseudorapidity density of charged particles produced in central Pb-Pb collisions at the LHC. Particle production in such collisions is calculated in the framework of k(t) factorization. The nuclear unintegrated gluon distributions at LHC energies are determined from numerical solutions of the Balitsky-Kovchegov equation including recently calculated running coupling corrections. The initial conditions for the evolution are fixed by fitting Relativistic Heavy Ion Collider data at collision energies square root[sNN]=130 and 200 GeV per nucleon. We obtain dNch(Pb-Pb)/deta(square root[sNN]=5.5 TeV)/eta=0 approximately 1290-1480.

  6. Non-perturbative QCD and hadron physics

    NASA Astrophysics Data System (ADS)

    Cobos-Martínez, J. J.

    2016-10-01

    A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented.

  7. Nonperturbative atom-photon interactions in an optical cavity

    SciTech Connect

    Carmichael, H.J.; Tian, L.; Ren, W.

    1994-12-31

    One of the principal developments in cavity quantum electrodynamics in the last few years has been the extension of the ideas originally applied to systems of Rydberg atoms in microwave cavities to optical frequencies. As a corollary of this, more attention is being paid to quantum fluctuations and photon statistics. Another development, still in its infancy, is a move toward experiments using slowed or trapped atoms, or velocity selected beams; these methods are needed to enter the nonperturbative (strong dipole coupling) regime for one atom where there are experiments on subtle quantum-statistical effects go carry out. In this chapter we solve a number of theoretical problems related to these themes. Although the focus of the work is on optical systems, most of what we do is also relevant at microwave frequencies. We emphasize quantum fluctuations and photon statistics, and we try always to separate the quantum physics from those aspects of the physics that are understandable in classical terms. On the whole we only pay attention to the nonperturbative regime of cavity quantum electrodynamics where the dipole coupling strength is larger than the dissipation rates. 59 refs., 14 figs.

  8. A quenched study of the Schroedinger functional with chirally rotated boundary conditions: non-perturbative tuning

    SciTech Connect

    Gonzalez-Lopez, Jennifer; Jansen, Karl; Renner, Dru B.; Shindler, Andrea

    2013-02-01

    The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to non-perturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit.

  9. Nonperturbative contributions from complexified solutions in C PN -1 models

    NASA Astrophysics Data System (ADS)

    Fujimori, Toshiaki; Kamata, Syo; Misumi, Tatsuhiro; Nitta, Muneto; Sakai, Norisuke

    2016-11-01

    We discuss the nonperturbative contributions from real and complex saddle point solutions in the C P1 quantum mechanics with fermionic degrees of freedom, using the Lefschetz thimble formalism beyond the Gaussian approximation. We find bion solutions, which correspond to (complexified) instanton-anti-instanton configurations stabilized in the presence of the fermionic degrees of freedom. By computing the one-loop determinants in the bion backgrounds, we obtain the leading order contributions from both the real and complex bion solutions. To incorporate quasizero modes which become nearly massless in a weak coupling limit, we regard the bion solutions as well-separated instanton-anti-instanton configurations and calculate a complexified quasimoduli integral based on the Lefschetz thimble formalism. The nonperturbative contributions from the real and complex bions are shown to cancel out in the supersymmetric case and give an (expected) ambiguity in the nonsupersymmetric case, which plays a vital role in the resurgent trans-series. For nearly supersymmetric situations, evaluation of the Lefschetz thimble gives results in precise agreement with those of the direct evaluation of the Schrödinger equation. We also perform the same analysis for the sine-Gordon quantum mechanics and point out some important differences showing that the sine-Gordon quantum mechanics does not correctly describe the 1d limit of the C PN -1 field theory of R ×S1.

  10. Nonperturbative analytical approximate solutions in intrinsically nonlinear systems

    NASA Astrophysics Data System (ADS)

    Kindall, Kevin Gaylynn

    The basis for obtaining analytical approximations in this dissertation is a new nonperturbative iterative approach that preserves the intrinsic nonlinearity of the system. The traditional method for approaching nonlinear equations has been the small amplitude approximation of classical perturbation theory. However, it is becoming increasingly evident that intrinsic nonlinearity or persistence of the interaction is a primary feature of the solutions for the nonlinear equations that have been solved. Although perturbation theory may be useful in certain physical domains, it is a domain which excludes the effects of the persistent interaction, since perturbation theory nullifies any intrinsically nonlinear property. The method of solution used here proceeds by analogy to the well-known result that second order, linear ordinary differential equations can be transformed to a Riccati equation by a change in dependent variable. An analogous transformation for nonlinear partial differential equations leads to a set of integro- differential equations for which the basic structure is Riccati. Approximations are introduced in the integral part of the integro-differential equation which allow for systematic iteration while making no expansion in powers of the coupling constant. Two sets of differential equations are examined: the Maxwell-Bloch set and the Rossler set. The importance of the former lies in its importance to the phenomenon of optical bistability. The latter represents the minimal set necessary to display chaos. In each case, their intrinsic nonlinearity is demonstrated, and nonperturbative approximate solutions are constructed.

  11. Methods in QCD and non-perturbative physics

    NASA Astrophysics Data System (ADS)

    Lee, Dean Junyuel

    1998-11-01

    This thesis explores several new and different methods in the study of QCD and non-perturbative field theory. In Chapter 1 we introduce a sum-rule for large-Nc QCD which relates the density of heavy quarkonium states, the state-averaged square of the wavefunction at the origin, and the heavy quark current-current correlator. Focusing on the region of energy just above perturbative threshold, we calculate the correlator by incorporating arbitrarily high orders in the QCD coupling αs. We use the sum-rule to determine the bottomonium potential using experimentally measured s- wave leptonic widths and compare the result with the potential obtained by direct calculation from the measured s-wave spectrum. We discuss the utility of the sum-rule method for accurate determination of the confining potential. In Chapter 2 we study the singular Landau surfaces of planar diagrams contributing to scattering of a massless quark and antiquark in 3 + 1 dimensions. In particular, we look at singularities which remain after integration with respect to the various angular degrees of freedom. We derive a general relation between these singularities and the singularities of quark-antiquark scattering in 1 + 1 dimensions. We then classify all Landau surfaces of the 1 + 1 dimensional system. Combining these results, we deduce that the singular surfaces of the angle-integrated 3 + 1 dimensional amplitude must satisfy at least one of three conditions, which we call the planar light-cone conditions. We discuss the extension of our results to non-perturbative processes by means of the non- perturbative operator product expansion. Our findings offer new insights into the connection between the 't Hooft model and large-Nc mesons in 3 + 1 dimensions and may prove useful in studies of confinement in relativistic meson systems. In Chapter 3 we introduce a new technique called spherical field theory. Spherical field theory is a non-perturbative method for studying quantum field theories. It uses

  12. Nonperturbative evolution of parton quasi-distributions

    NASA Astrophysics Data System (ADS)

    Radyushkin, A. V.

    2017-04-01

    Using the formalism of parton virtuality distribution functions (VDFs) we establish a connection between the transverse momentum dependent distributions (TMDs) F (x , k⊥2) and quasi-distributions (PQDs) Q (y ,p3) introduced recently by X. Ji for lattice QCD extraction of parton distributions f (x). We build models for PQDs from the VDF-based models for soft TMDs, and analyze the p3 dependence of the resulting PQDs. We observe a strong nonperturbative evolution of PQDs for small and moderately large values of p3 reflecting the transverse momentum dependence of TMDs. Thus, the study of PQDs on the lattice in the domain of strong nonperturbative effects opens a new perspective for investigation of the 3-dimensional hadron structure.

  13. Nonperturbative methods in HZE ion transport

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Costen, Robert C.; Shinn, Judy L.

    1993-01-01

    A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport. The code is established to operate on the Langley Research Center nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code is highly efficient and compares well with the perturbation approximations.

  14. Phase diagram of superconductors from nonperturbative flow equations

    SciTech Connect

    Bergerhoff, B.; Freire, F.; Litim, D.F.; Lola, S.; Wetterich, C.

    1996-03-01

    The universal behavior of superconductors near the phase transition is described by the three-dimensional field theory of scalar quantum electrodynamics. We approximately solve the model with the help of nonperturbative flow equations. A first- or second-order phase transition is found depending on the relative strength of the scalar versus the gauge coupling. The region of a second-order phase transition is governed by a fixed point of the flow equations with associated critical exponents. We also give an approximate description of the tricritical behavior and briefly discuss the crossover relevant for the onset of scaling near the critical temperature. Final confirmation of a second-order transition for strong type-II superconductors requires further analysis with extended truncations of the flow equations. {copyright} {ital 1996 The American Physical Society.}

  15. Non-perturbative QCD amplitudes in quenched and eikonal approximations

    SciTech Connect

    Fried, H.M.; Grandou, T.; Sheu, Y.-M.

    2014-05-15

    Even though approximated, strong coupling non-perturbative QCD amplitudes remain very difficult to obtain. In this article, in eikonal and quenched approximations at least, physical insights are presented that rely on the newly-discovered property of effective locality. The present article also provides a more rigorous mathematical basis for the crude approximations used in the previous derivation of the binding potential of quarks and nucleons. Furthermore, the techniques of Random Matrix calculus along with Meijer G-functions are applied to analyze the generic structure of fermionic amplitudes in QCD. - Highlights: • We discuss the physical insight of effective locality to QCD fermionic amplitudes. • We show that an unavoidable delta function goes along with the effective locality property. • The generic structure of QCD fermion amplitudes is obtained through Random Matrix calculus.

  16. Ground-state correlations within a nonperturbative approach

    NASA Astrophysics Data System (ADS)

    De Gregorio, G.; Herko, J.; Knapp, F.; Lo Iudice, N.; Veselý, P.

    2017-02-01

    The contribution of the two-phonon configurations to the ground state of 4He and 16O is evaluated nonperturbatively using a Hartree-Fock basis within an equation-of-motion phonon method using a nucleon-nucleon optimized chiral potential. Convergence properties of energies and root-mean-square radii versus the harmonic oscillator frequency and space dimensions are investigated. The comparison with the second-order perturbation theory calculations shows that the higher-order terms have an appreciable repulsive effect and yield too-small binding energies and nuclear radii. It is argued that four-phonon configurations, through their strong coupling to two phonons, may provide most of the attractive contribution necessary for filling the gap between theoretical and experimental quantities. Possible strategies for accomplishing such a challenging task are discussed.

  17. Yang-Mills condensate as dark energy: A nonperturbative approach

    NASA Astrophysics Data System (ADS)

    Donà, Pietro; Marcianò, Antonino; Zhang, Yang; Antolini, Claudia

    2016-02-01

    Models based on the Yang-Mills condensate (YMC) have been advocated for in the literature and claimed as successful candidates for explaining dark energy. Several variations on this simple idea have been considered, the most promising of which are reviewed here. Nevertheless, the previously attained results relied heavily on the perturbative approach to the analysis of the effective Yang-Mills action, which is only adequate in the asymptotically free limit, and were extended into a regime, the infrared limit, in which confinement is expected. We show that if a minimum of the effective Lagrangian in θ =-Fμν aFa μ ν/2 exists, a YMC forms that drives the Universe toward an accelerated de Sitter phase. The details of the models depend weakly on the specific form of the effective Yang-Mills Lagrangian. Using nonperturbative techniques mutated from the functional renormalization-group procedure, we finally show that the minimum in θ of the effective Lagrangian exists. Thus, a YMC can actually take place. The nonperturbative model has properties similar to the ones in the perturbative model. In the early stage of the Universe, the YMC equation of state has an evolution that resembles the radiation component, i.e., wy→1 /3 . However, in the late stage, wy naturally runs to the critical state with wy=-1 , and the Universe transitions from a matter-dominated into a dark energy dominated stage only at latest time, at a redshift whose value depends on the initial conditions that are chosen while solving the dynamical system.

  18. Catalysis in the Service of Green Chemistry: Nobel Prize-Winning Palladium-Catalysed Cross-Couplings, Run in Water at Room Temperature

    PubMed Central

    Lipshutz, Bruce H.; Taft, Benjamin R.; Abela, Alexander R.; Ghorai, Subir; Krasovskiy, Arkady; Duplais, Christophe

    2012-01-01

    Palladium-catalysed cross-couplings, in particular Heck, Suzuki-Miyaura and Negishi reactions developed over three decades ago, are routinely carried out in organic solvents. However, alternative media are currently of considerable interest given an increasing emphasis on making organic processes ‘greener’; for example, by minimising organic waste in the form of organic solvents. Water is the obvious leading candidate in this regard. Hence, this review focuses on the application of micellar catalysis, in which a ‘designer’ surfactant enables these award-winning coupling reactions to be run in water at room temperature. PMID:23555153

  19. Heavy quark potential from QCD-related effective coupling

    NASA Astrophysics Data System (ADS)

    Ayala, César; González, Pedro; Vento, Vicente

    2016-12-01

    We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.

  20. Running Away

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Running Away KidsHealth > For Kids > Running Away A A ... life on the streets. continue The Reality of Running Away When you think about running away, you ...

  1. Nonperturbative comparison of QCD effective charges

    SciTech Connect

    Aguilar, A. C.; Binosi, D.; Papavassiliou, J.; Rodriguez-Quintero, J.

    2009-10-15

    We study the nonperturbative behavior of two versions of the QCD effective charge, one obtained from the pinch technique gluon self-energy, and one from the ghost-gluon vertex. Despite their distinct theoretical origin, due to a fundamental identity relating various ingredients appearing in their respective definitions, the two effective charges are almost identical in the entire range of physical momenta, and coincide exactly in the deep infrared, where they freeze at a common finite value. Specifically, the dressing function of the ghost propagator is related to the two form factors in the Lorentz decomposition of a certain Green's function, appearing in a variety of field-theoretic contexts. The central identity, which is valid only in the Landau gauge, is derived from the Schwinger-Dyson equations governing the dynamics of the aforementioned quantities. The renormalization procedure that preserves the validity of the identity is carried out, and various relevant kinematic limits and physically motivated approximations are studied in detail. A crucial ingredient in this analysis is the infrared finiteness of the gluon propagator, which is inextricably connected with the aforementioned freezing of the effective charges. Some important issues related to the consistent definition of the effective charge in the presence of such a gluon propagator are resolved. We finally present a detailed numerical study of a special set of Schwinger-Dyson equations, whose solutions determine the nonperturbative dynamics of the quantities composing the two effective charges.

  2. Well liner running shoe

    SciTech Connect

    Bell, J.F.

    1994-01-11

    Wellbore liners are set with a running shoe comprising a cylindrical body, end cap, check valve and receiver member in assembly. The receiver member includes threads for receiving the coupling sleeve of a running tool, and retaining wickers for engagement with a cement plug or dart to retain the same permanently engaged with and blocking the flow of fluid through the running shoe. A running tool for use with the shoe includes a coupling sleeve which is retained on a support mandrel by a collar which is secured to the mandrel with a shear pin so that pressuring up the workstring, in the event of a stuck coupling sleeve, will permit retrieval of the main part of the running tool and the workstring. The interior parts of the running shoe are made of aluminum or plastic for easy drill-out to extend the wellbore beyond the end of the liner. 3 figs.

  3. Nonperturbative moduli superpotential with positive exponents

    NASA Astrophysics Data System (ADS)

    Abe, Hiroyuki; Higaki, Tetsutaro; Kobayashi, Tatsuo; Seto, Osamu

    2008-07-01

    We study nonperturbative moduli superpotentials with positive exponents, i.e. the form like AeaT with a positive constant a and the modulus T. These effects can be generated, e.g., by D-branes which have negative Ramond-Ramond charge of the lower-dimensional D-brane. The scalar potentials including such terms have quite a rich structure. There are several local minima with different potential energies and a high barrier, whose height is of O(Mp4). We discuss their implications from the viewpoints of cosmology and particle phenomenology, e.g. the realization of inflation models, avoiding the overshooting problem. This type of potential would be useful to realize the inflation and low-energy supersymmetry breaking.

  4. Nonperturbative decay of supersymmetric flat directions

    SciTech Connect

    Guemruekcueoglu, A. Emir; Peloso, Marco; Sexton, Matthew; Olive, Keith A.

    2008-09-15

    We compute the nonperturbative decay of supersymmetric flat directions due to their D-term potential. Flat directions can develop large vacuum expectation values during inflation, and, if they are long-lived, this can strongly affect the reheating and thermalization stages after the inflation. We study a generic system of two U(1) or SU(2) flat directions which are cosmologically evolving after inflation. After proper gauge fixing, we show that the excitations of the fields around this background can undergo exponential amplification, at the expense of the energy density of the flat directions. We compute this effect for several values of the masses and the initial vacuum expectation values of the two flat directions, through a combination of analytical methods and extensive numerical simulations.

  5. Nonperturbative Quantum Physics from Low-Order Perturbation Theory.

    PubMed

    Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K

    2015-10-02

    The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.

  6. Ghost-gluon coupling, power corrections, and {Lambda}{sub MS} from twisted-mass lattice QCD at N{sub f}=2

    SciTech Connect

    Blossier, B.; Boucaud, Ph.; Gravina, M.; Pene, O.; De soto, F.; Morenas, V.

    2010-08-01

    We present results concerning the nonperturbative evaluation of the ghost-gluon running QCD coupling constant from N{sub f}=2 twisted-mass lattice calculations. A novel method for calibrating the lattice spacing, independent of the string tension and hadron spectrum, is presented with results in agreement with previous estimates. The value of {Lambda}{sub MS} is computed from the running of the QCD coupling only after extrapolating to zero dynamical quark mass and after removing a nonperturbative operator-product expansion contribution that is assumed to be dominated by the dimension-two gluon condensate. The effect due to the dynamical quark mass in the determination of {Lambda}{sub MS} is discussed.

  7. Nonperturbative calculation of phonon effects on spin squeezing

    NASA Astrophysics Data System (ADS)

    Dylewsky, D.; Freericks, J. K.; Wall, M. L.; Rey, A. M.; Foss-Feig, M.

    2016-01-01

    Theoretical models of spins coupled to bosons provide a simple setting for studying a broad range of important phenomena in many-body physics, from virtually mediated interactions to decoherence and thermalization. In many atomic, molecular, and optical systems, such models also underlie the most successful attempts to engineer strong, long-ranged interactions for the purpose of entanglement generation. Especially when the coupling between the spins and bosons is strong, such that it cannot be treated perturbatively, the properties of such models are extremely challenging to calculate theoretically. Here, exact analytical expressions for nonequilibrium spin-spin correlation functions are derived for a specific model of spins coupled to bosons. The spatial structure of the coupling between spins and bosons is completely arbitrary, and thus the solution can be applied to systems in any number of dimensions. The explicit and nonperturbative inclusion of the bosons enables the study of entanglement generation (in the form of spin squeezing) even when the bosons are driven strongly and near resonantly, and thus provides a quantitative view of the breakdown of adiabatic elimination that inevitably occurs as one pushes towards the fastest entanglement generation possible. The solution also helps elucidate the effect of finite temperature on spin squeezing. The model considered is relevant to a variety of atomic, molecular, and optical systems, such as atoms in cavities or trapped ions. As an explicit example, the results are used to quantify phonon effects in trapped ion quantum simulators, which are expected to become increasingly important as these experiments push towards larger numbers of ions.

  8. Coupling of nanoflow liquid chromatography to matrix-assisted laser desorption/ionization mass spectrometry: real-time liquid chromatography run mapping on a MALDI plate.

    PubMed

    Nägele, Edgar; Vollmer, Martin

    2004-01-01

    The major obstacle in the use of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) instruments in the analysis of complex proteome samples is the lack of a direct coupling of a highly resolving separation technique with the mass spectrometer itself. To overcome this drawback, a spotting device for capillary and nanoflow liquid chromatography (LC) with a special liquid deposition principle for lowest volumes was developed. The instrument is able to perform MALDI spotting in real time in order to deposit the LC run on the MALDI plate, and therefore couples the high resolution power of nano-RP-HPLC separation directly with MALDI-MS. This work describes the development and optimization of a method for spotting with online matrix addition, and illustrates its use in the analysis of a complex proteome sample.

  9. Running Away

    MedlinePlus

    ... problems of life on the streets. continue The Reality of Running Away When you think about running ... more fights. Sounds great and exciting, right? In reality, running away is anything but fun. Kids and ...

  10. Nonperturbative Pauli-Villars regularization of vacuum polarization in light-front QED

    SciTech Connect

    Chabysheva, Sophia S.; Hiller, John R.

    2010-08-01

    We continue the development of a nonperturbative light-front Hamiltonian method for the solution of quantum field theories by considering the one-photon eigenstate of Lorentz-gauge QED. The photon state is computed nonperturbatively for a Fock basis with a bare photon state and electron-positron pair states. The calculation is regulated by the inclusion of Pauli-Villars (PV) fermions, with one flavor to make the integrals finite and a second flavor to guarantee a zero mass for the physical photon eigenstate. We compute in detail the constraints on the PV coupling strengths that this zero mass implies. As part of this analysis, we provide the complete Lorentz-gauge light-front QED Hamiltonian with two PV fermion flavors and two PV photon flavors, which will be useful for future work. The need for two PV photons was established previously; the need for two PV fermions is established here.

  11. Nonperturbative QCD and elastic processes at CEBAF energies

    SciTech Connect

    Radyushkin, A.V. |

    1994-04-01

    The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author`s point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood ({open_quotes}known{close_quotes}) short-distance effects and nonperturbative ({open_quotes}unknown{close_quotes}) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q{sup 2} closer to 10 GeV{sup 2} and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes.

  12. Non-perturbative effects in spin glasses

    PubMed Central

    Castellana, Michele; Parisi, Giorgio

    2015-01-01

    We present a numerical study of an Ising spin glass with hierarchical interactions—the hierarchical Edwards-Anderson model with an external magnetic field (HEA). We study the model with Monte Carlo (MC) simulations in the mean-field (MF) and non-mean-field (NMF) regions corresponding to d ≥ 4 and d < 4 for the d-dimensional ferromagnetic Ising model respectively. We compare the MC results with those of a renormalization-group (RG) study where the critical fixed point is treated as a perturbation of the MF one, along the same lines as in the -expansion for the Ising model. The MC and the RG method agree in the MF region, predicting the existence of a transition and compatible values of the critical exponents. Conversely, the two approaches markedly disagree in the NMF case, where the MC data indicates a transition, while the RG analysis predicts that no perturbative critical fixed point exists. Also, the MC estimate of the critical exponent ν in the NMF region is about twice as large as its classical value, even if the analog of the system dimension is within only ~2% from its upper-critical-dimension value. Taken together, these results indicate that the transition in the NMF region is governed by strong non-perturbative effects. PMID:25733337

  13. Non-perturbative effects in spin glasses

    NASA Astrophysics Data System (ADS)

    Castellana, Michele; Parisi, Giorgio

    2015-03-01

    We present a numerical study of an Ising spin glass with hierarchical interactions--the hierarchical Edwards-Anderson model with an external magnetic field (HEA). We study the model with Monte Carlo (MC) simulations in the mean-field (MF) and non-mean-field (NMF) regions corresponding to d >= 4 and d < 4 for the d-dimensional ferromagnetic Ising model respectively. We compare the MC results with those of a renormalization-group (RG) study where the critical fixed point is treated as a perturbation of the MF one, along the same lines as in the -expansion for the Ising model. The MC and the RG method agree in the MF region, predicting the existence of a transition and compatible values of the critical exponents. Conversely, the two approaches markedly disagree in the NMF case, where the MC data indicates a transition, while the RG analysis predicts that no perturbative critical fixed point exists. Also, the MC estimate of the critical exponent ν in the NMF region is about twice as large as its classical value, even if the analog of the system dimension is within only ~2% from its upper-critical-dimension value. Taken together, these results indicate that the transition in the NMF region is governed by strong non-perturbative effects.

  14. Nonperturbative approach to circuit quantum electrodynamics.

    PubMed

    Jonasson, Olafur; Tang, Chi-Shung; Goan, Hsi-Sheng; Manolescu, Andrei; Gudmundsson, Vidar

    2012-10-01

    We outline a rigorous method which can be used to solve the many-body Schrödinger equation for a Coulomb interacting electronic system in an external classical magnetic field as well as a quantized electromagnetic field. Effects of the geometry of the electronic system as well as the polarization of the quantized electromagnetic field are explicitly taken into account. We accomplish this by performing repeated truncations of many-body spaces in order to keep the size of the many particle basis on a manageable level. The electron-electron and electron-photon interactions are treated in a nonperturbative manner using "exact numerical diagonalization." Our results demonstrate that including the diamagnetic term in the photon-electron interaction Hamiltonian drastically improves numerical convergence. Additionally, convergence with respect to the number of photon states in the joint photon-electron Fock space basis is fast. However, the convergence with respect to the number of electronic states is slow and is the main bottleneck in calculations.

  15. A nonperturbative parametrization and scenario for EFT renormalization

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Feng

    2009-03-01

    We present a universal form of the T-matrices renormalized in nonperturbative regime and the ensuing notions and properties that fail conventional wisdoms. A universal scale is identified and shown to be renormalization group invariant. The effective range parameters are derived in a nonperturbative scenario with some new predictions within the realm of contact potentials. Some controversies are shown to be due to the failure of conventional wisdoms.

  16. Probing nonperturbative QED with optimally focused laser pulses.

    PubMed

    Gonoskov, A; Gonoskov, I; Harvey, C; Ilderton, A; Kim, A; Marklund, M; Mourou, G; Sergeev, A

    2013-08-09

    We study nonperturbative pair production in intense, focused laser fields called e-dipole pulses. We address the conditions required, such as the quality of the vacuum, for reaching high intensities without initiating beam-depleting cascades, the number of pairs which can be created, and experimental detection of the created pairs. We find that e-dipole pulses offer an optimal method of investigating nonperturbative QED.

  17. Nonperturbative embedding for highly nonlocal Hamiltonians

    NASA Astrophysics Data System (ADS)

    Subaşı, Yiǧit; Jarzynski, Christopher

    2016-07-01

    The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with at most two-body interactions. Although valid for arbitrary k -body interactions, their use is limited to small k because the strength of interaction is k th order in perturbation theory. In this paper we develop a nonperturbative technique for obtaining effective k -body interactions using Hamiltonians consisting of at most l -body interactions with l

  18. Mechanism of RecQ helicase mechanoenzymatic coupling reveals that the DNA interactions of the ADP-bound enzyme control translocation run terminations.

    PubMed

    Sarlós, Kata; Gyimesi, Máté; Kele, Zoltán; Kovács, Mihály

    2015-01-01

    The processing of various DNA structures by RecQ helicases is crucial for genome maintenance in both bacteria and eukaryotes. RecQ helicases perform active destabilization of DNA duplexes, based on tight coupling of their ATPase activity to moderately processive translocation along DNA strands. Here, we determined the ATPase kinetic mechanism of E. coli RecQ helicase to reveal how mechanoenzymatic coupling is achieved. We found that the interaction of RecQ with DNA results in a drastic acceleration of the rate-limiting ATP cleavage step, which occurs productively due to subsequent rapid phosphate release. ADP release is not rate-limiting and ADP-bound RecQ molecules make up a small fraction during single-stranded DNA translocation. However, the relatively rapid release of the ADP-bound enzyme from DNA causes the majority of translocation run terminations (i.e. detachment from the DNA track). Thus, the DNA interactions of ADP-bound RecQ helicase, probably dependent on DNA structure, will mainly determine translocation processivity and may control the outcome of DNA processing. Comparison with human Bloom's syndrome (BLM) helicase reveals that similar macroscopic parameters are achieved by markedly different underlying mechanisms of RecQ homologs, suggesting diversity in enzymatic tuning.

  19. Backward running or absence of running from Creutz ratios

    SciTech Connect

    Giedt, Joel; Weinberg, Evan

    2011-10-01

    We extract the running coupling based on Creutz ratios in SU(2) lattice gauge theory with two Dirac fermions in the adjoint representation. Depending on how the extrapolation to zero fermion mass is performed, either backward running or an absence of running is observed at strong bare coupling. This behavior is consistent with other findings which indicate that this theory has an infrared fixed point.

  20. Nonperturbative multiphoton processes and electron-positron pair production

    NASA Astrophysics Data System (ADS)

    Hatsagortsyan, K. Z.; Müller, C.; Keitel, C. H.

    2006-04-01

    Various regimes of pair production in laser fields are analyzed. Particularly, the question of the observability of pair production in a nonperturbative multiphoton regime is discussed. A simple heuristic method is employed which gives order-of-magnitude estimates for probabilities of multiphoton processes and allows to describe its main features. The method is initially probed upon the known process of pair production in a Coulomb and a strong laser field. Then it is applied to the nonperturbative multiphoton regime of the pair production process in a standing laser wave.

  1. Running Shoes.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    This guide explains the purpose of running shoes and provides tips for purchasing them. A brief explanation of the difference between training shoes and racing shoes is followed by a list of characteristics of running shoes that should be considered when buying them. These characteristics include heel fit, heel elevation and width, the inner and…

  2. Insights on non-perturbative aspects of TMDs from models

    SciTech Connect

    H. Avakian, A. Efremov, P. Schweitzer, O. Teryaev, F. Yuan, P. Zavada

    2009-12-01

    Transverse momentum dependent parton distribution functions are a key ingredient in the description of spin and azimuthal asymmetries in deep-inelastic scattering processes. Recent results from non-perturbative calculations in effective approaches are reviewed, with focus on relations among different parton distribution functions in QCD and models.

  3. A small cosmological constant due to non-perturbative quantum effects

    NASA Astrophysics Data System (ADS)

    Holland, Jan; Hollands, Stefan

    2014-06-01

    We propose an explanation for the ‘unnatural smallness’ of the cosmological constant, arguing that the stress-energy tensor of the Standard Model should be given by = ρvac ημν, with a vacuum energy ρvac that differs from the usual ‘dimensional analysis’ result by an exponentially small factor associated with non-perturbative effects. We substantiate our proposal by a rigorous analysis of a toy model, namely the two-dimensional Gross-Neveu model. The stress energy operator is constructed concretely via the operator-product-expansion, and the inherent ambiguities in its construction are carefully examined. Our result for the vacuum energy is then obtained from the assumptions that (a) the OPE-coefficients have an analytic dependence on g, which we propose to be a generic feature of QFT, and that (b) the vacuum energy vanishes to all orders in perturbation theory. Our result can also be interpreted as saying that, while the semi-classical Einstein’s equation can be fulfilled in Minkowski space at the perturbative level, it cannot at the non-perturbative level. Extrapolating our result from the Gross-Neveu model to the Standard Model, one would expect to find \\rho _vac\\sim \\Lambda ^4 e^{-O(1)/g^2}, where Λ is an energy scale such as Λ = MH, and g is a gauge coupling such as g2/4π = αEW. Assuming this extrapolation is justified, the exponentially small factor due to non-perturbative effects would explain why this quantity is tiny, instead of strictly zero.

  4. Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Seok; Tanaka, Akihiro

    The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner's and Anderson's physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner's description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner's paradigm. In this review article we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative

  5. New Nonperturbative Methods in Quantum Field Theory: From Large-N Orbifold Equivalence to Bions and Resurgence

    NASA Astrophysics Data System (ADS)

    Dunne, Gerald V.; Ünsal, Mithat

    2016-10-01

    We present a broad conceptual introduction to some new ideas in nonperturbative quantum field theory (QFT) that have led to progress toward an understanding of quark confinement in gauge theories and, more broadly, toward a nonperturbative continuum definition of QFTs. We first present exact orbifold equivalences of supersymmetric and nonsupersymmetric QFTs in the large-N limit and exact equivalences of large-N theories in infinite volume to large-N theories in finite volume, or even at a single point. We discuss principles by which calculable QFTs are continuously connected to strong-coupling QFTs, allowing understanding of the physics of confinement or the absence thereof. We discuss the role of particular saddle solutions, termed bions, in weak-coupling calculable regimes. The properties of bions motivate an extension of semiclassical methods used to evaluate functional integrals to include families of complex saddles (Picard-Lefschetz theory). This analysis leads us to the resurgence program, which may provide a framework for combining divergent perturbation series with semiclassical instanton and bion/renormalon contributions. This program could provide a nonperturbative definition of the path integral.

  6. Perturbative and non-perturbative aspects of the two-dimensional string/Yang-Mills correspondence

    NASA Astrophysics Data System (ADS)

    Lelli, Simone; Maggiore, Michele; Rissone, Anna

    2003-04-01

    It is known that YM 2 with gauge group SU( N) is equivalent to a string theory with coupling gs=1/ N, order by order in the 1/ N expansion. We show how this result can be obtained from the bosonization of the fermionic formulation of YM 2, improving on results in the literature, and we examine a number of non-perturbative aspects of this string/YM correspondence. We find contributions to the YM 2 partition function of order exp{- kA/( πα' gs)} with k an integer and A the area of the target space, which would correspond, in the string interpretation, to D1-branes. Effects which could be interpreted as D0-branes are instead strictly absent, suggesting a non-perturbative structure typical of type 0B string theories. We discuss effects from the YM side that are interpreted in terms of the stringy exclusion principle of Maldacena and Strominger. We also find numerically an interesting phase structure, with a region where YM 2 is described by a perturbative string theory separated from a region where it is described by a topological string theory.

  7. Nonperturbative studies in quantum field theory

    SciTech Connect

    Abada, A.

    1992-01-01

    This dissertation is composed of three different research topics. The first part deals with the Study of the so-called local lattice Yukawa theory. The motivation for this study is to investigate the interior of the phase diagram of this theory. A strong y expansion (y being the bare Yukawa coupling) is performed of the partition function and show that within the (finite) range of convergence of the series expansion, the lattice Yukawa theory is equivalent to a purely bosonic theory, with a shifted action. The author explicitly calculated the shifted action to the fourth order in 1/y and find that it is composed of competing interactions. This suggests that away from y = [infinity] towards the interior of the phase diagram, there is a more complicated ordering than simple ferromagnetic or antiferromagnetic. In the second part, the question is addressed of formation of bound states out of constituent fields in an exactly soluble theory, i.e. multifermion electro-dynamics in two space-time dimensions. The author exactly calculates the correlation function corresponding to a neutral composite fermion operator and discuss the pole structure of its Fourier transform. It does not exhibit a simple pole in p[sup 2], hence the corresponding neutral composite operator does not create an asymptotic state in the spectrum of the theory. In part three, the author puts multifermion QED[sub 2] in a heat bath and address the same question as in part two. The author first exactly calculates a bosonic correlation function at finite temperature and density, and discuss its behavior. The author then exactly calculates the correlation function corresponding to the neutral composite fermion operator at finite temperature and density and discusses its behavior. It is concluded that the temperature does not help the composite fermion operator create a particle in the spectrum of the theory.

  8. Nonperturbative equation of state of quark gluon plasma: Applications

    NASA Astrophysics Data System (ADS)

    Komarov, E. V.; Simonov, Yu. A.

    2008-05-01

    The vacuum-driven nonperturbative factors Li for quark and gluon Green's functions are shown to define the nonperturbative dynamics of QGP in the leading approximation. EoS obtained recently in the framework of this approach is compared in detail with known lattice data for μ = 0 including P/ T4, ɛ/ T4, {ɛ-3P}/{T4}. The basic role in the dynamics at T ≲ 3 Tc is played by the factors Li which are approximately equal to the modulus of Polyakov line for quark Lfund and gluon Ladj. The properties of Li are derived from field correlators and compared to lattice data, in particular the Casimir scaling property Ladj=(Lfund) follows in the Gaussian approximation valid for small vacuum correlation lengths. Resulting curves for P/ T4, ɛ/ T4, {ɛ-3P}/{T4} are in a reasonable agreement with lattice data, the remaining difference points out to an effective attraction among QGP constituents.

  9. Nonperturbative results for two-index conformal windows

    NASA Astrophysics Data System (ADS)

    Bergner, Georg; Ryttov, Thomas A.; Sannino, Francesco

    2015-12-01

    Via large and small N c relations we derive nonperturbative results about the conformal window of two-index theories. Using Schwinger-Dyson methods as well as four-loops results we estimate subleading corrections and show that naive large number of colors extrapolations are unreliable when N c is less than about six. Nevertheless useful nonper-turbative inequalities for the size of the conformal windows, for any number of colors, can be derived. By further observing that the adjoint conformal window is independent of the number of colors we argue, among other things, that: the large N c two-index conformal window is twice the conformal window of the adjoint representation (which can be determined at small N c) expressed in terms of Dirac fermions; lattice results for adjoint matter can be used to provide independent information on the conformal dynamics of two-index theories such as SU( N c) with two and four symmetric Dirac flavors.

  10. Comparative study of nonperturbative heavy quarks in the nucleon

    NASA Astrophysics Data System (ADS)

    Hobbs, Timothy; Jimenez-Delgado, Pedro; Londergan, John; Melnitchouk, Wally

    2013-10-01

    We perform an analysis of the role of nonperturbative (or intrinsic) charm in the nucleon. Charm is generated nonperturbatively through Fock state expansions of the nucleon wave function to include five-quark virtual states involving charmed mesons and baryons. We consider contributions from a variety of charmed meson-baryon states and find surprisingly dominant effects from the D*0Λc+ configuration. Particular attention is paid to the existence and persistence of high- x structure for intrinsic charm, and the x dependence of the c - c asymmetry predicted in meson-baryon models. We also discuss efforts to constrain intrinsic charm via a forthcoming global QCD analysis, and the possibility of extracting intrinsic strangeness using a similar approach. Research supported by NSF grant NSF-PHY-1205019 and DOE Office of Science grants DE-FG02-87ER40365, DE-AC05-06OR23177.

  11. Nonperturbative theory of double photoionization of the hydrogen molecule

    SciTech Connect

    Vanroose, W.; Martin, F.; Rescigno, T.N.; McCurdy, C.W.

    2004-10-01

    We present completely ab initio nonperturbative calculations of the integral and single differential cross sections for double photoionization of H2 for photon energies from 53.9 to 75.7 eV. The method of exterior complex scaling, implemented with B-splines, is used to solve the Schrodinger equation for a correlated continuum wave function corresponding to a single photon having been absorbed by a correlated initial state. The results are in good agreement with experimental integral cross sections.

  12. Non-perturbative inputs for gluon distributions in the hadrons

    NASA Astrophysics Data System (ADS)

    Ermolaev, B. I.; Troyan, S. I.

    2017-03-01

    Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K_T-and collinear factorizations.

  13. Non-Perturbative, Unitary Quantum-Particle Scattering Amplitudes from Three-Particle Equations

    SciTech Connect

    Lindesay, James V

    2002-03-19

    We here use our non-perturbative, cluster decomposable relativistic scattering formalism to calculate photon-spinor scattering, including the related particle-antiparticle annihilation amplitude. We start from a three-body system in which the unitary pair interactions contain the kinematic possibility of single quantum exchange and the symmetry properties needed to identify and substitute antiparticles for particles. We extract from it unitary two-particle amplitude for quantum-particle scattering. We verify that we have done this correctly by showing that our calculated photon-spinor amplitude reduces in the weak coupling limit to the usual lowest order, manifestly covariant (QED) result with the correct normalization. That we are able to successfully do this directly demonstrates that renormalizability need not be a fundamental requirement for all physically viable models.

  14. Nonperturbative heavy-quark diffusion in the quark-gluon plasma.

    PubMed

    van Hees, H; Mannarelli, M; Greco, V; Rapp, R

    2008-05-16

    We evaluate heavy-quark (HQ) transport properties in a quark-gluon plasma (QGP) within a Brueckner many-body scheme employing interaction potentials extracted from thermal lattice QCD. The in-medium T matrices for elastic charm- and bottom-quark scattering off light quarks in the QGP are dominated by attractive meson and diquark channels which support resonance states up to temperatures of ~1.5T(c). The resulting drag coefficient increases with decreasing temperature, contrary to expectations based on perturbative QCD scattering. Employing relativistic Langevin simulations we compute HQ spectra and elliptic flow in sqrt[s(NN)]=200 GeV Au-Au collisions. A good agreement with electron decay data supports our nonperturbative computation of HQ diffusion, indicative for a strongly coupled QGP.

  15. Simulating compact quantum electrodynamics with ultracold atoms: probing confinement and nonperturbative effects.

    PubMed

    Zohar, Erez; Cirac, J Ignacio; Reznik, Benni

    2012-09-21

    Recently, there has been much interest in simulating quantum field theory effects of matter and gauge fields. In a recent work, a method for simulating compact quantum electrodynamics (CQED) using Bose-Einstein condensates has been suggested. We suggest an alternative approach, which relies on single atoms in an optical lattice, carrying 2l + 1 internal levels, which converges rapidly to CQED as l increases. That enables the simulation of CQED in 2 + 1 dimensions in both the weak and the strong coupling regimes, hence, allowing us to probe confinement as well as other nonperturbative effects of the theory. We provide an explicit construction for the case l = 1 which is sufficient for simulating the effect of confinement between two external static charges.

  16. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  17. Nonperturbative renormalization group for scalar fields in de Sitter space: Beyond the local potential approximation

    NASA Astrophysics Data System (ADS)

    Guilleux, Maxime; Serreau, Julien

    2017-02-01

    Nonperturbative renormalization group techniques have recently proven a powerful tool to tackle the nontrivial infrared dynamics of light scalar fields in de Sitter space. In the present article, we develop the formalism beyond the local potential approximation employed in earlier works. In particular, we consider the derivative expansion, a systematic expansion in powers of field derivatives, appropriate for long wavelength modes, that we generalize to the relevant case of a curved metric with Lorentzian signature. The method is illustrated with a detailed discussion of the so-called local potential approximation prime which, on top of the full effective potential, includes a running (but field-independent) field renormalization. We explicitly compute the associated anomalous dimension for O (N ) theories. We find that it can take large values along the flow, leading to sizable differences as compared to the local potential approximation. However, it does not prevent the phenomenon of gravitationally induced dimensional reduction pointed out in previous studies. We show that, as a consequence, the effective potential at the end of the flow is unchanged as compared to the local potential approximation, the main effect of the running anomalous dimension being merely to slow down the flow. We discuss some consequences of these findings.

  18. Nonperturbative NN scattering in {sup 3}S{sub 1}–{sup 3}D{sub 1} channels of EFT(⁄π)

    SciTech Connect

    Yang, Ji-Feng

    2013-12-15

    The closed-form T matrices in the {sup 3}S{sub 1}–{sup 3}D{sub 1} channels of EFT(⁄π) for NN scattering with the potentials truncated at order O(Q{sup 4}) are presented with the nonperturbative divergences parametrized in a general manner. The stringent constraints imposed by the closed form of the T matrices are exploited in the underlying theory perspective and turned into virtues in the implementation of subtractions and the manifestation of power counting rules in nonperturbative regimes, leading us to the concept of EFT scenario. A number of scenarios of the EFT description of NN scattering are compared with PSA data in terms of effective range expansion and {sup 3}S{sub 1} phase shifts, showing that it is favorable to proceed in a scenario with conventional EFT couplings and sophisticated renormalization in order to have large NN scattering lengths. The informative utilities of fine tuning are demonstrated in several examples and naturally interpreted in the underlying theory perspective. In addition, some of the approaches adopted in the recent literature are also addressed in the light of EFT scenario. -- Highlights: •Closed-form unitary T matrices for NN scattering are obtained in EFT(⁄π). •Nonperturbative properties inherent in such closed-form T matrices are explored. •Nonperturbative renormalization is implemented through exploiting these properties. •Unconventional power counting of couplings is shown to be less favored by PSA data. •The ideas about nonperturbative renormalization here might have wider applications.

  19. Non-perturbative QCD Modeling and Meson Physics

    SciTech Connect

    Nguyen, T.; Souchlas, N. A.; Tandy, P. C.

    2009-04-20

    Using a ladder-rainbow kernel previously established for light quark hadron physics, we explore the extension to masses and electroweak decay constants of ground state pseudoscalar and vector quarkonia and heavy-light mesons in the c- and b-quark regions. We make a systematic study of the effectiveness of a constituent mass concept as a replacement for a heavy quark dressed propagator for such states. The difference between vector and axial vector current correlators is explored within the same model to provide an estimate of the four quark chiral condensate and the leading distance scale for the onset of non-perturbative phenomena in QCD.

  20. Comment on nonperturbative effects in B -> Xsγ

    NASA Astrophysics Data System (ADS)

    Ligeti, Zoltan; Randall, Lisa; Wise, Mark B.

    1997-02-01

    Uncertainties in the theoretical prediction for the inclusive B -> Xsγ decay rate are discussed. We emphasize that there is no operator product expansion for this process. Nonetheless, some nonperturbative effects involving a virtual c c loop are calculable using the operator product expansion. They give a contribution to the decay rate that involves the B meson matrix element of an infinite tower of operators. The higher dimension operators give effects that are only suppressed by powers of mbΛQCD/m2c ~ 0.6, but come with small coefficients.

  1. Gaugino Condensation and Nonperturbative Superpotentials in F-Theory

    SciTech Connect

    Gorlich, L

    2004-08-05

    There are two known sources of nonperturbative superpotentials for Kahler moduli in type IIB orientifolds, or F-theory compactifications on Calabi-Yau fourfolds, with flux: Euclidean brane instantons and low-energy dynamics in D7 brane gauge theories. The first class of effects, Euclidean D3 branes which lift in M-theory to M5 branes wrapping divisors of arithmetic genus 1 in the fourfold, is relatively well understood. The second class has been less explored. In this paper, we consider the explicit example of F-theory on K3 x K3 with flux. The fluxes lift the D7 brane matter fields, and stabilize stacks of D7 branes at loci of enhanced gauge symmetry. The resulting theories exhibit gaugino condensation, and generate a nonperturbative superpotential for Kahler moduli. The authors describe how the relevant geometries in general contain cycles of arithmetic genus {chi} {ge} 1 (and how {chi} > 1 divisors can contribute to the superpotential, in the presence of flux). This second class of effects is likely to be important in finding even larger classes of models where the KKLT mechanism of moduli stabilization can be realized. They also address various claims about the situation for IIB models with a single Kahler modulus.

  2. Nonperturbative relativistic calculation of the muonic hydrogen spectrum

    SciTech Connect

    Carroll, J. D.; Thomas, A. W.; Rafelski, J.; Miller, G. A.

    2011-07-15

    We investigate the muonic hydrogen 2P{sub 3/2}{sup F=2} to 2S{sub 1/2}{sup F=1} transition through a precise, nonperturbative numerical solution of the Dirac equation including the finite-size Coulomb force and finite-size vacuum polarization. The results are compared with earlier perturbative calculations of (primarily) [E. Borie, Phys. Rev. A 71, 032508 (2005); E. Borie and G. A. Rinker, Rev. Mod. Phys. 54, 67 (1982); E. Borie, Z. Phys. A 275, 347 (1975) and A. P. Martynenko, Phys. Rev. A 71, 022506 (2005); A. Martynenko, Phys. At. Nucl. 71, 125 (2008), and K. Pachucki, Phys. Rev. A 53, 2092 (1996)] and experimental results recently presented by Pohl et al.[Nature (London) 466, 213 (2010)], in which this very comparison is interpreted as requiring a modification of the proton charge radius from that obtained in electron scattering and electronic hydrogen analyses. We find no significant discrepancy between the perturbative and nonperturbative calculations, and we present our results as confirmation of the perturbative methods.

  3. Testing QCD in the non-perturbative regime

    SciTech Connect

    A.W. Thomas

    2007-01-01

    This is an exciting time for strong interaction physics. We have a candidate for a fundamental theory, namely QCD, which has passed all the tests thrown at it in the perturbative regime. In the non-perturbative regime it has also produced some promising results and recently a few triumphs but the next decade will see enormous progress in our ability to unambiguously calculate the consequences of non-perturbative QCD and to test those predictions experimentally. Amongst the new experimental facilities being constructed, the hadronic machines at JPARC and GSI-FAIR and the 12 GeV Upgrade at Jefferson Lab, the major new electromagnetic facility worldwide, present a beautifully complementary network aimed at producing precise new measurements which will advance our knowledge of nuclear systems and push our ability to calculate the consequences of QCD to the limit. We will first outline the plans at Jefferson Lab for doubling the energy of CEBAF. The new facility presents some wonderful opportunities for discovery in strong interaction physics, as well as beyond the standard model. Then we turn to the theoretical developments aimed at extracting precise results for physical hadron properties from lattice QCD simulations. This discussion will begin with classical examples, such as the mass of the nucleon and ?, before dealing with a very recent and spectacular success involving information extracted from modern parity violating electron scattering.

  4. Resurgence in quantum field theory: nonperturbative effects in the principal chiral model.

    PubMed

    Cherman, Aleksey; Dorigoni, Daniele; Dunne, Gerald V; Ünsal, Mithat

    2014-01-17

    We explain the physical role of nonperturbative saddle points of path integrals in theories without instantons, using the example of the asymptotically free two-dimensional principal chiral model (PCM). Standard topological arguments based on homotopy considerations suggest no role for nonperturbative saddles in such theories. However, the resurgence theory, which unifies perturbative and nonperturbative physics, predicts the existence of several types of nonperturbative saddles associated with features of the large-order structure of the perturbation theory. These points are illustrated in the PCM, where we find new nonperturbative "fracton" saddle point field configurations, and suggest a quantum interpretation of previously discovered "uniton" unstable classical solutions. The fractons lead to a semiclassical realization of IR renormalons in the circle-compactified theory and yield the microscopic mechanism of the mass gap of the PCM.

  5. Nonperturbative dynamics of reheating after inflation: A review

    NASA Astrophysics Data System (ADS)

    Amin, Mustafa A.; Hertzberg, Mark P.; Kaiser, David I.; Karouby, Johanna

    2015-12-01

    Our understanding of the state of the universe between the end of inflation and big bang nucleosynthesis (BBN) is incomplete. The dynamics at the end of inflation are rich and a potential source of observational signatures. Reheating, the energy transfer between the inflaton and Standard Model fields (possibly through intermediaries) and their subsequent thermalization, can provide clues to how inflation fits in with known high-energy physics. We provide an overview of our current understanding of the nonperturbative, nonlinear dynamics at the end of inflation, some salient features of realistic particle physics models of reheating, and how the universe reaches a thermal state before BBN. In addition, we review the analytical and numerical tools available in the literature to study preheating and reheating and discuss potential observational signatures from this fascinating era.

  6. Nonperturbative True Muonium on the Light Front with TMSWIFT

    NASA Astrophysics Data System (ADS)

    Lamm, Henry; Lebed, Richard F.

    2016-08-01

    The true muonium {(μbar{μ})} bound state presents an interesting test of light-cone quantization techniques. In addition to exhibiting the standard problems of handling non-perturbative calculations, true muonium requires correct treatment of {ebar{e}} Fock-state contributions. Having previously produced a crude model of true muonium using the method of iterated resolvents, our current work has focused on the inclusion of the box diagrams to improve the cutoff-dependent issues of the model. Further, a parallel computer code, TMSWIFT, allowing for smaller numerical uncertainties, has been developed. This work focuses on the current state of these efforts to develop a model of true muonium that is testable at near-term experiments.

  7. Perturbation theory and nonperturbative effects: A happy marriage ?

    NASA Astrophysics Data System (ADS)

    Chýla, J.

    1992-03-01

    Perturbation expansions in renormalized quantum field theories are reformulated in a way that permits a straightforward handling of situations when in the conventional approach, i.e. in fixed renormalization scheme, these expansions are factorially divergent and even of asymptotically constant sign. The result takes the form of convergent (under certain circumstances) expansions in a set of functions Z k(a, χ) of the couplant and the free parameter χ which specifies the procedure involved. The value of χ is shown to be correlated to the basic properties of nonperturbative effects as embodied in power corrections. Close connection of this procedure to Borel summation technique is demonstrated and its relation to conventional perturbation theory in fixed renormalization schemes elucidated.

  8. Perturbative and nonperturbative aspects of heterotic sigma models

    NASA Astrophysics Data System (ADS)

    Cui, Xiaoyi

    Supersymmetric nonlinear sigma models are interesting from various perspectives. They are useful for understanding the most fundamental theory of our world, and for low-energy effective model-building. Mathematically, they make surprising connections between different exciting areas such as complex geometry, deformation theory, quantum algebra and topology. In this thesis, we study perturbative and nonperturbative aspects of sigma models with N = (0, 2) supersymmetry, with an emphasize on a possible version of extended 4d/2d correspondence. We showed that in some N = (0, 2) models, β functions calculated through Feynman graphs can be reproduced by nonrenormalization theorems. And the result can further be compared with the supercurrent analysis. These cases including linear models, minimal CP(1) model (other CP(N) models are obstructed by global anomaly) together with its extended cousins, and heterotic CP(N) models. Nonperturbatively we built the instanton measure for minimal CP(1) model and its (0, 2)-extended cousins. The instanton measure bears similarity to the instanton measure for 4d super-Yang-Mills theories. Through this analogy, there seems to be a correspondence between N = 1 theories in 4d and N = (0, 2) theories in 2d, which extends previous results initiated by Edalati-Tong and Shifman-Yung. An interesting by-product is also obtained during the procedure, which shows that for non-minimal (globally anomaly-free) N = (0, 2) models with CP(1) as target spaces, there seems always exist certain infrared fixed points, induced by the behavior of chiral fermions.

  9. Nonperturbative NN scattering in 3S1-3D1 channels of EFT(⁄π)

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Feng

    2013-12-01

    The closed-form T matrices in the 3S1-3D1 channels of EFT(⁄π) for NN scattering with the potentials truncated at order O(Q4) are presented with the nonperturbative divergences parametrized in a general manner. The stringent constraints imposed by the closed form of the T matrices are exploited in the underlying theory perspective and turned into virtues in the implementation of subtractions and the manifestation of power counting rules in nonperturbative regimes, leading us to the concept of EFT scenario. A number of scenarios of the EFT description of NN scattering are compared with PSA data in terms of effective range expansion and 3S1 phase shifts, showing that it is favorable to proceed in a scenario with conventional EFT couplings and sophisticated renormalization in order to have large NN scattering lengths. The informative utilities of fine tuning are demonstrated in several examples and naturally interpreted in the underlying theory perspective. In addition, some of the approaches adopted in the recent literature are also addressed in the light of EFT scenario.

  10. Building a non-perturbative quark-gluon vertex from a perturbative one

    NASA Astrophysics Data System (ADS)

    Bermudez, Rocio

    2016-10-01

    The quark-gluon vertex describes the electromagnetic and the strong interaction among these particles. The description of this interaction at high precision in both regimes, perturbative and non-perturbative, continues being a matter of interest in the context of QCD and Hadron Physics. There exist very helpful models in the literature that explain perturbative aspects of the theory but they fail describing non-perturbative phenomena, as confinement and dynamic chiral symmetry breaking. In this work we study the structure of the quark-gluon vertex in a non-perturbative regime examining QCD, checking results with QED, and working in the Schwinger-Dyson formalism.

  11. Nonperturbative Treatment of Electron-Impact Ionization of Ar(3p)

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus; Zatsarinny, Oleg

    2012-06-01

    We present triple-differential cross sections for electron-impact ionization of a 3p electron in Ar. Results from a fully non-perturbative close-coupling formalism using our B-Spline R-matrix with Pseudo-States (BSRMPS) approach [1] are compared with those from a hybrid distorted-wave plus R-matrix expansion [2] as well as recent experimental data [3]. We find overall good agreement between the two sets of entirely independent theoretical predictions, but serious discrepancies with the published experimental data. A detailed investigation of the dependence of the results on the fixed detection angle of the ``scattered projectile'', i.e., the faster of the two outgoing electrons, suggests that obtaining reliable results, both experimentally and theoretically, is highly challenging in the regime where the largest discrepancies occur. Consequently, care should be taken before much weight is put on the remaining deviations between experiment and theory. Further independent tests seem highly desirable.[4pt] [1] O. Zatsarinny and K. Bartschat, Phys. Rev. Lett. 107 (2011) 023203.[0pt] [2] K. Bartschat and O. K. Vorov, Phys. Rev. A 72 (2005) 022728.[0pt] [3] X. Ren, A. Senftleben, T. Pfl"uger, A. Dorn, K. Bartschat, and J. Ullrich, Phys. Rev. A 83 (2011) 052714.

  12. Nonperturbative Renormalization of Composite Operators with Overlap Fermions

    SciTech Connect

    J.B. Zhang; N. Mathur; S.J. Dong; T. Draper; I. Horvath; F. X. Lee; D.B. Leinweber; K.F. Liu; A.G. Williams

    2005-12-01

    We compute non-perturbatively the renormalization constants of composite operators on a quenched 16{sup 3} x 28 lattice with lattice spacing a = 0.20 fm for the overlap fermion by using the regularization independent (RI) scheme. The quenched gauge configurations were generated with the Iwasaki action. We test the relations Z{sub A} = Z{sub V} and Z{sub S} = Z{sub P} and find that they agree well (less than 1%) above {mu} = 1.6 GeV. We also perform a Renormalization Group (RG) analysis at the next-to-next-to-leading order and match the renormalization constants to the {ovr MS} scheme. The wave-function renormalization Z{sub {psi}} is determined from the vertex function of the axial current and Z{sub A} from the chiral Ward identity. Finally, we examine the finite quark mass behavior for the renormalization factors of the quark bilinear operators. We find that the (pa){sup 2} errors of the vertex functions are small and the quark mass dependence of the renormalization factors to be quite weak.

  13. Charmed spectroscopy from a nonperturbatively determined relativistic heavy quark action in full QCD

    SciTech Connect

    Huey-Wen Lin

    2006-07-28

    We present a preliminary calculation of the charmed meson spectrum using the 2+1 flavor domain wall fermion lattice configurations currently being generated by the RBC and UKQCD collaborations. The calculation is performed using the 3-parameter, relativistic heavy quark action with nonperturbatively determined coefficients. We will also demonstrate a step-scaling procedure for determining these coefficients nonperturbatively using a series of quenched, gauge field ensembles generated for three different lattice spacings.

  14. On the nonperturbative theory of pure dephasing in condensed phases at low temperatures

    NASA Astrophysics Data System (ADS)

    Reichman, David; Silbey, Robert J.; Suárez, Alberto

    1996-12-01

    The nonperturbative treatment of the pure dephasing problem studied by Osad'ko and Skinner and Hsu is reexamined. It is found that these treatments are inadequate for very low temperatures in the case of Ohmic friction. New nonperturbative methods are used to expose interesting pure dephasing behavior at very low temperatures in this case. The methods are shown to coincide with the previous theories at higher temperatures. The experimental detection of such phenomena is discussed.

  15. Nonperturbative results for the mass dependence of the QED fermion determinant

    SciTech Connect

    Fry, M. P.

    2010-05-15

    The fermion determinant in four-dimensional quantum electrodynamics in the presence of O(2)xO(3) symmetric background gauge fields with a nonvanishing global chiral anomaly is considered. It is shown that the leading mass singularity of the determinant's nonperturbative part is fixed by the anomaly. It is also shown that for a large class of such fields there is at least one value of the fermion mass at which the determinant's nonperturbative part reduces to its noninteracting value.

  16. Fatigue associated with prolonged graded running.

    PubMed

    Giandolini, Marlene; Vernillo, Gianluca; Samozino, Pierre; Horvais, Nicolas; Edwards, W Brent; Morin, Jean-Benoît; Millet, Guillaume Y

    2016-10-01

    Scientific experiments on running mainly consider level running. However, the magnitude and etiology of fatigue depend on the exercise under consideration, particularly the predominant type of contraction, which differs between level, uphill, and downhill running. The purpose of this review is to comprehensively summarize the neurophysiological and biomechanical changes due to fatigue in graded running. When comparing prolonged hilly running (i.e., a combination of uphill and downhill running) to level running, it is found that (1) the general shape of the neuromuscular fatigue-exercise duration curve as well as the etiology of fatigue in knee extensor and plantar flexor muscles are similar and (2) the biomechanical consequences are also relatively comparable, suggesting that duration rather than elevation changes affects neuromuscular function and running patterns. However, 'pure' uphill or downhill running has several fatigue-related intrinsic features compared with the level running. Downhill running induces severe lower limb tissue damage, indirectly evidenced by massive increases in plasma creatine kinase/myoglobin concentration or inflammatory markers. In addition, low-frequency fatigue (i.e., excitation-contraction coupling failure) is systematically observed after downhill running, although it has also been found in high-intensity uphill running for different reasons. Indeed, low-frequency fatigue in downhill running is attributed to mechanical stress at the interface sarcoplasmic reticulum/T-tubule, while the inorganic phosphate accumulation probably plays a central role in intense uphill running. Other fatigue-related specificities of graded running such as strategies to minimize the deleterious effects of downhill running on muscle function, the difference of energy cost versus heat storage or muscle activity changes in downhill, level, and uphill running are also discussed.

  17. Nonperturbative effects on the ferromagnetic transition in repulsive Fermi gases

    NASA Astrophysics Data System (ADS)

    He, Lianyi; Huang, Xu-Guang

    2012-04-01

    It is generally believed that a dilute spin-(1)/(2) Fermi gas with repulsive interactions can undergo a ferromagnetic phase transition to a spin-polarized state at a critical gas parameter (kFa)c. Previous theoretical predictions of the ferromagnetic phase transition have been based on the perturbation theory, which treats the gas parameter as a small number. On the other hand, Belitz, Kirkpatrick, and Vojta (BKV) have argued that the phase transition in clean itinerant ferromagnets is generically of first order at low temperatures, due to the correlation effects that lead to a nonanalytic term in the free energy. The second-order perturbation theory predicts a first-order phase transition at (kFa)c=1.054, consistent with the BKV argument. However, since the critical gas parameter is expected to be of order O(1), perturbative predictions may be unreliable. In this paper we study the nonperturbative effects on the ferromagnetic phase transition by summing the particle-particle ladder diagrams to all orders in the gas parameter. We consider a universal repulsive Fermi gas where the effective range effects can be neglected, which can be realized in a two-component Fermi gas of 6Li atoms by using a nonadiabatic field switch to the upper branch of a Feshbach resonance with a positive s-wave scattering length. Our theory predicts a second-order phase transition, which indicates that ferromagnetic transition in dilute Fermi gases is possibly a counterexample to the BKV argument. The predicted critical gas parameter (kFa)c=0.858 is in good agreement with the recent quantum Monte Carlo result (kFa)c=0.86 for a nearly zero-range potential [S. Pilati , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.030405 105, 030405 (2010)]. We also compare the spin susceptibility with the quantum Monte Carlo result and find good agreement.

  18. Problems at the interface between perturbative and nonperturbative quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.; Bodwin, G.T.; Lepage, G.P.

    1983-06-01

    Predictions based on perturbative QCD rest on three premises: (1) that hadronic interactions become weak in strength at small invariant separation; (2) that the perturbative expansion in ..cap alpha../sub s/(Q) is well-defined; and (3) factorization: all effects of collinear singularities, confinement, nonperturbative interactions, and bound state dynamics can be isolated at large momentum transfer in terms of structure functions, fragmentation functions, or in the case of exclusive processes, distribution amplitudes. The assumption that the perturbative expansion for hard scattering amplitudes converges has certainly not been demonstrated; in addition, there are serious ambiguities concerning the choice of renormalization scheme and scale choice Q/sup 2/ for the expansion in ..cap alpha../sub s/(Q/sup 2/). We will discuss a new procedure to at least partly rectify the latter problem. In the case of exclusive processes, the factorization of hadronic amplitudes at large momentum transfer in the form of distribution amplitudes convoluted with hard scattering quark-gluon subprocess amplitudes can be demonstrated systematically to all orders in ..cap alpha../sub s/(Q/sup 2/). In the case of inclusive reactions, factorization remains an ansatz; general all-orders proofs do not exist because of the complications of soft initial state interactions for hadron-induced processes; thus far factorization has only been verified to two loops beyond lowest order in a regime where the applicability of perturbation theory is in doubt. However, we shall show that a necessary condition for the validity of factorization in inclusive reactions is that the momentum transfer must be large compared to the (rest frame) length of the target. We review the present status of the factorization ansatz. 52 references.

  19. Dr. Sheehan on Running.

    ERIC Educational Resources Information Center

    Sheehan, George A.

    This book is both a personal and technical account of the experience of running by a heart specialist who began a running program at the age of 45. In its seventeen chapters, there is information presented on the spiritual, psychological, and physiological results of running; treatment of athletic injuries resulting from running; effects of diet…

  20. Running and Breathing in Mammals

    NASA Astrophysics Data System (ADS)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  1. On Running and Psychotherapy.

    ERIC Educational Resources Information Center

    Dukes, Denzel; And Others

    1980-01-01

    Frederic Leer's article "Running as an Adjunct to Psychotherapy" (January 1980 issue of this journal) is criticized by three authors. They focus on the psychological and social effects of running and its usefulness as a treatment for depressed adults. (LAB)

  2. Biomechanics of Distance Running.

    ERIC Educational Resources Information Center

    Cavanagh, Peter R., Ed.

    Contributions from researchers in the field of running mechanics are included in the 13 chapters of this book. The following topics are covered: (1) "The Mechanics of Distance Running: A Historical Perspective" (Peter Cavanagh); (2) "Stride Length in Distance Running: Velocity, Body Dimensions, and Added Mass Effects" (Peter Cavanagh, Rodger…

  3. PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier

    2012-05-01

    Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not

  4. Non-perturbative effects in quantum field theory: QCD, supersymmetric QCD and axions

    NASA Astrophysics Data System (ADS)

    Wu, Weitao

    In the study of non-perturbative effects in four dimenstional non-Abelian gauge theories, instantons have played an important conceptual role. However, their role in the quantitative understanding these theories has remained obscure. In the first part of this thesis, we revisit the question of whether or not one can perform reliable semiclassical QCD computation at zero temperature. We study correlation functions with no perturbative contributions, and organize the problem by means of the operator product expansion, establishing a precise criterion for the validity of semiclassical calculation. For N f > Nc, a systematic computation is possible; for Nf < Nc, it is not. Nf = Nc is a borderline case. As an application, we describe a test of QCD lattice gauge theory computations in the chiral limit. Supersymmetry has provided a tool with which to obtain a range of exact results in field theory and string theory. Arguably the first inkling that one could obtain such results was the work of Novikov, Shifman, Vainshtein, and Zakharov (NSVZ). They argued for two exact results in gauge theories using instanton computation. First, that one could compute certain correlation functions exactly at weak coupling, and extend the results to strong coupling; second, that one could obtain exact expressions for beta-functions. However, each of these results raised questions. As methods exploiting systematic weak coupling expansions and holomorphy were developed, it became clear that the strong coupling instanton computation was incorrect. This in turn called the exact beta-function into question. In the second part of this thesis, we will provide resolutions to both of these questions. First, we explain why the instanton computation in the pure supersymmetric gauge theory is not reliable, even at short distances. The semiclassical expansion about the instanton is purely formal; if infrared divergences appear, they spoil arguments based on holomorphy. For the question of the NSVZbeta

  5. Reheating dynamics affects non-perturbative decay of spectator fields

    SciTech Connect

    Enqvist, Kari; Lerner, Rose N.; Rusak, Stanislav E-mail: rose.lerner@helsinki.fi

    2013-11-01

    The behaviour of oscillating scalar spectator fields after inflation depends on the thermal background produced by inflaton decay. Resonant decay of the spectator is often blocked by large induced thermal masses. We account for the finite decay width of the inflaton and the protracted build-up of the thermal bath to determine the early evolution of a homogeneous spectator field σ coupled to the Higgs Boson Φ through the term g{sup 2}σ{sup 2}Φ{sup 2}, the only renormalisable coupling of a new scalar to the Standard Model. We find that for very large higgs-spectator coupling g∼>10{sup −3}, the resonance is not always blocked as was previously suggested. As a consequence, the oscillating spectator can decay quickly. For other parameter values, we find that although qualitative features of the thermal blocking still hold, the dynamics are altered compared to the instant decay case. These findings are important for curvaton models, where the oscillating field must be relatively long lived in order to produce the curvature perturbation. They are also relevant for other spectator fields, which must decay sufficiently early to avoid spoiling the predictions of baryogenesis and nucleosynthesis.

  6. Can Unshod Running Reduce Running Injuries?

    DTIC Science & Technology

    2012-06-08

    protein? Lieberman considered how humans could take down a boar or antelope while other predators like lions and hyenas were on the prowl. He...referenced research that reported African hunters chasing antelopes and Tarahumara Indians running down deer till their hooves fell off.35 Lieberman...

  7. Non-perturbative structure in heterotic strings from dual F-theory models

    NASA Astrophysics Data System (ADS)

    O'Driscoll, Dónal

    1999-05-01

    We examine how to construct explicit heterotic string models dual to F-theory in eight dimensions. In doing so we learn about where the moduli spaces of the two theories overlap, and how non-perturbative features leave their trace on a purely perturbative level. We also briefly look at the relationship with NS9-branes

  8. Holomorphy, triality, and nonperturbative beta function in 2D supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Gadde, Abhijit

    2016-07-01

    In this paper, we study the RG flow in the nonlinear sigma models obtained from a 2D N =(0 ,2 ) supersymmetric QCD. The sigma model is parametrized by a single Kahler modulus. We determine its exact nonperturbative beta function using holomorphy, triality and the knowledge of the infrared fixed point.

  9. Spectral zeta function and non-perturbative effects in ABJM Fermi-gas

    NASA Astrophysics Data System (ADS)

    Hatsuda, Yasuyuki

    2015-11-01

    The exact partition function in ABJM theory on three-sphere can be regarded as a canonical partition function of a non-interacting Fermi-gas with an unconventional Hamiltonian. All the information on the partition function is encoded in the discrete spectrum of this Hamiltonian. We explain how (quantum mechanical) non-perturbative corrections in the Fermi-gas system appear from a spectral consideration. Basic tools in our analysis are a Mellin-Barnes type integral representation and a spectral zeta function. From a consistency with known results, we conjecture that the spectral zeta function in the ABJM Fermi-gas has an infinite number of "non-perturbative" poles, which are invisible in the semi-classical expansion of the Planck constant. We observe that these poles indeed appear after summing up perturbative corrections. As a consequence, the perturbative resummation of the spectral zeta function causes non-perturbative corrections to the grand canonical partition function. We also present another example associated with a spectral problem in topological string theory. A conjectured non-perturbative free energy on the resolved conifold is successfully reproduced in this framework.

  10. Nonperturbative spectral-density function for the Anderson model at arbitrary temperatures

    NASA Technical Reports Server (NTRS)

    Neal, Henry L.

    1991-01-01

    Using a nonperturbative self-energy solution for the nondegenerate Anderson model, the temperature-dependent spectral-density function is calculated in the symmetric limit. The function is found to give reliable results for all values of the parameter u and inverse temperature beta.

  11. Nonperturbative Calculation of Born-Infeld Effects on the Schroedinger Spectrum of the Hydrogen Atom

    SciTech Connect

    Carley, Holly; Kiessling, Michael K.-H.

    2006-01-27

    We present the first nonperturbative calculations of the nonrelativistic hydrogen spectrum as predicted by first-quantized nonlinear Maxwell-Born-Infeld electrodynamics with point charges. Judged against empirical data our results significantly restrict the range of viable values of the new electromagnetic constant {beta} introduced by Born. We assess Born's own proposal for the value of {beta}.

  12. Nonperturbative renormalization of meson decay constants in quenched QCD for a renormalization group improved gauge action

    SciTech Connect

    Ide, K.; Aoki, S.; Kanaya, K.; Taniguchi, Y.; Burkhalter, R.; Ishikawa, K.-I.; Ishizuka, N.; Iwasaki, Y.; Ukawa, A.; Yoshie, T.; Fukugita, M.; Hashimoto, S.; Kaneko, T.; Kuramashi, Y.; Ishikawa, T.; Lesk, V.; Umeda, T.; Okawa, M.

    2004-10-01

    Renormalization constants (Z-factors ) of vector and axial-vector currents are determined nonperturbatively in quenched QCD for a renormalization group improved gauge action and a tadpole-improved clover quark action using the Schroedinger functional method. Nonperturbative values of Z-factors turn out to be smaller than 1-loop perturbative values by O(15%) at a lattice spacing of a{sup -1}{approx_equal} 1 GeV. The pseudoscalar and vector meson decay constants calculated with the nonperturbative Z-factors show a much better scaling behavior compared to previous results obtained with tadpole-improved one-loop Z-factors. In particular, the nonperturbative Z-factors normalized at infinite physical volume show that the scaling violations of the decay constants are within about 10% up to the lattice spacing a{sup -1}{approx}1 GeV. The continuum estimates obtained from data in the range a{sup -1}{approx} 1-2 GeV agree with those determined from finer lattices (a{sup -1}{approx}2-4 GeV) with the standard action.

  13. Perturbative and nonperturbative contributions to the strange quark asymmetry in the nucleon

    NASA Astrophysics Data System (ADS)

    Feng, Guan-Qiu; Cao, Fu-Guang; Guo, Xin-Heng; Signal, A. I.

    2012-12-01

    There are two mechanisms for the generation of an asymmetry between the strange and anti-strange quark distributions in the nucleon: nonperturbative contributions originating from nucleons fluctuating into virtual baryon-meson pairs such as ΛK and ΣK, and perturbative contributions arising from gluons splitting into strange and anti-strange quark pairs. While the nonperturbative contributions are dominant in the large- x region, the perturbative contributions are more significant in the small- x region. We calculate this asymmetry taking into account both nonperturbative and perturbative contributions, thus giving a more accurate evaluation of this asymmetry over the whole domain of x. We find that the perturbative contributions are generally a few times larger in magnitude than the nonperturbative contributions, which suggests that the best region to detect this asymmetry experimentally is in the region 0.02< x<0.03. We find that the asymmetry may have more than one node, which is an effect that should be taken into account, e.g. for parameterizations of the strange and anti-strange quark distributions used in global analysis of parton distributions.

  14. Triathlon: running injuries.

    PubMed

    Spiker, Andrea M; Dixit, Sameer; Cosgarea, Andrew J

    2012-12-01

    The running portion of the triathlon represents the final leg of the competition and, by some reports, the most important part in determining a triathlete's overall success. Although most triathletes spend most of their training time on cycling, running injuries are the most common injuries encountered. Common causes of running injuries include overuse, lack of rest, and activities that aggravate biomechanical predisposers of specific injuries. We discuss the running-associated injuries in the hip, knee, lower leg, ankle, and foot of the triathlete, and the causes, presentation, evaluation, and treatment of each.

  15. Dressed skeleton expansion and the coupling scale ambiguity problem

    SciTech Connect

    Lu, Hung Jung

    1992-09-01

    Perturbative expansions in quantum field theories are usually expressed in powers of a coupling constant. In principle, the infinite sum of the expansion series is independent of the renormalization scale of the coupling constant. In practice, there is a remnant dependence of the truncated series on the renormalization scale. This scale ambiguity can severely restrict the predictive power of theoretical calculations. The dressed skeleton expansion is developed as a calculational method which avoids the coupling scale ambiguity problem. In this method, physical quantities are expressed as functional expansions in terms of a coupling vertex function. The arguments of the vertex function are given by the physical momenta of each process. These physical momenta effectively replace the unspecified renormalization scale and eliminate the ambiguity problem. This method is applied to various field theoretical models and its main features and limitations are explored. For quantum chromodynamics, an expression for the running coupling constant of the three-gluon vertex is obtained. The effective coupling scale of this vertex is shown to be essentially given by {mu}{sup 2} {approximately} Q{sub min}{sup 2}Q{sub med}{sup 2}/Q{sub max}{sup 2} where Q{sub min}{sup 2}Q{sub med}{sup 2}/Q{sub max}{sup 2} are respectively the smallest, the next-to-smallest and the largest scale among the three gluon virtualities. This functional form suggests that the three-gluon vertex becomes non-perturbative at asymmetric momentum configurations. Implications for four-jet physics is discussed.

  16. Overcoming the "Run" Response

    ERIC Educational Resources Information Center

    Swanson, Patricia E.

    2013-01-01

    Recent research suggests that it is not simply experiencing anxiety that affects mathematics performance but also how one responds to and regulates that anxiety (Lyons and Beilock 2011). Most people have faced mathematics problems that have triggered their "run response." The issue is not whether one wants to run, but rather…

  17. Run Anyone?... Everyone!

    PubMed Central

    McInnis, W. P.

    1974-01-01

    Fitness and health have become bywords in the past decade, signifying increased emphasis on these factors as necessary for good psychological and physical health. Reasons are given why we should run and how to do it. There is a discussion of the technique of running, and equipment. Brief mention is made of complications. An attempt is made to interest the individual in the benefits of running as a sport as well as the best method for the average person to achieve fitness and health. PMID:20469054

  18. Nonperturbative O(a) improvement of Wilson quark action in three-flavor QCD with plaquette gauge action

    SciTech Connect

    Yamada, N.; Hashimoto, S.; Kaneko, T.; Tsutsui, N.; Aoki, S.; Taniguchi, Y.; Fukugita, M.; Ishikawa, K-I.; Okawa, M.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Kuramashi, Y.; Ukawa, A.; Yoshie, T.

    2005-03-01

    We perform a nonperturbative determination of the O(a)-improvement coefficient c{sub SW} for the Wilson quark action in three-flavor QCD with the plaquette gauge action. Numerical simulations are carried out in a range of {beta}=12.0-5.2 on a single lattice size of 8{sup 3}x16 employing the Schroedinger functional setup of lattice QCD. As our main result, we obtain an interpolation formula for c{sub SW} and the critical hopping parameter K{sub c} as a function of the bare coupling. This enables us to remove the O(a) scaling violation from physical observables in future numerical simulation in the wide range of {beta}. Our analysis with a perturbatively modified improvement condition for c{sub SW} suggests that finite volume effects in c{sub SW} are not large on the 8{sup 3}x16 lattice. We investigate N{sub f} dependence of c{sub SW} by additional simulations for N{sub f}=4, 2, and 0 at {beta}=9.6. As a preparatory step for this study, we also determine c{sub SW} in two-flavor QCD at {beta}=5.2. At this {beta}, several groups have carried out large-scale calculations of the hadron spectrum, while no systematic determination of c{sub SW} has been performed.

  19. Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges

    NASA Astrophysics Data System (ADS)

    Pereira, A. D.; Sobreiro, R. F.; Sorella, S. P.

    2016-10-01

    In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi: 10.1103/PhysRevD.92.045039 arXiv:1506.06995 [hep-th], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions.

  20. Nonperturbative Twist in the Generation of Extreme-Ultraviolet Vortex Beams

    NASA Astrophysics Data System (ADS)

    Rego, Laura; Román, Julio San; Picón, Antonio; Plaja, Luis; Hernández-García, Carlos

    2016-10-01

    High-order harmonic generation (HHG) has been recently proven to produce extreme-ultraviolet (XUV) vortices from the nonlinear conversion of infrared twisted beams. Previous works have demonstrated a linear scaling law of the vortex charge with the harmonic order. We demonstrate that this simple law hides an unexpectedly rich scenario for the buildup of orbital angular momentum (OAM) due to the nonperturbative behavior of HHG. The complexity of these twisted XUV beams appears only when HHG is driven by nonpure vortex modes, where the XUV OAM content is dramatically increased. We explore the underlying mechanisms for this diversity and derive a general conservation rule for the nonperturbative OAM buildup. The simple scaling found in previous works corresponds to the collapse of this scenario for the particular case of pure (single-mode) OAM driving fields.

  1. Final state interactions and the transverse structure of the pion using non-perturbative eikonal methods

    SciTech Connect

    Gamberg, Leonard; Schlegel, Marc

    2010-01-18

    In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditions the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.

  2. Final state interactions and the transverse structure of the pion using non-perturbative eikonal methods

    DOE PAGES

    Gamberg, Leonard; Schlegel, Marc

    2010-01-18

    In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditionsmore » the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.« less

  3. NON-PERTURBATIVE GLUODYNAMICS OF HIGH ENERGY HEAVY-ION COLLISIONS

    SciTech Connect

    KRASNITZ,A.; VENUGOPALAN,R.

    2000-01-03

    The dynamics of low-x partons in the transverse plane of a high-energy nuclear collision is classical, and therefore admits a fully non-perturbative numerical treatment. The authors report results of a recent study estimating the initial energy density in the central region of a collision. Preliminary estimates of the number of gluons per unit rapidity, and the initial transverse momentum distribution of gluons, are also provided.

  4. High-order harmonic generation from gapped graphene: Perturbative response and transition to nonperturbative regime

    NASA Astrophysics Data System (ADS)

    Dimitrovski, Darko; Madsen, Lars Bojer; Pedersen, Thomas Garm

    2017-01-01

    We consider the interaction of gapped graphene in the two-band approximation using an explicit time-dependent approach. In addition to the full high-order harmonic generation (HHG) spectrum, we also obtain the perturbative harmonic response using the time-dependent method at photon energies covering all the significant features in the responses. The transition from the perturbative to the fully nonperturbative regime of HHG at these photon energies is studied in detail.

  5. Nonperturbative Strange Sea in Proton Using Wave Functions Inspired by Light Front Holography

    NASA Astrophysics Data System (ADS)

    Vega, Alfredo; Schmidt, Ivan; Gutsche, Thomas; Lyubovitskij, Valery E.

    2017-03-01

    We use different light-front wave functions (two inspired by the AdS/QCD formalism), together with a model of the nucleon in terms of meson-baryon fluctuations to calculate the nonperturbative (intrinsic) contribution to the s(x) - bar{s}(x) asymmetry of the proton sea. The holographic wave functions for an arbitrary number of constituents, recently derived by us, give results quite close to known parametrizations that appear in the literature.

  6. Pauli-Villars regularization in nonperturbative Hamiltonian approach on the light front

    SciTech Connect

    Malyshev, M. Yu. Paston, S. A.; Prokhvatilov, E. V.; Zubov, R. A.; Franke, V. A.

    2016-01-22

    The advantage of Pauli-Villars regularization in quantum field theory quantized on the light front is explained. Simple examples of scalar λφ{sup 4} field theory and Yukawa-type model are used. We give also an example of nonperturbative calculation in the theory with Pauli-Villars fields, using for that a model of anharmonic oscillator modified by inclusion of ghost variables playing the role similar to Pauli-Villars fields.

  7. Non-perturbative effects for the Quark-Gluon Plasma equation of state

    NASA Astrophysics Data System (ADS)

    Begun, V. V.; Gorenstein, M. I.; Mogilevsky, O. A.

    2012-07-01

    The non-perturbative effects for the Quark-Gluon Plasma (QGP) equation of state (EoS) are considered. The modifications of the bag model EoS are constructed to satisfy the main qualitative features observed for the QGP EoS in the lattice QCD calculations. A quantitative comparison with the lattice results is done for the SU(3) gluon plasma and for the QGP with dynamical quarks. Our analysis advocates a negative value of the bag constant B.

  8. Run 16, eIPM Summary

    SciTech Connect

    Connolly, R.; Dawson, C.; Jao, S.; Schoefer, V.; Tepikian, S.

    2016-08-05

    Three problems with the eIPMs were corrected during the 2015 summer shutdown. These involved ac coupling and 'negative profiles', detector 'dead zone' created by biasing, and gain control on ramp. With respect to Run 16, problems dealt with included gain depletion on horizontal MCP and rf pickup on profile signals; it was found that the MCP was severely damaged over part of the aperture. Various corrective measures were applied. Some results of these measured obtained during Run 16 are shown. At the end of Run 16 there was a three-­day beam run to study polarized proton beams in the AGS. Attempts to minimize beam injection errors which increase emittance by using the eIPMs to measure the contribution of injection mismatch to the AGS output beam emittance are recounted. .

  9. Prevention of running injuries.

    PubMed

    Fields, Karl B; Sykes, Jeannie C; Walker, Katherine M; Jackson, Jonathan C

    2010-01-01

    Evidence for preventive strategies to lessen running injuries is needed as these occur in 40%-50% of runners on an annual basis. Many factors influence running injuries, but strong evidence for prevention only exists for training modification primarily by reducing weekly mileage. Two anatomical factors - cavus feet and leg length inequality - demonstrate a link to injury. Weak evidence suggests that orthotics may lessen risk of stress fracture, but no clear evidence proves they will reduce the risk of those athletes with leg length inequality or cavus feet. This article reviews other potential injury variables, including strength, biomechanics, stretching, warm-up, nutrition, psychological factors, and shoes. Additional research is needed to determine whether interventions to address any of these will help prevent running injury.

  10. Who Runs Our Universities?

    ERIC Educational Resources Information Center

    Watson, David

    2012-01-01

    Inside the academy there is a cultural perspective that it should run itself, in the sense that "business as usual" should be done with no one's hands obviously on the levers. This theory reaches its high point in the "self-government" of Oxford and Cambridge colleges. In this article, the author explores the question,…

  11. Running Wheel for Earthworms

    PubMed Central

    Wilson, W. Jeffrey; Johnson, Brandon A.

    2016-01-01

    We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed. PMID:27385934

  12. The Art of Running

    ERIC Educational Resources Information Center

    Brown, Jill Harris

    2007-01-01

    Every year, the Parent-Teacher Association of Ferndale Elementary School in Atlanta, Georgia sponsors a fun road race for the students, teachers, families, and community. This annual event has inspired the author to develop the Running and Art project to show off her students' art and squeeze in a little art history, too. In this article, the…

  13. Calcaneal loading during walking and running

    NASA Technical Reports Server (NTRS)

    Giddings, V. L.; Beaupre, G. S.; Whalen, R. T.; Carter, D. R.

    2000-01-01

    PURPOSE: This study of the foot uses experimentally measured kinematic and kinetic data with a numerical model to evaluate in vivo calcaneal stresses during walking and running. METHODS: External ground reaction forces (GRF) and kinematic data were measured during walking and running using cineradiography and force plate measurements. A contact-coupled finite element model of the foot was developed to assess the forces acting on the calcaneus during gait. RESULTS: We found that the calculated force-time profiles of the joint contact, ligament, and Achilles tendon forces varied with the time-history curve of the moment about the ankle joint. The model predicted peak talocalcaneal and calcaneocuboid joint loads of 5.4 and 4.2 body weights (BW) during walking and 11.1 and 7.9 BW during running. The maximum predicted Achilles tendon forces were 3.9 and 7.7 BW for walking and running. CONCLUSIONS: Large magnitude forces and calcaneal stresses are generated late in the stance phase, with maximum loads occurring at approximately 70% of the stance phase during walking and at approximately 60% of the stance phase during running, for the gait velocities analyzed. The trajectories of the principal stresses, during both walking and running, corresponded to each other and qualitatively to the calcaneal trabecular architecture.

  14. Challenges in the extraction of TMDs from SIDIS data: perturbative vs non-perturbative aspects

    SciTech Connect

    Boglione, Mariaelena; Gonzalez Hernandez, Jose O.; Melis, Stefano; Prokudin, Alexey

    2015-09-01

    We present our recent results on the study of the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, qT. Using the Collins-Soper-Sterman (CSS) formalism, we study the matching between the region where fixed-order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. We comment on the impact that the nonperturbative component has even at relatively high energies.

  15. Nonperturbative renormalization of quark bilinear operators and B{sub K} using domain wall fermions

    SciTech Connect

    Aoki, Y.; Dawson, C.; Boyle, P. A.; Tweedie, R. J.; Christ, N. H.; Li, S.; Mawhinney, R. D.; Donnellan, M. A.; Juettner, A.; Sachrajda, C. T.; Izubuchi, T.; Noaki, J.; Soni, A.; Yamaguchi, A.

    2008-09-01

    We present a calculation of the renormalization coefficients of the quark bilinear operators and the K-K mixing parameter B{sub K}. The coefficients relating the bare lattice operators to those in the RI/MOM scheme are computed nonperturbatively and then matched perturbatively to the MS scheme. The coefficients are calculated on the RBC/UKQCD 2+1 flavor dynamical lattice configurations. Specifically we use a 16{sup 3}x32 lattice volume, the Iwasaki gauge action at {beta}=2.13 and domain wall fermions with L{sub s}=16.

  16. Non-perturbative scalar potential inspired by type IIA strings on rigid CY

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Ketov, Sergei V.; Wakimoto, Yuki

    2016-11-01

    Motivated by a class of flux compactifications of type IIA strings on rigid Calabi-Yau manifolds, preserving N = 2 local supersymmetry in four dimensions, we derive a non-perturbative potential of all scalar fields from the exact D-instanton corrected metric on the hypermultiplet moduli space. Applying this potential to moduli stabilization, we find a discrete set of exact vacua for axions. At these critical points, the stability problem is decoupled into two subspaces spanned by the axions and the other fields (dilaton and Kähler moduli), respectively. Whereas the stability of the axions is easily achieved, numerical analysis shows instabilities in the second subspace.

  17. Does Addiction Run in Families?

    MedlinePlus

    ... Addiction Run in Families? Does Addiction Run in Families? Listen PDF: EasyToRead_WhatIsAddiction_Final_012017.pdf Addiction ... Español English Español "Heart disease runs in some families. Addiction runs in ours." ©istock.com/ Antonio_Diaz ...

  18. Quark dynamics and pion-nucleon coupling

    NASA Astrophysics Data System (ADS)

    Weise, W.; Werner, E.

    1981-05-01

    In the framework of nonperturbative QCD phenomenology we discuss: (1) The elementary process for the creation of color-singlet qq-pairs inside a hadron. (2) The interaction of the qq-pair with the surrounding quark-gluon medium. An important consequence of these discussions is that meson emission takes place preferentially, if the primary qq-pair is created in the surface region of the hadron. For the case of pseudoscalar coupling we employ PCAC to obtain the coupling of the qq-pair to the pion. The resulting form and coupling strength of the πNN vertex is consistent with the phenomenological OPEP.

  19. A Continuously Running High-Rate GEM-TPC for P¯ANDA

    NASA Astrophysics Data System (ADS)

    Böhmer, F. V.; Angerer, H.; Dørheim, S.; Höppner, C.; Ketzer, B.; Konorov, I.; Neubert, S.; Paul, S.; Vandenbroucke, M.; Zhang, X.; Berger, M.; Cusanno, F.; Fabbietti, L.; Lalik, R.; Beck, R.; Kaiser, D.; Lang, M.; Schmitz, R.; Walther, D.; Winnebeck, A.; Zenke, F.; Arora, R.; Averbeckt, R.; Hehner, J.; Herrmannt, N.; Kleipa, V.; Kunkel, J.; Leifelst, Y.; Mladen, K.; Schmidt, C.; Schwab, S.; Soyk, D.; Voss, B.; Voss, J.; Weinert, J.; Zmeskal, J.

    2011-06-01

    The P¯ANDA fixed target experiment planned at FAIR will investigate fundamental questions of non-perturbative QCD. It makes use of a cooled antiproton beam (momentum: 1.5 to 15 GeV/c) and will reach luminosities of up to 2ṡ10 cm s, yielding a p¯p-annihilation rate of 2ṡ10 s. One option for the central tracker of P¯ANDA is a cylindrical, ungated, continuously running TPC with GEM-based gas amplification stage.

  20. WRF nature run

    NASA Astrophysics Data System (ADS)

    Michalakes, J.; Hacker, J.; Loft, R.; McCracken, M. O.; Snavely, A.; Wright, N. J.; Spelce, T.; Gorda, B.; Walkup, R.

    2008-07-01

    The Weather Research and Forecast (WRF) model is a model of the atmosphere for mesoscale research and operational numerical weather prediction (NWP). A petascale problem for WRF is a nature run that provides very high-resolution 'truth' against which more coarse simulations or perturbation runs may be com-pared for purposes of studying predictability, stochastic parameterization, and fundamental dynamics. We carried out a nature run involving an idealized high resolution rotating fluid on the hemisphere, at a size and resolution never before attempted, and used it to investigate scales that span the k-3 to k-5/3 kinetic energy spectral transition, via simulations. We used up to 15,360 processors of the New York Blue IBM BG/L machine at Stony Brook Uni-versity and Brookhaven National Laboratory. The grid we employed has 4486 by 4486 horizontal grid points and 101 vertical levels (2 billion cells) at 5km resolution; this is 32 times larger than the previously largest 63 million cell 2.5km resolution WRF CONUS benchmark [10]). To solve a problem of this size, we worked through issues of parallel I/O and scalability and employed more processors than have ever been used in a WRF run. We achieved a sustained 3.4 Tflop/s on the New York Blue sys-tem, inputting and then generating an enormous amount of data to produce a scientifically meaningful result. More than 200 GB of data was input to initialize the run, which then generated output datasets of 40 GB each simulated hour. The cost of output was considered a key component of our investigation. Then we ran the same problem on more than 12K processors of the XT4 system at NERSC and achieved 8.8 Tflop/s. Our primary result however is not just scalability and a high Tflop/s number, but capture of atmosphere features never before represented by simulation, and taking an important step towards understanding weather predict-ability at high resolution.

  1. Nonperturbative O(a) improvement of the Wilson quark action with the renormalization-group-improved gauge action using the Schroedinger functional method

    SciTech Connect

    Aoki, S.; Takeda, S.; Taniguchi, Y.; Fukugita, M.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Ishikawa, K-I.; Okawa, M.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Kuramashi, Y.; Ukawa, A.; Yoshie, T.; Tsutsui, N.

    2006-02-01

    We perform a nonperturbative determination of the O(a)-improvement coefficient c{sub SW} and the critical hopping parameter {kappa}{sub c} for N{sub f}=3, 2, and 0 flavor QCD with the (RG) renormalization-group-improved gauge action using the Schroedinger functional method. In order to interpolate c{sub SW} and {kappa}{sub c} as a function of the bare coupling, a wide range of {beta} from the weak coupling region to the moderately strong coupling points used in large-scale simulations is studied. Corrections at finite lattice size of O(a/L) turned out to be large for the RG-improved gauge action, and hence we make the determination at a size fixed in physical units using a modified improvement condition. This enables us to avoid O(a) scaling violations which would remain in physical observables if c{sub SW} determined for a fixed lattice size L/a is used in numerical simulations.

  2. Nonperturbative linked-cluster expansions in long-range ordered quantum systems

    NASA Astrophysics Data System (ADS)

    Ixert, Dominik; Schmidt, Kai Phillip

    2016-11-01

    We introduce a generic scheme to perform nonperturbative linked cluster expansions in long-range ordered quantum phases. Clusters are considered to be surrounded by an ordered reference state leading to effective edge fields in the exact diagonalization on clusters, which break the associated symmetry of the ordered phase. Two approaches, based either on a self-consistent solution of the order parameter or on minimal sensitivity with respect to the ground-state energy per site, are formulated to find the optimal edge field in each NLCE order. Furthermore, we investigate the scaling behavior of the NLCE data sequences towards the infinite-order limit. We apply our scheme to gapped and gapless ordered phases of XXZ Heisenberg models on various lattices and for spins 1/2 and 1 using several types of cluster expansions ranging from a full-graph decomposition, rectangular clusters, up to more symmetric square clusters. It is found that the inclusion of edge fields allows to regularize nonperturbative linked-cluster expansions in ordered phases yielding convergent data sequences. This includes the long-range spin-ordered ground state of the spin-1/2 and spin-1 Heisenberg model on the square and triangular lattice as well as the trimerized valence bond crystal of the spin-1 Heisenberg model on the kagome lattice.

  3. Nonperturbative landscape of the Mott-Hubbard transition: Multiple divergence lines around the critical endpoint

    NASA Astrophysics Data System (ADS)

    Schäfer, T.; Ciuchi, S.; Wallerberger, M.; Thunström, P.; Gunnarsson, O.; Sangiovanni, G.; Rohringer, G.; Toschi, A.

    2016-12-01

    We analyze the highly nonperturbative regime surrounding the Mott-Hubbard metal-to-insulator transition (MIT) by means of dynamical mean field theory (DMFT) calculations at the two-particle level. By extending the results of Schäfer et al. [Phys. Rev. Lett. 110, 246405 (2013), 10.1103/PhysRevLett.110.246405] we show the existence of infinitely many lines in the phase diagram of the Hubbard model where the local Bethe-Salpeter equations, and the related irreducible vertex functions, become singular in the charge as well as the particle-particle channel. By comparing our numerical data for the Hubbard model with analytical calculations for exactly solvable systems of increasing complexity [disordered binary mixture (BM), Falicov-Kimball (FK), and atomic limit (AL)], we have (i) identified two different kinds of divergence lines; (ii) classified them in terms of the frequency structure of the associated singular eigenvectors; and (iii) investigated their relation to the emergence of multiple branches in the Luttinger-Ward functional. In this way, we could distinguish the situations where the multiple divergences simply reflect the emergence of an underlying, single energy scale ν* below which perturbation theory is no longer applicable, from those where the breakdown of perturbation theory affects, not trivially, different energy regimes. Finally, we discuss the implications of our results on the theoretical understanding of the nonperturbative physics around the MIT and for future developments of many-body algorithms applicable in this regime.

  4. Nonperturbative determination of improvement coefficients using coordinate space correlators in Nf=2 +1 lattice QCD

    NASA Astrophysics Data System (ADS)

    Korcyl, Piotr; Bali, Gunnar S.

    2017-01-01

    We determine quark mass dependent order a improvement terms of the form bJa m for nonsinglet scalar, pseudoscalar, vector and axialvector currents using correlators in coordinate space on a set of Coordinated Lattice Simulations ensembles. These have been generated employing nonperturbatively improved Wilson fermions and the tree-level Lüscher-Weisz gauge action at β =3.4 , 3.46, 3.55 and 3.7, corresponding to lattice spacings ranging from a ≈0.085 fm down to 0.05 fm. In the Nf=2 +1 flavor theory two types of improvement coefficients exist: bJ, proportional to nonsinglet quark mass combinations, and b¯J (or b˜J), proportional to the trace of the quark mass matrix. Combining our nonperturbative determinations with perturbative results, we quote Padé approximants parametrizing the bJ improvement coefficients within the above window of lattice spacings. We also give preliminary results for b˜J at β =3.4 .

  5. Run II luminosity progress

    SciTech Connect

    Gollwitzer, K.; /Fermilab

    2007-06-01

    The Fermilab Tevatron Collider Run II program continues at the energy and luminosity frontier of high energy particle physics. To the collider experiments CDF and D0, over 3 fb{sup -1} of integrated luminosity has been delivered to each. Upgrades and improvements in the Antiproton Source of the production and collection of antiprotons have led to increased number of particles stored in the Recycler. Electron cooling and associated improvements have help make a brighter antiproton beam at collisions. Tevatron improvements to handle the increased number of particles and the beam lifetimes have resulted in an increase in luminosity.

  6. Casimir effect: running Newton constant or cosmological term

    NASA Astrophysics Data System (ADS)

    Polonyi, Janos; Regos, Eniko

    2006-01-01

    We argue that the instability of Euclidean Einstein gravity is an indication that the vacuum is non-perturbative and contains a condensate of the metric tensor in a manner reminiscent of Yang Mills theories. As a simple step toward the characterization of such a vacuum the value of the 1-loop effective action is computed for Euclidean de Sitter spaces as a function of the curvature when the unstable conformal modes are held fixed. Two phases are found, one where the curvature is large and gravitons should be confined and another one which appears to be weakly coupled and tends to be flat. The induced cosmological constant is positive or negative in the strongly or weakly curved phase, respectively. The relevance of the Casimir effect in understanding the UV sensitivity of gravity is pointed out.

  7. PDU Run 10

    SciTech Connect

    Not Available

    1981-09-01

    PDU Run 10, a 46-day H-Coal syncrude mode operation using Wyodak coal, successfully met all targeted objectives, and was the longest PDU operation to date in this program. Targeted coal conversion of 90 W % was exceeded with a C/sub 4/-975/sup 0/F distillate yield of 43 to 48 W %. Amocat 1A catalyst was qualified for Pilot Plant operation based on improved operation and superior performance. PDU 10 achieved improved yields and lower hydrogen consumption compared to PDU 6, a similar operation. High hydroclone efficiency and high solids content in the vacuum still were maintained throughout the run. Steady operations at lower oil/solids ratios were demonstrated. Microautoclave testing was introduced as an operational aid. Four additional studies were successfully completed during PDU 10. These included a catalyst tracer study in conjunction with Sandia Laboratories; tests on letdown valve trims for Battelle; a fluid dynamics study with Amoco; and special high-pressure liquid sampling.

  8. Scale dependencies of proton spin constituents with a nonperturbative αs

    NASA Astrophysics Data System (ADS)

    Jia, Shaoyang; Huang, Feng

    2012-11-01

    By introducing the contribution from dynamically generated gluon mass, we present a brand new parametrized form of QCD beta function to get an inferred limited running behavior of QCD coupling constant αs. This parametrized form is regarded as an essential factor to determine the scale dependencies of the proton spin constituents at the very low scale. In order to compare with experimental results directly, we work within the gauge-invariant framework to decompose the proton spin. Utilizing the updated next-to-next-leading-order evolution equations for angular momentum observables within a modified minimal subtraction scheme, we indicate that gluon contribution to proton spin cannot be ignored. Specifically, by assuming asymptotic limits of the total quark/gluon angular momentum valid, respectively, the scale dependencies of quark angular momentum Jq and gluon angular momentum Jg down to Q2˜1GeV2 are presented, which are comparable with the preliminary analysis of deeply virtual Compton scattering experiments by HERMES and JLab. After solving scale dependencies of quark spin ΔΣq, orbital angular momenta of quarks Lq are given by subtraction, presenting a holistic picture of proton spin partition within up and down quarks at a low scale.

  9. Two topics in nonperturbative lattice field theories: The U(1) quantum link model and perfect actions for scalar theories

    NASA Astrophysics Data System (ADS)

    Tsapalis, Antonios S.

    This thesis deals with two topics in lattice field theories. In the first part we discuss aspects of renormalization group flow and non-perturbative improvement of actions for scalar theories regularized on a lattice. We construct a perfect action, an action which is free of lattice artifacts, for a given theory. It is shown how a good approximation to the perfect action-referred to as classically perfect-can be constructed based on a well-defined blocking scheme for the O(3) non-linear σ-model. We study the O(N) non- linear σ-model in the large-N limit and derive analytically its perfect action. This action is applied to the O(3) model on a square lattice. The Wolff cluster algorithm is used to simulate numerically the system. We perform scaling tests and discuss the scaling properties of the large- N inspired perfect action as opposed to the standard and the classically perfect action. In the second part we present a new formulation for a quantum field theory with Abelian gauge symmetry. A Hamiltonian is constructed on a four-dimensional Euclidean space-time lattice which is invariant under local transformations. The model is formulated as a 5- dimensional path integral of discrete variables. We argue that dimensional reduction will allow us to study the behavior of the standard compact U(1) gauge theory in 4-d. Based on the idea of the loop- cluster algorithm for quantum spins, we present the construction of a flux-cluster algorithm for the U(1) quantum link model for the spin-1/2 quantization of the electric flux. It is shown how improved estimators for Wilson loop expectation values can be defined. This is important because the Wilson loops are traditionally used to identify confining and Coulomb phases in gauge theories. Our study indicates that the spin-1/2 U(1) quantum link model is strongly coupled for all bare coupling values we examined. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  10. SAVAGE RUN WILDERNESS, WYOMING.

    USGS Publications Warehouse

    McCallum, M.E.; Kluender, Steven E.

    1984-01-01

    Mineral evaluation and related surveys were conducted in the Savage Run Wilderness in Wyoming and results of these studies indicate probable mineral-resource potential in four areas. Gold and (or) silver mineralization in veins associated with faults was found in two areas; all known occurrences inside the wilderness are very small in size. Slightly anomalous values of platinum, palladium, and nickel were recorded from rock-chip and stream- sediment samples from the southeast portion of the wilderness where layered mafic rocks predominate, and a probable resource potential exists for platinum, palladium, and nickel. An area of sheared rocks in the northeastern corner of the wilderness has a probable resource potential for copper. The nature of the geologic terrane precludes the occurrence of organic fuels.

  11. Running WASP at Argonne

    SciTech Connect

    Huber, C.C.

    1981-01-01

    The WASP model was initially implemented at Argonne for the International Training course on Electric System Planning being conducted at Argonne. This implementation was done with special consideration to course participants who are unfamiliar with WASP and with the computer system they use during the course. Cataloged Procedures were developed for this purpose. The procedures simplify using WASP and enable participants to quickly start using WASP with a minimum of training. Within the procedures, features were added that enhance WASP. These features include a formatted printout of WASP input data and a historical log of all runs and inut data used. For the RENAME step, an alternate method is presented, with special comment concerning the WASP3 release.

  12. The Running Athlete

    PubMed Central

    Henning, P. Troy

    2014-01-01

    Context: Pelvic stress fractures, osteitis pubis, and snapping hip syndrome account for a portion of the overuse injuries that can occur in the running athlete. Evidence Acquisition: PubMed searches were performed for each entity using the following keywords: snapping hip syndrome, coxa sultans, pelvic stress fracture, and osteitis pubis from 2008 to 2013. Topic reviews, case reports, case series, and randomized trials were included for review. Study Design: Clinical review. Level of Evidence: Level 4. Results: Collectively, 188 articles were identified. Of these, 58 were included in this review. Conclusion: Based on the available evidence, the majority of these overuse injuries can be managed non-operatively. Primary treatment should include removal from offending activity, normalizing regional muscle strength/length imbalances and nutritional deficiencies, and mitigating training errors through proper education of the athlete and training staff. Strength of Recommendation Taxonomy: C PMID:24587861

  13. Barefoot running: biomechanics and implications for running injuries.

    PubMed

    Altman, Allison R; Davis, Irene S

    2012-01-01

    Despite the technological developments in modern running footwear, up to 79% of runners today get injured in a given year. As we evolved barefoot, examining this mode of running is insightful. Barefoot running encourages a forefoot strike pattern that is associated with a reduction in impact loading and stride length. Studies have shown a reduction in injuries to shod forefoot strikers as compared with rearfoot strikers. In addition to a forefoot strike pattern, barefoot running also affords the runner increased sensory feedback from the foot-ground contact, as well as increased energy storage in the arch. Minimal footwear is being used to mimic barefoot running, but it is not clear whether it truly does. The purpose of this article is to review current and past research on shod and barefoot/minimal footwear running and their implications for running injuries. Clearly more research is needed, and areas for future study are suggested.

  14. On a strong coupling property of QCD

    NASA Astrophysics Data System (ADS)

    Grandou, T.

    2017-03-01

    The fermionic Green's functions of QCD exhibit an unexpected property of effective locality, which appears to be exact, involving no approximation. In the limit of strong coupling, and at eikonal and quenching approximations (where this property was first discovered), effective locality implies a dependence of non-perturbative fermionic Green's functions on the full algebraic content of the rank 2-SUc(3) color algebra. At variance with Perturbation Theory and a variety of non-perturbative approaches also, C3-dependences show up, where C3 stands for the second, trilinear Casimir invariant of SUc(3). These dependences are sub-leading in magnitude and seem to comply with the maximally allowed departures from the pure C2 behaviours advocated by lattice numerical estimates.

  15. Non-perturbative effects of primordial curvature perturbations on the apparent value of a cosmological constant

    NASA Astrophysics Data System (ADS)

    Enea Romano, Antonio; Sanes Negrete, Sergio; Sasaki, Misao; Starobinsky, Alexei A.

    2014-06-01

    We study effects on the luminosity distance of a local inhomogeneity seeded by primordial curvature perturbations of the type predicted by the inflationary scenario and constrained by the cosmic microwave background radiation. We find that a local underdensity originated from a one, two or three standard deviations peaks of the primordial curvature perturbations field can induce corrections to the value of a cosmological constant of the order of 0.6{%},1{%},1.5{%} , respectively. These effects cannot be neglected in the precision cosmology era in which we are entering. Our results can be considered an upper bound for the effect of the monopole component of the local non-linear structure which can arise from primordial curvature perturbations and requires a fully non-perturbative relativistic treatment.

  16. Modeling a nonperturbative spinor vacuum interacting with a strong gravitational wave

    NASA Astrophysics Data System (ADS)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir

    2015-07-01

    We consider the propagation of strong gravitational waves interacting with a nonperturbative vacuum of spinor fields. To described the latter, we suggest an approximate model. The corresponding Einstein equation has the form of the Schrödinger equation. Its gravitational-wave solution is analogous to the solution of the Schrödinger equation for an electron moving in a periodic potential. The general solution for the periodic gravitational waves is found. The analog of the Kronig-Penney model for gravitational waves is considered. It is shown that the suggested gravitational-wave model permits the existence of weak electric charge and current densities concomitant with the gravitational wave. Based on this observation, a possible experimental verification of the model is suggested.

  17. A non-perturbative analytic expression of signal amplification factor in stochastic resonance

    NASA Astrophysics Data System (ADS)

    Dhara, Asish Kumar

    2017-04-01

    We put forward a non-perturbative scheme to calculate the response of an overdamped bistable system driven by a Gaussian white noise and perturbed by a weak monochromatic force (signal) analytically. The formalism takes into account infinite number of perturbation terms of a perturbation series with amplitude of the signal as an expansion parameter. The contributions of infinite number of relaxation modes of the stochastic dynamics to the response are also taken into account in this formalism. A closed form analytic expression of the response is obtained. Only the knowledge of the first non-trivial eigenvalue and the lowest eigenfunction of the un-perturbed Fokker-Planck operator are needed to evaluate the response. The response calculated from the derived analytic expression matches fairly well with the numerical results.

  18. Nonperturbative renormalization group preserving full-momentum dependence: implementation and quantitative evaluation.

    PubMed

    Benitez, F; Blaizot, J-P; Chaté, H; Delamotte, B; Méndez-Galain, R; Wschebor, N

    2012-02-01

    We present the implementation of the Blaizot-Méndez-Wschebor approximation scheme of the nonperturbative renormalization group we present in detail, which allows for the computation of the full-momentum dependence of correlation functions. We discuss its significance and its relation with other schemes, in particular, the derivative expansion. Quantitative results are presented for the test ground of scalar O(N) theories. Besides critical exponents, which are zero-momentum quantities, we compute the two-point function at criticality in the whole momentum range in three dimensions and, in the high-temperature phase, the universal structure factor. In all cases, we find very good agreement with the best existing results.

  19. Nonperturbative charming penguin contributions to isospin asymmetries in radiative B decays

    SciTech Connect

    Kim, Chul; Mehen, Thomas; Leibovich, Adam K.

    2008-09-01

    Recent experimental data on the radiative decays B{yields}V{gamma}, where V is a light vector meson, find small isospin violation in B{yields}K*{gamma} while isospin asymmetries in B{yields}{rho}{gamma} are of order 20%, with large uncertainties. Using soft-collinear effective theory, we calculate isospin asymmetries in these radiative B decays up to O(1/m{sub b}), also including O(v{alpha}{sub s}) contributions from nonperturbative charming penguins (NPCP). In the absence of NPCP contributions, the theoretical predictions for the asymmetries are a few percent or less. Including the NPCP can significantly increase the isospin asymmetries for both B{yields}V{gamma} modes. We also consider the effect of the NPCP on the branching ratio and CP asymmetries in B{sup {+-}}{yields}V{sup {+-}}{gamma}.

  20. Comparison of Strategies for Non-perturbing Labeling of α-Synuclein to Study Amyloidogenesis

    PubMed Central

    Haney, Conor M.; Wissner, Rebecca F.; Warner, John B.; Wang, Yanxin J.; Ferrie, John J.; Covell, Dustin; Karpowicz, Richard J.; Lee, Virginia M.-Y.

    2016-01-01

    Characterization of the amyloidogenic Parkinson’s Disease protein α-synuclein (αS) has proven difficult due to its structural plasticity. Here, we present a number of complementary methods to site-specifically introduce fluorescent probes to examine αS fibril formation and cellular uptake. By using various combinations of conventional Cys modification, amber codon suppression, transferase mediated N-terminal modification, and native chemical ligation, several variants of singly- and doubly-labeled αS were produced. We validated the nonperturbative nature of the label by a combination of in vitro aggregation kinetics measurements and imaging of the resulting fibrils. The labeled αS can then be used to monitor conformational changes during fibril formation or cellular uptake of αS fibrils in models of disease propagation. PMID:26695131

  1. Ordered phase of the O(N) model within the nonperturbative renormalization group.

    PubMed

    Peláez, Marcela; Wschebor, Nicolás

    2016-10-01

    We analyze nonperturbative renormalization group flow equations for the ordered phase of Z_{2} and O(N) invariant scalar models. This is done within the well-known derivative expansion scheme. For its leading order [local potential approximation (LPA)], we show that not every regulator yields a smooth flow with a convex free energy and discuss for which regulators the flow becomes singular. Then we generalize the known exact solutions of smooth flows in the "internal" region of the potential and exploit these solutions to implement an improved numerical algorithm, which is much more stable than previous ones for N>1. After that, we study the flow equations at second order of the derivative expansion and analyze how and when the LPA results change. We also discuss the evolution of the field renormalization factors.

  2. Nonperturbative emergence of the Dirac fermion in a strongly correlated composite Fermi liquid

    NASA Astrophysics Data System (ADS)

    Yang, Yibin; Luo, Xi; Yu, Yue

    2017-01-01

    The classic composite fermion field theory [B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993)], 10.1103/PhysRevB.47.7312 builds up an excellent framework to uniformly study important physical objects and globally explain anomalous experimental phenomena in fractional quantum Hall physics while there are also inherent weaknesses. We present a nonperturbative emergent Dirac fermion theory from this strongly correlated composite fermion field theory, which overcomes these serious long-standing shortcomings. The particle-hole symmetry of the Dirac equation resolves this particle-hole symmetry enigma in the composite fermion field theory. With the help of presented numerical data, we show that for main Jain's sequences of fractional quantum Hall effects, this emergent Dirac fermion theory in mean field approximation is most likely stable.

  3. Strong Coupling Gauge Theories in LHC ERA

    NASA Astrophysics Data System (ADS)

    Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.

    2011-01-01

    AdS/QCD, light-front holography, and the nonperturbative running coupling / Stanley J. Brodsky, Guy de Teramond and Alexandre Deur -- New results on non-abelian vortices - Further insights into monopole, vortex and confinement / K. Konishi -- Study on exotic hadrons at B-factories / Toru Iijima -- Cold compressed baryonic matter with hidden local symmetry and holography / Mannque Rho -- Aspects of baryons in holographic QCD / T. Sakai -- Nuclear force from string theory / K. Hashimoto -- Integrating out holographic QCD back to hidden local symmetry / Masayasu Harada, Shinya Matsuzaki and Koichi Yamawaki -- Holographic heavy quarks and the giant Polyakov loop / Gianluca Grignani, Joanna Karczmarek and Gordon W. Semenoff -- Effect of vector-axial-vector mixing to dilepton spectrum in hot and/or dense matter / Masayasu Harada and Chihiro Sasaki -- Infrared behavior of ghost and gluon propagators compatible with color confinement in Yang-Mills theory with the Gribov horizon / Kei-Ichi Kondo -- Chiral symmetry breaking on the lattice / Hidenori Fukaya [for JLQCD and TWQCD collaborations] -- Gauge-Higgs unification: Stable Higgs bosons as cold dark matter / Yutaka Hosotani -- The limits of custodial symmetry / R. Sekhar Chivukula ... [et al.] -- Higgs searches at the tevatron / Kazuhiro Yamamoto [for the CDF and D[symbol] collaborations] -- The top triangle moose / R. S. Chivukula ... [et al.] -- Conformal phase transition in QCD like theories and beyond / V. A. Miransky -- Gauge-Higgs unification at LHC / Nobuhito Maru and Nobuchika Okada -- W[symbol]W[symbol] scattering in Higgsless models: Identifying better effective theories / Alexander S. Belyaev ... [et al.] -- Holographic estimate of Muon g - 2 / Deog Ki Hong -- Gauge-Higgs dark matter / T. Yamashita -- Topological and curvature effects in a multi-fermion interaction model / T. Inagaki and M. Hayashi -- A model of soft mass generation / J. Hosek -- TeV physics and conformality / Thomas Appelquist -- Conformal

  4. Voluntary Wheel Running in Mice

    PubMed Central

    Goh, Jorming; Ladiges, Warren

    2015-01-01

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. The basic protocol consists of allowing mice to run freely on the open surface of a slanted plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured to a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. PMID:26629772

  5. APEX: A Prime EXperiment at Jefferson Lab. Test Run Results and Full Run Plans; Update

    NASA Astrophysics Data System (ADS)

    Beacham, James

    2015-06-01

    APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson (A') with sub-GeV mass and coupling to ordinary matter of g' ˜ (10-6 - 10-2)e. Electrons impinge upon a fixed target of high-Z material. An A' is produced via a process analogous to photon bremsstrahlung, decaying to an e+e- pair. A test run was held in July of 2010, covering mA' = 175 to 250 MeV and couplings g'/e > 10-3. A full run is approved and will cover mA' ˜ 65 to 525 MeV and g'/e > 2.3 × 10-4, and is expected to occur sometime in 2016 or 2017.

  6. APEX: A Prime EXperiment at Jefferson Lab - Test Run Results and Full Run Plans; Update

    SciTech Connect

    Beacham, James

    2015-06-01

    APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson (A') with sub-GeV mass and coupling to ordinary matter of g' ~ (10-6 - 10⁻²)e. Electrons impinge upon a fixed target of high-Z material. An A' is produced via a process analogous to photon bremsstrahlung, decaying to an e⁺+e⁻ pair. A test run was held in July of 2010, covering mA' = 175 to 250 MeV and couplings g'/e > 10⁻³. A full run is approved and will cover mA' ~ 65 to 525 MeV and g'/e > 2.3 x 10⁻⁴, and is expected to occur sometime in 2016 or 2017.

  7. Non-Perturbative Yang-Mills from Supersymmetry and Strings, Or, in the Jungles of Strong Coupling

    NASA Astrophysics Data System (ADS)

    Shifman, M.

    2005-12-01

    I summarize some recent developments in the issue of planar equivalence between supersymmetric Yang-Mills theory and its orbifold/orientifold daughters. This talk is based on works carried out in collaboration with Adi Armoni, Sasha Gorsky and Gabriele Veneziano.

  8. Biodiversity conservation in running waters

    SciTech Connect

    Allan, J.D. ); Flecker, A.S. )

    1993-01-01

    In the concerns about biodiversity conservation, fresh waters have received less attention than tropical forests and oceans. However, running waters harbor a diverse panoply of species, habitats, and ecosystems, including some of the most threatened and many having great value to human society. An overview of the biological diversity of running waters and the state of imperilment is presented. Six major factors that threaten destruction of running water species and ecosystems are discussed: habitat loss and degradation; species invasions; overharvesting; secondary extinctions; chemical and organic pollution; global climate change. General measures for recovery and restoration of running waters conclude the article.

  9. A Running Start: Resource Guide for Youth Running Programs

    ERIC Educational Resources Information Center

    Jenny, Seth; Becker, Andrew; Armstrong, Tess

    2016-01-01

    The lack of physical activity is an epidemic problem among American youth today. In order to combat this, many schools are incorporating youth running programs as a part of their comprehensive school physical activity programs. These youth running programs are being implemented before or after school, at school during recess at the elementary…

  10. Nanosecond-pulse-controlled higher-order sideband comb in a GaAs optomechanical disk resonator in the non-perturbative regime

    SciTech Connect

    Xiong, Hao; Si, Liu-Gang; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying

    2014-10-15

    We propose an interesting scheme for tunable high-order sideband comb generation by utilizing ultrastrong optomechanical interaction in a GaAs optomechanical disk resonator beyond the perturbative approximation. We analyze the nonlinear nature of the optomechanical interaction, and give a full description of the non-perturbative effects. It is shown, within the non-perturbative regime, that high-order sideband comb with large intensities can be realized and controlled in a GaAs optomechanical disk resonator with experimentally achievable system parameters, and the non-perturbative regime leads to rich and nontrivial behavior.

  11. Coordinating the 2009 RHIC Run

    ScienceCinema

    Brookhaven Lab - Mei Bai

    2016-07-12

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  12. Coordinating the 2009 RHIC Run

    SciTech Connect

    Brookhaven Lab - Mei Bai

    2009-04-13

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  13. Oxygen cost of running barefoot vs. running shod.

    PubMed

    Hanson, N J; Berg, K; Deka, P; Meendering, J R; Ryan, C

    2011-06-01

    The purpose of this study was to investigate the oxygen cost of running barefoot vs. running shod on the treadmill as well as overground. 10 healthy recreational runners, 5 male and 5 female, whose mean age was 23.8±3.39 volunteered to participate in the study. Subjects participated in 4 experimental conditions: 1) barefoot on treadmill, 2) shod on treadmill, 3) barefoot overground, and 4) shod overground. For each condition, subjects ran for 6 min at 70% vVO (2)max pace while VO (2), heart rate (HR), and rating of perceived exertion (RPE) were assessed. A 2 × 2 (shoe condition x surface) repeated measures ANOVA revealed that running with shoes showed significantly higher VO (2) values on both the treadmill and the overground track (p<0.05). HR and RPE were significantly higher in the shod condition as well (p<0.02 and p<0.01, respectively). For the overground and treadmill conditions, recorded VO (2) while running shod was 5.7% and 2.0% higher than running barefoot. It was concluded that at 70% of vVO (2)max pace, barefoot running is more economical than running shod, both overground and on a treadmill.

  14. Nonperturbative quantum and classical calculations of multiphoton vibrational excitation and dissociation of Morse molecules^1

    NASA Astrophysics Data System (ADS)

    Dimitriou, K. I.; Mercouris, Th.; Constantoudis, V.; Komninos, Y.; Nicolaides, C. A.

    2006-05-01

    The multiphoton vibrational excitation and dissociation of Morse molecules have been computed nonperturbatively using Hamilton's and Schrφdinger's time-dependent equations, for a range of laser pulse parameters. The time-dependent Schrφdinger equation is solved by the state-specific expansion approach [e.g.,1]. For its solution, emphasis has been given on the inclusion of the continuous spectrum, whose contribution to the multiphoton probabilities for resonance excitation to a number of excited discrete states as well as to dissociation has been examined as a function of laser intensity, frequency and pulse duration. An analysis of possible quantal-classical correspondences for this system is being carried out. We note that distinct features exist from previous classical calculations [2]. For example, the dependence on the laser frequency gives rise to an asymmetry around the red-shifted frequency corresponding to the maximum probability. [1] Th. Mercouris, I. D. Petsalakis and C. A. Nicolaides, J. Phys. B 27, L519 (1994). [2] V. Constantoudis and C. A. Nicolaides, Phys. Rev. E 64, 562112 (2001). ^1This work was supported by the program 'Pythagoras' which is co - funded by the European Social Fund (75%) and Natl. Resources (25%). ^2Physics Department, National Technical University, Athens, Greece.^3Theoretical and Physical Chemistry Institute, Hellenic Research Foundation, Athens, Greece.

  15. Construction of Non-Perturbative, Unitary Particle-Antiparticle Amplitudes for Finite Particle Number Scattering Formalisms

    SciTech Connect

    Lindesay, James V

    2002-03-12

    Starting from a unitary, Lorentz invariant two-particle scattering amplitude, we show how to use an identification and replacement process to construct a unique, unitary particle-antiparticle amplitude. This process differs from conventional on-shell Mandelstam s,t,u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel nonperturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations recently presented by Alfred, Kwizera, Lindesay and Noyes. It is therefore anticipated that when so employed, the resulting multi-channel solutions will also be unitary. The process preserves the usual particle-antiparticle symmetries. To illustrate this process, we construct a J=0 scattering length model chosen for simplicity. We also exhibit a class of physical models which contain a finite quantum mass parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the proper choice of value and sign of the interaction parameter, to the asymptotic solution of the nonrelativistic Coulomb problem, including the forward scattering singularity , the essential singularity in the phase, and the Bohr bound-state spectrum.

  16. A simple non-perturbing cell migration assay insensitive to proliferation effects.

    PubMed

    Glenn, Honor L; Messner, Jacob; Meldrum, Deirdre R

    2016-08-18

    Migration is a fundamental cellular behavior that plays an indispensable role in development and homeostasis, but can also contribute to pathology such as cancer metastasis. Due to its relevance to many aspects of human health, the ability to accurately measure cell migration is of broad interest, and numerous approaches have been developed. One of the most commonly employed approaches, because of its simplicity and throughput, is the exclusion zone assay in which cells are allowed to migrate into an initially cell-free region. A major drawback of this assay is that it relies on simply counting cells in the exclusion zone and therefore cannot distinguish the effects of proliferation from migration. We report here a simple modification to the exclusion zone migration assay that exclusively measures cell migration and is not affected by proliferation. This approach makes use of a lineage-tracing vital stain that is retained through cell generations and effectively reads out migration relative to the original, parental cell population. This modification is simple, robust, non-perturbing, and inexpensive. We validate the method in a panel of cell lines under conditions that inhibit or promote migration and demonstrate its use in normal and cancer cell lines as well as primary cells.

  17. Exact quantization conditions, toric Calabi-Yau and non-perturbative topological string

    NASA Astrophysics Data System (ADS)

    Sun, Kaiwen; Wang, Xin; Huang, Min-xin

    2017-01-01

    We establish the precise relation between the Nekrasov-Shatashvili (NS) quantization scheme and Grassi-Hatsuda-Mariño conjecture for the mirror curve of arbitrary toric Calabi-Yau threefold. For a mirror curve of genus g, the NS quantization scheme leads to g quantization conditions for the corresponding integrable system. The exact NS quantization conditions enjoy a self S-duality with respect to Planck constant h and can be derived from the Lockhart-Vafa partition function of non-perturbative topological string. Based on a recent observation on the correspondence between spectral theory and topological string, another quantization scheme was proposed by Grassi-Hatsuda-Mariño, in which there is a single quantization condition and the spectra are encoded in the vanishing of a quantum Riemann theta function. We demonstrate that there actually exist at least g nonequivalent quantum Riemann theta functions and the intersections of their theta divisors coincide with the spectra determined by the exact NS quantization conditions. This highly nontrivial coincidence between the two quantization schemes requires infinite constraints among the refined Gopakumar-Vafa invariants. The equivalence for mirror curves of genus one has been verified for some local del Pezzo surfaces. In this paper, we generalize the correspondence to higher genus, and analyze in detail the resolved C^3/Z_5 orbifold and several SU( N ) geometries. We also give a proof for some models at ħ = 2π /k.

  18. Non-perturbative measurement of low-intensity charged particle beams

    NASA Astrophysics Data System (ADS)

    Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.

    2017-01-01

    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.

  19. Non-perturbative calculation of molecular magnetic properties within current-density functional theory.

    PubMed

    Tellgren, E I; Teale, A M; Furness, J W; Lange, K K; Ekström, U; Helgaker, T

    2014-01-21

    We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals-the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.

  20. Nonperturbative effects of the minimal length uncertainty on the relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Pedram, Pouria

    2012-04-01

    We study the nonperturbative effects of the minimal length on the energy spectrum of a relativistic particle in the context of the generalized uncertainty principle (GUP). This form of GUP is consistent with various candidates of quantum gravity such as string theory, loop quantum gravity, and black-hole physics and predicts a minimum measurable length proportional to the Planck length. Using a recently proposed formally self-adjoint representation, we solve the generalized Dirac and Klein-Gordon equations in various situations and find the corresponding exact energy eigenvalues and eigenfunctions. We show that for the Dirac particle in a box, the number of the solutions renders to be finite as a manifestation of both the minimal length and the theory of relativity. For the case of the Dirac oscillator and the wave equations with scalar and vector linear potentials, we indicate that the solutions can be obtained in a more simpler manner through the self-adjoint representation. It is also shown that, in the ultrahigh frequency regime, the partition function and the thermodynamical variables of the Dirac oscillator can be expressed in a closed analytical form. The Lorentz violating nature of the GUP-corrected relativistic wave equations is discussed finally.

  1. Non-perturbative magnetic phenomena in closed-shell paramagnetic molecules.

    PubMed

    Tellgren, Erik I; Helgaker, Trygve; Soncini, Alessandro

    2009-07-14

    By means of non-perturbative ab initio calculations, it is shown that paramagnetic closed-shell molecules are characterized by a strongly non-linear magnetic response, whose main feature consists of a paramagnetic-to-diamagnetic transition in a strong magnetic field. The physical origin of this phenomenon is rationalised on the basis of an analytical model based on molecular orbital theory. For the largest molecules considered here, the acepleiadylene dianion and the corannulene dianion, the transition field is of the order of 10(3) T, about one order of magnitude larger than the magnetic field strength currently achievable in experimental settings. However, our simple model suggests that the paramagnetic-to-diamagnetic transition is a universal property of paramagnetic closed-shell systems in strong magnetic fields, provided no singlet-triplet level crossing occurs for fields smaller than the critical transition field. Accordingly, fields weaker than 100 T should suffice to trigger the predicted transition for systems whose size is still well within the (medium-large) molecular domain, such as hypothetical antiaromatic rings with less than one hundred carbon atoms.

  2. Renormalization of local quark-bilinear operators for Nf=3 flavors of stout link nonperturbative clover fermions

    NASA Astrophysics Data System (ADS)

    Constantinou, M.; Horsley, R.; Panagopoulos, H.; Perlt, H.; Rakow, P. E. L.; Schierholz, G.; Schiller, A.; Zanotti, J. M.

    2015-01-01

    The renormalization factors of local quark-bilinear operators are computed nonperturbatively for Nf=3 flavors of stout link nonperturbative clover (SLiNC) fermions, with emphasis on the various procedures for the chiral and continuum extrapolations. The simulations are performed at a lattice spacing a =0.074 fm , and for five values of the pion mass in the range of 290-465 MeV, allowing a safe and stable chiral extrapolation. Emphasis is given in the subtraction of the well-known pion pole which affects the renormalization factor of the pseudoscalar current. We also compute the inverse propagator and the Green's functions of the local bilinears to one loop in perturbation theory. We investigate lattice artifacts by computing them perturbatively to second order as well as to all orders in the lattice spacing. The renormalization conditions are defined in the RI'-MOM scheme, for both the perturbative and nonperturbative results. The renormalization factors, obtained at different values of the renormalization scale, are translated to the MS ¯ scheme and are evolved perturbatively to 2 GeV. Any residual dependence on the initial renormalization scale is eliminated by an extrapolation to the continuum limit. We also study the various sources of systematic errors. Particular care is taken in correcting the nonperturbative estimates by subtracting lattice artifacts computed to one-loop perturbation theory using the same action. We test two different methods, by subtracting either the O (g2a2) contributions, or the complete (all orders in a ) one-loop lattice artifacts.

  3. Wheel running in the wild.

    PubMed

    Meijer, Johanna H; Robbers, Yuri

    2014-07-07

    The importance of exercise for health and neurogenesis is becoming increasingly clear. Wheel running is often used in the laboratory for triggering enhanced activity levels, despite the common objection that this behaviour is an artefact of captivity and merely signifies neurosis or stereotypy. If wheel running is indeed caused by captive housing, wild mice are not expected to use a running wheel in nature. This however, to our knowledge, has never been tested. Here, we show that when running wheels are placed in nature, they are frequently used by wild mice, also when no extrinsic reward is provided. Bout lengths of running wheel behaviour in the wild match those for captive mice. This finding falsifies one criterion for stereotypic behaviour, and suggests that running wheel activity is an elective behaviour. In a time when lifestyle in general and lack of exercise in particular are a major cause of disease in the modern world, research into physical activity is of utmost importance. Our findings may help alleviate the main concern regarding the use of running wheels in research on exercise.

  4. Run-to-Run Control Strategy for Diabetes Management

    DTIC Science & Technology

    2007-11-02

    quite serious ( diabetic coma), and the long- term implications of varying glucose levels ( nephropathy , retinopathy, and other tissue damage ) have...Trial Re- search Group, \\The e ect of intensive treatment of diabetes on the development and progression of long{term complications in insulin{dependent...1 RUN-TO-RUN CONTROL STRATEGY FOR DIABETES MANAGEMENT F.J. Doyle III1, B. Srinivasan2, and D. Bonvin2 1Department of Chemical Engineering, University

  5. Observations of running penumbral waves.

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Stein, A.

    1972-01-01

    Quiet sunspots with well-developed penumbrae show running intensity waves with period running around 300 sec. The waves appear connected with umbral flashes of exactly half the period. Waves are concentric, regular, with velocity constant around 10 km/sec. They are probably sound waves and show intensity fluctuation in H alpha centerline or wing of 10 to 20%. The energy is tiny compared to the heat deficit of the umbra.

  6. Transition Form Factors: A Unique Opportunity to Connect Non-Perturbative Strong Interactions to QCD

    SciTech Connect

    Gothe, Ralf W.

    2014-01-01

    Meson-photoproduction measurements and their reaction-amplitude analyses can establish more sensitively, and in some cases in an almost model-independent way, nucleon excitations and non-resonant reaction amplitudes. However, to investigate the strong interaction from explored — where meson-cloud degrees of freedom contribute substantially to the baryon structure — to still unexplored distance scales — where quark degrees of freedom dominate and the transition from dressed to current quarks occurs — we depend on experiments that allow us to measure observables that are probing this evolving non-perturbative QCD regime over its full range. Elastic and transition form factors are uniquely suited to trace this evolution by measuring elastic electron scattering and exclusive single-meson and double-pion electroproduction cross sections off the nucleon. These exclusive measurements will be extended to higher momentum transfers with the energy-upgraded CEBAF beam at JLab to study the quark degrees of freedom, where their strong interaction is responsible for the ground and excited nucleon state formations. After establishing unprecedented high-precision data, the imminent next challenge is a high-quality analysis to extract these relevant electrocoupling parameters for various resonances that then can be compared to state-of-the-art models and QCD-based calculations. Recent results will demonstrate the status of the analysis and of their theoretical descriptions, and an experimental and theoretical outlook will highlight what shall and may be achieved in the new era of the 12-GeV upgraded transition form factor program.

  7. Nonperturbative analysis of the two-level atom: Applications to multiphoton excitation

    SciTech Connect

    Duvall, R.E.; Valeo, E.J.; Oberman, C.R.

    1987-08-01

    Selective excitation in an atomic system subjected to a slowly varying external electromagnetic field is studied using a two-level model. Time evolution of the system is found using an approach which is nonperturbative in the field strength. There is no constraint to small values of the applied field, that is, the field (in appropriate energy units) need not be small compared to the difference in energies of the two levels. Rather, we prey upon the fact that the situation of interest to us is where the frequency of the exciting field is small compared to the frequency associated with the level difference. Transition probabilities and resonance conditions are found which circumscribe both the large and small field limits. In the weak field limit the previous results of high-order perturbation theory are readily recovered. For a monochromatic field the characteristic features of resonance excitation at high harmonic number of the applied field are (a) extremely narrow resonance widths and (b) shifts in resonance positions which are strong functions of field intensity. Because of this sensitivity, we are able to demonstrate that when slow temporal evolution of the field amplitude is taken into account (e.g., due to finite pulse duration) the appropriate mean excitation rate is that due to the uncorrelated contribution of many resonances. The results of this analysis are used to estimate excitation rates in a specific atomic system, Cd/sup 12 +/, which are then compared to multiphoton ionization rates. Our calculations suggest that the ionization rate exceeds the excitation rate by several orders of magnitude. 15 refs., 3 figs.

  8. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited).

    PubMed

    Smith, Roger J

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  9. Correlations in double parton distributions: perturbative and non-perturbative effects

    NASA Astrophysics Data System (ADS)

    Rinaldi, Matteo; Scopetta, Sergio; Traini, Marco; Vento, Vicente

    2016-10-01

    The correct description of Double Parton Scattering (DPS), which represents a background in several channels for the search of new Physics at the LHC, requires the knowledge of double parton distribution functions (dPDFs). These quantities represent also a novel tool for the study of the three-dimensional nucleon structure, complementary to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using Poincaré covariant predictions obtained by using a Light-Front constituent quark model proposed in a recent paper, and QCD evolution. We study to what extent factorized expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be used. We show that they fail in reproducing the calculated dPDFs, in particular in the valence region. Actually measurable processes at existing facilities occur at low longitudinal momenta of the interacting partons; to have contact with these processes we have analyzed correlations between pairs of partons of different kind, finding that, in some cases, they are strongly suppressed at low longitudinal momenta, while for other distributions they can be sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We have shown that these behaviors can be understood in terms of a delicate interference of non-perturbative correlations, generated by the dynamics of the model, and perturbative ones, generated by the model independent evolution procedure. Our analysis shows that at LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address the possibility to study them experimentally.

  10. Effects of running velocity on running kinetics and kinematics.

    PubMed

    Brughelli, Matt; Cronin, John; Chaouachi, Anis

    2011-04-01

    Sixteen semiprofessional Australian football players performed running bouts at incremental velocities of 40, 60, 80, and 100% of their maximum velocity on a Woodway nonmotorized force treadmill. As running velocity increased from 40 to 60%, peak vertical and peak horizontal forces increased by 14.3% (effect size [ES] = 1.0) and 34.4% (ES = 4.2), respectively. The changes in peak vertical and peak horizontal forces from 60 to 80% were 1.0% (ES = 0.05) and 21.0% (ES = 2.9), respectively. Finally, the changes in peak vertical and peak horizontal forces from 80% to maximum were 2.0% (ES = 0.1) and 24.3% (ES = 3.4). In addition, both stride frequency and stride length significantly increased with each incremental velocity (p < 0.05). Conversely, contact times and the vertical displacement of the center of mass significantly decreased with increased running velocity (p < 0.05). A significant positive correlation was found between horizontal force and maximum running velocity (r = 0.47). For the kinematic variables, only stride length was found to have a significant positive correlation with maximum running velocity (r = 0.66). It would seem that increasing maximal sprint velocity may be more dependent on horizontal force production as opposed to vertical force production.

  11. Running of the running and entropy perturbations during inflation

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Longden, Chris

    2016-07-01

    In single field slow-roll inflation, one expects that the spectral index ns-1 is first order in slow-roll parameters. Similarly, its running αs=d ns/d log k and the running of the running βs=d αs/d log k are second and third order and therefore expected to be progressively smaller, and usually negative. Hence, such models of inflation are in considerable tension with a recent analysis hinting that βs may actually be positive, and larger than αs. Motivated by this, in this work we ask the question of what kinds of inflationary models may be useful in achieving such a hierarchy of runnings, particularly focusing on two-field models of inflation in which the late-time transfer of power from isocurvature to curvature modes allows for a much more diverse range of phenomenology. We calculate the runnings due to this effect and briefly apply our results to assess the feasibility of finding |βs|≳|αs| in some specific models.

  12. RHIC Au beam in Run 2014

    SciTech Connect

    Zhang, S. Y.

    2014-09-15

    Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014 is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.

  13. CDF Run 2 muon system

    SciTech Connect

    C. M. Ginsburg

    2004-02-05

    The CDF muon detection system for Run 2 of the Fermilab Tevatron is described. Muon stubs are detected for |{eta}| < 1.5, and are matched to tracks in the central drift chamber at trigger level 1 for |{eta}| < 1.25. Detectors in the |{eta}| < 1 central region, built for previous runs, have been enhanced to survive the higher rate environment and closer bunch spacing (3.5 {micro}sec to 396 nsec) of Run 2. Azimuthal gaps in the central region have been filled in. New detectors have been added to extend the coverage from |{eta}| < 1 to |{eta}| < 1.5, consisting of four layers of drift chambers covered with matching scintillators for triggering. The Level 1 Extremely Fast Tracker supplies matching tracks with measured p{sub T} for the muon trigger. The system has been in operation for over 18 months. Operating experience and reconstructed data are presented.

  14. [Stress fracture after changing to barefoot running].

    PubMed

    Christensen, Mikkel

    2014-12-15

    Barefoot running is increasing in popularity but little is known about the implications in respect to injuries. It has been proposed that barefoot running is associated with a decrease in running injuries as it represents a more natural way of running. A 50-year-old runner with a weekly running distance of 50 km presented suffering from a stress fracture of the second metatarsal after six weeks of intensive barefoot running.

  15. Running cosmological constant with observational tests

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lee, Chung-Chi; Zhang, Kaituo

    2016-09-01

    We investigate the running cosmological constant model with dark energy linearly proportional to the Hubble parameter, Λ = σH +Λ0, in which the ΛCDM limit is recovered by taking σ = 0. We derive the linear perturbation equations of gravity under the Friedmann-Lemaïtre-Robertson-Walker cosmology, and show the power spectra of the CMB temperature and matter density distribution. By using the Markov chain Monte Carlo method, we fit the model to the current observational data and find that σH0 /Λ0 ≲ 2.63 ×10-2 and 6.74 ×10-2 for Λ (t) coupled to matter and radiation-matter, respectively, along with constraints on other cosmological parameters.

  16. Do recent observations of very large electromagnetic dissociation cross sections signify a transition towards non-perturbative QED?

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    The very large electromagnetic dissociation (EMD) cross section recently observed by Hill, Wohn, Schwellenbach, and Smith do not agree with Weizsacker-Williams (WW) theory or any simple modification thereof. Calculations are presented for the reaction probabilities for this experiment and the entire single and double nucleon removal EMD data set. It is found that for those few reactions where theory and experiment disagree, the probabilities are exceptionally large. This indicates that WW theory is not valid for these reactions and that one must consider higher order corrections and perhaps even a non-perturbative approach to quantum electrodynamics (QED).

  17. Frequency regulators for the nonperturbative renormalization group: A general study and the model A as a benchmark

    NASA Astrophysics Data System (ADS)

    Duclut, Charlie; Delamotte, Bertrand

    2017-01-01

    We derive the necessary conditions for implementing a regulator that depends on both momentum and frequency in the nonperturbative renormalization-group flow equations of out-of-equilibrium statistical systems. We consider model A as a benchmark and compute its dynamical critical exponent z . This allows us to show that frequency regulators compatible with causality and the fluctuation-dissipation theorem can be devised. We show that when the principle of minimal sensitivity (PMS) is employed to optimize the critical exponents η , ν , and z , the use of frequency regulators becomes necessary to make the PMS a self-consistent criterion.

  18. Teaching Bank Runs through Films

    ERIC Educational Resources Information Center

    Flynn, David T.

    2009-01-01

    The author advocates the use of films to supplement textbook treatments of bank runs and panics in money and banking or general banking classes. Modern students, particularly those in developed countries, tend to be unfamiliar with potential fragilities of financial systems such as a lack of deposit insurance or other safety net mechanisms. Films…

  19. Beyond the rainbow: Effects from pion back-coupling

    SciTech Connect

    Fischer, Christian S.; Williams, Richard

    2008-10-01

    We investigate hadronic unquenching effects in light quarks and mesons. To this end, we take into account the back-coupling of the pion onto the quark propagator within the nonperturbative continuum framework of Schwinger-Dyson equations (SDE) and Bethe-Salpeter equations (BSE). We improve on a previous approach by explicitly solving both the coupled system of SDEs and BSEs in the complex plane and the normalization problem for Bethe-Salpeter kernels depending on the total momentum of the meson. As a result of our study, we find considerable unquenching effects in the spectrum of light pseudoscalar, vector and axial-vector mesons.

  20. Quantifying coordination and coordination variability in backward versus forward running: Implications for control of motion.

    PubMed

    Mehdizadeh, Sina; Arshi, Ahmed Reza; Davids, Keith

    2015-07-01

    The aims of this study were to compare coordination and coordination variability in backward and forward running and to investigate the effects of speed on coordination variability in both backward and forward running. Fifteen healthy male participants took part in this study to run forwards and backwards on a treadmill at 80%, 100% and 120% of their preferred running speeds. The coordinate data of passive reflective markers attached to body segments were recorded using motion capture systems. Coordination of shank-foot and thigh-shank couplings in sagittal plane was quantified using the continuous relative phase method. Coordination variability was calculated as the standard deviation of a coordination pattern over 50 strides. Cross-correlation coefficients and associated phase shifts were determined to quantify similarity in coordination patterns between forward and backward running. Our results demonstrated that the coordination pattern in a gait cycle of backward running was in reverse to that of forward running at all speeds implying that the same neural circuitry is responsible for regulating both forward and backward running gaits. In addition, results demonstrated that there was an average of approximately 11% phase shift between the coordination patterns of backward and forward running which indicates that a single underlying mechanism might be responsible for generating motor patterns in both forward and backward running. Finally, backward running had significantly higher magnitude of coordination variability compared to forward running, signifying that more degrees of freedom were involved in backward running. Speed however, did not affect coordination variability in either task.

  1. Non-perturbative scale evolution of four-fermion operators in two-flavour QCD

    NASA Astrophysics Data System (ADS)

    Herdoiza, Gregorio

    2006-12-01

    We apply finite-size recursion techniques based on the Schrödinger functional formalism to de- termine the renormalization group running of four-fermion operators which appear in the S = 2 effective weak Hamiltonian of the Standard Model. Our calculations are done using O(a) im- proved Wilson fermions with Nf = 2 dynamical flavours. Preliminary results are presented for the four-fermion operator which determines the BK -parameter in tmQCD.

  2. Non-perturbative modelling of energetic particle effects on resistive wall mode: Anisotropy and finite orbit widtha)

    NASA Astrophysics Data System (ADS)

    Liu, Yueqiang; Chapman, I. T.; Graves, J. P.; Hao, G. Z.; Wang, Z. R.; Menard, J. E.; Okabayashi, M.; Strait, E. J.; Turnbull, A.

    2014-05-01

    A non-perturbative magnetohydrodynamic-kinetic hybrid formulation is developed and implemented into the MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)] that takes into account the anisotropy and asymmetry [Graves et al., Nature Commun. 3, 624 (2012)] of the equilibrium distribution of energetic particles (EPs) in particle pitch angle space, as well as first order finite orbit width (FOW) corrections for both passing and trapped EPs. Anisotropic models, which affect both the adiabatic and non-adiabatic drift kinetic energy contributions, are implemented for both neutral beam injection and ion cyclotron resonant heating induced EPs. The first order FOW correction does not contribute to the precessional drift resonance of trapped particles, but generally remains finite for the bounce and transit resonance contributions, as well as for the adiabatic contributions from asymmetrically distributed passing particles. Numerical results for a 9MA steady state ITER plasma suggest that (i) both the anisotropy and FOW effects can be important for the resistive wall mode stability in ITER plasmas; and (ii) the non-perturbative approach predicts less kinetic stabilization of the mode, than the perturbative approach, in the presence of anisotropy and FOW effects for the EPs. The latter may partially be related to the modification of the eigenfunction of the mode by the drift kinetic effects.

  3. Non-perturbative modelling of energetic particle effects on resistive wall mode: Anisotropy and finite orbit width

    SciTech Connect

    Liu, Yueqiang Chapman, I. T.; Hao, G. Z.; Wang, Z. R.; Menard, J. E.; Okabayashi, M.; Strait, E. J.; Turnbull, A.

    2014-05-15

    A non-perturbative magnetohydrodynamic-kinetic hybrid formulation is developed and implemented into the MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)] that takes into account the anisotropy and asymmetry [Graves et al., Nature Commun. 3, 624 (2012)] of the equilibrium distribution of energetic particles (EPs) in particle pitch angle space, as well as first order finite orbit width (FOW) corrections for both passing and trapped EPs. Anisotropic models, which affect both the adiabatic and non-adiabatic drift kinetic energy contributions, are implemented for both neutral beam injection and ion cyclotron resonant heating induced EPs. The first order FOW correction does not contribute to the precessional drift resonance of trapped particles, but generally remains finite for the bounce and transit resonance contributions, as well as for the adiabatic contributions from asymmetrically distributed passing particles. Numerical results for a 9MA steady state ITER plasma suggest that (i) both the anisotropy and FOW effects can be important for the resistive wall mode stability in ITER plasmas; and (ii) the non-perturbative approach predicts less kinetic stabilization of the mode, than the perturbative approach, in the presence of anisotropy and FOW effects for the EPs. The latter may partially be related to the modification of the eigenfunction of the mode by the drift kinetic effects.

  4. Preventing Running Injuries through Barefoot Activity

    ERIC Educational Resources Information Center

    Hart, Priscilla M.; Smith, Darla R.

    2008-01-01

    Running has become a very popular lifetime physical activity even though there are numerous reports of running injuries. Although common theories have pointed to impact forces and overpronation as the main contributors to chronic running injuries, the increased use of cushioning and orthotics has done little to decrease running injuries. A new…

  5. Physiologic Responses to Treadmill and Water Running.

    ERIC Educational Resources Information Center

    Bishop, Phillip A.; And Others

    1989-01-01

    Presents results of a study of the physiological responses of uninjured runners to running on a treadmill and in water. Water running may lessen an injured athlete's rate of deconditioning, but indications are that the metabolic cost of water running is not significantly greater than that of treadmill running. (SM)

  6. Selective running tool for wells

    SciTech Connect

    Semar, J.E.

    1988-05-24

    A downhole running tool for positioning and locking tool support mandrels within landing nipples of thin production tubing string of a well is described comprising: (a) housing means adapted for connection to a tool string and forming an internal receptacle; (b) an elongated core member being disposed within the internal receptacle and being telescopically movable to collapsed and extended positions defined by spaced stops formed by the housing means, a portion of the elongated core member extending from the housing for connection with a tool support mandrel; and (c) releasable retainer means normally retaining the elongated core member at a substantially fixed set position within the internal receptacle and being released responsive to engagement with the landing nipple during upward movement of the downhole running tool to thus permit collapsing telescoping movement of the elongated core to a mandrel locating position within the internal receptacle.

  7. Running: Improving Form to Reduce Injuries.

    PubMed

    2015-08-01

    Running is often perceived as a good option for "getting into shape," with little thought given to the form, or mechanics, of running. However, as many as 79% of all runners will sustain a running-related injury during any given year. If you are a runner-casual or serious-you should be aware that poor running mechanics may contribute to these injuries. A study published in the August 2015 issue of JOSPT reviewed the existing research to determine whether running mechanics could be improved, which could be important in treating running-related injuries and helping injured runners return to pain-free running.

  8. GASIFICATION TEST RUN TC06

    SciTech Connect

    Southern Company Services, Inc.

    2003-08-01

    This report discusses test campaign TC06 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC06. Test run TC06 was started on July 4, 2001, and completed on September 24, 2001, with an interruption in service between July 25, 2001, and August 19, 2001, due to a filter element failure in the PCD caused by abnormal operating conditions while tuning the main air compressor. The reactor temperature was varied between 1,725 and 1,825 F at pressures from 190 to 230 psig. In TC06, 1,214 hours of solid circulation and 1,025 hours of coal feed were attained with 797 hours of coal feed after the filter element failure. Both reactor and PCD operations were stable during the test run with a stable baseline pressure drop. Due to its length and stability, the TC06 test run provided valuable data necessary to analyze long-term reactor operations and to identify necessary modifications to improve equipment and process performance as well as progressing the goal of many thousands of hours of filter element exposure.

  9. Running Jobs in the Vacuum

    NASA Astrophysics Data System (ADS)

    McNab, A.; Stagni, F.; Ubeda Garcia, M.

    2014-06-01

    We present a model for the operation of computing nodes at a site using Virtual Machines (VMs), in which VMs are created and contextualized for experiments by the site itself. For the experiment, these VMs appear to be produced spontaneously "in the vacuum" rather having to ask the site to create each one. This model takes advantage of the existing pilot job frameworks adopted by many experiments. In the Vacuum model, the contextualization process starts a job agent within the VM and real jobs are fetched from the central task queue as normal. An implementation of the Vacuum scheme, Vac, is presented in which a VM factory runs on each physical worker node to create and contextualize its set of VMs. With this system, each node's VM factory can decide which experiments' VMs to run, based on site-wide target shares and on a peer-to-peer protocol in which the site's VM factories query each other to discover which VM types they are running. A property of this system is that there is no gate keeper service, head node, or batch system accepting and then directing jobs to particular worker nodes, avoiding several central points of failure. Finally, we describe tests of the Vac system using jobs from the central LHCb task queue, using the same contextualization procedure for VMs developed by LHCb for Clouds.

  10. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines.

    PubMed

    Kato, Akihito; Tanimura, Yoshitaka

    2016-12-14

    We consider a quantum system strongly coupled to multiple heat baths at different temperatures. Quantum heat transport phenomena in this system are investigated using two definitions of the heat current: one in terms of the system energy and the other in terms of the bath energy. When we consider correlations among system-bath interactions (CASBIs)-which have a purely quantum mechanical origin-the definition in terms of the bath energy becomes different. We found that CASBIs are necessary to maintain the consistency of the heat current with thermodynamic laws in the case of strong system-bath coupling. However, within the context of the quantum master equation approach, both of these definitions are identical. Through a numerical investigation, we demonstrate this point for a non-equilibrium spin-boson model and a three-level heat engine model using the reduced hierarchal equations of motion approach under the strongly coupled and non-Markovian conditions. We observe the cyclic behavior of the heat currents and the work performed by the heat engine, and we find that their phases depend on the system-bath coupling strength. Through consideration of the bath heat current, we show that the efficiency of the heat engine decreases as the strength of the system-bath coupling increases, due to the CASBI contribution. In the case of a large system-bath coupling, the efficiency decreases further if the bath temperature is increased, even if the ratio of the bath temperatures is fixed, due to the discretized nature of energy eigenstates. This is also considered to be a unique feature of quantum heat engines.

  11. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines

    NASA Astrophysics Data System (ADS)

    Kato, Akihito; Tanimura, Yoshitaka

    2016-12-01

    We consider a quantum system strongly coupled to multiple heat baths at different temperatures. Quantum heat transport phenomena in this system are investigated using two definitions of the heat current: one in terms of the system energy and the other in terms of the bath energy. When we consider correlations among system-bath interactions (CASBIs)—which have a purely quantum mechanical origin—the definition in terms of the bath energy becomes different. We found that CASBIs are necessary to maintain the consistency of the heat current with thermodynamic laws in the case of strong system-bath coupling. However, within the context of the quantum master equation approach, both of these definitions are identical. Through a numerical investigation, we demonstrate this point for a non-equilibrium spin-boson model and a three-level heat engine model using the reduced hierarchal equations of motion approach under the strongly coupled and non-Markovian conditions. We observe the cyclic behavior of the heat currents and the work performed by the heat engine, and we find that their phases depend on the system-bath coupling strength. Through consideration of the bath heat current, we show that the efficiency of the heat engine decreases as the strength of the system-bath coupling increases, due to the CASBI contribution. In the case of a large system-bath coupling, the efficiency decreases further if the bath temperature is increased, even if the ratio of the bath temperatures is fixed, due to the discretized nature of energy eigenstates. This is also considered to be a unique feature of quantum heat engines.

  12. Higgs boson self-coupling from two-loop analysis

    SciTech Connect

    Alhendi, H. A.; Barakat, T.; Loqman, I. Gh.

    2010-09-01

    The scale invariant of the effective potential of the standard model at two loop is used as a boundary condition under the assumption that the two-loop effective potential approximates the full effective potential. This condition leads with the help of the renormalization-group functions of the model at two loop to an algebraic equation of the scalar self-coupling with coefficients that depend on the gauge and the top quark couplings. It admits only two real positive solutions. One of them, in the absence of the gauge and top quark couplings, corresponds to the nonperturbative ultraviolet fixed point of the scalar renormalization-group function and the other corresponds to the perturbative infrared fixed point. The dependence of the scalar coupling on the top quark and the strong couplings at two-loop radiative corrections is analyzed.

  13. A dynamical mechanism for large volumes with consistent couplings

    NASA Astrophysics Data System (ADS)

    Abel, Steven

    2016-11-01

    A mechanism for addressing the "decompactification problem" is proposed, which consists of balancing the vacuum energy in Scherk-Schwarzed theories against contributions coming from non-perturbative physics. Universality of threshold corrections ensures that, in such situations, the stable minimum will have consistent gauge couplings for any gauge group that shares the same N = 2 beta function for the bulk excitations as the gauge group that takes part in the minimisation. Scherk-Schwarz compactification from 6D to 4D in heterotic strings is discussed explicitly, together with two alternative possibilities for the non-perturbative physics, namely metastable SQCD vacua and a single gaugino condensate. In the former case, it is shown that modular symmetries gives various consistency checks, and allow one to follow soft-terms, playing a similar role to R-symmetry in global SQCD. The latter case is particularly attractive when there is nett Bose-Fermi degeneracy in the massless sector. In such cases, because the original Casimir energy is generated entirely by excited and/or non-physical string modes, it is completely immune to the non-perturbative IR physics. Such a separation between UV and IR contributions to the potential greatly simplifies the analysis of stabilisation, and is a general possibility that has not been considered before.

  14. Barefoot running: does it prevent injuries?

    PubMed

    Murphy, Kelly; Curry, Emily J; Matzkin, Elizabeth G

    2013-11-01

    Endurance running has evolved over the course of millions of years and it is now one of the most popular sports today. However, the risk of stress injury in distance runners is high because of the repetitive ground impact forces exerted. These injuries are not only detrimental to the runner, but also place a burden on the medical community. Preventative measures are essential to decrease the risk of injury within the sport. Common running injuries include patellofemoral pain syndrome, tibial stress fractures, plantar fasciitis, and Achilles tendonitis. Barefoot running, as opposed to shod running (with shoes), has recently received significant attention in both the media and the market place for the potential to promote the healing process, increase performance, and decrease injury rates. However, there is controversy over the use of barefoot running to decrease the overall risk of injury secondary to individual differences in lower extremity alignment, gait patterns, and running biomechanics. While barefoot running may benefit certain types of individuals, differences in running stance and individual biomechanics may actually increase injury risk when transitioning to barefoot running. The purpose of this article is to review the currently available clinical evidence on barefoot running and its effectiveness for preventing injury in the runner. Based on a review of current literature, barefoot running is not a substantiated preventative running measure to reduce injury rates in runners. However, barefoot running utility should be assessed on an athlete-specific basis to determine whether barefoot running will be beneficial.

  15. Coupling in the Tevatron

    SciTech Connect

    Gelfand, N.M.

    1994-12-01

    The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-{beta} quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note.

  16. The coordinated movement of the spine and pelvis during running.

    PubMed

    Preece, Stephen J; Mason, Duncan; Bramah, Christopher

    2016-02-01

    Previous research into running has demonstrated consistent patterns in pelvic, lumbar and thoracic motions between different human runners. However, to date, there has been limited attempt to explain why observed coordination patterns emerge and how they may relate to centre of mass (CoM) motion. In this study, kinematic data were collected from the thorax, lumbar spine, pelvis and lower limbs during over ground running in n=28 participants. These data was subsequently used to develop a theoretical understanding of the coordination of the spine and pelvis in all three body planes during the stance phase of running. In the sagittal plane, there appeared to be an antiphase coordinate pattern which may function to increase femoral inclination at toe off whilst minimising anterior-posterior accelerations of the CoM. In the medio-lateral direction, CoM motion appears to facilitate transition to the contralateral foot. However, an antiphase coordination pattern was also observed, most likely to minimise unnecessary accelerations of the CoM. In the transverse plane, motion of the pelvis was observed to lag slightly behind that of the thorax. However, it is possible that the close coupling between these two segments facilitates the thoracic rotation required to passively drive arm motion. This is the first study to provide a full biomechanical rationale for the coordination of the spine and pelvis during human running. This insight should help clinicians develop an improved understanding of how spinal and pelvic motions may contribute to, or result from, common running injuries.

  17. Leg stiffness of sprinters using running-specific prostheses.

    PubMed

    McGowan, Craig P; Grabowski, Alena M; McDermott, William J; Herr, Hugh M; Kram, Rodger

    2012-08-07

    Running-specific prostheses (RSF) are designed to replicate the spring-like nature of biological legs (bioL) during running. However, it is not clear how these devices affect whole leg stiffness characteristics or running dynamics over a range of speeds. We used a simple spring-mass model to examine running mechanics across a range of speeds, in unilateral and bilateral transtibial amputees and performance-matched controls. We found significant differences between the affected leg (AL) of unilateral amputees and both ALs of bilateral amputees compared with the bioL of non-amputees for nearly every variable measured. Leg stiffness remained constant or increased with speed in bioL, but decreased with speed in legs with RSPs. The decrease in leg stiffness in legs with RSPs was mainly owing to a combination of lower peak ground reaction forces and increased leg compression with increasing speeds. Leg stiffness is an important parameter affecting contact time and the force exerted on the ground. It is likely that the fixed stiffness of the prosthesis coupled with differences in the limb posture required to run with the prosthesis limits the ability to modulate whole leg stiffness and the ability to apply high vertical ground reaction forces during sprinting.

  18. Using the Model Coupling Toolkit to couple earth system models

    USGS Publications Warehouse

    Warner, J.C.; Perlin, N.; Skyllingstad, E.D.

    2008-01-01

    Continued advances in computational resources are providing the opportunity to operate more sophisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies that include interactions between different physical processes. Therefore there is a strong desire to develop coupled modeling systems that utilize existing models and allow efficient data exchange and model control. The basic system would entail model "1" running on "M" processors and model "2" running on "N" processors, with efficient exchange of model fields at predetermined synchronization intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore (SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for operation control and inter-model distributed memory transfer of model variables. In this paper we describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an example from each coupled system. Methods presented in this paper are clearly applicable for coupling of other types of models. ?? 2008 Elsevier Ltd. All rights reserved.

  19. Effective leg stiffness in running.

    PubMed

    Blum, Yvonne; Lipfert, Susanne W; Seyfarth, Andre

    2009-10-16

    Leg stiffness is a common parameter used to characterize leg function during bouncing gaits, like running and hopping. In the literature, different methods to approximate leg stiffness based on kinetic and kinematic parameters are described. A challenging point in estimating leg stiffness is the definition of leg compression during contact. In this paper four methods (methods A-D) based on ground reaction forces (GRF) and one method (method E) relying on temporal parameters are described. Leg stiffness calculated by these five methods is compared with running patterns, predicted by the spring mass model. The best and simplest approximation of leg stiffness is method E. It requires only easily accessible parameters (contact time, flight time, resting leg length, body mass and the leg's touch down angle). Method D is of similar quality but additionally requires the time-dependent progression of the GRF. The other three methods show clear differences from the model predictions by over- or underestimating leg stiffness, especially at slow speeds. Leg stiffness is derived from a conceptual model of legged locomotion and does not exist without this model. Therefore, it is important to prove which experimental method is suited best for approximating the stiffness in a specific task. This will help to interpret the predictions of the conceptual model in comparison with experimental data.

  20. When the Well Runs Dry

    ERIC Educational Resources Information Center

    Williams, Robert H.

    1972-01-01

    Natural gas is viewed as an attractive fuel - low polluting, with low production and transportation costs. However, high demand, coupled with a decreased discovery rate for new gas reserves, is leading to a natural gas shortage. Other resources must be substituted with synthetic gas from coal and methane from organic wastes emerging as potential…

  1. HVM capabilities of CPE run-to-run overlay control

    NASA Astrophysics Data System (ADS)

    Subramany, Lokesh; Chung, Woong Jae; Gutjahr, Karsten; Garcia-Medina, Miguel; Sparka, Christian; Yap, Lipkong; Demirer, Onur; Karur-Shanmugam, Ramkumar; Riggs, Brent; Ramanathan, Vidya; Robinson, John C.; Pierson, Bill

    2015-03-01

    With the introduction of N2x and N1x process nodes, leading-edge factories are facing challenging demands of shrinking design margins. Previously un-corrected high-order signatures, and un-compensated temporal changes of high-order signatures, carry an important potential for improvement of on-product overlay (OPO). Until recently, static corrections per exposure (CPE), applied separately from the main APC correction, have been the industry's standard for critical layers [1], [2]. This static correction is setup once per device and layer and then updated periodically or when a machine change point generates a new overlay signature. This is a non-ideal setup for two reasons. First, any drift or sudden shift in tool signature between two CPE update periods can cause worse OPO and a higher rework rate, or, even worse, lead to yield loss at end of line. Second, these corrections are made from full map measurements that can be in excess of 1,000 measurements per wafer [3]. Advanced overlay control algorithms utilizing Run-to-Run (R2R) CPE can be used to reduce the overlay signatures on product in High Volume Manufacturing (HVM) environments. In this paper, we demonstrate the results of a R2R CPE control scheme in HVM. The authors show an improvement up to 20% OPO Mean+3Sigma values on several critical immersion layers at the 28nm and 14 nm technology nodes, and a reduction of out-of-spec residual points per wafer (validated on full map). These results are attained by closely tracking process tool signature changes by means of APC, and with an affordable metrology load which is significantly smaller than full wafer measurements.

  2. Complements to nonperturbative treatment of radiative damping effect in dielectronic recombination: {delta}n=2 transition in C IV

    SciTech Connect

    Stancalie, V.

    2005-10-01

    The primary purpose of the present work is to provide new refined results from nonperturbative treatment of the radiative damping effect in dielectronic recombination. The present results are used to test and confirm previously reported method [V. Stancalie, Phys. Plasmas 12, 043301 (2005)] taking full account of the electron collision and radiative processes in a consistent way, when radiation field is considered to all orders. This work refers to the 1s{sup 2}2s5s({sup 1}S) and 1s{sup 2}2p7s({sup 1}P{sup 0}) configurations, embedded in the electric dipole field of the 2s-2p core transition in Li-like C ion. Comparisons with previously reported results are shown. This data are believed to be the first demonstration of {delta}n=2 channel in dielectronic recombination of Li-like into Be-like C and are important in plasma diagnostics.

  3. Large O(m-2c) nonperturbative corrections to the inclusive rate of the decay B -> Xsγ

    NASA Astrophysics Data System (ADS)

    Voloshin, M. B.

    1997-02-01

    It is shown that the inclusive rate of the rare weak radiative decays B -> Xsγ contains a series of nonperturbative corrections, whose `short distance' scale is set by m-1c, rather than bym-1b . The first correction in this series is expressed through the chromomagnetic interaction of the b quark inside the B meson and the relative magnitude of the effect is determined by the ratio /m2c. Though the magnitude of this first correction is suppressed by a numerical coefficient, the sensitivity of the decay rate to the distance scale m-1c may significantly limit the accuracy of purely perturbative predictions for the rate.

  4. Determination of the b-quark Mass and Nonperturbative parameters in Semileptonic and Radiative Penguin Decays at BaBar

    SciTech Connect

    Tackmann, Kerstin; collaboration, for the BABAR

    2008-01-23

    Knowing the mass of the b-quark is essential to the study of the structure and decays of B mesons as well as to future tests of the Higgs mechanism of mass generation. We present recent preliminary measurements of the b-quark mass and related nonperturbative parameters from moments of kinematic distributions in charmed and charmless semileptonic and radiative penguin B decays. Their determination from charmless semileptonic B decays is the first measurement in this mode. The data were collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -}-collider at the Stanford Linear Accelerator Center at a center-of-momentum energy of 10:58 GeV.

  5. A new approach to analytic, non-perturbative, gauge-invariant QCD renormalization is described, with applications to high energy elastic pp-scattering.

    NASA Astrophysics Data System (ADS)

    Fried, H. M.; Tsang, P. H.; Gabellini, Y.; Grandou, T.; Sheu, Y.-M.

    2016-11-01

    A new non-perturbative, gauge-invariant model QCD renormalization is applied to high energy elastic pp-scattering. The differential cross-section deduced from this model displays a diffraction dip that resembles those of experiments. Comparison with ISR and LHC data is currently underway.

  6. Ventilatory Threshold, Running Economy and Distance Running Performance of Trained Athletes.

    ERIC Educational Resources Information Center

    Powers, Scott K.; And Others

    1983-01-01

    In an attempt to identify physiological factors that account for success in distance running, researchers evaluated relationships among ventilatory threshold, running economy, and distance running performance. Subjects were trained male runners with similar maximal aerobic power. (Authors/PP)

  7. The Influence of External Perturbations on Running Kinematics and Muscle Activity Before and After Accommodation

    PubMed Central

    Haudum, Anita; Birklbauer, Jürgen; Müller, Erich

    2012-01-01

    In the current study, the running pattern of the lower extremity was examined while being perturbed through tubes attached between the ankles and the lower back to analyze influences on the running pattern variability before and after a varied running intervention. 3D-kinematics, joint coupling and electromyography (EMG), as well as their variability, were analyzed in ten healthy male participants during treadmill running (10.5 km·h-1). Pre- and post-tests each consisted of 2 x 30 min treadmill running (one with and one without tubes). The results showed major acute effects on EMG and kinematics, as well as joint coordination variability, due to the constraints (p < 0.05). After the intervention, a process of normalization of most kinematic and EMG parameters occurred; however, EMG variability, kinematic variability and joint coordination variability were reduced during tube running below normal running level (p < 0.05). The findings further indicate rapid kinematic adaptations while muscle activity appears to require longer practice to adapt. The constraint serves to acutely increase variability, but may lead to reduced variability when applied for a longer period of time. Key points Normalization of the EMG variability after the training intervention during running with the dynamic constraint Joint coupling variability was reduced after practice intervention during constrained running Kinematic adaptations happen fast while muscle activity requires longer practice Sublevels (i.e., EMGs) were more influenced by the constraint than the macroscopic kinematics. PMID:24150066

  8. Is Running Bad for Your Knees?

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_162903.html Is Running Bad for Your Knees? Study suggests it may ... THURSDAY, Jan. 5, 2017 (HealthDay News) -- Everybody believes running can leave you sore and swollen, right? Well, ...

  9. Running Parallel Discrete Event Simulators on Sierra

    SciTech Connect

    Barnes, P. D.; Jefferson, D. R.

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  10. Running as an Adjunct to Psychotherapy.

    ERIC Educational Resources Information Center

    Leer, Frederic

    1980-01-01

    Physical benefits of running have been highly publicized. Explores the equally valuable psychological benefits to be derived from running and examines how mastering a physical skill can be generalized to mastery in other areas of life. (Author)

  11. Adding run history to CLIPS

    NASA Technical Reports Server (NTRS)

    Tuttle, Sharon M.; Eick, Christoph F.

    1991-01-01

    To debug a C Language Integrated Production System (CLIPS) program, certain 'historical' information about a run is needed. It would be convenient for system builders to have the capability to request such information. We will discuss how historical Rete networks can be used for answering questions that help a system builder detect the cause of an error in a CLIPS program. Moreover, the cost of maintaining a historical Rete network is compared with that for a classical Rete network. We will demonstrate that the cost for assertions is only slightly higher for a historical Rete network. The cost for handling retraction could be significantly higher; however, we will show that by using special data structures that rely on hashing, it is also possible to implement retractions efficiently.

  12. Dynamic gearing in running dogs.

    PubMed

    Carrier, D R; Gregersen, C S; Silverton, N A

    1998-12-01

    Dynamic gearing is a mechanism that has been suggested to enhance the performance of skeletal muscles by maintaining them at the shortening velocities that maximize their power or efficiency. We investigated this hypothesis in three domestic dogs during trotting and galloping. We used ground force recordings and kinematic analysis to calculate the changes in gear ratio that occur during the production of the external work of locomotion. We also monitored length changes of the vastus lateralis muscle, an extensor muscle of the knee, using sonomicrometry in four additional dogs to determine the nature and rate of active shortening of this muscle. During both trotting and galloping, the gear ratios of the extensor muscles of the elbow, wrist and ankle joints were relatively constant early in limb support, but decreased rapidly during the second half of support. The gear ratio at the hip exerted an extensor moment initially, but decreased throughout limb support and became negative midway through support. This pattern of decreasing gear ratio during the second half of support indicates that dynamic gearing does not maximize muscle power or efficiency at the elbow, wrist, hip and ankle joints. In contrast, the extensor muscles of the shoulder and knee joints exhibited an increase in gear ratio during limb support. In two dogs, the vastus lateralis muscle shortened at a relatively constant rate of 3.7-4 lengths s-1 during intermediate-speed galloping. This pattern of increasing gear ratio and constant velocity of muscle shortening at the knee joint is consistent with the hypothesis of dynamic gearing. Given the amount of work done at the knee and shoulder joints of running dogs, dynamic gearing may contribute to the economy of constant-speed running and may be important to integrated limb function.

  13. Running Patterns of Highly Skilled Distance Runners.

    ERIC Educational Resources Information Center

    Dunetts, Michael J.; Dillman, Charles J.

    The biomechanical elements inherent in the running styles of Olympic-level athletes were examined in order to obtain a range of parameter values for specific running velocities. Forty-eight athletes participated in middle and long distance running events that were filmed and later analyzed to determine the relationship between the physical…

  14. Head injury from a bungee run.

    PubMed

    Singh, Pankaj; Convery, Fiona; Watt, Michael; Fulton, Ailsa; McKinstry, Steven; Flannery, Thomas

    2012-04-01

    An adaptation of bungee jumping, 'bungee running', involves participants attempting to run as far as they can whilst connected to an elastic rope which is anchored to a fixed point. Usually considered a safe recreational activity, we report a potentially life-threatening head injury following a bungee running accident.

  15. An Epidemiologic Perspective. Does Running Cause Osteoarthritis?

    ERIC Educational Resources Information Center

    Eichner, Edward R.

    1989-01-01

    A review of literature on exercise and arthritis considers relevant epidemiologic and experimental studies of animals and humans, focusing on the relationship between running and osteoarthritis. No conclusive evidence exists that running causes osteoarthritis; research trends suggest that running may slow the functional aspects of musculoskeletal…

  16. A detailed study of nonperturbative solutions of two-body Dirac equations

    SciTech Connect

    Crater, H.W.; Becker, R.L.; Wong, C.Y.; Van Alstine, P.

    1992-12-01

    In quark model calculations of the meson spectrums fully covariant two-body Dirac equations dictated by Dirac's relativistic constraint mechanics gave a good fit to the entire meson mass spectrum for light quark mesons as well as heavy quark mesons with constituent world scalar and vector potentials depending on just one or two parameters. In this paper, we investigate the properties of these equations that made them work so well by solving them numerically for quantum electrodynamics (QED) and related field theories. The constraint formalism generates a relativistic quantum mechanics defined by two coupled Dirac equations on a sixteen component wave function which contain Lorentz covariant constituent potentials that are initially undetermined. An exact Pauli reduction leads to a second order relativistic Schroedinger-like equation for a reduced eight component wave function determined by an effective interaction -- the quasipotential. We first determine perturbatively to lowest order the relativistic quasipotential for the Schroedinger-like equation by comparing that form with one derived from the Bethe-Salpeter equation. Insertion of this perturbative information into the minimal interaction structures of the two-body Dirac equations then completely determines their interaction structures. Then we give a procedure for constructing the full sixteen component solution to our coupled first-order Dirac equations from a solution of the second order equation for the reduced wave function. Next, we show that a perturbative treatment of these equations yields the standard spectral results for QED and related interactions.

  17. Biomechanics and analysis of running gait.

    PubMed

    Dugan, Sheila A; Bhat, Krishna P

    2005-08-01

    Physical activity, including running, is important to general health by way of prevention of chronic illnesses and their precursors. To keep runners healthy, it is paramount that one has sound knowledge of the biomechanics of running and assessment of running gait. More so, improving performance in competitive runners is based in sound training and rehabilitation practices that are rooted firmly in biomechanical principles. This article summarized the biomechanics of running and the means with which one can evaluate running gait. The gait assessment techniques for collecting and analyzing kinetic and kinematic data can provide insights into injury prevention and treatment and performance enhancement.

  18. A Star on the Run

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    Usually stars that are born together tend to move together but sometimes stars can go rogue and run away from their original birthplace. A pair of astronomers have now discovered the first runaway red supergiant (RSG) ever identified in another galaxy. With a radial velocity discrepancy of 300 km/s, its also the fastest runaway massive star known. Discrepant Speeds: When massive stars form in giant molecular clouds, they create what are known as OB associations: groups of hot, massive, short-lived stars that have similar velocities because theyre moving through space together. But sometimes stars that appear to be part of an OB association dont have the same velocity as the rest of the group. These stars are called runaways.What causes an OB star to run away is still debated, but we know that a fairly significant fraction of OB stars are runaways. In spite of this, surprisingly few runaways have been found that are evolved massive stars i.e., the post-main-sequence state of OB stars. This is presumably because these evolved stars have had more time to move away from their birthplace, and its more difficult to identify a runaway without the context of its original group. An Evolved Runaway: Difference between observed velocity and expected velocity, plotted as a function of expected velocity. The black points are foreground stars. The red points are expected RSGs, clustered around a velocity difference of zero. The green pentagon is the runaway RSG J004330.06+405258.4. [Evans Massey 2015]Despite this challenge, a recent survey of RSGs in the galaxy M31 has led to the detection of a massive star on the run! Kate Evans (Lowell Observatory and California Institute of Technology) and Philip Massey (Lowell Observatory and Northern Arizona University) discovered that RSG J004330.06+405258.4 is moving through the Andromeda Galaxy with a radial velocity thats off by about 300 km/s from the radial velocity expected for its location.Evans and Massey discovered this rogue star

  19. Random Test Run Length and Effectiveness

    NASA Technical Reports Server (NTRS)

    Andrews, James H.; Groce, Alex; Weston, Melissa; Xu, Ru-Gang

    2008-01-01

    A poorly understood but important factor in many applications of random testing is the selection of a maximum length for test runs. Given a limited time for testing, it is seldom clear whether executing a small number of long runs or a large number of short runs maximizes utility. It is generally expected that longer runs are more likely to expose failures -- which is certainly true with respect to runs shorter than the shortest failing trace. However, longer runs produce longer failing traces, requiring more effort from humans in debugging or more resources for automated minimization. In testing with feedback, increasing ranges for parameters may also cause the probability of failure to decrease in longer runs. We show that the choice of test length dramatically impacts the effectiveness of random testing, and that the patterns observed in simple models and predicted by analysis are useful in understanding effects observed.

  20. Energy-momentum tensor on the lattice: Nonperturbative renormalization in Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Giusti, Leonardo; Pepe, Michele

    2015-06-01

    We construct an energy-momentum tensor on the lattice which satisfies the appropriate Ward identities (WIs) and has the right trace anomaly in the continuum limit. It is defined by imposing suitable WIs associated to the Poincaré invariance of the continuum theory. These relations come forth when the length of the box in the temporal direction is finite, and they take a particularly simple form if the coordinate and the periodicity axes are not aligned. We implement the method for the SU(3) Yang-Mills theory discretized with the standard Wilson action in the presence of shifted boundary conditions in the (short) temporal direction. By carrying out extensive numerical simulations, the renormalization constants of the traceless components of the tensor are determined with a precision of roughly half a percent for values of the bare coupling constant in the range 0 ≤g02≤1 .

  1. Running boundary actions, Asymptotic Safety, and black hole thermodynamics

    NASA Astrophysics Data System (ADS)

    Becker, Daniel; Reuter, Martin

    2012-07-01

    Previous explorations of the Asymptotic Safety scenario in Quantum Einstein Gravity (QEG) by means of the effective average action and its associated functional renormalization group (RG) equation assumed spacetime manifolds which have no boundaries. Here we take a first step towards a generalization for non-trivial boundaries, restricting ourselves to action functionals which are at most of second order in the derivatives acting on the metric. We analyze two examples of truncated actions with running boundary terms: full fledged QEG within the single-metric Einstein-Hilbert truncation, augmented by a scale dependent Gibbons-Hawking surface term, and a bi-metric truncation for gravity coupled to scalar matter fields. The latter contains 17 running couplings, related to both bulk and boundary terms, whose beta-functions are computed in the induced gravity approximation (large N limit). We find that the bulk and the boundary Newton constant, pertaining to the Einstein-Hilbert and Gibbons-Hawking term, respectively, show opposite RG running; proposing a scale dependent variant of the ADM mass we argue that the running of both couplings is consistent with gravitational anti-screening. We discuss the status of the `bulk-boundary matching' usually considered necessary for a well defined variational principle within the functional RG framework, and we explain a number of conceptual issues related to the `zoo' of (Newton-type, for instance) coupling constants, for the bulk and the boundary, which result from the bi-metric character of the gravitational average action. In particular we describe a simple device for counting the number of field modes integrated out between the infrared cutoff scale and the ultraviolet. This method makes it manifest that, in an asymptotically safe theory, there are effectively no field modes integrated out while the RG trajectory stays in the scaling regime of the underlying fixed point. As an application, we investigate how the semiclassical

  2. What we can learn about running from barefoot running: an evolutionary medical perspective.

    PubMed

    Lieberman, Daniel E

    2012-04-01

    Barefoot running, which was how people ran for millions of years, provides an opportunity to study how natural selection adapted the human body to run. Because humans evolved to run barefoot, a barefoot running style that minimizes impact peaks and provides increased proprioception and foot strength, is hypothesized to help avoid injury, regardless of whether one is wearing shoes.

  3. Take the monkey and run

    PubMed Central

    Phillips, Kimberley A.; Hambright, M. Karen; Hewes, Kelly; Schilder, Brian M.; Ross, Corinna N.; Tardif, Suzette D.

    2015-01-01

    Background The common marmoset (Callithrix jacchus) is a small, New World primate that is used extensively in biomedical and behavioral research. This short-lived primate, with its small body size, ease of handling, and docile temperament, has emerged as a valuable model for aging and neurodegenerative research. A growing body of research has indicated exercise, aerobic exercise especially, imparts beneficial effects to normal aging. Understanding the mechanisms underlying these positive effects of exercise, and the degree to which exercise has neurotherapeutic effects, is an important research focus. Thus, developing techniques to engage marmosets in aerobic exercise would have great advantages. New method Here we describe the marmoset exercise ball (MEB) paradigm: a safe (for both experimenter and subjects), novel and effective means to engage marmosets in aerobic exercise. We trained young adult male marmosets to run on treadmills for 30 min a day, 3 days a week. Results Our training procedures allowed us to engage male marmosets in this aerobic exercise within 4 weeks, and subjects maintained this frequency of exercise for 3 months. Comparison with existing methods To our knowledge, this is the first described method to engage marmosets in aerobic exercise. A major advantage of this exercise paradigm is that while it was technically forced exercise, it did not appear to induce stress in the marmosets. Conclusions These techniques should be useful to researchers wishing to address physiological responses of exercise in a marmoset model. PMID:25835199

  4. High impact running improves learning.

    PubMed

    Winter, Bernward; Breitenstein, Caterina; Mooren, Frank C; Voelker, Klaus; Fobker, Manfred; Lechtermann, Anja; Krueger, Karsten; Fromme, Albert; Korsukewitz, Catharina; Floel, Agnes; Knecht, Stefan

    2007-05-01

    Regular physical exercise improves cognitive functions and lowers the risk for age-related cognitive decline. Since little is known about the nature and the timing of the underlying mechanisms, we probed whether exercise also has immediate beneficial effects on cognition. Learning performance was assessed directly after high impact anaerobic sprints, low impact aerobic running, or a period of rest in 27 healthy subjects in a randomized cross-over design. Dependent variables comprised learning speed as well as immediate (1 week) and long-term (>8 months) overall success in acquiring a novel vocabulary. Peripheral levels of brain-derived neurotrophic factor (BDNF) and catecholamines (dopamine, epinephrine, norepinephrine) were assessed prior to and after the interventions as well as after learning. We found that vocabulary learning was 20 percent faster after intense physical exercise as compared to the other two conditions. This condition also elicited the strongest increases in BDNF and catecholamine levels. More sustained BDNF levels during learning after intense exercise were related to better short-term learning success, whereas absolute dopamine and epinephrine levels were related to better intermediate (dopamine) and long-term (epinephrine) retentions of the novel vocabulary. Thus, BDNF and two of the catecholamines seem to be mediators by which physical exercise improves learning.

  5. The MICE Run Control System

    NASA Astrophysics Data System (ADS)

    Hanlet, Pierrick; Mice Collaboration

    2014-06-01

    The Muon Ionization Cooling Experiment (MICE) is a demonstration experiment to prove the feasibility of cooling a beam of muons for use in a Neutrino Factory and/or Muon Collider. The MICE cooling channel is a section of a modified Study II cooling channel which will provide a 10% reduction in beam emittance. In order to ensure a reliable measurement, MICE will measure the beam emittance before and after the cooling channel at the level of 1%, or a relative measurement of 0.001. This renders MICE a precision experiment which requires strict controls and monitoring of all experimental parameters in order to control systematic errors. The MICE Controls and Monitoring system is based on EPICS and integrates with the DAQ, Data monitoring systems, and a configuration database. The new MICE Run Control has been developed to ensure proper sequencing of equipment and use of system resources to protect data quality. A description of this system, its implementation, and performance during recent muon beam data collection will be discussed.

  6. Strong coupling from hadronic τ decays: A critical appraisal

    NASA Astrophysics Data System (ADS)

    Boito, Diogo; Golterman, Maarten; Maltman, Kim; Peris, Santiago

    2017-02-01

    Several different analysis methods have been developed to determine the strong coupling via finite-energy sum-rule analyses of hadronic τ decay data. While most methods agree on the existence of the well-known ambiguity in the choice of a resummation scheme due to the slow convergence of QCD perturbation theory at the τ mass, there is an ongoing controversy over how to deal properly with nonperturbative effects. These are small, but not negligible, and include quark-hadron "duality violations" (i.e., resonance effects) which are not described by the operator product expansion (OPE). In one approach, an attempt is made to suppress duality violations enough that they might become negligible. The number of OPE parameters to be fit, however, then exceeds the number of available sum rules, necessitating an uncontrolled OPE truncation, in which a number of higher-dimension OPE contributions in general present in QCD are set to zero by hand. In the second approach, truncation of the OPE is avoided by construction, and duality violations are taken into account explicitly, using a physically motivated model. In this article, we provide a critical appraisal of a recent analysis employing the first approach and demonstrate that it fails to properly account for nonperturbative effects, making the resulting determination of the strong coupling unreliable. The second approach, in contrast, passes all self-consistency tests, and provides a competitive determination of the strong coupling from τ decays.

  7. Impact Accelerations of Barefoot and Shod Running.

    PubMed

    Thompson, M; Seegmiller, J; McGowan, C P

    2016-05-01

    During the ground contact phase of running, the body's mass is rapidly decelerated resulting in forces that propagate through the musculoskeletal system. The repetitive attenuation of these impact forces is thought to contribute to overuse injuries. Modern running shoes are designed to reduce impact forces, with the goal to minimize running related overuse injuries. Additionally, the fore/mid foot strike pattern that is adopted by most individuals when running barefoot may reduce impact force transmission. The aim of the present study was to compare the effects of the barefoot running form (fore/mid foot strike & decreased stride length) and running shoes on running kinetics and impact accelerations. 10 healthy, physically active, heel strike runners ran in 3 conditions: shod, barefoot and barefoot while heel striking, during which 3-dimensional motion analysis, ground reaction force and accelerometer data were collected. Shod running was associated with increased ground reaction force and impact peak magnitudes, but decreased impact accelerations, suggesting that the midsole of running shoes helps to attenuate impact forces. Barefoot running exhibited a similar decrease in impact accelerations, as well as decreased impact peak magnitude, which appears to be due to a decrease in stride length and/or a more plantarflexed position at ground contact.

  8. Coupling expert systems and simulation

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Beale, G.; Padalkar, S.; Rodriguez-Moscoso, J.; Hsieh, B. J.; Vinz, F.; Fernandez, K. R.

    1988-01-01

    A prototype coupled system called NESS (NASA Expert Simulation System) is described. NESS assists the user in running digital simulations of dynamic systems, interprets the output data to performance specifications, and recommends a suitable series compensator to be added to the simulation model.

  9. Endurance running and the evolution of Homo.

    PubMed

    Bramble, Dennis M; Lieberman, Daniel E

    2004-11-18

    Striding bipedalism is a key derived behaviour of hominids that possibly originated soon after the divergence of the chimpanzee and human lineages. Although bipedal gaits include walking and running, running is generally considered to have played no major role in human evolution because humans, like apes, are poor sprinters compared to most quadrupeds. Here we assess how well humans perform at sustained long-distance running, and review the physiological and anatomical bases of endurance running capabilities in humans and other mammals. Judged by several criteria, humans perform remarkably well at endurance running, thanks to a diverse array of features, many of which leave traces in the skeleton. The fossil evidence of these features suggests that endurance running is a derived capability of the genus Homo, originating about 2 million years ago, and may have been instrumental in the evolution of the human body form.

  10. On Coupled Stellar Luminosity and Gravitation

    NASA Astrophysics Data System (ADS)

    Neuenschwander, Dwight E.; McCully, C. V.

    2008-09-01

    We derive a analytic nonperturbative solution to the coupled field equations of general relativity and electrodynamics, for a star of initial mass Mo and lifetime-averaged luminosity L. We carry out our solution in familiar spherical coordinates, including an off-diagonal term in the metric tensor to allow for "frame dragging” caused by the radial flux of light. We then show how our metric can be transformed into a diagonal one; and how the "photon dust” electomagnetic stress tensor assumed by early investigators of this problem forms an approximation to our solution. We also estimate the magnitude of some of the small effects inferred by this model of radial frame dragging. We thank The Catalysts, an SNU science alumni organization, for its support.

  11. [Facts and fiction about running shoes].

    PubMed

    Schelde, Jacob

    2012-11-26

    Running as a means of exercise is becoming increasingly popular, but the rate of injury is very high among runners. To prevent running-related injuries much attention has been given the running shoe and its construction, particular its shock-absorbing capabilities and motion control features. It is recommended that running shoes should be purchased based on the runner's medial arch height and degree of pronation, and that the shoes should be changed frequently as their shock-absorbing capabilities decrease with usage. Randomized controlled trials and other studies in the scientific literature do not support these recommendations.

  12. Nonperturbative Chemical Imaging of Organelle Transport in Living Cells with Coherent Anti-Stokes Raman Scattering Microscopy

    PubMed Central

    Nan, Xiaolin; Potma, Eric O.; Xie, X. Sunney

    2006-01-01

    Nonperturbative monitoring of intracellular organelle transport in unstained living cells was achieved with coherent anti-Stokes Raman scattering (CARS) microscopy. To avoid possible interference with the organelle transport introduced by laser radiation, we first examined different illumination conditions. Using a new photodamage criterion based on morphological changes of the cells, we determined the threshold values of both pulse energy and average power at relevant wavelengths. Under excitation conditions much milder than the threshold levels, we were able to monitor the motions of lipid droplet (LD) organelles in steroidogenic mouse adrenal cortical (Y-1) cells with CARS microscopy in real time without perturbations to the cells. Particle tracking analyses revealed subdiffusion as well as active transport of LDs along microtubules. Interestingly, LD active transport is only present in Y-1 cells that rounded up in culture, a morphological change associated with steroidogenesis, suggesting possible involvements of LD active transport in the latter. Simultaneous imaging of LDs and mitochondria with CARS and two-photon fluorescence microscopy clearly showed that interactions between the two organelles could be facilitated by high LD motility. These observations demonstrate CARS microscopy as a powerful noninvasive imaging tool for studying dynamic processes in living cells. PMID:16632501

  13. Novel nonperturbative approach for radiative B¯0(B¯s0)→J /ψ γ decays

    NASA Astrophysics Data System (ADS)

    Geng, Li-Sheng; Oset, Eulogio

    2016-07-01

    Radiative B¯ 0(B¯s 0)→J /ψ γ decays provide an interesting case to test our understanding of (non)perturbative QCD and eventually to probe physics beyond the standard model. Recently, the LHCb Collaboration reported an upper bound, updating the results of the BABAR Collaboration. Previous theoretical predictions based on QCD factorization or perturbative QCD have shown large variations due to different treatment of nonfactorizable contributions and meson-photon transitions. In this paper, we report on a novel approach to estimate the decay rates, which is based on a recently proposed model for B decays and the vector meson dominance hypothesis, widely tested in the relevant energy regions. The predicted branching ratios are Br [B¯ 0→J /ψ γ ]=(3.50 ±0.34-0.63+1.12)×10-8 and Br [B¯s 0→J /ψ γ ]=(7.20 ±0.68-1.30+2.31)×10-7 . The first uncertainty is systematic and the second is statistical, originating from the experimental B¯s 0→J /ψ ϕ branching ratio.

  14. Fast Ion Effects on Fishbones and n=1 Kinks in JET Simulated by a Non-perturbative NOVA-KN Code

    SciTech Connect

    N.N. Gorelenkov; C.Z. Cheng; V.G. Kiptily; M.J. Mantsinen; S.E. Sharapov; the JET-EFDA Contributors

    2004-10-28

    New global non-perturbative hybrid code, NOVA-KN, and simulations of resonant type modes in JET [Joint European Torus] plasmas driven by energetic H-minority ions are presented. The NOVA-KN code employs the ideal-MHD description for the background plasma and treats non-perturbatively the fast particle kinetic response, which includes the fast ion finite orbit width (FOW) effect. In particular, the n = 1 fishbone mode, which is in precession drift resonance with fast ions, is studied. The NOVA-KN code is applied to model an n = 1 (f = 50-80kHz) MHD activity observed recently in JET low density plasma discharges with high fast ion (H-minority) energy content generated during the ion cyclotron resonance heating (ICRH). This n = 1 MHD activity is interpreted as the instability of the n = 1 precession drift frequency fishbone modes.

  15. Transport signatures in topological systems coupled to ac fields

    NASA Astrophysics Data System (ADS)

    Ruocco, Leonard; Gómez-León, Álvaro

    2017-02-01

    We study the transport properties of a topological system coupled to an ac electric field by means of Floquet-Keldysh formalism. We consider a semi-infinite chain of dimers coupled to a semi-infinite metallic lead and obtain the density of states and current when the system is out of equilibrium. Our formalism is nonperturbative and allows us to explore, in the thermodynamic limit, a wide range of regimes for the ac field, arbitrary values of the coupling strength to the metallic contact and corrections to the wide-band limit (WBL). We find that hybridization with the contact can change the dimerization phase, and that the current dependence on the field amplitude can be used to discriminate between them. We also show the appearance of side bands and nonequilibrium zero-energy modes, characteristic of the Floquet systems. Our results directly apply to the stability of nonequilibrium topological phases, when transport measurements are used for their detection.

  16. Relativistic stars in scalar-tensor theories with disformal coupling

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Minamitsuji, Masato

    2017-01-01

    We discuss a general formulation to study the structure of slowly-rotating relativistic stars in a broad class of scalar-tensor theories including disformal coupling to matter. Our approach includes as particular cases theories with generalized kinetic terms and generic scalar field potentials, and contains theories with conformal coupling as particular limits. We propose a minimal model to investigate the role of the disformal coupling on the non-perturbative effect known as spontaneous scalarization, which causes relativistic star solutions in certain classes of scalar-tensor theories to differ dramatically from their general relativistic counterparts. Moreover, we show that the moment of inertia and compactness of stars are equation of state independent, which can potentially be used to constrain the model observationally.

  17. The CDF SVX II upgrade for the Tevatron Run II

    SciTech Connect

    Bortoletto, Daniela

    1997-04-01

    A microstrip silicon detector SVX II has been proposed for the upgrade of CDF to be installed in 1999 for Run II of the Tevatron. Three barrels of five layers of double-sided silicon microstrip detectors will cover the interaction region. A description of the project status will be presented. Emphasis will be given to the R&D program for silicon sensors which includes capacitance minimization, the study of coupling capacitor integrity, the operation of the detectors in conjunction with the SVXH and SVX2 readout chips in two beam tests and the determination of the detectors performance deterioration due to radiation damage.

  18. Running of αs and mb in the MSSM

    NASA Astrophysics Data System (ADS)

    Harlander, R. V.; Mihaila, L.; Steinhauser, M.

    2007-09-01

    A consistent evolution of the strong coupling constant αs from MZ to the grand unified theory (GUT) scale is presented, involving three-loop running and two-loop decoupling. The two-loop transition from the MS¯- to the DR¯-scheme is properly taken into account. In the second part of the paper, the bottom quark mass in the DR¯-scheme at the electroweak/supersymmetry (SUSY) scale is evaluated with four-loop accuracy. We find that the three-loop effects are comparable to the experimental uncertainty both for αs and mb.

  19. Distinct stages of adult hippocampal neurogenesis are regulated by running and the running environment.

    PubMed

    Bednarczyk, Matthew R; Hacker, Lindsay C; Fortin-Nunez, Stéphanie; Aumont, Anne; Bergeron, Raynald; Fernandes, Karl J L

    2011-12-01

    Hippocampal neurogenesis continues into adulthood in mammalian vertebrates, and in experimental rodent models it is powerfully stimulated by exposure to a voluntary running wheel. In this study, we demonstrate that exposure to a running wheel environment, in the absence of running, is sufficient to regulate specific aspects of hippocampal neurogenesis. Adult mice were provided with standard housing, housing enriched with a running wheel or housing enriched with a locked wheel (i.e., an environment comparable to that of running animals, without the possibility of engaging in running). We found that mice in the running wheel and locked wheel groups exhibited equivalent increases in proliferation within the neurogenic niche of the dentate gyrus; this included comparable increases in the proliferation of radial glia-like stem cells and the number of proliferating neuroblasts. However, only running animals displayed increased numbers of postmitotic neuroblasts and mature neurons. These results demonstrate that the running wheel environment itself is sufficient for promoting proliferation of early lineage hippocampal precursors, while running per se enables newly generated neuroblasts to survive and mature into functional hippocampal neurons. Thus, both running-independent and running-dependent stimuli are integral to running wheel-induced hippocampal neurogenesis.

  20. The Effect of Training in Minimalist Running Shoes on Running Economy.

    PubMed

    Ridge, Sarah T; Standifird, Tyler; Rivera, Jessica; Johnson, A Wayne; Mitchell, Ulrike; Hunter, Iain

    2015-09-01

    The purpose of this study was to examine the effect of minimalist running shoes on oxygen uptake during running before and after a 10-week transition from traditional to minimalist running shoes. Twenty-five recreational runners (no previous experience in minimalist running shoes) participated in submaximal VO2 testing at a self-selected pace while wearing traditional and minimalist running shoes. Ten of the 25 runners gradually transitioned to minimalist running shoes over 10 weeks (experimental group), while the other 15 maintained their typical training regimen (control group). All participants repeated submaximal VO2 testing at the end of 10 weeks. Testing included a 3 minute warm-up, 3 minutes of running in the first pair of shoes, and 3 minutes of running in the second pair of shoes. Shoe order was randomized. Average oxygen uptake was calculated during the last minute of running in each condition. The average change from pre- to post-training for the control group during testing in traditional and minimalist shoes was an improvement of 3.1 ± 15.2% and 2.8 ± 16.2%, respectively. The average change from pre- to post-training for the experimental group during testing in traditional and minimalist shoes was an improvement of 8.4 ± 7.2% and 10.4 ± 6.9%, respectively. Data were analyzed using a 2-way repeated measures ANOVA. There were no significant interaction effects, but the overall improvement in running economy across time (6.15%) was significant (p = 0.015). Running in minimalist running shoes improves running economy in experienced, traditionally shod runners, but not significantly more than when running in traditional running shoes. Improvement in running economy in both groups, regardless of shoe type, may have been due to compliance with training over the 10-week study period and/or familiarity with testing procedures. Key pointsRunning in minimalist footwear did not result in a change in running economy compared to running in traditional footwear

  1. Biomechanics of Distance Running: A Longitudinal Study

    ERIC Educational Resources Information Center

    Nelson, Richard C.; Gregor, Robert J.

    1976-01-01

    Training for distance running over a long period produces meaningful changes in the running mechanics of experienced runners, as revealed in this longitudinal study of the biomechanical components of stride length, stride rate, stride time, and support and nonsupport time. (MB)

  2. Running biomechanics: shorter heels, better economy.

    PubMed

    Scholz, M N; Bobbert, M F; van Soest, A J; Clark, J R; van Heerden, J

    2008-10-01

    Better running economy (i.e. a lower rate of energy consumption at a given speed) is correlated with superior distance running performance. There is substantial variation in running economy, even among elite runners. This variation might be due to variation in the storage and reutilization of elastic energy in tendons. Using a simple musculoskeletal model, it was predicted that the amount of energy stored in a tendon during a given movement depends more critically on moment arm than on mechanical properties of the tendon, with the amount of stored energy increasing as the moment arm gets smaller. Assuming a link between elastic energy reutilization and overall metabolic cost of running, a smaller moment arm should therefore be associated with superior running economy. This prediction was confirmed experimentally in a group of 15 highly trained runners. The moment arm of the Achilles tendon was determined from standardized photographs of the ankle, using the position of anatomical landmarks. Running economy was measured as the rate of metabolic energy consumption during level treadmill running at a speed of 16 km h(-1). A strong correlation was found between the moment arm of the Achilles tendon and running economy. Smaller muscle moment arms correlated with lower rates of metabolic energy consumption (r(2)=0.75, P<0.001).

  3. Separating Fact from Fiction: Increasing Running Speed

    ERIC Educational Resources Information Center

    Murgia, Carla

    2008-01-01

    From a biomechanical point of view, this article explores the common belief that one must increase stride length and frequency in order to increase running speed. The limb length, explosive power, and anaerobic capacity of the athlete, as well as the type of running (sprinting vs. long distance) must be considered before making such a…

  4. Minimum Wage Effects in the Longer Run

    ERIC Educational Resources Information Center

    Neumark, David; Nizalova, Olena

    2007-01-01

    Exposure to minimum wages at young ages could lead to adverse longer-run effects via decreased labor market experience and tenure, and diminished education and training, while beneficial longer-run effects could arise if minimum wages increase skill acquisition. Evidence suggests that as individuals reach their late 20s, they earn less the longer…

  5. The Meaning of Running Away for Girls

    ERIC Educational Resources Information Center

    Peled, Einat; Cohavi, Ayelet

    2009-01-01

    Objective: The aim of this qualitative research was to understand how runaway girls perceive the processes involved in leaving home and the meaning they attribute to it. Method: Findings are based on in-depth interviews with 10 Israeli girls aged 13-17 with a history of running away from home. Results: The meaning of running away as it emerged…

  6. The Second Student-Run Homeless Shelter

    ERIC Educational Resources Information Center

    Seider, Scott C.

    2012-01-01

    From 1983-2011, the Harvard Square Homeless Shelter (HSHS) in Cambridge, Massachusetts, was the only student-run homeless shelter in the United States. However, college students at Villanova, Temple, Drexel, the University of Pennsylvania, and Swarthmore drew upon the HSHS model to open their own student-run homeless shelter in Philadelphia,…

  7. Teaching Bank Runs with Classroom Experiments

    ERIC Educational Resources Information Center

    Balkenborg, Dieter; Kaplan, Todd; Miller, Timothy

    2011-01-01

    Once relegated to cinema or history lectures, bank runs have become a modern phenomenon that captures the interest of students. In this article, the authors explain a simple classroom experiment based on the Diamond-Dybvig model (1983) to demonstrate how a bank run--a seemingly irrational event--can occur rationally. They then present possible…

  8. Impact of Running Away on Girls' Pregnancy

    ERIC Educational Resources Information Center

    Thrane, Lisa E.; Chen, Xiaojin

    2012-01-01

    This study assessed the impact of running away on pregnancy in the subsequent year among U.S. adolescents. We also investigated interactions between running away and sexual assault, romance, and school disengagement. Pregnancy among females between 11 and 17 years (n = 6100) was examined utilizing the Longitudinal Study of Adolescent Health (Add…

  9. Run II data analysis on the grid

    SciTech Connect

    Igor Mandrichenko, Igor Terekhov and Frank Wurthwein

    2002-12-02

    In this document, we begin the technical design for the distributed RunII computing for CDF and D0. The present paper defines the three components of the data handling area of Run II computing, namely the Data Handling System, the Storage System and the Application. We outline their functionality and interaction between them. We identify necessary and desirable elements of the interfaces.

  10. Intrinsic Spin-Orbit Coupling in Superconducting Delta-Doped SrTiO3 Heterostructures

    SciTech Connect

    Bell, Christopher

    2011-08-19

    We report the violation of the Pauli limit due to intrinsic spin-orbit coupling in SrTiO{sub 3} heterostructures. Via selective doping down to a few nanometers, a two-dimensional superconductor is formed, geometrically suppressing orbital pair-breaking. The spin-orbit scattering is exposed by the robust in-plane superconducting upper critical field, exceeding the Pauli limit by a factor of 4. Transport scattering times several orders of magnitude higher than for conventional thin film superconductors enables a new regime to be entered, where spin-orbit coupling effects arise non-perturbatively.

  11. Orthopaedic Perspective on Barefoot and Minimalist Running.

    PubMed

    Roth, Jonathan; Neumann, Julie; Tao, Matthew

    2016-03-01

    In recent years, there has been a movement toward barefoot and minimalist running. Advocates assert that a lack of cushion and support promotes a forefoot or midfoot strike rather than a rearfoot strike, decreasing the impact transient and stress on the hip and knee. Although the change in gait is theorized to decrease injury risk, this concept has not yet been fully elucidated. However, research has shown diminished symptoms of chronic exertional compartment syndrome and anterior knee pain after a transition to minimalist running. Skeptics are concerned that, because of the effects of the natural environment and the lack of a standardized transition program, barefoot running could lead to additional, unforeseen injuries. Studies have shown that, with the transition to minimalist running, there is increased stress on the foot and ankle and risk of repetitive stress injuries. Nonetheless, despite the large gap of evidence-based knowledge on minimalist running, the potential benefits warrant further research and consideration.

  12. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion...

  13. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion...

  14. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion...

  15. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion...

  16. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion...

  17. Impedances and collective instabilities of the Tevatron at Run II

    SciTech Connect

    Ng, King-Yuen, FERMI

    1998-09-01

    The longitudinal and transverse coupling impedances of the Tevatron vacuum chamber are estimated and summed up. The resistive-wall impedances of the beam pipe and the laminations in the Lambertson magnets dominate below {approximately} 50 MHz. Then come the inductive parts of the bellows and BPM`s. The longitudinal and transverse collective instabilities, for both single bunch and multi bunches, are studied using Run II parameters. As expected the transverse coupled-bunch instability driven by the resistive-wall impedance is the most severe collective instability. However, it can be damped by a transverse damper designed for the correction of injection offsets. The power of such a damper has been studied.

  18. A Runs-Test Algorithm: Contingent Reinforcement and Response Run Structures

    ERIC Educational Resources Information Center

    Hachiga, Yosuke; Sakagami, Takayuki

    2010-01-01

    Four rats' choices between two levers were differentially reinforced using a runs-test algorithm. On each trial, a runs-test score was calculated based on the last 20 choices. In Experiment 1, the onset of stimulus lights cued when the runs score was smaller than criterion. Following cuing, the correct choice was occasionally reinforced with food,…

  19. Phases of N=\\infty Gauge Theories on S^3 \\times S^1 and Nonperturbative Orbifold-orientifold Equivalences

    SciTech Connect

    Unsal, Mithat

    2007-03-06

    We study the phase diagrams of N = {infinity} vector-like, asymptotically free gauge theories as a function of volume, on S{sup 3} x S{sup 1}. The theories of interest are the ones with fermions in two index representations [adjoint, (anti)symmetric, and bifundamental abbreviated as QCD(adj), QCD(AS/S) and QCD(BF)], and are interrelated via orbifold or orientifold projections. The phase diagrams reveal interesting phenomena such as disentangled realizations of chiral and center symmetry, confinement without chiral symmetry breaking, zero temperature chiral transitions, and in some cases, exotic phases which spontaneously break the discrete symmetries such as C, P, T as well as CPT. In a regime where the theories are perturbative, the deconfinement temperature in SYM, and QCD(AS/S/BF) coincide. The thermal phase diagrams of thermal orbifold QCD(BF), orientifold QCD(AS/S), and N = 1 SYM coincide, provided charge conjugation symmetry for QCD(AS/S) and Z{sub 2} interchange symmetry of the QCD(BF) are not broken in the phase continuously connected to R{sup 4} limit. When the S{sup 1} circle is endowed with periodic boundary conditions, the (nonthermal) phase diagrams of orbifold and orientifold QCD are still the same, however, both theories possess chirally symmetric phases which are absent in N=1 SYM. The match and mismatch of the phase diagrams depending on the spin structure of fermions along the S{sup 1} circle is naturally explained in terms of the necessary and sufficient symmetry realization conditions which determine the validity of the nonperturbative orbifold orientifold equivalence.

  20. Nonlocal effective gravitational field equations and the running of Newton's constant G

    SciTech Connect

    Hamber, H.W.; Williams, R.M.

    2005-08-15

    Nonperturbative studies of quantum gravity have recently suggested the possibility that the strength of gravitational interactions might slowly increase with distance. Here a set of generally covariant effective field equations are proposed, which are intended to incorporate the gravitational, vacuum-polarization induced, running of Newton's constant G. One attractive feature of this approach is that, from an underlying quantum gravity perspective, the resulting long-distance (or large time) effective gravitational action inherits only one adjustable parameter {xi}, having the units of a length, arising from dimensional transmutation in the gravitational sector. Assuming the above scenario to be correct, some simple predictions for the long-distance corrections to the classical standard model Robertson-Walker metric are worked out in detail, with the results formulated as much as possible in a model-independent framework. It is found that the theory, even in the limit of vanishing renormalized cosmological constant, generally predicts an accelerated power-law expansion at later times t{approx}{xi}{approx}1/H.

  1. Development and validation of the European Cluster Assimilation Techniques run libraries

    NASA Astrophysics Data System (ADS)

    Facskó, G.; Gordeev, E.; Palmroth, M.; Honkonen, I.; Janhunen, P.; Sergeev, V.; Kauristie, K.; Milan, S.

    2012-04-01

    The European Commission funded the European Cluster Assimilation Techniques (ECLAT) project as a collaboration of five leader European universities and research institutes. A main contribution of the Finnish Meteorological Institute (FMI) is to provide a wide range global MHD runs with the Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS). The runs are divided in two categories: Synthetic runs investigating the extent of solar wind drivers that can influence magnetospheric dynamics, as well as dynamic runs using measured solar wind data as input. Here we consider the first set of runs with synthetic solar wind input. The solar wind density, velocity and the interplanetary magnetic field had different magnitudes and orientations; furthermore two F10.7 flux values were selected for solar radiation minimum and maximum values. The solar wind parameter values were constant such that a constant stable solution was archived. All configurations were run several times with three different (-15°, 0°, +15°) tilt angles in the GSE X-Z plane. The result of the 192 simulations named so called "synthetic run library" were visualized and uploaded to the homepage of the FMI after validation. Here we present details of these runs.

  2. Analysis Of Rearfoot Motion In Running Shoes

    NASA Astrophysics Data System (ADS)

    Cooper, Les

    1986-12-01

    In order to produce better shoes that cushion athletes from the high impact forces of running and still provide stability to the foot it is essential to have a method of quickly and reliably evaluating the performance of prototype shoes. The analysis of rear-foot motion requires the use of film or video recordings of test subjects running on a treadmill. Specific points on the subject are tracked to give a measure of inversion or eversion of the heel. This paper describes the testing procedure and its application to running shoe design. A comparison of film and video systems is also discussed.

  3. Helix coupling

    DOEpatents

    Ginell, William S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  4. Helix coupling

    DOEpatents

    Ginell, W.S.

    1982-03-17

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  5. Social network structures and bank runs

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; Li, Jiaheng

    2016-05-01

    This paper investigates the impact of social network structures of depositors on bank runs. The analyzed network structures include random networks, small-world networks and scale-free networks. Simulation results show that the probability of bank run occurrence in random networks is larger than that in small-world networks, but the probability of bank run occurrence in scale-free networks drops from the highest to the lowest among the three types of network structures with the increase of the proportion of impatient depositors. The average degree of depositor networks has a significant impact on bank runs, but this impact is related to the proportion of impatient depositors and the confidence levels of depositors in banks.

  6. The calculation of take-off run

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1934-01-01

    A comparatively simple method of calculating length of take-off run is developed from the assumption of a linear variation in net accelerating force with air speed and it is shown that the error involved is negligible.

  7. CDF forward shielding for Run II

    SciTech Connect

    Krivosheev, O.E.; Mokhov, N.V.

    1998-03-16

    Detailed calculations of the accelerator related background in the CDF forward muon spectrometer have been performed with the MARS13 code and a newly developed C++ code for particle tracking in accelerator lattices. Calculated space distributions of background hits are in a good agreement with data taken in Run I. Several shielding configurations in the CDF hall and Tevatron tunnel have been studied. The optimal one provides a 30-fold shielding efficiency compatible with CDF Run II requirements.

  8. Minimum-time running: a numerical approach.

    PubMed

    Maroński, Ryszard; Rogowski, Krzysztof

    2011-01-01

    The article deals with the minimum-time running problem. The time of covering a given distance is minimized. The Hill-Keller model of running employed is based on Newton's second law and the equation of power balance. The problem is formulated in optimal control. The unknown function is the runner's velocity that varies with the distance. The problem is solved applying the direct Chebyshev's pseudospectral method.

  9. RHIC Polarized proton performance in run-8

    SciTech Connect

    Montag,C.; Bai, M.; MacKay, W.W.; Roser, T.; Abreu, N.; Ahrens, L.; Barton, D.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Bunce, G.; Calaga, R.; Cameron, P.; Connolly, R.; D'Ottavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hayes, T.; Huang, H.; Ingrassia, P.; Kayran, D.A.; Kewisch, J.; Lee, R.C.; Lin, F.; Litvinenko, V.N.; Luccio, A.U.; Luo, Y.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Robert-Demolaize, G.; Russo, T.; Satogata, T.; Schultheiss, C.; Sivertz, M.; Smith, K.; Tepikian, S.; D. Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2008-10-06

    During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Physics data were taken with vertical orientation of the beam polarization, which in the 'Yellow' RHIC ring was significantly lower than in previous years. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8, and we discuss possible causes of the not as high as previously achieved polarization performance of the 'Yellow' ring.

  10. RHIC polarized proton performance in run-8.

    SciTech Connect

    Montag,C.; Abreu, N.; Ahrens, L.; Bai, M.; Barton, D.; et al.

    2008-06-23

    During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Helical spin rotators at these two interaction regions were used to control the spin orientation of both beams at the collision points. Physics data were taken with different orientations of the beam polarization. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8.

  11. The Ssart of Run II at CDF

    SciTech Connect

    Marco Rescigno

    2002-10-29

    After a hiatus of almost 6 years and an extensive upgrade, Tevatron, the world largest proton-antiproton collider, has resumed the operation for the so called RUN II. In this paper we give a brief overview of the many new features of the Tevatron complex and of the upgraded CDF experiment, and show the presently achieved detector performances as well as highlights of the RUN II physics program in the beauty and electroweak sector.

  12. Running With an Elastic Lower Limb Exoskeleton.

    PubMed

    Cherry, Michael S; Kota, Sridhar; Young, Aaron; Ferris, Daniel P

    2016-06-01

    Although there have been many lower limb robotic exoskeletons that have been tested for human walking, few devices have been tested for assisting running. It is possible that a pseudo-passive elastic exoskeleton could benefit human running without the addition of electrical motors due to the spring-like behavior of the human leg. We developed an elastic lower limb exoskeleton that added stiffness in parallel with the entire lower limb. Six healthy, young subjects ran on a treadmill at 2.3 m/s with and without the exoskeleton. Although the exoskeleton was designed to provide ~50% of normal leg stiffness during running, it only provided 24% of leg stiffness during testing. The difference in added leg stiffness was primarily due to soft tissue compression and harness compliance decreasing exoskeleton displacement during stance. As a result, the exoskeleton only supported about 7% of the peak vertical ground reaction force. There was a significant increase in metabolic cost when running with the exoskeleton compared with running without the exoskeleton (ANOVA, P < .01). We conclude that 2 major roadblocks to designing successful lower limb robotic exoskeletons for human running are human-machine interface compliance and the extra lower limb inertia from the exoskeleton.

  13. Metadata aided run selection at ATLAS

    NASA Astrophysics Data System (ADS)

    Buckingham, R. M.; Gallas, E. J.; C-L Tseng, J.; Viegas, F.; Vinek, E.; ATLAS Collaboration

    2011-12-01

    Management of the large volume of data collected by any large scale scientific experiment requires the collection of coherent metadata quantities, which can be used by reconstruction or analysis programs and/or user interfaces, to pinpoint collections of data needed for specific purposes. In the ATLAS experiment at the LHC, we have collected metadata from systems storing non-event-wise data (Conditions) into a relational database. The Conditions metadata (COMA) database tables not only contain conditions known at the time of event recording, but also allow for the addition of conditions data collected as a result of later analysis of the data (such as improved measurements of beam conditions or assessments of data quality). A new web based interface called "runBrowser" makes these Conditions Metadata available as a Run based selection service. runBrowser, based on PHP and JavaScript, uses jQuery to present selection criteria and report results. It not only facilitates data selection by conditions attributes, but also gives the user information at each stage about the relationship between the conditions chosen and the remaining conditions criteria available. When a set of COMA selections are complete, runBrowser produces a human readable report as well as an XML file in a standardized ATLAS format. This XML can be saved for later use or refinement in a future runBrowser session, shared with physics/detector groups, or used as input to ELSSI (event level Metadata browser) or other ATLAS run or event processing services.

  14. Negative running can prevent eternal inflation

    SciTech Connect

    Kinney, William H.; Freese, Katherine E-mail: ktfreese@umich.edu

    2015-01-01

    Current data from the Planck satellite and the BICEP2 telescope favor, at around the 2 σ level, negative running of the spectral index of curvature perturbations from inflation. We show that for negative running α < 0, the curvature perturbation amplitude has a maximum on scales larger than our current horizon size. A condition for the absence of eternal inflation is that the curvature perturbation amplitude always remain below unity on superhorizon scales. For current bounds on n{sub S} from Planck, this corresponds to an upper bound of the running α < −9 × 10{sup −5}, so that even tiny running of the scalar spectral index is sufficient to prevent eternal inflation from occurring, as long as the running remains negative on scales outside the horizon. In single-field inflation models, negative running is associated with a finite duration of inflation: we show that eternal inflation may not occur even in cases where inflation lasts as long as 10{sup 4} e-folds.

  15. Running kinematics and shock absorption do not change after brief exhaustive running.

    PubMed

    Abt, John P; Sell, Timothy C; Chu, Yungchien; Lovalekar, Mita; Burdett, Ray G; Lephart, Scott M

    2011-06-01

    Because of the nature of running, the forces encountered require a proper coordination of joint action of the lower extremity to dissipate the ground reaction forces and accelerations through the kinetic chain. Running-related muscle fatigue may reduce the shock absorbing capacity of the lower extremity and alter running kinematics. The purpose of this study was to determine if a bout of exhaustive running at a physiologically determined high intensity, changes running kinematics, impact accelerations, and alters shock attenuating capabilities. It was hypothesized that as a result of fatigue induced by an exhaustive run, running kinematics, impact accelerations at the head and shank, acceleration reduction, and shock attenuation would change. A within-subject, repeated-measures design was used for this study. Twelve healthy, competitive male and female distance runners participated. Subjects performed 2 testing sessions consisting of a VO2max treadmill protocol to determine the heart rate at ventilatory threshold and a fatigue-inducing running bout at the identified ventilatory threshold heart rate. Kinematic data included knee flexion, pronation, time to maximum knee flexion, and time to maximum pronation. Acceleration data included shank acceleration, head acceleration, and shock attenuation. No significant differences resulted for the kinematic or acceleration variables. Although the results of this study do not support the original hypotheses, the influence of running fatigue on kinematics and accelerations remains inconclusive. Future research is necessary to examine fatigue-induced changes in running kinematics and accelerations and to determine the threshold at which point the changes may occur.

  16. Sex differences in running mechanics and patellofemoral joint kinetics following an exhaustive run.

    PubMed

    Willson, John D; Loss, Justin R; Willy, Richard W; Meardon, Stacey A

    2015-11-26

    Patellofemoral joint pain (PFP) is a common running-related injury that is more prevalent in females and thought to be associated with altered running mechanics. Changes in running mechanics have been observed following an exhaustive run but have not been analyzed relative to the sex bias for PFP. The purpose of this study was to test if females demonstrate unique changes in running mechanics associated with PFP following an exhaustive run. For this study, 18 females and 17 males ran to volitional exhaustion. Peak PFJ contact force and stress, PFJ contact force and stress loading rates, hip adduction excursion, and hip and knee joint frontal plane angular impulse were analyzed between females and males using separate 2 factor ANOVAs (2 (male/female)×2 (before/after exhaustion)). We observed similar changes in running mechanics among males and females over the course of the exhaustive run. Specifically, greater peak PFJ contact force loading rate (5%, P=.01), PFJ stress loading rate (5%, P<.01), hip adduction excursion (1.3°, P<.01), hip abduction angular impulse (4%, P<.01), knee abduction angular impulse (5%, P=.03), average vertical ground reaction force loading rate (10%, P<.01) and step length (2.1cm, P=.001) were observed during exhausted running. These small changes in suspected PFP pathomechanical factors may increase a runner׳s propensity for PFP. However, unique changes in female running mechanics due to exhaustion do not appear to contribute to the sex bias for PFP.

  17. Two-dimensional electron gas in the regime of strong light-matter coupling: Dynamical conductivity and all-optical measurements of Rashba and Dresselhaus coupling

    NASA Astrophysics Data System (ADS)

    Yudin, Dmitry; Shelykh, Ivan A.

    2016-10-01

    A nonperturbative interaction of an electronic system with a laser field can substantially modify its physical properties. In particular, in two-dimensional (2D) materials with a lack of inversion symmetry, the achievement of a regime of strong light-matter coupling allows direct optical tuning of the strength of the Rashba spin-orbit interaction (SOI). Capitalizing on these results, we build a theory of the dynamical conductivity of a 2D electron gas with both Rashba and Dresselhaus SOIs coupled to an off-resonant high-frequency electromagnetic wave. We argue that strong light-matter coupling modifies qualitatively the dispersion of the electrons and can be used as a powerful tool to probe and manipulate the coupling strengths and adjust the frequency range where optical conductivity is essentially nonzero.

  18. You can hide but you have to run: direct detection with vector mediators

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2016-08-01

    We study direct detection in simplified models of Dark Matter (DM) in which interactions with Standard Model (SM) fermions are mediated by a heavy vector boson. We consider fully general, gauge-invariant couplings between the SM, the mediator and both scalar and fermion DM. We account for the evolution of the couplings between the energy scale of the mediator mass and the nuclear energy scale. This running arises from virtual effects of SM particles and its inclusion is not optional. We compare bounds on the mediator mass from direct detection experiments with and without accounting for the running. In some cases the inclusion of these effects changes the bounds by several orders of magnitude, as a consequence of operator mixing which generates new interactions at low energy. We also highlight the importance of these effects when translating LHC limits on the mediator mass into bounds on the direct detection cross section. For an axial-vector mediator, the running can alter the derived bounds on the spin-dependent DM-nucleon cross section by a factor of two or more. Finally, we provide tools to facilitate the inclusion of these effects in future studies: general approximate expressions for the low energy couplings and a public code runDM to evolve the couplings between arbitrary energy scales.

  19. Directional dependence of the local estimation of H0 and the nonperturbative effects of primordial curvature perturbations

    NASA Astrophysics Data System (ADS)

    Enea Romano, Antonio; Andrés Vallejo, Sergio

    2015-02-01

    Recent measurements of the cosmic microwave background (CMB) radiation have shown an apparent tension with the present value of the Hubble parameter inferred from local observations of supernovae, which look closer, i.e. brighter, than what is expected in a homogeneous model with a value of H0 equal to the one estimated from CMB observations. We examine the possibility that such a discrepancy is the consequence of the presence of a local inhomogeneity seeded by primordial curvature perturbations, finding that a negative peak of the order of less than two standard deviations could allow to fit low-redshift supernovae observations without the need of using a value of the Hubble parameter different from H0CMB. The type of inhomogeneity we consider does not modify the distance to the last scattering, making it compatible with the constraints of the PLANCK mission data. The effect on the luminosity distance is in fact localized around the region in space where the transition between different values of the curvature perturbations occurs, producing a local decrease, while the distance outside the inhomogeneity is not affected. Our calculation is fully relativistic and nonperturbative, and for this reason shows important effects which were missed in the previous investigations using relativistic perturbations or Newtonian approximations, because the structures seeded by primordial curvature perturbations can be today highly nonlinear, and relativist Doppler terms cannot be neglected. Because of these effects the correction to the luminosity distance necessary to explain observations is associated to a compensated structure which involves both an underdense central region and an overdense outer shell, ensuring that the distance to the last scattering surface is unaffected. Comparison with studies of local structure based on galaxy surveys analysis reveals that the density profile we find could in fact be compatible with the one obtained for the same region of sky where

  20. Whole beetroot consumption acutely improves running performance.

    PubMed

    Murphy, Margaret; Eliot, Katie; Heuertz, Rita M; Weiss, Edward

    2012-04-01

    Nitrate ingestion improves exercise performance; however, it has also been linked to adverse health effects, except when consumed in the form of vegetables. The purpose of this study was to determine, in a double-blind crossover study, whether whole beetroot consumption, as a means for increasing nitrate intake, improves endurance exercise performance. Eleven recreationally fit men and women were studied in a double-blind placebo controlled crossover trial performed in 2010. Participants underwent two 5-km treadmill time trials in random sequence, once 75 minutes after consuming baked beetroot (200 g with ≥500 mg nitrate) and once 75 minutes after consuming cranberry relish as a eucaloric placebo. Based on paired t tests, mean running velocity during the 5-km run tended to be faster after beetroot consumption (12.3±2.7 vs 11.9±2.6 km/hour; P=0.06). During the last 1.1 miles (1.8 km) of the 5-km run, running velocity was 5% faster (12.7±3.0 vs 12.1±2.8 km/hour; P=0.02) in the beetroot trial, with no differences in velocity (P≥0.25) in the earlier portions of the 5-km run. No differences in exercise heart rate were observed between trials; however, at 1.8 km into the 5-km run, rating of perceived exertion was lower with beetroot (13.0±2.1 vs 13.7±1.9; P=0.04). Consumption of nitrate-rich, whole beetroot improves running performance in healthy adults. Because whole vegetables have been shown to have health benefits, whereas nitrates from other sources may have detrimental health effects, it would be prudent for individuals seeking performance benefits to obtain nitrates from whole vegetables, such as beetroot.

  1. Characterization of recruitment through tandem running in an Indian queenless ant Diacamma indicum

    PubMed Central

    Kaur, Rajbir; Joseph, Joby; Anoop, Karunakaran

    2017-01-01

    Tandem running is a primitive recruitment method employed by many ant genera. This study characterizes this behaviour during the recruitment of colony mates to a new nest in an Indian ant Diacamma indicum. Tandem leaders who have knowledge of the new nest lead a single follower at a time, to the destination by maintaining physical contact. In order to characterize tandem running, we captured and analysed 621 invitations, 217 paths and 226 termination events. Remarkably, not a single colony member was lost. While invitations were stereotypic in behaviour, termination was not. Analysis of speed revealed that the average transport speed was 4.2 cm s−1. Coupled adult-brood transport was slower than other transports but was more efficient than individual trips. Comparing tandem running with other popular recruitment methods in ants allows us to postulate that even though tandem running is primitive it is probably just another means to achieve the same end. PMID:28280548

  2. Running Speed Can Be Predicted from Foot Contact Time during Outdoor over Ground Running

    PubMed Central

    van Oeveren, Ben; Francke, Agnieta; Zijlstra, Patrick

    2016-01-01

    The number of validation studies of commercially available foot pods that provide estimates of running speed is limited and these studies have been conducted under laboratory conditions. Moreover, internal data handling and algorithms used to derive speed from these pods are proprietary and thereby unclear. The present study investigates the use of foot contact time (CT) for running speed estimations, which potentially can be used in addition to the global positioning system (GPS) in situations where GPS performance is limited. CT was measured with tri axial inertial sensors attached to the feet of 14 runners, during natural over ground outdoor running, under optimized conditions for GPS. The individual relationships between running speed and CT were established during short runs at different speeds on two days. These relations were subsequently used to predict instantaneous speed during a straight line 4 km run with a single turning point halfway. Stopwatch derived speed, measured for each of 32 consecutive 125m intervals during the 4 km runs, was used as reference. Individual speed-CT relations were strong (r2 >0.96 for all trials) and consistent between days. During the 4km runs, median error (ranges) in predicted speed from CT 2.5% (5.2) was higher (P<0.05) than for GPS 1.6% (0.8). However, around the turning point and during the first and last 125m interval, error for GPS-speed increased to 5.0% (4.5) and became greater (P<0.05) than the error predicted from CT: 2.7% (4.4). Small speed fluctuations during 4km runs were adequately monitored with both methods: CT and GPS respectively explained 85% and 73% of the total speed variance during 4km runs. In conclusion, running speed estimates bases on speed-CT relations, have acceptable accuracy and could serve to backup or substitute for GPS during tarmac running on flat terrain whenever GPS performance is limited. PMID:27648946

  3. Compare 100 GeV/n Au Run 2010 with Run 2007

    SciTech Connect

    Zhang, S.Y.

    2011-01-01

    With the very successful commissioning of the vertical stochastic cooling in 100 GeV/n Au Run 2010, the IBS (intra-beam scattering) is no longer the dominant factor in terms of the integrated luminosity. A new luminosity model is needed, where the beam intensity lifetime is more important and the burn-off needs to be accounted for. Toward this goal, a brief review of the Run 2010, compared with Run 2007, is presented.

  4. RHIC performance for FY2011 Au+Au heavy ion run

    SciTech Connect

    Marr, G.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D'Ottavio, T.; Drees, K.A.; Fedotov, A.V.; Fischer, W.; Fu, W.; Gardner, C.J.; Gassner, D.M.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Huang, H.; Ingrassia, P.F.; Jamilkowski, J.P.; Kling, N.; Lafky, M.; Laster, J.S.; Liu, C.; Luo, Y.; Mapes, M.; Marusic, A.; Mernick, K.; Michnoff, R.J.; Minty, M.G.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Polizzo, S.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Sandberg, J.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.; Steski, D.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.E.; VanKuik, B.; Wang, G.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2011-09-04

    Following the Fiscal Year (FY) 2010 (Run-10) Relativistic Heavy Ion Collider (RHIC) Au+Au run, RHIC experiment upgrades sought to improve detector capabilities. In turn, accelerator improvements were made to improve the luminosity available to the experiments for this run (Run-11). These improvements included: a redesign of the stochastic cooling systems for improved reliability; a relocation of 'common' RF cavities to alleviate intensity limits due to beam loading; and an improved usage of feedback systems to control orbit, tune and coupling during energy ramps as well as while colliding at top energy. We present an overview of changes to the Collider and review the performance of the collider with respect to instantaneous and integrated luminosity goals. At the conclusion of the FY 2011 polarized proton run, preparations for heavy ion run proceeded on April 18, with Au+Au collisions continuing through June 28. Our standard operations at 100 GeV/nucleon beam energy was bracketed by two shorter periods of collisions at lower energies (9.8 and 13.5 GeV/nucleon), continuing a previously established program of low and medium energy runs. Table 1 summarizes our history of heavy ion operations at RHIC.

  5. Tibiocalcaneal kinematics of barefoot versus shod running.

    PubMed

    Stacoff, A; Nigg, B M; Reinschmidt, C; van den Bogert, A J; Lundberg, A

    2000-11-01

    Barefoot running kinematics has been described to vary considerably from shod running. However, previous investigations were typically based on externally mounted shoe and/or skin markers, which have been shown to overestimate skeletal movements. Thus, the purpose of this study was to compare calcaneal and tibial movements of barefoot versus shod running using skeletal markers. Intracortical bone pins with reflective marker triads were inserted under standard local anesthetic into the calcaneus and tibia of five healthy male subjects. The subjects ran barefoot, with a normal shoe, with three shoe soles and two orthotic modifications. The three-dimensional tibiocalcaneal rotations were determined using a joint coordinate system approach. Test variables were defined for eversion and tibial rotation. The results showed that the differences in bone movements between barefoot and shod running were small and unsystematic (mean effects being less than 2 degrees ) compared with the differences between the subjects (up to 10 degrees ). However, differences may occur during midstance when extreme shoe modifications (i.e. posterior orthosis) are used. It is concluded that calcaneal and tibial movement patterns do not differ substantially between barefoot and shod running, and that the effects of these interventions are subject specific. The result of this in vivo study contrasts with previous investigations using skin and shoe mounted markers and suggests that these discrepancies may be the result of the overestimation with externally mounted markers.

  6. Exercise economy in skiing and running.

    PubMed

    Losnegard, Thomas; Schäfer, Daniela; Hallén, Jostein

    2014-01-01

    Substantial inter-individual variations in exercise economy exist even in highly trained endurance athletes. The variation is believed to be determined partly by intrinsic factors. Therefore, in the present study, we compared exercise economy in V2-skating, double poling, and uphill running. Ten highly trained male cross-country skiers (23 ± 3 years, 180 ± 6 cm, 75 ± 8 kg, VO2peak running: 76.3 ± 5.6 mL·kg(-1)·min(-1)) participated in the study. Exercise economy and VO2peak during treadmill running, ski skating (V2 technique) and double poling were compared based on correlation analysis. There was a very large correlation in exercise economy between V2-skating and double poling (r = 0.81) and large correlations between V2-skating and running (r = 0.53) and double poling and running (r = 0.58). There were trivial to moderate correlations between exercise economy and the intrinsic factors VO2peak (r = 0.00-0.23), cycle rate (r = 0.03-0.46), body mass (r = -0.09-0.46) and body height (r = 0.11-0.36). In conclusion, the inter-individual variation in exercise economy could be explained only moderately by differences in VO2peak, body mass and body height. Apparently other intrinsic factors contribute to the variation in exercise economy between highly trained subjects.

  7. Predicting application run times using historical information.

    SciTech Connect

    Foster, I.; Smith, W.; Taylor, V.

    1999-06-25

    The authors present a technique for deriving predictions for the run times of parallel applications from the run times of similar applications that have executed in the past. The novel aspect of the work is the use of search techniques to determine those application characteristics that yield the best definition of similarity for the purpose of making predictions. They use four workloads recorded from parallel computers at Argonne National Laboratory, the Cornell Theory Center, and the San Diego Supercomputer Center to evaluate the effectiveness of the approach.They show that on these workloads the techniques achieve predictions that are between 14 and 60% better than those achieved by other researchers; the approach achieves mean prediction errors that are between 41 and 65% of mean application run times.

  8. Predicting running speed from a simple questionnaire.

    PubMed Central

    Campbell, M J

    1985-01-01

    Of 221 competitors in a University half marathon in 1983, 98 replied to a questionnaire before the race which asked for details of training, age, height, weight and resting pulse rate. Finishing times of all competitors were recorded. In a multiple regression analysis significant predictors of running speed were: amount of training, expressed as distance run per week and number of weeks training for the event, the Body Mass Index (weight/height) and resting pulse rate. We conclude that for assessing running speed amongst competitors with similar amounts of training, the Body Mass Index and the resting pulse rate are useful substitutes for more elaborate and expensive measures. Images p142-a PMID:4075062

  9. Jefferson Lab Data Acquisition Run Control System

    SciTech Connect

    Vardan Gyurjyan; Carl Timmer; David Abbott; William Heyes; Edward Jastrzembski; David Lawrence; Elliott Wolin

    2004-10-01

    A general overview of the Jefferson Lab data acquisition run control system is presented. This run control system is designed to operate the configuration, control, and monitoring of all Jefferson Lab experiments. It controls data-taking activities by coordinating the operation of DAQ sub-systems, online software components and third-party software such as external slow control systems. The main, unique feature which sets this system apart from conventional systems is its incorporation of intelligent agent concepts. Intelligent agents are autonomous programs which interact with each other through certain protocols on a peer-to-peer level. In this case, the protocols and standards used come from the domain-independent Foundation for Intelligent Physical Agents (FIPA), and the implementation used is the Java Agent Development Framework (JADE). A lightweight, XML/RDF-based language was developed to standardize the description of the run control system for configuration purposes.

  10. Is running associated with degenerative joint disease

    SciTech Connect

    Panush, R.S.; Schmidt, C.; Caldwell, J.R.; Edwards, N.L.; Longley, S.; Yonker, R.; Webster, E.; Nauman, J.; Stork, J.; Pettersson, H.

    1986-03-07

    Little information is available regarding the long-term effects, if any, of running on the musculoskeletal system. The authors compared the prevalence of degenerative joint disease among 17 male runners with 18 male nonrunners. Running subjects (53% marathoners) ran a mean of 44.8 km (28 miles)/wk for 12 years. Pain and swelling of hips, knees, ankles and feet and other musculoskeletal complaints among runners were comparable with those among nonrunners. Radiologic examinations (for osteophytes, cartilage thickness, and grade of degeneration) also were without notable differences among groups. They did not find an increased prevalence of osteoarthritis among the runners. Our observations suggest that long-duration, high-mileage running need to be associated with premature degenerative joint disease in the lower extremities.

  11. Footwear Decreases Gait Asymmetry during Running

    PubMed Central

    Hoerzer, Stefan; Federolf, Peter A.; Maurer, Christian; Baltich, Jennifer; Nigg, Benno M.

    2015-01-01

    Previous research on elderly people has suggested that footwear may improve neuromuscular control of motion. If footwear does in fact improve neuromuscular control, then such an influence might already be present in young, healthy adults. A feature that is often used to assess neuromuscular control of motion is the level of gait asymmetry. The objectives of the study were (a) to develop a comprehensive asymmetry index (CAI) that is capable of detecting gait asymmetry changes caused by external boundary conditions such as footwear, and (b) to use the CAI to investigate whether footwear influences gait asymmetry during running in a healthy, young cohort. Kinematic and kinetic data were collected for both legs of 15 subjects performing five barefoot and five shod over-ground running trials. Thirty continuous gait variables including ground reaction forces and variables of the hip, knee, and ankle joints were computed for each leg. For each individual, the differences between the variables for the right and left leg were calculated. Using this data, a principal component analysis was conducted to obtain the CAI. This study had two main outcomes. First, a sensitivity analysis suggested that the CAI had an improved sensitivity for detecting changes in gait asymmetry caused by external boundary conditions. The CAI may, therefore, have important clinical applications such as monitoring the progress of neuromuscular diseases (e.g. stroke or cerebral palsy). Second, the mean CAI for shod running (131.2 ± 48.5; mean ± standard deviation) was significantly lower (p = 0.041) than the CAI for barefoot running (155.7 ± 39.5). This finding suggests that in healthy, young adults gait asymmetry is reduced when running in shoes compared to running barefoot, which may be a result of improved neuromuscular control caused by changes in the afferent sensory feedback. PMID:26488484

  12. Footwear Decreases Gait Asymmetry during Running.

    PubMed

    Hoerzer, Stefan; Federolf, Peter A; Maurer, Christian; Baltich, Jennifer; Nigg, Benno M

    2015-01-01

    Previous research on elderly people has suggested that footwear may improve neuromuscular control of motion. If footwear does in fact improve neuromuscular control, then such an influence might already be present in young, healthy adults. A feature that is often used to assess neuromuscular control of motion is the level of gait asymmetry. The objectives of the study were (a) to develop a comprehensive asymmetry index (CAI) that is capable of detecting gait asymmetry changes caused by external boundary conditions such as footwear, and (b) to use the CAI to investigate whether footwear influences gait asymmetry during running in a healthy, young cohort. Kinematic and kinetic data were collected for both legs of 15 subjects performing five barefoot and five shod over-ground running trials. Thirty continuous gait variables including ground reaction forces and variables of the hip, knee, and ankle joints were computed for each leg. For each individual, the differences between the variables for the right and left leg were calculated. Using this data, a principal component analysis was conducted to obtain the CAI. This study had two main outcomes. First, a sensitivity analysis suggested that the CAI had an improved sensitivity for detecting changes in gait asymmetry caused by external boundary conditions. The CAI may, therefore, have important clinical applications such as monitoring the progress of neuromuscular diseases (e.g. stroke or cerebral palsy). Second, the mean CAI for shod running (131.2 ± 48.5; mean ± standard deviation) was significantly lower (p = 0.041) than the CAI for barefoot running (155.7 ± 39.5). This finding suggests that in healthy, young adults gait asymmetry is reduced when running in shoes compared to running barefoot, which may be a result of improved neuromuscular control caused by changes in the afferent sensory feedback.

  13. Nonadiabatic Coupling

    NASA Astrophysics Data System (ADS)

    Kryachko, Eugene S.

    The general features of the nonadiabatic coupling and its relation to molecular properties are surveyed. Some consequences of the [`]equation of motion', formally expressing a [`]smoothness' of a given molecular property within the diabatic basis, are demonstrated. A particular emphasis is made on the relation between a [`]smoothness' of the electronic dipole moment and the generalized Mulliken-Hush formula for the diabatic electronic coupling.

  14. Abort Gap Cleaning for LHC Run 2

    SciTech Connect

    Uythoven, Jan; Boccardi, Andrea; Bravin, Enrico; Goddard, Brennan; Hemelsoet, Georges-Henry; Höfle, Wolfgang; Jacquet, Delphine; Kain, Verena; Mazzoni, Stefano; Meddahi, Malika; Valuch, Daniel; Gianfelice-Wendt, Eliana

    2014-07-01

    To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.

  15. CDF - Run II Status and Prospects

    SciTech Connect

    Manfred Paulini

    2003-03-17

    After a five year upgrade period, the CDF detector located at the Fermilab Tevatron Collider is back in operation taking high quality data with all subsystems functional. We report on the status of the CDF experiment in Run II and discuss the start-up of the Tevatron accelerator. First physics results from CDF are presented. We also discuss the prospects for B physics in RunII, in particular the measurements of B{sub S}{sup 0} flavour oscillations and CP violation in B decays.

  16. Continuum Limit of Susceptibility from Strong Coupling Expansion. Two-Dimensional Nonlinear O(N) Sigma Model N ≥ 3

    NASA Astrophysics Data System (ADS)

    Yamada, Hirofumi

    2012-12-01

    On the basis of a strong-coupling expansion, we reinvestigate the scaling behavior of the susceptibility χ of the two-dimensional O( N) sigma model on the square lattice with Padé-Borel approximants. To exploit the Borel transform, we express the bare coupling g in a series expansion in χ. For large N, the Padé-Borel approximants exhibit scaling behavior at the four-loop level. We estimate the nonperturbative constant associated with the susceptibility for N ≥ 3 and compare the results with previous analytica l results and Monte Carlo data.

  17. 2. DETAIL OF STRUCTURAL SYSTEM FOR CANTILEVERED HOG RUN; BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL OF STRUCTURAL SYSTEM FOR CANTILEVERED HOG RUN; BUILDING 168 (1960 HOG KILL) IS BENEATH HOG RUN - Rath Packing Company, Cantilevered Hog Run, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  18. Strong and ultrastrong coupling with free-space radiation

    NASA Astrophysics Data System (ADS)

    Huppert, S.; Vasanelli, A.; Pegolotti, G.; Todorov, Y.; Sirtori, C.

    2016-10-01

    Strong and ultrastrong light-matter coupling are remarkable phenomena of quantum electrodynamics occurring when the interaction between matter excitation and an electromagnetic field cannot be described by usual perturbation theory. This is generally achieved by coupling an excitation with large oscillator strength to the confined electromagnetic mode of an optical microcavity. In this work, we demonstrate that strong/ultrastrong coupling can also take place in the absence of optical confinement. We have studied the nonperturbative spontaneous emission of collective excitations in a dense two-dimensional electron gas that superradiantly decays into free space. By using a quantum model based on the input-output formalism, we have derived the linear optical properties of the coupled system, and we demonstrated that its eigenstates are mixed light-matter particles, as in any system displaying strong or ultrastrong light-matter interaction. Moreover, we have shown that in the ultrastrong coupling regime, i.e., when the radiative broadening is comparable to the matter excitation energy, the commonly used rotating-wave and Markov approximations yield unphysical results. Finally, the input-output formalism has allowed us to prove that Kirchhoff's law, describing thermal emission properties, applies to our system in all the light-matter coupling regimes considered in this work.

  19. Change in running kinematics after cycling are related to alterations in running economy in triathletes.

    PubMed

    Bonacci, Jason; Green, Daniel; Saunders, Philo U; Blanch, Peter; Franettovich, Melinda; Chapman, Andrew R; Vicenzino, Bill

    2010-07-01

    Emerging evidence suggests that cycling may influence neuromuscular control during subsequent running but the relationship between altered neuromuscular control and run performance in triathletes is not well understood. The aim of this study was to determine if a 45 min high-intensity cycle influences lower limb movement and muscle recruitment during running and whether changes in limb movement or muscle recruitment are associated with changes in running economy (RE) after cycling. RE, muscle activity (surface electromyography) and limb movement (sagittal plane kinematics) were compared between a control run (no preceding cycle) and a run performed after a 45 min high-intensity cycle in 15 moderately trained triathletes. Muscle recruitment and kinematics during running after cycling were altered in 7 of 15 (46%) triathletes. Changes in kinematics at the knee and ankle were significantly associated with the change in VO(2) after cycling (p<0.05). The change in ankle angle at foot contact alone explained 67.1% of the variance in VO(2). These findings suggest that cycling does influence limb movement and muscle recruitment in some triathletes and that changes in kinematics, especially at the ankle, are closely related to alterations in running economy after cycling.

  20. Effects of a minimalist shoe on running economy and 5-km running performance.

    PubMed

    Fuller, Joel T; Thewlis, Dominic; Tsiros, Margarita D; Brown, Nicholas A T; Buckley, Jonathan D

    2016-09-01

    The purpose of this study was to determine if minimalist shoes improve time trial performance of trained distance runners and if changes in running economy, shoe mass, stride length, stride rate and footfall pattern were related to any difference in performance. Twenty-six trained runners performed three 6-min sub-maximal treadmill runs at 11, 13 and 15 km·h(-1) in minimalist and conventional shoes while running economy, stride length, stride rate and footfall pattern were assessed. They then performed a 5-km time trial. In the minimalist shoe, runners completed the trial in less time (effect size 0.20 ± 0.12), were more economical during sub-maximal running (effect size 0.33 ± 0.14) and decreased stride length (effect size 0.22 ± 0.10) and increased stride rate (effect size 0.22 ± 0.11). All but one runner ran with a rearfoot footfall in the minimalist shoe. Improvements in time trial performance were associated with improvements in running economy at 15 km·h(-1) (r = 0.58), with 79% of the improved economy accounted for by reduced shoe mass (P < 0.05). The results suggest that running in minimalist shoes improves running economy and 5-km running performance.

  1. A running controller for a powered transfemoral prosthesis.

    PubMed

    Huff, Amanda M; Lawson, Brian E; Goldfarb, Michael

    2012-01-01

    This paper describes a running controller for a powered knee and ankle prosthesis. The running controller was implemented on a powered prosthesis prototype and evaluated by a transfemoral amputee subject running on a treadmill at a speed of 2.25 m/s (5.0 mph). The ability of the prosthesis and controller to provide the salient features of a running gait was assessed by comparing the kinematics of running provided by the powered prosthesis to the averaged kinematics of five healthy subjects running at the same speed. This comparison indicates that the powered prosthesis and running controller are able to provide essential features of a healthy running gait.

  2. Scaled centrifugal compressor, collector and running gear program

    NASA Technical Reports Server (NTRS)

    Kenehan, J. G.

    1983-01-01

    The Scaled Centrifugal Compressor, Collector and Running gear Program was conducted in support of an overall NASA strategy to improve small-compressor performance, durability, and reliability while reducing initial and life-cycle costs. Accordingly, Garrett designed and provided a test rig, gearbox coupling, and facility collector for a new NASA facility, and provided a scaled model of an existing, high-performance impeller for evaluation scaling effects on aerodynamic performance and for obtaining other performance data. Test-rig shafting was designed to operate smoothly throughout a speed range up to 60,000 rpm. Pressurized components were designed to operate at pressures up to 300 psia and at temperatures to 1000 F. Nonrotating components were designed to provide a margin-of-safety of 0.05 or greater; rotating components, for a margin-of-safety based on allowable yield and ultimate strengths. Design activities were supported by complete design analysis, and the finished hardware was subjected to check-runs to confirm proper operation. The test rig will support a wide range of compressor tests and evaluations.

  3. Comparison of Running Economy Values While Wearing No Shoes, Minimal Shoes, and Normal Running Shoes.

    PubMed

    Cochrum, Robbie G; Connors, Ryan T; Coons, John M; Fuller, Dana K; Morgan, Don W; Caputo, Jennifer L

    2017-03-01

    Cochrum, RG, Connors, RT, Coons, JM, Fuller, DK, Morgan, DW, and Caputo, JL. Comparison of running economy values while wearing no shoes, minimal shoes, and normal running shoes. J Strength Cond Res 31(3): 595-601, 2017-The purpose of this study was to quantify differences in running economy (RE) at 50 and 70% of each subject's velocity at V[Combining Dot Above]O2max (vV[Combining Dot Above]O2max) across barefoot and 2 mass, stack height, and heel-to-toe-drop controlled footwear conditions (minimal shoes and normal running shoes) in 9 recreational distance runners (mean age 26.8 ± 6.8 years). Over 3 days, subjects ran in one of the footwear conditions while RE (oxygen consumption) and step frequency were measured at each speed with a 5-minute rest between each trial. A 2-way repeated-measures multivariate analysis of variance (p ≤ 0.05) and Bonferroni-adjusted follow-up analyses revealed that RE was not significantly different across footwear conditions at either speed. However, those running barefoot exhibited a higher step frequency than when running in minimal (50%, p = 0.007; and 70%, p < 0.001) and standard footwear conditions (70% only, p < 0.001). Higher step frequencies were also exhibited by those running in minimal versus standard footwear (70% only, p = 0.007). Thus, RE is not affected by footwear or running barefoot in those with experience running in minimal-type footwear. Significant adjustments in step frequency when alternative footwear was introduced may help explain why RE was statistically maintained during each footwear and speed condition across but not between subjects. Therefore, determination of footwear for the enhancement of RE should be based on individual physical characteristics and preferences rather than a global recommendation of an economical running shoe.

  4. The D0 run II trigger system

    SciTech Connect

    Schwienhorst, Reinhard; /Michigan State U.

    2004-11-01

    The D0 detector at the Fermilab Tevatron was upgraded for Run II. This upgrade included improvements to the trigger system in order to be able to handle the increased Tevatron luminosity and higher bunch crossing rates compared to Run I. The D0 Run II trigger is a highly exible system to select events to be written to tape from an initial interaction rate of about 2.5 MHz. This is done in a three-tier pipelined, buffered system. The first tier (level 1) processes fast detector pick-off signals in a hardware/firmware based system to reduce the event rate to about 1. 5kHz. The second tier (level 2) uses information from level 1 and forms simple Physics objects to reduce the rate to about 850 Hz. The third tier (level 3) uses full detector readout and event reconstruction on a filter farm to reduce the rate to 20-30 Hz. The D0 trigger menu contains a wide variety of triggers. While the emphasis is on triggering on generic lepton and jet final states, there are also trigger terms for specific final state signatures. In this document we describe the D0 trigger system as it was implemented and is currently operating in Run II.

  5. Validity of Self-Reported Running Distance.

    PubMed

    Dideriksen, Mette; Soegaard, Cristina; Nielsen, Rasmus O

    2016-06-01

    It is unclear whether there is a difference between subjective evaluation and objective global positioning systems (GPS) measurement of running distance. The purpose of this study was to investigate if such difference exists. A total of 100 participants (51% men; median age, 41.5; body mass, 78.1 kg ±13.8 SD) completed a run of free choice, then subjectively reported the distance in kilometer (km). This information was subsequently compared with the distance derived from a nondifferential GPS watch using paired t-tests and Bland-Altman's 95% limits of agreement. No significant difference was found between the mean paired differences between subjective evaluations and GPS measurements (1.86%, 95% confidence interval = -1.53%; 5.25%, p = 0.96). The Bland-Altman 95% limits of agreement revealed considerable variation (lower limit = -28% and upper limit = 40%). Such variation exceeds the clinical error range of 10%. In conclusion, the mean running distance (km) is similar between self-reporting and GPS measurements. However, researchers should consider using GPS measurements in favor of subjective reporting of running distance because of considerable variation on an individual level.

  6. Healthy Living Initiative: Running/Walking Club

    ERIC Educational Resources Information Center

    Stylianou, Michalis; Kulinna, Pamela Hodges; Kloeppel, Tiffany

    2014-01-01

    This study was grounded in the public health literature and the call for schools to serve as physical activity intervention sites. Its purpose was twofold: (a) to examine the daily distance covered by students in a before-school running/walking club throughout 1 school year and (b) to gain insights on the teachers perspectives of the club.…

  7. The running athlete: Roentgenograms and remedies

    SciTech Connect

    Pavlov, H.; Torg, J.S.

    1986-01-01

    The authors have put together an atlas of radiographs of almost every conceivable running injury to the foot, ankle, leg, knee, femur, groin, and spine. Text material is limited to legends which describe the figures, and the remedies listed are brief. The text indicates conservative versus surgical treatment and, in some instances, recommends a surgical procedure.

  8. An Orthopedic Perspective. Does Running Cause Osteoarthritis?

    ERIC Educational Resources Information Center

    Pascale, Mark; Grana, William A.

    1989-01-01

    Discusses the development of osteoarthritis and whether running and other impact loading sports promote it. Although these sports do not cause arthritis in normal weight bearing limbs, they can accelerate it in damaged joints. It is important to identify people with preeexisting joint disease so they can choose nonimpact-loading aerobic exercise.…

  9. Brook Trout Back in Aaron Run

    EPA Pesticide Factsheets

    Following a series of acid mine drainage (AMD) projects funded largely by EPA’s Clean Water Act Section 319 non-point source program, the pH level in Aaron Run is meeting Maryland’s water quality standard – and the brook trout are back.

  10. South Africa/Time Running Out.

    ERIC Educational Resources Information Center

    Clark, Todd, Ed.

    1984-01-01

    Based on the book, "South Africa: Time Running Out," a report of the Study Commission on U.S. Policy Toward Southern Africa, this 10-20 day unit of study is designed to help high school students learn about the history, geography, and present situation in South Africa and its relationship to the United States. The first of four sections…

  11. Utah CTE: Running in New Circles

    ERIC Educational Resources Information Center

    Dobson, Kristine; Fischio, Shannon; Thomas, Susan

    2011-01-01

    Although the authors admit that they do not have any fool-proof formulas to offer for using Web site, blog, Facebook, Twitter, or YouTube in order to more successfully share one's career and technical education (CTE) story, they share a story of their own journey and hope that it may help people to run faster and more effectively in these new…

  12. Jet physics at CDF Run II

    SciTech Connect

    Safonov, A.; /UC, Davis

    2004-12-01

    The latest results on jet physics at CDF are presented and discussed. Particular attention is paid to studies of the inclusive jet cross section using 177 pb{sup -1} of Run II data. Also discussed is a study of gluon and quark jet fragmentation.

  13. Individualism, innovation, and long-run growth

    PubMed Central

    Gorodnichenko, Yuriy; Roland, Gerard

    2011-01-01

    Countries having a more individualist culture have enjoyed higher long-run growth than countries with a more collectivist culture. Individualist culture attaches social status rewards to personal achievements and thus, provides not only monetary incentives for innovation but also social status rewards, leading to higher rates of innovation and economic growth. PMID:22198759

  14. Marathon run: cardiovascular adaptation and cardiovascular risk.

    PubMed

    Predel, Hans-Georg

    2014-11-21

    The first marathon run as an athletic event took place in the context of the Olympic Games in 1896 in Athens, Greece. Today, participation in a 'marathon run' has become a global phenomenon attracting young professional athletes as well as millions of mainly middle-aged amateur athletes worldwide each year. One of the main motives for these amateur marathon runners is the expectation that endurance exercise (EE) delivers profound beneficial health effects. However, with respect to the cardiovascular system, a controversial debate has emerged whether the marathon run itself is healthy or potentially harmful to the cardiovascular system, especially in middle-aged non-elite male amateur runners. In this cohort, exercise-induced increases in cardiac biomarkers-troponin and brain natriuretic peptide-and acute functional cardiac alterations have been observed and interpreted as potential cardiac damage. Furthermore, in the cohort of 40- to 65-year-old males engaged in intensive EE, a significant risk for the development of atrial fibrillation has been identified. Fortunately, recent studies demonstrated a normalization of the cardiac biomarkers and the functional alterations within a short time frame. Therefore, these alterations may be perceived as physiological myocardial reactions to the strenuous exercise and the term 'cardiac fatigue' has been coined. This interpretation is supported by a recent analysis of 10.9 million marathon runners demonstrating that there was no significantly increased overall risk of cardiac arrest during long-distance running races. In conclusion, intensive and long-lasting EE, e.g. running a full-distance Marathon, results in high cardiovascular strain whose clinical relevance especially for middle-aged and older athletes is unclear and remains a matter of controversy. Furthermore, there is a need for evidence-based recommendations with respect to medical screening and training strategies especially in male amateur runners over the age of

  15. FLEXIBLE COUPLING

    DOEpatents

    Babelay, E.F.

    1962-02-13

    A flexible shaft coupling for operation at speeds in excess of 14,000 rpm is designed which requires no lubrication. A driving sleeve member and a driven sleeve member are placed in concentric spaced relationship. A torque force is transmitted to the driven member from the driving member through a plurality of nylon balls symmetrically disposed between the spaced sleeves. The balls extend into races and recesses within the respective sleeve members. The sleeve members have a suitable clearance therebetween and the balls have a suitable radial clearance during operation of the coupling to provide a relatively loose coupling. These clearances accommodate for both parallel and/or angular misalignments and avoid metal-tometal contact between the sleeve members during operation. Thus, no lubrication is needed, and a minimum of vibrations is transmitted between the sleeve members. (AEC)

  16. Prosthesis coupling

    NASA Technical Reports Server (NTRS)

    Reswick, J. B.; Mooney, V.; Bright, C. W.; Owens, L. J. (Inventor)

    1979-01-01

    A coupling for use in an apparatus for connecting a prosthesis to the bone of a stump of an amputated limb is described which permits a bio-compatible carbon sleeve forming a part of the prosthesis connector to float so as to prevent disturbing the skin seal around the carbon sleeve. The coupling includes a flexible member interposed between a socket that is inserted within an intermedullary cavity of the bone and the sleeve. A lock pin is carried by the prosthesis and has a stem portion which is adapted to be coaxially disposed and slideably within the tubular female socket for securing the prosthesis to the stump. The skin around the percutaneous carbon sleeve is able to move as a result of the flexing coupling so as to reduce stresses caused by changes in the stump shape and/or movement between the bone and the flesh portion of the stump.

  17. The influence of a new sole geometry while running

    PubMed Central

    Knoepfli-Lenzin, Claudia; Waech, Jennifer Carole; Gülay, Turgut; Schellenberg, Florian; Lorenzetti, Silvio

    2014-01-01

    Abstract Running shoe construction influences the forces experienced by the human body while running. The aim of this study was to ascertain whether the new sole architecture of the On running shoe reduces ground reaction forces compared with running barefoot or with a conventional running shoe and whether it changes the physiological parameters of running in shoes. Thirty-seven trained male participants were studied while running at submaximal speeds wearing their conventional running shoe, wearing the On running shoe and while barefoot. Additional biomechanical and physiological values were investigated to determine whether the On running shoe induced any changes in these parameters compared with conventional running shoes. The On exhibited similar ground reaction forces as conventional shoes, and these were different from the forces experienced while running barefoot, showing that the On was more similar to typical shoed running. No difference was observed in running economy between the On and a conventional shoe model. However, a slightly lower heart rate (HR) (≈1.3%) and blood lactate concentration (≈5.5%) were observed during submaximal running with the On running shoe compared with a conventional running shoe, as well as a greater lateral deviation of the centre of pressure mid-stance. The ramifications of the reduced HR and blood lactate concentration for competitive performance are unknown. PMID:24977468

  18. The influence of a new sole geometry while running.

    PubMed

    Knoepfli-Lenzin, Claudia; Waech, Jennifer Carole; Gülay, Turgut; Schellenberg, Florian; Lorenzetti, Silvio

    2014-01-01

    Running shoe construction influences the forces experienced by the human body while running. The aim of this study was to ascertain whether the new sole architecture of the On running shoe reduces ground reaction forces compared with running barefoot or with a conventional running shoe and whether it changes the physiological parameters of running in shoes. Thirty-seven trained male participants were studied while running at submaximal speeds wearing their conventional running shoe, wearing the On running shoe and while barefoot. Additional biomechanical and physiological values were investigated to determine whether the On running shoe induced any changes in these parameters compared with conventional running shoes. The On exhibited similar ground reaction forces as conventional shoes, and these were different from the forces experienced while running barefoot, showing that the On was more similar to typical shoed running. No difference was observed in running economy between the On and a conventional shoe model. However, a slightly lower heart rate (HR) (≈1.3%) and blood lactate concentration (≈5.5%) were observed during submaximal running with the On running shoe compared with a conventional running shoe, as well as a greater lateral deviation of the centre of pressure mid-stance. The ramifications of the reduced HR and blood lactate concentration for competitive performance are unknown.

  19. Physiological assessment of isolated running does not directly replicate running capacity after triathlon-specific cycling.

    PubMed

    Etxebarria, Naroa; Hunt, Julie; Ingham, Steve; Ferguson, Richard

    2014-01-01

    Triathlon running is affected by prior cycling and power output during triathlon cycling is variable in nature. We compared constant and triathlon-specific variable power cycling and their effect on subsequent submaximal running physiology. Nine well-trained male triathletes (age 24.6 ± 4.6 years, [Formula: see text] 4.5 ± 0.4 L · min(-1); mean ± SD) performed a submaximal incremental run test, under three conditions: no prior exercise and after a 1 h cycling trial at 65% of maximal aerobic power with either a constant or a variable power profile. The variable power protocol involved multiple 10-90 s intermittent efforts at 40-140% maximal aerobic power. During cycling, pulmonary ventilation (22%, ± 14%; mean; ± 90% confidence limits), blood lactate (179%, ± 48%) and rating of perceived exertion (7.3%, ± 10.2%) were all substantially higher during variable than during constant power cycling. At the start of the run, blood lactate was 64%, ± 61% higher after variable compared to constant power cycling, which decreased running velocity at 4 mM lactate threshold by 0.6, ± 0.9 km · h(-1). Physiological responses to incremental running are negatively affected by prior cycling and, to a greater extent, by variable compared to even-paced cycling. Testing and training of triathletes should account foe higher physiological cost of triathlon-specific cycling and its effect on subsequent running.

  20. Kinematic and kinetic analyses of novice running in dress shoes and running shoes.

    PubMed

    Lee, Yongku; Kim, Young-Kwan; Kim, Yoon Hyuk; Kong, Sejin; Lee, Ki-Kwang

    2011-01-01

    The purpose of the study was to investigate how novice runners adjust their lower extremities in heel-toe running while they wear dress shoes and running shoes. Ten novice male runners repeatedly ran across a force plate at 4 m/s in each type of shoes. Joint kinematics and kinetics, vertical ground reaction force, and utilized coefficient of friction during the stance phase were quantified. The results obtained showed no differences in impact peaks, stance time, stride length and joint kinematics. However, dorsiflexion moment was significantly greater with dress shoes (407 Nm) compared to that with running shoes (304 Nm; p<0.05). Compared to the runners in running shoes (0.23), the runners in dress shoes (0.20) achieved a significantly lower utilized coefficient of friction ( p<0.05). When running in dress shoes, novice runners tended to use better a dorsiflexion moment than when running in running shoes. This adaptation appears to minimize the chances of slipping at the moment of heel strike.

  1. Effects of treadmill running and fatigue on impact acceleration in distance running.

    PubMed

    García-Pérez, José Antonio; Pérez-Soriano, Pedro; Llana Belloch, Salvador; Lucas-Cuevas, Angel Gabriel; Sánchez-Zuriaga, Daniel

    2014-09-01

    The effects of treadmill running on impact acceleration were examined together with the interaction between running surface and runner's fatigue state. Twenty recreational runners (11 men and 9 women) ran overground and on a treadmill (at 4.0 m/s) before and after a fatigue protocol consisting of a 30-minute run at 85% of individual maximal aerobic speed. Impact accelerations were analysed using two lightweight capacitive uniaxial accelerometers. A two-way repeated-measure analysis of variance showed that, in the pre-fatigue condition, the treadmill running decreased head and tibial peak impact accelerations and impact rates (the rate of change of acceleration), but no significant difference was observed between the two surfaces in shock attenuation. There was no significant difference in acceleration parameters between the two surfaces in the post-fatigue condition. There was a significant interaction between surface (treadmill and overground) and fatigue state (pre-fatigue and post-fatigue). In particular, fatigue when running overground decreased impact acceleration severity, but it had no such effect when running on the treadmill. The effects of treadmill running and the interaction need to be taken into account when interpreting the results of studies that use a treadmill in their experimental protocols, and when prescribing physical exercise.

  2. A novel running mechanic's class changes kinematics but not running economy.

    PubMed

    Craighead, Daniel H; Lehecka, Nick; King, Deborah L

    2014-11-01

    A novel method of running technique instruction, Midstance to Midstance Running (MMR), was studied to determine how MMR affected kinematics and running economy (RE) of recreational runners. An experimental pre-post randomized groups design was used. Participants (n = 18) were recreational runners who ran at least 3 days a week and 5 km per run. All testing was performed on a treadmill at 2.8 m·s. The intervention group (n = 9) completed 8 weeks of instruction in MMR; the control group (n = 9) continued running without instruction. The MMR group showed significant decreases in stride length (SL) (p = 0.02) and maximum knee flexion velocity in stance (p = 0.01), and a significant increase in stride rate (SR) (p = 0.02) after 8 weeks. No significant changes were found in heart rate, rating of perceived exertion, or RE. Midstance to Midstance Running was effective in changing SR and SL, but was not effective in changing other kinematic variables such as foot contact position and maximum knee flexion during swing. Midstance to Midstance Running did not affect RE. Evidence suggests that MMR may be an appropriate instructional method for recreational runners trying to decrease SL and increase SR.

  3. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance.

    PubMed

    Dorn, Tim W; Schache, Anthony G; Pandy, Marcus G

    2012-06-01

    Humans run faster by increasing a combination of stride length and stride frequency. In slow and medium-paced running, stride length is increased by exerting larger support forces during ground contact, whereas in fast running and sprinting, stride frequency is increased by swinging the legs more rapidly through the air. Many studies have investigated the mechanics of human running, yet little is known about how the individual leg muscles accelerate the joints and centre of mass during this task. The aim of this study was to describe and explain the synergistic actions of the individual leg muscles over a wide range of running speeds, from slow running to maximal sprinting. Experimental gait data from nine subjects were combined with a detailed computer model of the musculoskeletal system to determine the forces developed by the leg muscles at different running speeds. For speeds up to 7 m s(-1), the ankle plantarflexors, soleus and gastrocnemius, contributed most significantly to vertical support forces and hence increases in stride length. At speeds greater than 7 m s(-1), these muscles shortened at relatively high velocities and had less time to generate the forces needed for support. Thus, above 7 m s(-1), the strategy used to increase running speed shifted to the goal of increasing stride frequency. The hip muscles, primarily the iliopsoas, gluteus maximus and hamstrings, achieved this goal by accelerating the hip and knee joints more vigorously during swing. These findings provide insight into the strategies used by the leg muscles to maximise running performance and have implications for the design of athletic training programs.

  4. Muscle injury after low-intensity downhill running reduces running economy.

    PubMed

    Baumann, Cory W; Green, Michael S; Doyle, J Andrew; Rupp, Jeffrey C; Ingalls, Christopher P; Corona, Benjamin T

    2014-05-01

    Contraction-induced muscle injury may reduce running economy (RE) by altering motor unit recruitment, lowering contraction economy, and disturbing running mechanics, any of which may have a deleterious effect on endurance performance. The purpose of this study was to determine if RE is reduced 2 days after performing injurious, low-intensity exercise in 11 healthy active men (27.5 ± 5.7 years; 50.05 ± 1.67 VO2peak). Running economy was determined at treadmill speeds eliciting 65 and 75% of the individual's peak rate of oxygen uptake (VO2peak) 1 day before and 2 days after injury induction. Lower extremity muscle injury was induced with a 30-minute downhill treadmill run (6 × 5 minutes runs, 2 minutes rest, -12% grade, and 12.9 km·h(-1)) that elicited 55% VO2peak. Maximal quadriceps isometric torque was reduced immediately and 2 days after the downhill run by 18 and 10%, and a moderate degree of muscle soreness was present. Two days after the injury, steady-state VO2 and metabolic work (VO2 L·km(-1)) were significantly greater (4-6%) during the 65% VO2peak run. Additionally, postinjury VCO2, VE and rating of perceived exertion were greater at 65% but not at 75% VO2peak, whereas whole blood-lactate concentrations did not change pre-injury to postinjury at either intensity. In conclusion, low-intensity downhill running reduces RE at 65% but not 75% VO2peak. The results of this study and other studies indicate the magnitude to which RE is altered after downhill running is dependent on the severity of the injury and intensity of the RE test.

  5. Feedback between motion and sensation provides nonlinear boost in run-and-tumble navigation

    PubMed Central

    Zucker, Steven W.

    2017-01-01

    Many organisms navigate gradients by alternating straight motions (runs) with random reorientations (tumbles), transiently suppressing tumbles whenever attractant signal increases. This induces a functional coupling between movement and sensation, since tumbling probability is controlled by the internal state of the organism which, in turn, depends on previous signal levels. Although a negative feedback tends to maintain this internal state close to adapted levels, positive feedback can arise when motion up the gradient reduces tumbling probability, further boosting drift up the gradient. Importantly, such positive feedback can drive large fluctuations in the internal state, complicating analytical approaches. Previous studies focused on what happens when the negative feedback dominates the dynamics. By contrast, we show here that there is a large portion of physiologically-relevant parameter space where the positive feedback can dominate, even when gradients are relatively shallow. We demonstrate how large transients emerge because of non-normal dynamics (non-orthogonal eigenvectors near a stable fixed point) inherent in the positive feedback, and further identify a fundamental nonlinearity that strongly amplifies their effect. Most importantly, this amplification is asymmetric, elongating runs in favorable directions and abbreviating others. The result is a “ratchet-like” gradient climbing behavior with drift speeds that can approach half the maximum run speed of the organism. Our results thus show that the classical drawback of run-and-tumble navigation—wasteful runs in the wrong direction—can be mitigated by exploiting the non-normal dynamics implicit in the run-and-tumble strategy. PMID:28264023

  6. An overview of hip injuries in running.

    PubMed

    Paluska, Scott A

    2005-01-01

    Running has steadily gained in worldwide popularity and is the primary exercise modality for many individuals of all ages. Its low cost, versatility, convenience and related health benefits appeal to men and women of broad cultural, ethnic and economic backgrounds. With more children and adults participating in recreational and competitive running, the incidence of injuries has steadily increased. Most running-related injuries affecting the lower extremities are due to preventable training errors, and some may necessitate medical evaluation or a significant reduction in training. Hip injuries in runners are due to interactions of intrinsic and extrinsic factors that adversely affect the complex regional anatomy. Acute or chronic hip pain presents a diagnostic and therapeutic challenge because the vague, nonspecific symptoms and signs may originate from local, regional or distant foci. Muscle strains and tendonitis are the most common aetiologies of hip pain and typically result from sudden acceleration/deceleration manoeuvres, direction changes or eccentric contractions. Apophysitis and avulsion fractures may affect younger runners and produce localised pain at muscle attachment sites. Iliotibial band syndrome is a common cause of lateral hip and knee symptoms characterised by sharp or burning pain that is exacerbated by activity. Bursitis, due to repetitive activity or acute trauma, may affect the trochanteric, ischial or iliopectineal bursae. Hip osteoarthritis may also produce persistent pain that worsens with running. Stress fractures are potentially serious conditions that affect women more frequently than men. Snapping hip syndrome is a benign condition that results from tight connective tissues' passing repeatedly over the greater trochanter, anterior hip capsule, lesser trochanter, femoral head or iliopectineal eminence. Acetabular labral tears, sports hernias and nerve entrapment syndromes are also potential causes of persistent hip pain in runners

  7. The Effects of a Duathlon Simulation on Ventilatory Threshold and Running Economy

    PubMed Central

    Berry, Nathaniel T.; Wideman, Laurie; Shields, Edgar W.; Battaglini, Claudio L.

    2016-01-01

    Multisport events continue to grow in popularity among recreational, amateur, and professional athletes around the world. This study aimed to determine the compounding effects of the initial run and cycling legs of an International Triathlon Union (ITU) Duathlon simulation on maximal oxygen uptake (VO2max), ventilatory threshold (VT) and running economy (RE) within a thermoneutral, laboratory controlled setting. Seven highly trained multisport athletes completed three trials; Trial-1 consisted of a speed only VO2max treadmill protocol (SOVO2max) to determine VO2max, VT, and RE during a single-bout run; Trial-2 consisted of a 10 km run at 98% of VT followed by an incremental VO2max test on the cycle ergometer; Trial-3 consisted of a 10 km run and 30 km cycling bout at 98% of VT followed by a speed only treadmill test to determine the compounding effects of the initial legs of a duathlon on VO2max, VT, and RE. A repeated measures ANOVA was performed to determine differences between variables across trials. No difference in VO2max, VT (%VO2max), maximal HR, or maximal RPE was observed across trials. Oxygen consumption at VT was significantly lower during Trial-3 compared to Trial-1 (p = 0.01). This decrease was coupled with a significant reduction in running speed at VT (p = 0.015). A significant interaction between trial and running speed indicate that RE was significantly altered during Trial-3 compared to Trial-1 (p < 0.001). The first two legs of a laboratory based duathlon simulation negatively impact VT and RE. Our findings may provide a useful method to evaluate multisport athletes since a single-bout incremental treadmill test fails to reveal important alterations in physiological thresholds. Key points Decrease in relative oxygen uptake at VT (ml·kg-1·min-1) during the final leg of a duathlon simulation, compared to a single-bout maximal run. We observed a decrease in running speed at VT during the final leg of a duathlon simulation; resulting in an

  8. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an...

  9. 28 CFR 544.34 - Inmate running events.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events....

  10. 28 CFR 544.34 - Inmate running events.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events....

  11. 28 CFR 544.34 - Inmate running events.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events....

  12. 28 CFR 544.34 - Inmate running events.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events....

  13. 28 CFR 544.34 - Inmate running events.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events....

  14. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an...

  15. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an...

  16. The complete HEFT Lagrangian after the LHC Run I

    NASA Astrophysics Data System (ADS)

    Brivio, I.; Gonzalez-Fraile, J.; Gonzalez-Garcia, M. C.; Merlo, L.

    2016-07-01

    The complete effective chiral Lagrangian for a dynamical Higgs is presented and constrained by means of a global analysis including electroweak precision data together with Higgs and triple gauge-boson coupling data from the LHC Run I. The operators' basis up to next-to-leading order in the expansion consists of 148 (188 considering right-handed neutrinos) flavour universal terms and it is presented here making explicit the custodial nature of the operators. This effective Lagrangian provides the most general description of the physical Higgs couplings once the electroweak symmetry is assumed, and it allows for deviations from the SU(2)_L doublet nature of the Standard Model Higgs. The comparison with the effective linear Lagrangian constructed with an exact SU(2)_L doublet Higgs and considering operators with at most canonical dimension six is presented. A promising strategy to disentangle the two descriptions consists in analysing (i) anomalous signals present only in the chiral Lagrangian and not expected in the linear one, that are potentially relevant for LHC searches, and (ii) decorrelation effects between observables that are predicted to be correlated in the linear case and not in the chiral one. The global analysis presented here, which includes several kinematic distributions, is crucial for reducing the allowed parameter space and for controlling the correlations between parameters. This improves previous studies aimed at investigating the Higgs Nature and the origin of the electroweak symmetry breaking.

  17. Pairwise velocities in the "Running FLRW" cosmological model

    NASA Astrophysics Data System (ADS)

    Bibiano, Antonio; Croton, Darren J.

    2017-01-01

    We present an analysis of the pairwise velocity statistics from a suite of cosmological N-body simulations describing the "Running Friedmann-Lemaître-Robertson-Walker" (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends ΛCDM with a time-evolving vacuum energy density, ρ _Λ. To enforce local conservation of matter a time-evolving gravitational coupling is also included. Our results constitute the first study of velocities in the R-FLRW cosmology, and we also compare with other dark energy simulations suites, repeating the same analysis. We find a strong degeneracy between the pairwise velocity and σ8 at z = 0 for almost all scenarios considered, which remains even when we look back to epochs as early as z = 2. We also investigate various Coupled Dark Energy models, some of which show minimal degeneracy, and reveal interesting deviations from ΛCDM which could be readily exploited by future cosmological observations to test and further constrain our understanding of dark energy.

  18. Running enhances spatial pattern separation in mice

    PubMed Central

    Creer, David J.; Romberg, Carola; Saksida, Lisa M.; van Praag, Henriette; Bussey, Timothy J.

    2010-01-01

    Increasing evidence suggests that regular exercise improves brain health and promotes synaptic plasticity and hippocampal neurogenesis. Exercise improves learning, but specific mechanisms of information processing influenced by physical activity are unknown. Here, we report that voluntary running enhanced the ability of adult (3 months old) male C57BL/6 mice to discriminate between the locations of two adjacent identical stimuli. Improved spatial pattern separation in adult runners was tightly correlated with increased neurogenesis. In contrast, very aged (22 months old) mice had impaired spatial discrimination and low basal cell genesis that was refractory to running. These findings suggest that the addition of newly born neurons may bolster dentate gyrus-mediated encoding of fine spatial distinctions. PMID:20133882

  19. Somatosensory perception of running shoe mass.

    PubMed

    Slade, Stephen J; Greenya, Joel G; Kliethermes, Christopher L; Senchina, David S

    2014-01-01

    Running shoes are often marketed based on mass. A total of 50 young adult males participated across two separate experiments to determine how well they could perceive the relative masses of five different running shoes using hands versus feet. For the foot portion, subjects were blindly fitted with the shoes and asked to rank their masses individually using visual analogue scales (VAS) and verbal rankings. For the hand portion, two different methods were used, one presenting all shoes simultaneously and the other presenting the shoes individually. Verbal accuracy and VAS scores correlated across subjects for the hand and foot, but accuracy in mass perception by the feet was 30% compared to 92% or 63% by the hand (depending on the method). These results indicate the foot perceives mass poorly compared to the hand, and that consumers' perception of shoe mass may come more from handling shoes versus wearing them.

  20. The anatomy and biomechanics of running.

    PubMed

    Nicola, Terry L; Jewison, David J

    2012-04-01

    To understand the normal series of biomechanical events of running, a comparative assessment to walking is helpful. Closed kinetic chain through the lower extremities, control of the lumbopelvic mechanism, and overall symmetry of movement has been described well enough that deviations from normal movement can now be associated with specific overuse injuries experienced by runners. This information in combination with a history of the runner's errors in their training program will lead to a more comprehensive treatment and prevention plan for related injuries.

  1. Full Spectrum Operations: A Running Start

    DTIC Science & Technology

    2009-03-31

    exposing them to ultra-violet light). In systems using ultra- violet (UV) light, this step occurs last in the process as the previous two steps... Wastewater and Wastewater Effluent Processing .” Global Water Group, Inc, Dallas, Texas. Online database. http://www.globalwater.com/index.html...the nature of the BCT or create a new organization. To generate a running start, I will focus on two problems faced during the critical transition

  2. Run-08 pC polarization analysis - October 16, 2008

    SciTech Connect

    Dharmawardane,V.; Bazilevsky,A.; Bunce, G.; Gill, R.; Huang, H.; Makdisi, Y.; Nakagawa, I.; Morozov, B.; Okada, H.; Sivertz, M.; Zelenski, A.; Alekseev, I.; Svirida, D.

    2009-03-01

    In this note we will discuss the analysis of RHIC run 08 pC data that were collected during February 14 - March 10, 2008. An analysis method that is similar to Run 05 and Run 06 was adopted for Run 08 analysis (except few minor changes, which are described below). A detailed analysis note and a NIM article that describe the pC analysis procedure (for run 05 and run 06) can be found elsewhere. In brief, the analysis consists of calibrating the detectors, determining energy corrections ('dead layers'), determining good runs and extracting the polarization from data.

  3. Comparing Computer Run Time of Building Simulation Programs

    SciTech Connect

    Hong, Tianzhen; Buhl, Fred; Haves, Philip; Selkowitz, Stephen; Wetter, Michael

    2008-07-23

    This paper presents an approach to comparing computer run time of building simulation programs. The computing run time of a simulation program depends on several key factors, including the calculation algorithm and modeling capabilities of the program, the run period, the simulation time step, the complexity of the energy models, the run control settings, and the software and hardware configurations of the computer that is used to make the simulation runs. To demonstrate the approach, simulation runs are performed for several representative DOE-2.1E and EnergyPlus energy models. The computer run time of these energy models are then compared and analyzed.

  4. RUNNING TECHNIQUE IS AN IMPORTANT COMPONENT OF RUNNING ECONOMY AND PERFORMANCE.

    PubMed

    Folland, Jonathan P; Allen, Sam J; Black, Matthew I; Handsaker, Joseph C; Forrester, Stephanie E

    2017-03-03

    Despite an intuitive relationship between technique and both running economy (RE) and performance, and the diverse techniques employed by runners to achieve forward locomotion, the objective importance of overall technique and the key components therein remain to be elucidated.

  5. Creatine supplementation and multiple sprint running performance.

    PubMed

    Glaister, Mark; Lockey, Richard A; Abraham, Corinne S; Staerck, Allan; Goodwin, Jon E; McInnes, Gillian

    2006-05-01

    The aim of this study was to examine the effects of short-term creatine monohydrate supplementation on multiple sprint running performance. Using a double-blind research design, 42 physically active men completed a series of 3 indoor multiple sprint running trials (15 x 30 m repeated at 35-second intervals). After the first 2 trials (familiarization and baseline), subjects were matched for fatigue score before being randomly assigned to 5 days of either creatine (4 x d(-1) x 5 g creatine monohydrate + 1 g maltodextrin) or placebo (4 x d(-1) x 6 g maltodextrin) supplementation. Sprint times were recorded via twin-beam photocells, and earlobe blood samples were drawn to evaluate posttest lactate concentrations. Relative to placebo, creatine supplementation resulted in a 0.7 kg increase in body mass (95% likely range: 0.02 to 1.3 kg) and a 0.4% reduction in body fat (95% likely range: -0.2 to 0.9%). There were no significant (p > 0.05) between-group differences in multiple sprint measures of fastest time, mean time, fatigue, or posttest blood lactate concentration. Despite widespread use as an ergogenic aid in sport, the results of this study suggest that creatine monohydrate supplementation conveys no benefit to multiple sprint running performance.

  6. Constructing predictive models of human running

    PubMed Central

    Maus, Horst-Moritz; Revzen, Shai; Guckenheimer, John; Ludwig, Christian; Reger, Johann; Seyfarth, Andre

    2015-01-01

    Running is an essential mode of human locomotion, during which ballistic aerial phases alternate with phases when a single foot contacts the ground. The spring-loaded inverted pendulum (SLIP) provides a starting point for modelling running, and generates ground reaction forces that resemble those of the centre of mass (CoM) of a human runner. Here, we show that while SLIP reproduces within-step kinematics of the CoM in three dimensions, it fails to reproduce stability and predict future motions. We construct SLIP control models using data-driven Floquet analysis, and show how these models may be used to obtain predictive models of human running with six additional states comprising the position and velocity of the swing-leg ankle. Our methods are general, and may be applied to any rhythmic physical system. We provide an approach for identifying an event-driven linear controller that approximates an observed stabilization strategy, and for producing a reduced-state model which closely recovers the observed dynamics. PMID:25505131

  7. The mechanics of running in children.

    PubMed

    Schepens, B; Willems, P A; Cavagna, G A

    1998-06-15

    1. The effect of age and body size on the bouncing mechanism of running was studied in children aged 2-16 years. 2. The natural frequency of the bouncing system (fs) and the external work required to move the centre of mass of the body were measured using a force platform. 3. At all ages, during running below approximately 11 km h-1, the freely chosen step frequency (f) is about equal to fs (symmetric rebound), independent of speed, although it decreases with age from 4 Hz at 2 years to 2.5 Hz above 12 years. 4. The decrease of step frequency with age is associated with a decrease in the mass-specific vertical stiffness of the bouncing system (k/m) due to an increase of the body mass (m) with a constant stiffness (k). Above 12 years, k/m and f remain approximately constant due to a parallel increase in both k and m with age. 5. Above the critical speed of approximately 11 km h-1, independent of age, the rebound becomes asymmetric, i.e. f < fs. 6. The maximum running speed (Vf, max) increases with age while the step frequency at remains constant (approximately 4 Hz), independent of age. 7. At a given speed, the higher step frequency in preteens results in a mass-specific power against gravity less than that in adults. The external power required to move the centre of mass of the body is correspondingly reduced.

  8. Running with a powered knee and ankle prosthesis.

    PubMed

    Shultz, Amanda H; Lawson, Brian E; Goldfarb, Michael

    2015-05-01

    This paper presents a running control architecture for a powered knee and ankle prosthesis that enables a transfemoral amputee to run with a biomechanically appropriate running gait and to intentionally transition between a walking and running gait. The control architecture consists firstly of a coordination level controller, which provides gait biomechanics representative of healthy running, and secondly of a gait selection controller that enables the user to intentionally transition between a running and walking gait. The running control architecture was implemented on a transfemoral prosthesis with powered knee and ankle joints, and the efficacy of the controller was assessed in a series of running trials with a transfemoral amputee subject. Specifically, treadmill trials were conducted to assess the extent to which the coordination controller provided a biomechanically appropriate running gait. Separate trials were conducted to assess the ability of the user to consistently and reliably transition between walking and running gaits.

  9. Comparison of CAISO-run Plexos output with LLNL-run Plexos output

    SciTech Connect

    Schmidt, A; Meyers, C; Smith, S

    2011-12-20

    In this report we compare the output of the California Independent System Operator (CAISO) 33% RPS Plexos model when run on various computing systems. Specifically, we compare the output resulting from running the model on CAISO's computers (Windows) and LLNL's computers (both Windows and Linux). We conclude that the differences between the three results are negligible in the context of the entire system and likely attributed to minor differences in Plexos version numbers as well as the MIP solver used in each case.

  10. Tracking at CDF: algorithms and experience from Run I and Run II

    SciTech Connect

    Snider, F.D.; /Fermilab

    2005-10-01

    The authors describe the tracking algorithms used during Run I and Run II by CDF at the Fermilab Tevatron Collider, covering the time from about 1992 through the present, and discuss the performance of the algorithms at high luminosity. By tracing the evolution of the detectors and algorithms, they reveal some of the successful strategies used by CDF to address the problems of tracking at high luminosities.

  11. Performance of the ATLAS Muon Trigger in Run I and Upgrades for Run II

    NASA Astrophysics Data System (ADS)

    Kobayashi, Dai

    2015-12-01

    The ATLAS experiment at the Large Hadron Collider (LHC) has taken data at a centre-of-mass energy between 900 GeV and 8 TeV during Run I (2009-2013). The LHC delivered an integrated luminosity of about 20 fb-1 in 2012, which required dedicated strategies to ensure the highest possible physics output while effectively reducing the event rate. The Muon High Level Trigger has successfully adapted to the changing environment from low instantaneous luminosity (1032 cm-2 s-1) in 2010 to the peak high instantaneous luminosity (1034 cm-2 s-1). The selection strategy has been optimized for the various physics analyses involving muons in the final state. We will present the excellent performance achieved during Run I. In preparation for the next data taking period (Run II) several hardware and software upgrades to the ATLAS Muon Trigger have been performed to deal with the increased trigger rate expected at higher centre-of-mass energy and increased instantaneous luminosity. We will highlight the development of novel algorithms that have been developed to maintain a highly efficient event selection while reducing the processing time by a factor of three. In addition, the two stages of the high level trigger that was deployed in Run I will be merged for Run II. We will discuss novel approaches that are being developed to further improve the trigger algorithms for Run II and beyond.

  12. Can parallel use of different running shoes decrease running-related injury risk?

    PubMed

    Malisoux, L; Ramesh, J; Mann, R; Seil, R; Urhausen, A; Theisen, D

    2015-02-01

    The aim of this study was to determine if runners who use concomitantly different pairs of running shoes are at a lower risk of running-related injury (RRI). Recreational runners (n = 264) participated in this 22-week prospective follow-up and reported all information about their running session characteristics, other sport participation and injuries on a dedicated Internet platform. A RRI was defined as a physical pain or complaint located at the lower limbs or lower back region, sustained during or as a result of running practice and impeding planned running activity for at least 1 day. One-third of the participants (n = 87) experienced at least one RRI during the observation period. The adjusted Cox regression analysis revealed that the parallel use of more than one pair of running shoes was a protective factor [hazard ratio (HR) = 0.614; 95% confidence interval (CI) = 0.389-0.969], while previous injury was a risk factor (HR = 1.722; 95%CI = 1.114-2.661). Additionally, increased mean session distance (km; HR = 0.795; 95%CI = 0.725-0.872) and increased weekly volume of other sports (h/week; HR = 0.848; 95%CI = 0.732-0.982) were associated with lower RRI risk. Multiple shoe use and participation in other sports are strategies potentially leading to a variation of the load applied to the musculoskeletal system. They could be advised to recreational runners to prevent RRI.

  13. Aging and factors related to running economy.

    PubMed

    Quinn, Timothy J; Manley, Michelle J; Aziz, Jason; Padham, Jamie L; MacKenzie, Allison M

    2011-11-01

    The purpose of this study was to investigate the relationship that age has on factors affecting running economy (RE) in competitive distance runners. Fifty-one male and female subelite distance runners (Young [Y]: 18-39 years [n = 18]; Master [M]: 40-59 years [n = 22]; and Older [O]: 60-older [n = 11]) were measured for RE, step rate, lactate threshold (LT), VO2max, muscle strength and endurance, flexibility, power, and body composition. An RE test was conducted at 4 different velocities (161, 188, 215, and 241 m·min(-1)), with subjects running for 5 minutes at each velocity. The steady-state VO2max during the last minute of each stage was recorded and plotted vs. speed, and a regression equation was formulated. A 1 × 3 analysis of variance revealed no differences in the slopes of the RE regression lines among age groups (y = 0.1827x - 0.2974; R2 = 0.9511 [Y]; y = 0.1988x - 1.0416; R2 = 0.9697 [M]; y = 0.1727x + 3.0252; R2 = 0.9618 [O]). The VO2max was significantly lower in the O group compared to in the Y and M groups (Y = 64.1 ± 3.2; M = 56.8 ± 2.7; O = 44.4 ± 1.7 mlO2·kg(-1)·min(-1)). The maximal heart rate and velocity @ LT were significantly different among all age groups (Y = 197 ± 4; M = 183 ± 2; O = 170 ± 6 b·min(-1) and Y = 289.7 ± 27.0; M = 251.5 ± 32.9; O = 212.3 ± 24.6 m·min(-1), respectively). The VO2max @ LT was significantly lower in the O group compared to in the Y and M groups (Y = 50.3 ± 2.0; M = 48.8 ± 2.9; O = 34.9 ± 3.2 mlO2·kg(-1)·min(-1)). The O group was significantly lower than in the Y and M groups in flexibility, power, and upper body strength. Multiple regression analyses showed that strength and power were significantly related to running velocity. The results from this cross-sectional analysis suggest that age-related declines in running performance are associated with declines in maximal and submaximal cardiorespiratory variables and declines in strength and power, not because of declines in running economy.

  14. The properties of C-parameter and coupling constants

    NASA Astrophysics Data System (ADS)

    Saleh-Moghaddam, R.; Zomorrodian, M. E.

    2017-01-01

    We present the properties of the C-parameter as an event-shape variable. We calculate the coupling constants in the perturbative and also in the non-perturbative parts of the QCD theory, using the dispersive as well as the shape function models. By fitting the corresponding theoretical predictions to our data, we find α s (M_{Z0}) = 0.117 ± 0.014 and α 0( μ I ) = 0.491 ± 0.043 for dispersive model and α s (M_{Z0}) = 0.124 ± 0.015 and λ 1 = 1.234 ± 0.052 for the shape function model. Our results are consistent with the world average value of α s (M_{Z0}) = 0.118 ± 0.002. All these features are explained in the main text.

  15. Nonperturbative treatment of multielectron processes in ion-molecule scattering: Application to He{sup 2+}-H{sub 2} collisions

    SciTech Connect

    Sisourat, Nicolas; Dubois, Alain; Pilskog, Ingjald

    2011-11-15

    We present a nonperturbative theory to describe multielectronic processes occurring in the course of collisions between an ion and a molecule. The approach is based on the expansion of the electronic scattering wave function onto asymptotic mono- or multicenter states with proper translational conditions and includes both static and dynamical electronic correlations. Therefore, it has a wide application range around intermediate impact velocities v{approx_equal}v{sub e}, where v{sub e} is the averaged electron velocity in the initial state. As a first application, we report results on single- and double-electron capture processes in He{sup 2+}-H{sub 2} collisions for impact energies ranging from 0.01 to 25 keV/u. Special emphasis on the prediction of cross sections for double-electron capture into doubly excited states of helium is addressed.

  16. Body borne loads impact walk-to-run and running biomechanics.

    PubMed

    Brown, T N; O'Donovan, M; Hasselquist, L; Corner, B D; Schiffman, J M

    2014-01-01

    The purpose of this study was to perform a biomechanics-based assessment of body borne load during the walk-to-run transition and steady-state running because historical research has limited load carriage assessment to prolonged walking. Fifteen male military personnel had trunk and lower limb biomechanics examined during these locomotor tasks with three different load configurations (light, ∼6 kg, medium, ∼20 kg, and heavy, ∼40 kg). Subject-based means of the dependent variables were submitted to repeated measures ANOVA to test the effects of load configuration. During the walk-to-run transition, the hip decreased (P=0.001) and knee increased (P=0.004) their contribution to joint power with the addition of load. Additionally, greater peak trunk (P=0.001), hip (P=0.001), and knee flexion (P<0.001) moments and trunk flexion (P<0.001) angle, and reduced hip (P=0.001) and knee flexion (P=0.001) posture were evident during the loaded walk-to-run transition. Body borne load had no significant effect (P>0.05) on distribution of lower limb joint power during steady-state running, but increased peak trunk (P<0.001), hip (P=0.001), and knee (P=0.001) flexion moments, and trunk flexion (P<0.001) posture were evident. During the walk-to-run transition the load carrier may move joint power production distally down the kinetic chain and adopt biomechanical profiles to maintain performance of the task. The load carrier, however, may not adopt lower limb kinematic adaptations necessary to shift joint power distribution during steady-state running, despite exhibiting potentially detrimental larger lower limb joint loads. As such, further study appears needed to determine how load carriage impairs maximal locomotor performance.

  17. Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy.

    PubMed

    Moore, Isabel S

    2016-06-01

    Running economy (RE) has a strong relationship with running performance, and modifiable running biomechanics are a determining factor of RE. The purposes of this review were to (1) examine the intrinsic and extrinsic modifiable biomechanical factors affecting RE; (2) assess training-induced changes in RE and running biomechanics; (3) evaluate whether an economical running technique can be recommended and; (4) discuss potential areas for future research. Based on current evidence, the intrinsic factors that appeared beneficial for RE were using a preferred stride length range, which allows for stride length deviations up to 3 % shorter than preferred stride length; lower vertical oscillation; greater leg stiffness; low lower limb moment of inertia; less leg extension at toe-off; larger stride angles; alignment of the ground reaction force and leg axis during propulsion; maintaining arm swing; low thigh antagonist-agonist muscular coactivation; and low activation of lower limb muscles during propulsion. Extrinsic factors associated with a better RE were a firm, compliant shoe-surface interaction and being barefoot or wearing lightweight shoes. Several other modifiable biomechanical factors presented inconsistent relationships with RE. Running biomechanics during ground contact appeared to play an important role, specifically those during propulsion. Therefore, this phase has the strongest direct links with RE. Recurring methodological problems exist within the literature, such as cross-comparisons, assessing variables in isolation, and acute to short-term interventions. Therefore, recommending a general economical running technique should be approached with caution. Future work should focus on interdisciplinary longitudinal investigations combining RE, kinematics, kinetics, and neuromuscular and anatomical aspects, as well as applying a synergistic approach to understanding the role of kinetics.

  18. The Effects of Backwards Running Training on Forward Running Economy in Trained Males.

    PubMed

    Ordway, Jason D; Laubach, Lloyd L; Vanderburgh, Paul M; Jackson, Kurt J

    2016-03-01

    Backwards running (BR) results in greater cardiopulmonary response and muscle activity compared with forward running (FR). BR has traditionally been used in rehabilitation for disorders such as stroke and lower leg extremity injuries, as well as in short bursts during various athletic events. The aim of this study was to measure the effects of sustained backwards running training on forward running economy in trained male athletes. Eight highly trained, male runners (26.13 ± 6.11 years, 174.7 ± 6.4 cm, 68.4 ± 9.24 kg, 8.61 ± 3.21% body fat, 71.40 ± 7.31 ml·kg(-1)·min(-1)) trained with BR while harnessed on a treadmill at 161 m·min(-1) for 5 weeks following a 5-week BR run-in period at a lower speed (134 m·min(-1)). Subjects were tested at baseline, postfamiliarized, and post-BR training for body composition, a ramped VO2max test, and an economy test designed for trained male runners. Subjects improved forward running economy by 2.54% (1.19 ± 1.26 ml·kg(-1)·min(-1), p = 0.032) at 215 m·min(-1). VO2max, body mass, lean mass, fat mass, and % body fat did not change (p > 0.05). Five weeks of BR training improved FR economy in healthy, trained male runners without altering VO2max or body composition. The improvements observed in this study could be a beneficial form of training to an already economical population to improve running economy.

  19. On the b-quark running mass in QCD and the SM

    NASA Astrophysics Data System (ADS)

    Bednyakov, A. V.; Kniehl, B. A.; Pikelner, A. F.; Veretin, O. L.

    2017-03-01

    We consider electroweak corrections to the relation between the running MS ‾ mass mb of the b quark in the five-flavor QCD×QED effective theory and its counterpart in the Standard Model (SM). As a bridge between the two parameters, we use the pole mass Mb of the b quark, which can be calculated in both models. The running mass is not a fundamental parameter of the SM Lagrangian, but the product of the running Yukawa coupling yb and the Higgs vacuum expectation value. Since there exist different prescriptions to define the latter, the relations considered in the paper involve a certain amount of freedom. All the definitions can be related to each other in perturbation theory. Nevertheless, we argue in favour of a certain gauge-independent prescription and provide a relation which can be directly used to deduce the value of the Yukawa coupling of the b quark at the electroweak scale from its effective QCD running mass. This approach allows one to resum large logarithms ln ⁡ (mb /Mt) systematically. Numerical analysis shows that, indeed, the corrections to the proposed relation are much smaller than those between yb and Mb.

  20. Run-09 pC polarimeter analysis

    SciTech Connect

    Alekseev, I.; Aschenauer, E.; Atoyan, G.; Bazilevsky, A.; Gill, R.; Huang, H.; Lee, S.; Li, X.; Makdisi, Y.; Morozov, B.; Nakagawa, I.; Svirida, D.; Zelenski, A.

    2010-08-01

    Analysis of PC polarimeter data at {radical}s = 200 and 500 GeV from Run9 is presented. Final polarization results, fill-by-fill, for blue and yellow beams, as to be used by RHIC experiments (in collisions) are released and collected in http://www4.rcf.bnl.gov/cnipol/pubdocs/Run09Offline/. Global relative systematic uncertainties {delta}P/P (to be considered as correlated from fill to fill) are 4.7% for 100 GeV beams, and 8.3% (12.1%) for blue (yellow) 250 GeV beams. For a product of two beam polarizations P{sub B} {center_dot} P{sub Y} (used in double spin asymmetry measurements) the relative uncertainty {delta}(P{sub B} {center_dot} P{sub Y})/(P{sub B} {center_dot} P{sub Y}) 8.8% for 100 GeV beams and 18.5% for 250 GeV beams. For the average between two beam polarization (P{sub B} + P{sub Y})/2 (used in single spin asymmetry measurements, when data from two polarized beams are combined) the relative uncertainty is 4.4% for 100 GeV beams and 9.2% for 250 GeV beams. Larger uncertainties for 250 GeV beams relate to significant rate related systematic effects experienced in the first part of Run9 (due to thicker targets used and smaller trans. beam size at higher beam energy).

  1. Contribution of trunk muscularity on sprint run.

    PubMed

    Kubo, T; Hoshikawa, Y; Muramatsu, M; Iida, T; Komori, S; Shibukawa, K; Kanehisa, H

    2011-03-01

    This study aimed to investigate how the trunk muscularity is related to sprint running performance. In 23 youth soccer players, the cross-sectional images at the mid level of each of L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1 were obtained using magnetic resonance imaging to determine the cross-sectional areas (CSAs) of rectus abdominis, oblique, psoas major, quadratus lumborum and erector spinae muscles. The times taken to sprint over 20 m were measured, and the mean velocity of running was calculated for each of the 2 distances (V (10 m) and V (20 m)) and for the distance from 10 m to 20 m (V (10-20 m)). The CSA values of the 5 slice levels for all muscles except for the quadratus lumborum and those of the 3 slice levels (L1-L2, L2-L3 and L3-L4) for the quadratus lumborum were averaged and expressed relative to the two-third power of body mass (CSA/BM (2/3)). The CSA/BM (2/3) values of the erector spinae and quadratus lumborum were selected as significant contributors to predict V (10 m) ( R(2)=0.450), V (20 m) ( R(2)=0.504) and V (10-20 m) ( R(2)=0.420). The current results indicate that the muscularity of the erector spinae and quadratus lumborum contributes to achieving a high performance in sprint running over distances of less than 20 m.

  2. Repeatability of a running heat tolerance test.

    PubMed

    Mee, Jessica A; Doust, Jo; Maxwell, Neil S

    2015-01-01

    At present there is no standardised heat tolerance test (HTT) procedure adopting a running mode of exercise. Current HTTs may misdiagnose a runner's susceptibility to a hyperthermic state due to differences in exercise intensity. The current study aimed to establish the repeatability of a practical running test to evaluate individual's ability to tolerate exercise heat stress. Sixteen (8M, 8F) participants performed the running HTT (RHTT) (30 min, 9 km h(-1), 2% elevation) on two separate occasions in a hot environment (40 °C and 40% relative humidity). There were no differences in peak rectal temperature (RHTT1: 38.82 ± 0.47 °C, RHTT2: 38.86 ± 0.49 °C, Intra-class correlation coefficient (ICC)=0.93, typical error of measure (TEM) = 0.13 °C), peak skin temperature (RHTT1: 38.12 ± 0.45, RHTT2: 38.11 ± 0.45 °C, ICC = 0.79, TEM = 0.30 °C), peak heart rate (RHTT1: 182 ± 15 beats min(-1), RHTT2: 183 ± 15 beats min(-1), ICC = 0.99, TEM = 2 beats min(-1)), nor sweat rate (1721 ± 675 g h(-1), 1716 ± 745 g h(-1), ICC = 0.95, TEM = 162 g h(-1)) between RHTT1 and RHTT2 (p>0.05). Results demonstrate good agreement, strong correlations and small differences between repeated trials, and the TEM values suggest low within-participant variability. The RHTT was effective in differentiating between individuals physiological responses; supporting a heat tolerance continuum. The findings suggest the RHTT is a repeatable measure of physiological strain in the heat and may be used to assess the effectiveness of acute and chronic heat alleviating procedures.

  3. Blood glutathione status following distance running.

    PubMed

    Dufaux, B; Heine, O; Kothe, A; Prinz, U; Rost, R

    1997-02-01

    In 12 moderately trained subjects reduced glutathione (GSH) and oxidized glutathione (GSSG) as well as thiobarbituric acid reactive substances (TBARS) were measured in the blood before and during the first two hours and first two days after a 2.5-h run. The participants covered between 19 and 26 km (20.8 +/- 2.5 km, mean +/- SD). The running speed was between 53 and 82% of the speed at which blood lactate concentration reached 4 mmol/L lactate (67.9 +/- 8.2%, mean +/- SD) assessed during a previously performed treadmill test. Blood samples were collected 1 h before, immediately before, immediately after, 1 and 2 h after, as well as 1 and 2 days after the run. Immediately after exercise GSH was significantly decreased (p < 0.01) and GSSG significantly increased (p < 0.01). In all subjects the ratio of GSH to GSSG showed a marked decline to 18 +/- 4% (mean +/- SD) of the pre-exercise values (p < 0.01). One hour later the mean GSH and GSSG values returned to baseline. However, there were considerable inter-individual differences. In some subjects the GSH/ GSSG ratio overshot the pre-exercise levels, in others the ratio remained low even two hours after exercise. Compared with the pre-exercise values TBARS concentrations did not change significantly at any time point after exercise. The findings suggest that after prolonged exercise in moderately trained subjects a critical shift in the blood glutathione redox status may be reached. The changes observed were generally short-lived, the duration of which may have depended on the relative importance of reactive oxygen species generation by the capillary endothelial cells and neutrophil and eosinophil granulocytes after the end of exercise.

  4. Effects of multicycle-run training on triathlete performance.

    PubMed

    Hue, Olivier; Valluet, Alex; Blonc, Stephen; Hertogh, Claude

    2002-09-01

    The purpose of this study was to determine the effect of triathlon training using multiple, short cycle-run sequences (multicycle-run training) on cycle-run performance. Twelve competitive triathletes, randomized into two groups, underwent multicycle-run training or normal training for 6 weeks. During this period, baseline training remained the same for both groups, and only the high-intensity component differed. The differentiated exercises were performed at or above 100% maximal aerobic velocity. The improvements in overall cycle-run performance were similar (3.3 +/- 1.4 % and 6.1 +/- 1.7% rise in Performance in multicycle-run and normal training, respectively). However, the improvement in performance was significantly greater for the multicycle-run training (-11.2 +/- 6.8 s versus -1.2 +/- 7. 7 s for multicycle-run training and normal training, respectively) during both the cycle-run change and the first 333-m lap, which together are termed the cycle-run transition. We concluded that 6 weeks of multicycle-run training did not induce greater improvement in cycle-run performance than did normal training in competitive triathletes. However, it did induce significant improvement in the cycle-run transition. This finding indicates that multicycle-run training may help competitive triathletes to develop greater skill and better physiological adaptations during this critical transition period of the triathlon race.

  5. Lower Three Runs Instream Flow Study

    SciTech Connect

    del Carmen, B.R.; Paller, M.H.

    1993-12-31

    An Instream Flow Study was conducted to identify the minimum discharge from PAR Pond that will support a balanced biological fish community in Lower Three Runs. Hydraulic and habitat models of the Physical Habitat simulation System (PHABSIM), the major component of the US Fish and Wildlife Service`s Instream Flow Incremental Methodology (IFIM) were applied. Following calibration of the Water Surface Profile (WSP)Model for three study reaches, hydraulic data was input to the AVDEPTH habitat model to develop relationships between discharge and reaches, hydraulic data was input to the AVDEPTH habitat model to development relationship between discharge and available habitat.

  6. Input data to run Landis-II

    USGS Publications Warehouse

    DeJager, Nathan R.

    2017-01-01

    The data are input data files to run the forest simulation model Landis-II for Isle Royale National Park. Files include: a) Initial_Comm, which includes the location of each mapcode, b) Cohort_ages, which includes the ages for each tree species-cohort within each mapcode, c) Ecoregions, which consist of different regions of soils and climate, d) Ecoregion_codes, which define the ecoregions, and e) Species_Params, which link the potential establishment and growth rates for each species with each ecoregion.

  7. CDF Run II silicon tracking projects

    NASA Astrophysics Data System (ADS)

    Sill, Alan; CDF Collaboration

    2000-06-01

    Design features, functionality, and expected performance are reviewed for the silicon charged particle track detectors to be used by the Collider Detector at Fermilab (CDF) during the upcoming Run II of the Fermilab Tevatron. The original design has been supplemented by addiition of a new layer of silicon mounted on the beam pipe that improves the vertexing performance of the combined assembly. Progress has been made in many areas of design and construction of the silicon sensors, readout electronics, and associated systems. The resulting detector array should provide substantial improvements in coverage and performance over those of previous CDF silicon vertex detectors.

  8. Schools should not be run as businesses

    NASA Astrophysics Data System (ADS)

    Jones, Robert

    2011-04-01

    Schools, prisons, hospitals, governments and the like should not be run as businesses or following business principles. The reason is simple, most businesses fail in 3 to 5 years and 90% fail in 10 years. Business methodology more often than not leads to failure. Society should instead prefer and follow the methods of science, engineering and democracy. The scientific method is superior to markets. It has been known for 100 years that groups can produce better decisions than individuals. We should not have chairs, and deans and presidents. Rather, decisions should be taken by workers councils.

  9. AGU member running to fill congressional seat

    NASA Astrophysics Data System (ADS)

    Crum, Emily

    John F Mink, an AGU member (Hydrology) for 50 years, and husband of the late Representative Patsy T. Mink (D-Hawaii), will run in a special election on 30 November to fill the remainder of his wife's unexpired congressional term. Patsy Mink, who represented the 2nd Congressional District of Hawaii, passed away on 28 September after battling pneumonia.Her name will appear on the 5 November election ballot as a candidate for Hawaii's 2nd District in the 108th Congress. If she is elected posthumously, the state of Hawaii will hold a special election in January to select an official to serve the full two-year term.

  10. Effects of a structured midsole on spatio-temporal variables and running economy in overground running.

    PubMed

    Wunsch, Tobias; Kröll, Josef; Stöggl, Thomas; Schwameder, Hermann

    2017-04-01

    Research to enhance running performance has led to the design of a leaf spring-structured midsole shoe (LEAF). In treadmill running, it has been shown that LEAF led to an increased running economy and increased stride length (SL) through a horizontal foot shift during stance compared to a standard foam shoe (FOAM). The purpose of this study was to analyse whether (a) these findings can also be observed in overground running and (b) relations exist between spatio-temporal variables and running economy. Ten male long-distance heel-strike runners ran at their individual 2 mmol/l blood lactate speed with LEAF and FOAM in randomized order. Kinematic data were recorded with an inertial measurement unit synchronized with 2D video. Oxygen consumption was measured using an automated metabolic gas analysis system. Blood lactate was collected after each run. The strike pattern was unaffected by LEAF. SL was increased by 0.9 ± 1.1 cm (95% CI 0.2 to 1.5; p = .040; dz = 0.76), stride rate (SR) was reduced by -0.4 ± 0.3 strides/min (95% CI -0.6 to -0.1; p = .029; dz = 0.82) and oxygen consumption tended to be reduced by 1% (-0.4 ± 0.6 ml/min/kg; 95% CI -0.8 to 0.0; p = .082; dz = 0.62) when running with LEAF compared to FOAM. Changes in oxygen consumption in LEAF were correlated with SL (r = 0.71; p = .022) and SR (r = -0.68; p = .031). It can be concluded that LEAF has the potential to cause small changes in spatio-temporal variables during running. Runners increasing SL and decreasing SR in response to LEAF can achieve small improvements in running economy, which is beneficial in terms of performance.

  11. Dissociation between running economy and running performance in elite Kenyan distance runners.

    PubMed

    Mooses, Martin; Mooses, Kerli; Haile, Diresibachew Wondimu; Durussel, Jérôme; Kaasik, Priit; Pitsiladis, Yannis Paul

    2015-01-01

    The purpose of this study was to investigate the relationship between running economy (RE) and performance in a homogenous group of competitive Kenyan distance runners. Maximal aerobic capacity (VO2max) (68.8 ± 3.8 ml∙kg(-1)∙min(-1)) was determined on a motorised treadmill in 32 Kenyan (25.3 ± 5.0 years; IAAF performance score: 993 ± 77 p) distance runners. Leg anthropometry was assessed and moment arm of the Achilles tendon determined. While Achilles moment arm was associated with better RE (r(2) = 0.30, P = 0.003) and upper leg length, total leg length and total leg length to body height ratio were correlated with running performance (r = 0.42, P = 0.025; r = 0.40, P = 0.030 and r = 0.38, P = 0.043, respectively), RE and maximal time on treadmill (t(max)) were not associated with running performance (r = -0.01, P = 0.965; r = 0.27; P = 0.189, respectively) in competitive Kenyan distance runners. The dissociation between RE and running performance in this homogenous group of runners would suggest that RE can be compensated by other factors to maintain high performance levels and is in line with the idea that RE is only one of many factors explaining elite running performance.

  12. Tubular Coupling

    NASA Technical Reports Server (NTRS)

    Rosenbaum, Bernard J. (Inventor)

    2000-01-01

    A system for coupling a vascular overflow graft or cannula to a heart pump. A pump pipe outlet is provided with an external tapered surface which receives the end of a compressible connula. An annular compression ring with a tapered internal bore surface is arranged about the cannula with the tapered internal surface in a facing relationship to the external tapered surface. The angle of inclination of the tapered surfaces is converging such that the spacing between the tapered surfaces decreases from one end of the external tapered surface to the other end thereby providing a clamping action of the tapered surface on a cannula which increases as a function of the length of cannula segment between the tapered surfaces. The annular compression ring is disposed within a tubular locking nut which threadedly couples to the pump and provides a compression force for urging the annular ring onto the cannula between the tapered surfaces. The nut has a threaded connection to the pump body. The threaded coupling to the pump body provides a compression force for the annular ring. The annular ring has an annular enclosure space in which excess cannula material from the compression between the tapered surfaces to "bunch up" in the space and serve as an enlarged annular ring segment to assist holding the cannula in place. The clamped cannula provides a seamless joint connection to the pump pipe outlet where the clamping force is uniformly applied to the cannula because of self alignment of the tapered surfaces. The nut can be easily disconnected to replace the pump if necessary.

  13. Scalar decay constant and Yukawa coupling in walking gauge theories

    SciTech Connect

    Hashimoto, Michio

    2011-05-01

    We propose an approach for the calculation of the Yukawa coupling through the scalar decay constant and the chiral condensate in the context of the extended technicolor . We perform the nonperturbative computation of the Yukawa coupling based on the improved ladder Schwinger-Dyson equation. It turns out that the Yukawa coupling can be larger or smaller than the standard model value, depending on the number N{sub D} of the weak doublets for each technicolor (TC) index. It is thus nontrivial whether or not the huge enhancement of the production of the scalar via the gluon fusion takes place even for a walking TC model with a colored techni-fermion. For the typical one-family TC model near conformality, it is found that the Yukawa coupling is slightly larger than the standard model one, where the expected mass of the scalar bound state is around 500 GeV. In this case, the production cross section via the gluon fusion is considerably enhanced, as naively expected, and hence such a scalar can be discovered/excluded at the early stage of the LHC.

  14. Aerodynamics of wing-assisted incline running in birds.

    PubMed

    Tobalske, Bret W; Dial, Kenneth P

    2007-05-01

    Wing-assisted incline running (WAIR) is a form of locomotion in which a bird flaps its wings to aid its hindlimbs in climbing a slope. WAIR is used for escape in ground birds, and the ontogeny of this behavior in precocial birds has been suggested to represent a model analogous to transitional adaptive states during the evolution of powered avian flight. To begin to reveal the aerodynamics of flap-running, we used digital particle image velocimetry (DPIV) and measured air velocity, vorticity, circulation and added mass in the wake of chukar partridge Alectoris chukar as they engaged in WAIR (incline 65-85 degrees; N=7 birds) and ascending flight (85 degrees, N=2). To estimate lift and impulse, we coupled our DPIV data with three-dimensional wing kinematics from a companion study. The ontogeny of lift production was evaluated using three age classes: baby birds incapable of flight [6-8 days post hatching (d.p.h.)] and volant juveniles (25-28 days) and adults (45+ days). All three age classes of birds, including baby birds with partially emerged, symmetrical wing feathers, generated circulation with their wings and exhibited a wake structure that consisted of discrete vortex rings shed once per downstroke. Impulse of the vortex rings during WAIR was directed 45+/-5 degrees relative to horizontal and 21+/-4 degrees relative to the substrate. Absolute values of circulation in vortex cores and induced velocity increased with increasing age. Normalized circulation was similar among all ages in WAIR but 67% greater in adults during flight compared with flap-running. Estimated lift during WAIR was 6.6% of body weight in babies and between 63 and 86% of body weight in juveniles and adults. During flight, average lift was 110% of body weight. Our results reveal for the first time that lift from the wings, rather than wing inertia or profile drag, is primarily responsible for accelerating the body toward the substrate during WAIR, and that partially developed wings, not yet

  15. Nonperturbative tests for asymptotic freedom in the PT-symmetric (-{phi}{sup 4}){sub 3+1} theory

    SciTech Connect

    Shalaby, Abouzeid; Al-Thoyaib, Suleiman S.

    2010-10-15

    In the literature, the asymptotic freedom property of the (-{phi}{sup 4}) theory is always concluded from real-line calculations while the theory is known to be a non-real-line one. In this article, we test the existence of the asymptotic freedom in the (-{phi}{sup 4}){sub 3+1} theory using the mean field approach. In this approach and contrary to the original Hamiltonian, the obtained effective Hamiltonian is rather a real-line one. Accordingly, this work resembles the first reasonable analysis for the existence of the asymptotic freedom property in the PT-symmetric (-{phi}{sup 4}) theory. In this respect, we calculated three different amplitudes of different positive dimensions (in mass units) and find that all of them go to very small values at high energy scales (small coupling) in agreement with the spirit of the asymptotic freedom property of the theory. To test the validity of our calculations, we obtained the asymptotic behavior of the vacuum condensate in terms of the coupling, analytically, and found that the controlling factor {Lambda} has the value ((4{pi}){sup 2}/6)=26.319 compared to the result {Lambda}=26.3209 from the literature, which was obtained via numerical predictions. We assert that the nonblowup of the massive quantities at high energy scales predicted in this work strongly suggests the possibility of the solution of the famous hierarchy puzzle in a standard model with the PT-symmetric Higgs mechanism.

  16. Running energetics in the pronghorn antelope.

    PubMed

    Lindstedt, S L; Hokanson, J F; Wells, D J; Swain, S D; Hoppeler, H; Navarro, V

    1991-10-24

    The pronghorn antelope (Antilocapra americana) has an alleged top speed of 100 km h-1, second only to the cheetah (Acionyx jubatus) among land vertebrates, a possible response to predation in the exposed habitat of the North American prairie. Unlike cheetahs, however, pronghorn antelope are distance runners rather than sprinters, and can run 11 km in 10 min, an average speed of 65 km h-1. We measured maximum oxygen uptake in pronghorn antelope to distinguish between two potential explanations for this ability: either they have evolved a uniquely high muscular efficiency (low cost of transport) or they can supply oxygen to the muscles at unusually high levels. Because the cost of transport (energy per unit distance covered per unit body mass) varies as a predictable function of body mass among terrestrial vertebrates, we can calculate the predicted cost to maintain speeds of 65 and 100 km h-1 in an average 32-kg animal. The resulting range of predicted values, 3.2-5.1 ml O2 kg-1 s-1, far surpasses the predicted maximum aerobic capacity of a 32-kg mammal (1.5 ml O2 kg-1 s-1). We conclude that their performance is achieved by an extraordinary capacity to consume and process enough oxygen to support a predicted running speed greater than 20 ms-1 (70 km h-1), attained without unique respiratory-system structures.

  17. Primordial gravitational waves in running vacuum cosmologies

    NASA Astrophysics Data System (ADS)

    Tamayo, D. A.; Lima, J. A. S.; Alves, M. E. S.; de Araujo, J. C. N.

    2017-01-01

    We investigate the cosmological production of gravitational waves in a nonsingular flat cosmology powered by a "running vacuum" energy density described by ρΛ ≡ ρΛ(H), a phenomenological expression potentially linked with the renormalization group approach in quantum field theory in curved spacetimes. The model can be interpreted as a particular case of the class recently discussed by Perico et al. (2013) [25] which is termed complete in the sense that the cosmic evolution occurs between two extreme de Sitter stages (early and late time de Sitter phases). The gravitational wave equation is derived and its time-dependent part numerically integrated since the primordial de Sitter stage. The generated spectrum of gravitons is also compared with the standard calculations where an abrupt transition, from the early de Sitter to the radiation phase, is usually assumed. It is found that the stochastic background of gravitons is very similar to the one predicted by the cosmic concordance model plus inflation except at higher frequencies (ν ≳ 100 kHz). This remarkable signature of a "running vacuum" cosmology combined with the proposed high frequency gravitational wave detectors and measurements of the CMB polarization (B-modes) may provide a new window to confront more conventional models of inflation.

  18. Can cycle power predict sprint running performance?

    PubMed

    van Ingen Schenau, G J; Jacobs, R; de Koning, J J

    1991-01-01

    A major criticism of present models of the energetics and mechanics of sprint running concerns the application of estimates of parameters which seem to be adapted from measurements of running during actual competitions. This study presents a model which does not perpetuate this solecism. Using data obtained during supra-maximal cycle ergometer tests of highly trained athletes, the kinetics of the anaerobic and aerobic pathways were modelled. Internal power wasted in the acceleration and deceleration of body limbs and the power necessary to overcome air friction was calculated from data in the literature. Assuming a mechanical efficiency as found during submaximal cycling, a power equation was constructed which also included the power necessary to accelerate the body at the start of movement. The differential equation thus obtained was solved through simulation. The model appeared to predict realistic times at 100 m (10.47 s), 200 m (19.63 s) and 400 m (42.99 s) distances. By comparison with other methods it is argued that power equations of locomotion should include the concept of mechanical efficiency.

  19. GRETINA commissioning and engineering run resolution analysis

    NASA Astrophysics Data System (ADS)

    Tarlow, Thomas; Beausang, Con; Ross, Tim; Hughes, Richard; Gell, Kristen; Good, Erin

    2012-10-01

    GRETINA, the first stage in the full Gamma Ray Energy Tracking Array (GRETA), consists of seven modules covering approximately 1 solid angle. Each module is made up of four large, highly-segmented germanium detectors capable of measuring the interaction points of individual gamma-rays. GRETINA has recently been assembled and commissioned in LBNL via a series of engineering and commissioning runs. Here we report on an analysis of data from the first engineering run (ER01) which was intended to probe the response of the data acquisition system to high multiplicity gamma-ray cascades. For this experiment the 122Sn(40Ar, 4n) reaction at a beam energy of 210 MeV was utilized to populate high spin states in 158Er. A variety of beam currents, targets and trigger conditions were utilized to test the acquisition. Here we report on the measured energy resolution, both with calibration and in-beam sources as well as a gamma-gamma coincidence analysis to confirm the known level scheme and the capability of the data acquisition system for high fold coincidence measurements. This work was partly supported by the US Department of Energy via grant numbers DE-FG52-09NA29454 and DE-FG02-05-ER41379.

  20. A runs-test algorithm: contingent reinforcement and response run structures.

    PubMed

    Hachiga, Yosuke; Sakagami, Takayuki

    2010-01-01

    Four rats' choices between two levers were differentially reinforced using a runs-test algorithm. On each trial, a runs-test score was calculated based on the last 20 choices. In Experiment 1, the onset of stimulus lights cued when the runs score was smaller than criterion. Following cuing, the correct choice was occasionally reinforced with food, and the incorrect choice resulted in a blackout. Results indicated that this contingency reduced sequential dependencies among successive choice responses. With one exception, subjects' choice rule was well described as biased coin flipping. In Experiment 2, cuing was removed and the reinforcement criterion was changed to a percentile score based on the last 20 reinforced responses. The results replicated those of Experiment 1 in successfully eliminating first-order dependencies in all subjects. For 2 subjects, choice allocation was approximately consistent with nonbiased coin flipping. These results suggest that sequential dependencies may be a function of reinforcement contingency.

  1. Adjustments with running speed reveal neuromuscular adaptations during landing associated with high mileage running training.

    PubMed

    Verheul, Jasper; Clansey, Adam C; Lake, Mark J

    2017-03-01

    It remains to be determined whether running training influences the amplitude of lower limb muscle activations before and during the first half of stance and whether such changes are associated with joint stiffness regulation and usage of stored energy from tendons. Therefore, the aim of this study was to investigate neuromuscular and movement adaptations before and during landing in response to running training across a range of speeds. Two groups of high mileage (HM; >45 km/wk, n = 13) and low mileage (LM; <15 km/wk, n = 13) runners ran at four speeds (2.5-5.5 m/s) while lower limb mechanics and electromyography of the thigh muscles were collected. There were few differences in prelanding activation levels, but HM runners displayed lower activations of the rectus femoris, vastus medialis, and semitendinosus muscles postlanding, and these differences increased with running speed. HM runners also demonstrated higher initial knee stiffness during the impact phase compared with LM runners, which was associated with an earlier peak knee flexion velocity, and both were relatively unchanged by running speed. In contrast, LM runners had higher knee stiffness during the slightly later weight acceptance phase and the disparity was amplified with increases in speed. It was concluded that initial knee joint stiffness might predominantly be governed by tendon stiffness rather than muscular activations before landing. Estimated elastic work about the ankle was found to be higher in the HM runners, which might play a role in reducing weight acceptance phase muscle activation levels and improve muscle activation efficiency with running training.NEW & NOTEWORTHY Although neuromuscular factors play a key role during running, the influence of high mileage training on neuromuscular function has been poorly studied, especially in relation to running speed. This study is the first to demonstrate changes in neuromuscular conditioning with high mileage training, mainly characterized by

  2. 5K Run: 7-Week Training Schedule for Beginners

    MedlinePlus

    ... This 5K training schedule incorporates a mix of running, walking and resting. This combination helps reduce the ... you'll gradually increase the amount of time running and reduce the amount of time walking. If ...

  3. 6. Pedlar Gap Run Aqueduct, detail of north abutment showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Pedlar Gap Run Aqueduct, detail of north abutment showing evidence of trough framing, looking NE - North River Canal System, Pedlar Gap Run Aqueduct, West side of Buena Vista, Buena Vista, Roanoke City, VA

  4. 5. Pedlar Gap Run Aqueduct, detail of north abutment showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Pedlar Gap Run Aqueduct, detail of north abutment showing evidence of trough framing, looking N - North River Canal System, Pedlar Gap Run Aqueduct, West side of Buena Vista, Buena Vista, Roanoke City, VA

  5. 2. PERSPECTIVE VIEW OF OVENS ALONG CATS RUN LOOKING NORTHEAST, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PERSPECTIVE VIEW OF OVENS ALONG CATS RUN LOOKING NORTHEAST, SHOWING OVEN NOS. 159 (RIGHT) THROUGH 163 (LEFT) - Griffin No. 1 Coke Works, Along Cats Run, Southeast of Masontown Bourough (Nicholson Township), Masontown, Fayette County, PA

  6. 29 CFR 452.30 - Run-off elections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 2 2011-07-01 2011-07-01 false Run-off elections. 452.30 Section 452.30 Labor Regulations... OF 1959 Frequency and Kinds of Elections § 452.30 Run-off elections. A run-off election must meet the... example, if the run-off is to be held at the same meeting as the original election, the original notice...

  7. 29 CFR 452.30 - Run-off elections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 2 2014-07-01 2014-07-01 false Run-off elections. 452.30 Section 452.30 Labor Regulations... OF 1959 Frequency and Kinds of Elections § 452.30 Run-off elections. A run-off election must meet the... example, if the run-off is to be held at the same meeting as the original election, the original notice...

  8. 29 CFR 452.30 - Run-off elections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 2 2013-07-01 2013-07-01 false Run-off elections. 452.30 Section 452.30 Labor Regulations... OF 1959 Frequency and Kinds of Elections § 452.30 Run-off elections. A run-off election must meet the... example, if the run-off is to be held at the same meeting as the original election, the original notice...

  9. 29 CFR 452.30 - Run-off elections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 2 2012-07-01 2012-07-01 false Run-off elections. 452.30 Section 452.30 Labor Regulations... OF 1959 Frequency and Kinds of Elections § 452.30 Run-off elections. A run-off election must meet the... example, if the run-off is to be held at the same meeting as the original election, the original notice...

  10. Thermoacoustic couple

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-10-04

    An apparatus and method for determining acoustic power density level and its direction in a fluid using a single sensor are disclosed. The preferred embodiment of the apparatus, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  11. Dark coupling

    SciTech Connect

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S. E-mail: d.hernandez@uam.es E-mail: omena@ific.uv.es

    2009-07-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed.

  12. Flood-plain delineation for Occoquan River, Wolf Run, Sandy Run, Elk Horn Run, Giles Run, Kanes Creek, Racoon Creek, and Thompson Creek, Fairfax County, Virginia

    USGS Publications Warehouse

    Soule, Pat LeRoy

    1978-01-01

    Water-surface profiles of the 25-, 50-, and 100-year recurrence interval discharges have been computed for all streams and reaches of channels in Fairfax County, Virginia, having a drainage area greater than 1 square mile except for Dogue Creek, Little Hunting Creek, and that portion of Cameron Run above Lake Barcroft. Maps having a 2-foot contour interval and a horizontal scale of 1 inch equals 100 feet were used for base on which flood boundaries were delineated for 25-, 50-, and 100-year floods to be expected in each basin under ultimate development conditions. This report is one of a series and presents a discussion of techniques employed in computing discharges and profiles as well as the flood profiles and maps on which flood boundaries have been delineated for the Occoquan River and its tributaries within Fairfax County and those streams on Mason Neck within Fairfax County tributary to the Potomac River. (Woodard-USGS)

  13. LHC Computing: The First Run and Beyond

    SciTech Connect

    Fisk, Ian

    2012-10-10

    Even in between the last two generations of high energy physics detectors there has been a tremendous amount of progress in the area of computing. The distributed computing systems used in the LHC are composed of large-scale facilities on 5 continents, executing over a million processing requests a day, and moving peta-bytes of data a month. In this presentation I will discuss the operational experience of the LHC experiments and the challenges faced in the first run. I will discuss how the techniques have evolved and I will cover future projects to improve the distributed computing infrastructure and services. I will close by speaking of some potential new technologies being explored.

  14. Hit-and-run planetary collisions.

    PubMed

    Asphaug, Erik; Agnor, Craig B; Williams, Quentin

    2006-01-12

    Terrestrial planet formation is believed to have concluded in our Solar System with about 10 million to 100 million years of giant impacts, where hundreds of Moon- to Mars-sized planetary embryos acquired random velocities through gravitational encounters and resonances with one another and with Jupiter. This led to planet-crossing orbits and collisions that produced the four terrestrial planets, the Moon and asteroids. But here we show that colliding planets do not simply merge, as is commonly assumed. In many cases, the smaller planet escapes from the collision highly deformed, spun up, depressurized from equilibrium, stripped of its outer layers, and sometimes pulled apart into a chain of diverse objects. Remnants of these 'hit-and-run' collisions are predicted to be common among remnant planet-forming populations, and thus to be relevant to asteroid formation and meteorite petrogenesis.

  15. Giving students the run of sprinting models

    NASA Astrophysics Data System (ADS)

    Heck, André; Ellermeijer, Ton

    2009-11-01

    A biomechanical study of sprinting is an interesting task for students who have a background in mechanics and calculus. These students can work with real data and do practical investigations similar to the way sports scientists do research. Student research activities are viable when the students are familiar with tools to collect and work with data from sensors and video recordings and with modeling tools for comparing simulation and experimental results. This article describes a multipurpose system, named COACH, that offers a versatile integrated set of tools for learning, doing, and teaching mathematics and science in a computer-based inquiry approach. Automated tracking of reference points and correction of perspective distortion in videos, state-of-the-art algorithms for data smoothing and numerical differentiation, and graphical system dynamics based modeling are some of the built-in techniques that are suitable for motion analysis. Their implementation and their application in student activities involving models of running are discussed.

  16. DNA strand displacement system running logic programs.

    PubMed

    Rodríguez-Patón, Alfonso; Sainz de Murieta, Iñaki; Sosík, Petr

    2014-01-01

    The paper presents a DNA-based computing model which is enzyme-free and autonomous, not requiring a human intervention during the computation. The model is able to perform iterated resolution steps with logical formulae in conjunctive normal form. The implementation is based on the technique of DNA strand displacement, with each clause encoded in a separate DNA molecule. Propositions are encoded assigning a strand to each proposition p, and its complementary strand to the proposition ¬p; clauses are encoded comprising different propositions in the same strand. The model allows to run logic programs composed of Horn clauses by cascading resolution steps. The potential of the model is demonstrated also by its theoretical capability of solving SAT. The resulting SAT algorithm has a linear time complexity in the number of resolution steps, whereas its spatial complexity is exponential in the number of variables of the formula.

  17. Runs of Homozygosity in European Populations

    PubMed Central

    McQuillan, Ruth; Leutenegger, Anne-Louise; Abdel-Rahman, Rehab; Franklin, Christopher S.; Pericic, Marijana; Barac-Lauc, Lovorka; Smolej-Narancic, Nina; Janicijevic, Branka; Polasek, Ozren; Tenesa, Albert; MacLeod, Andrew K.; Farrington, Susan M.; Rudan, Pavao; Hayward, Caroline; Vitart, Veronique; Rudan, Igor; Wild, Sarah H.; Dunlop, Malcolm G.; Wright, Alan F.; Campbell, Harry; Wilson, James F.

    2008-01-01

    Estimating individual genome-wide autozygosity is important both in the identification of recessive disease variants via homozygosity mapping and in the investigation of the effects of genome-wide homozygosity on traits of biomedical importance. Approaches have tended to involve either single-point estimates or rather complex multipoint methods of inferring individual autozygosity, all on the basis of limited marker data. Now, with the availability of high-density genome scans, a multipoint, observational method of estimating individual autozygosity is possible. Using data from a 300,000 SNP panel in 2618 individuals from two isolated and two more-cosmopolitan populations of European origin, we explore the potential of estimating individual autozygosity from data on runs of homozygosity (ROHs). Termed Froh, this is defined as the proportion of the autosomal genome in runs of homozygosity above a specified length. Mean Froh distinguishes clearly between subpopulations classified in terms of grandparental endogamy and population size. With the use of good pedigree data for one of the populations (Orkney), Froh was found to correlate strongly with the inbreeding coefficient estimated from pedigrees (r = 0.86). Using pedigrees to identify individuals with no shared maternal and paternal ancestors in five, and probably at least ten, generations, we show that ROHs measuring up to 4 Mb are common in demonstrably outbred individuals. Given the stochastic variation in ROH number, length, and location and the fact that ROHs are important whether ancient or recent in origin, approaches such as this will provide a more useful description of genomic autozygosity than has hitherto been possible. PMID:18760389

  18. SALIVARY ANTIMICROBIAL PROTEIN RESPONSE TO PROLONGED RUNNING

    PubMed Central

    Kuennen, M.; Gourley, C.; Schneider, S.; Dokladny, K.; Moseley, P.

    2013-01-01

    Introduction Prolonged exercise may compromise immunity through a reduction of salivary antimicrobial proteins (AMPs). Salivary IgA (IgA) has been extensively studied, but little is known about the effect of acute, prolonged exercise on AMPs including lysozyme (Lys) and lactoferrin (Lac). Objective To determine the effect of a 50-km trail race on salivary cortisol (Cort), IgA, Lys, and Lac. Methods 14 subjects: (6 females, 8 males) completed a 50km ultramarathon. Saliva was collected pre, immediately after (post) and 1.5 hrs post race (+1.5). Results Lac concentration was higher at +1.5 hrs post race compared to post exercise (p < 0.05). Lys was unaffected by the race (p > 0.05). IgA concentration, secretion rate, and IgA/Osm were lower +1.5 hrs post compared to pre race (p < 0.05). Cort concentration was higher at post compared to +1.5 (p < 0.05), but was unaltered from pre race levels. Subjects finished in 7.81±1.2 hrs. Saliva flow rate did not differ between time points. Saliva Osm increased at post (p < 0.05) compared to pre race. Conclusions The intensity could have been too low to alter Lys and Lac secretion rates and thus, may not be as sensitive as IgA to changes in response to prolonged running. Results expand our understanding of the mucosal immune system and may have implications for predicting illness after prolonged running. PMID:24744458

  19. Modular Control of Treadmill vs Overground Running

    PubMed Central

    Farina, Dario; Kersting, Uwe Gustav

    2016-01-01

    Motorized treadmills have been widely used in locomotion studies, although a debate remains concerning the extrapolation of results obtained from treadmill experiments to overground locomotion. Slight differences between treadmill (TRD) and overground running (OVG) kinematics and muscle activity have previously been reported. However, little is known about differences in the modular control of muscle activation in these two conditions. Therefore, we aimed at investigating differences between motor modules extracted from TRD and OVG by factorization of multi-muscle electromyographic (EMG) signals. Twelve healthy men ran on a treadmill and overground at their preferred speed while we recorded tibial acceleration and surface EMG from 11 ipsilateral lower limb muscles. We extracted motor modules representing relative weightings of synergistic muscle activations by non-negative matrix factorization from 20 consecutive gait cycles. Four motor modules were sufficient to accurately reconstruct the EMG signals in both TRD and OVG (average reconstruction quality = 92±3%). Furthermore, a good reconstruction quality (80±7%) was obtained also when muscle weightings of one condition (either OVG or TRD) were used to reconstruct the EMG data from the other condition. The peak amplitudes of activation signals showed a similar timing (pattern) across conditions. The magnitude of peak activation for the module related to initial contact was significantly greater for OVG, whereas peak activation for modules related to leg swing and preparation to landing were greater for TRD. We conclude that TRD and OVG share similar muscle weightings throughout motion. In addition, modular control for TRD and OVG is achieved with minimal temporal adjustments, which were dependent on the phase of the running cycle. PMID:27064978

  20. A new ankle foot orthosis for running.

    PubMed

    Bishop, David; Moore, Allan; Chandrashekar, Naveen

    2009-09-01

    Traumatic knee injuries in automobile accidents and sports often lead to damage of the peroneal nerve. A lack of control of muscles innervated by the peroneal nerve due to this damage, results in the inability to dorsiflex and evert the foot and to extend the toes. This condition is commonly known as foot drop. Foot drop reduces the stability in the body while walking and running and may also cause injury due to lack of foot clearance during the swing phase of the gait. Traditionally, an ankle foot orthosis (AFO), comprised of a moulded sheet of plastic that conforms around the posterior calf and distally contains all or part of the calcaneous as well as the plantar foot, is used to treat foot drop. The intent of this orthosis is to dorsiflex the foot to provide clearance during the swing phase of walking and running. Traditional AFO results in increased pressures due to a decrease in dorsiflexion range of motion at the ankle and make the orthosis increasingly uncomfortable to wear. Several other existing designs of foot drop AFO suffer from similar inadequacies. To address these issues, a new AFO was developed. The device was successfully used by one person with foot drop without issues for more than one year. This new design conforms to the lower anterior shin and dorsum of the foot using dorsiassist Tamarack ankle joints to allow for greater plantar and dorsiflexion range of motion. While still limiting ankle inversion it does allow for more ankle eversion. This orthosis can be discretely worn inside shoes due to its smaller size, and can be worn for a longer period of time without discomfort.

  1. 14 CFR 25.113 - Takeoff distance and takeoff run.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Takeoff distance and takeoff run. 25.113... and takeoff run. (a) Takeoff distance on a dry runway is the greater of— (1) The horizontal distance... include a clearway, the takeoff run is equal to the takeoff distance. If the takeoff distance includes...

  2. 40 CFR 89.407 - Engine dynamometer test run.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine dynamometer test run. 89.407... Test Procedures § 89.407 Engine dynamometer test run. (a) Measure and record the temperature of the air... repeated, as long as the engine is preconditioned by running the previous mode. In the case of the...

  3. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  4. 40 CFR 600.507-12 - Running change data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Running change data requirements. 600... Passenger Automobiles)-Procedures for Determining Manufacturer's Average Fuel Economy § 600.507-12 Running... shall submit additional running change fuel economy and carbon-related exhaust emissions data...

  5. 40 CFR 86.537-90 - Dynamometer test runs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Dynamometer test runs. 86.537-90... 1978 and Later New Motorcycles; Test Procedures § 86.537-90 Dynamometer test runs. (a) The vehicle... (505 seconds) is run. (b) The following steps shall be taken for each test: (1) Place drive wheel...

  6. 40 CFR 86.537-90 - Dynamometer test runs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Dynamometer test runs. 86.537-90... 1978 and Later New Motorcycles; Test Procedures § 86.537-90 Dynamometer test runs. (a) The vehicle... (505 seconds) is run. (b) The following steps shall be taken for each test: (1) Place drive wheel...

  7. 14 CFR 23.59 - Takeoff distance and takeoff run.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff distance and takeoff run. 23.59... Takeoff distance and takeoff run. For each commuter category airplane, the takeoff distance and, at the option of the applicant, the takeoff run, must be determined. (a) Takeoff distance is the greater of—...

  8. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  9. 40 CFR 86.884-12 - Test run.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Test run. 86.884-12 Section 86.884-12... Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-12 Test run. (a) The temperature of the air... stream if the engine is left running; (7) Precondition the engine by operating it for 10 minutes...

  10. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs...

  11. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs...

  12. 40 CFR 86.884-12 - Test run.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Test run. 86.884-12 Section 86.884-12... Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-12 Test run. (a) The temperature of the air... stream if the engine is left running; (7) Precondition the engine by operating it for 10 minutes...

  13. 14 CFR 25.113 - Takeoff distance and takeoff run.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff distance and takeoff run. 25.113... and takeoff run. (a) Takeoff distance on a dry runway is the greater of— (1) The horizontal distance... include a clearway, the takeoff run is equal to the takeoff distance. If the takeoff distance includes...

  14. 40 CFR 600.507-08 - Running change data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Running change data requirements. 600... Average Carbon-Related Exhaust Emissions § 600.507-08 Running change data requirements. (a) Except as specified in paragraph (d) of this section, the manufacturer shall submit additional running change...

  15. 40 CFR 600.507-86 - Running change data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Running change data requirements. 600... Average Carbon-Related Exhaust Emissions § 600.507-86 Running change data requirements. (a) Except as specified in paragraph (d) of this section, the manufacturer shall submit additional running change...

  16. 14 CFR 23.59 - Takeoff distance and takeoff run.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Takeoff distance and takeoff run. 23.59... Takeoff distance and takeoff run. For each commuter category airplane, the takeoff distance and, at the option of the applicant, the takeoff run, must be determined. (a) Takeoff distance is the greater of—...

  17. 40 CFR 600.507-86 - Running change data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Running change data requirements. 600... Passenger Automobiles)-Procedures for Determining Manufacturer's Average Fuel Economy § 600.507-86 Running... shall submit additional running change fuel economy data as specified in paragraph (b) of this...

  18. 40 CFR 600.507-12 - Running change data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Running change data requirements. 600... Average Carbon-Related Exhaust Emissions § 600.507-12 Running change data requirements. (a) Except as specified in paragraph (d) of this section, the manufacturer shall submit additional running change...

  19. 40 CFR 600.507-08 - Running change data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Running change data requirements. 600... Passenger Automobiles)-Procedures for Determining Manufacturer's Average Fuel Economy § 600.507-08 Running... shall submit additional running change fuel economy data as specified in paragraph (b) of this...

  20. 40 CFR 86.1337-96 - Engine dynamometer test run.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Engine dynamometer test run. 86.1337... Procedures § 86.1337-96 Engine dynamometer test run. (a) The following steps shall be taken for each test: (1... per test portion. (c) If a dynamometer test run is determined to be void, corrective action may...

  1. 40 CFR 86.1337-2007 - Engine dynamometer test run.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Engine dynamometer test run. 86.1337... Procedures § 86.1337-2007 Engine dynamometer test run. (a) The following steps shall be taken for each test... start portion and one for the hot start portion. (c) If a dynamometer test run is determined to be...

  2. Using Integration and Autonomy to Teach an Elementary Running Unit

    ERIC Educational Resources Information Center

    Sluder, J. Brandon; Howard-Shaughnessy, Candice

    2015-01-01

    Cardiovascular fitness is an important aspect of overall fitness, health, and wellness, and running can be an excellent lifetime physical activity. One of the most simple and effective means of exercise, running raises heart rate in a short amount of time and can be done with little to no cost for equipment. There are many benefits to running,…

  3. Running, Heart Disease, and the Ironic Death of Jim Fixx.

    ERIC Educational Resources Information Center

    Plymire, Darcy C.

    2002-01-01

    Runner Jim Fixx wrote a book about running and died young of a heart attack while running. Fixx and other authors believed heart disease resulted from overcivilization and recommended running as a way of life and cure, advising readers to listen to their bodies instead of their doctors. Fixx's adherence to that philosophy explains his behavior…

  4. Predictors of Running Away from Family Foster Care

    ERIC Educational Resources Information Center

    Nesmith, Andrea

    2006-01-01

    Running away is a frequent but little studied phenomenon among adolescents in foster care. Repeated running from care often leads to premature discharge and homelessness for youth. This article uses cumulative risk theory in the context of normative adolescent development to investigate predictors of running away from foster care. Results indicate…

  5. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  6. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  7. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  8. 40 CFR 1066.960 - Running loss test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Running loss test. 1066.960 Section 1066.960 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... Procedures for Motor Vehicles § 1066.960 Running loss test. Test vehicles for running loss emissions...

  9. 29 CFR 452.30 - Run-off elections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Run-off elections. 452.30 Section 452.30 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF LABOR LABOR-MANAGEMENT STANDARDS... OF 1959 Frequency and Kinds of Elections § 452.30 Run-off elections. A run-off election must meet...

  10. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs...

  11. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs...

  12. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs...

  13. Effects of forefoot bending elasticity of running shoes on gait and running performance.

    PubMed

    Chen, Chia-Hsiang; Tu, Kuan-Hua; Liu, Chiang; Shiang, Tzyy-Yuang

    2014-12-01

    The aim of this study was to investigate the effects of forefoot bending elasticity of running shoes on kinetics and kinematics during walking and running. Twelve healthy male participants wore normal and elastic shoes while walking at 1.5m/s, jogging at 2.5m/s, and running at 3.5m/s. The elastic shoes were designed by modifying the stiffness of flexible shoes with elastic bands added to the forefoot part of the shoe sole. A Kistler force platform and Vicon system were used to collect kinetic and kinematic data during push-off. Electromyography was used to record the muscle activity of the medial gastrocnemius and medial tibialis anterior. A paired dependent t-test was used to compare the various shoes and the level of significance was set at α=.05. The range of motion of the ankle joint and the maximal anterior-posterior propulsive force differed significantly between elastic and flexible shoes in walking and jogging. The contact time and medial gastrocnemius muscle activation in the push-off phase were significantly lower for the elastic shoes compared with the flexible shoes in walking and jogging. The elastic forefoot region of shoes can alter movement characteristics in walking and jogging. However, for running, the elasticity used in this study was not strong enough to exert a similar effect.

  14. Effects of replica running shoes upon external forces and muscle activity during running.

    PubMed

    Azevedo, Ana Paula Da Silva; Brandina, Kátia; Bianco, Roberto; Oliveira, Vitor Henrique De; Souza, Juliana Roque De; Mezencio, Bruno; Amadio, Alberto Carlos; Serrão, Júlio Cerca

    2012-05-01

    Twelve participants ran (9 km · h(-1)) to test two types of running shoes: replica and original shoes. Ground reaction force, plantar pressure and electromyographic activity were recorded. The shoes were tested randomly and on different days. Comparisons between the two experimental conditions were made by analysis of variance (ANOVA) test (P ≤ 0.05). The time to first peak, loading rate of the first peak and impulse of the first 75 ms of stance were significantly different between the shoes (P ≤ 0.05), revealing an increase of impact forces for the replica shoes. The peak plantar pressure values were significantly higher (P ≤ 0.05) when wearing replica shoes. During running, the contact area was significantly smaller (P ≤ 0.05) for the replica shoe. The electromyographic activity of the analysed muscles did not show changes between the two shoes in running. These findings suggest that the use of replica running shoes can increase the external load applied to the human body, but may not change the muscle activity pattern during locomotion. This new mechanical situation may increase the risk of injuries in these movements.

  15. How Fast Can a Human Run? − Bipedal vs. Quadrupedal Running

    PubMed Central

    Kinugasa, Ryuta; Usami, Yoshiyuki

    2016-01-01

    Usain Bolt holds the current world record in the 100-m run, with a running time of 9.58 s, and has been described as the best human sprinter in history. However, this raises questions concerning the maximum human running speed, such as “Can the world’s fastest men become faster still?” The correct answer is likely “Yes.” We plotted the historical world records for bipedal and quadrupedal 100-m sprint times according to competition year. These historical records were plotted using several curve-fitting procedures. We found that the projected speeds intersected in 2048, when for the first time, the winning quadrupedal 100-m sprint time could be lower, at 9.276 s, than the winning bipedal time of 9.383 s. Video analysis revealed that in quadrupedal running, humans employed a transverse gallop with a small angular excursion. These results suggest that in the future, the fastest human on the planet might be a quadrupedal runner at the 2048 Olympics. This may be achieved by shifting up to the rotary gallop and taking longer strides with wide sagittal trunk motion. PMID:27446911

  16. Progress report of hydrology and sedimentation in Bixler Run, Corey Creek, and Elk Run watersheds, Pennsylvania

    USGS Publications Warehouse

    Culbertson, J.K.

    1957-01-01

    This report describes the results of an investigation in progress and presents some tentative findings from a study of hydrology and sedimentation of three small watersheds where soil conservation practices are being applied. The study was begun in April 1954, to determine precipitation, runoff, probable sources and yields of sediment, and channel changes in two small watersheds in Pennsylvania. This report covers the period April 1954, to September 30, 1955 with the exception of the aggradation-degradation range data which covers the period October 1954 to November 1956. The internal or time control method of calibration is being used for the Bixler Run watershed study, and an external control is being used in the Corey Creek study.Precipitation on Bixler Run watershed was 47.33 inches for the 1955 water year. Total runoff was 14.08 inches and the suspended sediment yield was 1,143.3 tons or 76 tons per square mile of drainage area. Precipitation on Corey Creek watershed for the same period totaled 35.81 inches. The total runoff was 8.37 inches and the suspended-sediment yield was 713.0 tons or 58.2 tons per square mile of drainage area. The precipitation on Elk Run, external control watershed for the Corey Creek study was 34.54 inches. The runoff was 10.10 inches and the suspended sediment yield was 709.9 tons or 69.5 tons per square mile.Results from the study of channel changes by means of sediment aggradation-degradation ranges showed fill in all three watersheds. Bixler Run showed an average channel fill of 1.3 square feet per stream cross section. Corey Creek and Elk Run watersheds showed average fills of 2.9 and 4.1 square feet per cross section respectively. Most of the sediments comprising this fill were in the particle size range of gravel and coarser material.The water in all three watersheds was low in dissolved solids during the period of investigation, varying from 72 to 127 ppm in Bixler Run, from 58 to 130 ppm in Corey Creek, and from 58 to 117 ppm

  17. Running injuries. A review of the epidemiological literature.

    PubMed

    van Mechelen, W

    1992-11-01

    Running is one of the most popular leisure sports activities. Next to its beneficial health effects, negative side effects in terms of sports injuries should also be recognised. Given the limitations of the studies it appears that for the average recreational runner, who is steadily training and who participates in a long distance run every now and then, the overall yearly incidence rate for running injuries varies between 37 and 56%. Depending on the specificity of the group of runners concerned (competitive athletes; average recreational joggers; boys and girls) and on different circumstances these rates vary. If incidence is calculated according to exposure of running time the incidence reported in the literature varies from 2.5 to 12.1 injuries per 1000 hours of running. Most running injuries are lower extremity injuries, with a predominance for the knee. About 50 to 75% of all running injuries appear to be overuse injuries due to the constant repetition of the same movement. Recurrence of running injuries is reported in 20 to 70% of the cases. From the epidemiological studies it can be concluded that running injuries lead to a reduction of training or training cessation in about 30 to 90% of all injuries, about 20 to 70% of all injuries lead to medical consultation or medical treatment and 0 to 5% result in absence from work. Aetiological factors associated with running injuries include previous injury, lack of running experience, running to compete and excessive weekly running distance. The association between running injuries and factors such as warm-up and stretching exercises, body height, malalignment, muscular imbalance, restricted range of motion, running frequency, level of performance, stability of running pattern, shoes and inshoe orthoses and running on 1 side of the road remains unclear or is backed by contradicting or scarce research findings. Significantly not associated with running injuries seem age, gender, body mass index, running hills

  18. 78 FR 76609 - Genesis Solar, LLC; NRG Delta LLC; Mountain View Solar, LLC; Pheasant Run Wind, LLC; Pheasant Run...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ..., LLC; Pheasant Run Wind, LLC; Pheasant Run Wind II, LLC; Tuscola Wind II, LLC; Mountain Wind Power, LLC; Mountain Wind Power II, LLC; Summerhaven Wind, LP; Notice of Effectiveness of Exempt Wholesale Generator...

  19. A lower-extremities kinematic comparison of deep-water running styles and treadmill running.

    PubMed

    Killgore, Garry L; Wilcox, Anthony R; Caster, Brian L; Wood, Terry M

    2006-11-01

    The purpose of this investigation was to identify a deep-water running (DWR) style that most closely approximates terrestrial running, particularly relative to the lower extremities. Twenty intercollegiate distance runners (women, N = 12; men, N = 8) were videotaped from the right sagittal view while running on a treadmill (TR) and in deep water at 55-60% of their TR VO(2)max using 2 DWR styles: cross-country (CC) and high-knee (HK). Variables of interest were horizontal (X) and vertical (Y) displacement of the knee and ankle, stride rate (SR), VO(2), heart rate (HR), and rating of perceived exertion (RPE). Multivariate omnibus tests revealed statistically significant differences for RPE (p < 0.001). The post hoc pairwise comparisons revealed significant differences between TR and both DWR styles (p < 0.001). The kinematic variables multivariate omnibus tests were found to be statistically significant (p < 0.001 to p < 0.019). The post hoc pairwise comparisons revealed significant differences in SR (p < 0.001) between TR (1.25 +/- 0.08 Hz) and both DWR styles and also between the CC (0.81 +/- 0.08 Hz) and HK (1.14 +/- 0.10 Hz) styles of DWR. The CC style of DWR was found to be similar to TR with respect to linear ankle displacement, whereas the HK style was significantly different from TR in all comparisons made for ankle and knee displacement. The CC style of DWR is recommended as an adjunct to distance running training if the goal is to mimic the specificity of the ankle linear horizontal displacement of land-based running, but the SR will be slower at a comparable percentage of VO(2)max.

  20. First Evidence of Running Cosmic Vacuum: Challenging the Concordance Model

    NASA Astrophysics Data System (ADS)

    Solà, Joan; Gómez-Valent, Adrià; de Cruz Pérez, Javier

    2017-02-01

    Despite the fact that a rigid {{Λ }}-term is a fundamental building block of the concordance ΛCDM model, we show that a large class of cosmological scenarios with dynamical vacuum energy density {ρ }{{Λ }} together with a dynamical gravitational coupling G or a possible non-conservation of matter, are capable of seriously challenging the traditional phenomenological success of the ΛCDM. In this paper, we discuss these “running vacuum models” (RVMs), in which {ρ }{{Λ }}={ρ }{{Λ }}(H) consists of a nonvanishing constant term and a series of powers of the Hubble rate. Such generic structure is potentially linked to the quantum field theoretical description of the expanding universe. By performing an overall fit to the cosmological observables SN Ia+BAO+H(z)+LSS+BBN+CMB (in which the WMAP9, Planck 2013, and Planck 2015 data are taken into account), we find that the class of RVMs appears significantly more favored than the ΛCDM, namely, at an unprecedented level of ≳ 4.2σ . Furthermore, the Akaike and Bayesian information criteria confirm that the dynamical RVMs are strongly preferred compared to the conventional rigid {{Λ }}-picture of the cosmic evolution.

  1. Matter density perturbation and power spectrum in running vacuum model

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lee, Chung-Chi

    2017-01-01

    We investigate the matter density perturbation δm and power spectrum P(k) in the running vacuum model, with the cosmological constant being a function of the Hubble parameter, given by Λ = Λ0 + 6σHH0 + 3νH2, in which the linear and quadratic terms of H would originate from the QCD vacuum condensation and cosmological renormalization group, respectively. Taking the dark energy perturbation into consideration, we derive the evolution equation for δm and find a specific scale dcr = 2π/kcr, which divides the evolution of the universe into the sub-interaction and super-interaction regimes, corresponding to k ≪ kcr and k ≫ kcr, respectively. For the former, the evolution of δm has the same behaviour as that in the Λ cold dark model, while for the latter, the growth of δm is frozen (greatly enhanced) when ν + σ > (<)0 due to the couplings between radiation, matter and dark energy. It is clear that the observational data rule out the cases with ν < 0 and ν + σ < 0, while the allowed window for the model parameters is extremely narrow with ν , |σ | ≲ O(10^{-7}).

  2. Non-perturbative corrections to mean-field critical behavior: the spherical model on a spider-web graph

    NASA Astrophysics Data System (ADS)

    Balram, Ajit C.; Dhar, Deepak

    2012-03-01

    We consider the spherical model on a spider-web graph. This graph is effectively infinite dimensional, similar to the Bethe lattice, but has loops. We show that these lead to non-trivial corrections to the simple mean-field behavior. We first determine all normal modes of the coupled springs problem on this graph, using its large symmetry group. In the thermodynamic limit, the spectrum is a set of δ-functions, and all the modes are localized. The fractional number of modes with frequency less than ω varies as exp ( - C/ω) for ω tending to zero, where C is a constant. For an unbiased random walk on the vertices of this graph, this implies that the probability of return to the origin at time t varies as exp ( - C‧t1/3), for large t, where C‧ is a constant. For the spherical model, we show that while the critical exponents take the values expected from the mean-field theory, the free energy per site at temperature T, near and above the critical temperature Tc, also has an essential singularity of the type exp [ - K(T - Tc)-1/2].

  3. Human-like Running Can Be Open-Loop Stable

    NASA Astrophysics Data System (ADS)

    Mombaur, Katja

    This paper addresses the question if running motions of a human-like robot can be stable without feedback. Exploitation of self-stability is considered to be a crucial factor for biological running and might be the key for success to make bipedal and humanoid robots run in the future, We investigate a two-dimensional simulation model of running with 9 bodies (trunk, thighs, shanks, feet, and arms) powered by torques at all internal joints. Using efficient optimal control techniques and stability optimization, we were able to determine torque inputs and spring-damper parameters that lead to fully open-loop stable running motions.

  4. Effect of Adaptive Paced Cardiolocomotor Synchronization During Running: A Preliminary Study

    PubMed Central

    Phillips, Bill; Jin, Yi

    2013-01-01

    Cardiolocomotor synchronization (CLS) has been well established for individuals engaged in rhythmic activity, such as walking, running, or cycling. When frequency of the activity is at or near the heart rate, entrainment occurs. CLS has been shown in many cases to improve the efficiency of locomotor activity, improving stroke volume, reducing blood pressure variability, and lowering the oxygen uptake (VO2). Instead of a 1:1 frequency ratio of activity to heart rate, an investigation was performed to determine if different harmonic coupling at other simple integer ratios (e.g. 1:2, 2:3, 3:2) could achieve any performance benefits. CLS was ensured by pacing the stride rate according to the measured heartbeat (i.e., adaptive paced CLS, or forced CLS). An algorithm was designed that determined the simplest ratio (lowest denominator) that, when multiplied by the heart rate will fall within an individualized, predetermined comfortable pacing range for the user. The algorithm was implemented on an iPhone 4, which generated a ‘tick-tock’ sound through the iPhone’s headphones. A sham-controlled crossover study was performed with 15 volunteers of various fitness levels. Subjects ran a 3 mile (4.83 km) simulated training run at their normal pace on two consecutive days (randomized one adaptive pacing, one sham). Adaptive pacing resulted in faster runs run times, with subjects running an average of 26:03 ± 3:23 for adaptive pacing and 26:38 ± 3:31 for sham (F = 5.46, p < 0.05). The increase in heart rate from the start of the race as estimated by an exponential time constant was significantly longer during adaptive pacing, τ = 0.99 ± 0.30, compared to sham, τ = 1.53 ± 0.34 (t = -6.62, p < 0.01). Eighty-seven percent of runners found it easy to adjust their stride length to match the pacing signal with seventy-nine percent reporting that pacing helped their performance. These results suggest that adaptive paced CLS may have a beneficial effect on running performance

  5. Development and Prevention of Running-Related Osteoarthritis.

    PubMed

    Ni, Guo-Xin

    2016-01-01

    Studies investigating the effect of running on risk for developing osteoarthritis at weight-bearing joints have reported with conflicting results. Generally, moderate-level running is not likely detrimental to joint health. However, many factors may be associated with the increased risk of developing osteoarthritis in runners. Factors often implicated in the development of osteoarthritis comprise those that increase joint vulnerability and those which increase joint loading. It is therefore suggested that running has different effects on different people. Efforts should be made to identify those with joint vulnerability and joint loading, and measures should be taken to have those factors and/or their running programs modified to run safely. Further investigations are needed to examine the effect of running on joint health under different conditions to confirm the association between exposure to risk factors and development of osteoarthritis, as well as to validate the effectiveness of measures for preventing running-related osteoarthritis.

  6. Advanced overlay: sampling and modeling for optimized run-to-run control

    NASA Astrophysics Data System (ADS)

    Subramany, Lokesh; Chung, WoongJae; Samudrala, Pavan; Gao, Haiyong; Aung, Nyan; Gomez, Juan Manuel; Gutjahr, Karsten; Park, DongSuk; Snow, Patrick; Garcia-Medina, Miguel; Yap, Lipkong; Demirer, Onur Nihat; Pierson, Bill; Robinson, John C.

    2016-03-01

    In recent years overlay (OVL) control schemes have become more complicated in order to meet the ever shrinking margins of advanced technology nodes. As a result, this brings up new challenges to be addressed for effective run-to- run OVL control. This work addresses two of these challenges by new advanced analysis techniques: (1) sampling optimization for run-to-run control and (2) bias-variance tradeoff in modeling. The first challenge in a high order OVL control strategy is to optimize the number of measurements and the locations on the wafer, so that the "sample plan" of measurements provides high quality information about the OVL signature on the wafer with acceptable metrology throughput. We solve this tradeoff between accuracy and throughput by using a smart sampling scheme which utilizes various design-based and data-based metrics to increase model accuracy and reduce model uncertainty while avoiding wafer to wafer and within wafer measurement noise caused by metrology, scanner or process. This sort of sampling scheme, combined with an advanced field by field extrapolated modeling algorithm helps to maximize model stability and minimize on product overlay (OPO). Second, the use of higher order overlay models means more degrees of freedom, which enables increased capability to correct for complicated overlay signatures, but also increases sensitivity to process or metrology induced noise. This is also known as the bias-variance trade-off. A high order model that minimizes the bias between the modeled and raw overlay signature on a single wafer will also have a higher variation from wafer to wafer or lot to lot, that is unless an advanced modeling approach is used. In this paper, we characterize the bias-variance trade off to find the optimal scheme. The sampling and modeling solutions proposed in this study are validated by advanced process control (APC) simulations to estimate run-to-run performance, lot-to-lot and wafer-to- wafer model term monitoring to

  7. Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure

    NASA Astrophysics Data System (ADS)

    Shen, Yangchao; Zhang, Xiang; Zhang, Shuaining; Zhang, Jing-Ning; Yung, Man-Hong; Kim, Kihwan

    2017-02-01

    In classical computational chemistry, the coupled-cluster ansatz is one of the most commonly used ab initio methods, which is critically limited by its nonunitary nature. The unitary modification as an ideal solution to the problem is, however, extremely inefficient in classical conventional computation. Here, we provide experimental evidence that indeed the unitary version of the coupled-cluster ansatz can be reliably performed in a physical quantum system, a trapped-ion system. We perform a simulation on the electronic structure of a molecular ion (HeH+), where the ground-state energy surface curve is probed, the energies of the excited states are studied, and bond dissociation is simulated nonperturbatively. Our simulation takes advantages from quantum computation to overcome the intrinsic limitations in classical computation, and our experimental results indicate that the method is promising for preparing molecular ground states for quantum simulations.

  8. Chiral restoration of strong coupling QCD at finite temperature and baryon density

    NASA Astrophysics Data System (ADS)

    Fromm, Michael

    2009-04-01

    The strong coupling limit (β=0) of lattice QCD with staggered fermions enjoys the same non-perturbative properties as continuum QCD, namely confinement and chiral symmetry breaking. In contrast to the situation at weak coupling, the sign problem which appears at finite density can be brought under control for a determination of the full (μ,T) phase diagram by Monte Carlo simulations. Further difficulties with efficiency and ergodicity of the simulations, especially at the strongly first-order, low-T, finite-μ transition, are addressed respectively with a worm algorithm and multicanonical sampling. Our simulations reveal sizeable corrections to the old results of Karsch and Mütter. Comparison with analytic mean-field determinations of the phase diagram shows discrepancies of O(10) in the location of the QCD critical point.

  9. A non-linear 4-wave resonant model for non-perturbative fast ion interactions with Alfv'enic modes in burning plasmas

    NASA Astrophysics Data System (ADS)

    Zonca, Fulvio; Chen, Liu

    2007-11-01

    We adopt the 4-wave modulation interaction model, introduced by Chen et al [1] for analyzing modulational instabilities of the radial envelope of Ion Temperature Gradient driven modes in toroidal geometry, extending it to the modulations on the fast particle distribution function due to nonlinear Alfv'enic mode dynamics, as proposed in Ref. [2]. In the case where the wave-particle interactions are non-perturbative and strongly influence the mode evolution, as in the case of Energetic Particle Modes (EPM) [3], radial distortions (redistributions) of the fast ion source dominate the mode nonlinear dynamics. In this work, we show that the resonant particle motion is secular with a time-scale inversely proportional to the mode amplitude [4] and that the time evolution of the EPM radial envelope can be cast into the form of a nonlinear Schr"odinger equation a la Ginzburg-Landau [5]. [1] L. Chen et al, Phys. Plasmas 7 3129 (2000) [2] F. Zonca et al, Theory of Fusion Plasmas (Bologna: SIF) 17 (2000) [3] L. Chen, Phys. Plasmas 1, 1519 (1994).[4] F. Zonca et al, Nucl. Fusion 45 477 (2005) [5] F. Zonca et al, Plasma Phys. Contr. Fusion 48 B15 (2006)

  10. Theoretical comparison and experimental test of the secular and nonperturbative approaches on the ESR lineshapes of randomly oriented, anisotropic systems undergoing internal motion

    NASA Astrophysics Data System (ADS)

    Benetis, N. P.; Sjöqvist, L.; Lund, A.; Maruani, J.

    The nuclear Zeeman and the electronic nonsecular parts of the spin Hamiltonian complicate the ESR lineshape of exchanging anisotropic spin systems by introducing, at high field, "forbidden" transitions and, at low field, additional shift and splitting. We compare the nonperturbative with the secular approach for such systems. The exchange is treated within the Kaplan-Alexander limit and both A and g tensors are included, resulting in spectrum asymmetry, in contrast to previous separate treatments. The two approaches are then used to simulate the powder spectrum of OCH 2COO - and compare the results to experimental spectra of an irradiated powder of ZnAc. The powder X-band spectra simulations using the secular approach appear to be accurate. For both the low-field (20 to 200 G) and the high-field (Q-band) regions, however, the nonsecular part of the electronic term and the nuclear Zeeman term, respectively, cannot be neglected. On the other hand, the approximate approach is much faster and consequently more appropriate for treating large, multisite exchanging systems.

  11. Nonperturbative functional renormalization-group approach to transport in the vicinity of a (2 +1 ) -dimensional O(N )-symmetric quantum critical point

    NASA Astrophysics Data System (ADS)

    Rose, F.; Dupuis, N.

    2017-01-01

    Using a nonperturbative functional renormalization-group approach to the two-dimensional quantum O (N ) model, we compute the low-frequency limit ω →0 of the zero-temperature conductivity in the vicinity of the quantum critical point. Our results are obtained from a derivative expansion to second order of a scale-dependent effective action in the presence of an external (i.e., nondynamical) non-Abelian gauge field. While in the disordered phase the conductivity tensor σ (ω ) is diagonal, in the ordered phase it is defined, when N ≥3 , by two independent elements, σA(ω ) and σB(ω ) , respectively associated to SO (N ) rotations which do and do not change the direction of the order parameter. For N =2 , the conductivity in the ordered phase reduces to a single component σA(ω ) . We show that limω→0σ (ω ,δ ) σA(ω ,-δ ) /σq2 is a universal number, which we compute as a function of N (δ measures the distance to the quantum critical point, q is the charge, and σq=q2/h the quantum of conductance). On the other hand we argue that the ratio σB(ω →0 ) /σq is universal in the whole ordered phase, independent of N and, when N →∞ , equal to the universal conductivity σ*/σq at the quantum critical point.

  12. The role of a vertical reference point in changing gait regulation in cricket run-ups.

    PubMed

    Greenwood, Daniel; Davids, Keith; Renshaw, Ian

    2016-10-01

    The need to identify information sources which facilitate a functional coupling of perception and action in representative practice contexts is an important challenge for sport scientists and coaches. The current study investigated the role of visual information in regulating athlete gait behaviours during a locomotor pointing task in cricket. Integration of experiential knowledge of elite coaches and theoretical understanding from previous empirical research led us to investigate whether the presence of an umpire would act as a vertical informational constraint that could constrain the emergent coordination tendencies of cricket bowlers' run-up patterns. To test this idea, umpire presence was manipulated during run-ups of 10 elite medium-fast bowlers. As hypothesised, removal of the umpire from the performance environment did not result in an inability to regulate gait to intercept a target, however, the absence of this informational constraint resulted in the emergence of different movement patterns in participant run-ups. Significantly lower standard deviation values of heel-to-crease distances were observed in the umpire condition at multiple steps, compared to performance in the no-umpire condition. Manipulation of this informational constraint altered gait regulation of participants, offering a mechanism to understand how perception-action couplings can be varied during performance in locomotor pointing tasks in sport.

  13. Relationship between speed and time in running.

    PubMed

    Hill, D W; Vingren, J L; Nakamura, F Y; Kokobun, E

    2011-07-01

    The purpose of this study was to evaluate the effect of using different mathematical models to describe the relationship between treadmill running speed and time to exhaustion. All models generated a value for an aerobic parameter (critical speed; S (critical)). 35 university students performed 5-7 constant-speed 0%-slope treadmill tests at speeds that elicited exhaustion in ∼3 min to ∼10 min. Speed and time data were fitted using 3 models: (1) a 2-parameter hyperbolic model; (2) a 3-parameter hyperbolic model; and (3) a hybrid 3-parameter hyperbolic+exponential model. The 2-parameter model generated values for S (critical) (mean (± SD): 186 ± 33 m·min (-1)) and anaerobic distance capacity (ADC; 251 ± 122 m) with a high level of statistical certainty (i.e., with small SEEs). The 3-parameter models generated parameter estimates that were unrealistic in magnitude and/or associated with large SEEs and little statistical certainty. Therefore, it was concluded that, for the range of exercise durations used in the present study, the 2-parameter model is preferred because it provides a parsimonious description of the relationship between velocity and time to fatigue, and it produces parameters of known physiological significance, with excellent confidence.

  14. Forces predicted at the ankle during running.

    PubMed

    Burdett, R G

    1982-01-01

    A biomechanical model of the ankle joint was developed and was used to predict the forces at the ankle during the stance phase of running. Measurements from five cadavers were averaged to obtain insertion points and directions of pull of equivalent tendons with respect to the assumed center of the ankle joint. A minimum joint force solution was obtained by assuming that only two equivalent muscle groups could exert force at one time. Three subjects ran at 4.47 m/s across a force platform that recorded the external forces and moments acting on the foot. Cinematography was used to measure the foot and leg positions during stance. Peak resultant joint forces ranging from 9.0 to 13.3 times body weight and peak Achilles tendon forces ranging from 5.3 to 10.0 times body weight were predicted. Small variations in some cases resulted in large differences in predicted forces. The highest tendon forces predicted exceeded those reported to cause damage to cadaver tendons in other studies.

  15. FPGA Trigger System to Run Klystrons

    SciTech Connect

    Gray, Darius; /Texas A-M /SLAC

    2010-08-25

    The Klystron Department is in need of a new trigger system to update the laboratory capabilities. The objective of the research is to develop the trigger system using Field Programmable Gate Array (FPGA) technology with a user interface that will allow one to communicate with the FPGA via a Universal Serial Bus (USB). This trigger system will be used for the testing of klystrons. The key materials used consists of the Xilinx Integrated Software Environment (ISE) Foundation, a Programmable Read Only Memory (Prom) XCF04S, a Xilinx Spartan 3E 35S500E FPGA, Xilinx Platform Cable USB II, a Printed Circuit Board (PCB), a 100 MHz oscillator, and an oscilloscope. Key considerations include eight triggers, two of which have variable phase shifting capabilities. Once the project was completed the output signals were able to be manipulated via a Graphical User Interface by varying the delay and width of the signal. This was as planned; however, the ability to vary the phase was not completed. Future work could consist of being able to vary the phase. This project will give the operators in the Klystron Department more flexibility to run various tests.

  16. Are we running out of water?

    USGS Publications Warehouse

    Nace, Raymond L.

    1967-01-01

    Water supplies are not running out, but time is getting short to stem waste of water and destructive exploitation of the environment before harm is done that may be irreparable. Most of the world's water is oceanic brine. Of the waters on the land, most is frozen in Antarctica and Greenland. Only a small part of continental water is available for use and management. The discharge of rivers to the sea is a close measure of the availability of liquid water, but ground-water reservoirs have important functions as inexpensive equalizers of water supply. Soil moisture is a major factor in the water economy, and its function usually is overlooked in assessments of water use and future water demand. Despite outcries of water shortage, the principal use of water in advanced countries is as a medium for waste disposal. In reality, despite regional maldistribution of water, United States supplies are adequate, given rational management. Also, contrary to common belief, water pollution is primarily a problem of economics, not of health. A paramount problem in most parts of the world is the shortage of water development and management facilities, not a shortage of water. The International Hydrological Decade is a program to awaken people everywhere to the crucial importance of water in man's future and to promote rational approach to water problems.

  17. The NLstart2run study: Incidence and risk factors of running-related injuries in novice runners.

    PubMed

    Kluitenberg, B; van Middelkoop, M; Smits, D W; Verhagen, E; Hartgens, F; Diercks, R; van der Worp, H

    2015-10-01

    Running is a popular form of physical activity, despite of the high incidence of running-related injuries (RRIs). Because of methodological issues, the etiology of RRIs remains unclear. Therefore, the purposes of the study were to assess the incidence of RRIs and to identify risk factors for RRIs in a large group of novice runners. In total, 1696 runners of a 6-week supervised "Start to Run" program were included in the NLstart2run study. All participants were aged between 18 and 65, completed a baseline questionnaire that covered potential risk factors, and completed at least one running diary. RRIs were registered during the program with a weekly running log. An RRI was defined as a musculo-skeletal complaint of the lower extremity or back attributed to running and hampering running ability for three consecutive training sessions. During the running program, 10.9% of the runners sustained an RRI. The multivariable Cox regression analysis showed that a higher age, higher BMI, previous musculo-skeletal complaints not attributed to sports and no previous running experience were related to RRI. These findings indicate that many novice runners participating in a short-term running program suffer from RRIs. Therefore, the identified risk factors should be considered for screening and prevention purposes.

  18. [Running and the association with anthropometric and training characteristics].

    PubMed

    Knechtle, Beat; Stiefel, Michael; Rosemann, Thomas; Rüst, Christoph; Zingg, Matthias

    2015-05-01

    Running can be performed as a sprint discipline on the track over a few meters up to 10 km to the marathon and ultramarathon running distances over hundreds to thousands of kilometers. Running performance is influenced by a variety of anthropometric and training factors. Morphological features such as skin fold thickness, body fat percentage, circumferences and length of limbs, body weight, body height and body mass index (BMI) seem to have an influence on the running performance. The training volume and running speed during training are also correlated with running performance. When all variables were investigated comparatively, body fat and running speed during training were usually the most important influencing factors. For longer running performances (over 6 hours or 100 km, respectively), the aspects of experience (number of successfully finished races) and personal best times were, however, far more important than training volume or morphological characteristics such as body fat. It was also shown that ultra runners prepare differently (lower running speed and higher running volume) as runners competing over shorter distances such as half-marathon and marathon.

  19. Motor run-up system. [power lines

    NASA Technical Reports Server (NTRS)

    Daeges, J. J. (Inventor)

    1975-01-01

    A starting system is described for bringing a large synchronous motor up to speed to prevent large power line disturbances at the moment the motor is connected to the power line. The system includes (1) a digital counter which generates a count determined by the difference in frequency between the power line and a small current generated by the synchronous motor; (2) a latch which stores the count; and (3) a comparator which compares the stored count with a newly generated count to determine whether the synchronous motor is accelerating or decelerating. Signals generated by the counter and comparator control the current to a clutch that couples a starting motor to the large synchronous motor.

  20. The NUHM2 after LHC Run 1

    DOE PAGES

    Buchmueller, O.; Cavanaugh, R.; Citron, M.; ...

    2014-12-17

    We make a frequentist analysis of the parameter space of the NUHM2, in which the soft supersymmetry (SUSY)-breaking contributions to the masses of the two Higgs multiplets, m2Hu,d, vary independently from the universal soft SUSY-breaking contributions m20 to the masses of squarks and sleptons. Our analysis uses the MultiNest sampling algorithm with over 4 × 10⁸ points to sample the NUHM2 parameter space. It includes the ATLAS and CMS Higgs mass measurements as well as the ATLAS search for supersymmetric jets + /ET signals using the full LHC Run 1 data, the measurements of BR(Bs→μ⁺μ⁻) by LHCb and CMS togethermore » with other B-physics observables, electroweak precision observables and the XENON100 and LUX searches for spin-independent dark-matter scattering. We find that the preferred regions of the NUHM2 parameter space have negative SUSY-breaking scalar masses squared at the GUT scale for squarks and sleptons, m20 < 0, as well as m2Hu < m2Hd < 0. The tension present in the CMSSM and NUHM1 between the supersymmetric interpretation of (g – 2)μ and the absence to date of SUSY at the LHC is not significantly alleviated in the NUHM2. We find that the minimum χ2 = 32.5 with 21 degrees of freedom (dof) in the NUHM2, to be compared with χ2/dof = 35.0/23 in the CMSSM, and χ2/dof = 32.7/22 in the NUHM1. We find that the one-dimensional likelihood functions for sparticle masses and other observables are similar to those found previously in the CMSSM and NUHM1.« less