Sample records for nonpoint source pollution

  1. [A landscape ecological approach for urban non-point source pollution control].

    PubMed

    Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing

    2005-05-01

    Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.

  2. NON-POINT SOURCE POLLUTION

    EPA Science Inventory

    Non-point source pollution is a diffuse source that is difficult to measure and is highly variable due to different rain patterns and other climatic conditions. In many areas, however, non-point source pollution is the greatest source of water quality degradation. Presently, stat...

  3. AGRICULTURAL NONPOINT SOURCE POLLUTION (AGNPS)

    EPA Science Inventory

    Developed by the USDA Agricultural Research Service, Agricultural Nonpoint Source Pollution (AGNPS) model addresses concerns related to the potential impacts of point and nonpoint source pollution on surface and groundwater quality (Young et al., 1989). It was designed to quantit...

  4. Controlling Nonpoint-Source Water Pollution: A Citizen's Handbook.

    ERIC Educational Resources Information Center

    Hansen, Nancy Richardson; And Others

    Citizens can play an important role in helping their states develop pollution control programs and spurring effective efforts to deal with nonpoint-source pollution. This guide takes the reader step-by-step through the process that states must follow to comply with water quality legislation relevant to nonpoint-source pollution. Part I provides…

  5. Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.

    PubMed

    Dong, Yang; Liu, Yi; Chen, Jining

    2014-01-01

    Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process.

  6. SIMULATION COASTAL PLAIN STREAM FISH COMMUNITY RESPONSE TO NONPOINT SOURCE POLLUTION USING LINKED HYDROLOGIC-ECOLOGICAL MODELS

    EPA Science Inventory

    Nonpoint source pollution is the primary stress in many streams. Characteristic declines in stream fish communities are recognized in streams influenced by nonpoint source pollution, but the processes by which these declines occur are not well understood. Here, predicted time s...

  7. [Estimation of nonpoint source pollutant loads and optimization of the best management practices (BMPs) in the Zhangweinan River basin].

    PubMed

    Xu, Hua-Shan; Xu, Zong-Xue; Liu, Pin

    2013-03-01

    One of the key techniques in establishing and implementing TMDL (total maximum daily load) is to utilize hydrological model to quantify non-point source pollutant loads, establish BMPs scenarios, reduce non-point source pollutant loads. Non-point source pollutant loads under different years (wet, normal and dry year) were estimated by using SWAT model in the Zhangweinan River basin, spatial distribution characteristics of non-point source pollutant loads were analyzed on the basis of the simulation result. During wet years, total nitrogen (TN) and total phosphorus (TP) accounted for 0.07% and 27.24% of the total non-point source pollutant loads, respectively. Spatially, agricultural and residential land with steep slope are the regions that contribute more non-point source pollutant loads in the basin. Compared to non-point source pollutant loads with those during the baseline period, 47 BMPs scenarios were set to simulate the reduction efficiency of different BMPs scenarios for 5 kinds of pollutants (organic nitrogen, organic phosphorus, nitrate nitrogen, dissolved phosphorus and mineral phosphorus) in 8 prior controlled subbasins. Constructing vegetation type ditch was optimized as the best measure to reduce TN and TP by comparing cost-effective relationship among different BMPs scenarios, and the costs of unit pollutant reduction are 16.11-151.28 yuan x kg(-1) for TN, and 100-862.77 yuan x kg(-1) for TP, which is the most cost-effective measure among the 47 BMPs scenarios. The results could provide a scientific basis and technical support for environmental protection and sustainable utilization of water resources in the Zhangweinan River basin.

  8. Calculation and analysis of the non-point source pollution in the upstream watershed of the Panjiakou Reservoir, People's Republic of China

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Tang, L.

    2007-05-01

    Panjiakou Reservoir is an important drinking water resource in Haihe River Basin, Hebei Province, People's Republic of China. The upstream watershed area is about 35,000 square kilometers. Recently, the water pollution in the reservoir is becoming more serious owing to the non-point pollution as well as point source pollution on the upstream watershed. To effectively manage the reservoir and watershed and develop a plan to reduce pollutant loads, the loading of non-point and point pollution and their distribution on the upstream watershed must be understood fully. The SWAT model is used to simulate the production and transportation of the non-point source pollutants in the upstream watershed of the Panjiakou Reservoir. The loadings of non-point source pollutants are calculated for different hydrologic years and the spatial and temporal characteristics of non-point source pollution are studied. The stream network and topographic characteristics of the stream network and sub-basins are all derived from the DEM by ArcGIS software. The soil and land use data are reclassified and the soil physical properties database file is created for the model. The SWAT model was calibrated with observed data of several hydrologic monitoring stations in the study area. The results of the calibration show that the model performs fairly well. Then the calibrated model was used to calculate the loadings of non-point source pollutants for a wet year, a normal year and a dry year respectively. The time and space distribution of flow, sediment and non-point source pollution were analyzed depending on the simulated results. The comparison of different hydrologic years on calculation results is dramatic. The loading of non-point source pollution in the wet year is relatively larger but smaller in the dry year since the non-point source pollutants are mainly transported through the runoff. The pollution loading within a year is mainly produced in the flood season. Because SWAT is a distributed model, it is possible to view model output as it varies across the basin, so the critical areas and reaches can be found in the study area. According to the simulation results, it is found that different land uses can yield different results and fertilization in rainy season has an important impact on the non- point source pollution. The limitations of the SWAT model are also discussed and the measures of the control and prevention of non- point source pollution for Panjiakou Reservoir are presented according to the analysis of model calculation results.

  9. [Spatial heterogeneity and classified control of agricultural non-point source pollution in Huaihe River Basin].

    PubMed

    Zhou, Liang; Xu, Jian-Gang; Sun, Dong-Qi; Ni, Tian-Hua

    2013-02-01

    Agricultural non-point source pollution is of importance in river deterioration. Thus identifying and concentrated controlling the key source-areas are the most effective approaches for non-point source pollution control. This study adopts inventory method to analysis four kinds of pollution sources and their emissions intensity of the chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in 173 counties (cities, districts) in Huaihe River Basin. The four pollution sources include livestock breeding, rural life, farmland cultivation, aquacultures. The paper mainly addresses identification of non-point polluted sensitivity areas, key pollution sources and its spatial distribution characteristics through cluster, sensitivity evaluation and spatial analysis. A geographic information system (GIS) and SPSS were used to carry out this study. The results show that: the COD, TN and TP emissions of agricultural non-point sources were 206.74 x 10(4) t, 66.49 x 10(4) t, 8.74 x 10(4) t separately in Huaihe River Basin in 2009; the emission intensity were 7.69, 2.47, 0.32 t.hm-2; the proportions of COD, TN, TP emissions were 73%, 24%, 3%. The paper achieves that: the major pollution source of COD, TN and TP was livestock breeding and rural life; the sensitivity areas and priority pollution control areas among the river basin of non-point source pollution are some sub-basins of the upper branches in Huaihe River, such as Shahe River, Yinghe River, Beiru River, Jialu River and Qingyi River; livestock breeding is the key pollution source in the priority pollution control areas. Finally, the paper concludes that pollution type of rural life has the highest pollution contribution rate, while comprehensive pollution is one type which is hard to control.

  10. Using CSLD Method to Calculate COD Pollution Load of Wei River Watershed above Huaxian Section, China

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Song, JinXi; Liu, WanQing

    2017-12-01

    Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. Weihe River Watershed above Huaxian Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load(CSLD) method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the normal, rainy and wet period in turn.

  11. Calculating NH3-N pollution load of wei river watershed above Huaxian section using CSLD method

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Song, JinXi; Liu, WanQing

    2018-02-01

    Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. So it is taken as the research objective in this paper and NH3-N is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load (CSLD)method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly. The non-point source pollution load proportions of total pollution load of NH3-N decrease in the normal, rainy and wet period in turn.

  12. Nonpoint Source Discharge Control on Non-Builtup Military Lands: Compliance Background Analysis Through October 1999

    DTIC Science & Technology

    2000-08-01

    management for NPS. The State nonpoint Source Task Force coordinates joint watershed management efforts with SCS, USFS, BLM. Intense grazing and...nonpoint source water pollution discharges from unimproved lands, particularly military lands. Increasing emphasis at national and state levels on...lands, particularly military lands. Increasing emphasis at national and state levels on controlling pollutant discharges from nonpoint sources and

  13. Nonpoint Source Pollution: Agriculture, Forestry, and Mining. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Buskirk, E. Drannon, Jr.

    Nonpoint sources of pollution have diffuse origins and are major contributors to water quality problems in both urban and rural areas. Addressed in this instructor's manual are the identification, assessment, and management of nonpoint source pollutants resulting from mining, agriculture, and forestry. The unit, part of the Working for Clean Water…

  14. Polluted Runoff: Nonpoint Source Pollution

    EPA Pesticide Factsheets

    Nonpoint Source (NPS) pollution is caused by rainfall or snowmelt moving over and through the ground, it picks up and carries natural and human-made pollutants, depositing them into lakes, rivers, wetlands, coastal waters and ground waters.

  15. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County.

    PubMed

    Wang, Long; Wei, Jiahua; Huang, Yuefei; Wang, Guangqian; Maqsood, Imran

    2011-07-01

    Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Changing Regulations of COD Pollution Load of Weihe River Watershed above TongGuan Section, China

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Liu, WanQing

    2018-02-01

    TongGuan Section of Weihe River Watershed is a provincial section between Shaanxi Province and Henan Province, China. Weihe River Watershed above TongGuan Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a method—characteristic section load (CSLD) method is suggested and point and non-point source pollution loads of Weihe River Watershed above TongGuan Section are calculated in the rainy, normal and dry season in 2013. The results show that the monthly point source pollution loads of Weihe River Watershed above TongGuan Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above TongGuan Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the rainy, wet and normal period in turn.

  17. Coastal Zone Act Reauthorization Amendments (CZARA) Section 6217

    EPA Pesticide Factsheets

    The Coastal Nonpoint Pollution Control Program (Section 6217) addresses nonpoint pollution problems in coastal waters.In its program, a state or territory describes how it will implement nonpoint source pollution controls, known as management measures.

  18. [Empirical study on non-point sources pollution based on landscape pattern & ecological processes theory: a case of soil water loss on the Loess Plateau in China].

    PubMed

    Suo, An-ning; Wang, Tian-ming; Wang, Hui; Yu, Bo; Ge, Jian-ping

    2006-12-01

    Non-point sources pollution is one of main pollution modes which pollutes the earth surface environment. Aimed at soil water loss (a typical non-point sources pollution problem) on the Losses Plateau in China, the paper applied a landscape patternevaluation method to twelve watersheds of Jinghe River Basin on the Loess Plateau by means of location-weighted landscape contrast index(LCI) and landscape slope index(LSI). The result showed that LSI of farm land, low density grass land, forest land and LCI responded significantly to soil erosion modulus and responded to depth of runoff, while the relationship between these landscape index and runoff variation index and erosion variation index were not statistically significant. This tell us LSI and LWLCI are good indicators of soil water loss and thus have big potential in non-point source pollution risk evaluation.

  19. Summary of the land-use inventory for the nonpoint-source evaluation monitoring watersheds in Wisconsin

    USGS Publications Warehouse

    Wierl, J.A.; Rappold, K.F.; Amerson, F.U.

    1996-01-01

    In 1992, the Wisconsin Department of Natural Resources (WDNR) in cooperation with the U.S. Geological Survey initiated a land-use inventory to identify sources of pollutants and track the land-management changes for eight evaluation monitoring watersheds established as part of the WDNR's Nonpoint Source Program. Each evaluation monitoring watershed is within a WDNR priority watershed. The U.S. Geological Survey is responsible for collection of water-quality data in the evaluation monitoring watersheds. An initial inventory was completed for each of the WDNR priority watersheds before nonpoint-source plans were developed for the control of nonpoint pollution. The land-use inventory described in this report expands upon the initial inventory by including nonpoint pollution sources that were not identified and also by updating changes in landuse and land-management practices. New sources of nonpoint pollution, not identified in the initial inventory, could prove to be important when monitored and modeled data are analyzed. This effort to inventory the evaluation monitoring watersheds will help with the interpretation of future land-use and water-quality data. This report describes landuse inventory methods, presents results of the inventory, and lists proposed future activities.

  20. Atmospheric deposition of selected chemicals and their effect on nonpoint-source pollution in the Twin Cities Metropolitan Area, Minnesota

    USGS Publications Warehouse

    Brown, R.G.

    1984-01-01

    The atmospheric contribution to nonpoint-source-runoff pollution of nitrogen, in the form of nitrite-plus-nitrate, and lead was extremely high contributing as much as 84 percent of the runoff load. In contrast, phosphorus and chloride inputs were low averaging of 6 percent of the total runoff load. Future investigations of nonpoint-source pollution in runoff might include collection of data on atmospheric deposition of nitrite-plus-nitrate nitrogen and lead because of the importance of that source of these constituents in runoff.

  1. A method to analyze "source-sink" structure of non-point source pollution based on remote sensing technology.

    PubMed

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-11-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the "source-sink" theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of "source" of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km(2) in 2008, and the "sink" was 172.06 km(2). The "source" of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the "sink" was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of "source" gets weaker along with the distance from the seas boundary increase, while "sink" gets stronger. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. National Management Measures to Control Nonpoint Source Pollution from Forestry

    EPA Pesticide Factsheets

    This report helps forest owners protect lakes and streams from polluted runoff that can result from forestry activities. The report will also help states to implement their nonpoint source control programs.

  3. WATERSHEDSS

    EPA Science Inventory

    To adequately control nonpoint source pollution of a water resource, water quality managers must focus on minimizing the impacts of individual nonpoint source pollutants. The strategic choice and placement of best management practices (BMPs) in the watershed can successfully redu...

  4. ALTERNATIVE POLICIES FOR CONTROLLING NONPOINT AGRICULTURAL SOURCES OF WATER POLLUTION

    EPA Science Inventory

    This study of policies for controlling water pollution from nonpoint agricultural sources includes a survey of existing state and Federal programs, agencies, and laws directed to the control of soil erosion. Six policies representing a variety of approaches to this pollution prob...

  5. Incentive Analysis for Clean Water Act Reauthorization: Point Source/Nonpoint Source Trading for Nutrient Discharge Reductions (1992)

    EPA Pesticide Factsheets

    Paper focuses on trading schemes in which regulated point sources are allowed to avoid upgrading their pollution control technology to meet water quality-based effluent limits if they pay for equivalent (or greater) reductions in nonpoint source pollution.

  6. Nutrient pollution of coastal rivers, bays, and seas

    USGS Publications Warehouse

    Howarth, Robert; Anderson, Donald; Cloern, James; Elfring, Chris; Hopkinson, Charles; Lapointe, Brian; Malone, Tom; Marcus, Nancy; McGlathery, Karen; Sharpley , Andrew; Walker, Dan

    2000-01-01

    Over the past 40 years, antipollution laws have greatly reduced discharges of toxic substances into our coastal waters. This effort, however, has focused largely on point-source pollution of industrial and municipal effluent. No comparable effort has been made to restrict the input of nitrogen (N) from municipal effluent, nor to control the flows of N and phosphorus (P) that enter waterways from dispersed or nonpoint sources such as agricultural and urban runoff or as airborne pollutants. As a result, inputs of nonpoint pollutants, particularly N, have increased dramatically. Nonpoint pollution from N and P now represents the largest pollution problem facing the vital coastal waters of the United States.

  7. A Methodology for the Characterization and Management of Nonpoint Source Water Pollution

    DTIC Science & Technology

    1992-09-01

    Nonpoint Source water pollution management tool. However, the stormwater runoff sampling program conducted at the Air Force Academy for validation proved...17 Nationwide Urban Runoff Program (NUEP) . 19 Urban Runoff Pollutant Characteristics . 20 Annual Urban Runoff Loads . . . . . . . 22...55 Sampling Plan . . . . . . . . . . . . . . . . 55 Samples for Baseline Data. ... . . .... 56 Samples for Runoff Data

  8. The economic impact of remote sensing data as the source of nonpoint pollution monitoring and control

    NASA Technical Reports Server (NTRS)

    Miller, W. L.

    1974-01-01

    Nonpoint pollution of streams with sediment as a result of runoff from alternative uses of land has become a socially unacceptable product of economic activity. This report describes a research approach to economically achieve correction of the nonpoint pollution problem. The research approach integrates the economic model with those data which may be obtainable from remotely sensed sources. The economic problem involves measurement of the direct benefits and costs associated with the changes in land management activities necessary to reduce the level of nonpoint pollution. Remotely sensed data from ERTS-1 may provide some of the information required for the economic model which indicates efficient solutions to the nonpoint pollution problem. Three classes of data (i.e., soil categories, vegetative cover, and water turbidity) have the potential to be measured by ERTS-1 systems. There is substantial research which indicates the ability of ERTS-1 to measure these classes of data under selected conditions.

  9. National Management Measures to Protect and Restore Wetlands and Riparian Areas for the Abatement of Nonpoint Source Pollution

    EPA Pesticide Factsheets

    Guidance includes technical assistance to state, local, and tribal program managers on means of reducing nonpoint source pollution of surface and ground water through the protection and restoration of wetlands and riparian areas.

  10. UNCERTAINTY IN LEACHING POTENTIAL OF NONPOINT SOURCE POLLUTANTS WITH APPLICATION TO GIS

    EPA Science Inventory

    This paper presents a stochastic framework for the assessment of groundwater pollution potential of nonpoint source pesticides. A conceptual relationship is presented that relates seasonally averaged groundwater recharge to soil properties and depths to the water table. The analy...

  11. RECOGNIZING FARMERS' ATTITUDES AND IMPLEMENTING NONPOINT SOURCE POLLUTION CONTROL POLICIES

    EPA Science Inventory

    This report examines the role of farmer attitudes and corresponding communication activities in the implementation of nonpoint source water pollution control programs. The report begins with an examination of the basis for and function of attitudes in influencing behavior. The ro...

  12. Nonpoint Source: Forestry

    EPA Pesticide Factsheets

    Sources of nonpoint source (NPS) pollution associated with forestry activities include removal of streamside vegetation, road construction and use, timber harvesting, and mechanical preparation for the planting of trees. Information resources.

  13. UNCERTAINTY IN LEACHING POTENTIAL OF NONPOINT SOURCE POLLUTANTS WITH APPLICATION TO A GIS

    EPA Science Inventory

    This paper presents a stochastic framework for the assessment of groundwater pollution potential of nonpoint source pesticides. A conceptual relationship is presented that relates seasonally averaged groundwater recharge to soil properties and depths to the water table. The analy...

  14. USE OF WATERSHED CLASSIFICATION IN MONITORING FRAMEWORKS FOR THE WESTERN LAKE SUPERIOR BASIS

    EPA Science Inventory

    In this case study we predicted stream sensitivity to nonpoint source pollution based on the nonlinear responses of hydrologic regimes and associated loadings of nonpoint source pollutants to catchment properties. We assessed two hydrologically-based thresholds of impairment, on...

  15. Nonpoint Source Monitoring

    EPA Pesticide Factsheets

    Water quality monitoring for nonpoint sources of pollution includes the important element of relating the physical, chemical, and biological characteristics of receiving waters to land use characteristics.

  16. Water Conservation and Nonpoint Source Pollution.

    ERIC Educational Resources Information Center

    Farrell-Poe, Kitt

    This book contains science activities that are designed to make learning and demonstrating nonpoint source pollution concepts exciting and fun. These activities can either be used alone or with an existing water resources education curricula. Activities include: Water Tasting, Acting Out the Hydrologic Cycle, Concentration of Chemical Pollutants…

  17. 40 CFR 35.1605-4 - Nonpoint source.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Lakes § 35.1605-4 Nonpoint source. Pollution sources which generally are not controlled by establishing... traceable to a discrete identifiable origin, but generally result from land runoff, precipitation, drainage...

  18. BOOK REVIEW OF "ASSESSMENT AND CONTROL OF NONPOINT SOURCE POLLUTION OF AQUATIC ECOSYSTEMS: A PRACTICAL APPROACH"

    EPA Science Inventory

    This book is geared to environmental specialists and planners, heavy on the technical side. It goes beyond tranditional nonpoint source (NPS) approaches which typically only look at stormwater as athe sole NPS pollution driver. There is some overreaching material beyond the conte...

  19. Nonpoint Source News-Notes

    EPA Pesticide Factsheets

    an occasional bulletin dealing with the condition of the water-related environment, the control of nonpoint sources of water pollution (NPS), and the ecosystem-driven management and restoration of watersheds.

  20. Nonpoint Source: Agriculture

    EPA Pesticide Factsheets

    Agricultural runoff as a nonpoint source category of pollution. Resouces to learn more a bout conservation practices to reduce water quality impacts from storm water run off and ground water infiltration

  1. Introducing nonpoint source transferable quotas in nitrogen trading: The effects of transaction costs and uncertainty.

    PubMed

    Zhou, Xiuru; Ye, Weili; Zhang, Bing

    2016-03-01

    Transaction costs and uncertainty are considered to be significant obstacles in the emissions trading market, especially for including nonpoint source in water quality trading. This study develops a nonlinear programming model to simulate how uncertainty and transaction costs affect the performance of point/nonpoint source (PS/NPS) water quality trading in the Lake Tai watershed, China. The results demonstrate that PS/NPS water quality trading is a highly cost-effective instrument for emissions abatement in the Lake Tai watershed, which can save 89.33% on pollution abatement costs compared to trading only between nonpoint sources. However, uncertainty can significantly reduce the cost-effectiveness by reducing trading volume. In addition, transaction costs from bargaining and decision making raise total pollution abatement costs directly and cause the offset system to deviate from the optimal state. While proper investment in monitoring and measuring of nonpoint emissions can decrease uncertainty and save on the total abatement costs. Finally, we show that the dispersed ownership of China's farmland will bring high uncertainty and transaction costs into the PS/NPS offset system, even if the pollution abatement cost is lower than for point sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain)

    USDA-ARS?s Scientific Manuscript database

    AnnAGNPS (Annualized Agricultural Non-Point Source Pollution Model) is a system of computer models developed to predict non-point source pollutant loadings within agricultural watersheds. It contains a daily time step distributed parameter continuous simulation surface runoff model designed to assis...

  3. Nationwide assessment of nonpoint source threats to water quality

    Treesearch

    Thomas C. Brown; Pamela Froemke

    2012-01-01

    Water quality is a continuing national concern, in part because the containment of pollution from nonpoint (diffuse) sources remains a challenge. We examine the spatial distribution of nonpoint-source threats to water quality. On the basis of comprehensive data sets for a series of watershed stressors, the relative risk of water-quality impairment was estimated for the...

  4. Study on road surface source pollution controlled by permeable pavement

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocheng

    2018-06-01

    The increase of impermeable pavement in urban construction not only increases the runoff of the pavement, but also produces a large number of Non-Point Source Pollution. In the process of controlling road surface runoff by permeable pavement, a large number of particulate matter will be withheld when rainwater is being infiltrated, so as to control the source pollution at the source. In this experiment, we determined the effect of permeable road surface to remove heavy pollutants in the laboratory and discussed the related factors that affect the non-point pollution of permeable pavement, so as to provide a theoretical basis for the application of permeable pavement.

  5. Managing Nonpoint Source Pollution in Western Washington: Landowner Learning Methods and Motivations

    NASA Astrophysics Data System (ADS)

    Ryan, Clare M.

    2009-06-01

    States, territories, and tribes identify nonpoint source pollution as responsible for more than half of the Nation’s existing and threatened water quality impairments, making it the principal remaining cause of water quality problems across the United States. Combinations of education, technical and financial assistance, and regulatory measures are used to inform landowners about nonpoint source pollution issues, and to stimulate the use of best management practices. A mail survey of non-commercial riparian landowners investigated how they learn about best management practices, the efficacy of different educational techniques, and what motivates them to implement land management activities. Landowners experience a variety of educational techniques, and rank those that include direct personal contact as more effective than brochures, advertisements, radio, internet, or television. The most important motivations for implementing best management practices were linked with elements of a personal stewardship ethic, accountability, personal commitment, and feasibility. Nonpoint source education and social marketing campaigns should include direct interpersonal contacts, and appeal to landowner motivations of caring, responsibility, and personal commitment.

  6. Nonpoint-Source Pollution Issues. January 1990-November 1994. QB 95-01. Quick Bibliography Series.

    ERIC Educational Resources Information Center

    Makuch, Joe

    Citations in this bibliography are intended to be a substantial resource for recent investigations (January 1990-November 1994) on nonpoint source pollution and were obtained from a search of the National Agriculture Library's AGRICOLA database. The 196 citations are indexed by author and subject. A representation of the search strategy is…

  7. Detection of spatial fluctuations of non-point source fecal pollution in coral reef surrounding waters in southwestern Puerto Rico using PCR-based assays.

    PubMed

    Bonkosky, M; Hernández-Delgado, E A; Sandoz, B; Robledo, I E; Norat-Ramírez, J; Mattei, H

    2009-01-01

    Human fecal contamination of coral reefs is a major cause of concern. Conventional methods used to monitor microbial water quality cannot be used to discriminate between different fecal pollution sources. Fecal coliforms, enterococci, and human-specific Bacteroides (HF183, HF134), general Bacteroides-Prevotella (GB32), and Clostridium coccoides group (CP) 16S rDNA PCR assays were used to test for the presence of non-point source fecal contamination across the southwestern Puerto Rico shelf. Inshore waters were highly turbid, consistently receiving fecal pollution from variable sources, and showing the highest frequency of positive molecular marker signals. Signals were also detected at offshore waters in compliance with existing microbiological quality regulations. Phylogenetic analysis showed that most isolates were of human fecal origin. The geographic extent of non-point source fecal pollution was large and impacted extensive coral reef systems. This could have deleterious long-term impacts on public health, local fisheries and in tourism potential if not adequately addressed.

  8. [Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].

    PubMed

    Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun

    2016-03-15

    To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage.

  9. State survey of silviculture nonpoint source programs: a comparison of the 2000 northeastern and national results

    Treesearch

    Pamela J. Edwards; Gordon W. Stuart

    2002-01-01

    The National Association of State Foresters conducts surveys of silviculture nonpoint source (NPS) pollution control programs to measure progress and identify needs. The 2000 survey results are summarized here for the nation and for the 20-state northeastern region. Current emphasis of NPS pollution programs is on education, training, and monitoring. Educational...

  10. Evaluation of agricultural nonpoint source pollution potential risk over China with a Transformed-Agricultural Nonpoint Pollution Potential Index method.

    PubMed

    Yang, Fei; Xu, Zhencheng; Zhu, Yunqiang; He, Chansheng; Wu, Genyi; Qiu, Jin Rong; Fu, Qiang; Liu, Qingsong

    2013-01-01

    Agricultural nonpoint source (NPS) pollution has been the most important threat to water environment quality. Understanding the spatial distribution of NPS pollution potential risk is important for taking effective measures to control and reduce NPS pollution. A Transformed-Agricultural Nonpoint Pollution Potential Index (T-APPI) model was constructed for evaluating the national NPS pollution potential risk in this study; it was also combined with remote sensing and geographic information system techniques for evaluation on the large scale and at 1 km2 spatial resolution. This model considers many factors contributing to the NPS pollution as the original APPI model, summarized as four indicators of the runoff, sediment production, chemical use and the people and animal load. These four indicators were analysed in detail at 1 km2 spatial resolution throughout China. The T-APPI model distinguished the four indicators into pollution source factors and transport process factors; it also took their relationship into consideration. The studied results showed that T-APPI is a credible and convenient method for NPS pollution potential risk evaluation. The results also indicated that the highest NPS pollution potential risk is distributed in the middle-southern Jiangsu province. Several other regions, including the North China Plain, Chengdu Basin Plain, Jianghan Plain, cultivated lands in Guangdong and Guangxi provinces, also showed serious NPS pollution potential. This study can provide a scientific reference for predicting the future NPS pollution risk throughout China and may be helpful for taking reasonable and effective measures for preventing and controlling NPS pollution.

  11. Effectiveness of barnyard best management practices in Wisconsin

    USGS Publications Warehouse

    Stuntebeck, Todd D.; Bannerman, Roger T.

    1998-01-01

    In 1978, the Wisconsin Legislature committed to protecting water quality by enacting the Nonpoint Source Water Pollution Abatement Program. Through this program, cost-share money is provided within priority watersheds to control sources of nonpoint pollution. Most of the cost-share dollars for rural watersheds have been used to implement barnyard Best Management Practices (BMPs) because barnyards are believed to be a major source of pollutants, most notably phosphorus. Reductions in phosphorus loads of as much as 95 percent have been predicted for the barnyard BMPs recommended for priority watersheds.

  12. The estimation of the load of non-point source nitrogen and phosphorus based on observation experiments and export coefficient method in Three Gorges Reservoir Area

    NASA Astrophysics Data System (ADS)

    Tong, X. X.; Hu, B.; Xu, W. S.; Liu, J. G.; Zhang, P. C.

    2017-12-01

    In this paper, Three Gorges Reservoir Area (TGRA) was chosen to be the study area, the export coefficients of different land-use type were calculated through the observation experiments and literature consultation, and then the load of non-point source (NPS) nitrogen and phosphorus of different pollution sources such as farmland pollution sources, decentralized livestock and poultry breeding pollution sources and domestic pollution sources were estimated. The results show as follows: the pollution load of dry land is the main source of farmland pollution. The order of total nitrogen load of different pollution sources from high to low is livestock breeding pollution, domestic pollution, land use pollution, while the order of phosphorus load of different pollution sources from high to low is land use pollution, livestock breeding pollution, domestic pollution, Therefore, reasonable farmland management, effective control methods of dry land fertilization and sewage discharge of livestock breeding are the keys to the prevention and control of NPS nitrogen and phosphorus in TGRA.

  13. Monitor-based evaluation of pollutant load from urban stormwater runoff in Beijing.

    PubMed

    Liu, Y; Che, W; Li, J

    2005-01-01

    As a major pollutant source to urban receiving waters, the non-point source pollution from urban runoff needs to be well studied and effectively controlled. Based on monitoring data from urban runoff pollutant sources, this article describes a systematic estimation of total pollutant loads from the urban areas of Beijing. A numerical model was developed to quantify main pollutant loads of urban runoff in Beijing. A sub-procedure is involved in this method, in which the flush process influences both the quantity and quality of stormwater runoff. A statistics-based method was applied in computing the annual pollutant load as an output of the runoff. The proportions of pollutant from point-source and non-point sources were compared. This provides a scientific basis for proper environmental input assessment of urban stormwater pollution to receiving waters, improvement of infrastructure performance, implementation of urban stormwater management, and utilization of stormwater.

  14. Techniques for Tracking, Evaluating, and Reporting the Implementation of Nonpoint Source Control Measures - Forestry

    EPA Pesticide Factsheets

    This guidance is intended to assist state, regional, and local environmental professionals in tracking the implementation of best management practices (BMPs) used to control nonpoint source pollution generated by forestry practices.

  15. NATIONAL MANAGEMENT MEASURES TO CONTROL NONPOINT SOURCE POLLUTION FROM HYDROMODIFICATION

    EPA Science Inventory

    Hydromodification What Are the Nonpoint Source-Related Problems Associated with Hydromodification? Hydromodification activities have been separated into the categories of channelization and channel modification, dams, and streambank and shoreline erosion. A frequent result of c...

  16. Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control

    NASA Astrophysics Data System (ADS)

    Maringanti, Chetan; Chaubey, Indrajeet; Popp, Jennie

    2009-06-01

    Best management practices (BMPs) are effective in reducing the transport of agricultural nonpoint source pollutants to receiving water bodies. However, selection of BMPs for placement in a watershed requires optimization of the available resources to obtain maximum possible pollution reduction. In this study, an optimization methodology is developed to select and place BMPs in a watershed to provide solutions that are both economically and ecologically effective. This novel approach develops and utilizes a BMP tool, a database that stores the pollution reduction and cost information of different BMPs under consideration. The BMP tool replaces the dynamic linkage of the distributed parameter watershed model during optimization and therefore reduces the computation time considerably. Total pollutant load from the watershed, and net cost increase from the baseline, were the two objective functions minimized during the optimization process. The optimization model, consisting of a multiobjective genetic algorithm (NSGA-II) in combination with a watershed simulation tool (Soil Water and Assessment Tool (SWAT)), was developed and tested for nonpoint source pollution control in the L'Anguille River watershed located in eastern Arkansas. The optimized solutions provided a trade-off between the two objective functions for sediment, phosphorus, and nitrogen reduction. The results indicated that buffer strips were very effective in controlling the nonpoint source pollutants from leaving the croplands. The optimized BMP plans resulted in potential reductions of 33%, 32%, and 13% in sediment, phosphorus, and nitrogen loads, respectively, from the watershed.

  17. Tracking nonpoint source nitrogen pollution in human-impacted watersheds

    USGS Publications Warehouse

    Kaushal, Sujay S.; Groffman, Peter M; Band, Lawrence; Elliott, Emily M.; Shields, Catherine A.; Kendall, Carol

    2011-01-01

    Nonpoint source nitrogen (N) pollution is a leading contributor to U.S. water quality impairments. We combined watershed N mass balances and stable isotopes to investigate fate and transport of nonpoint N in forest, agricultural, and urbanized watersheds at the Baltimore Long-Term Ecological Research site. Annual N retention was 55%, 68%, and 82% for agricultural, suburban, and forest watersheds, respectively. Analysis of δ15N-NO3–, and δ18O-NO3– indicated wastewater was an important nitrate source in urbanized streams during baseflow. Negative correlations between δ15N-NO3– and δ18O-NO3– in urban watersheds indicated mixing between atmospheric deposition and wastewater, and N source contributions changed with storm magnitude (atmospheric sources contributed ∼50% at peak storm N loads). Positive correlations between δ15N-NO3– and δ18O-NO3– in watersheds suggested denitrification was removing septic system and agriculturally derived N, but N from belowground leaking sewers was less susceptible to denitrification. N transformations were also observed in a storm drain (no natural drainage network) potentially due to organic carbon inputs. Overall, nonpoint sources such as atmospheric deposition, wastewater, and fertilizer showed different susceptibility to watershed N export. There were large changes in nitrate sources as a function of runoff, and anticipating source changes in response to climate and storms will be critical for managing nonpoint N pollution.

  18. An application of Landsat and computer technology to potential water pollution from soil erosion

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.

    1981-01-01

    Agricultural activity has been recognized as the primary source of nonpoint source water pollution. Water quality planners have needed information that is timely, accurate, easily reproducible, and relatively inexpensive to utilize to implement 'Best Management Practices' for water quality. In this paper, a case study shows how the combination of satellite data, which can give accurate land-cover/land-use information, and a computerized geographic information system, can assess nonpoint pollution at a regional scale and be cost effective.

  19. Study on the quantitative relationship between Agricultural water and fertilization process and non-point source pollution based on field experiments

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, K.; Wu, Z.; Guan, X.

    2017-12-01

    In recent years, with the prominent of water environment problem and the relative increase of point source pollution governance, especially the agricultural non-point source pollution problem caused by the extensive use of fertilizers and pesticides has become increasingly aroused people's concern and attention. In order to reveal the quantitative relationship between agriculture water and fertilizer and non-point source pollution, on the basis of elm field experiment and combined with agricultural drainage irrigation model, the agricultural irrigation water and the relationship between fertilizer and fertilization scheme and non-point source pollution were analyzed and calculated by field emission intensity index. The results show that the variation of displacement varies greatly under different irrigation conditions. When the irrigation water increased from 22cm to 42cm, the irrigation water increased by 20 cm while the field displacement increased by 11.92 cm, about 66.22% of the added value of irrigation water. Then the irrigation water increased from 42 to 68, irrigation water increased 26 cm, and the field displacement increased by 22.48 cm, accounting for 86.46% of irrigation water. So there is an "inflection point" between the irrigation water amount and field displacement amount. The load intensity increases with the increase of irrigation water and shows a significant power correlation. Under the different irrigation condition, the increase amplitude of load intensity with the increase of irrigation water is different. When the irrigation water is smaller, the load intensity increase relatively less, and when the irrigation water increased to about 42 cm, the load intensity will increase considerably. In addition, there was a positive correlation between the fertilization and load intensity. The load intensity had obvious difference in different fertilization modes even with same fertilization level, in which the fertilizer field unit load intensity increased the most in July. The results provide some basis for the field control and management of agricultural non-point source pollution.

  20. Predicting nonpoint stormwater runoff quality from land use

    PubMed Central

    2018-01-01

    Evaluating the impact of urban development on natural ecosystem processes has become an increasingly complex task for planners, environmental scientists, and engineers. As the built environment continues to grow, unregulated nonpoint pollutants from increased human activity and large-scale development severely stress urban streams and lakes resulting in their currently impaired or degraded state. In response, integrated water quality management programs have been adopted to address these unregulated nonpoint pollutants by utilizing best management practices (BMPs) that treat runoff as close to the source as possible. Knowing where to install effective BMPs is no trivial task, considering budget constraints and the spatially extensive nature of nonpoint stormwater runoff. Accordingly, this paper presents an initial, straightforward and cost-effective methodology to identify critical nonpoint pollutant source watersheds through correlation of water quality with land use. Through an illustrative application to metropolitan Denver, Colorado, it is shown how this method can be used to aid stormwater professionals to evaluate and specify retrofit locations in need of water quality treatment features reduce, capture and treat stormwater runoff prior to entering receiving waters. PMID:29742172

  1. Predicting nonpoint stormwater runoff quality from land use.

    PubMed

    Zivkovich, Brik R; Mays, David C

    2018-01-01

    Evaluating the impact of urban development on natural ecosystem processes has become an increasingly complex task for planners, environmental scientists, and engineers. As the built environment continues to grow, unregulated nonpoint pollutants from increased human activity and large-scale development severely stress urban streams and lakes resulting in their currently impaired or degraded state. In response, integrated water quality management programs have been adopted to address these unregulated nonpoint pollutants by utilizing best management practices (BMPs) that treat runoff as close to the source as possible. Knowing where to install effective BMPs is no trivial task, considering budget constraints and the spatially extensive nature of nonpoint stormwater runoff. Accordingly, this paper presents an initial, straightforward and cost-effective methodology to identify critical nonpoint pollutant source watersheds through correlation of water quality with land use. Through an illustrative application to metropolitan Denver, Colorado, it is shown how this method can be used to aid stormwater professionals to evaluate and specify retrofit locations in need of water quality treatment features reduce, capture and treat stormwater runoff prior to entering receiving waters.

  2. Water quality modeling using geographic information system (GIS) data

    NASA Technical Reports Server (NTRS)

    Engel, Bernard A

    1992-01-01

    Protection of the environment and natural resources at the Kennedy Space Center (KSC) is of great concern. The potential for surface and ground water quality problems resulting from non-point sources of pollution was examined using models. Since spatial variation of parameters required was important, geographic information systems (GIS) and their data were used. The potential for groundwater contamination was examined using the SEEPAGE (System for Early Evaluation of the Pollution Potential of Agricultural Groundwater Environments) model. A watershed near the VAB was selected to examine potential for surface water pollution and erosion using the AGNPS (Agricultural Non-Point Source Pollution) model.

  3. Multi-angle Indicators System of Non-point Pollution Source Assessment in Rural Areas: A Case Study Near Taihu Lake

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Ban, Jie; Han, Yu Ting; Yang, Jie; Bi, Jun

    2013-04-01

    This study aims to identify key environmental risk sources contributing to water eutrophication and to suggest certain risk management strategies for rural areas. The multi-angle indicators included in the risk source assessment system were non-point source pollution, deficient waste treatment, and public awareness of environmental risk, which combined psychometric paradigm methods, the contingent valuation method, and personal interviews to describe the environmental sensitivity of local residents. Total risk values of different villages near Taihu Lake were calculated in the case study, which resulted in a geographic risk map showing which village was the critical risk source of Taihu eutrophication. The increased application of phosphorus (P) and nitrogen (N), loss vulnerability of pollutant, and a lack of environmental risk awareness led to more serious non-point pollution, especially in rural China. Interesting results revealed by the quotient between the scores of objective risk sources and subjective risk sources showed what should be improved for each study village. More environmental investments, control of agricultural activities, and promotion of environmental education are critical considerations for rural environmental management. These findings are helpful for developing targeted and effective risk management strategies in rural areas.

  4. A conceptual ground-water-quality monitoring network for San Fernando Valley, California

    USGS Publications Warehouse

    Setmire, J.G.

    1985-01-01

    A conceptual groundwater-quality monitoring network was developed for San Fernando Valley to provide the California State Water Resources Control Board with an integrated, basinwide control system to monitor the quality of groundwater. The geology, occurrence and movement of groundwater, land use, background water quality, and potential sources of pollution were described and then considered in designing the conceptual monitoring network. The network was designed to monitor major known and potential point and nonpoint sources of groundwater contamination over time. The network is composed of 291 sites where wells are needed to define the groundwater quality. The ideal network includes four specific-purpose networks to monitor (1) ambient water quality, (2) nonpoint sources of pollution, (3) point sources of pollution, and (4) line sources of pollution. (USGS)

  5. NATIONAL CONFERENCE ON RETROFIT OPPORTUNITIES ...

    EPA Pesticide Factsheets

    Water resource managers have been successful in developing approaches for reducing nonpoint source pollution in newly developing urban areas. Issues become increasingly complex, however, when managers are faced with the challenge of reducing nonpoint source impacts within previously developed urban environments. A diverse assortment of resource management tools, or

  6. Classification and spatial mapping of riparian habitat with applications toward management of streams impacted by nonpoint source pollution

    NASA Astrophysics Data System (ADS)

    Delong, Michael D.; Brusven, Merlyn A.

    1991-07-01

    Management of riparian habitats has been recognized for its importance in reducing instream effects of agricultural nonpoint source pollution. By serving as a buffer, well structured riparian habitats can reduce nonpoint source impacts by filtering surface runoff from field to stream. A system has been developed where key characteristics of riparian habitat, vegetation type, height, width, riparian and shoreline bank slope, and land use are classified as discrete categorical units. This classification system recognizes seven riparian vegetation types, which are determined by dominant plant type. Riparian and shoreline bank slope, in addition to riparian width and height, each consist of five categories. Classification by discrete units allows for ready digitizing of information for production of spatial maps using a geographic information system (GIS). The classification system was tested for field efficiency on Tom Beall Creek watershed, an agriculturally impacted third-order stream in the Clearwater River drainage, Nez Perce County, Idaho, USA. The classification system was simple to use during field applications and provided a good inventory of riparian habitat. After successful field tests, spatial maps were produced for each component using the Professional Map Analysis Package (pMAP), a GIS program. With pMAP, a map describing general riparian habitat condition was produced by combining the maps of components of riparian habitat, and the condition map was integrated with a map of soil erosion potential in order to determine areas along the stream that are susceptible to nonpoint source pollution inputs. Integration of spatial maps of riparian classification and watershed characteristics has great potential as a tool for aiding in making management decisions for mitigating off-site impacts of agricultural nonpoint source pollution.

  7. Evaluating agricultural nonpoint-source pollution using integrated geographic information systems and hydrologic/water quality model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim, U.S.; Jolly, R.

    1994-01-01

    Considerable progress has been made in developing physically based, distributed parameter, hydrologic/water quality (HIWQ) models for planning and control of nonpoint-source pollution. The widespread use of these models is often constrained by the excessive and time-consuming input data demands and the lack of computing efficiencies necessary for iterative simulation of alternative management strategies. Recent developments in geographic information systems (GIS) provide techniques for handling large amounts of spatial data for modeling nonpoint-source pollution problems. Because a GIS can be used to combine information from several sources to form an array of model input data and to examine any combinations ofmore » spatial input/output data, it represents a highly effective tool for HiWQ modeling. This paper describes the integration of a distributed-parameter model (AGNPS) with a GIS (ARC/INFO) to examine nonpoint sources of pollution in an agricultural watershed. The ARC/INFO GIS provided the tools to generate and spatially organize the disparate data to support modeling, while the AGNPS model was used to predict several water quality variables including soil erosion and sedimentation within a watershed. The integrated system was used to evaluate the effectiveness of several alternative management strategies in reducing sediment pollution in a 417-ha watershed located in southern Iowa. The implementation of vegetative filter strips and contour buffer (grass) strips resulted in a 41 and 47% reduction in sediment yield at the watershed outlet, respectively. In addition, when the integrated system was used, the combination of the above management strategies resulted in a 71% reduction in sediment yield. In general, the study demonstrated the utility of integrating a simulation model with GIS for nonpoini-source pollution control and planning. Such techniques can help characterize the diffuse sources of pollution at the landscape level. 52 refs., 6 figs., 1 tab.« less

  8. Nonpoint source pollution of urban stormwater runoff: a methodology for source analysis.

    PubMed

    Petrucci, Guido; Gromaire, Marie-Christine; Shorshani, Masoud Fallah; Chebbo, Ghassan

    2014-09-01

    The characterization and control of runoff pollution from nonpoint sources in urban areas are a major issue for the protection of aquatic environments. We propose a methodology to quantify the sources of pollutants in an urban catchment and to analyze the associated uncertainties. After describing the methodology, we illustrate it through an application to the sources of Cu, Pb, Zn, and polycyclic aromatic hydrocarbons (PAH) from a residential catchment (228 ha) in the Paris region. In this application, we suggest several procedures that can be applied for the analysis of other pollutants in different catchments, including an estimation of the total extent of roof accessories (gutters and downspouts, watertight joints and valleys) in a catchment. These accessories result as the major source of Pb and as an important source of Zn in the example catchment, while activity-related sources (traffic, heating) are dominant for Cu (brake pad wear) and PAH (tire wear, atmospheric deposition).

  9. The Other Water Pollution

    ERIC Educational Resources Information Center

    Barton, Kathy

    1978-01-01

    Nonpoint source pollution, water pollution not released at one specific identifiable point, now accounts for 50 percent of the nation's water pollution problem. Runoff is the primary culprit and includes the following sources: agriculture, mining, hydrologic modifications, and urban runoff. Economics, legislation, practices, and management of this…

  10. [Regulation framework of watershed landscape pattern for non-point source pollution control based on 'source-sink' theory: A case study in the watershed of Maluan Bay, Xiamen City, China].

    PubMed

    Huang, Ning; Wang, Hong Ying; Lin, Tao; Liu, Qi Ming; Huang, Yun Feng; Li, Jian Xiong

    2016-10-01

    Watershed landscape pattern regulation and optimization based on 'source-sink' theory for non-point source pollution control is a cost-effective measure and still in the exploratory stage. Taking whole watershed as the research object, on the basis of landscape ecology, related theories and existing research results, a regulation framework of watershed landscape pattern for non-point source pollution control was developed at two levels based on 'source-sink' theory in this study: 1) at watershed level: reasonable basic combination and spatial pattern of 'source-sink' landscape was analyzed, and then holistic regulation and optimization method of landscape pattern was constructed; 2) at landscape patch level: key 'source' landscape was taken as the focus of regulation and optimization. Firstly, four identification criteria of key 'source' landscape including landscape pollutant loading per unit area, landscape slope, long and narrow transfer 'source' landscape, pollutant loading per unit length of 'source' landscape along the riverbank were developed. Secondly, nine types of regulation and optimization methods for different key 'source' landscape in rural and urban areas were established, according to three regulation and optimization rules including 'sink' landscape inlay, banding 'sink' landscape supplement, pollutants capacity of original 'sink' landscape enhancement. Finally, the regulation framework was applied for the watershed of Maluan Bay in Xiamen City. Holistic regulation and optimization mode of watershed landscape pattern of Maluan Bay and key 'source' landscape regulation and optimization measures for the three zones were made, based on GIS technology, remote sensing images and DEM model.

  11. Spreadsheet WATERSHED modeling for nonpoint-source pollution management in a Wisconsin basin

    USGS Publications Warehouse

    Walker, J.F.; Pickard, S.A.; Sonzogni, W.C.

    1989-01-01

    Although several sophisticated nonpoint pollution models exist, few are available that are easy to use, cover a variety of conditions, and integrate a wide range of information to allow managers and planners to assess different control strategies. Here, a straightforward pollutant input accounting approach is presented in the form of an existing model (WATERSHED) that has been adapted to run on modern electronic spreadsheets. As an application, WATERSHED is used to assess options to improve the quality of highly eutrophic Delavan Lake in Wisconsin. WATERSHED is flexible in that several techniques, such as the Universal Soil Loss Equation or unit-area loadings, can be used to estimate nonpoint-source inputs. Once the model parameters are determined (and calibrated, if possible), the spreadsheet features can be used to conduct a sensitivity analysis of management options. In the case of Delavan Lake, it was concluded that, although some nonpoint controls were cost-effective, the overall reduction in phosphorus would be insufficient to measurably improve water quality.A straightforward pollutant input accounting approach is presented in the form of an existing model (WATERSHED) that has been adapted to run on modern electronic spreadsheets. As an application, WATERSHED is used to assess options to improve the quality of highly eutrophic Delavan Lake in Wisconsin. WATERSHED is flexible in that several techniques, such as the Universal Soil Loss Equation or unit-area loadings, can be used to estimate nonpoint-source inputs. Once the model parameters are determined (and calibrated, if possible), the spreadsheet features can be used to conduct a sensitivity analysis of management options. In the case of Delavan Lake, it was concluded that, although some nonpoint controls were cost-effective, the overall reduction in phosphorus would be insufficient to measurably improve water quality.

  12. NATIONAL CONFERENCE ON RETROFIT OPPORTUNITIES FOR WATER RESOURCE PROTECTION IN URBAN ENVIRONMENTS: PROCEEDINGS, CHICAGO, IL, FEBRUARY 9-12, 1998

    EPA Science Inventory

    Water resource managers have been successful in developing approaches for reducing nonpoint source pollution in newly developing urban areas. Issues become increasingly complex, however, when managers are faced with the challenge of reducing nonpoint source impacts within previo...

  13. A spatial model to aggregate point-source and nonpoint-source water-quality data for large areas

    USGS Publications Warehouse

    White, D.A.; Smith, R.A.; Price, C.V.; Alexander, R.B.; Robinson, K.W.

    1992-01-01

    More objective and consistent methods are needed to assess water quality for large areas. A spatial model, one that capitalizes on the topologic relationships among spatial entities, to aggregate pollution sources from upstream drainage areas is described that can be implemented on land surfaces having heterogeneous water-pollution effects. An infrastructure of stream networks and drainage basins, derived from 1:250,000-scale digital-elevation models, define the hydrologic system in this spatial model. The spatial relationships between point- and nonpoint pollution sources and measurement locations are referenced to the hydrologic infrastructure with the aid of a geographic information system. A maximum-branching algorithm has been developed to simulate the effects of distance from a pollutant source to an arbitrary downstream location, a function traditionally employed in deterministic water quality models. ?? 1992.

  14. [Estimation of urban non-point source pollution loading and its factor analysis in the Pearl River Delta].

    PubMed

    Liao, Yi-Shan; Zhuo, Mu-Ning; Li, Ding-Qiang; Guo, Tai-Long

    2013-08-01

    In the Pearl Delta region, urban rivers have been seriously polluted, and the input of non-point source pollution materials, such as chemical oxygen demand (COD), into rivers cannot be neglected. During 2009-2010, the water qualities at eight different catchments in the Fenjiang River of Foshan city were monitored, and the COD loads for eight rivulet sewages were calculated in respect of different rainfall conditions. Interesting results were concluded in our paper. The rainfall and landuse type played important roles in the COD loading, with greater influence of rainfall than landuse type. Consequently, a COD loading formula was constructed that was defined as a function of runoff and landuse type that were derived SCS model and land use map. Loading of COD could be evaluated and predicted with the constructed formula. The mean simulation accuracy for single rainfall event was 75.51%. Long-term simulation accuracy was better than that of single rainfall. In 2009, the estimated COD loading and its loading intensity were 8 053 t and 339 kg x (hm2 x a)(-1), and the industrial land was regarded as the main source of COD pollution area. The severe non-point source pollution such as COD in Fenjiang River must be paid more attention in the future.

  15. [Urban non-point source pollution control by runoff retention and filtration pilot system].

    PubMed

    Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia

    2011-09-01

    A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.

  16. Study of landscape patterns of variation and optimization based on non-point source pollution control in an estuary.

    PubMed

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui; Wu, Haiyan

    2014-10-15

    Appropriate increases in the "sink" of a landscape can reduce the risk of non-point source pollution (NPSP) to the sea at relatively lower costs and at a higher efficiency. Based on high-resolution remote sensing image data taken between 2003 and 2008, we analyzed the "source" and "sink" landscape pattern variations of nitrogen and phosphorus pollutants in the Jiulongjiang estuary region. The contribution to the sea and distribution of each pollutant in the region was calculated using the LCI and mGLCI models. The results indicated that an increased amount of pollutants was contributed to the sea, and the "source" area of the nitrogen NPSP in the study area increased by 32.75 km(2). We also propose a landscape pattern optimization to reduce pollution in the Jiulongjiang estuary in 2008 through the conversion of cultivated land with slopes greater than 15° and paddy fields near rivers, and an increase in mangrove areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Occurrence of Surface Water Contaminations: An Overview

    NASA Astrophysics Data System (ADS)

    Shahabudin, M. M.; Musa, S.

    2018-04-01

    Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.

  18. BACTERIA SOURCE TRACKING AND HOST SPECIES SPECIFICITY ANALYSIS

    EPA Science Inventory

    Point and non-point pollution sources of fecal pollution on a watershed adversely impact the quality of drinking source waters and recreational waters. States are required to develop total maximum daily loads (TMDLs) and devise best management practices (BMPs) to reduce the pollu...

  19. URBAN/SUBURBAN WATERSHED CHARACTERIZATION

    EPA Science Inventory

    The ability to characterize the land surface and related pollutant source loadings is critical for reliable watershed modeling. Urban/suburban land uses are the most rapidly growing land use class, generating non-point source pollutant loadings likely to seriously impair streams...

  20. Applications of remote sensing to hydrologic planning

    NASA Technical Reports Server (NTRS)

    Loats, H., Jr.; Fowler, T.; Castruccio, P.

    1978-01-01

    The transfer of LANDSAT remote sensing technology from the research sector to user operational applications requires demonstration of the utility and accuracy of LANDSAT data in solving real problems. This report describes such a demonstration project in the area of water resources, specifically the estimation of non-point source pollutant loads. Non-point source pollutants were estimated from land cover data from LANDSAT images. Classification accuracies for three small watersheds were above 95%. Land cover was converted to pollutant loads for a fourth watershed through the use of coefficients relating significant pollutants to land use and storm runoff volume. These data were input into a simulator model which simulated runoff from average rainfall. The result was the estimation of monthly expected pollutant loads for the 17 subbasins comprising the Magothy watershed.

  1. Mitigation of nonpoint source pollution in rural areas: From control to synergies of multi ecosystem services.

    PubMed

    Wu, Yonghong; Liu, Junzhuo; Shen, Renfang; Fu, Bojie

    2017-12-31

    Nonpoint source (NPS) pollution produced by human activities in rural areas has induced excessive nutrient input into surface waters and the decline of water quality. The essence of NPS pollution is the transport of nutrients between soil and water. Traditional NPS pollution control strategies, however, are mainly based on the solid and liquid phases, with little focus on the bio-phase between water and soil. The pollutants produced from NPS can be regarded as a resource if recycled or reused in an appropriate way in the agricultural ecosystem. This mini review proposes novel strategies for NPS pollution control based on three phases (liquid, solid and bio-phase) and highlights the regulating services of an agricultural ecosystem by optimizing land use/cover types. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. DNA BASED MOLECULAR METHODS FOR BACTERIAL SOURCE TRACKING IN WATERSHEDS

    EPA Science Inventory

    Point and non-point pollution sources of fecal pollution on a watershed adversely impact the quality of drinking source waters and recreational waters. States are required to develop total maximum daily loads (TMDLs) and devise best management practices (BMPs) to reduce the po...

  3. Response of non-point source pollutant loads to climate change in the Shitoukoumen reservoir catchment.

    PubMed

    Zhang, Lei; Lu, Wenxi; An, Yonglei; Li, Di; Gong, Lei

    2012-01-01

    The impacts of climate change on streamflow and non-point source pollutant loads in the Shitoukoumen reservoir catchment are predicted by combining a general circulation model (HadCM3) with the Soil and Water Assessment Tool (SWAT) hydrological model. A statistical downscaling model was used to generate future local scenarios of meteorological variables such as temperature and precipitation. Then, the downscaled meteorological variables were used as input to the SWAT hydrological model calibrated and validated with observations, and the corresponding changes of future streamflow and non-point source pollutant loads in Shitoukoumen reservoir catchment were simulated and analyzed. Results show that daily temperature increases in three future periods (2010-2039, 2040-2069, and 2070-2099) relative to a baseline of 1961-1990, and the rate of increase is 0.63°C per decade. Annual precipitation also shows an apparent increase of 11 mm per decade. The calibration and validation results showed that the SWAT model was able to simulate well the streamflow and non-point source pollutant loads, with a coefficient of determination of 0.7 and a Nash-Sutcliffe efficiency of about 0.7 for both the calibration and validation periods. The future climate change has a significant impact on streamflow and non-point source pollutant loads. The annual streamflow shows a fluctuating upward trend from 2010 to 2099, with an increase rate of 1.1 m(3) s(-1) per decade, and a significant upward trend in summer, with an increase rate of 1.32 m(3) s(-1) per decade. The increase in summer contributes the most to the increase of annual load compared with other seasons. The annual NH (4) (+) -N load into Shitoukoumen reservoir shows a significant downward trend with a decrease rate of 40.6 t per decade. The annual TP load shows an insignificant increasing trend, and its change rate is 3.77 t per decade. The results of this analysis provide a scientific basis for effective support of decision makers and strategies of adaptation to climate change.

  4. Environmental Kuznets Curve Analysis of the Economic Development and Nonpoint Source Pollution in the Ningxia Yellow River Irrigation Districts in China

    PubMed Central

    Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang

    2013-01-01

    This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area. PMID:24171160

  5. Environmental Kuznets curve analysis of the economic development and nonpoint source pollution in the Ningxia Yellow River irrigation districts in China.

    PubMed

    Mao, Chunlan; Zhai, Ningning; Yang, Jingchao; Feng, Yongzhong; Cao, Yanchun; Han, Xinhui; Ren, Guangxin; Yang, Gaihe; Meng, Qing-xiang

    2013-01-01

    This study applies the environmental Kuznets curve to test the relationship between the regional economic growth and the different types of agricultural nonpoint source pollution loads in the Ningxia Yellow River irrigation area by using the Johnes export coefficient method. Results show that the pollution load generated by crop cultivation and livestock-breeding industries in the Ningxia Yellow River irrigation area shows an inverted U-shaped feature; however, this feature is absent in living-sewage pollution load. Crop pollution has shown a decreasing trend since 1997 because of the increased per capita income of farmers. Livestock-breeding pollution load reached its turning point when the per capita income of farmers reached 8386.74 RMB. Therefore, an increase in the per capita income of farmers corresponds to an increase in the livestock-breeding pollution load in the Ningxia Yellow River irrigation area.

  6. Water Quality Field Guide.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Nonpoint source pollution is both a relatively recent concern and a complex phenomenon with many unknowns. Knowing the extent to which agricultural sources contribute to the total pollutant load, the extent to which various control practices decrease this load, and the effect of reducing the pollutants delivered to a water body are basic to the…

  7. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao'an District, Shenzhen, China.

    PubMed

    Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan

    2016-11-01

    Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.

  8. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao'an District, Shenzhen, China

    NASA Astrophysics Data System (ADS)

    Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan

    2016-11-01

    Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.

  9. FECAL BACTERIA SOURCE TRACKING AND BACTEROIDES SPP. HOST SPECIES SPECIFICITY ANALYSIS

    EPA Science Inventory

    Point and non-point pollution sources of fecal pollution on a watershed adversely impact the quality of drinking source waters and recreational waters. States are required to develop total maximum daily loads (TMDLs) and devise best management practices (BMPs) to reduce the po...

  10. Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin: a case study of the town of Xueyan, China.

    PubMed

    Zhu, Q D; Sun, J H; Hua, G F; Wang, J H; Wang, H

    2015-10-01

    Non-point source pollution is a significant environmental issue in small watersheds in China. To study the effects of rainfall on pollutants transported by runoff, rainfall was monitored in Xueyan town in the Taihu Lake Basin (TLB) for over 12 consecutive months. The concentrations of different forms of nitrogen (N) and phosphorus (P), and chemical oxygen demand, were monitored in runoff and river water across different land use types. The results indicated that pollutant loads were highly variable. Most N losses due to runoff were found around industrial areas (printing factories), while residential areas exhibited the lowest nitrogen losses through runoff. Nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4-N) were the dominant forms of soluble N around printing factories and hotels, respectively. The levels of N in river water were stable prior to the generation of runoff from a rainfall event, after which they were positively correlated to rainfall intensity. In addition, three sites with different areas were selected for a case study to analyze trends in pollutant levels during two rainfall events, using the AnnAGNPS model. The modeled results generally agreed with the observed data, which suggests that AnnAGNPS can be used successfully for modeling runoff nutrient loading in this region. The conclusions of this study provide important information on controlling non-point source pollution in TLB.

  11. The Invisible Menace.

    ERIC Educational Resources Information Center

    Cramer, Jerome

    1994-01-01

    This article examines the detrimental effects of polluted run-off from agricultural production on salmonids and aquatic ecosystems, alternative farming methods used to reduce water pollution and soil erosion, and current state and federal policies to control nonpoint source pollution. (LZ)

  12. 40 CFR 35.3140 - Environmental review requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...

  13. 40 CFR 35.3140 - Environmental review requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...

  14. 40 CFR 35.3140 - Environmental review requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...

  15. 40 CFR 35.3140 - Environmental review requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...

  16. 40 CFR 35.3140 - Environmental review requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3140 Environmental... nonpoint source pollution control (section 319) and estuary protection (section 320) projects that are also...

  17. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    PubMed

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  18. AN APPROACH TO WATER RESOURCES EVALUATION OF NON-POINT SILVICULTURAL SOURCES (A PROCEDURAL HANDBOOK)

    EPA Science Inventory

    This handbook provides an analysis methodology that can be used to describe and evaluate changes to the water resource resulting from non-point silvicultural activities. This state-of-the-art approach for analysis and prediction of pollution from non point silvicultural activitie...

  19. Probabilistic Analysis of Earthquake-Led Water Contamination: A Case of Sichuan, China

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Li, Lin; Benjamin Zhan, F.; Zhuang, Yanhua

    2016-06-01

    The objective of this paper is to evaluate seismic-led point source and non-point source water pollution, under the seismic hazard of 10 % probability of exceedance in 50 years, and with the minimum value of the water quality standard in Sichuan, China. The soil conservation service curve number method of calculating the runoff depth in the single rainfall event combined with the seismic damage index were applied to estimate the potential degree of non-point source water pollution. To estimate the potential impact of point source water pollution, a comprehensive water pollution evaluation framework is constructed using a combination of Water Quality Index and Seismic Damage Index methods. The four key findings of this paper are: (1) The water catchment that has the highest factory concentration does not have the highest risk of non-point source water contamination induced by the outbreak of potential earthquake. (2) The water catchment that has the highest numbers of cumulative water pollutants types are typically located in the south western parts of Sichuan where the main river basins in the regions flow through. (3) The most common pollutants in sample factories studied is COD and NH3-N which are found in all catchments. The least common pollutant is pathogen—found present in W1 catchment which has the best rating in the water quality index. (4) Using water quality index as a standardization parameter, parallel comparisons is made among the 16 water catchments. Only catchment W1 reaches level II water quality status which has the rating of moderately polluted in events of earthquake induced water contamination. All other areas suffer from severe water contamination with multiple pollution sources. The results from the data model are significant to urban planning commissions and businesses to strategically choose their factory locations in order to minimize potential hazardous impact during the outbreak of earthquake.

  20. 40 CFR 35.3115 - Eligible activities of the SRF.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3115 Eligible... a nonpoint source pollution control management program under section 319 of the Act; and (c) For...

  1. 40 CFR 35.3115 - Eligible activities of the SRF.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3115 Eligible... a nonpoint source pollution control management program under section 319 of the Act; and (c) For...

  2. 40 CFR 35.3115 - Eligible activities of the SRF.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3115 Eligible... a nonpoint source pollution control management program under section 319 of the Act; and (c) For...

  3. 40 CFR 35.3115 - Eligible activities of the SRF.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3115 Eligible... a nonpoint source pollution control management program under section 319 of the Act; and (c) For...

  4. Nonpoint Source: Urban Areas

    EPA Pesticide Factsheets

    Urbanization increases the variety and amount of pollutants carried into our nation's waters. Pavement and compacted landscapes do not allow rain and snow melt to soak into the ground. List of typical pollutants from Urban runoff.

  5. 40 CFR 35.3115 - Eligible activities of the SRF.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3115 Eligible... a nonpoint source pollution control management program under section 319 of the Act; and (c) For...

  6. Purification and reuse of non-point source wastewater via Myriophyllum-based integrative biotechnology: A review.

    PubMed

    Liu, Feng; Zhang, Shunan; Luo, Pei; Zhuang, Xuliang; Chen, Xiang; Wu, Jinshui

    2018-01-01

    In this review, the applications of Myriophyllum-based integrative biotechnology to remove common non-point source (NPS) pollutants, such as nitrogen, phosphorus, heavy metals, and organic pollutants (e.g., pesticides and antibiotics) are summarized. The removal of these pollutants via various mechanisms, including uptake by plant and microbial communities in macrophyte-based treatment systems are discussed. This review highlights the potential use of Myriophyllum biomass to produce animal feed, fertilizer, and other valuable by-products, which can yield cost-effective returns and attract more attention to the regulation and recycling of NPS pollutants. In addition, it demonstrates that utilization of Myriophyllum species is a promising and reliable strategy for wastewater treatment. The future development of sustainable Myriophyllum-based treatment systems is discussed from various perspectives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. PROBABILISTIC ASSESSMENT OF GROUNDWATER VULNERABILITY TO NONPOINT SOURCE POLLUTION IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    This paper presents a probabilistic framework for the assessment of groundwater pollution potential by pesticides in two adjacent agricultural watersheds in the Mid-Altantic Coastal Plain. Indices for estimating streams vulnerability to pollutants' load from the surficial aquifer...

  8. Landsat change detection can aid in water quality monitoring

    NASA Technical Reports Server (NTRS)

    Macdonald, H. C.; Steele, K. F.; Waite, W. P.; Shinn, M. R.

    1977-01-01

    Comparison between Landsat-1 and -2 imagery of Arkansas provided evidence of significant land use changes during the 1972-75 time period. Analysis of Arkansas historical water quality information has shown conclusively that whereas point source pollution generally can be detected by use of water quality data collected by state and federal agencies, sampling methodologies for nonpoint source contamination attributable to surface runoff are totally inadequate. The expensive undertaking of monitoring all nonpoint sources for numerous watersheds can be lessened by implementing Landsat change detection analyses.

  9. Integrating watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability

    USDA-ARS?s Scientific Manuscript database

    Quantitative risk assessments of pollution and data related to the effectiveness of mitigating best management practices (BMPs) are important aspects of nonpoint source (NPS) pollution control efforts, particularly those driven by specific water quality objectives and by measurable improvement goals...

  10. COMPARISON OF OZONE INDICATORS MONITORED AT CASTNET AND RURALLY - DESIGNATED SLAMS SITES

    EPA Science Inventory

    Many water-bodies within the United States are contaminated by non-point source (NPS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic 13romses. One such NPS pollutant is fe...

  11. Evaluating the suitability of the Soil Vulnerability Index (SVI) classification scheme using the SWAT model

    USDA-ARS?s Scientific Manuscript database

    Conservation practices are effective ways to mitigate non-point source pollution, especially when implemented on critical source areas (CSAs) known to be the areas contributing disproportionately to high pollution loads. Although hydrologic models are promising tools to identify CSAs within agricul...

  12. Reducing hypoxia in the Gulf of Mexico – an alternative approach

    USDA-ARS?s Scientific Manuscript database

    Hypoxia in the Gulf of Mexico is a high-priority national issue. Agricultural nonpoint source pollution is the greatest source of water pollution today and its consequences are particularly evident in the Gulf of Mexico. For example, Illinois, Iowa and Indiana together contribute nearly 30% of the p...

  13. Incorporation of Complex Hydrological and Socio-economic Factors for Non-point Source Pollution Control: A Case Study at the Yincungang Canal, the Lake Tai Basin of China

    NASA Astrophysics Data System (ADS)

    Yang, X.; Luo, X.; Zheng, Z.

    2012-04-01

    It is increasingly realized that non-point pollution sources contribute significantly to water environment deterioration in China. Compared to developed countries, non-point source pollution in China has the unique characteristics of strong intensity and composition complexity due to its special socioeconomic conditions. First, more than 50% of its 1.3 billion people are rural. Sewage from the majority of the rural households is discharged either without or only with minimal treatment. The large amount of erratic rural sewage discharge is a significant source of water pollution. Second, China is plagued with serious agricultural pollution due to widespread improper application of fertilizers and pesticides. Finally, there lack sufficient disposal and recycling of rural wastes such as livestock manure and crop straws. Pollutant loads from various sources have far exceeded environmental assimilation capacity in many parts of China. The Lake Tai basin is one typical example. Lake Tai is the third largest freshwater lake in China. The basin is located in the highly developed and densely populated Yangtze River Delta. While accounting for 0.4% of its land area and 2.9% of its population, the Lake Tai basin generates more than 14% of China's Gross Domestic Production (GDP), and the basin's GDP per capita is 3.5 times as much as the state average. Lake Tai is vital to the basin's socio-economic development, providing multiple services including water supply for municipal, industrial, and agricultural needs, navigation, flood control, fishery, and tourism. Unfortunately, accompanied with the fast economic development is serious water environment deterioration in the Lake Tai basin. The lake is becoming increasingly eutrophied and has frequently suffered from cyanobacterial blooms in recent decades. Chinese government has made tremendous investment in order to mitigate water pollution conditions in the basin. Nevertheless, the trend of deteriorating water quality has yet to be reversed. At least two factors contribute to the dichotomy between huge investment and limited results. First, the majority of the efforts have been limited to engineering approaches to water pollution control, ignoring the important roles of non-engineering approaches and stakeholder participation. Second, the complex hydrological regime of the basin may aggravate the impacts of various pollutant sources. Using the Yincungang canal, one major tributary to the Lake Tai, as an example, we discuss our work on both hydrological and socio-economic factors affecting the water quality of the canal, as well as the grand challenges of coupling hydrological systems and socio-economic systems in the region. Keywords non-point source pollution, rural sewage, agricultural pollution, spatio-temporal pattern, stakeholder participation

  14. Analysis of non-point and point source pollution in China: case study in Shima Watershed in Guangdong Province

    NASA Astrophysics Data System (ADS)

    Fang, Huaiyang; Lu, Qingshui; Gao, Zhiqiang; Shi, Runhe; Gao, Wei

    2013-09-01

    China economy has been rapidly increased since 1978. Rapid economic growth led to fast growth of fertilizer and pesticide consumption. A significant portion of fertilizers and pesticides entered the water and caused water quality degradation. At the same time, rapid economic growth also caused more and more point source pollution discharge into the water. Eutrophication has become a major threat to the water bodies. Worsening environment problems forced governments to take measures to control water pollution. We extracted land cover from Landsat TM images; calculated point source pollution with export coefficient method; then SWAT model was run to simulate non-point source pollution. We found that the annual TP loads from industry pollution into rivers are 115.0 t in the entire watershed. Average annual TP loads from each sub-basin ranged from 0 to 189.4 ton. Higher TP loads of each basin from livestock and human living mainly occurs in the areas where they are far from large towns or cities and the TP loads from industry are relatively low. Mean annual TP loads that delivered to the streams was 246.4 tons and the highest TP loads occurred in north part of this area, and the lowest TP loads is mainly distributed in middle part. Therefore, point source pollution has much high proportion in this area and governments should take measures to control point source pollution.

  15. Nitrogen component in nonpoint source pollution models

    USDA-ARS?s Scientific Manuscript database

    Pollutants entering a water body can be very destructive to the health of that system. Best Management Practices (BMPs) and/or conservation practices are used to reduce these pollutants, but understanding the most effective practices is very difficult. Watershed models are an effective tool to aid...

  16. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China

    USGS Publications Warehouse

    Wu, Yiping; Chen, Ji

    2013-01-01

    Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.

  17. Tracking Nitrogen Sources, Transformation, and Transport at a Basin Scale with Complex Plain River Networks.

    PubMed

    Yi, Qitao; Chen, Qiuwen; Hu, Liuming; Shi, Wenqing

    2017-05-16

    This research developed an innovative approach to reveal nitrogen sources, transformation, and transport in large and complex river networks in the Taihu Lake basin using measurement of dual stable isotopes of nitrate. The spatial patterns of δ 15 N corresponded to the urbanization level, and the nitrogen cycle was associated with the hydrological regime at the basin level. During the high flow season of summer, nonpoint sources from fertilizer/soils and atmospheric deposition constituted the highest proportion of the total nitrogen load. The point sources from sewage/manure, with high ammonium concentrations and high δ 15 N and δ 18 O contents in the form of nitrate, accounted for the largest inputs among all sources during the low flow season of winter. Hot spot areas with heavy point source pollution were identified, and the pollutant transport routes were revealed. Nitrification occurred widely during the warm seasons, with decreased δ 18 O values; whereas great potential for denitrification existed during the low flow seasons of autumn and spring. The study showed that point source reduction could have effects over the short-term; however, long-term efforts to substantially control agriculture nonpoint sources are essential to eutrophication alleviation for the receiving lake, which clarifies the relationship between point and nonpoint source control.

  18. Sum of the Parts.

    ERIC Educational Resources Information Center

    Science Activities, 1995

    1995-01-01

    Presents a Project WET water education activity. Students demonstrate how everyone contributes to the pollution of a river as it flows through a watershed and recognize that everyone's "contribution" can be reduced. Student distinguish between point- and nonpoint-source pollution. (LZ)

  19. Nonpoint Source Pollution: Darby Duck, the Aquatic Crusader

    EPA Pesticide Factsheets

    Understanding the characteristics of water, that precious resource we are trying to protect. And understanding how it interacts with other elements in the environment, some of which pollute it and cause problems for people and animals.

  20. [L-THIA-based management design for controlling urban non-point source pollution].

    PubMed

    Guo, Qing-Hai; Yang, Liu; Ke-Ming, Ma

    2007-11-01

    L-THIA Model was used to simulate the amounts of NPS pollutants in 2 catchments of Sanjiao watershed (Sj1, Sj2) in Hanyang district, and the total simulated amount of NPS loads in Sj1 and Sj2 were 1.82 x 10(4) kg, 1.38 x 10(5) kg, respectively. Based on the theory of resource-sink" and interaction of pattern with process, a series of BMPs, including green roof, grassland, porous pavement, infiltration trench, vegetative filter strip and wet pond, were optimized, and effects of BMPs were simulated along the surface runoff pathway. The results show that total pollutants outputs entering Sj1 and Sj2 account for 14.65% and 6.57%, respectively. Combining L-THIA model and BMPs in series is a proper measure for non-point source pollution control and urban development planning at watershed or region scale.

  1. Simulating the evolution of non-point source pollutants in a shallow water environment.

    PubMed

    Yan, Min; Kahawita, Rene

    2007-03-01

    Non-point source pollution originating from surface applied chemicals in either liquid or solid form as part of agricultural activities, appears in the surface runoff caused by rainfall. The infiltration and transport of these pollutants has a significant impact on subsurface and riverine water quality. The present paper describes the development of a unified 2-D mathematical model incorporating individual models for infiltration, adsorption, solubility rate, advection and diffusion, which significantly improve the current practice on mathematical modeling of pollutant evolution in shallow water. The governing equations have been solved numerically using cubic spline integration. Experiments were conducted at the Hydrodynamics Laboratory of the Ecole Polytechnique de Montreal to validate the mathematical model. Good correspondence between the computed results and experimental data has been obtained. The model may be used to predict the ultimate fate of surface applied chemicals by evaluating the proportions that are dissolved, infiltrated into the subsurface or are washed off.

  2. Simulation on Change Law of Runoff, Sediment and Non-point Source Nitrogen and Phosphorus Discharge under Different Land uses Based on SWAT Model: A Case Study of Er hai Lake Small Watershed

    NASA Astrophysics Data System (ADS)

    Tong, Xiao Xia; Lai Cui, Yuan; Chen, Man Yu; Hu, Bo; Xu, Wen Sheng

    2018-05-01

    The Er yuan watershed of Er hai district is chosen as the research area, the law of runoff and sediment and non-point source nitrogen and phosphorus discharges under different land uses during 2001 to 2014 are simulated based on SWAT model. Results of simulation indicate that the order of total runoff yield of different land use type from high to low is grassland, paddy fields, dry land. Specifically, the order of surface runoff yield from high to low is paddy fields, dry land, grassland, the order of lateral runoff yield from high to low is paddy fields, dry land, grassland, the order of groundwater runoff yield from high to low is grassland, paddy fields, dry land. The orders of sediment and nitrogen and phosphorus yield per unit area of different land use type are the same, grassland> paddy fields> dry land. It can be seen, nitrogen and phosphorus discharges from paddy fields and dry land are the main sources of agricultural non-point pollution of the irrigated area. Therefore, reasonable field management measures which can decrease the discharge of nitrogen and phosphorus of paddy fields and dry land are the key to agricultural non-point source pollution prevention and control.

  3. Evaluating barnyard Best Management Practices in Wisconsin using upstream-downstream monitoring

    USGS Publications Warehouse

    Stuntebeck, Todd D.

    1995-01-01

    The Nonpoint Source Water Pollution Abatement Program was created in 1978 by the Wisconsin Legislature. The goal of the program is to improve and protect the water quality of lakes, streams, wetlands, and ground water within selected priority watersheds by controlling sources of nonpoint pollution. For each selected watershed, the Wisconsin Department of Natural Resources drafts a management plan that guides the implementation of pollution-control strategies known as Best Management Practices (BMP's). This plan summarizes resource and land-use inventories, describes the results of pollution-source modeling, and suggests pollution reduction goals. The U.S. Geological Survey, through a cooperative effort with the Wisconsin Department of Natural Resources, is monitoring water-quality improvements that result from the implementation of BMP's. The data collected are then compared to the watershed plans to assess progress and determine whether goals are being realized. This fact sheet describes the data-collection efforts, preliminary results, and planned data-analysis techniques of monitoring projects for pre-BMP conditions at two barnyards, one each on Otter Creek and Halfway Prairie Creek.

  4. Setting priorities for research on pollution reduction functions of agricultural buffers

    Treesearch

    Michael G. Dosskey

    2002-01-01

    The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An...

  5. Establishing strategies for a transportation MS4 : [technology transfer summary].

    DOT National Transportation Integrated Search

    2015-05-01

    The National Pollutant Discharge Elimination System (NPDES) was established by the U.S. : Environmental Protection Agency as a means of addressing surface pollution from both known : (point) and non-specific (non-point) sources. The program impacts i...

  6. Seasonal variation of nitrogen-concentration in the surface water and its relationship with land use in a catchment of northern China.

    PubMed

    Chen, Li-ding; Peng, Hong-jia; Fu, Bo-Jie; Qiu, Jun; Zhang, Shu-rong

    2005-01-01

    Surface waters can be contaminated by human activities in two ways: (1) by point sources, such as sewage treatment discharge and storm-water runoff; and (2) by non-point sources, such as runoff from urban and agricultural areas. With point-source pollution effectively controlled, non-point source pollution has become the most important environmental concern in the world. The formation of non-point source pollution is related to both the sources such as soil nutrient, the amount of fertilizer and pesticide applied, the amount of refuse, and the spatial complex combination of land uses within a heterogeneous landscape. Land-use change, dominated by human activities, has a significant impact on water resources and quality. In this study, fifteen surface water monitoring points in the Yuqiao Reservoir Basin, Zunhua, Hebei Province, northern China, were chosen to study the seasonal variation of nitrogen concentration in the surface water. Water samples were collected in low-flow period (June), high-flow period (July) and mean-flow period (October) from 1999 to 2000. The results indicated that the seasonal variation of nitrogen concentration in the surface water among the fifteen monitoring points in the rainfall-rich year is more complex than that in the rainfall-deficit year. It was found that the land use, the characteristics of the surface river system, rainfall, and human activities play an important role in the seasonal variation of N-concentration in surface water.

  7. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area.

    PubMed

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2015-11-01

    Rural nonpoint source (NPS) pollution caused by agricultural wastes has become increasingly serious in the Three Gorges Reservoir Area (TGRA), significantly affecting the reservoir water quality. The grim situation of rural NPS pollution in the TGRA indicated that agrochemicals (chemical fertilizer and pesticide) were currently the highest contributor of rural NPS pollution (50.38%). The harmless disposal rates of livestock excrement, crop straws, rural domestic refuse, and sewage also cause severe water pollution. More importantly, the backward agricultural economy and the poor environmental awareness of farmers in the hinterland of the TGRA contribute to high levels of rural NPS pollution. Over the past decade, researchers and the local people have carried out various successful studies and practices to realize the effective control of rural NPS pollution by efficiently utilizing agricultural wastes in the TGRA, including agricultural waste biogas-oriented utilization, crop straw gasification, decentralized land treatment of livestock excrement technology, and crop straw modification. These technologies have greatly increased the renewable resource utilization of agricultural wastes and improved water quality and ecological environment in the TGRA.

  8. [Multiple time scales analysis of spatial differentiation characteristics of non-point source nitrogen loss within watershed].

    PubMed

    Liu, Mei-bing; Chen, Xing-wei; Chen, Ying

    2015-07-01

    Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively. Furthermore, multiple linear correlation analysis was conducted to analyze the contribution of natural environment and anthropogenic disturbance on nitrogen loss. The results showed that there were significant spatial differences of TN loss in Shanmei Reservoir watershed at different time scales, and the spatial differentiation degree of nitrogen loss was in the order of monthly average > yearly average > rainstorms flood process. TN loss load mainly came from upland Taoxi subbasin, which was identified as the critical source area. At different time scales, land use types (such as farmland and forest) were always the dominant factor affecting the spatial distribution of nitrogen loss, while the effect of precipitation and runoff on the nitrogen loss was only taken in no fertilization month and several processes of storm flood at no fertilization date. This was mainly due to the significant spatial variation of land use and fertilization, as well as the low spatial variability of precipitation and runoff.

  9. The voluntary-threat approach to control nonpoint source pollution under uncertainty.

    PubMed

    Li, Youping

    2013-11-15

    This paper extends the voluntary-threat approach of Segerson and Wu (2006) to the case that the ambient level of nonpoint source pollution is stochastic. It is shown that when the random component is bounded from the above, fine-tuning the cutoff value of the tax payments avoids the actual imposition of the tax while the threat of such payments retains necessary incentive for the polluters to engage in abatements at the optimal level. If the random component is not bounded, the imposition of the tax cannot be completely avoided but the probability can be reduced by setting a higher cutoff value. It is also noted that the regulator has additional flexibility in randomizing the tax imposition but the randomization process has to be credible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT.

    PubMed

    Wang, Yu; Bian, Jianmin; Zhao, Yongsheng; Tang, Jie; Jia, Zhuo

    2018-02-05

    The source area of Liao River is a typical cold region in northeastern China, which experiences serious problems with agricultural nonpoint source pollution (NPS), it is important to understand future climate change impacts on NPS in the watershed. This issue has been investigated by coupling semi distributed hydrological model (SWAT), statistical downscaling model (SDSM) and global circulation model (GCMs). The results show that annual average temperature would rise by 2.1 °C (1.3 °C) in the 2080 s under scenario RCP8.5 (RCP4.5), and annual precipitation would increase by 67 mm (33 mm). The change in winter temperature and precipitation is most significant with an increase by 0.23 °C/10a (0.17 °C/10a) and 1.94 mm/10a (2.78 mm/10a). The future streamflow, TN and TP loads would decrease by 19.05% (10.59%), 12.27% (8.81%) and 10.63% (6.11%), respectively. Monthly average streamflow, TN and TP loads would decrease from March to November, and increase from December to February. This is because the increased precipitation and temperature in winter, which made the spring snowpack melting earlier. These study indicate the trends of nonpoint source pollution during the snowmelt period under climate change conditions, accordingly adaptation measures will be necessary.

  11. BMP MODELING CONCEPTS AND SIMULATION

    EPA Science Inventory

    In order to minimize impacts of urban nonpoint source pollution and associated costs of control (storage and treatment) associated with wet-weather flows (WWFs), stormwater runoff volumes and pollutant loads must be reduced. A number of control strategies and so-called “best man...

  12. [Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].

    PubMed

    Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun

    2013-04-01

    The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.

  13. Comparison between snowmelt-runoff and rainfall-runoff nonpoint source pollution in a typical urban catchment in Beijing, China.

    PubMed

    Chen, Lei; Zhi, Xiaosha; Shen, Zhenyao; Dai, Ying; Aini, Guzhanuer

    2018-01-01

    As a climate-driven event, nonpoint source (NPS) pollution is caused by rainfall- or snowmelt-runoff processes; however, few studies have compared the characteristics and mechanisms of these two kinds of NPS processes. In this study, three factors relating to urban NPS, including surface dust, snowmelt, and rainfall-runoff processes, were analyzed comprehensively by both field sampling and laboratory experiments. The seasonal variation and leaching characteristics of pollutants in surface dust were explored, and the runoff quality of snowmelt NPS and rainfall NPS were compared. The results indicated that dusts are the main sources of urban NPS and more pollutants are deposited in dust samples during winter and spring. However, pollutants in surface dust showed a low leaching ratio, which indicated most NPS pollutants would be carried as particulate forms. Compared to surface layer, underlying snow contained higher chemical oxygen demand, total suspended solids (TSS), Cu, Fe, Mn, and Pb concentrations, while the event mean concentration of most pollutants in snowmelt tended to be higher in roads. Moreover, the TSS and heavy metal content of snowmelt NPS was always higher than those of rainfall NPS, which indicated the importance of controlling snowmelt pollution for effective water quality management.

  14. METHODS FOR OPTIMIZING URBAN WET-WEATHER CONTROL SYSTEM

    EPA Science Inventory

    To minimize impacts of urban nonpoint source pollution and associated costs of control (storage and treatment) associated with wet-weather flows (WWFs), stormwater runoff volumes and pollutant loads must be reduced. A number of control strategies, so-called “best management pract...

  15. Processes, Procedures, and Methods to Control Pollution Resulting from Silvicultural Activities.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This report presents brief documentation of silvicultural practices, both those now in use and those in stages of research and development. A majority of the text is concerned with the specific aspects of silvicultural activities which relate to nonpoint source pollution control methods. Analyzed are existing and near future pollution control…

  16. [Analysis on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed based on L-THIA model].

    PubMed

    Li, Kai; Zeng, Fan-Tang; Fang, Huai-Yang; Lin, Shu

    2013-11-01

    Based on the Long-term Hydrological Impact Assessment (L-THIA) model, the effect of land use and rainfall change on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed was analyzed. The parameters in L-THIA model were revised according to the data recorded in the scene of runoff plots, which were set up in the watershed. The results showed that the distribution of areas with high pollution load was mainly concentrated in agricultural land and urban land. Agricultural land was the biggest contributor to nitrogen and phosphorus load. From 1995 to 2010, the load of major pollutants, namely TN and TP, showed an obviously increasing trend with increase rates of 17.91% and 25.30%, respectively. With the urbanization in the watershed, urban land increased rapidly and its area proportion reached 43.94%. The contribution of urban land to nitrogen and phosphorus load was over 40% in 2010. This was the main reason why pollution load still increased obviously while the agricultural land decreased greatly in the past 15 years. The rainfall occurred in the watershed was mainly concentrated in the flood season, so the nitrogen and phosphorus load of the flood season was far higher than that of the non-flood season and the proportion accounting for the whole year was over 85%. Pearson regression analysis between pollution load and the frequency of different patterns of rainfall demonstrated that rainfall exceeding 20 mm in a day was the main rainfall type causing non-point source pollution.

  17. Export Mechanisms of Persistent Toxic Substances (PTSs) in Urban Land Uses during Rainfall-Runoff Events: Experimental and Modeling Studies

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Luo, X.; Lin, Z.

    2016-12-01

    The urban environment has a variety of Persistent Toxic Substances (PTS), such as Polycyclic Aromatic Hydrocarbons (PAHs) and mercury. Soil in pervious lands and dust deposited on impervious surfaces are two major sinks of PTSs in urbanized areas, which could contribute significant nonpoint source loadings of PTSs to adjacent waterbodies during rainfall-runoff events and therefore jeopardize aquatic ecosystems. However, PTSs have been much less understood regarding their export mechanisms in urban land uses, and efforts to model nonpoint source pollution processes of PTSs have been rare. We designed and performed in-lab rainfall-runoff simulation experiments to investigate transport of PAHs and mercury by runoff from urban soils. Organic petrology analysis (OPA) techniques were introduced to analyze the soil and sediment compositions. Our study revealed the limitation of the classic enrichment theory which attributes enrichment of pollutants in eroded sediment solely to the sediment's particle size distribution and adopts simple relationships between enrichment ratio and sediment flux. We found that carbonaceous materials (CMs) in soil are the direct and major sorbents for PAHs and mercury, and highly different in content, mobility and adsorption capacity for the PTSs. Anthropogenic CMs like black carbon components largely control the transport of soil PAHs, while humic substances have a dominant influence on the transport of soil mercury. A model was further developed to estimate the enrichment ratio of PAHs, which innovatively applies the fugacity concept.We also conducted field studies on export of PAHs by runoff from urban roads. A variable time-step model was developed to simulate the continuous cycles of PAH buildup and washoff on urban roads. The dependence of the pollution level on antecedent weather conditions was investigated and embodied in the model. The applicability of this approach and its value to environmental management was demonstrated by a case study in Beijing, China. Overall, our studies advanced the understanding of nonpoint source pollution of PTSs in the urban environment. The quantitative approaches developed can help improve existing nonpoint source pollution models. The study results also have important implications to watershed water quality management.

  18. Pollution loads in urban runoff and sanitary wastewater.

    PubMed

    Taebi, Amir; Droste, Ronald L

    2004-07-05

    While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha.year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control.

  19. Evaluating agricultural nonpoint-source pollution programs in two Lake Erie tributaries.

    PubMed

    Forster, D Lynn; Rausch, Jonathan N

    2002-01-01

    During the past three decades, numerous government programs have encouraged Lake Erie basin farmers to adopt practices that reduce water pollution. The first section of this paper summarizes these state and federal government agricultural pollution abatement programs in watersheds of two prominent Lake Erie tributaries, the Maumee River and Sandusky River. Expenditures are summarized for each program, total expenditures in each county are estimated, and cost effectiveness of program expenditures (i.e., cost per metric ton of soil saved) are analyzed. Farmers received nearly $143 million as incentive payments to implement agricultural nonpoint source pollution abatement programs in the Maumee and Sandusky River watersheds from 1987 to 1997. About 95% of these funds was from federal sources. On average, these payments totaled about $7000 per farm or about $30 per farm acre (annualized equivalent of $2 per acre) within the watersheds. Our analysis raises questions about how efficiently these incentive payments were allocated. The majority of Agricultural Conservation Program (ACP) funds appear to have been spent on less cost-effective practices. Also, geographic areas with relatively low (high) soil erosion rates received relatively large (small) funding.

  20. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    NASA Astrophysics Data System (ADS)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-03-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant (p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant (p < 0.05) pollutant loads were obtained under 1984 LULC condition. This reveals the clear effect of LULC changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution for future planning.

  1. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    NASA Astrophysics Data System (ADS)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-05-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant ( p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant ( p < 0.05) pollutant loads were obtained under 1984 LULC condition. This reveals the clear effect of LULC changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution for future planning.

  2. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  3. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin.

    PubMed

    Wu, Yiping; Liu, Shuguang

    2012-09-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (∼78%) and nutrients (∼30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  4. Area Source Emission Measurements Using EPA OTM 10

    EPA Science Inventory

    Measurement of air pollutant emissions from area and non-point sources is an emerging environmental concern. Due to the spatial extent and non-homogenous nature of these sources, assessment of fugitive emissions using point sampling techniques can be difficult. To help address th...

  5. 78 FR 77104 - Coastal Nonpoint Pollution Control Program: Intent To Find That Oregon Has Failed To Submit an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration ENVIRONMENTAL PROTECTION AGENCY Coastal Nonpoint Pollution Control Program: Intent To Find That Oregon Has Failed To Submit an Approvable Coastal Nonpoint Pollution Control Program AGENCY: National Oceanic and Atmospheric Administration...

  6. Monitoring coastal marine waters for spore-forming bacteria of faecal and soil origin to determine point from non-point source pollution.

    PubMed

    Fujioka, R S

    2001-01-01

    The US Environmental Protection Agency (USEPA) and the World Health Organization (WHO) have established recreational water quality standards limiting the concentrations of faecal indicator bacteria (faecal coliform, E. coli, enterococci) to ensure that these waters are safe for swimming. In the application of these hygienic water quality standards, it is assumed that there are no significant environmental sources of these faecal indicator bacteria which are unrelated to direct faecal contamination. However, we previously reported that these faecal indicator bacteria are able to grow in the soil environment of humid tropical island environments such as Hawaii and Guam and are transported at high concentrations into streams and storm drains by rain. Thus, streams and storm drains in Hawaii contain consistently high concentrations of faecal indicator bacteria which routinely exceed the EPA and WHO recreational water quality standards. Since, streams and storm drains eventually flow out to coastal marine waters, we hypothesize that all the coastal beaches which receive run-off from streams and storm drains will contain elevated concentrations of faecal indicator bacteria. To test this hypothesis, we monitored the coastal waters at four beaches known to receive water from stream or storm drains for salinity, turbidity, and used the two faecal indicator bacteria (E. coli, enterococci) to establish recreational water quality standards. To determine if these coastal waters are contaminated with non-point source pollution (streams) or with point source pollution (sewage effluent), these same water samples were also assayed for spore-forming bacteria of faecal origin (Cl. perfringens) and of soil origin (Bacillus species). Using this monitoring strategy it was possible to determine when coastal marine waters were contaminated with non-point source pollution and when coastal waters were contaminated with point source pollution. The results of this study are most likely applicable to all countries in the warm and humid region of the world.

  7. Land use change detection with LANDSAT-2 data for monitoring and predicting regional water quality degradation. [Arkansas

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Steele, K. (Principal Investigator); Waite, W.; Rice, R.; Shinn, M.; Dillard, T.; Petersen, C.

    1977-01-01

    The author has identified the following significant results. Comparison between LANDSAT 1 and 2 imagery of Arkansas provided evidence of significant land use changes during the 1972-75 time period. Analysis of Arkansas historical water quality information has shown conclusively that whereas point source pollution generally can be detected by use of water quality data collected by state and federal agencies, sampling methodologies for nonpoint source contamination attributable to surface runoff are totally inadequate. The expensive undertaking of monitoring all nonpoint sources for numerous watersheds can be lessened by implementing LANDSAT change detection analyses.

  8. NutrientNet: An Internet-Based Approach to Teaching Market-Based Policy for Environmental Management

    ERIC Educational Resources Information Center

    Nguyen, To N.; Woodward, Richard T.

    2009-01-01

    NutrientNet is an Internet-based environment in which a class can simulate a market-based approach for improving water quality. In NutrientNet, each student receives a role as either a point source or a nonpoint source polluter, and then the participants are allowed to trade water quality credits to cost-effectively reduce pollution in a…

  9. Applying the Manning equation to determine the critical distance in non-point source pollution using remotely sensed data and cartographic modelling

    NASA Astrophysics Data System (ADS)

    de Oliveira, Lília M.; Santos, Nádia A. P.; Maillard, Philippe

    2013-10-01

    Non-point source pollution (NPSP) is perhaps the leading cause of water quality problems and one of the most challenging environmental issues given the difficulty of modeling and controlling it. In this article, we applied the Manning equation, a hydraulic concept, to improve models of non-point source pollution and determine its influence as a function of slope - land cover roughness for runoff to reach the stream. In our study the equation is somewhat taken out of its usual context to be applies to the flow of an entire watershed. Here a digital elevation model (DEM) from the SRTM satellite was used to compute the slope and data from the RapidEye satellite constellation was used to produce a land cover map later transformed into a roughness surface. The methodology is applied to a 1433 km2 watershed in Southeast Brazil mostly covered by forest, pasture, urban and wetlands. The model was used to create slope buffer of varying width in which the proportions of land cover and roughness coefficient were obtained. Next we correlated these data, through regression, with four water quality parameters measured in situ: nitrate, phosphorous, faecal coliform and turbidity. We compare our results with the ones obtained by fixed buffer. It was found that slope buffer outperformed fixed buffer with higher coefficients of determination up to 15%.

  10. Differentiation of fecal Escherichia coli from poultry and free-living birds by (GTG)5-PCR genomic fingerprinting.

    PubMed

    Mohapatra, Bidyut R; Broersma, Klaas; Mazumder, Asit

    2008-04-01

    Determination of the non-point sources of fecal pollution is essential for the assessment of potential public health risk and development of appropriate management practices for prevention of further contamination. Repetitive extragenic palindromic-PCR coupled with (GTG)(5) primer [(GTG)(5)-PCR] was performed on 573 Escherichia coli isolates obtained from the feces of poultry (chicken, duck and turkey) and free-living (Canada goose, hawk, magpie, seagull and songbird) birds to evaluate the efficacy of (GTG)(5)-PCR genomic fingerprinting in the prediction of the correct source of fecal pollution. A discriminant analysis with the jack-knife algorithm of (GTG)(5)-PCR DNA fingerprints revealed that 95%, 94.1%, 93.2%, 84.6%, 79.7%, 76.7%, 75.3% and 70.7% of magpie, hawk, turkey, seagull, Canada goose, chicken, duck and songbird fecal E. coli isolates classified into the correct host source, respectively. The results of this study indicate that (GTG)(5)-PCR can be considered to be a complementary molecular tool for the rapid determination of E. coli isolates identity and tracking the non-point sources of fecal pollution.

  11. Factors affecting low summer dissolved oxygen concentrations in Mississippi Delta bayous

    USDA-ARS?s Scientific Manuscript database

    Streams in watersheds supporting intensive row-crop agriculture are vulnerable to ecological degradation due to non-point source pollutants such as nutrients. Low gradient streams such as bayous are especially susceptible to pollutants due to increased water residence time, and they often exhibit po...

  12. MANAGEMENT OF DIFFUSE POLLUTION IN AGRICULTURAL WATERSHEDS: LESSONS FROM THE MINNESOTA RIVER BASIN. (R825290)

    EPA Science Inventory

    Abstract

    The Minnesota River (Minnesota, USA) receives large non-point source pollutant loads. Complex interactions between agricultural, state agency, environmental groups, and issues of scale make watershed management difficult. Subdividing the basin's 12 major water...

  13. Chesapeake Bay Tributary Strategies

    EPA Pesticide Factsheets

    Chesapeake Bay Tributary Strategies were developed by the seven watershed jurisdictions and outlined the river basin-specific implementation activities to reduce nutrient and sediment pollutant loads from point and nonpoint sources.

  14. Impacts of urbanization on regional nonpoint source pollution: case study for Beijing, China.

    PubMed

    Zhi, Xiaosha; Chen, Lei; Shen, Zhenyao

    2018-04-01

    Due to limits on available data, the effects of urban sprawl on regional nonpoint source pollution (NPS) have not been investigated over long time periods. In this paper, the characteristics of urban sprawl from 1999 to 2014 in Beijing were explored by analyzing historical land-use data. The Event Mean Concentration data have been collected from all available references, which were used to estimate the variation in urban NPSs. Moreover, the impacts of variation in urban sprawl on regional NPSs were qualified. The results indicated that the urbanization process showed different influences on pollutants, while COD and TN were identified as key NPS pollutants. Residential areas contributed more NPS pollutants than did roads, which played a tremendous role in the control of urban NPS. The results also suggested in part that the impact of urban sprawl on the variation of COD decreased while TN increased in Beijing during the study period. These results would provide insight into the impacts of urban sprawl on NPS variation over a long period, as well as the reference for reasonable urban planning directives.

  15. The potential for effluent trading in the energy industries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J. A.; Environmental Assessment

    1998-01-01

    In January 1996, the US Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades: point source/point source, point source/nonpoint source, pretreatment, intraplant and nonpoint source/nonpoint source. This paper evaluates the feasibility of implementing these types of effluent trading for facilities in the oil and gas, electric power and coal industries. This paper finds that the potential for effluent trading in these industries is limited because trades would generally need to involve toxic pollutants, which can only be traded undermore » a narrow range of circumstances. However, good potential exists for other types of water-related trades that do not directly involve effluents (e.g. wetlands mitigation banking and voluntary environmental projects). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.« less

  16. A Summary of Best Management Practices for Nonpoint Source Pollution

    DTIC Science & Technology

    1992-08-01

    200-1, Environmental Protection and Enhancement, requies that NPS pollution be minimized and that Army installations and major commands comply with...Federal and state regula- tions. However, environmental managers and engineers have no concise summary of alterna- tives available for NPS pollution... environmental managers and engineers have no concise summary of alternatives available for NPS pollution control. This report presents a range of

  17. Fabrication and In Situ Testing of Scalable Nitrate-Selective Electrodes for Distributed Observations

    NASA Astrophysics Data System (ADS)

    Harmon, T. C.; Rat'ko, A.; Dietrich, H.; Park, Y.; Wijsboom, Y. H.; Bendikov, M.

    2008-12-01

    Inorganic nitrogen (nitrate (NO3-) and ammonium (NH+)) from chemical fertilizer and livestock waste is a major source of pollution in groundwater, surface water and the air. While some sources of these chemicals, such as waste lagoons, are well-defined, their application as fertilizer has the potential to create distributed or non-point source pollution problems. Scalable nitrate sensors (small and inexpensive) would enable us to better assess non-point source pollution processes in agronomic soils, groundwater and rivers subject to non-point source inputs. This work describes the fabrication and testing of inexpensive PVC-membrane- based ion selective electrodes (ISEs) for monitoring nitrate levels in soil water environments. ISE-based sensors have the advantages of being easy to fabricate and use, but suffer several shortcomings, including limited sensitivity, poor precision, and calibration drift. However, modern materials have begun to yield more robust ISE types in laboratory settings. This work emphasizes the in situ behavior of commercial and fabricated sensors in soils subject to irrigation with dairy manure water. Results are presented in the context of deployment techniques (in situ versus soil lysimeters), temperature compensation, and uncertainty analysis. Observed temporal responses of the nitrate sensors exhibited diurnal cycling with elevated nitrate levels at night and depressed levels during the day. Conventional samples collected via lysimeters validated this response. It is concluded that while modern ISEs are not yet ready for long-term, unattended deployment, short-term installations (on the order of 2 to 4 days) are viable and may provide valuable insights into nitrogen dynamics in complex soil systems.

  18. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China.

    PubMed

    Zhang, Bao-Lei; Cui, Bo-Hao; Zhang, Shu-Min; Wu, Quan-Yuan; Yao, Lei

    2018-05-03

    Nitrogen (N) and phosphorus (P) from non-point source (NPS) pollution in Nansi Lake Basin greatly influenced the water quality of Nansi Lake, which is the determinant factor for the success of East Route of South-North Water Transfer Project in China. This research improved Johnes export coefficient model (ECM) by developing a method to determine the export coefficients of different land use types based on the hydrological and water quality data. Taking NPS total nitrogen (TN) and total phosphorus (TP) as the study objects, this study estimated the contributions of different pollution sources and analyzed their spatial distributions based on the improved ECM. The results underlined that the method for obtaining output coefficients of land use types using hydrology and water quality data is feasible and accurate, and is suitable for the study of NPS pollution at large-scale basins. The average output structure of NPS TN from land use, rural breeding and rural life is 33.6, 25.9, and 40.5%, and the NPS TP is 31.6, 43.7, and 24.7%, respectively. Especially, dry land was the main land use source for both NPS TN and TP pollution, with the contributed proportions of 81.3 and 81.8% respectively. The counties of Zaozhuang, Tengzhou, Caoxian, Yuncheng, and Shanxian had higher contribution rates and the counties of Dingtao, Juancheng, and Caoxian had the higher load intensities for both NPS TN and TP pollution. The results of this study allowed for an improvement in the understanding of the pollution source contribution and enabled researchers and planners to focus on the most important sources and regions of NPS pollution.

  19. The Potential Importance of Conservation, Restoration, and Altered Management Practices for Water Quality in the Wabash River Watershed

    EPA Science Inventory

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants discharge into receiving water bodies and enhance local and ...

  20. 75 FR 27552 - Guidance for Federal Land Management in the Chesapeake Bay Watershed

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... effective tools and practices available to reduce water pollution from a variety of nonpoint sources... describe ``proven cost-effective tools and practices that reduce water pollution'' that are appropriate to...: Katie Flahive, USEPA, Office of Water, Office of Wetlands, Oceans and Watersheds, 1200 Pennsylvania Ave...

  1. An improved export coefficient model to estimate non-point source phosphorus pollution risks under complex precipitation and terrain conditions.

    PubMed

    Cheng, Xian; Chen, Liding; Sun, Ranhao; Jing, Yongcai

    2018-05-15

    To control non-point source (NPS) pollution, it is important to estimate NPS pollution exports and identify sources of pollution. Precipitation and terrain have large impacts on the export and transport of NPS pollutants. We established an improved export coefficient model (IECM) to estimate the amount of agricultural and rural NPS total phosphorus (TP) exported from the Luanhe River Basin (LRB) in northern China. The TP concentrations of rivers from 35 selected catchments in the LRB were used to test the model's explanation capacity and accuracy. The simulation results showed that, in 2013, the average TP export was 57.20 t at the catchment scale. The mean TP export intensity in the LRB was 289.40 kg/km 2 , which was much higher than those of other basins in China. In the LRB topographic regions, the TP export intensity was the highest in the south Yanshan Mountains and was followed by the plain area, the north Yanshan Mountains, and the Bashang Plateau. Among the three pollution categories, the contribution ratios to TP export were, from high to low, the rural population (59.44%), livestock husbandry (22.24%), and land-use types (18.32%). Among all ten pollution sources, the contribution ratios from the rural population (59.44%), pigs (14.40%), and arable land (10.52%) ranked as the top three sources. This study provides information that decision makers and planners can use to develop sustainable measures for the prevention and control of NPS pollution in semi-arid regions.

  2. Nonpoint and Point Sources of Nitrogen in Major Watersheds of the United States

    USGS Publications Warehouse

    Puckett, Larry J.

    1994-01-01

    Estimates of nonpoint and point sources of nitrogen were made for 107 watersheds located in the U.S. Geological Survey's National Water-Quality Assessment Program study units throughout the conterminous United States. The proportions of nitrogen originating from fertilizer, manure, atmospheric deposition, sewage, and industrial sources were found to vary with climate, hydrologic conditions, land use, population, and physiography. Fertilizer sources of nitrogen are proportionally greater in agricultural areas of the West and the Midwest than in other parts of the Nation. Animal manure contributes large proportions of nitrogen in the South and parts of the Northeast. Atmospheric deposition of nitrogen is generally greatest in areas of greatest precipitation, such as the Northeast. Point sources (sewage and industrial) generally are predominant in watersheds near cities, where they may account for large proportions of the nitrogen in streams. The transport of nitrogen in streams increases as amounts of precipitation and runoff increase and is greatest in the Northeastern United States. Because no single nonpoint nitrogen source is dominant everywhere, approaches to control nitrogen must vary throughout the Nation. Watershed-based approaches to understanding nonpoint and point sources of contamination, as used by the National Water-Quality Assessment Program, will aid water-quality and environmental managers to devise methods to reduce nitrogen pollution.

  3. User's Guide for the Agricultural Non-Point Source (AGNPS) Pollution Model Data Generator

    USGS Publications Warehouse

    Finn, Michael P.; Scheidt, Douglas J.; Jaromack, Gregory M.

    2003-01-01

    BACKGROUND Throughout this user guide, we refer to datasets that we used in conjunction with developing of this software for supporting cartographic research and producing the datasets to conduct research. However, this software can be used with these datasets or with more 'generic' versions of data of the appropriate type. For example, throughout the guide, we refer to national land cover data (NLCD) and digital elevation model (DEM) data from the U.S. Geological Survey (USGS) at a 30-m resolution, but any digital terrain model or land cover data at any appropriate resolution will produce results. Another key point to keep in mind is to use a consistent data resolution for all the datasets per model run. The U.S. Department of Agriculture (USDA) developed the Agricultural Nonpoint Source (AGNPS) pollution model of watershed hydrology in response to the complex problem of managing nonpoint sources of pollution. AGNPS simulates the behavior of runoff, sediment, and nutrient transport from watersheds that have agriculture as their prime use. The model operates on a cell basis and is a distributed parameter, event-based model. The model requires 22 input parameters. Output parameters are grouped primarily by hydrology, sediment, and chemical output (Young and others, 1995.) Elevation, land cover, and soil are the base data from which to extract the 22 input parameters required by the AGNPS. For automatic parameter extraction, follow the general process described in this guide of extraction from the geospatial data through the AGNPS Data Generator to generate input parameters required by the pollution model (Finn and others, 2002.)

  4. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  5. Impacts of drought on the quality of surface water of the basin

    NASA Astrophysics Data System (ADS)

    Huang, B. B.; Yan, D. H.; Wang, H.; Cheng, B. F.; Cui, X. H.

    2013-11-01

    Under the background of climate change and human's activities, there has been presenting an increase both in the frequency of droughts and the range of their impacts. Droughts may give rise to a series of resources, environmental and ecological effects, i.e. water shortage, water quality deterioration as well as the decrease in the diversity of aquatic organisms. This paper, above all, identifies the impact mechanism of drought on the surface water quality of the basin, and then systematically studies the laws of generation, transfer, transformation and degradation of pollutants during the drought, finding out that the alternating droughts and floods stage is the critical period during which the surface water quality is affected. Secondly, through employing indoor orthogonality experiments, serving drought degree, rainfall intensity and rainfall duration as the main elements and designing various scenario models, the study inspects the effects of various factors on the nitrogen loss in soil as well as the loss of non-point sources pollution and the leaching rate of nitrogen under the different alternating scenarios of drought and flood. It comes to the conclusion that the various factors and the loss of non-point source pollution are positively correlated, and under the alternating scenarios of drought and flood, there is an exacerbation in the loss of ammonium nitrogen and nitrate nitrogen in soil, which generates the transfer and transformation mechanisms of non-point source pollution from a micro level. Finally, by employing the data of Nenjiang river basin, the paper assesses the impacts of drought on the surface water quality from a macro level.

  6. Spatial and temporal variations of water quality in Cao-E River of eastern China.

    PubMed

    Chen, Ding-jiang; Lu, Jun; Yuan, Shao-feng; Jin, Shu-quan; Shen, Ye-na

    2006-01-01

    Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of China. Cao-E River system has been polluted and the water quality of some reaches are inferior to Grade V according to National Surface Water Quality Standard of China (GB2002). However, mainly polluted indices of each tributary and mainstream are different. Total nitrogen (TN) and total phosphorus (TP) in the water are the main polluted indices for mainstream that varies from 1.52 to 45.85 mg/L and 0.02 to 4.02 mg/L, respectively. TN is the main polluted indices for Sub-watershed I, II, IV and V (0.76 to 18.27 mg/L). BOD5 (0.36 to 289.5 mg/L), CODMn (0.47 to 78.86 mg/L), TN (0.74 to 31.09 mg/L) and TP (0 to 3.75 mg/L) are the main polluted indices for Sub-watershed III. There are tow pollution types along the river including nonpoint source pollution and point source pollution types. Remarkably temporal variations with a few spatial variations occur in nonpoint pollution type reaches (including mainstream, Sub-watershed I and II) that mainly drained by arable field and/or dispersive rural dwelling district, and the maximum pollutant concentration appears in flooding seasons. It implied that the runoff increases the pollutant concentration of the water in the nonpoint pollution type reaches. On the other hand, remarkably spatial variations occur in the point pollution type reaches (include Sub-watershed III, IV and V) and the maximum pollutant concentration appears in urban reaches. The runoff always decreases the pollutant concentration of the river water in the seriously polluted reaches that drained by industrial point sewage. But for the point pollution reaches resulted from centralized town domestic sewage pipeline and from frequent shipping and digging sands, rainfall always increased the concentration of pollutant (TN) in the river water too. Pollution controls were respectively suggested for these tow types according to different pollution causes.

  7. Revisiting forest road retirement

    Treesearch

    Randy Kolka; Mathew Smidt

    2001-01-01

    Determining the sources of nonpoint source pollution in a watershed is difficult, although the largest source of sediment in forested systems is from skld trails, haul roads, and landings associated with forest harvest- ing (Ketcheson et al., 1999; Swft, 1988) The transport of sediment to streams and subsequent sedimentation leads to the loss of...

  8. THE ASSOCIATION OF LAND USE/LAND COVER AND NUTRIENT LEVELS IN MARYLAND STREAMS

    EPA Science Inventory

    Anthropogenic nonpoint sources of nutrients are known to cause accelerated eutrophication of estuaries. The Chesapeake Bay is one of the world's largest estuaries exhibiting the eutrophication problem caused by pollution from various land use activities. The sources contributing ...

  9. WATERSHED CLASSIFICATION AS A TOOL FOR MONITORING, ASSESSMENT, AND MANAGEMENT

    EPA Science Inventory

    Most sources of stream impairment are related to nonpoint source pollution. To more efficiently deal with TMDL-related issues, an integrated approach to small watershed assessment, diagnosis, and restoration planning is needed that is based on differences in sensitivity and prob...

  10. Mapping the scientific research on non-point source pollution: a bibliometric analysis.

    PubMed

    Yang, Beibei; Huang, Kai; Sun, Dezhi; Zhang, Yue

    2017-02-01

    A bibliometric analysis was conducted to examine the progress and future research trends of non-point source (NPS) pollution during the years 1991-2015 based on the Science Citation Index Expanded (SCI-Expanded) of Web of Science (WoS). The publications referencing NPS pollution were analyzed including the following aspects: document type, publication language, publication output and characteristics, subject category, source journal, distribution of country and institution, author keywords, etc. The results indicate that the study of NPS pollution demonstrated a sharply increasing trend since 1991. Article and English were the most commonly used document type and language. Environmental sciences and ecology, water resources, and engineering were the top three subject categories. Water science and technology ranked first in distribution of journal, followed by Science of the total environment and Environmental Monitoring and Assessment. The USA took a leading position in both quantity and quality, playing an important role in the research field of NPS pollution, followed by the UK and China. The most productive institution was the Chinese Academy of Sciences (Chinese Acad Sci), followed by Beijing Normal University and US Department of Agriculture's Agricultural Research Service (USDA ARS). The analysis of author keywords indicates that the major hotspots of NPS pollution from 1991 to 2015 contained "water," "model," "agriculture," "nitrogen," "phosphorus," etc. The results provide a comprehensive understanding of NPS pollution research and help readers to establish the future research directions.

  11. Water quality functions of riparian forest buffers in Chesapeake bay watersheds

    USGS Publications Warehouse

    Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; Staver, K.W.; Lucas, W.; Todd, A.H.

    1997-01-01

    Maryland, Virginia, and Pennsylvania, USA, have agreed to reduce nutrient loadings to Chesapeake Bay by 40% by the year 2000. This requires control of nonpoint sources of nutrients much of which comes from agriculture. Riparian forest buffer systems (RFBS) provide effective control of nonpoint source (NPS) pollution in some types of agricultural watersheds. Control of NPS pollution is dependent on the type of pollutant and the hydrologic connection between pollution sources, the RFBS, and the stream. Water quality improvements are most likely in areas of where most of the excess precipitation moves across, in, or near the root zone of the RFBS. In areas such as the Inner Coastal Plain and Piedmont watersheds with thin soils RFBS should retain 50%-90% of the total loading of nitrate in shallow groundwater sediment in surface runoff and total N in born surface runoff and groundwater. Retention of phosphorus is generally much less. In regions with deeper soils and/or greater regional groundwater recharge (such as parts of the Piedmont and the Valley and Ridge), RFBS water quality improvements are probably much less. The expected levels of pollutant control by RFBS are identified for each of nine physiographic provinces of the Chesapeake Bay Watershed. Issues related to of establishment sustainability, and management are also discussed.

  12. United States‐Mexican border watershed assessment: Modeling nonpoint source pollution in Ambos Nogales

    USGS Publications Warehouse

    Norman, Laura M.

    2007-01-01

    Ecological considerations need to be interwoven with economic policy and planning along the United States‐Mexican border. Non‐point source pollution can have significant implications for the availability of potable water and the continued health of borderland ecosystems in arid lands. However, environmental assessments in this region present a host of unique issues and problems. A common obstacle to the solution of these problems is the integration of data with different resolutions, naming conventions, and quality to create a consistent database across the binational study area. This report presents a simple modeling approach to predict nonpoint source pollution that can be used for border watersheds. The modeling approach links a hillslopescale erosion‐prediction model and a spatially derived sediment‐delivery model within a geographic information system to estimate erosion, sediment yield, and sediment deposition across the Ambos Nogales watershed in Sonora, Mexico, and Arizona. This paper discusses the procedures used for creating a watershed database to apply the models and presents an example of the modeling approach applied to a conservation‐planning problem.

  13. 7 CFR 634.12 - Eligible project areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... agricultural portion of a 208 water quality management plan, or revised portions thereof, and have identified agricultural nonpoint source water quality problems are eligible for authorization under RCWP. Those critical areas or sources of pollutants significantly contributing to the water quality problems are eligible for...

  14. UTILIZATION OF LANDSCAPE INDICATORS TO MODEL WATER QUALITY

    EPA Science Inventory



    Many water-bodies within the United States are contaminated by, non-point source (NFS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic processes. One such NPS pollu...

  15. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources.

    PubMed

    Yang, Xiaoying; Tan, Lit; He, Ruimin; Fu, Guangtao; Ye, Jinyin; Liu, Qun; Wang, Guoqing

    2017-12-01

    It is increasingly recognized that climate change could impose both direct and indirect impacts on the quality of the water environment. Previous studies have mostly concentrated on evaluating the impacts of climate change on non-point source pollution in agricultural watersheds. Few studies have assessed the impacts of climate change on the water quality of river basins with complex point and non-point pollution sources. In view of the gap, this paper aims to establish a framework for stochastic assessment of the sensitivity of water quality to future climate change in a river basin with complex pollution sources. A sub-daily soil and water assessment tool (SWAT) model was developed to simulate the discharge, transport, and transformation of nitrogen from multiple point and non-point pollution sources in the upper Huai River basin of China. A weather generator was used to produce 50 years of synthetic daily weather data series for all 25 combinations of precipitation (changes by - 10, 0, 10, 20, and 30%) and temperature change (increases by 0, 1, 2, 3, and 4 °C) scenarios. The generated daily rainfall series was disaggregated into the hourly scale and then used to drive the sub-daily SWAT model to simulate the nitrogen cycle under different climate change scenarios. Our results in the study region have indicated that (1) both total nitrogen (TN) loads and concentrations are insensitive to temperature change; (2) TN loads are highly sensitive to precipitation change, while TN concentrations are moderately sensitive; (3) the impacts of climate change on TN concentrations are more spatiotemporally variable than its impacts on TN loads; and (4) wide distributions of TN loads and TN concentrations under individual climate change scenario illustrate the important role of climatic variability in affecting water quality conditions. In summary, the large variability in SWAT simulation results within and between each climate change scenario highlights the uncertainty of the impacts of climate change and the need to incorporate extreme conditions in managing water environment and developing climate change adaptation and mitigation strategies.

  16. Differentiating impacts of land use changes from pasture management in a CEAP watershed using the SWAT model

    USDA-ARS?s Scientific Manuscript database

    Due to intensive farm practices, nonpoint-source (NPS) pollution has become one of the most challenging environmental problems in agricultural and mixed land use watersheds. Usually, various conservation practices are implemented in the watershed to control the NPS pollution problem. However, land u...

  17. Total Nitrogen Sources of the Three Gorges Reservoir — A Spatio-Temporal Approach

    PubMed Central

    Ren, Chunping; Wang, Lijing; Zheng, Binghui; Holbach, Andreas

    2015-01-01

    Understanding the spatial and temporal variation of nutrient concentrations, loads, and their distribution from upstream tributaries is important for the management of large lakes and reservoirs. The Three Gorges Dam was built on the Yangtze River in China, the world’s third longest river, and impounded the famous Three Gorges Reservoir (TGR). In this study, we analyzed total nitrogen (TN) concentrations and inflow data from 2003 till 2010 for the main upstream tributaries of the TGR that contribute about 82% of the TGR’s total inflow. We used time series analysis for seasonal decomposition of TN concentrations and used non-parametric statistical tests (Kruskal-Walli H, Mann-Whitney U) as well as base flow segmentation to analyze significant spatial and temporal patterns of TN pollution input into the TGR. Our results show that TN concentrations had significant spatial heterogeneity across the study area (Tuo River> Yangtze River> Wu River> Min River> Jialing River>Jinsha River). Furthermore, we derived apparent seasonal changes in three out of five upstream tributaries of the TGR rivers (Kruskal-Walli H ρ = 0.009, 0.030 and 0.029 for Tuo River, Jinsha River and Min River in sequence). TN pollution from non-point sources in the upstream tributaries accounted for 68.9% of the total TN input into the TGR. Non-point source pollution of TN revealed increasing trends for 4 out of five upstream tributaries of the TGR. Land use/cover and soil type were identified as the dominant driving factors for the spatial distribution of TN. Intensifying agriculture and increasing urbanization in the upstream catchments of the TGR were the main driving factors for non-point source pollution of TN increase from 2003 till 2010. Land use and land cover management as well as chemical fertilizer use restriction were needed to overcome the threats of increasing TN pollution. PMID:26510158

  18. Constructed wetlands for nonpoint source pollution control.

    DOT National Transportation Integrated Search

    1998-01-01

    Wetland mitigation and stormwater management provisions in the 1987 Clean Water Act (CWA) significantly impact transportation agencies. CWA Section 404 stipulates that when highway construction results in the displacement of natural wetlands, the hig...

  19. Urban Runoff: National Management Measures

    EPA Pesticide Factsheets

    This helps citizens and municipalities in urban areas protect bodies of water from polluted runoff . These scientifically sound techniques are the best practices known today. The guidance helps states to implement their nonpoint source control program.

  20. Simulation of agricultural non-point source pollution in Xichuan by using SWAT model

    NASA Astrophysics Data System (ADS)

    Xing, Linan; Zuo, Jiane; Liu, Fenglin; Zhang, Xiaohui; Cao, Qiguang

    2018-02-01

    This paper evaluated the applicability of using SWAT to access agricultural non-point source pollution in Xichuan area. In order to build the model, DEM, soil sort and land use map, climate monitoring data were collected as basic database. The SWAT model was calibrated and validated for the SWAT was carried out using streamflow, suspended solids, total phosphorus and total nitrogen records from 2009 to 2011. Errors, coefficient of determination and Nash-Sutcliffe coefficient were considered to evaluate the applicability. The coefficient of determination were 0.96, 0.66, 0.55 and 0.66 for streamflow, SS, TN, and TP, respectively. Nash-Sutcliffe coefficient were 0.93, 0.5, 0.52 and 0.63, respectively. The results all meet the requirements. It suggested that the SWAT model can simulate the study area.

  1. GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa

    USGS Publications Warehouse

    Yang, X.; Jin, W.

    2010-01-01

    Nonpoint source pollution is the leading cause of the U.S.'s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution. ?? 2010 Elsevier Ltd.

  2. An auto-adaptive optimization approach for targeting nonpoint source pollution control practices.

    PubMed

    Chen, Lei; Wei, Guoyuan; Shen, Zhenyao

    2015-10-21

    To solve computationally intensive and technically complex control of nonpoint source pollution, the traditional genetic algorithm was modified into an auto-adaptive pattern, and a new framework was proposed by integrating this new algorithm with a watershed model and an economic module. Although conceptually simple and comprehensive, the proposed algorithm would search automatically for those Pareto-optimality solutions without a complex calibration of optimization parameters. The model was applied in a case study in a typical watershed of the Three Gorges Reservoir area, China. The results indicated that the evolutionary process of optimization was improved due to the incorporation of auto-adaptive parameters. In addition, the proposed algorithm outperformed the state-of-the-art existing algorithms in terms of convergence ability and computational efficiency. At the same cost level, solutions with greater pollutant reductions could be identified. From a scientific viewpoint, the proposed algorithm could be extended to other watersheds to provide cost-effective configurations of BMPs.

  3. Assessment of the relationship between rural non-point source pollution and economic development in the Three Gorges Reservoir Area.

    PubMed

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2016-04-01

    This study investigates the relationship between rural non-point source (NPS) pollution and economic development in the Three Gorges Reservoir Area (TGRA) by using the Environmental Kuznets Curve (EKC) hypothesis for the first time. Five types of pollution indicators, namely, fertilizer input density (FD), pesticide input density (PD), agricultural film input density (AD), grain residues impact (GI), and livestock manure impact (MI), were selected as rural NPS pollutant variables. Rural net income per capita was used as the indicator of economic development. Pollution load was generated by agricultural inputs (consumption of fertilizer, pesticide, and agricultural film) and economic growth with invert U-shaped features. The predicted turning points for FD, PD, and AD were at rural net income per capita levels of 6167.64, 6205.02, and 4955.29 CNY, respectively, which were all surpassed. However, the features between agricultural waste outputs (grain residues and livestock manure) and economic growth were inconsistent with the EKC hypothesis, which reflected the current trends of agricultural economic structure in the TGRA. Given that several other factors aside from economic development level could influence the pollutant generation in rural NPS, a further examination with long-run data support should be performed to understand the relationship between rural NPS pollution and income level.

  4. Spatial distribution and output characteristics of nonpoint source pollution in the Dongjiang River basin in south China

    NASA Astrophysics Data System (ADS)

    Rong, Q. Q.; Su, M. R.; Yang, Z. F.; Cai, Y. P.; Yue, W. C.; Dang, Z.

    2018-02-01

    In this research, the Dongjiang River basin was taken as the study area to analyze the spatial distribution and output characteristics of nonpoint source pollution, based on the export coefficient model. The results showed that the annual total nitrogen and phosphorus (i.e. TN and TP) loads from the Dongjiang River basin were 67916114.6 and 7215279.707 kg, respectively. Residents, forestland and pig were the main contributors for the TN load in the Dongjiang River basin, while residents, forestland and rainfed croplands were the three largest contributors for the TP load. The NPS pollution had a significant spatial variation in this area. The pollution loads overall decreased from the northeast to the southwest part of the basin. Also, the pollution loads from the gentle slope area were larger than those from steep slope areas. Among the ten tributary watersheds in the Dongjiang River basin, the TN and TP loads from the Hanxi River watershed were the largest. On the contrary, the Gongzhuang River watershed contributed least to the total pollution loads of the Dongjiang River basin. For the average pollution load intensities, Hanxi River watershed was still the largest. However, the smallest average TN and TP load intensities were in the Xinfeng River watershed.

  5. Analysis of the environmental behavior of farmers for non-point source pollution control and management in a water source protection area in China.

    PubMed

    Wang, Yandong; Yang, Jun; Liang, Jiping; Qiang, Yanfang; Fang, Shanqi; Gao, Minxue; Fan, Xiaoyu; Yang, Gaihe; Zhang, Baowen; Feng, Yongzhong

    2018-08-15

    The environmental behavior of farmers plays an important role in exploring the causes of non-point source pollution and taking scientific control and management measures. Based on the theory of planned behavior (TPB), the present study investigated the environmental behavior of farmers in the Water Source Area of the Middle Route of the South-to-North Water Diversion Project in China. Results showed that TPB could explain farmers' environmental behavior (SMC=0.26) and intention (SMC=0.36) well. Furthermore, the farmers' attitude towards behavior (AB), subjective norm (SN), and perceived behavioral control (PBC) positively and significantly influenced their environmental intention; their environmental intention further impacted their behavior. SN was proved to be the main key factor indirectly influencing the farmers' environmental behavior, while PBC had no significant and direct effect. Moreover, environmental knowledge following as a moderator, gender and age was used as control variables to conduct the environmental knowledge on TPB construct moderated mediation analysis. It demonstrated that gender had a significant controlling effect on environmental behavior; that is, males engage in more environmentally friendly behaviors. However, age showed a significant negative controlling effect on pro-environmental intention and an opposite effect on pro-environmental behavior. In addition, environmental knowledge could negatively moderate the relationship between PBC and environmental intention. PBC had a greater impact on the environmental intention of farmers with poor environmental knowledge, compared to those with plenty environmental knowledge. Altogether, the present study could provide a theoretical basis for non-point source pollution control and management. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Presence of Pathogens and Indicator Microbes at a Non-Point Source Subtropical Recreational Marine Beach ▿ †

    PubMed Central

    Abdelzaher, Amir M.; Wright, Mary E.; Ortega, Cristina; Solo-Gabriele, Helena M.; Miller, Gary; Elmir, Samir; Newman, Xihui; Shih, Peter; Bonilla, J. Alfredo; Bonilla, Tonya D.; Palmer, Carol J.; Scott, Troy; Lukasik, Jerzy; Harwood, Valerie J.; McQuaig, Shannon; Sinigalliano, Chris; Gidley, Maribeth; Plano, Lisa R. W.; Zhu, Xiaofang; Wang, John D.; Fleming, Lora E.

    2010-01-01

    Swimming in ocean water, including ocean water at beaches not impacted by known point sources of pollution, is an increasing health concern. This study was an initial evaluation of the presence of indicator microbes and pathogens and the association among the indicator microbes, pathogens, and environmental conditions at a subtropical, recreational marine beach in south Florida impacted by non-point sources of pollution. Twelve water and eight sand samples were collected during four sampling events at high or low tide under elevated or reduced solar insolation conditions. The analyses performed included analyses of fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli, enterococci, and Clostridium perfringens), human-associated microbial source tracking (MST) markers (human polyomaviruses [HPyVs] and Enterococcus faecium esp gene), and pathogens (Vibrio vulnificus, Staphylococcus aureus, enterovirus, norovirus, hepatitis A virus, Cryptosporidium spp., and Giardia spp.). The enterococcus concentrations in water and sand determined by quantitative PCR were greater than the concentrations determined by membrane filtration measurement. The FIB concentrations in water were below the recreational water quality standards for three of the four sampling events, when pathogens and MST markers were also generally undetectable. The FIB levels exceeded regulatory guidelines during one event, and this was accompanied by detection of HPyVs and pathogens, including detection of the autochthonous bacterium V. vulnificus in sand and water, detection of the allochthonous protozoans Giardia spp. in water, and detection of Cryptosporidium spp. in sand samples. The elevated microbial levels were detected at high tide and under low-solar-insolation conditions. Additional sampling should be conducted to further explore the relationships between tidal and solar insolation conditions and between indicator microbes and pathogens in subtropical recreational marine waters impacted by non-point source pollution. PMID:19966020

  7. [Research on land use structure optimization based on nonpoint source dissolved nitrogen load estimation in Shuaishui watershed].

    PubMed

    Lu, Yu-Chao; Bi, Meng-Fei; Li, Ze-Li; Sha, Jian; Wang, Yu-Qiu; Qian, Li-Ping

    2014-06-01

    Regional Nutrient Management (ReNuMa) was applied to estimate dissolved nitrogen (DN) load and perform source apportionment in Shuaishui watershed during 2000-2010. Satisfactory performance of ReNuMa was revealed by the E(ns) and R2 of greater than 0.9 in calibrating and validating streamflow and DN. The average nonpoint DN load in this watershed was 1.11 x 10(3) t x a(-1), with the load intensity of (0.75 +/- 0.22) t x km(-2). Among all the land uses, paddy field had the largest DN load intensity [28.60 kg x (hm2 x a)(-1)], while forest had the least [2.71 kg x (hm2 x a)(-1)]. Agricultural land (including paddy, grain, cash crop, tea plant and orchard) contributed most to DN load in Shuaishui watershed, indicating that the human dominated agricultural activities was the major contributor of nonpoint source pollution. Land use structure optimization for Shuaishui watershed in 2015 was conducted under the rule of reducing pollutants loads and maximizing the agricultural output value. The results demonstrated that agricultural monetary growth was accompanied with the increasing DN load at the optimal level, although output increment was higher than that of DN load.

  8. Integrating watershed– and farm–scale models to target critical source areas while maintaining farm economic viability

    USDA-ARS?s Scientific Manuscript database

    Nonpoint source pollution from agriculture and the impacts of mitigating best management practices are commonly evaluated based on hydrologic boundaries using watershed models. However, management practice effectiveness is impacted by which of the feasible practices are actually selected, implemente...

  9. UTILIZATION OF LANDSCAPE INDICATORS TO MODEL WATERSHED IMPAIRMENT

    EPA Science Inventory



    Many water-bodies within the United States are contaminated by non-point source (NPS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic 13romses. One such NPS
    pol...

  10. EFFECTIVENESS OF RESTORED WETLANDS FOR THE TREATMENT OF AGRICULTURAL RUNOFF

    EPA Science Inventory

    The integration of the tax ditches into a drainage management system provides obvious benefits, but can also present a source of significant nonpoint source pollution from agricultural runoff. Many of Delaware's tax ditches have been listed on Delaware's Clean
    Water Act 303(d)...

  11. Nonpoint Source: Marinas and Boating

    EPA Pesticide Factsheets

    Because marinas are located right at the water's edge, there is a strong potential for marina waters to become contaminated with pollutants generated from the various activities that occur at marinas—such as boat cleaning and fueling operations.

  12. MULTIDISCIPLINARY APPROACH TO STORMWATER MANAGEMENT IN URBAN AREAS

    EPA Science Inventory

    Uncaptured stormwater runoff from urban and urbanizing areas has negative impacts on both terrestrial and aquatic ecosystems. Alters hydrologic regimes through conversion of precipitation to runoff, lowers extent of infiltration. Aggravates nonpoint source pollution issues.

  13. MODELING MINERAL NITROGEN EXPORT FROM A FOREST TERRESTRIAL ECOSYSTEM TO STREAMS

    EPA Science Inventory

    Terrestrial ecosystems are major sources of N pollution to aquatic ecosystems. Predicting N export to streams is a critical goal of non-point source modeling. This study was conducted to assess the effect of terrestrial N cycling on stream N export using long-term monitoring da...

  14. CD ROM: NATIONAL CONFERENCE ON RETROFIT OPPORTUNITIES FOR WATER RESOURCE PROTECTION IN URBAN ENVIRONMENTS: PROCEEDINGS, CHICAGO, IL, FEBRUARY 9-12, 1998

    EPA Science Inventory

    Water resource managers have been successful in developing approaches for reducingnonpoint source pollution in newly developing urban areas. Isssues become increasingly complex, however, when managers are faced with the challenge of reducing nonpoint source impacts within previou...

  15. Delineating Contaminants and Transport Pathways Within a Coastal Watershed in Southeast Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Coastal water quality decline due to point and non-point source pollution from terrestrial sources is a serious concern throughout the Caribbean basin and worldwide. Toxic and noxious algal blooms, declines in mangrove forests and seagrass meadows, depletion of fishery stocks, coral reef die-off, pu...

  16. Web-based Communication of Water Quality Issues and Potential Solution Exploration

    EPA Science Inventory

    Many United States water bodies are impaired, i.e., do not meet applicable water quality standards. Pollutants enter water bodies from point sources (PS) and non-point sources (NPS). Loadings from PS are regulated by the Clean Water Act and permits limit them. Loadings from NPS a...

  17. Science, information, technology, and the changing character of public policy in non-point source pollution

    NASA Astrophysics Data System (ADS)

    King, John L.; Corwin, Dennis L.

    Information technologies are already delivering important new capabilities for scientists working on non-point source (NPS) pollution in the vadose zone, and more are expected. This paper focuses on the special contributions of modeling and network communications for enhancing the effectiveness of scientists in the realm of policy debates regarding NPS pollution mitigation and abatement. The discussion examines a fundamental shift from a strict regulatory strategy of pollution control characterized by a bureaucratic/technical alliance during the period through the 1970's and early 1980's, to a more recently evolving paradigm of pluralistic environmental management. The role of science and scientists in this shift is explored, with special attention to the challenges facing scientists working in NPS pollution in the vadose zone. These scientists labor under a special handicap in the evolving model because their scientific tools are often times incapable of linking NPS pollution with individuals responsible for causing it. Information can facilitate the effectiveness of these scientists in policy debates, but not under the usual assumptions in which scientific truth prevails. Instead, information technology's key role is in helping scientists shape the evolving discussion of trade-offs and in bringing citizens and policymakers closer to the routine work of scientists.

  18. In-time source tracking of watershed loads of Taihu Lake Basin, China based on spatial relationship modeling.

    PubMed

    Wang, Ce; Bi, Jun; Zhang, Xu-Xiang; Fang, Qiang; Qi, Yi

    2018-05-25

    Influent river carrying cumulative watershed load plays a significant role in promoting nuisance algal bloom in river-fed lake. It is most relevant to discern in-stream water quality exceedance and evaluate the spatial relationship between risk location and potential pollution sources. However, no comprehensive studies of source tracking in watershed based on management grid have been conducted for refined water quality management, particularly for plain terrain with complex river network. In this study, field investigations were implemented during 2014 in Taige Canal watershed of Taihu Lake Basin. A Geographical Information System (GIS)-based spatial relationship model was established to characterize the spatial relationships of "point (point-source location and monitoring site)-line (river segment)-plane (catchment)." As a practical exemplification, in-time source tracking was triggered on April 15, 2015 at Huangnianqiao station, where TN and TP concentration violated the water quality standard (TN 4.0 mg/L, TP 0.15 mg/L). Of the target grid cells, 53 and 46 were identified as crucial areas having high pollution intensity for TN and TP pollution, respectively. The estimated non-point source load in each grid cell could be apportioned into different source types based on spatial pollution-related entity objects. We found that the non-point source load derived from rural sewage and livestock and poultry breeding accounted for more than 80% of total TN or TP load than another source type of crop farming. The approach in this study would be of great benefit to local authorities for identifying the serious polluted regions and efficiently making environmental policies to reduce watershed load.

  19. Validation of a novel air toxic risk model with air monitoring.

    PubMed

    Pratt, Gregory C; Dymond, Mary; Ellickson, Kristie; Thé, Jesse

    2012-01-01

    Three modeling systems were used to estimate human health risks from air pollution: two versions of MNRiskS (for Minnesota Risk Screening), and the USEPA National Air Toxics Assessment (NATA). MNRiskS is a unique cumulative risk modeling system used to assess risks from multiple air toxics, sources, and pathways on a local to a state-wide scale. In addition, ambient outdoor air monitoring data were available for estimation of risks and comparison with the modeled estimates of air concentrations. Highest air concentrations and estimated risks were generally found in the Minneapolis-St. Paul metropolitan area and lowest risks in undeveloped rural areas. Emissions from mobile and area (nonpoint) sources created greater estimated risks than emissions from point sources. Highest cancer risks were via ingestion pathway exposures to dioxins and related compounds. Diesel particles, acrolein, and formaldehyde created the highest estimated inhalation health impacts. Model-estimated air concentrations were generally highest for NATA and lowest for the AERMOD version of MNRiskS. This validation study showed reasonable agreement between available measurements and model predictions, although results varied among pollutants, and predictions were often lower than measurements. The results increased confidence in identifying pollutants, pathways, geographic areas, sources, and receptors of potential concern, and thus provide a basis for informing pollution reduction strategies and focusing efforts on specific pollutants (diesel particles, acrolein, and formaldehyde), geographic areas (urban centers), and source categories (nonpoint sources). The results heighten concerns about risks from food chain exposures to dioxins and PAHs. Risk estimates were sensitive to variations in methodologies for treating emissions, dispersion, deposition, exposure, and toxicity. © 2011 Society for Risk Analysis.

  20. Nonpoint Source Highlights Report

    EPA Pesticide Factsheets

    A glimpse of NPS activities underway across the United States supported by §319. It provides a snapshot of strategies that state agencies, territories and tribes are using to tackle the spectrum of water quality issues related to NPS pollution

  1. Environmentally sensitive maintenance for dirt and gravel roads

    DOT National Transportation Integrated Search

    2007-10-01

    This is a nonpoint source pollution project that identifies, documents, and encourages the use of environmentally sensitive maintenance of dirt and gravel roads. Specifically, this project involved the development of a reference manual and related te...

  2. Environmental Education: Non-point Source Pollution

    EPA Pesticide Factsheets

    This activity is designed to demonstrate to students what an average storm drain collects during a rainfall event and how the water from storm drains can impact the water quality and aquatic environments of local streams, rivers, and bays.

  3. Clinton River Sediment Transport Modeling Study

    EPA Pesticide Factsheets

    The U.S. ACE develops sediment transport models for tributaries to the Great Lakes that discharge to AOCs. The models developed help State and local agencies to evaluate better ways for soil conservation and non-point source pollution prevention.

  4. Improving Voluntary Environmental Management Programs: Facilitating Learning and Adaptation

    NASA Astrophysics Data System (ADS)

    Genskow, Kenneth D.; Wood, Danielle M.

    2011-05-01

    Environmental planners and managers face unique challenges understanding and documenting the effectiveness of programs that rely on voluntary actions by private landowners. Programs, such as those aimed at reducing nonpoint source pollution or improving habitat, intend to reach those goals by persuading landowners to adopt behaviors and management practices consistent with environmental restoration and protection. Our purpose with this paper is to identify barriers for improving voluntary environmental management programs and ways to overcome them. We first draw upon insights regarding data, learning, and adaptation from the adaptive management and performance management literatures, describing three key issues: overcoming information constraints, structural limitations, and organizational culture. Although these lessons are applicable to a variety of voluntary environmental management programs, we then present the issues in the context of on-going research for nonpoint source water quality pollution. We end the discussion by highlighting important elements for advancing voluntary program efforts.

  5. Isotopic Tracers for Delineating Non-Point Source Pollutants in Surface Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davisson, M L

    2001-03-01

    This study tested whether isotope measurements of surface water and dissolved constituents in surface water could be used as tracers of non-point source pollution. Oxygen-18 was used as a water tracer, while carbon-14, carbon-13, and deuterium were tested as tracers of DOC. Carbon-14 and carbon-13 were also used as tracers of dissolved inorganic carbon, and chlorine-36 and uranium isotopes were tested as tracers of other dissolved salts. In addition, large databases of water quality measurements were assembled for the Missouri River at St. Louis and the Sacramento-San Joaquin Delta in California to enhance interpretive results of the isotope measurements. Muchmore » of the water quality data has been under-interpreted and provides a valuable resource to investigative research, for which this report exploits and integrates with the isotope measurements.« less

  6. Hydrology and water quality of forested lands in eastern North Carolina

    Treesearch

    G.M. Chescheir; M.E. Lebo; D.M. Amatya; J. Hughes; J.W. Gilliam; R.W. Skaggs; R.B. Herrmann

    2003-01-01

    Nonpoint sources of nutrients (NPS) are a widespread source of surface water pollution throu&out the United States. Characterizing the sources of this NPS nutrient loading is challenging due to variation in land management practices, physioyaphic setting, site conditions such as soil type, and climatic variation. For nutrients, there is the added challenge of...

  7. [Characteristics and Transport Patterns of Ammonia, Nitrites, Nitrates and Inorganic Nitrogen Flux at Epikarst Springs and a Subterranean Stream in Nanshan, Chongqing].

    PubMed

    Zhang, Yuan-zhu; He, Qiu-fang; Jiang, Yong-jun; Li, Yong

    2016-04-15

    In a karst groundwater system, it develops complex multiple flows because of its special geological structure and unique physical patterns of aquifers. In order to investigate the characteristics and transport patterns of ammonia, nitrite and nitrate in epikarst water and subterranean stream, the water samples were collected monthly in a fast-urbanizing karst region. The results showed distinctive characteristics of three forms of inorganic nitrogen. The concentration of inorganic nitrogen was stable in the epikarst water while it was fluctuant in the subterranean stream. Epikarst water was less affected by rainfall and sewage compared with subterranean stream. In epikarst water, the nitrate concentration was much higher than the ammonia concentration. Dissolved inorganic nitrogen, mainly from non-point source pollution related to agricultural activities, passed in and out of the epikarst water based on a series of physical; chemical and biological processes in the epikarst zone, such as ammonification, adsorption and nitrification. On the contrary, subterranean stream showed a result of NH₄⁺-N > NO₃⁻-N in dry seasons and NO₃⁻-N > NH₄⁺-N in rainy seasons. This can be due to the fact that sanitary and industrial sewage flowed into subterranean river through sinkholes, fissures and grikes in dry season. Dissolved inorganic nitrogen in subterranean river was mainly from the non-point source pollution in wet season. Non-point source pollutants entered into subterranean water by two transport ways, one by penetration along with vadose flow through fissures and grikes, and the other by conduit flow through sinkholes from the surface runoff, soil water flow and epikarst flow. The export flux of DIN was 56.05 kg · (hm² · a)⁻¹, and NH₄⁺-N and NO₃⁻-N accounted for 46.03% and 52.51%, respectively. The contributions of point-source pollution and non point-source pollution to the export flux of DIN were 25.08% and 74.92%, respectively, based on run-off division method.

  8. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    USGS Publications Warehouse

    Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  9. Compliance Groundwater Monitoring of Nonpoint Sources - Emerging Approaches

    NASA Astrophysics Data System (ADS)

    Harter, T.

    2008-12-01

    Groundwater monitoring networks are typically designed for regulatory compliance of discharges from industrial sites. There, the quality of first encountered (shallow-most) groundwater is of key importance. Network design criteria have been developed for purposes of determining whether an actual or potential, permitted or incidental waste discharge has had or will have a degrading effect on groundwater quality. The fundamental underlying paradigm is that such discharge (if it occurs) will form a distinct contamination plume. Networks that guide (post-contamination) mitigation efforts are designed to capture the shape and dynamics of existing, finite-scale plumes. In general, these networks extend over areas less than one to ten hectare. In recent years, regulatory programs such as the EU Nitrate Directive and the U.S. Clean Water Act have forced regulatory agencies to also control groundwater contamination from non-incidental, recharging, non-point sources, particularly agricultural sources (fertilizer, pesticides, animal waste application, biosolids application). Sources and contamination from these sources can stretch over several tens, hundreds, or even thousands of square kilometers with no distinct plumes. A key question in implementing monitoring programs at the local, regional, and national level is, whether groundwater monitoring can be effectively used as a landowner compliance tool, as is currently done at point-source sites. We compare the efficiency of such traditional site-specific compliance networks in nonpoint source regulation with various designs of regional nonpoint source monitoring networks that could be used for compliance monitoring. We discuss advantages and disadvantages of the site vs. regional monitoring approaches with respect to effectively protecting groundwater resources impacted by nonpoint sources: Site-networks provide a tool to enforce compliance by an individual landowner. But the nonpoint source character of the contamination and its typically large spatial extend requires extensive networks at an individual site to accurately and fairly monitor individual compliance. In contrast, regional networks seemingly fail to hold individual landowners accountable. But regional networks can effectively monitor large-scale impacts and water quality trends; and thus inform regulatory programs that enforce management practices tied to nonpoint source pollution. Regional monitoring networks for compliance purposes can face significant challenges in the implementation due to a regulatory and legal landscape that is exclusively structured to address point sources and individual liability, and due to the non-intensive nature of a regional monitoring program (lack of control of hot spots; lack of accountability of individual landowners).

  10. River water quality and pollution sources in the Pearl River Delta, China.

    PubMed

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2005-07-01

    Some physicochemical parameters were determined for thirty field water samples collected from different water channels in the Pearl River Delta Economic Zone river system. The analytical results were compared with the environmental quality standards for surface water. Using the SPSS software, statistical analyses were performed to determine the main pollutants of the river water. The main purpose of the present research is to investigate the river water quality and to determine the main pollutants and pollution sources. Furthermore, the research provides some approaches for protecting and improving river water quality. The results indicate that the predominant pollutants are ammonium, phosphorus, and organic compounds. The wastewater discharged from households in urban and rural areas, industrial facilities, and non-point sources from agricultural areas are the main sources of pollution in river water in the Pearl River Delta Economic Zone.

  11. Monitoring and Analysis of Nonpoint Source Pollution - Case study on terraced paddy fields in an agricultural watershed

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Yeh, Chun-Lin

    2013-04-01

    The intensive use of chemical fertilizer has negatively impacted environments in recent decades, mainly through water pollution by nitrogen (N) and phosphate (P) originating from agricultural activities. As a main crop with the largest cultivation area about 0.25 million ha per year in Taiwan, rice paddies account for a significant share of fertilizer consumption among agriculture crops. This study evaluated the fertilization of paddy fields impacting return flow water quality in an agricultural watershed located at Hsinchu County, northern Taiwan. Water quality monitoring continued for two crop-periods in 2012, around subject to different water bodies, including the irrigation water, drainage water, and shallow groundwater. The results indicated that obviously increasing of ammonium-N, nitrate-N and TP concentrations in the surface drainage water were observed immediately following three times of fertilizer applications (including basal, tillering, and panicle fertilizer application), but reduced to relatively low concentrations after 7-10 days after each fertilizer application. Groundwater quality monitoring showed that the observation wells with the more shallow water depth, the more significant variation of concentrations of ammonium-N, nitrate-N and TP could be observed, which means that the contamination potential of nutrient of groundwater is related not only to the impermeable plow sole layer but also to the length of percolation route in this area. The study also showed that the potential pollution load of nutrient could be further reduced by well drainage water control and rational fertilizer management, such as deep-water irrigation, reuse of return flow, the rational application of fertilizers, and the SRI (The System of Rice Intensification) method. The results of this study can provide as an evaluation basis to formulate effective measures for agricultural non-point source pollution control and the reuse of agricultural return flow. Keywords:Chemical fertilizer, Nitrogen, Phosphorus, Paddy field, Non-point source pollution.

  12. Agricultural Wastes.

    ERIC Educational Resources Information Center

    Jewell, W. J.; Switzenbaum, M. S.

    1978-01-01

    Presents a literature review of agricultural wastes, covering publications of 1976-77. Some of the areas covered are: (1) water characteristics and impacts; (2) waste treatment; (3) reuse of agricultural wastes; and (4) nonpoint pollution sources. A list of 150 references is also presented. (HM)

  13. MODELING THE RESPONSE OF FISH POPULATIONS TO EUTROPHICATION

    EPA Science Inventory

    Eutrophication resulting from nonpoint source pollution is one of the largest environmental problems in lakes and reservoirs around the world. Two characteristics of eutrophication, decreased dissolved oxygen and increased concentration of ammonia, are known to affect fishes, yet...

  14. FRAMEWORK DESIGN FOR BMP PLACEMENT IN URBAN WATERSHEDS

    EPA Science Inventory

    A number of stormwater control strategies, commonly known as best management practices (BMPs), are used to mitigate runoff volumes and associated nonpoint source pollution due to wet-weather flows (WWFs). BMP types include ponds, bioretention facilities, infiltration trenches, g...

  15. FRAMEWORK FOR PLACEMENT OF BMPS IN URBAN WATERSHEDS

    EPA Science Inventory

    A number of stormwater control strategies, commonly known as best management practices (BMPs), are used to mitigate runoff volumes and associated nonpoint source pollution due to wet-weather flows (WWFs). BMP types include ponds, bioretention facilities, infiltration trenches, g...

  16. IMPERVIOUS SURFACE RESEARCH IN THE MID-ATLANTIC

    EPA Science Inventory

    Anthropogenic impervious surfaces have an important relationship with non-point source pollution (NPS) in urban watersheds. These human-created surfaces include such features as roads, parking lots, rooftops, sidewalks, and driveways. The amount of impervious surface area in a ...

  17. Soil erosion following forest operations in the Southern Piedmont of central Alabama

    Treesearch

    Johnny M. Grace

    2004-01-01

    In recent years, nonpoint source pollution (NPS) has been recognized as one of the major threats to the nation's water quality. Clearly, forest operations such as harvesting and site preparation have the potential to have degrading impacts on forest water quality. However, there exists a gap in the understanding of the nature and extent of NPS pollution problems...

  18. Toward quantifying water pollution abatement in response to installing buffers on crop land

    Treesearch

    Michael G. Dosskey

    2001-01-01

    The scientific research literature is reviewed (i) for evidence of how much reduction in nonpoint source pollution can be achieved by installing buffers on crop land, (ii) to summarize important factors that can affect this response, and (iii) to identify remaining major information gaps that limit our ability to make probable estimates. This review is intended to...

  19. AN APPROACH TO IDENTIFY AND SELECT APPROPRIATE BMPS FOR SOURCE WATER PROTECTION: A CASE STUDY IN COLUMBUS, OH

    EPA Science Inventory

    Nonpoint source pollution is the leading cause of impairment to our nations water resources. Both drinking and wastewater utilities are challenged to comply with existing and proposed federal Safe Drinking Water Act (SDWA) and Clean Water Act (CWA) regulations. Federal and state ...

  20. Preliminary study on using rare earth elements to trace non-point source phosphorous loss

    USDA-ARS?s Scientific Manuscript database

    The environmental fate of phosphorus (P) is of concern as P is a primary cause of freshwater eutrophication. Rare earth elements (REEs) have been successfully used in the analysis of soil erosion and pollutant sources, as well as in the analysis of mineral genesis. To better understand the potential...

  1. Refining models for quantifying the water quality benefits of improved animal management for use in water quality trading

    USDA-ARS?s Scientific Manuscript database

    Water quality trading (WQT) is a market-based approach that allows point sources of water pollution to meet their water quality obligations by purchasing credits from the reduced discharges from other point or nonpoint sources. Non-permitted animal operations and fields of permitted animal operatio...

  2. Evaluating the Effects of Land Use Planning for Non-Point Source Pollution Based on a System Dynamics Approach in China

    PubMed Central

    Kuai, Peng; Li, Wei; Liu, Nianfeng

    2015-01-01

    Urbanization is proceeding rapidly in several developing countries such as China. This accelerating urbanization alters the existing land use types in a way that results in more Non-Point Source (NPS) pollution to local surface waters. Reasonable land use planning is necessary. This paper compares seven planning scenarios of a case study area, namely Wulijie, China, from the perspective of NPS pollution. A System Dynamics (SD) model was built for the comparison to adequately capture the planning complexity. These planning scenarios, which were developed by combining different land use intensities (LUIs) and construction speeds (CSs), were then simulated. The results show that compared to scenario S1 (business as usual) all other scenarios will introduce more NPS pollution (with an incremental rate of 22%-70%) to Wulijie. Scenario S6 was selected as the best because it induced relatively less NPS pollution while simultaneously maintaining a considerable development rate. Although LUIs represent a more critical factor compared to CSs, we conclude that both LUIs and CSs need to be taken into account to make the planning more environmentally friendly. Considering the power of SD in decision support, it is recommended that land use planning should take into consideration findings acquired from SD simulations. PMID:26267482

  3. A novel approach combining self-organizing map and parallel factor analysis for monitoring water quality of watersheds under non-point source pollution

    PubMed Central

    Zhang, Yixiang; Liang, Xinqiang; Wang, Zhibo; Xu, Lixian

    2015-01-01

    High content of organic matter in the downstream of watersheds underscored the severity of non-point source (NPS) pollution. The major objectives of this study were to characterize and quantify dissolved organic matter (DOM) in watersheds affected by NPS pollution, and to apply self-organizing map (SOM) and parallel factor analysis (PARAFAC) to assess fluorescence properties as proxy indicators for NPS pollution and labor-intensive routine water quality indicators. Water from upstreams and downstreams was sampled to measure dissolved organic carbon (DOC) concentrations and excitation-emission matrix (EEM). Five fluorescence components were modeled with PARAFAC. The regression analysis between PARAFAC intensities (Fmax) and raw EEM measurements indicated that several raw fluorescence measurements at target excitation-emission wavelength region could provide similar DOM information to massive EEM measurements combined with PARAFAC. Regression analysis between DOC concentration and raw EEM measurements suggested that some regions in raw EEM could be used as surrogates for labor-intensive routine indicators. SOM can be used to visualize the occurrence of pollution. Relationship between DOC concentration and PARAFAC components analyzed with SOM suggested that PARAFAC component 2 might be the major part of bulk DOC and could be recognized as a proxy indicator to predict the DOC concentration. PMID:26526140

  4. Evaluating sources and processing of nonpoint source nitrate in a small suburban watershed in China

    NASA Astrophysics Data System (ADS)

    Han, Li; Huang, Minsheng; Ma, Minghai; Wei, Jinbao; Hu, Wei; Chouhan, Seema

    2018-04-01

    Identifying nonpoint sources of nitrate has been a long-term challenge in mixed land-use watershed. In the present study, we combine dual nitrate isotope, runoff and stream water monitoring to elucidate the nonpoint nitrate sources across land use, and determine the relative importance of biogeochemical processes for nitrate export in a small suburban watershed, Longhongjian watershed, China. Our study suggested that NH4+ fertilizer, soil NH4+, litter fall and groundwater were the main nitrate sources in Longhongjian Stream. There were large changes in nitrate sources in response to season and land use. Runoff analysis illustrated that the tea plantation and forest areas contributed to a dominated proportion of the TN export. Spatial analysis illustrated that NO3- concentration was high in the tea plantation and forest areas, and δ15N-NO3 and δ18O-NO3 were enriched in the step ponds. Temporal analysis showed high NO3- level in spring, and nitrate isotopes were enriched in summer. Study as well showed that the step ponds played an important role in mitigating nitrate pollution. Nitrification and plant uptake were the significant biogeochemical processes contributing to the nitrogen transformation, and denitrification hardly occurred in the stream.

  5. GENERATING HIGH QUALITY IMPERVIOUS COVER DATA

    EPA Science Inventory

    Nonpoint source pollution (NPS) from urban/ suburban areas is rapidly increasing as the population increases in the United States. Research in recent years has consistently shown a strong relationship between the percentage of impervious cover in a drainage basin and the health...

  6. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY

    EPA Science Inventory

    The integration of IKONOS satellite data, airborne color infrared remote sensing, visualization, and decision support tools is discussed, within the contexts of management techniques for minimizing non-point source pollution in inland waterways, such s riparian buffer restoration...

  7. Sea Grant Extension Crucial Link to Coastal Resources.

    ERIC Educational Resources Information Center

    Stumbos, John

    1997-01-01

    University of California Sea Grant Extension Program provides training and technical assistance to fishers, farmers, planners, and conservationists on projects such as coastal ecosystem health, marine environmental protection, fisheries management, aquaculture, salmon habitat restoration, and controlling nonpoint-source pollution; supports…

  8. 7 CFR 634.12 - Eligible project areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Eligible project areas. 634.12 Section 634.12 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... related to agricultural nonpoint source pollutants, including sediment animal waste, irrigation return...

  9. 7 CFR 634.12 - Eligible project areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Eligible project areas. 634.12 Section 634.12 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... related to agricultural nonpoint source pollutants, including sediment animal waste, irrigation return...

  10. 7 CFR 634.12 - Eligible project areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Eligible project areas. 634.12 Section 634.12 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... related to agricultural nonpoint source pollutants, including sediment animal waste, irrigation return...

  11. 7 CFR 634.12 - Eligible project areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Eligible project areas. 634.12 Section 634.12 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... related to agricultural nonpoint source pollutants, including sediment animal waste, irrigation return...

  12. USEPA EPIC IMPERVIOUS SURFACE RESEARCH IN THE MID-ATLANTIC

    EPA Science Inventory

    Anthropogenic impervious surfaces have an important relationship with non-point source pollution (NPS) in urban watersheds. These human-created surfaces include such features as roads, parking lots, rooftops, sidewalks, and driveways. The amount of impervious surface area in a ...

  13. FRAMEWORK FOR PLACEMENT OF BMP/LID IN URBAN WATERSHEDS

    EPA Science Inventory

    A number of stormwater control strategies, commonly known as best management practices (BMPs), are used to mitigate runoff volumes and associated nonpoint source pollution due to wet-weather flows (WWFs). BMP types include ponds, bioretention facilities, infiltration trenches, gr...

  14. FRAMEWORK FOR PLACEMENT OF BMP/LID IN URBAN WATERSHED

    EPA Science Inventory

    A number of stormwater control strategies, commonly known as best management practices (BMPs), are used to mitigate runoff volumes and associated nonpoint source pollution due to wet-weather flows (WWFs). BMP types include ponds, bioretention facilities, infiltration trenches, g...

  15. LOUISIANA ENVIRONMENTAL MODELING SYSTEM FOR HYPOXIA RELATED ISSUES

    EPA Science Inventory

    An environmental assessment tool to evaluate the impacts of nonpoint source (NPS) pollutants discharged from Mississippi River basins into the Gulf of Mexico and to assess their effects on receiving water quality will be described. This system (Louisiana Environmental Modeling S...

  16. Storm water runoff for the Y-12 Plant and selected parking lots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, E.T.

    1996-01-01

    A comparison of storm water runoff from the Y-12 Plant and selected employee vehicle parking lots to various industry data is provided in this document. This work is an outgrowth of and part of the continuing Non-Point Source Pollution Elimination Project that was initiated in the late 1980s. This project seeks to identify area pollution sources and remediate these areas through the Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act (RCRA/CERCLA) process as managed by the Environmental Restoration Organization staff. This work is also driven by the Clean Water Act Section 402(p) which, in part, deals withmore » establishing a National Pollutant Discharge Elimination System (NPDES) permit for storm water discharges. Storm water data from events occurring in 1988 through 1991 were analyzed in two reports: Feasibility Study for the Best Management Practices to Control Area Source Pollution Derived from Parking Lots at the DOE Y-12 Plant, September 1992, and Feasibility Study of Best Management Practices for Non-Point Source Pollution Control at the Oak Ridge Y-12 Plant, February 1993. These data consisted of analysis of outfalls discharging to upper East Fork Poplar Creek (EFPC) within the confines of the Y-12 Plant (see Appendixes D and E). These reports identified the major characteristics of concern as copper, iron, lead, manganese, mercury, nitrate (as nitrogen), zinc, biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), fecal coliform, and aluminum. Specific sources of these contaminants were not identifiable because flows upstream of outfalls were not sampled. In general, many of these contaminants were a concern in many outfalls. Therefore, separate sampling exercises were executed to assist in identifying (or eliminating) specific suspected sources as areas of concern.« less

  17. Fiscal year 1988 program report: Pennsylvania Center for Water Resources Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonnell, A.J.

    1989-08-01

    Three projects and a program of technology transfer were conducted under the Pennsylvania Fiscal Year 1988 State Water Resources Research Grants Program (PL 98-242, Sect. 104). In a completed study focused on the protection of water supplies, mature slow sand filters were found to remove 100 percent of Cryptosporidium and Giardia cysts. A site specific study examined the behavior of sedimentary iron and manganese in an acid mine drainage wetland system. A study was initiated to link a comprehensive non-point source model, AGNPS with current GIS technology to enhance the models' utility for evaluating regional water quality problems related tomore » non-point source agricultural pollution.« less

  18. ROLE OF LAND USE AND BMPS IN REDUCING THE EFFECT OF EXTREME MAGNITUDE EVENTS ON SEDIMENT AND POLLUTANT TRANSPORT IN THE SE US COASTAL PLAIN AND MISSISSIPPI ALLUVIAL VALLEY

    EPA Science Inventory

    Suspended sediment is a major non-point source pollutant of surface waters. Best management practices (BMPs) and current landuse decisions may not be sufficient to protect water quality in a changing climate, as a result of a loss of efficiency at reducing suspended sedimen...

  19. Simulation of conservation practices using the APEX model

    USDA-ARS?s Scientific Manuscript database

    Information on agricultural Best Management Practices (BMPs) and their effectiveness in controlling agricultural non-point source pollution is crucial in developing Clean Water Act programs such as the Total Maximum Daily Loads for impaired watersheds. A modeling study was conducted to evaluate var...

  20. SWMM IMPROVEMENT FOR ANALYZING BMP/LTD PERFORMANCE

    EPA Science Inventory

    Pollution and treatment costs associated with wet weather flows (WWFs) have caused a need for reducing stormwater runoff volumes as well as loads. A number of strategies and best management practices (BMPs) are being used to mitigate runoff volumes and associated nonpoint source...

  1. Sustainable Urban Waters: Opportunities to Integrate Environmental Protection in Multi-objective Projects

    EPA Science Inventory

    Abstract: Nonpoint source pollution is an ongoing challenge for environmental agencies who seek to protect waters of the U.S. Urban stream and waterfront redevelopment projects present opportunities to achieve integrated environmental, economic, and social benefits in urban water...

  2. SIMULATION MODEL FOR WATERSHED MANAGEMENT PLANNING. VOLUME 2. MODEL USER MANUAL

    EPA Science Inventory

    This report provides a user manual for the hydrologic, nonpoint source pollution simulation of the generalized planning model for evaluating forest and farming management alternatives. The manual contains an explanation of application of specific code and indicates changes that s...

  3. Watershed Management Tool for Selection and Spacial Allocation of Non-Point Source Pollution Control Practices

    EPA Science Inventory

    Distributed-parameter watershed models are often utilized for evaluating the effectiveness of sediment and nutrient abatement strategies through the traditional {calibrate→ validate→ predict} approach. The applicability of the method is limited due to modeling approximations. In ...

  4. Integrating sentinel watershed-systems into the monitoring and assessment of Minnesota's (USA) waters quality.

    PubMed

    Magner, J A; Brooks, K N

    2008-03-01

    Section 303(d) of the Clean Water Act requires States and Tribes to list waters not meeting water quality standards. A total maximum daily load must be prepared for waters identified as impaired with respect to water quality standards. Historically, the management of pollution in Minnesota has been focused on point-source regulation. Regulatory effort in Minnesota has improved water quality over the last three decades. Non-point source pollution has become the largest driver of conventional 303(d) listings in the 21st century. Conventional pollutants, i.e., organic, sediment and nutrient imbalances can be identified with poor land use management practices. However, the cause and effect relationship can be elusive because of natural watershed-system influences that vary with scale. Elucidation is complex because the current water quality standards in Minnesota were designed to work best with water quality permits to control point sources of pollution. This paper presents a sentinel watershed-systems approach (SWSA) to the monitoring and assessment of Minnesota waterbodies. SWSA integrates physical, chemical, and biological data over space and time using advanced technologies at selected small watersheds across Minnesota to potentially improve understanding of natural and anthropogenic watershed processes and the management of point and non-point sources of pollution. Long-term, state-of-the-art monitoring and assessment is needed to advance and improve water quality standards. Advanced water quality or ecologically-based standards that integrate physical, chemical, and biological numeric criteria offer the potential to better understand, manage, protect, and restore Minnesota's waterbodies.

  5. Quantifying the uncertainty of nonpoint source attribution in distributed water quality models: A Bayesian assessment of SWAT's sediment export predictions

    NASA Astrophysics Data System (ADS)

    Wellen, Christopher; Arhonditsis, George B.; Long, Tanya; Boyd, Duncan

    2014-11-01

    Spatially distributed nonpoint source watershed models are essential tools to estimate the magnitude and sources of diffuse pollution. However, little work has been undertaken to understand the sources and ramifications of the uncertainty involved in their use. In this study we conduct the first Bayesian uncertainty analysis of the water quality components of the SWAT model, one of the most commonly used distributed nonpoint source models. Working in Southern Ontario, we apply three Bayesian configurations for calibrating SWAT to Redhill Creek, an urban catchment, and Grindstone Creek, an agricultural one. We answer four interrelated questions: can SWAT determine suspended sediment sources with confidence when end of basin data is used for calibration? How does uncertainty propagate from the discharge submodel to the suspended sediment submodels? Do the estimated sediment sources vary when different calibration approaches are used? Can we combine the knowledge gained from different calibration approaches? We show that: (i) despite reasonable fit at the basin outlet, the simulated sediment sources are subject to uncertainty sufficient to undermine the typical approach of reliance on a single, best fit simulation; (ii) more than a third of the uncertainty of sediment load predictions may stem from the discharge submodel; (iii) estimated sediment sources do vary significantly across the three statistical configurations of model calibration despite end-of-basin predictions being virtually identical; and (iv) Bayesian model averaging is an approach that can synthesize predictions when a number of adequate distributed models make divergent source apportionments. We conclude with recommendations for future research to reduce the uncertainty encountered when using distributed nonpoint source models for source apportionment.

  6. Calibration and Validation of Nonpoint Source Pollution and Erosion Comparison Tool,N- SPECT, for Tropical Conditions

    NASA Astrophysics Data System (ADS)

    Fares, A.; Cheng, C. L.; Dogan, A.

    2006-12-01

    Impaired water quality caused by agriculture, urbanization, and spread of invasive species has been identified as a major factor in the degradation of coastal ecosystems in the tropics. Watershed-scale nonpoint source pollution models facilitate in evaluating effective management practices to alleviate the negative impacts of different land-use changes. The Non-Point Source Pollution and Erosion Comparison Tool (N-SPECT) is a newly released watershed model that was not previously tested under tropical conditions. The two objectives of this study were to: i) calibrate and validate N-SPECT for the Hanalei Watershed of the Hawai`ian island of Kaua`i; ii) evaluate the performance of N-SPECT under tropical conditions using the sensitivity analysis approach. Hanalei watershed has one of the wettest points on earth, Mt. Waialeale with an average annual rainfall of 11,000 mm. This rainfall decreases to 2,000 mm at the outlet of the watershed near the coast. Number of rain days is one of the major input parameters that influences N-SPECT's simulation results. This parameter was used to account for plant canopy interception losses. The watershed was divided into sub- basins to accurately distribute the number of rain days throughout the watershed. Total runoff volume predicted by the model compared well with measured data. The model underestimated measured runoff by 1% for calibration period and 5% for validation period due to higher intensity precipitation in the validation period. Sensitivity analysis revealed that the model was most sensitive to the number of rain days, followed by canopy interception, and least sensitive to the number of sub-basins. The sediment and water quality portion of the model is currently being evaluated.

  7. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT

    NASA Astrophysics Data System (ADS)

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Guo, Lijia

    2018-05-01

    The genetic algorithm (GA) was combined with the Conversion of Land Use and its Effect at Small regional extent (CLUE-S) model to obtain an optimized land use pattern for controlling non-point source (NPS) pollution. The performance of the combination was evaluated. The effect of the optimized land use pattern on the NPS pollution control was estimated by the Soil and Water Assessment Tool (SWAT) model and an assistant map was drawn to support the land use plan for the future. The Xiangxi River watershed was selected as the study area. Two scenarios were used to simulate the land use change. Under the historical trend scenario (Markov chain prediction), the forest area decreased by 2035.06 ha, and was mainly converted into paddy and dryland area. In contrast, under the optimized scenario (genetic algorithm (GA) prediction), up to 3370 ha of dryland area was converted into forest area. Spatially, the conversion of paddy and dryland into forest occurred mainly in the northwest and southeast of the watershed, where the slope land occupied a large proportion. The organic and inorganic phosphorus loads decreased by 3.6% and 3.7%, respectively, in the optimized scenario compared to those in the historical trend scenario. GA showed a better performance in optimized land use prediction. A comparison of the land use patterns in 2010 under the real situation and in 2020 under the optimized situation showed that Shennongjia and Shuiyuesi should convert 1201.76 ha and 1115.33 ha of dryland into forest areas, respectively, which represented the greatest changes in all regions in the watershed. The results of this study indicated that GA and the CLUE-S model can be used to optimize the land use patterns in the future and that SWAT can be used to evaluate the effect of land use optimization on non-point source pollution control. These methods may provide support for land use plan of an area.

  8. LONG TERM HYDROLOGICAL IMPACT ASSESSMENT (LTHIA)

    EPA Science Inventory

    LTHIA is a universal Urban Sprawl analysis tool that is available to all at no charge through the Internet. It estimates impacts on runoff, recharge and nonpoint source pollution resulting from past or proposed land use changes. It gives long-term average annual runoff for a lan...

  9. METHODOLOGY FOR EVALUATING THE EFFECTIVENESS OF NONPOINT SOURCE POLLUTION ABATEMENT PROGRAMS

    EPA Science Inventory

    The Upper Big Walnut Creek watershed encompasses 190 square miles of predominantly agricultural cropland (65%) in Central Ohio (USA) where agronomic fertilizers and herbicides are used in row crop production. Runoff from the watershed drain to Hoover Reservoir which is Central Oh...

  10. Evaluation of fertility practices during roadside establishment in Mississippi to minimize nonpoint source pollutants.

    DOT National Transportation Integrated Search

    2013-12-01

    Runoff during the revegetation of roadsides can transport sediment and nutrients offsite, leading surface water quality reductions. Two field experiments were conducted near Starkville, MS in 2011 and 2012 to evaluate the influence of various N and P...

  11. COST-EFFECTIVE ALLOCATION OF WATERSHED MANAGEMENT PRACTICES USING A GENETIC ALGORITHM

    EPA Science Inventory

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from non-point source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Here-...

  12. Optimization Tool For Allocation Of Watershed Management Practices For Sediment And Nutrient Control

    EPA Science Inventory

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from nonpoint source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Herein...

  13. Factors Influencing Farmers’ Adoption of Best Management Practices: A Review and Synthesis

    EPA Science Inventory

    Best management practices (BMPs) for reducing agricultural non-point source pollution are widely available. However, agriculture remains a major global contributor to degradation of waters because farmers often do not adopt BMPs. To improve water quality, it is necessary to under...

  14. Making Our Nonpoint Source Pollution Education Programs Effective.

    ERIC Educational Resources Information Center

    Shepard, Robin

    1999-01-01

    The rate of adoption of nutrient management by farmers in Wisconsin watersheds was compared for a program using diffuse communication strategies and one using one-to-one information transfer. Information transfer increased adoption of specific practices and decreased application of excessive nitrogen and phosphorus. (SK)

  15. REMOTE SENSING, VISUALIZATION AND DECISION SUPPORT FOR WATERSHED MANAGEMENT AND SUSTAINABLE AGRICULTURE

    EPA Science Inventory

    The integration of satellite and airborne remote sensing, scientific visualization and decision support tools is discussed within the context of management techniques for minimizing the non-point source pollution load of inland waterways and the sustainability of food crop produc...

  16. SEDIMENT ANALYSIS - LANDSCAPE INDICATORS FOR PESTICIDES STUDY FOR MID-ATLANTIC COASTAL STREAMS (LIPS-MACS)

    EPA Science Inventory

    Nonpoint-source pollution, including pesticides and toxics, is the largest threat facing aquatic resources today. Understanding how pesticides applied to agricultural fields and suburban lawns reach and influence stream water quality is the focus of the Landscape Indicators for ...

  17. AN EXPERIMENTAL TEST OF AMBIENT-BASED MECHANISMS FOR NONPOINT SOURCE POLLUTION CONTROL. (R830989)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Impact of sampling techniques on measured stormwater quality data for small streams

    USDA-ARS?s Scientific Manuscript database

    Science-based sampling methodologies are needed to enhance water quality characterization for developing Total Maximum Daily Loads (TMDLs), setting appropriate water quality standards, and managing nonpoint source pollution. Storm event sampling, which is vital for adequate assessment of water qual...

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION: DEVELOPMENT OF A PROTOCOL FOR TESTING COMMERCIALLY PRODUCED STORMWATER TREATMENT DEVICES

    EPA Science Inventory

    Over the past decade, there has been an increasing array of commercially available products for the treatment of nonpoint source pollution from urban stormwater. These products incorporate various approaches to stormwater treatment such as: in-line subsurface treatment chambers...

  20. A stepwise, multi-objective, multi-variable parameter optimization method for the APEX model

    USDA-ARS?s Scientific Manuscript database

    Proper parameterization enables hydrological models to make reliable estimates of non-point source pollution for effective control measures. The automatic calibration of hydrologic models requires significant computational power limiting its application. The study objective was to develop and eval...

  1. Spatial analysis and hazard assessment on soil total nitrogen in the middle subtropical zone of China

    NASA Astrophysics Data System (ADS)

    Lu, Peng; Lin, Wenpeng; Niu, Zheng; Su, Yirong; Wu, Jinshui

    2006-10-01

    Nitrogen (N) is one of the main factors affecting environmental pollution. In recent years, non-point source pollution and water body eutrophication have become increasing concerns for both scientists and the policy-makers. In order to assess the environmental hazard of soil total N pollution, a typical ecological unit was selected as the experimental site. This paper showed that Box-Cox transformation achieved normality in the data set, and dampened the effect of outliers. The best theoretical model of soil total N was a Gaussian model. Spatial variability of soil total N at NE60° and NE150° directions showed that it had a strip anisotropic structure. The ordinary kriging estimate of soil total N concentration was mapped. The spatial distribution pattern of soil total N in the direction of NE150° displayed a strip-shaped structure. Kriging standard deviations (KSD) provided valuable information that will increase the accuracy of total N mapping. The probability kriging method is useful to assess the hazard of N pollution by providing the conditional probability of N concentration exceeding the threshold value, where we found soil total N>2.0g/kg. The probability distribution of soil total N will be helpful to conduct hazard assessment, optimal fertilization, and develop management practices to control the non-point sources of N pollution.

  2. Lagoonal stormwater detention ponds as promoters of harmful algal blooms and eutrophication along the South Carolina coast

    Treesearch

    Alan J. Lewitus; Larissa M. Brock; Krista A. DeMattio; Susan B. Wilde

    2008-01-01

    In the rapidly urbanizing coastal zone of South Carolina, intensive landscape maintenance and turf management are significant sources of nonpoint source pollutant loadings. The best management practice of choice for stormwater in this region is wet detention ponds, the majority of which are brackish lagoons. Typically, stormwater is piped directly into the ponds, but...

  3. Major and Trace Element Fluxes to the Ganges River: Significance of Small Flood Plain Tributary as Non-Point Pollution Source

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Sen, I. S.; Mishra, G.

    2017-12-01

    There has been much discussion amongst biologists, ecologists, chemists, geologists, environmental firms, and science policy makers about the impact of human activities on river health. As a result, multiple river restoration projects are on going on many large river basins around the world. In the Indian subcontinent, the Ganges River is the focal point of all restoration actions as it provides food and water security to half a billion people. Serious concerns have been raised about the quality of Ganga water as toxic chemicals and many more enters the river system through point-sources such as direct wastewater discharge to rivers, or non-point-sources. Point source pollution can be easily identified and remedial actions can be taken; however, non-point pollution sources are harder to quantify and mitigate. A large non-point pollution source in the Indo-Gangetic floodplain is the network of small floodplain rivers. However, these rivers are rarely studied since they are small in catchment area ( 1000-10,000 km2) and discharge (<100 m3/s). As a result, the impact of these small floodplain rivers on the dissolved chemical load of large river systems is not constrained. To fill this knowledge gap we have monitored the Pandu River for one year between February 2015 and April 2016. Pandu river is 242 km long and is a right bank tributary of Ganges with a total catchment area of 1495 km2. Water samples were collected every month for dissolved major and trace elements. Here we show that the concentration of heavy metals in river Pandu is in higher range as compared to the world river average, and all the dissolved elements shows a large spatial-temporal variation. We show that the Pandu river exports 192170, 168517, 57802, 32769, 29663, 1043, 279, 241, 225, 162, 97, 28, 25, 22, 20, 8, 4 Kg/yr of Ca, Na, Mg, K, Si, Sr, Zn, B, Ba, Mn, Al, Li, Rb, Mo, U, Cu, and Sb, respectively, to the Ganga river, and the exported chemical flux effects the water chemistry of the Ganga river downstream of its confluence point. We further speculate that small floodplain rivers is an important source that contributes to the dissolved chemical budget of large river systems, and they must be better monitored to address future challenges in river basin management.

  4. MARKET INCENTIVES AND NONPOINT SOURCES: AN APPLICATION OF TRADABLE CREDITS TO URBAN STORMWATER MANAGEMENT

    EPA Science Inventory

    Excess stormwater runoff can cause serious pollution, habitat degradation and flooding in cities where growth in impervious surface area (such as pavement, buildings, etc.) has created a situation where stormwater runoff routinely exceeds the normal capacity of natural and constr...

  5. A Framework to Assess the Impacts of Climate Change on Stream Health Indicators in Michigan Watersheds

    EPA Science Inventory

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse ...

  6. ESTIMATING DIFFUSE STORMWATER NUTRIENT LOADS FROM SUBURBAN LANDSCAPES TO THE NAVESINK ESTUARY, NEW JERSEY

    EPA Science Inventory

    Hitherto, stormwater runoff from suburban land-uses has been largely unregulated and designated as a non-point source. Phase II of the Clean Water Act will require permits under the National Pollutant Discharge Elimination System for stormwater discharges from municipal separate ...

  7. ESTIMATING DIFFUSE STORMWATER NUTRIENT LOADS FROM SUBURBAN LANDSCAPES IN THE NAVESINK ESTUARY, NEW JERSEY

    EPA Science Inventory

    Hitherto, stormwater runoff from suburban land-uses has been largely unregulated and designated as a non-point source. Phase II of the Clean Water Act now requires permits under the National Pollutant Discharge Elimination System for stormwater discharges from municipal separate...

  8. 7 CFR 650.9 - NEPA and interagency planning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... affect areas of NRCS expertise, such as prime farmlands, soils, erosion control, and agricultural sources of nonpoint pollution. NRCS, as a cooperating agency, is to comply with the requirements of 40 CFR... appointed to insure that soil, water, related resources, and environmental qualities in the district are...

  9. SIMULATION MODEL FOR WATERSHED MANAGEMENT PLANNING. VOLUME 1. MODEL THEORY AND FORMULATION

    EPA Science Inventory

    Evaluation of nonpoint source pollution problems requires an understanding of the behavioral response to an ecosystem to the impacts of land use activities on individual components of that ecosystem. By analyzing basic ecosystem processes and impacts of land use activities on spe...

  10. Assessing the impact of manure application method on runoff phosphorus using controlled and natural rainfall

    USDA-ARS?s Scientific Manuscript database

    Land application of manure is a cost-effective method for recycling nutrients from livestock operations. Increasingly, there has been interest in promoting alternative methods of manure application that minimize nonpoint source phosphorus pollution. Watershed and nutrient trading programs rely upon ...

  11. Evaluation of a stepwise, multi-objective, multi-variable parameter optimization method for the APEX model

    USDA-ARS?s Scientific Manuscript database

    Hydrologic models are essential tools for environmental assessment of agricultural non-point source pollution. The automatic calibration of hydrologic models, though efficient, demands significant computational power, which can limit its application. The study objective was to investigate a cost e...

  12. Aquatic Nitrate Retention at River Network Scales Across Flow Conditions Determined Using Nested In Situ Sensors

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Mulukutla, G. K.; Cook, C.; Carey, R. O.

    2017-11-01

    Nonpoint pollution sources are strongly influenced by hydrology and are therefore sensitive to climate variability. Some pollutants entering aquatic ecosystems, e.g., nitrate, can be mitigated by in-stream processes during transport through river networks. Whole river network nitrate retention is difficult to quantify with observations. High frequency, in situ nitrate sensors, deployed in nested locations within a single watershed, can improve estimates of both nonpoint inputs and aquatic retention at river network scales. We deployed a nested sensor network and associated sampling in the urbanizing Oyster River watershed in coastal New Hampshire, USA, to quantify storm event-scale loading and retention at network scales. An end member analysis used the relative behavior of reactive nitrate and conservative chloride to infer river network fate of nitrate. In the headwater catchments, nitrate and chloride concentrations are both increasingly diluted with increasing storm size. At the mouth of the watershed, chloride is also diluted, but nitrate tended to increase. The end member analysis suggests that this pattern is the result of high retention during small storms (51-78%) that declines to zero during large storms. Although high frequency nitrate sensors did not alter estimates of fluxes over seasonal time periods compared to less frequent grab sampling, they provide the ability to estimate nitrate flux versus storm size at event scales that is critical for such analyses. Nested sensor networks can improve understanding of the controls of both loading and network scale retention, and therefore also improve management of nonpoint source pollution.

  13. A robust simulation-optimization modeling system for effluent trading--a case study of nonpoint source pollution control.

    PubMed

    Zhang, J L; Li, Y P; Huang, G H

    2014-04-01

    In this study, a robust simulation-optimization modeling system (RSOMS) is developed for supporting agricultural nonpoint source (NPS) effluent trading planning. The RSOMS can enhance effluent trading through incorporation of a distributed simulation model and an optimization model within its framework. The modeling system not only can handle uncertainties expressed as probability density functions and interval values but also deal with the variability of the second-stage costs that are above the expected level as well as capture the notion of risk under high-variability situations. A case study is conducted for mitigating agricultural NPS pollution with an effluent trading program in Xiangxi watershed. Compared with non-trading policy, trading scheme can successfully mitigate agricultural NPS pollution with an increased system benefit. Through trading scheme, [213.7, 288.8] × 10(3) kg of TN and [11.8, 30.2] × 10(3) kg of TP emissions from cropped area can be cut down during the planning horizon. The results can help identify desired effluent trading schemes for water quality management with the tradeoff between the system benefit and reliability being balanced and risk aversion being considered.

  14. Snowmelt Runoff: A New Focus of Urban Nonpoint Source Pollution

    PubMed Central

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-01-01

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing cosntitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control. PMID:23202881

  15. Snowmelt runoff: a new focus of urban nonpoint source pollution.

    PubMed

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-11-30

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing constitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control.

  16. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Dai, Ying; Zhi, Xiaosha; Xie, Hui; Shen, Zhenyao

    2018-04-01

    As two key threats to receiving water bodies, the generation mechanisms and processes of urban and agricultural nonpoint sources (NPSs) show clear differences, which lead to distinct characteristics of water quality responses with mixed land-uses catchments compared to single land-use ones. However, few studies have provided such insights in these characteristic or quantified different water environment responses to NPS pollution. In this study, an integrated modelling approach was developed for those complex catchments by combining three commonly used models: SWMM (Storm Water Management Model), SWAT (Soil and Water Assessment Tool) and MIKE 11. A case study was performed in a typical urban-rural catchment of Chao Lake, China. The simulated results indicated that urban NPS pollution responded sensitively to rainfall events and was greatly affected by the antecedent dry days. Compare to urban NPS, agricultural NPS pollution was characterized with the time-lag to rainfall depended on soil moisture and the post-rain-season emissions carried by lateral flows, and were also affected by the local farm-practice schedule. With comprehensive impacts from urban-rural land-uses, the time-interleaved urban and agricultural NPS pollution emissions and more abundant pollution accumulation both led to a decrease in the responsive time and an increase in the frequency of peak pollution concentration values even during the dry season. These obtained characteristics can provide guidance for drafting watershed management plans in similar mixed land use catchments.

  17. Reducing nonpoint source pollution through collaboration: policies and programs across the U.S. States.

    PubMed

    Hardy, Scott D; Koontz, Tomas M

    2008-03-01

    Nonpoint source (NPS) pollution has emerged as the largest threat to water quality in the United States, influencing policy makers and resource managers to direct more attention toward NPS prevention and remediation. In response, the United States Environmental Protection Agency (USEPA) spent more than $204 million in fiscal year (FY) 2006 on the Clean Water Act's Section 319 program to combat NPS pollution, much of it on the development and implementation of watershed-based plans. State governments have also increasingly allocated financial and technical resources to collaborative watershed efforts within their own borders to fight NPS pollution. With increased collaboration among the federal government, states, and citizens to combat NPS pollution, more information is needed to understand how public resources are being used, by whom, and for what, and what policy changes might improve effectiveness. Analysis from a 50-state study suggests that, in addition to the average 35% of all Section 319 funds per state that are passed on to collaborative watershed groups, 35 states have provided financial assistance beyond Section 319 funding to support collaborative watershed initiatives. State programs frequently provide technical assistance and training, in addition to financial resources, to encourage collaborative partnerships. Such assistance is typically granted in exchange for requirements to generate a watershed action plan and/or follow a mutually agreed upon work plan to address NPS pollution. Program managers indicated a need for greater fiscal resources and flexibility to achieve water quality goals.

  18. Factors affecting low summer dissolved oxygen concentrations in Mississippi Delta bayous

    USDA-ARS?s Scientific Manuscript database

    Streams in watersheds supporting intensive row-crop agriculture are vulnerable to ecological degradation due to non-point source discharge of pollutants such as nutrients. Low gradient streams such as bayous are especially susceptible due to increased water residence time, and often result in poor w...

  19. MODEL SIMULATION STUDIES OF SCALE-DEPENDENT GAIN IN STREAM NUTRIENT ASSIMILATIVE CAPACITY RESULTING FROM IMPROVING NUTRIENT RETENTION METRICS

    EPA Science Inventory

    Considering the difficulty in measuring restoration success for nonpoint source pollutants, nutrient assimilative capacity (NAS) offers an attractive systems-based metric. Here NAS was defined using an impulse-response model of nitrate fate and transport. Eleven parameters were e...

  20. HSPF Toolkit: a New Tool for Stormwater Management at the Watershed Scale

    EPA Science Inventory

    The Hydrological Simulation Program - FORTRAN (HSPF) is a comprehensive watershed model endorsed by US EPA for simulating point and nonpoint source pollutants. The model is used for developing total maximum daily load (TMDL) plans for impaired water bodies; as such, HSPF is the c...

  1. Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications

    EPA Science Inventory

    Nonpoint source pollution from agriculture and urbanization is increasing globally at the same time that climate extremes have increased in frequency and intensity. We review over 160 studies and show how the interaction between land use and climate variability alters the magnit...

  2. The Utilization of Edge-of-Field Monitoring of Agricultural Runoff in Addressing Nonpoint Source Pollution

    USDA-ARS?s Scientific Manuscript database

    While basin-scale studies and modeling are important tools in relating land uses to water quality concerns, edge-of-field monitoring (EOFM) provides the necessary resolution to spatially target, design, and evaluate in-field conservation practices for reducing nutrient and sediment loading from agri...

  3. Adopt-A-Stream Teacher's Guide for Grades K-12.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Natural Resources, Atlanta.

    This guide comprises materials largely drawn from existing environmental education materials. The four major subject areas discussed mirror the Adopt-A Stream activities and include watersheds, nonpoint source pollution, and biological and chemical monitoring of stream conditions. The activities in this guide are grouped according to grade levels.…

  4. REGIONAL-SCALE FISH ECOLOGY IN NORTHEASTERN USA LAKES USING A PROBABILITY-BASED SURVEY DESIGN

    EPA Science Inventory

    Historically, most fish ecology has been done at local scales. As these data accumulate, the need to set this knowledge into landscape, regional, and historical context grows. There are important broad-scale issues (e.g., non-point source pollution, biodiversity loss, alien spe...

  5. Wastewater Treatment and Reuse by Land Application, Volume I - Summary.

    ERIC Educational Resources Information Center

    Pound, Charles E.; Crites, Ronald W.

    This report is included in the Environmental Protection Agency's (EPA) environmental protection technology series which describes research performed to develop and demonstrate instrumentation, equipment and methodology to repair or prevent environmental degradation from point and non-point sources of pollution. This document is a summary of a…

  6. AN ACCURACY ASSESSMENT OF MULTIPLE MID-ATLANTIC SUB-PIXEL IMPERVIOUS SURFACE MAPS

    EPA Science Inventory

    Anthropogenic impervious surfaces have an important relationship with non-point source pollution (NPS) in urban watersheds. The amount of impervious surface area in a watershed is a key indicator of landscape change. As a single variable, it serves to integrate a number of conc...

  7. SWAT: Agricultural water and nonpoint source pollution management at a watershed scale - Part II

    USDA-ARS?s Scientific Manuscript database

    Global change and demographic changes increasingly cause water, food, and health problems in many areas of the world. In addition, the growth in bioenergy production leads to land-use change and associated environmental impacts. The lack of integration in resource assessments and policy-making leads...

  8. SWAT: Agricultural water and nonpoint source pollution management at a watershed scale

    USDA-ARS?s Scientific Manuscript database

    Global change and demographic changes increasingly cause water, food, and health problems in many areas of the world. In addition, the growth in bioenergy production leads to land-use change and associated environmental impacts. The lack of integration in resource assessments and policy-making leads...

  9. EXPLORING THE PERFORMANCE OF AMBIENT-BASED POLICY INSTRUMENTS WHEN NON-POINT SOURCE POLLUTERS CAN COOPERATE. (R830989)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Comparison of enterococci and cow-specific qPAR markers in streams impacted by farms under different management practices

    EPA Science Inventory

    Nonpoint Sources (NPS) of pollution (e.g., agriculture, wildlife, urban runoff) are major contributors of microbial contaminants to surface waters. However, little is known about the behavior and the effect of environmental determinants on molecular markers of fecal contamination...

  11. USING LANDSCAPE ECOLOGY AND PARTIAL LEAST SQUARES PREDICTIONS TO MAP WATERSHEDS THAT ARE VULNERABLE TO NON-POINT SOURCE POLLUTION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Office of Research and Development have mapped and interpreted landscape-scale (i.e., broad scale) ecological metrics among watersheds in the upper White River watershed, producing the first geospatial models of water quality vulnerabili...

  12. Decreasing phosphorus loss in tile-drained landscapes using flue gas desulfurization gypsum

    USDA-ARS?s Scientific Manuscript database

    Elevated phosphorus (P) loading from agricultural non-point source pollution continues to impair inland waterbodies throughout the world. The application of flue gas desulfurization (FGD) gypsum to agricultural fields has been suggested to decrease P loading because of its high calcium content and P...

  13. 40 CFR Appendix E to Part 122 - Rainfall Zones of the United States

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Appendix E to Part 122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Pt. 122, App. E... Protection Agency, Office of Water, Nonpoint Source Division, Washington, DC, 1986. [55 FR 48073, Nov. 16...

  14. 40 CFR Appendix E to Part 122 - Rainfall Zones of the United States

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Appendix E to Part 122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Pt. 122, App. E... Protection Agency, Office of Water, Nonpoint Source Division, Washington, DC, 1986. [55 FR 48073, Nov. 16...

  15. Nitrous Oxide Emissions from Riparian Forest Buffers, Warm-Season and Cool-Season Grass Filters, and Crop Fields

    USDA-ARS?s Scientific Manuscript database

    Increasing denitrification rates in riparian buffers may be trading the problem of nonpoint source (NPS) pollution of surface waters for atmospheric deterioration and increased global warming potential because denitrification produces nitrous oxide (N2O), a greenhouse gas also involved in stratosphe...

  16. Influence of the South-to-North Water Transfer and the Yangtze River Mitigation Projects on the water quality of Han River, China

    NASA Astrophysics Data System (ADS)

    Liu, W.; Kuo, Y. M.

    2016-12-01

    The Middle Route of China's South-to-North Water Transfer (MSNW) and Yangtze-Han River Water Diversion (YHWD) Projects have been operated since 2014, which may deteriorate water quality in Han River. The 11 water sampling sites distributed from the middle and down streams of Han River watershed were monitored monthly between July 2014 and December 2015. Factor analysis and cluster analysis were applied to investigate the major pollution types and main variables influencing water quality in Han River. The factor analysis distinguishes three main pollution types (agricultural nonpoint source, organic, and phosphorus point source pollution) affecting water quality of Han River. Cluster analysis classified all sampling sites into four groups and determined their pollution source for both Dry and Wet seasons. The sites located at central city receive point source pollution in both seasons. The water quality in downstream Han River (excluding central city sites) was influenced by nonpoint source pollution from Jianghan Plain. Variations of water qualities are associated with hydrological conditions varied from operations of engineering projects and seasonal variability especially in Dry season. Good water quality as Class III mainly occurred when flow rate is greater than 800 cms in Dry season. The low average flow rate below 583 cms will degrade water quality as Class V at almost all sites. Elevating the flow rate discharged from MSNW and YHWD Projects to Han River can avoid degrading water quality especially in low flow conditions and may decrease the probability of algal bloom occurrence in Han River. Increasing the flow rate from 400 cms to 700 cms in main Han River can obviously improve the water quality of Han River. The investigation of relationships between water quality and flow rate in both projects can provide management strategies of water quality for various flow conditions.

  17. A pollutant load hierarchical allocation method integrated in an environmental capacity management system for Zhushan Bay, Taihu Lake.

    PubMed

    Liang, Shidong; Jia, Haifeng; Yang, Cong; Melching, Charles; Yuan, Yongping

    2015-11-15

    An environmental capacity management (ECM) system was developed to help practically implement a Total Maximum Daily Load (TMDL) for a key bay in a highly eutrophic lake in China. The ECM system consists of a simulation platform for pollutant load calculation and a pollutant load hierarchical allocation (PLHA) system. The simulation platform was developed by linking the Environmental Fluid Dynamics Code (EFDC) and Water Quality Analysis Simulation Program (WASP). In the PLHA, pollutant loads were allocated top-down in several levels based on characteristics of the pollutant sources. Different allocation methods could be used for the different levels with the advantages of each method combined over the entire allocation. Zhushan Bay of Taihu Lake, one of the most eutrophic lakes in China, was selected as a case study. The allowable loads of total nitrogen, total phosphorus, ammonia, and chemical oxygen demand were found to be 2122.2, 94.9, 1230.4, and 5260.0 t·yr(-1), respectively. The PLHA for the case study consists of 5 levels. At level 0, loads are allocated to those from the lakeshore direct drainage, atmospheric deposition, internal release, and tributary inflows. At level 1 the loads allocated to tributary inflows are allocated to the 3 tributaries. At level 2, the loads allocated to one inflow tributary are allocated to upstream areas and local sources along the tributary. At level 3, the loads allocated to local sources are allocated to the point and non-point sources from different towns. At level 4, the loads allocated to non-point sources in each town are allocated to different villages. Compared with traditional forms of pollutant load allocation methods, PLHA can combine the advantages of different methods which put different priority weights on equity and efficiency, and the PLHA is easy to understand for stakeholders and more flexible to adjust when applied in practical cases. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Agricultural pollution control under Spanish and European environmental policies

    NASA Astrophysics Data System (ADS)

    MartíNez, Yolanda; Albiac, José

    2004-10-01

    Nonpoint pollution from agriculture is an important environmental policy issue in Spain and the European Union. Agricultural pollution in Spain is being addressed by the National Irrigation Plan and by the European Water Framework Directive. This article contributes to the ongoing policy decision process by analyzing nonpoint pollution control and presenting results on the efficiency of abatement measures. Results question the reliance of the Water Framework Directive on water pricing as a pollution instrument for reaching good status for all waters because higher water prices close to full recovery cost advocated by the directive appear to be inefficient as an emission control instrument. Another important result is that abatement measures based on input taxes and standards on nitrogen appear to be more suitable than the National Irrigation Plan subsidies designed to promote irrigation investments. The results also contribute with further evidence to the discussion on the appropriate instrument base for pollution control, proving that nonpoint pollution control instruments cannot be assessed accurately without a correct understanding of the key underlying biophysical processes. Nonpoint pollution is characterized by nonlinearities, dynamics, and spatial dependency, and neglect of the dynamic aspects may lead to serious consequences for the design of measures. Finally, a quantitative assessment has been performed to explore discriminating measures based on crop pollution potential on vulnerable soils. No significant welfare gains are found from discriminating control, although results are contingent upon the level of damage, and discrimination could be justified in areas with valuable ecosystems and severe pollution damages.

  19. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution.

    PubMed

    Zhang, Xuyang; Liu, Xingmei; Zhang, Minghua; Dahlgren, Randy A; Eitzel, Melissa

    2010-01-01

    Vegetated buffers are a well-studied and widely used agricultural management practice for reducing nonpoint-source pollution. A wealth of literature provides experimental data on their mitigation efficacy. This paper aggregated many of these results and performed a meta-analysis to quantify the relationships between pollutant removal efficacy and buffer width, buffer slope, soil type, and vegetation type. Theoretical models for removal efficacy (Y) vs. buffer width (w) were derived and tested against data from the surveyed literature using statistical analyses. A model of the form Y = K x (1-e(-bxw)), (0 < K < or = 100) successfully captured the relationship between buffer width and pollutant removal, where K reflects the maximum removal efficacy of the buffer and b reflects its probability to remove any single particle of pollutant in a unit distance. Buffer width alone explains 37, 60, 44, and 35% of the total variance in removal efficacy for sediment, pesticides, N, and P, respectively. Buffer slope was linearly associated with sediment removal efficacy either positively (when slope < or = 10%) or negatively (when slope > 10%). Buffers composed of trees have higher N and P removal efficacy than buffers composed of grasses or mixtures of grasses and trees. Soil drainage type did not show a significant effect on pollutant removal efficacy. Based on our analysis, a 30-m buffer under favorable slope conditions (approximately 10%) removes more than 85% of all the studied pollutants. These models predicting optimal buffer width/slope can be instrumental in the design, implementation, and modeling of vegetated buffers for treating agricultural runoff.

  20. Integrated watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability.

    PubMed

    Ghebremichael, Lula T; Veith, Tamie L; Hamlett, James M

    2013-01-15

    Quantitative risk assessments of pollution and data related to the effectiveness of mitigating best management practices (BMPs) are important aspects of nonpoint source pollution control efforts, particularly those driven by specific water quality objectives and by measurable improvement goals, such as the total maximum daily load (TMDL) requirements. Targeting critical source areas (CSAs) that generate disproportionately high pollutant loads within a watershed is a crucial step in successfully controlling nonpoint source pollution. The importance of watershed simulation models in assisting with the quantitative assessments of CSAs of pollution (relative to their magnitudes and extents) and of the effectiveness of associated BMPs has been well recognized. However, due to the distinct disconnect between the hydrological scale in which these models conduct their evaluation and the farm scale at which feasible BMPs are actually selected and implemented, and due to the difficulty and uncertainty involved in transferring watershed model data to farm fields, there are limited practical applications of these tools in the current nonpoint source pollution control efforts by conservation specialists for delineating CSAs and planning targeting measures. There are also limited approaches developed that can assess impacts of CSA-targeted BMPs on farm productivity and profitability together with the assessment of water quality improvements expected from applying these measures. This study developed a modeling framework that integrates farm economics and environmental aspects (such as identification and mitigation of CSAs) through joint use of watershed- and farm-scale models in a closed feedback loop. The integration of models in a closed feedback loop provides a way for environmental changes to be evaluated with regard to the impact on the practical aspects of farm management and economics, adjusted or reformulated as necessary, and revaluated with respect to effectiveness of environmental mitigation at the farm- and watershed-levels. This paper also outlines steps needed to extract important CSA-related information from a watershed model to help inform targeting decisions at the farm scale. The modeling framework is demonstrated with two unique case studies in the northeastern United States (New York and Vermont), with supporting data from numerous published, location-specific studies at both the watershed and farm scales. Using the integrated modeling framework, it can be possible to compare the costs (in terms of changes required in farm system components or financial compensations for retiring crop lands) and benefits (in terms of measurable water quality improvement goals) of implementing targeted BMPs. This multi-scale modeling approach can be used in the multi-objective task of mitigating CSAs of pollution to meet water quality goals while maintaining farm-level economic viability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. An export coefficient based inexact fuzzy bi-level multi-objective programming model for the management of agricultural nonpoint source pollution under uncertainty

    NASA Astrophysics Data System (ADS)

    Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Yue, Wencong; Tan, Qian

    2018-02-01

    In this research, an export coefficient based inexact fuzzy bi-level multi-objective programming (EC-IFBLMOP) model was developed through integrating export coefficient model (ECM), interval parameter programming (IPP) and fuzzy parameter programming (FPP) within a bi-level multi-objective programming framework. The proposed EC-IFBLMOP model can effectively deal with the multiple uncertainties expressed as discrete intervals and fuzzy membership functions. Also, the complexities in agricultural systems, such as the cooperation and gaming relationship between the decision makers at different levels, can be fully considered in the model. The developed model was then applied to identify the optimal land use patterns and BMP implementing levels for agricultural nonpoint source (NPS) pollution management in a subcatchment in the upper stream watershed of the Miyun Reservoir in north China. The results of the model showed that the desired optimal land use patterns and implementing levels of best management of practices (BMPs) would be obtained. It is the gaming result between the upper- and lower-level decision makers, when the allowable discharge amounts of NPS pollutants were limited. Moreover, results corresponding to different decision scenarios could provide a set of decision alternatives for the upper- and lower-level decision makers to identify the most appropriate management strategy. The model has a good applicability and can be effectively utilized for agricultural NPS pollution management.

  2. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    PubMed

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution.

  3. Point-nonpoint effluent trading in watersheds: A review and critique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvie, M.; Solomon, B.

    1998-03-01

    The 1990s have been characterized as the decade of market incentives in US environmental policy-making. Not only is their use expanding for air pollution control, but the US Environmental Protection Agency is now also encouraging the use of market instruments for control of effluents within watersheds. After reviewing general guidelines and principles for effluent trading, this study considers the special problems of point-nonpoint (p-n) sources, the most common focus of effluent trading to date. Four case studies of p-n trading are discussed, which illustrate the promise of the policy. Although only two of these four case study programs have involvedmore » actual effluent trades thus far, they all have resulted in more cost-effective reductions of water pollution. Overall use of effluent trading to date has been modest, and suggestions are made for improvement of this innovative policy.« less

  4. Factor analysis and cluster analysis applied to assess the water quality of middle and lower Han River in Central China

    NASA Astrophysics Data System (ADS)

    Kuo, Yi-Ming; Liu, Wen-Wen

    2015-04-01

    The Han River basin is one of the most important industrial and grain production bases in the central China. A lot of factories and towns have been established along the river where large farmlands are located nearby. In the last few decades the water quality of the Han River, specifically in middle and lower reaches, has gradually declined. The agricultural nonpoint pollution and municipal and industrial point pollution significantly degrade the water quality of the Han River. Factor analysis can be applied to reduce the dimensionality of a data set consisting of a large number of inter-related variables. Cluster analysis can classify the samples according to their similar characters. In this study, factor analysis is used to identify major pollution indicators, and cluster analysis is employed to classify the samples based on the sample locations and hydrochemical variables. Water samples were collected from 12 sample sites collected from Xiangyang City (middle Han River) to Wuhan City (lower Han River). Correlations among 25 hydrochemical variables are statistically examined. The important pollutants are determined by factor analysis. A three-factor model is determined and explains over 85% of the total river water quality variation. Factor 1, including SS, Chl-a, TN and TP, can be considered as the nonpoint source pollution. Factor 2, including Cl-, Br-, SO42-, Ca2+, Mg2+, K+, Fe2+ and PO43-, can be treated as the industrial pollutant pollution. Factor 3, including F- and NO3-, reflects the influence of the groundwater or self-purification capability of the river water. The various land uses along the Han River correlate well with the pollution types. In addition, the result showed that the water quality of Han River deteriorated gradually from middle to lower Han River. Some tributaries have been seriously polluted and significantly influence the mainstream water quality of the Han River. Finally, the result showed that the nonpoint pollution and the point pollution both significantly influence water quality in the middle and lower Han River. This study provides an effective method for watershed management and pollution control in Han River.

  5. Suspended sediment impact on chlorophyll a, nitrogen and phosphorus relationships in Moon Lake, MS

    USDA-ARS?s Scientific Manuscript database

    Moon Lake, MS is a 947 ha. oxbow lake of the Mississippi River Alluvial Plain also known as the Mississippi Delta. Water was sampled from five sites, bi-weekly from 1982 to 1985. Analysis of surface water quality reviled loading of nutrients from nonpoint source pollution associated with agricultu...

  6. Idaho forestry best management practices: Compilation of research on their effectiveness

    Treesearch

    Kathleen A. Seyedbagheri

    1996-01-01

    A search was conducted for quantitative Idaho research results on the effectiveness of the Idaho Forest Practices Act rules and regulations pertaining to timber harvest and forest road construction and maintenance. These rules and regulations are designated as the "best management practices" for the prevention of nonpoint source pollution from silviculture...

  7. Managing grazing of riparian areas in the Intermountain Region

    Treesearch

    Warren P. Clary; Bert F. Webster

    1989-01-01

    Concern about livestock grazing in riparian habitats and its effect upon riparian-dependent resources has resulted in numerous controversies about the appropriate management approach. This document provides guidance for grazing of riparian areas in a manner that should reduce both nonpoint source pollution and potential grazing impacts on other riparian-dependent...

  8. Evaluation of Water Quality Trends in Goodwater Creek Experimental Watershed, Missouri: Implications for Monitoring Strategies and Objective Setting

    USDA-ARS?s Scientific Manuscript database

    Continued public support for U.S. tax-payer funded programs aimed at reducing agricultural non-point source pollutants depends on clear demonstrations of water quality improvements. Effectiveness of structural BMPs, as well as watershed monitoring networks is an important information need to make f...

  9. Hydrologic processes of forested headwater watersheds across a physiographaic gradient in the southeastern United States

    Treesearch

    Ge Sun; Johnny Boggs; Steven G. McNulty; Devendra M. Amatya; Carl C. Trettin; Zhaohua Dai; James M. Vose; Ileana B. La Torre Torres; Timothy Callahan

    2008-01-01

    Understanding the hydrologic processes is the first step in making sound watershed management decisions including designing Best Management Practices for nonpoint source pollution control. Over the past fifty years, various forest experimental watersheds have been instrumented across the Carolinas through collaborative studies among federal, state, and private...

  10. Fact sheets and slides summarizing Soil and Water Assessment Tool (SWAT) and Integrated Farm Systems Model (IFSM)

    USDA-ARS?s Scientific Manuscript database

    Water quality models address nonpoint source pollution from agricultural land at a range of scales and complexities and involve a variety of input parameters. It is often difficult for conservationists and stakeholders to understand and reconcile water quality results from different models. However,...

  11. Managing Water Quality in Wetlands with Foresty BMP's

    Treesearch

    Bob Rummer

    2004-01-01

    Forested wetlands are uniquely critical areas in forest operations that present special challenges to protect water quality. These locations are a direct interface between the impacts of forest operations and water. BMP's are designed to minimize nonpoint source pollution, but much of the science behind current guidelines is based on an understanding of erosion...

  12. Potential water yield reduction due to forestation across China

    Treesearch

    Ge Sun; Guoyi Zhou; Zhiqiang Zhang; Xiaohua Wei; Steven G. McNulty; James M. Vose

    2006-01-01

    It is widely recognized that vegetation restoration will have positive effects on watershed health by reducing soil erosion and non-point source pollution, enhancing terrestrial and aquatic habitat, and increasing ecosystem carbon sequestration. However, the hydrologic consequences of forestation on degraded lands are not well studied in the forest hydrology community...

  13. 77 FR 39949 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... Florida may be interested in this rulemaking. Entities discharging nitrogen or phosphorus to lakes and..., such as nonpoint source contributors to nitrogen/phosphorus pollution in Florida's waters may be... numeric nutrient criteria in the form of total nitrogen, total phosphorus, nitrate+nitrite, and...

  14. DEVELOPMENT OF LANDSCAPE INDICATORS FOR USE IN REGIONAL ECOLOGICAL RISK ASSESSMENTS

    EPA Science Inventory

    There is a growing need for cost effective ways to assess conditions of and risks to ecological resources at a variety of scales over broad regions. Indicators, models and assessment tools are needed to evaluate water bodies at risk to non-point source pollution and to be able t...

  15. Determining volume sensitive waters in Beaufort County, SC tidal creeks

    Treesearch

    Andrew Tweel; Denise Sanger; Anne Blair; John Leffler

    2016-01-01

    Non-point source pollution from stormwater runoff associated with large-scale land use changes threatens the integrity of ecologically and economically valuable estuarine ecosystems. Beaufort County, SC implemented volume-based stormwater regulations on the rationale that if volume discharge is controlled, contaminant loading will also be controlled.

  16. Use of modified pine bark for removal of pesticides from stormwater runoff

    Treesearch

    Mandla A. Tshabalala

    2003-01-01

    Pesticide entrainment in stormwater runoff can contribute to non-point source pollution of surface waters. Granular activated carbon has been successfully used for removing pesticides from wastewater. However, implementation of granular activated carbon sorption media in stormwater filtration systems comes with high initial capital investment and operating costs....

  17. 40 CFR 125.64 - Effect of the discharge on other point and nonpoint sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Effect of the discharge on other point... (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Criteria for Modifying the Secondary Treatment Requirements Under Section 301(h) of the Clean Water Act...

  18. 40 CFR 125.64 - Effect of the discharge on other point and nonpoint sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Effect of the discharge on other point... (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Criteria for Modifying the Secondary Treatment Requirements Under Section 301(h) of the Clean Water Act...

  19. 40 CFR 125.64 - Effect of the discharge on other point and nonpoint sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Effect of the discharge on other point... (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Criteria for Modifying the Secondary Treatment Requirements Under Section 301(h) of the Clean Water Act...

  20. 40 CFR 125.64 - Effect of the discharge on other point and nonpoint sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Effect of the discharge on other point... (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Criteria for Modifying the Secondary Treatment Requirements Under Section 301(h) of the Clean Water Act...

  1. 40 CFR 125.64 - Effect of the discharge on other point and nonpoint sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Effect of the discharge on other point... (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Criteria for Modifying the Secondary Treatment Requirements Under Section 301(h) of the Clean Water Act...

  2. a long, long time ago...

    Treesearch

    Elliot West; Greg Ruark

    2004-01-01

    Riparian areas - lang adjacent to a streambank or other water body - filtering nonpoint source pollution. Unfortunately the riparian areas of today, include only narrow bands of forests, or no woody vegetation. This greatly minimizes their ecological function. In deciding how to manage these areas, knowing the natural riparian makeup before humans settled in the area...

  3. Quantitative Assessment of Temperature Sensitivity of the South Fork Nooksack River under Future Climates using QUAL2Kw

    EPA Science Inventory

    The Total Maximum Daily Load (TMDL) program, established by the Clean Water Act, is used to establish limits on loading of pollutants from point and nonpoint sources necessary to achieve water quality standards. One important use of a temperature TMDL is to allocate thermal loads...

  4. ASSESSING THE RELATIVE AND COMBINED IMPACTS OF FUTURE LAND-USE AND CLIMATE CHANGES ON NONPOINT SOURCE POLLUTION

    EPA Science Inventory

    In this paper, we discuss the potential water quality impacts of future land-use and climate changes. The Little Miami River Basin was used as a case study. It is a predominantly agricultural watershed in southwestern Ohio (U.S.A.) that has experienced land-use modifications. ...

  5. 76 FR 33753 - Modification of the Expiration Date for the National Pollutant Discharge Elimination System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Stormwater and Nonpoint Source Section, Water Protection Division, Environmental Protection Agency, Region 4.../region4/water/permits/stormwater.html . C. How and to whom do I submit comments? You may submit comments... earlier. II. Background of Permit A. Statutory and Regulatory History The Clean Water Act (CWA...

  6. Analysis of microbial populations, denitrification, and nitrous oxide production in riparian buffers

    USDA-ARS?s Scientific Manuscript database

    Riparian buffers are used extensively to protect water bodies from nonpoint source nitrogen pollution. However there is relatively little information on the impact of these buffers on production of nitrous oxide (N2O). In this study, we assessed nitrous oxide production in riparian buffers of the so...

  7. The Art and Science of Rain Barrels: A Service Learning Approach to Youth Watershed Action

    ERIC Educational Resources Information Center

    Rector, Patricia; Lyons, Rachel; Yost, Theresa

    2013-01-01

    Using an interdisciplinary approach to water resource education, 4-H Youth Development and Environmental Extension agents enlisted 4-H teens to connect local watershed education with social action. Teens participated in a dynamic service learning project that included learning about nonpoint source pollution; constructing, decorating, and teaching…

  8. A repeated-measures study of recreational water exposure, non-point source pollution, and risk of illness

    EPA Science Inventory

    Discharge of stormwater runoff onto beaches is a major cause of beach closings and advisories in the United States. Prospective studies of recreational water quality and health have often been limited to two time points (baseline and follow-up). Little is known about the risk of ...

  9. USING LANDSCAPE ECOLOGY AND PARTIAL LEAST SQUARES PREDICITIONS TO MAP WATERSHEDS THAT ARE VULNERABLE TO NON-POINT SOURCE POLLUTION

    EPA Science Inventory

    The U.S. Environmental Protection Agency¿s Office of Research and Development have mapped and interpreted landscape-scale (i.e., broad scale) ecological metrics among watersheds in the upper White River watershed, producing the first geospatial models of water quality vulnerabili...

  10. Water quality and shellfish sanitation. [Patuxent and Choptank River watersheds

    NASA Technical Reports Server (NTRS)

    Eisenberg, M.

    1978-01-01

    The use of remote sensing techniques for collecting bacteriological, physical, and chemical water quality data, locating point and nonpoint sources of pollution, and developing hydrological data was found to be valuable to the Maryland program if it could be produced effectively and rapidly with a minimum amount of ground corroboration.

  11. Assessing the effects of rural livelihood transition on non-point source pollution: a coupled ABM-IECM model.

    PubMed

    Yuan, Chengcheng; Liu, Liming; Ye, Jinwei; Ren, Guoping; Zhuo, Dong; Qi, Xiaoxing

    2017-05-01

    Water pollution caused by anthropogenic activities and driven by changes in rural livelihood strategies in an agricultural system has received increasing attention in recent decades. To simulate the effects of rural household livelihood transition on non-point source (NPS) pollution, a model combining an agent-based model (ABM) and an improved export coefficient model (IECM) was developed. The ABM was adopted to simulate the dynamic process of household livelihood transition, and the IECM was employed to estimate the effects of household livelihood transition on NPS pollution. The coupled model was tested in a small catchment in the Dongting Lake region, China. The simulated results reveal that the transition of household livelihood strategies occurred with the changes in the prices of rice, pig, and labor. Thus, the cropping system, land-use intensity, resident population, and number of pigs changed in the small catchment from 2000 to 2014. As a result of these changes, the total nitrogen load discharged into the river initially increased from 6841.0 kg in 2000 to 8446.3 kg in 2004 and then decreased to 6063.9 kg in 2014. Results also suggest that rural living, livestock, paddy field, and precipitation alternately became the main causes of NPS pollution in the small catchment, and the midstream region of the small catchment was the primary area for NPS pollution from 2000 to 2014. Despite some limitations, the coupled model provides an innovative way to simulate the effects of rural household livelihood transition on NPS pollution with the change of socioeconomic factors, and thereby identify the key factors influencing water pollution to provide valuable suggestions on how agricultural environmental risks can be reduced through the regulation of the behaviors of farming households in the future.

  12. A comprehensive evaluation of input data-induced uncertainty in nonpoint source pollution modeling

    NASA Astrophysics Data System (ADS)

    Chen, L.; Gong, Y.; Shen, Z.

    2015-11-01

    Watershed models have been used extensively for quantifying nonpoint source (NPS) pollution, but few studies have been conducted on the error-transitivity from different input data sets to NPS modeling. In this paper, the effects of four input data, including rainfall, digital elevation models (DEMs), land use maps, and the amount of fertilizer, on NPS simulation were quantified and compared. A systematic input-induced uncertainty was investigated using watershed model for phosphorus load prediction. Based on the results, the rain gauge density resulted in the largest model uncertainty, followed by DEMs, whereas land use and fertilizer amount exhibited limited impacts. The mean coefficient of variation for errors in single rain gauges-, multiple gauges-, ASTER GDEM-, NFGIS DEM-, land use-, and fertilizer amount information was 0.390, 0.274, 0.186, 0.073, 0.033 and 0.005, respectively. The use of specific input information, such as key gauges, is also highlighted to achieve the required model accuracy. In this sense, these results provide valuable information to other model-based studies for the control of prediction uncertainty.

  13. Impact of changes in labor resources and transfers of land use rights on agricultural non-point source pollution in Jiangsu Province, China.

    PubMed

    Lu, Hua; Xie, Hualin

    2018-02-01

    This study systematically explores the likely mechanisms driving the effect of the transfer of agricultural land use rights (ALURs) on agricultural non-point source pollution (ANSP) in the context of changing agricultural labor resources. It quantitatively estimates the direction and degree of this influence from a microeconomic perspective using data from rural households. The results reveal that economies of scale caused by ALURs transfers contribute to reducing both the ANSP and marginal costs of inputs. Changes in agricultural labor resources lead to reductions in agricultural labor supply and negatively impact on ANSP. Encouraging farmers to participate in ALURs transfers, therefore, helps to reduce ANSP. The government and related departments should implement policies that support farmers who decide to rent an entire village's land or the adjacent land to achieve economies of scale. Accelerating the development of small farm machinery that is suitable for smaller farm plots and the elderly can serve to reduce the use of chemical fertilizer and promote green production and sustainable agricultural development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A prototype for understanding the effects of TMDL standards: Tying property values to sediment loads in the Lake Tahoe Basin

    USGS Publications Warehouse

    Tracy, J.C.; Bernknopf, R.; Forney, W.; Hill, K.

    2004-01-01

    The Federal Clean Water Act (Section 303(d)) mandates that states develop Total Maximum Daily Load (TMDL) plans for water bodies that are on the Section 303(d) list. To be placed on the 303(d) list, a water body must be found to have water quality conditions that limit its ability to meet its designated beneficial uses. The TMDL for a water body is defined in 40 CFR 130 as the sum of waste load allocations from identified points sources and non-point sources within the water body's watershed. The TMDL plan for a listed water body should identify the current waste loads to the water body, the waste load capacity of the water body and then allocate the waste load capacity to the known point and non-point sources of pollution within the water body's watershed. Copyright 2004 ASCE.

  15. Development of Load Duration Curve System in Data Scarce Watersheds Based on a Distributed Hydrological Model

    NASA Astrophysics Data System (ADS)

    WANG, J.

    2017-12-01

    In stream water quality control, the total maximum daily load (TMDL) program is very effective. However, the load duration curves (LDC) of TMDL are difficult to be established because no sufficient observed flow and pollutant data can be provided in data-scarce watersheds in which no hydrological stations or consecutively long-term hydrological data are available. Although the point sources or a non-point sources of pollutants can be clarified easily with the aid of LDC, where does the pollutant come from and to where it will be transported in the watershed cannot be traced by LDC. To seek out the best management practices (BMPs) of pollutants in a watershed, and to overcome the limitation of LDC, we proposed to develop LDC based on a distributed hydrological model of SWAT for the water quality management in data scarce river basins. In this study, firstly, the distributed hydrological model of SWAT was established with the scarce-hydrological data. Then, the long-term daily flows were generated with the established SWAT model and rainfall data from the adjacent weather station. Flow duration curves (FDC) was then developed with the aid of generated daily flows by SWAT model. Considering the goal of water quality management, LDC curves of different pollutants can be obtained based on the FDC. With the monitored water quality data and the LDC curves, the water quality problems caused by the point or non-point source pollutants in different seasons can be ascertained. Finally, the distributed hydrological model of SWAT was employed again to tracing the spatial distribution and the origination of the pollutants of coming from what kind of agricultural practices and/or other human activities. A case study was conducted in the Jian-jiang river, a tributary of Yangtze river, of Duyun city, Guizhou province. Results indicate that this kind of method can realize the water quality management based on TMDL and find out the suitable BMPs for reducing pollutant in a watershed.

  16. Spatio-temporal variation of erosion-type non-point source pollution in a small watershed of hilly and gully region, Chinese Loess Plateau.

    PubMed

    Wu, Lei; Liu, Xia; Ma, Xiao-Yi

    2016-06-01

    Loss of nitrogen and phosphorus in the hilly and gully region of Chinese Loess Plateau not only decreases the utilization rate of fertilizer but also is a potential threat to aquatic environments. In order to explore the process of erosion-type non-point source (NPS) pollution in Majiagou watershed of Loess Plateau, a distributed, dynamic, and integrated NPS pollution model was established to investigate impacts of returning farmland on erosion-type NPS pollution load from 1995 to 2012. Results indicate that (1) the integrated model proposed in this study was verified to be reasonable; the general methodology is universal and can be applicable to the hilly and gully region, Loess Plateau; (2) the erosion-type NPS total nitrogen (TN) and total phosphorus (TP) load showed an overall decreasing trend; the average nitrogen and phosphorus load modulus in the last four years (2009-2012) were 1.23 and 1.63 t/km(2) · a, respectively, which were both decreased by about 35.4 % compared with the initial treatment period (1995-1998); and (3) The spatial variations of NPS pollution are closely related to spatial characteristics of rainfall, topography, and soil and land use types; the peak regions of TN and TP loss mainly occurred along the main river banks of the Yanhe River watershed from northeast to southeast, and gradually decreased with the increase of distance to the left and right river banks, respectively. Results may provide scientific basis for the watershed-scale NPS pollution control of the Loess Plateau.

  17. Interpolating precipitation and its relation to runoff and non-point source pollution.

    PubMed

    Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L

    2005-01-01

    When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.

  18. Agricultural non-point source pollution management in a reservoir watershed based on ecological network analysis of soil nitrogen cycling.

    PubMed

    Xu, Wen; Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Li, Chunhui; Wang, Xuan

    2018-03-01

    The Miyun Reservoir plays a pivotal role in providing drinking water for the city of Beijing. In this research, ecological network analysis and scenario analysis were integrated to explore soil nitrogen cycling of chestnut and Chinese pine forests in the upper basin of the Miyun Reservoir, as well as to seek favorable fertilization modes to reduce agricultural non-point source pollution. Ecological network analysis results showed that (1) the turnover time was 0.04 to 0.37 year in the NH 4 + compartment and were 15.78 to 138.36 years in the organic N compartment; (2) the Finn cycling index and the ratio of indirect to direct flow were 0.73 and 11.92 for the chestnut forest model, respectively. Those of the Chinese pine forest model were 0.88 and 29.23, respectively; and (3) in the chestnut forest model, NO 3 - accounted for 96% of the total soil nitrogen loss, followed by plant N (2%), NH 4 + (1%), and organic N (1%). In the Chinese pine forest, NH 4 + accounted for 56% of the total soil nitrogen loss, followed by organic N (34%) and NO 3 - (10%). Fertilization mode was identified as the main factor affecting soil N export. To minimize NH 4 + and NO 3 - outputs while maintaining the current plant yield (i.e., 7.85e0 kg N/year), a fertilization mode of 162.50 kg N/year offered by manure should be adopted. Whereas, to achieve a maximum plant yield (i.e., 3.35e1 kg N/year) while reducing NH 4 + and NO 3 - outputs, a fertilization mode of 325.00 kg N/year offered by manure should be utilized. This research is of wide suitability to support agricultural non-point source pollution management at the watershed scale.

  19. Determination of first flush criteria using dynamic EMCs (event mean concentrations) on highway stormwater runoff.

    PubMed

    Kim, L H; Jeong, S M; Ko, S O

    2007-01-01

    Recently the Ministry of Environment in Korea has developed the total maximum daily load program in accordance with the target pollutant and its concentration goal on four major large rivers. Since the program is largely related to regional development, nonpoint source control is both important and topical. Of the various nonpoint sources, highways are stormwater intensive land uses since they are impervious and have high pollutant mass emissions from vehicular activity. The event mean concentration (EMC) is useful in estimating the loadings to receiving water bodies. However, the EMC does not provide information on the time varying changes in pollutant concentration or mass emissions, which are often important for best management practice development, or understanding shock loads. Therefore, in this study a new concept, the dynamic EMC determination method, will be introduced to clearly verify the relationship between EMC and the first flush effect. Three monitoring sites in Daejeon metropolitan city areas were equipped with an automatic rainfall gauge and a flow meter for accumulating the data such as rainfall and runoff flow. The dynamic EMC method was applied to more than 17 events, and the improved first flush criteria were determined on the ranges of storm duration and accumulated rainfall.

  20. Eutrophication assessment and management methodology of multiple pollution sources of a landscape lake in North China.

    PubMed

    Chen, Yanxi; Niu, Zhiguang; Zhang, Hongwei

    2013-06-01

    Landscape lakes in the city suffer high eutrophication risk because of their special characters and functions in the water circulation system. Using a landscape lake HMLA located in Tianjin City, North China, with a mixture of point source (PS) pollution and non-point source (NPS) pollution, we explored the methodology of Fluent and AQUATOX to simulate and predict the state of HMLA, and trophic index was used to assess the eutrophication state. Then, we use water compensation optimization and three scenarios to determine the optimal management methodology. Three scenarios include ecological restoration scenario, best management practices (BMPs) scenario, and a scenario combining both. Our results suggest that the maintenance of a healthy ecosystem with ecoremediation is necessary and the BMPs have a far-reaching effect on water reusing and NPS pollution control. This study has implications for eutrophication control and management under development for urbanization in China.

  1. Inferring nutrient loading of estuarine systems by remote sensing of aquatic vegetation

    NASA Technical Reports Server (NTRS)

    Anderson, R. R.

    1978-01-01

    THe use of remote sensing to record algal and vascular aquatic plant growths in estuarine waters is discussed. A technique is proposed that uses a combination of data to hierarchically classify watersheds with regard to severity of potential pollution. Specific nonpoint sources of nutrients in tributaries of the watershed are identified with lower altitude photography of vegetation and selected ground sampling. It is concluded that excessive growths of some aquatic plants may be related to nutrient pollution.

  2. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions.

    PubMed

    Nsenga Kumwimba, Mathieu; Meng, Fangang; Iseyemi, Oluwayinka; Moore, Matthew T; Zhu, Bo; Tao, Wang; Liang, Tang Jia; Ilunga, Lunda

    2018-10-15

    Domestic wastewater and agricultural runoff are increasingly viewed as major threats to both aquatic and terrestrial ecosystems due to the introduction of non-point source inorganic (e.g., nitrogen, phosphorus and metals) and organic (e.g., pesticides and pharmaceutical residues) pollutants. With rapid economic growth and social change in rural regions, it is important to examine the treatment systems in rural and remote areas for high efficiency, low running costs, and minimal maintenance in order to minimize its influence on water bodies and biodiversity. Recently, the use of vegetated drainage ditches (VDDs) has been employed in treatment of domestic sewage and agricultural runoff, but information on the performance of VDDs for treating these pollutants with various new management practices is still not sufficiently summarized. This paper aims to outline and review current knowledge related to the use of VDDs in mitigating these pollutants from domestic sewage and agricultural runoff. Literature analysis has suggested that further research should be carried out to improve ditch characteristics and management strategies inside ditches in order to ensure their effectiveness. Firstly, the reported major ditch characteristics with the most effect on pollutant removal processes (e.g., plant species, weirs, biofilms, and substrates selection) were summarized. The second focus concerns the function of ditch characteristics in VDDs for pollutant removal and identification of possible removal mechanisms involved. Thirdly, we examined factors to consider for establishing appropriate management strategies within ditches and how these could influence the whole ditch design process. The current review promotes areas where future research is needed and highlights clear and sufficient evidence regarding performance and application of this overlooked ditch system to reduce pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. [Weight parameters of water quality impact and risk grade determination of water environmental sensitive spots in Jiashan].

    PubMed

    Xie, Rong-Rong; Pang, Yong; Zhang, Qian; Chen, Ke; Sun, Ming-Yuan

    2012-07-01

    For the safety of the water environment in Jiashan county in Zhejiang Province, one-dimensional hydrodynamic and water quality models are established based on three large-scale monitoring of hydrology and water quality in Jiashan county, three water environmental sensitive spots including Hongqitang dam Chijia hydrological station and Luxie pond are selected to investigate weight parameters of water quality impact and risk grade determination. Results indicate as follows (1) Internal pollution impact in Jiashan areas was greater than the external, the average weight parameters of internal chemical oxygen demand (COD) pollution is 55.3%, internal ammonia nitrogen (NH(4+)-N) is 67.4%, internal total phosphor (TP) is 63.1%. Non-point pollution impact in Jiashan areas was greater than point pollution impact, the average weight parameters of non-point COD pollutions is 53.7%, non-point NH(4+)-N is 65.9%, non-point TP is 57.8%. (2) The risk of Hongqitang dam and Chijia hydrological station are in the middle risk. The risk of Luxie pond is also in the middle risk in August, and in April and December the risk of Luxie pond is low. The strategic decision will be suggested to guarantee water environment security and social and economic security in the study.

  4. Can the watershed non-point phosphorus pollution be interpreted by critical soil properties? A new insight of different soil P states.

    PubMed

    Lin, Chen; Ma, Ronghua; Xiong, Junfeng

    2018-07-01

    The physicochemical properties of surface soil play a key role in the fate of watershed non-point source pollution. Special emphasis is needed to identify soil properties that are sensitive to both particulate P (PP) pollution and dissolved P (DP) pollution, which is essential for watershed environmental management. The Chaohu Lake basin, a typical eutrophic lake in China, was selected as the study site. The spatial features of the Non-point Source (NPS) PP loads and DP loads were calculated simultaneously based on the integration of sediment delivery distributed model (SEDD) and pollution loads (PLOAD) model. Then several critical physicochemical soil properties, especially various soil P compositions, were innovatively introduced to determine the response of the critical soil properties to NPS P pollution. The findings can be summarized: i) the mean PP load value of the different sub-basins was 5.87 kg, and PP pollution is regarded to be the primary NPS P pollution state, while the DP loads increased rapidly under the rapid urbanization process. ii) iron-bound phosphorus (Fe-P) and aluminum-bound phosphorus (Al-P) are the main components of available P and showed the most sensitive responses to NPS PP pollution, and the correlation coefficients were approximately 0.9. Otherwise, the residual phosphorus (Res-P) was selected as a sensitive soil P state that was significantly negatively correlated with the DP loads. iii) The DP and PP concentrations were represented differently when they were correlated with various soil properties, and the clay proportion was strongly negatively related to the PP loads. Meanwhile, there is a non-linear relationship between the DP loads and the critical soil properties, such as Fe and Total Nitrogen (TN) concentrations. Specifically, a strong inhibitory effect of TN concentration on the DP load was apparent in the Nanfei river (NF) and Paihe (PH) river basins where the R 2 reached 0.67, which contrasts with the relatively poor relationship within the other five basins. In addition, the degree of correlation between the Fe and DP loads severely degraded in the basins that were mostly covered by construction land or those that underwent a rapid urbanization process. The findings indicate that land use/cover change (LUCC), especially the distribution of agricultural land and construction land, as well as the soil background information (TN, Fe and Soil organic matters, etc.) can be considered as factors that influence NPS P pollution. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Volatile organic compounds in storm water from a parking lot

    USGS Publications Warehouse

    Lopes, T.J.; Fallon, J.D.; Rutherford, D.W.; Hiatt, M.H.

    2000-01-01

    A mass balance approach was used to determine the most important nonpoint source of volatile organic compounds (VOCs) in storm water from an asphalt parking lot without obvious point sources (e.g., gasoline stations). The parking lot surface and atmosphere are important nonpoint sources of VOCs, with each being important for different VOCs. The atmosphere is an important source of soluble, oxygenated VOCs (e.g., acetone), and the parking lot surface is an important source for the more hydrophobic VOCs (e.g., benzene). VOCs on the parking lot surface appear to be concentrated in oil and grease and organic material in urban particles (e.g., vehicle soot). Except in the case of spills, asphalt does not appear to be an important source of VOCs. The uptake isotherm of gaseous methyl tert-butyl ether on urban particles indicates a mechanism for dry deposition of VOCs from the atmosphere. This study demonstrated that a mass balance approach is a useful means of understanding non-point-source pollution, even for compounds such as VOCs, which are difficult to sample.

  6. A national look at water quality

    USGS Publications Warehouse

    Gilliom, Robert J.; Mueller, David K.; Zogorski, John S.; Ryker, Sarah J.

    2002-01-01

    Most water-quality problems we face today result from diffuse "nonpoint" sources of pollution from agricultural land, urban development, forest harvesting and the atmosphere (U.S. Army Corps of Engineers et al., 1999). It is difficult to quantify nonpoint sources because the contaminants they deliver vary in composition and concentrations from hour to hour and season to season. Moreover, the nature of the contamination is complex and varied. When Congress enacted the Clean Water Act 30 years ago, attention was focused on water-quality issues related to the sanitation of rivers and streams - bacteria counts, oxygen in the water for fish, nutrients, temperature, and salinity. Now, attention is turning to the hundreds of synthetic organic compounds like pesticides used in agricultural and residential areas, volatile organics in solvents and gasoline, microbial and viral contamination, and pharmaceuticals and hormones.

  7. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    PubMed

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and pH. Nitrate supply and temperature finally decided the spatiotemporal distribution patterns of urban riparian denitrification. Considering both the low DR of existing riparian soils and the significance of nonpoint source nitrogen pollution, the substantial denitrification potential of urban riparian soils should be utilized to reduce nitrogen pollution using proper engineering measures that would collect the polluted urban rainfall runoff and make it flow through the riparian zones.

  8. Estimation of dynamic load of mercury in a river with BASINS-HSPF model

    Treesearch

    Ying Ouyang; John Higman; Jeff Hatten

    2012-01-01

    Purpose Mercury (Hg) is a naturally occurring element and a pervasive toxic pollutant. This study investigated the dynamic loads of Hg from the Cedar-Ortega Rivers watershed into the Lower St. Johns River (LSJR), Florida, USA, using the better assessment science integrating point and nonpoint sources (BASINS)-hydrologic simulation program - FORTRAN (HSPF) model....

  9. Metals Fate And Transport Modelling In Streams And Watersheds: State Of The Science And USEPA Workshop Review

    EPA Science Inventory

    Metals pollution in surface waters from point and non-point sources (NPS) is a widespread problem in the United States and worldwide (Lofts et al., 2007; USEPA, 2007). In the western United States, metals associated with acid mine drainage (AMD) from hardrock mines in mou...

  10. Riparian Forest Buffers - Function for Protection and Enhancement of Water Resources

    Treesearch

    David J. Welsch

    1991-01-01

    Streamside forests are crucial to the protection and enhancement of the water resources of the Eastern United States. They are extremely complex ecosystems that help provide optimum food and habitat for stream communities as well as being useful in mitigating or controlling nonpoint source pollution (NPS). Used as a component of an integrated management system...

  11. Climate change impacts on the nutrient losses of two watersheds in the Great Lakes region

    USDA-ARS?s Scientific Manuscript database

    Non-point sources (NPS) of agricultural chemical pollution are one major reason for the degradation of water quality in the Great Lakes. This study focuses on quantifying the impacts of climate change on nutrient (Nitrogen and Phosphorus) losses from NPS in the Great Lakes region through the end of ...

  12. Background and overview on the contribution of dairy nutrition to addressing environmental concerns in Wisconsin: nitrogen, phosphorus, and methane

    USDA-ARS?s Scientific Manuscript database

    During the last part of the 20th century, public concern increased over non-point source pollution originating primarily from agricultural practices. Two chemical elements, nitrogen and phosphorus, which are important to the growth and development of crops and livestock, have been associated with no...

  13. Machine learning and hurdle models for improving regional predictions of stream water acid neutralizing capacity

    Treesearch

    Nicholas A. Povak; Paul F. Hessburg; Keith M. Reynolds; Timothy J. Sullivan; Todd C. McDonnell; R. Brion Salter

    2013-01-01

    In many industrialized regions of the world, atmospherically deposited sulfur derived from industrial, nonpoint air pollution sources reduces stream water quality and results in acidic conditions that threaten aquatic resources. Accurate maps of predicted stream water acidity are an essential aid to managers who must identify acid-sensitive streams, potentially...

  14. CONFIRMING THE RESULTS: AN ACCURACY ASSESSMENT OF REMOTE PRODUCTS, AN EXAMPLE COMPARING MULTIPLE MID-ATLANTIC SUB-PIXEL IMPERVIOUS SURFACE MAPS

    EPA Science Inventory

    Anthropogenic impervious surfaces have an important relationship with non-point source pollution (NPS) in urban watersheds. The amount of impervious surface area in a watershed is a key indicator of landscape change. As a single variable, it serves to intcgrate a number of concur...

  15. Nutrient budgets of two watersheds on the Fernow Experimental Forest

    Treesearch

    M. B. Adams; J. N. Kochenderfer; T. R. Angradi; P. J. Edwards

    1995-01-01

    Acidic deposition is an important non-point source pollutant in the Central Appalachian region that is responsible for elevated nitrogen (N) and sulfur (S) inputs to forest ecosystems. Nitrogen and calcium (Ca) budgets and plant tissue concentrations were compared for two watersheds, one that received three years of an artificial acidification treatment and an adjacent...

  16. Soil erosion and nutrient runoff in corn silage production with kura clover living mulch and winter rye

    USDA-ARS?s Scientific Manuscript database

    Corn (Zea mays L.) harvested for silage is a productive forage crop, but one that can exacerbate soil loss, surface water runoff, and nonpoint source nutrient pollution from agricultural fields. The objective of this research was to compare the effects of using Kura clover (Trifolium ambiguum M. Bie...

  17. HYPOXIA IN THE GULF OF MEXICO: ASSESSING AND MANAGING RISKS FROM NONPOINT SOURCE POLLUTANTS IN THE MISSISSIPPI RIVER BASIN

    EPA Science Inventory

    . Hypoxia is the condition in which dissolved oxygen levels are below that necessary to sustain most animal life. The largest zone of oxygen depletion in U.S. coastal waters is found in the northern Gulf of Mexico (NGOM) on the Louisiana/Texas continental shelf. In response to...

  18. 76 FR 46801 - Modification of the Expiration Date for the National Pollutant Discharge Elimination System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... CONTACT: Alanna Conley or Michael Mitchell of the Stormwater and Nonpoint Source Section, Water Protection... are available at EPA Region 4's stormwater Web site at: http://www.epa.gov/region4/water/permits... Water Act (CWA) directs EPA to develop a phased approach to regulate stormwater discharges under the...

  19. Streambank Erosion from Grazed Pastures, Grass Filters and Forest Buffers Over a Six-Year Period

    USDA-ARS?s Scientific Manuscript database

    In agricultural landscapes, streambank erosion, as a source of non-point water pollution, is one of the major contributors to stream habitat degradation. Streambank erosion rates from riparian forest buffers, grass filters and grazed pastures (stocking rates ranged from 0.23 to 1.15 cow-days ha-1 m-...

  20. USING LANDSCAPE ECOLOGY TO MAP WATERSHEDS THAT ARE VULNERABLE TO NON-POINT SOURCE POLLUTION IN THE OZARKS

    EPA Science Inventory

    The U.S. EPA's Office of Research and Development, and U.S. EPA Region 7 have collaborated to map and interpret landscape-scale (i.e. broad-scale) ecological metrics among watershed of the Upper White River, and have produced the first geospatial models of water quality vulnerabi...

  1. Evaluating sediment production by activities related to forest uses--a northwest perspective

    Treesearch

    Robert R. Ziemer; Thomas E. Lisle

    1993-01-01

    To deal with nonpoint sources of pollution, such as stream sediment produced by erosion from forest management operations, regulations require land managers to reduce onsite erosion to keep the amount of sediment discharged from each project area within acceptable limits. Activities developed to meet these regulations are sometimes referred to as best management...

  2. The Influence of Perceptions of Practice Characteristics: An Examination of Agricultural Best Management Practice Adoption in Two Indiana Watersheds

    ERIC Educational Resources Information Center

    Reimer, Adam P.; Weinkauf, Denise Klotthor; Prokopy, Linda Stalker

    2012-01-01

    Agricultural best management practices (BMPs), or conservation practices, can help reduce nonpoint source pollution from agricultural lands, as well as provide valuable wildlife habitat. There is a large literature exploring factors that lead to a producer's voluntary adoption of BMPs, but there have been inconsistent findings. Generally, this…

  3. Long-term assessment of runoff and sediment transport from grass and agroforestry buffers in corn/soybean watersheds using APEX

    USDA-ARS?s Scientific Manuscript database

    Existence of a claypan layer in soils at depths ranging from 4 to 37 cm restricts water movement and has contributed significantly to high rates of runoff, sediment transport, and other non-point source loadings from croplands in watersheds. The deposition of these pollutants in rivers, streams and...

  4. Issues in ecology: Nutrient pollution of coastal rivers, bays, and seas

    USGS Publications Warehouse

    Howarth, Robert W.; Anderson, D. B.; Cloern, James E.; Elfring, Chris; Hopkinson, Charles S.; Lapointe, Brian; Maloney, Thomas J.; Marcus, Nancy; McGlathery, Karen; Sharpley, A.N.; Walker, D.

    2000-01-01

    Over the past 40 years, antipollution laws have greatly reduced discharges of toxic substances into our coastal waters. This effort, however, has focused largely on point-source pollution of industrial and municipal effluent. No comparable effort has been made to restrict the input of nitrogen (N) from municipal effluent, nor to control the flows of N and phosphorus (P) that enter waterways from dispersed or nonpoint sources such as agricultural and urban runoff or as airborne pollutants. As a result, inputs of nonpoint pollutants, particularly N, have increased dramatically. Nonpoint pollution from N and P now represents the largest pollution problem facing the vital coastal waters of the United States. Nutrient pollution is the common thread that links an array of problems along the nation’s coastline, including eutrophication, harmful algal blooms, ”dead zones,” fish kills, some shellfish poisonings, loss of seagrass and kelp beds, some coral reef destruction, and even some marine mammal and seabird deaths. More than 60 percent of our coastal rivers and bays in every coastal state of the continental United States are moderately to severely degraded by nutrient pollution. This degradation is particularly severe in the mid Atlantic states, in the southeast, and in the Gulf of Mexico. A recent report from the National Research Council entitled “Clean Coastal Waters: Understanding and Reduc- ing the Effects of Nutrient Pollution” concludes that: Nutrient over-enrichment of coastal ecosystems generally triggers ecological changes that decrease the biologi- cal diversity of bays and estuaries. While moderate N enrichment of some coastal waters may increase fish production, over-enrichment generally degrades the marine food web that supports commercially valuable fish. The marked increase in nutrient pollution of coastal waters has been accompanied by an increase in harmful algal blooms, and in at least some cases, pollution has triggered these blooms. High nutrient levels and the changes they cause in water quality and the makeup of the algal community are detrimental to the health of coral reefs and the diversity of animal life supported by seagrass and kelp communi- ties. Research during the past decade confirms that N is the chief culprit in eutrophication and other impacts of nutrient over-enrichment in temperate coastal waters, while P is most problematic in eutrophication of freshwa- ter lakes. Human conversion of atmospheric N into biologically useable forms, principally synthetic inorganic fertilizers, now matches the natural rate of biological N fixation from all the land surfaces of the earth. Both agriculture and the burning of fossil fuels contribute significantly to nonpoint flows of N to coastal waters, either as direct runoff or airborne pollutants. N from animal wastes that leaks directly to surface waters or is volatilized to the atmosphere as ammonia may be the largest single source of N that moves from agricultural operations into coastal waters. The National Research Council report recommended that, as a minimum goal, the nation should work to reverse nutrient should be taken to assure that the 40 percent of coastal areas now ranked as healthy do not develop symptoms of nutrient pollution in 10 percent of its degraded coastal systems by 2010 and 25 percent of them by 2020. Also, action should be taken to assure that the 40 percent of coastal areas now ranked as healthy do not develop symptoms of nutrient pollution.  Meeting these goals will require an array of strategies and approaches tailored to specific regions and coastal ecosystems. There is an urgent need for development and testing of techniques that can reliably pinpoint the sources of N pollutants to an estuary. For some coastal systems, N removal during treatment of human sewage may be sufficient to reverse nutrient pollution. For most coastal systems, however, the solutions will be more complex and may involve controls on N compounds emitted during fossil fuel combustion as well as incentives to reduce over-fertilization of agricul- tural fields and nutrient pollution from animal wastes in livestock feedlot operations. 

  5. A national assessment of the effect of intensive agro-land use practices on nonpoint source pollution using emission scenarios and geo-spatial data.

    PubMed

    Zhuo, Dong; Liu, Liming; Yu, Huirong; Yuan, Chengcheng

    2018-01-01

    China's intensive agriculture has led to a broad range of adverse impacts upon ecosystems and thereby caused environmental quality degradation. One of the fundamental problems that face land managers when dealing with agricultural nonpoint source (NPS) pollution is to quantitatively assess the NPS pollution loads from different sources at a national scale. In this study, export scenarios and geo-spatial data were used to calculate the agricultural NPS pollution loads of nutrient, pesticide, plastic film residue, and crop straw burning in China. The results provided the comprehensive and baseline knowledge of agricultural NPS pollution from China's arable farming system in 2014. First, the nitrogen (N) and phosphorus (P) emission loads to water environment were estimated to be 1.44 Tg N and 0.06 Tg P, respectively. East and south China showed the highest load intensities of nutrient release to aquatic system. Second, the amount of pesticide loss to water of seven pesticides that are widely used in China was estimated to be 30.04 tons (active ingredient (ai)). Acetochlor was the major source of pesticide loss to water, contributing 77.65% to the total loss. The environmental impacts of pesticide usage in east and south China were higher than other parts. Third, 19.75% of the plastic film application resided in arable soils. It contributed a lot to soil phthalate ester (PAE) contamination. Fourth, 14.11% of straw produce were burnt in situ, most occurring in May to July (post-winter wheat harvest) in North China Plain and October to November (post-rice harvest days) in southeast China. All the above agricultural NPS pollution loadings were unevenly distributed across China. The spatial correlations between pollution loads at land unit scale were also estimated. Rising labor cost in rural China might be a possible explanation for the general positive correlations of the NPS pollution loads. It also indicated a co-occurred higher NPS pollution loads and a higher human exposure risk in eastern regions. Results from this research might provide full-scale information on the status and spatial variation of various agricultural NPS pollution loads for policy makers to control the NPS pollution in China.

  6. Tracking Nonpoint Source Nitrogen and Carbon in Watersheds of Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Pennino, M. J.; Duan, S.; Blomquist, J.

    2012-12-01

    Humans have altered nitrogen and carbon cycles in rivers regionally with important impacts on coastal ecosystems. Nonpoint source nitrogen pollution is a leading contributor to coastal eutrophication and hypoxia. Shifts in sources of carbon impact downstream ecosystem metabolism and fate and transport of contaminants in coastal zones. We used a combination of stable isotopes and optical tracers to investigate fate and transport of nitrogen and carbon sources in tributaries of the largest estuary in the U.S., the Chesapeake Bay. We analyzed isotopic composition of water samples from major tributaries including the Potomac River, Susquehanna River, Patuxent River, and Choptank River during routine and storm event sampling over multiple years. A positive correlation between δ15N-NO3- and δ18O-NO3- in the Potomac River above Washington D.C. suggested denitrification or biological uptake in the watershed was removing agriculturally-derived N during summer months. In contrast, the Patuxent River in Maryland showed elevated δ15N-NO3- (5 - 12 per mil) with no relationship to δ18O-NO3- suggesting the importance of wastewater sources. From the perspective of carbon sources, there were distinct isotopic values of the δ13C-POM of particulate organic matter and fluorescence excitation emission matrices (EEMS) for rivers influenced by their dominant watershed land use. EEMS showed that there were increases in the humic and fulvic fractions of dissolved organic matter during spring floods, particularly in the Potomac River. Stable isotopic values of δ13C-POM also showed rapid depletion suggesting terrestrial carbon "pulses" in the Potomac River each spring. The δ15N-POM peaked to 10 - 15 per mil each spring suggested a potential manure source or result of biological processing within the watershed. Overall, there were considerable changes in sources and transformations of nitrogen and carbon that varied across rivers and that contribute to nitrogen and carbon loads. Anticipating changes in sources and transformations will be critical for effectively managing nonpoint pollution and ecosystem services such as drinking water quality and coastal habitat.

  7. Effectiveness of SWAT in characterizing the watershed hydrology in the snowy-mountainous Lower Bear Malad River (LBMR) watershed in Box Elder County, Utah

    NASA Astrophysics Data System (ADS)

    Salha, A. A.; Stevens, D. K.

    2015-12-01

    Distributed watershed models are essential for quantifying sediment and nutrient loads that originate from point and nonpoint sources. Such models are primary means towards generating pollutant estimates in ungaged watersheds and respond well at watershed scales by capturing the variability in soils, climatic conditions, land uses/covers and management conditions over extended periods of time. This effort evaluates the performance of the Soil and Water Assessment Tool (SWAT) model as a watershed level tool to investigate, manage, and characterize the transport and fate of nutrients in Lower Bear Malad River (LBMR) watershed (Subbasin HUC 16010204) in Utah. Water quality concerns have been documented and are primarily attributed to high phosphorus and total suspended sediment concentrations caused by agricultural and farming practices along with identified point sources (WWTPs). Input data such as Digital Elevation Model (DEM), land use/Land cover (LULC), soils, and climate data for 10 years (2000-2010) is utilized to quantify the LBMR streamflow. Such modeling is useful in developing the required water quality regulations such as Total Maximum Daily Loads (TMDL). Measured concentrations of nutrients were closely captured by simulated monthly nutrient concentrations based on the R2 and Nash- Sutcliffe fitness criteria. The model is expected to be able to identify contaminant non-point sources, identify areas of high pollution risk, locate optimal monitoring sites, and evaluate best management practices to cost-effectively reduce pollution and improve water quality as required by the LBMR watershed's TMDL.

  8. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    PubMed

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  9. Contingent Valuation of Residents' Attitudes and Willingness-to-Pay for Non-point Source Pollution Control: A Case Study in AL-Prespa, Southeastern Albania

    NASA Astrophysics Data System (ADS)

    Grazhdani, Dorina

    2015-07-01

    Recently, local governments in Albania have begun paying attention to management of small watershed, because there are specific boundaries and people living within a watershed basin tend to be more concerned about the basin's environmental, economic, and social development. But this natural resource management and non-point source (NPS) pollution control is still facing challenges. Albanian part of Prespa Park (AL-Prespa) is a good case study, as it is a protected wetland area of high biodiversity and long human history. In this framework, this study was undertaken, the main objectives of which were to explore: (1) the attitudes of the residents toward NPS pollution control, (2) their willingness-to-pay for improving water quality, and (3) factors affecting the residents' willingness-to-pay. Descriptive statistics, one-way ANOVA (analysis of variance), Chi-square analysis, and multivariate data analysis techniques were used. Findings strongly suggested that the residents' attitudes toward NPS pollution control in this area were positive. With the combination of two major contingent valuation methods—dichotomous choice and open-ended formats, the survey results indicated that the average yearly respondents' WTP was €6.4. The survey revealed that residents' yearly income and education level were the main factors affecting residents' willingness-to-pay for NPS pollution control in this area, and there was no significant correlation between residents' yearly income and their education level. The current study would lay a solid foundation on decision-making in further NPS pollution control and public participation through community-based watershed management policies in AL-Prespa watershed and similar areas.

  10. Contingent Valuation of Residents' Attitudes and Willingness-to-Pay for Non-point Source Pollution Control: A Case Study in AL-Prespa, Southeastern Albania.

    PubMed

    Grazhdani, Dorina

    2015-07-01

    Recently, local governments in Albania have begun paying attention to management of small watershed, because there are specific boundaries and people living within a watershed basin tend to be more concerned about the basin's environmental, economic, and social development. But this natural resource management and non-point source (NPS) pollution control is still facing challenges. Albanian part of Prespa Park (AL-Prespa) is a good case study, as it is a protected wetland area of high biodiversity and long human history. In this framework, this study was undertaken, the main objectives of which were to explore: (1) the attitudes of the residents toward NPS pollution control, (2) their willingness-to-pay for improving water quality, and (3) factors affecting the residents' willingness-to-pay. Descriptive statistics, one-way ANOVA (analysis of variance), Chi-square analysis, and multivariate data analysis techniques were used. Findings strongly suggested that the residents' attitudes toward NPS pollution control in this area were positive. With the combination of two major contingent valuation methods--dichotomous choice and open-ended formats, the survey results indicated that the average yearly respondents' WTP was 6.4. The survey revealed that residents' yearly income and education level were the main factors affecting residents' willingness-to-pay for NPS pollution control in this area, and there was no significant correlation between residents' yearly income and their education level. The current study would lay a solid foundation on decision-making in further NPS pollution control and public participation through community-based watershed management policies in AL-Prespa watershed and similar areas.

  11. Influence of Diffused Sourcers of Water Pollution In The Basin of Volga River

    NASA Astrophysics Data System (ADS)

    Vasilchenco, O.

    The intensive development of industry and agriculture, great growth of cities in the last decades result in an increase of the nature water consumption and deterioration. Different anthropogenic load change characteristics of water objects regime and de- pletion and qualitative degradation of water resources. Sources of pollution are divided on two classes: controlled and uncontrolled. The first includes industrial and domestic wastewater disposal. Their discharge and concentration of pollutants are quite stable. These sources of pollution are identified as "point". Surface run-off from of cities, industrial platforms, agricultural object, navigation, recreation are not controlled have dispersed nature and are identification as diffuse. Pollution from such sources is es- timates by computation. Quantitative assumption of pollution amounts reaches water objects is complicated and independent problem. The significant amount of full-scale observations and information processes of concerning dissolved and fluidized frag- ments movement are required. According to available guidelines the part of the pollu- tant entering water objects, is about 1-10For estimation of pollution mass and transport are mathematical modeling. Preliminary calculations of contaminants transport for different territories under an- thropogenic impact of river-Volga basin were made either for point sources of pol- lution or for non-point. Received data made it possible to analyze the correlation of contaminant volumes, coming from different sources pollution.

  12. The implementation of the new Kentucky nitrogen and phosphorus index to reduce agricultural nonpoint source pollution

    USDA-ARS?s Scientific Manuscript database

    A new study released in September 2011 by the USDA found that all of three best management practices (BMPs) for nitrogen in terms of application rate, time, and method, are done for only about a third of U.S. cropland (http://www.ers.usda.gov/Publications/ERR127/). Without BMPs, the potential for ni...

  13. Calibration and validation of the SWAT model for predicting daily ET for irrigated crops in the Texas High Plains using lysimetric data

    USDA-ARS?s Scientific Manuscript database

    The Soil and Water Assessment Tool (SWAT) model has been used to assess the impacts of alternative agricultural management practices on non-point source pollution in watersheds of various topography and scale throughout the world. Water balance is the driving force behind all processes of SWAT, as i...

  14. Evaluating analytic and risk assessment tools to estimate sediment and nutrients losses from agricultural lands in the southern region of the USA

    USDA-ARS?s Scientific Manuscript database

    Non-point source pollution from agricultural fields is a critical problem associated with water quality impairment in the USA and a low-oxygen environment in the Gulf of Mexico. The use, development and enhancement of qualitative and quantitative models or tools for assessing agricultural runoff qua...

  15. Prescribed burning effects on the hydrologic behavior of gullies in the South Carolina Piedmont

    Treesearch

    M.A. Galang; L.A. Morris; D. Markewitz; C.R. Jackson; E.A Carter

    2010-01-01

    Gullies found in the Piedmont of South Carolina are legacies of past land use and erosion. Although the majority of these gullies are now under forest vegetation and perceived as geomorphologically stable, the question of gully contribution to nonpoint source pollution remains undetermined, especially when these gullies are subjected to prescribed burning or other...

  16. Response of vegetation, soil nitrogen, and sediment transport to a prescribed fire in semiarid grasslands

    Treesearch

    Carleton S. White; Samuel R. Loftin; Steven Hofstad

    1999-01-01

    Shrubs and trees have invaded semiarid grasslands throughout much of the Southwestern United States. This invasion not only has decreased grass cover, but also increased runoff and erosion. In fact, sediment from rangelands constitutes the single largest source of nonpoint stream pollutants within the state of New Mexico. Fire, which was a natural factor that shaped...

  17. SUBSURFACE RESIDENCE TIMES AS AN ALGORITHM FOR AQUIFER SENSITIVITY MAPPING: TESTING THE CONCEPT WITH GROUND WATER MODELS IN THE CONTENTNEA CREEK BASIN, NORTH CAROLINA, USA

    EPA Science Inventory

    This poster will present a modeling and mapping assessment of landscape sensitivity to non-point source pollution as applied to a hierarchy of catchment drainages in the Coastal Plain of the state of North Carolina. Analysis of the subsurface residence time of water in shallow a...

  18. Sediment movement from forest road systems-roads: a major contributor to erosion and stream sedimentation

    Treesearch

    Johnny M. Grace

    2002-01-01

    Nonpoint source pollution is a major concern related to natural resource management throughout the United States. Undisturbed forest lands typically have minimal erosion, less than 0.13 ton/acre (0.30 ton/hectare), due to the increased cover and surface roughness found in these areas. However, disturbances caused by forest management practices can result in...

  19. ArcAPEX modeling of optimum widths and placement of grass and agroforestry buffers to reduce runoff and sediment transport in claypan watersheds

    USDA-ARS?s Scientific Manuscript database

    Existence of a claypan layer in soils at depths ranging from 4 to 37 cm restricts vertical water movement and has contributed significantly to high rates of runoff, sediment transport, and other non-point source loadings from croplands in watersheds. The deposition of these pollutants in rivers, st...

  20. Watershed Models for Predicting Nitrogen Loads from Artificially Drained Lands

    Treesearch

    R. Wayne Skaggs; George M. Chescheir; Glenn Fernandez; Devendra M. Amatya

    2003-01-01

    Non-point sources of pollutants originate at the field scale but water quality problems usually occur at the watershed or basin scale. This paper describes a series of models developed for poorly drained watersheds. The models use DRAINMOD to predict hydrology at the field scale and a range of methods to predict channel hydraulics and nitrogen transport. In-stream...

  1. Effects of forest road amelioration techniques on soil bulk density, surface runoff, sediment transport, soil moisture and seedling growth

    Treesearch

    Randy K. Kolka; Mathew F. Smidt

    2004-01-01

    Although numerous methods have been used to retire roads, new technologies have evolved that can potentially ameliorate soil damage, lessen ,the generation of nonpoint source pollution and increase tree productivity on forest roads. In this study we investigated the effects of three forest road amelioration techniques, subsoiling, recontouring and traditional...

  2. Watershed scale assessment of the impact of forested riparian zones on stream water quality

    Treesearch

    J. A. Webber; K. W. J. Williard; M. R. Whiles; M. L. Stone; J. J. Zaczek; D. K. Davie

    2003-01-01

    Federal and state land management agencies have been promoting forest and grass riparian zones to combat non-point source nutrient and sediment pollution of our nations' waters. The majority of research examining the effectiveness of riparian buffers at reducing nutrient and sediment inputs to streams has been conducted at the field scale. This study took a...

  3. Cattle, clean water, and climate change: policy choices for the Brazilian Agricultural Frontier.

    PubMed

    Bell, Andrew Reid; Lemos, Maria Carmen; Scavia, Donald

    2010-11-15

    In the Amazonian agricultural frontier, pasture for cattle ranching is an important and potentially hazardous form of land use because of sediment erosion as pastures degrade. This relationship between ranching, sediment load, and water quality is likely to further exacerbate environmental impacts, particularly in the context of climate change. We examine the role that river basin councils (RBCs) - a water governance option of Brazil's 1997 National Water Act - might play in managing this nonpoint-source pollution in the Amazônian state of Rondônia. We implement a simple coupled rancher-water system model to compare two potential governance options: a bulk water cleanup charge (BWC) implemented by RBCs and a land-use fine (LUF) for failing to maintain riparian buffers. We find no significant advantage of BWC over LUF in reducing sediment loading while keeping ranching profitable, under a changing climate. We also fail to find in Rondônia the important stake in water issues that has driven water reform elsewhere in Brazil. Moreover, the comparative success of reforestation programs suggests these programs may, in fact, have the potential to manage nonpoint-source agricultural pollution in the region.

  4. A Method for Identifying Pollution Sources of Heavy Metals and PAH for a Risk-Based Management of a Mediterranean Harbour

    PubMed Central

    Moranda, Arianna

    2017-01-01

    A procedure for assessing harbour pollution by heavy metals and PAH and the possible sources of contamination is proposed. The procedure is based on a ratio-matching method applied to the results of principal component analysis (PCA), and it allows discrimination between point and nonpoint sources. The approach can be adopted when many sources of pollution can contribute in a very narrow coastal ecosystem, both internal and outside but close to the harbour, and was used to identify the possible point sources of contamination in a Mediterranean Harbour (Port of Vado, Savona, Italy). 235 sediment samples were collected in 81 sampling points during four monitoring campaigns and 28 chemicals were searched for within the collected samples. PCA of total samples allowed the assessment of 8 main possible point sources, while the refining ratio-matching identified 1 sampling point as a possible PAH source, 2 sampling points as Cd point sources, and 3 sampling points as C > 12 point sources. By a map analysis it was possible to assess two internal sources of pollution directly related to terminals activity. The study is the prosecution of a previous work aimed at assessing Savona-Vado Harbour pollution levels and suggested strategies to regulate the harbour activities. PMID:29270328

  5. A Method for Identifying Pollution Sources of Heavy Metals and PAH for a Risk-Based Management of a Mediterranean Harbour.

    PubMed

    Paladino, Ombretta; Moranda, Arianna; Seyedsalehi, Mahdi

    2017-01-01

    A procedure for assessing harbour pollution by heavy metals and PAH and the possible sources of contamination is proposed. The procedure is based on a ratio-matching method applied to the results of principal component analysis (PCA), and it allows discrimination between point and nonpoint sources. The approach can be adopted when many sources of pollution can contribute in a very narrow coastal ecosystem, both internal and outside but close to the harbour, and was used to identify the possible point sources of contamination in a Mediterranean Harbour (Port of Vado, Savona, Italy). 235 sediment samples were collected in 81 sampling points during four monitoring campaigns and 28 chemicals were searched for within the collected samples. PCA of total samples allowed the assessment of 8 main possible point sources, while the refining ratio-matching identified 1 sampling point as a possible PAH source, 2 sampling points as Cd point sources, and 3 sampling points as C > 12 point sources. By a map analysis it was possible to assess two internal sources of pollution directly related to terminals activity. The study is the prosecution of a previous work aimed at assessing Savona-Vado Harbour pollution levels and suggested strategies to regulate the harbour activities.

  6. Governing change: land-use change and the prevention of nonpoint source pollution in the north coastal basin of California.

    PubMed

    Short, Anne G

    2013-01-01

    Many rural areas in the United States and throughout much of the postindustrial world are undergoing significant ecological, socioeconomic, and political transformations. The migration of urban and suburban dwellers into rural areas has led to the subdivision of large tracts of land into smaller parcels, which can complicate efforts to govern human-environmental problems. Non-point source (NPS) pollution from private rural lands is a particularly pressing human-environmental challenge that may be aggravated by changing land tenure. In this article, I report on a study of the governance and management of sediment (a common NPS pollutant) in the North Coastal basin of California, a region undergoing a transition from traditional extractive and agricultural land uses to rural residential and other alternative land uses. I focus on the differences in the governance and management across private timber, ranch, residential, vacation, and other lands in the region. I find that (1) the stringency and strength of sediment regulations differ by land use, (2) nonregulatory programs tend to target working landscapes, and (3) rural residential landowners have less knowledge of sediment control and report using fewer sediment-control techniques than landowners using their land for timber production or ranching. I conclude with an exploration of the consequences of these differences on an evolving rural landscape.

  7. Integrated watershed approach in controlling point and non-point source pollution within Zelivka drinking water reservoir.

    PubMed

    Holas, J; Hrncir, M

    2002-01-01

    An agricultural watershed involves manipulation of soil, water and other natural resources and it has profound impacts on ecosystems. To manage these complex issues, we must understand causes and consequences and interactions-related transport of pollutants, quality of the environment, mitigation measures and policy measures. A ten year period of economic changes has been analysed with respect to sustainable development concerning Zelivka drinking water reservoir and its watershed, where agriculture and forestry are the main human activities. It is recommended that all land users within a catchment area should receive payments for their contribution to water cycle management. Setting up the prevention principles and best management practices financially subsidized by a local water company has been found very effective in both point and non-point source pollution abatement, and the newly prepared Clean Water Programme actively involves local municipal authorities as well. The first step based on systems analysis was to propose effective strategies and select alternative measures and ways for their financing. Long term monitoring of nutrient loads entering the reservoir and hazardous events statistics resulted in maps characterising the territory including vulnerable zones and risk factors. Financing involves providing annual payments to farmers, who undertake to manage specified areas of their land in a particular way and one-off payments to realise proposed issues ensuring soil conservation and watershed ecosystem benefits.

  8. Governing Change: Land-Use Change and the Prevention of Nonpoint Source Pollution in the North Coastal Basin of California

    NASA Astrophysics Data System (ADS)

    Short, Anne G.

    2013-01-01

    Many rural areas in the United States and throughout much of the postindustrial world are undergoing significant ecological, socioeconomic, and political transformations. The migration of urban and suburban dwellers into rural areas has led to the subdivision of large tracts of land into smaller parcels, which can complicate efforts to govern human-environmental problems. Non-point source (NPS) pollution from private rural lands is a particularly pressing human-environmental challenge that may be aggravated by changing land tenure. In this article, I report on a study of the governance and management of sediment (a common NPS pollutant) in the North Coastal basin of California, a region undergoing a transition from traditional extractive and agricultural land uses to rural residential and other alternative land uses. I focus on the differences in the governance and management across private timber, ranch, residential, vacation, and other lands in the region. I find that (1) the stringency and strength of sediment regulations differ by land use, (2) nonregulatory programs tend to target working landscapes, and (3) rural residential landowners have less knowledge of sediment control and report using fewer sediment-control techniques than landowners using their land for timber production or ranching. I conclude with an exploration of the consequences of these differences on an evolving rural landscape.

  9. The impact of land use on microbial surface water pollution.

    PubMed

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Linking trading ratio with TMDL (total maximum daily load) allocation matrix and uncertainty analysis.

    PubMed

    Zhang, H X

    2008-01-01

    An innovative approach for total maximum daily load (TMDL) allocation and implementation is the watershed-based pollutant trading. Given the inherent scientific uncertainty for the tradeoffs between point and nonpoint sources, setting of trading ratios can be a contentious issue and was already listed as an obstacle by several pollutant trading programs. One of the fundamental reasons that a trading ratio is often set higher (e.g. greater than 2) is to allow for uncertainty in the level of control needed to attain water quality standards, and to provide a buffer in case traded reductions are less effective than expected. However, most of the available studies did not provide an approach to explicitly address the determination of trading ratio. Uncertainty analysis has rarely been linked to determination of trading ratio.This paper presents a practical methodology in estimating "equivalent trading ratio (ETR)" and links uncertainty analysis with trading ratio determination from TMDL allocation process. Determination of ETR can provide a preliminary evaluation of "tradeoffs" between various combination of point and nonpoint source control strategies on ambient water quality improvement. A greater portion of NPS load reduction in overall TMDL load reduction generally correlates with greater uncertainty and thus requires greater trading ratio. The rigorous quantification of trading ratio will enhance the scientific basis and thus public perception for more informed decision in overall watershed-based pollutant trading program. (c) IWA Publishing 2008.

  11. Spatial and temporal variations in non-point source losses of nitrogen and phosphorus in a small agricultural catchment in the Three Gorges Region.

    PubMed

    Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai

    2016-04-01

    Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn only, but lowest in rice fields. Slope gradient had a significant positive correlation with TN’s and total phosphorus (TP)’s concentration losses. Concentrations of TN, NO3-N, and total phosphorus were significantly correlated with rainfall. Peak concentrations of ammoniacal nitrogen occurred during the fertilizer application period in spring and autumn. Different structures of land use types had a significant influence on the concentration losses of nitrogen and phosphorus; thus, using a reasonable way to adjust land use structure and spatial arrangement of whole catchment was an effective solution to control non-point source pollution of the Three Gorges Region.

  12. Urban stormwater runoff study at Davenport, Iowa

    USGS Publications Warehouse

    Schaap, Bryan D.

    1995-01-01

    Urban storm water runoff is being investigated as a nonpoint source of pollution across the country as urban areas with populations over 100,000 conduct studies designed to meet U.S. Environmental Protection Agency guidelines for National Pollutant Discharge Elimination System permits for their stormwater discharges. From 1991 through 1994, the City of Davenport, Iowa (fig. 1), and the U.S. Geological Survey cooperatively conducted a study designed to meet technical conditions of the permit application and to develop the criteria for ongoing monitoring during the term of the permit. 

  13. Selected basin characteristics and water-quality data of the Minnesota River basin

    USGS Publications Warehouse

    Winterstein, T.A.; Payne, G.A.; Miller, R.A.; Stark, J.R.

    1993-01-01

    Selected basin characteristics and water-quality dam for the Minnesota River Basin are presented in this report as 71 maps, 22 graphs, and 8 tables. The data were compiled as part of a four-year study to identify non-point sources of pollution and the effect of this pollution on water quality. The maps were prepared from geographic information system data bases. Federal, State, and local agencies, and colleges and universities collected and assembled these data as part of the Minnesota River Assessment Project.

  14. Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China.

    PubMed

    Yang, Liping; Mei, Kun; Liu, Xingmei; Wu, Laosheng; Zhang, Minghua; Xu, Jianming; Wang, Fan

    2013-08-01

    Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.

  15. Using Arc/Info GIS to help implement the National Pollutant Discharge Elimination System (NPDES) stormwater permit for Los Angeles County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, D.A.; Pace, P.J.; Woods, J.A.

    1997-06-01

    One of Los Angeles County Department of Public Works` many responsibilities is to manage non-point pollution that enters the storm drain network within Los Angeles County. The management of this non-point source pollution is mandated by the NPDES guidelines under the Federal Clean Water Act. These guidelines require the County to monitor the drainage network and the storm water and urban runoff flowing through it. The County covers over 3,117 square miles, with the NPDES Permit covering over 3,100 square miles and over 2500 miles of storm drains. A proposed solution to monitor and manage this vast geographic area ismore » centered upon an Arc/Info GIS. Some of the many concerns which need to be addressed include the administration and evaluation of Best Management Practices (BMP`s), storm drain inspection for illegal connections and illicit discharges, and pollutant load assessment and modeling. The storm drain network and other coverages will be related to external data bases currently used for facility management and planning. This system would be used for query purposes to perform spatial modeling and {open_quotes}what if{close_quotes} scenarios needed to create maps and reports required by the permit and to evaluate various BMP implementation strategies.« less

  16. [Spatio-temporal characteristics and source identification of water pollutants in Wenruitang River watershed].

    PubMed

    Ma, Xiao-xue; Wang, La-chun; Liao, Ling-ling

    2015-01-01

    Identifying the temp-spatial distribution and sources of water pollutants is of great significance for efficient water quality management pollution control in Wenruitang River watershed, China. A total of twelve water quality parameters, including temperature, pH, dissolved oxygen (DO), total nitrogen (TN), ammonia nitrogen (NH4+ -N), electrical conductivity (EC), turbidity (Turb), nitrite-N (NO2-), nitrate-N(NO3-), phosphate-P(PO4(3-), total organic carbon (TOC) and silicate (SiO3(2-)), were analyzed from September, 2008 to October, 2009. Geographic information system(GIS) and principal component analysis(PCA) were used to determine the spatial distribution and to apportion the sources of pollutants. The results demonstrated that TN, NH4+ -N, PO4(3-) were the main pollutants during flow period, wet period, dry period, respectively, which was mainly caused by urban point sources and agricultural and rural non-point sources. In spatial terms, the order of pollution was tertiary river > secondary river > primary river, while the water quality was worse in city zones than in the suburb and wetland zone regardless of the river classification. In temporal terms, the order of pollution was dry period > wet period > flow period. Population density, land use type and water transfer affected the water quality in Wenruitang River.

  17. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils.

    PubMed

    Huang, Ying; Li, Tingqiang; Wu, Chengxian; He, Zhenli; Japenga, Jan; Deng, Meihua; Yang, Xiaoe

    2015-12-15

    Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74-100% and 0-24% of the total Hg input, while road dusts and solid wastes contributed for 0-80% and 19-100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Integration of Rs/gis for Surface Water Pollution Risk Modeling. Case Study: Al-Abrash Syrian Coastal Basin

    NASA Astrophysics Data System (ADS)

    Yaghi, Y.; Salim, H.

    2017-09-01

    Recently the topic of the quality of surface water (rivers - lakes) and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP) and non-point Source pollution (NPSP). Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers) and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.

  19. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing non-point source pollution

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liu, X.; Zhang, M.; Dahlgren, R. A.; Eitzel, M.

    2009-12-01

    Vegetated buffers are a well-studied and widely used agricultural management practice for reducing non-point source pollution. A wealth of literature provides experimental data on their mitigation efficacy. This paper aggregated many of these results and performed a meta-analysis to quantify the relationships between pollutant removal efficacy and buffer width, buffer slope, soil type, and vegetation type. Theoretical models for removal efficacy (Y) vs. buffer width (w) were derived and tested against data from the surveyed literature using statistical analyses. A model of the form Y = K x (1-exp(-b x w) , (0< K <= 100) successfully captured the relationship between buffer width and pollutant removal, where K reflects the maximum removal efficacy of the buffer and b reflects its probability to remove any single particle of pollutant in a unit distance. The estimates of K were 90.9, 93.2, 92.0, and 89.5 for sediment, pesticides, nitrogen (N) and phosphorus (P), respectively. Buffer width alone explains 37, 60, 44 and 35% of the total variance in removal efficacy for sediment, pesticides, N and P, respectively. Buffer slope was linearly associated with sediment removal efficacy either positively (when slope ≤ 10%) or negatively (when slope > 10%). Buffers composed of trees have higher N and P removal efficacy than buffers composed of grasses or mixtures of grasses and trees. Soil drainage type did not show a significant effect on pollutant removal efficacy. Models for all the studied pollutants were statistically significant with P-values < 0.001. Based on our analysis, a 30 m buffer under favorable slope conditions (≈ 10%) removes over 85% of all the studied pollutants. These models predicting optimal buffer width/slope can be instrumental in the design, implementation and modeling of vegetated buffers for treating agricultural runoff.

  20. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    PubMed

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  1. Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?

    PubMed

    Liu, Mei; Lu, Jun

    2014-09-01

    Water quality forecasting in agricultural drainage river basins is difficult because of the complicated nonpoint source (NPS) pollution transport processes and river self-purification processes involved in highly nonlinear problems. Artificial neural network (ANN) and support vector model (SVM) were developed to predict total nitrogen (TN) and total phosphorus (TP) concentrations for any location of the river polluted by agricultural NPS pollution in eastern China. River flow, water temperature, flow travel time, rainfall, dissolved oxygen, and upstream TN or TP concentrations were selected as initial inputs of the two models. Monthly, bimonthly, and trimonthly datasets were selected to train the two models, respectively, and the same monthly dataset which had not been used for training was chosen to test the models in order to compare their generalization performance. Trial and error analysis and genetic algorisms (GA) were employed to optimize the parameters of ANN and SVM models, respectively. The results indicated that the proposed SVM models performed better generalization ability due to avoiding the occurrence of overtraining and optimizing fewer parameters based on structural risk minimization (SRM) principle. Furthermore, both TN and TP SVM models trained by trimonthly datasets achieved greater forecasting accuracy than corresponding ANN models. Thus, SVM models will be a powerful alternative method because it is an efficient and economic tool to accurately predict water quality with low risk. The sensitivity analyses of two models indicated that decreasing upstream input concentrations during the dry season and NPS emission along the reach during average or flood season should be an effective way to improve Changle River water quality. If the necessary water quality and hydrology data and even trimonthly data are available, the SVM methodology developed here can easily be applied to other NPS-polluted rivers.

  2. Engineering hyporheic zones for the attenuation of urban pesticides and other stormwater trace organic contaminants

    NASA Astrophysics Data System (ADS)

    Portmann, A. C.; Halpin, B. N.; Herzog, S.; Higgins, C.; McCray, J. E.

    2017-12-01

    The hyporheic zone (HZ) is a natural bioreactor that can provide in-stream attenuation of various nonpoint source contaminants. Main contributions of nonpoint source pollution are coming from urban stormwater and agricultural runoff, which both adversely impact aquatic life. Stormwater pollutants of concern commonly include nutrients, metals, pathogens, and trace organic contaminants (TOrCs). Despite substantial water quality challenges, current stormwater management typically focuses on water quantity issues rather than pollutant removal. Furthermore, current HZ restoration best management practices do not explicitly control HZ residence times, and generally only induce localized effects. To increase hyporheic exchange and therefore improving water quality, we introduced engineered streambeds featuring modifications to subsurface hydraulic conductivity (K) and reactivity - termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST modifications comprise subsurface modules that employ 1) low-permeability sediments to drive hyporheic exchange and control subsurface residence times, and 2) permeable reactive geomedia to change reaction rates within the HZ. Here we present performance data collected in constructed stream experiments, comparing an all-sand control condition with a stream containing BEST modules and a mixture of 70/30 sand/woodchips (v/v). We evaluated the attenuation of a suite of TOrCs in the BEST versus the control system for two different streambed media: a coarse sand with K = 0.48 cm/s and a fine sand with K = 0.16 cm/s. The range of TOrCs investigated comprises urban pesticides and other stormwater relevant TOrCs. Benefits of applying BEST include increased exchange between streamwater and HZ water, leading to diverse redox conditions that are beneficial for aquatic organisms and will facilitate in-stream pollutant transformation. Future work will focus on tailoring the BEST design for specific pollutants, thereby controlling HZ residence times to match reaction timescales and conditions of interest.

  3. A regional protocol for evaluating the effectiveness of forestry best management practices at controlling erosion and sedimentation

    Treesearch

    Roger Ryder; Pamela Edwards; Pamela Edwards

    2006-01-01

    Forestry operations do not have permitting requirements under the Clean Water Act because there is a ccsilvicultural exemption" given in that law, as long as best management practices (BMPs) are used to help control non-point source pollution. However, states' monitoring of BMP effectiveness often has been sporadic and anecdotal, and the procedures used have...

  4. For multidisciplinary research on the application of remote sensing to water resources problems. [including crop yield, watershed soils, and vegetation mapping in Wisconsin

    NASA Technical Reports Server (NTRS)

    Kiefer, R. W. (Principal Investigator)

    1979-01-01

    Research on the application of remote sensing to problems of water resources was concentrated on sediments and associated nonpoint source pollutants in lakes. Further transfer of the technology of remote sensing and the refinement of equipment and programs for thermal scanning and the digital analysis of images were also addressed.

  5. Monitoring Guidance for Determining the Effectiveness of Nonpoint Source Controls

    EPA Pesticide Factsheets

    A nonpoint source monitoring and evaluation guide written for use by those who monitor and those who evaluate monitoring proposals. It focuses on monitoring to determine the effectiveness of nonpoint source controls at the watershed and practice levels

  6. Modeling the impacts of wildfire on runoff and pollutant transport from coastal watersheds to the nearshore environment.

    PubMed

    Morrison, Katherine D; Kolden, Crystal A

    2015-03-15

    Wildfire is a common disturbance that can significantly alter vegetation in watersheds and affect the rate of sediment and nutrient transport to adjacent nearshore oceanic environments. Changes in runoff resulting from heterogeneous wildfire effects are not well-understood due to both limitations in the field measurement of runoff and temporally-limited spatial data available to parameterize runoff models. We apply replicable, scalable methods for modeling wildfire impacts on sediment and nonpoint source pollutant export into the nearshore environment, and assess relationships between wildfire severity and runoff. Nonpoint source pollutants were modeled using a GIS-based empirical deterministic model parameterized with multi-year land cover data to quantify fire-induced increases in transport to the nearshore environment. Results indicate post-fire concentration increases in phosphorus by 161 percent, sediments by 350 percent and total suspended solids (TSS) by 53 percent above pre-fire years. Higher wildfire severity was associated with the greater increase in exports of pollutants and sediment to the nearshore environment, primarily resulting from the conversion of forest and shrubland to grassland. This suggests that increasing wildfire severity with climate change will increase potential negative impacts to adjacent marine ecosystems. The approach used is replicable and can be utilized to assess the effects of other types of land cover change at landscape scales. It also provides a planning and prioritization framework for management activities associated with wildfire, including suppression, thinning, and post-fire rehabilitation, allowing for quantification of potential negative impacts to the nearshore environment in coastal basins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Understanding enabling capacities for managing the 'wicked problem' of nonpoint source water pollution in catchments: a conceptual framework.

    PubMed

    Patterson, James J; Smith, Carl; Bellamy, Jennifer

    2013-10-15

    Nonpoint source (NPS) water pollution in catchments is a 'wicked' problem that threatens water quality, water security, ecosystem health and biodiversity, and thus the provision of ecosystem services that support human livelihoods and wellbeing from local to global scales. However, it is a difficult problem to manage because water catchments are linked human and natural systems that are complex, dynamic, multi-actor, and multi-scalar in nature. This in turn raises questions about understanding and influencing change across multiple levels of planning, decision-making and action. A key challenge in practice is enabling implementation of local management action, which can be influenced by a range of factors across multiple levels. This paper reviews and synthesises important 'enabling' capacities that can influence implementation of local management action, and develops a conceptual framework for understanding and analysing these in practice. Important enabling capacities identified include: history and contingency; institutional arrangements; collaboration; engagement; vision and strategy; knowledge building and brokerage; resourcing; entrepreneurship and leadership; and reflection and adaptation. Furthermore, local action is embedded within multi-scalar contexts and therefore, is highly contextual. The findings highlight the need for: (1) a systemic and integrative perspective for understanding and influencing change for managing the wicked problem of NPS water pollution; and (2) 'enabling' social and institutional arenas that support emergent and adaptive management structures, processes and innovations for addressing NPS water pollution in practice. These findings also have wider relevance to other 'wicked' natural resource management issues facing similar implementation challenges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Analysis of one dimension migration law from rainfall runoff on urban roof

    NASA Astrophysics Data System (ADS)

    Weiwei, Chen

    2017-08-01

    Research was taken on the hydrology and water quality process in the natural rain condition and water samples were collected and analyzed. The pollutant were included SS, COD and TN. Based on the mass balance principle, one dimension migration model was built for the rainfall runoff pollution in surface. The difference equation was developed according to the finite difference method, by applying the Newton iteration method for solving it. The simulated pollutant concentration process was in consistent with the measured value on model, and Nash-Sutcliffe coefficient was higher than 0.80. The model had better practicability, which provided evidence for effectively utilizing urban rainfall resource, non-point source pollution of making management technologies and measures, sponge city construction, and so on.

  9. Hydrogeology and Water Quality of the Pepacton Reservoir Watershed in Southeastern New York. Part 3. Responses of Stream Base-Flow Chemistry to Hydrogeologic Factors and Nonpoint-Sources of Contamination

    USGS Publications Warehouse

    Heisig, Paul M.; Phillips, Patrick J.

    2004-01-01

    The implications of this study are that seasonal and more frequent base-flow surveys of water chemistry from small stream basins can help refine the understanding of local hydrogeologic systems and define the effects of nonpointsource contamination on base-flow water quality. The concentration of most nonpoint sources in valley-bottom or lower-hillside areas helped indicate the relative contributions of water from hillside and valley-bottom areas at different times of year. The positive correlations between the intensity of nonpoint-source activities and nonpoint-source constituents in base flow underscores the link between land use (nonpoint sources), ground-water quality, and surface-water quality.

  10. A VSA-based strategy for placing conservation buffers in agricultural watersheds.

    PubMed

    Qiu, Zeyuan

    2003-09-01

    Conservation buffers have the potential to reduce agricultural nonpoint source pollution and improve terrestrial wildlife habitat, landscape biodiversity, flood control, recreation, and aesthetics. Conservation buffers, streamside areas and riparian wetlands are being used or have been proposed to control agricultural nonpoint source pollution. This paper proposes an innovative strategy for placing conservation buffers based on the able source area (VSA) hydrology. VSAs are small, variable but predictable portion of a watershed that regularly contributes to runoff generation. The VSA-based strategy involves the following three steps: first, identifying VSAs in landscapes based on natural characteristics such as hydrology, land use/cover, topography and soils; second, targeting areas within VSAs for conservation buffers; third, refining the size and location of conservation buffers based on other factors such as weather, environmental objectives, available funding and other best management practices. Building conservation buffers in VSAs allows agricultural runoff to more uniformly enter buffers and stay there longer, which increases the buffer's capacity to remove sediments and nutrients. A field-scale example is presented to demonstrate the effectiveness and cost-effectiveness of the within-VSA conservation buffer scenario relative to a typical edge-of-field buffer scenario. The results enhance the understanding of hydrological processes and interactions between agricultural lands and conservation buffers in agricultural landscapes, and provide practical guidance for land resource managers and conservationists who use conservation buffers to improve water quality and amenity values of agricultural landscape.

  11. Stormwater quality management in rail transportation--past, present and future.

    PubMed

    Vo, Phuong Tram; Ngo, Huu Hao; Guo, Wenshan; Zhou, John L; Listowski, Andrzej; Du, Bin; Wei, Qin; Bui, Xuan Thanh

    2015-04-15

    Railways currently play an important role in sustainable transportation systems, owing to their substantial carrying capacity, environmental friendliness and land-saving advantages. Although total pollutant emissions from railway systems are far less than that of automobile vehicles, the pollution from railway operations should not be underestimated. To date, both scientific and practical papers dealing with stormwater management for rail tracks have solely focused on its drainage function. Unlike roadway transport, the potential of stormwater pollution from railway operations is currently mishandled. There have been very few studies into the impact of its operations on water quality. Hence, upon the realisation on the significance of nonpoint source pollution, stormwater management priorities should have been re-evaluated. This paper provides an examination of past and current practices of stormwater management in the railway industry, potential sources of stormwater pollution, obstacles faced in stormwater management and concludes with strategies for future management directions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China

    PubMed Central

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-01-01

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution. PMID:26308032

  13. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China.

    PubMed

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-08-21

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution.

  14. Study design and preliminary data analysis for a streambank fencing project in the Mill Creek Basin, Pennsylvania

    USGS Publications Warehouse

    Galeone, Daniel G.; Koerkle, Edward H.

    1996-01-01

    The Pequea Creek and Mill Creek Basins within Lancaster and Chester Counties in Pennsylvania have been identified as areas needing control of nonpoint-source (NFS) pollution to improve water quality. The two basins are a total of approximately 200 square miles and are primarily underlain by carbonate bedrock. Land use is predominantly agriculture. The most common agricultural NFS pollution-control practices implemented in the Pequea Creek and Mill Creek Basins are barnyard-runoff control and Streambank fencing. To provide land managers information on the effectiveness of Streambank fencing in controlling NFS pollution, a study is being conducted in two small paired watersheds within the Mill Creek Basin.

  15. An assessment of forest cover and impervious surface area on family forests in the New York City Watershed

    Treesearch

    Nathaniel M. Anderson; Rene H. Germain; Myrna H. Hall

    2012-01-01

    Between 1984 and 2000, the parcelization of family forests in the New York City Watershed caused a decline in average parcel size from 19 to 16 ac. However, little is known about the timing and intensity of development on subdivided parcels, which has the potential to negatively affect water quality by increasing nonpoint source pollution associated with nutrient...

  16. CONTRIBUTION OF NUTRIENTS AND E.COLI TO SURFACE WATER CONDITION IN THE OZARKS: PART II USING LANDSCAPE ECOLOGY AND PARTIAL LEAST SQUARES PREDICTIONS TO MAP WATERSHEDS THAT ARE VULNERABLE TO NON-POINT SOURCE POLLUTION

    EPA Science Inventory

    The results of this project provide watershed managers with the first broad-scale predictions that can be used to explain how land cover type, land cover configuration, environmental change, and human activities may affect the chemical and biological characteristics of surface wa...

  17. Estimating the benefits of land imagery in environmental applications: a case study in nonpoint source pollution of groundwater

    USGS Publications Warehouse

    Bernknopf, Richard L.; Forney, William M.; Raunikar, Ronald P.; Mishra, Shruti K.; Laxminarayan, Ramanan; Maccauley, Molly K.

    2012-01-01

    Moderate-resolution land imagery (MRLI) is crucial to a more complete assessment of the cumulative, landscape-level effect of agricultural land use and land cover on environmental quality. If this improved assessment yields a net social benefit, then that benefit reflects the value of information (VOI) from MRLI. Environmental quality and the capacity to provide ecosystem services evolve because of human actions, changing natural conditions, and their interaction with natural physical processes. The human actions, in turn, are constrained and redirected by many institutions and regulations such as agricultural, energy, and environmental policies. We present a general framework for bringing together sociologic, biologic, physical, hydrologic, and geologic processes at meaningful scales to interpret environmental implications of MRLI applications. We set out a specific application using MRLI observations to identify crop planting patterns and thus estimate surface management activities that influence groundwater resources over a regional landscape. We tailor the application to the characteristics of nonpoint source groundwater pollution hazards in Iowa to illustrate a general framework in a land use-hydrologic-economic system. In the example, MRLI VOI derives from reducing the risk of both losses to agricultural production and damage to human health and other consequences of contaminated groundwater.

  18. A smart market for nutrient credit trading to incentivize wetland construction

    NASA Astrophysics Data System (ADS)

    Raffensperger, John F.; Prabodanie, R. A. Ranga; Kostel, Jill A.

    2017-03-01

    Nutrient trading and constructed wetlands are widely discussed solutions to reduce nutrient pollution. Nutrient markets usually include agricultural nonpoint sources and municipal and industrial point sources, but these markets rarely include investors who construct wetlands to sell nutrient reduction credits. We propose a new market design for trading nutrient credits, with both point source and non-point source traders, explicitly incorporating the option of landowners to build nutrient removal wetlands. The proposed trading program is designed as a smart market with centralized clearing, done with an optimization. The market design addresses the varying impacts of runoff over space and time, and the lumpiness of wetland investments. We simulated the market for the Big Bureau Creek watershed in north-central Illinois. We found that the proposed smart market would incentivize wetland construction by assuring reasonable payments for the ecosystem services provided. The proposed market mechanism selects wetland locations strategically taking into account both the cost and nutrient removal efficiencies. The centralized market produces locational prices that would incentivize farmers to reduce nutrients, which is voluntary. As we illustrate, wetland builders' participation in nutrient trading would enable the point sources and environmental organizations to buy low cost nutrient credits.

  19. Determination and treatment of substances in runoff in a controlled highway system (Cross Lake).

    DOT National Transportation Integrated Search

    2003-06-01

    Because bridges usually span bodies of water, quantifying and controlling non-point pollutant flux from them will take on added significance as federal regulations begin to address non-point contamination of the environment. The objectives of this st...

  20. Water quality changes and their relation to fishery resources in the upper Mississippi River

    USGS Publications Warehouse

    Holland Bartels, L. E.; Becker, C.D.; Neitzel, D.A.

    1992-01-01

    Despite a long history of human manipulation, the most dramatic changes in the upper Mississippi River occurred in the 1930s with construction of a lock and dam system to facilitate the commercial transport of commodities. In 1988, barge traffic through the system ranged from 7,500 tows per year at Lock and Dam 26 (near Alton, Illinois) to 1, 118 at Lock and Dam 1 (in Minneapolis/St. Paul). The tow-teed dam system created a diversity of lentic habitats, but it also changed the stage and sediment transport characteristics of the river. The principal fishery-related water quality issues of this modified system concern the effects of sediments and toxic contaminants from nonpoint sources. Between 42 and 99% of the streams in the five states of the Mississippi River basin fail to fully support their designated uses because of pollution. primarily from nonpoint sources (e.g., 73% in Minnesota, 98% in Wisconsin, 75% in Illinois). Annual sediment inputs into the upper Mississippi River basin range from minimal in the upper reaches to about 210.000 kg/hectare in the lower reaches. This sediment results in significant losses of fishery habitat. Although bnly 5 to 9% of the total open water area of many pools had been lost by 1975, those losses were in highly productive side channel and backwater areas. Under existing conditions, a loss of an additional 22 to 49% of existing lentic habitats is predicted within 50 years. In addition, toxic contaminants transported along with fine sediments have become more available to stream biota. Although significant interagency efforts have been made to evaluate the impacts on biotic communities of the river. present data are inadequate to determine how changes in water quality affect the fisheries. This lack of data undermines our ability to judge the success of programs initiated to control pollution from point and nonpoint sources.

  1. [Effect of terracing project on temporal-spatial variation of non-point source pollution load in Hujiashan watershed, China].

    PubMed

    Han, Qiang; Yu, Xing Xiu; Wang, Wei; Xu, Miao Miao; Ren, Rui; Zhang, Jia Peng

    2017-04-18

    Taking Hujiashan small watershed as the study area, based on the classified result of Landsat TM/ETM images of 2005, 2010 and 2015, combined with long-term field observation data, and used the export coefficient model, our study explored the effect of small watershed management project on temporal and spatial variation of total nitrogen (TN) load of non-point source pollution under the support of GIS technology. The results indicated that, due to the implementation of slope modification project, the area of cultivated land was significantly increased, while forest and bareland were decreased. The load of non-point source TN increased from 63208 kg in 2005 to 72778 kg in 2010, but reduced to 46876 kg in 2015. The contribution rate from residential areas was higher, the average contribution rate of the three periods was 53.5%, but it showed a decreasing trend year by year. The contribution rate of land use types was 45%, which showed an increasing trend year by year. The contribution rate of livestock was always low. From the spatial distribution, TN loading intensity was changed obviously after the terracing project. High load intensity zone was mainly concentrated on the slope of 5°-15° before terracing project. Nevertheless, high load intensity zone was concentrated on the slope of 15°-35° after terracing project, and 5°-8° had become a low load strength area. The TN load intensity changed little with time on the slope of 0°-8°, and it increased first and then decreased on the slope above 8°. With the treatment of sewage, garbage and livestock manure in rural areas, the output of nitrogen in the living and livestock breeding were significantly reduced. Due to the implementation of the project, the cultivated land area increased by 31%.

  2. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulationmore » of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning process and offers suggestions as to how the technical and institutional issues could have been resolved faster through early adoption of some of the core principles of sound EDSS design.« less

  3. 78 FR 69664 - Proposed Information Collection Request; Comment Request; Approval of State Coastal Nonpoint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OW-2006-0394; FRL-9903-09-OW] Proposed Information Collection Request; Comment Request; Approval of State Coastal Nonpoint Pollution Control Programs AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The Environmental Protection Agency is planning...

  4. The Treatment Train approach to reducing non-point source pollution from agriculture

    NASA Astrophysics Data System (ADS)

    Barber, N.; Reaney, S. M.; Barker, P. A.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Snell, M. A.; Surridge, B.; Quinn, P. F.

    2016-12-01

    An experimental approach has been applied to an agricultural catchment in NW England, where non-point pollution adversely affects freshwater ecology. The aim of the work (as part of the River Eden Demonstration Test Catchment project) is to develop techniques to manage agricultural runoff whilst maintaining food production. The approach used is the Treatment Train (TT), which applies multiple connected mitigation options that control nutrient and fine sediment pollution at source, and address polluted runoff pathways at increasing spatial scale. The principal agricultural practices in the study sub-catchment (1.5 km2) are dairy and stock production. Farm yards can act as significant pollution sources by housing large numbers of animals; these areas are addressed initially with infrastructure improvements e.g. clean/dirty water separation and upgraded waste storage. In-stream high resolution monitoring of hydrology and water quality parameters showed high-discharge events to account for the majority of pollutant exports ( 80% total phosphorus; 95% fine sediment), and primary transfer routes to be surface and shallow sub-surface flow pathways, including drains. To manage these pathways and reduce hydrological connectivity, a series of mitigation features were constructed to intercept and temporarily store runoff. Farm tracks, field drains, first order ditches and overland flow pathways were all targeted. The efficacy of the mitigation features has been monitored at event and annual scale, using inflow-outflow sampling and sediment/nutrient accumulation measurements, respectively. Data presented here show varied but positive results in terms of reducing acute and chronic sediment and nutrient losses. An aerial fly-through of the catchment is used to demonstrate how the TT has been applied to a fully-functioning agricultural landscape. The elevated perspective provides a better understanding of the spatial arrangement of mitigation features, and how they can be implemented without impacting on the farm's primary function. The TT has the potential to yield benefits beyond those associated with water quality. Increasing catchment resilience through the use of landscape interventions can provide multiple benefits by mitigating for floods and droughts and creating ecological habitat.

  5. Identification and apportionment of hazardous elements in the sediments in the Yangtze River estuary.

    PubMed

    Wang, Jiawei; Liu, Ruimin; Wang, Haotian; Yu, Wenwen; Xu, Fei; Shen, Zhenyao

    2015-12-01

    In this study, positive matrix factorization (PMF) and principal components analysis (PCA) were combined to identify and apportion pollution-based sources of hazardous elements in the surface sediments in the Yangtze River estuary (YRE). Source identification analysis indicated that PC1, including Al, Fe, Mn, Cr, Ni, As, Cu, and Zn, can be defined as a sewage component; PC2, including Pb and Sb, can be considered as an atmospheric deposition component; and PC3, containing Cd and Hg, can be considered as an agricultural nonpoint component. To better identify the sources and quantitatively apportion the concentrations to their sources, eight sources were identified with PMF: agricultural/industrial sewage mixed (18.6 %), mining wastewater (15.9 %), agricultural fertilizer (14.5 %), atmospheric deposition (12.8 %), agricultural nonpoint (10.6 %), industrial wastewater (9.8 %), marine activity (9.0 %), and nickel plating industry (8.8 %). Overall, the hazardous element content seems to be more connected to anthropogenic activity instead of natural sources. The PCA results laid the foundation for the PMF analysis by providing a general classification of sources. PMF resolves more factors with a higher explained variance than PCA; PMF provided both the internal analysis and the quantitative analysis. The combination of the two methods can provide more reasonable and reliable results.

  6. Analysis of Temporal and Spatial Distributions of Ammonia Nitrogen in the Huaihe River Basin from 1998 to 2014

    NASA Astrophysics Data System (ADS)

    Xu, J.; Jin, G.; Tang, H.; Li, L.

    2016-12-01

    To assess the effectiveness of water pollution control measures taken in the Huaihe River Basin (HRB) in China, we analyzed the temporal and spatial distributions of ammonia nitrogen (NH3-N) in the river water from 1998 to 2014 (three Chinese Five-year Plan periods).Analysis of measured NH3-N concentrations from various monitoring stations using the STL (seasonal trend decomposition using loess) method and a modified log-linear model revealed that: (1) The rate of NH3-N concentration reduction over the whole period was 70% 81% in the main stream of Huaihe River, but reached 88% in two major tributaries - the Shaying River and Guo River. (2) The NH3-N concentrations decreased significantly particularly between the tenth Five-year Plan and eleventh Five-year Plan periods in the main stream. In comparison, significant NH3-N reduction occurred over all three Five-year Plan periods in the Shaying and Guo tributaries. The concentration in the first year of a Five-year Plan period tended to much higher than that in the last year of the same period, likely due to the difference in implementing the pollution control measures. (3) The NH3-N concentrations were higher in the spring (fertilization period) and winter (low discharge) than in the summer and autumn. (4) With the implementation of pollution control measures, the contribution rate of NH3-N in the two major tributaries from point sources has decreased from 74% 93% in earlier years to 3% 28% in later years. However, NH3-N input from non-point sources appeared to remain stable and largely depend on runoff. To further reduce the NH3-N concentration in the river, policies and control measures should focus on non-point sources.

  7. Impact of Crop Conversions on Runoff and Sediment Output in the Lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Momm, H.; Bingner, R. L.; Elkadiri, R.; Yaraser, L.; Porter, W.

    2017-12-01

    Farming management practices influence sediment and agrochemical loads exiting fields and entering downstream water bodies. These practices impact multiple physical processes responsible for sediment and nutrient detachment, transport, and deposition. Recent changes in farming practices in the Southern United States coincide with increased grain production, replacing traditional crops such as cotton with corn and soybeans. To grow these crops in the South, adapted crop management practices are needed (irrigation, fertilizer, etc.). In this study, the impact of grain crop adoption on hydrologic processes and non-point source pollutant production is quantified. A watershed located in the Big Sunflower River drainage basin (14,179 km2) - a part of the greater Lower Mississippi River basin - was selected due to its economic relevance, historical agricultural output, and depiction of recent farming management trends. Estimates of runoff and sediment loads were produced using the U.S. Department of Agriculture supported Annualized Agriculture Non-Point Source Pollution (AnnAGNPS) watershed pollution and management model. Existing physical conditions during a 16-year period (2000-2015) were characterized using 3,992 sub-catchments and 1,602 concentrated flow paths. Algorithms were developed to integrate continuous land use/land cover information, variable spatio-temporal irrigation practices, and crop output yield in order to generate a total of 2,922 unique management practices and corresponding soil-disturbing operations. A simulation representing existing conditions was contrasted with simulations depicting alternatives of management, irrigation practices, and temporal variations in crop yield. Quantification of anthropogenic impacts to water quality and water availability at a watershed scale supports the development of targeted pollution mitigation and custom conservation strategies.

  8. A conceptual study on the formulation of a permeable reactive pavement with activated carbon additives for controlling the fate of non-point source environmental organic contaminants.

    PubMed

    Huang, Shengyi; Liang, Chenju

    2018-02-01

    To take advantage of the road pavement network where non-point source (NPS) pollution such as benzene, toluene, ethyl-benzene, and xylene (BTEX) from vehicle traffic exhaust via wet and dry atmospheric deposition occurs, the asphalt pavement may be used as a media to control the NPS pollution. An experiment to prepare an adsorptive porous reactive pavement (PRP) was initiated to explore the potential to reduce environmental NPS vehicle pollution. The PRP was prepared and studied as follows: various activated carbons (AC) were initially screened to determine if they were suitable as an additive in the porous asphalt mixture; various mixtures of a selected AC were incorporated with the design of porous asphalt concrete (PAC) to produce PRP, and the PRP formulations were tested to ensure that they comply with the required specifications; qualified specimens were subsequently tested to determine their adsorption capacity for BTEX in aqueous solution, as compared to conventional PAC. The PRP08 and PRP16 samples, named for the design formulations of 0.8% and 1.6% of AC (by wt. in the formulation), exhibited low asphalt drain-down and low abrasion loss and also met all regulated specifications. The BTEX adsorption capacity measurements of PRP08 and PRP16 were 33-46%, 36-51%, 20-22%, and 6-8% respectively, higher than those obtained from PACs. Based on the test results, PRPs showed good physical performance and adsorption and may be considered as a potential method for controlling the transport of NPS vehicle pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. General design, construction, and operation guidelines: Constructed wetlands wastewater treatment systems for small users including individual residences. Second edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, G.R.; Watson, J.T.

    1993-05-01

    One of the Tennessee Valley Authority`s (TVA`s) major goals is cleanup and protection of the waters of the Tennessee River system. Although great strides have been made, point source and nonpoint source pollution still affect the surface water and groundwater quality in the Tennessee Valley and nationally. Causes of this pollution are poorly operating wastewater treatment systems or the lack of them. Practical solutions are needed, and there is great interest and desire to abate water pollution with effective, simple, reliable and affordable wastewater treatment processes. In recognition of this need, TVA began demonstration of the constructed wetlands technology inmore » 1986 as an alternative to conventional, mechanical processes, especially for small communities. Constructed wetlands can be downsized from municipal systems to small systems, such as for schools, camps and even individual homes.« less

  10. [Effect of antecedent dry period on water quality of urban storm runoff pollution].

    PubMed

    Bian, Bo

    2009-12-01

    Identified the main factor influencing urban rainfall-runoff pollution provides a scientific basis for urban rainfall-runoff pollution control and management. Therefore, starting in May 2006, a study was conducted to characterize water quality from representative land uses types in Zhenjiang to analyse the effect of antecedent dry period on stormwater runoff quality. The results show that the beginning of rainfall, with the increase of antecedent dry periods, the percentages of less than 40 microm is increased, the correlation of the water quality parameters (TN, TP, Zn, Pb, Cu, TSS and COD) and antecedent dry period shows a significant positive correlation, dissolved pollutants in the initial period surface runoff is increased. These findings show that facilitating the recognition of antecedent dry periods is the main factor influencing the change in concentration and partitioning of pollutants to provide the scientific basis for non-point source pollution control and management.

  11. Isotopic Recorders of Pollution in Heterogeneous Urban Areas

    NASA Astrophysics Data System (ADS)

    Pataki, D. E.; Cobley, L.; Smith, R. M.; Ehleringer, J. R.; Chritz, K.

    2017-12-01

    A significant difficulty in quantifying urban pollution lies in the extreme spatial and temporal heterogeneity of cities. Dense sources of both point and non-point source pollution as well as the dynamic role of human activities, which vary over very short time scales and small spatial scales, complicate efforts to establish long-term urban monitoring networks that are relevant at neighborhood, municipal, and regional scales. Fortunately, the natural abundance of isotopes of carbon, nitrogen, and other elements provides a wealth of information about the sources and fate of urban atmospheric pollution. In particular, soils and plant material integrate pollution sources and cycling over space and time, and have the potential to provide long-term records of pollution dynamics that extend back before atmospheric monitoring data are available. Similarly, sampling organic material at high spatial resolution can provide "isoscapes" that shed light on the spatial heterogeneity of pollutants in different urban parcels and neighborhoods, along roads of varying traffic density, and across neighborhoods of varying affluence and sociodemographic composition. We have compiled numerous datasets of the isotopic composition of urban organic matter that illustrate the potential for isotopic monitoring of urban areas as a means of understanding hot spots and hot moments in urban atmospheric biogeochemistry. Findings to date already reveal the critical role of affluence, economic activity, demographic change, and land management practices in influencing urban pollution sources and sinks, and suggest an important role of stable isotope and radioisotope measurements in urban atmospheric and biogeochemical monitoring.

  12. An Analysis of the United States Air Force Nonpoint Source Water Pollution Abatement Program

    DTIC Science & Technology

    1990-09-01

    salts and other minerals. The nmoff frm barnyards and confined feedlots carries organic matter, amcmia, fecal bacteria and other microorganisms, and...nutrients in fertilizers used in lawn care, fecal bacteria from animals (mainly pets and birds), and pesticides are all contained in this runoff...application of pesticides and fertilizers. Less of these products can be applied at optinun intervals and under the proper conditions to reduce the

  13. Water Resources Publications of the U.S. Geological Survey for Tennessee, 1987-1993

    DTIC Science & Technology

    1994-01-01

    elutri- ate chemistry at selected stations at Reelfoot Lake , Tennessee: U.S. Geological Survey Water-Resources Investigations Report 90-4181,13 p...1992, Nonpoint-source pollutant discharges of the three major tributaries to Reelfoot Lake , West Tennessee, October 1987 through September 1989: U.S...hydrologic data for observation wells in the Reelfoot Lake area, Tennessee and Kentucky: U.S. Geological Survey Open-File Report 87-249, 17 p. OFR 87

  14. Water Quality Planning in Rivers: Assimilative Capacity and Dilution Flow.

    PubMed

    Hashemi Monfared, Seyed Arman; Dehghani Darmian, Mohsen; Snyder, Shane A; Azizyan, Gholamreza; Pirzadeh, Bahareh; Azhdary Moghaddam, Mehdi

    2017-11-01

    Population growth, urbanization and industrial expansion are consequentially linked to increasing pollution around the world. The sources of pollution are so vast and also include point and nonpoint sources, with intrinsic challenge for control and abatement. This paper focuses on pollutant concentrations and also the distance that the pollution is in contact with the river water as objective functions to determine two main necessary characteristics for water quality management in the river. These two necessary characteristics are named assimilative capacity and dilution flow. The mean area of unacceptable concentration [Formula: see text] and affected distance (X) are considered as two objective functions to determine the dilution flow by a non-dominated sorting genetic algorithm II (NSGA-II) optimization algorithm. The results demonstrate that the variation of river flow discharge in different seasons can modify the assimilation capacity up to 97%. Moreover, when using dilution flow as a water quality management tool, results reveal that the content of [Formula: see text] and X change up to 97% and 93%, respectively.

  15. Volume 3a - Area Source Methods - Additional Documents

    EPA Pesticide Factsheets

    Nonpoint (area) source emission reference materials from the Emissions Inventory Improvement Program (EIIP). Provides nonpoint source guidance on ammonia emissions from natural landscapes, fertilized soils, and nonagricultural sources.

  16. Volume 3 - Area Sources and Area Source Method Abstracts

    EPA Pesticide Factsheets

    Nonpoint (area) source emission reference materials from the EIIP. Provides nonpoint source guidance on planning, emissions estimation, data collection, inventory documentation and reporting, and quality assurance/quality control.

  17. The Impact of Urban Development on the Water Quality in the Las Vegas Watershed

    NASA Astrophysics Data System (ADS)

    Yu, A.; Simmons, C.; Acharya, K.

    2009-12-01

    Las Vegas, one of the fastest growing cities in the nation, must have its water strictly monitored for quality as well as degree of pollution. Samples at various sites were collected to analyze the current pollution status of our water bodies (in both residential and urban settings) in the Las Vegas watershed. These gathered samples (sediment and water) were collected and analyzed for measuring total phosphorus, total organic carbon, trace metal contents, i.e., selenium, arsenic, mercury and lead, as well as pathogens, i.e., E-coli and total coliform counts. The concentrations of various pollutions will be compared among different sites as well as natural local sites (due to the natural occurrence of a few trace metals and normal levels of other measurements) and analyzed for spatial distribution for source identification and for elucidating the cause and consequence. Preliminary analyses of the results indicate that nonpoint source pollutions (golf courses, construction sites, etc.) have larger impacts than point source pollutions such as wastewater treatment effluents. This study will help understand and evaluate the degradation of the water quality caused by the increase of human actions in recent years in Las Vegas.

  18. Research on the Placement of the Ecological Shelter Zone in the Three Gorges Reservoir Area, China

    NASA Astrophysics Data System (ADS)

    Shan, N.; Ruan, X.

    2011-12-01

    The Three Gorges Dam is built on the middle reaches of Yangtze River (Changjiang) in south-central China, which is the world's third longest river. The Three Gorges Reservoir Region (TGRR), including the entire inundated area and 19 administrative units (counties and cities) on both sides of the river, is regarded as an environmentally sensitive area. The total area of the TGRR is approximately 58000 km2. As the Three Gorges Dam fully operated, for the flood control, the water level should be kept in the range between 145 m and 175 m and the reservoir surface water area(over 1080 km2)at a water level of 175 m, with a length of 600 km. Many of cities, villages and farms have been submerged. Moreover, as a result of reservoir operation, the water-level alternation of the reservoir is opposite to the nature, which is low water level (145m) in summer and high water level (175m) in winter. The Hydro-Fluctuation Belt, with a height of 30m, will become a new pollution source due to the riparian being flooded and the submerged areas may still contain trace amounts of toxic or radioactive materials. The environmental impacts associated with large scale reservoir area often have significant negative impacts on the environment. It affects forest cover, species in the area, some endangered, water quality, increase the likelihood of earthquakes and mudslides in the area. To solve these problems, it is necessarily to construct the Ecological Shelter Zone (ESZ) along with the edge of the reservoir area. The function of the ESZ is similar to the riparian zone in reducing flood damage, improving water quality, decreasing the levels of the nonpoint source pollution load and soil erosion and rebuilding the migration routes of plant and wildlife. However, the research of the ESZ is mainly focused on rivers at field scale by now, lack of research method on reservoir at the watershed scale. As the special nature of the Three Gorges Reservoir, the construction of the ESZ in the TGRA is very complex. This paper focus on the development of a methodology to target the ESZ based on currently available tools (Remote Sensing, GIS and Hydrologic Model). According to the features of the TGRR, a spatially explicit and process-based method was introduced to help plan the placement of the ESZ in the TGRR for water quality benefits. The methods presented here were based on the integration of grid-based terrain analysis and nonpoint source pollution estimates. Firstly, the contribution of nonpoint source pollution from upslope farmland and urban to the TGRR was determined by grid-based terrain analysis. The upslope contributing area beyond the ESZ was defined as a "source". The SWAT model was used to analyze the characteristics of the pollution load. Secondly, the ESZ was defined as a "sink" and the reducing pollution loads in each grid cell of the ESZ was calculated by the REMM model. Finally, the key areas in the TGRA where the ESZ have the greatest potential to improve water quality were identified and the formula of the width of the ESZ was determined. However, the method in this article considers only the function of pollutants reduction in the ESZ, the next stage of the study will involve detailed modeling for the function of ecological corridor in the ESZ.

  19. Assessment of runoff and sediment yields using the AnnAGNPS model in a Three-Gorge watershed of China.

    PubMed

    Hua, Lizhong; He, Xiubin; Yuan, Yongping; Nan, Hongwei

    2012-05-01

    Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs) and/or conservation programs have been adopted. Watershed models, such as the Annualized Agricultural Non-Point Source Pollutant Loading model (AnnAGNPS), have been developed to aid in the evaluation of watershed response to watershed management practices. The model has been applied worldwide and proven to be a very effective tool in identifying the critical areas which had serious erosion, and in aiding in decision-making processes for adopting BMPs and/or conservation programs so that cost/benefit can be maximized and non-point source pollution control can be achieved in the most efficient way. The main goal of this study was to assess the characteristics of soil erosion, sediment and sediment delivery of a watershed so that effective conservation measures can be implemented. To achieve the overall objective of this study, all necessary data for the 4,184 km(2) Daning River watershed in the Three-Gorge region of the Yangtze River of China were assembled. The model was calibrated using observed monthly runoff from 1998 to 1999 (Nash-Sutcliffe coefficient of efficiency of 0.94 and R(2) of 0.94) and validated using the observed monthly runoff from 2003 to 2005 (Nash-Sutcliffe coefficient of efficiency of 0.93 and R(2) of 0.93). Additionally, the model was validated using annual average sediment of 2000-2002 (relative error of -0.34) and 2003-2004 (relative error of 0.18) at Wuxi station. Post validation simulation showed that approximately 48% of the watershed was under the soil loss tolerance released by the Ministry of Water Resources of China (500 t·km(-2)·y(-1)). However, 8% of the watershed had soil erosion of exceeding 5,000 t·km(-2)·y(-1). Sloping areas and low coverage areas are the main source of soil loss in the watershed.

  20. Assessment of Runoff and Sediment Yields Using the AnnAGNPS Model in a Three-Gorge Watershed of China

    PubMed Central

    Hua, Lizhong; He, Xiubin; Yuan, Yongping; Nan, Hongwei

    2012-01-01

    Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs) and/or conservation programs have been adopted. Watershed models, such as the Annualized Agricultural Non-Point Source Pollutant Loading model (AnnAGNPS), have been developed to aid in the evaluation of watershed response to watershed management practices. The model has been applied worldwide and proven to be a very effective tool in identifying the critical areas which had serious erosion, and in aiding in decision-making processes for adopting BMPs and/or conservation programs so that cost/benefit can be maximized and non-point source pollution control can be achieved in the most efficient way. The main goal of this study was to assess the characteristics of soil erosion, sediment and sediment delivery of a watershed so that effective conservation measures can be implemented. To achieve the overall objective of this study, all necessary data for the 4,184 km2 Daning River watershed in the Three-Gorge region of the Yangtze River of China were assembled. The model was calibrated using observed monthly runoff from 1998 to 1999 (Nash-Sutcliffe coefficient of efficiency of 0.94 and R2 of 0.94) and validated using the observed monthly runoff from 2003 to 2005 (Nash-Sutcliffe coefficient of efficiency of 0.93 and R2 of 0.93). Additionally, the model was validated using annual average sediment of 2000–2002 (relative error of −0.34) and 2003–2004 (relative error of 0.18) at Wuxi station. Post validation simulation showed that approximately 48% of the watershed was under the soil loss tolerance released by the Ministry of Water Resources of China (500 t·km−2·y−1). However, 8% of the watershed had soil erosion of exceeding 5,000 t·km−2·y−1. Sloping areas and low coverage areas are the main source of soil loss in the watershed. PMID:22754480

  1. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.

    PubMed

    Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan

    2015-07-01

    Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source composition of TP (38.1 %) is rural life; the maximum contribution rates of TN and TP in Baota district are 36.26 and 39.26 %, respectively. Results may provide data support for NPS pollution prevention and control in the loess hilly and gully region and also provide scientific reference for the protection of ecological environment of the Loess Plateau in northern Shaanxi.

  2. Morphological Deformities as Biomarkers in Fish from Contaminated Rivers in Taiwan

    PubMed Central

    Sun, Peter Lin; Hawkins, William E.; Overstreet, Robin M.; Brown-Peterson, Nancy J.

    2009-01-01

    Tilapia (Oreochromis spp.) were collected seasonally from four contaminated rivers in southwestern Taiwan for studies of morphological deformities that could be used as biomarkers of contamination. Morphological deformities found in tilapia were separated into 15 categories. Overall, the prevalence of deformities such as split fins, lower lip extension and gill deformities were significantly related to various water quality parameters, including low DO and high ammonium, lead and zinc concentrations. The persistence of tilapia in polluted waters and the development of a suite of morphological deformities suggest that tilapia can be used as sentinels of non-point source pollution in rivers. PMID:19742162

  3. Studies on the current state of water quality in the Segamat River

    NASA Astrophysics Data System (ADS)

    Razelan, Faridah Mohd; Tahir, Wardah; E. M Yahaya, Nasehir Khan

    2018-04-01

    Nowadays, pollution has become a major concern in developed and developing countries. In a study on the current state of Segamat River water quality; on-site data collection and observation and also laboratory data analysis have been implemented. Studies showed that the downstream of the Segamat River has recorded a significant reduction in quality of water during the dry season compared to the wet season. The deterioration of water quality is caused by the activities along the river such as palm oil plantation, municipal waste and waste from settlements. It was also recorded that the point sources were dominating the pollution at Segamat River during the dry season. However, during the wet season, the water quality was impaired by the non-point sources which originated from the upstream of the river.

  4. Water and nonpoint source pollution estimation in the watershed with limited data availability based on hydrological simulation and regression model.

    PubMed

    Huiliang, Wang; Zening, Wu; Caihong, Hu; Xinzhong, Du

    2015-09-01

    Nonpoint source (NPS) pollution is considered as the main reason for water quality deterioration; thus, to quantify the NPS loads reliably is the key to implement watershed management practices. In this study, water quality and NPS loads from a watershed with limited data availability were studied in a mountainous area in China. Instantaneous water discharge was measured through the velocity-area method, and samples were taken for water quality analysis in both flood and nonflood days in 2010. The streamflow simulated by Hydrological Simulation Program-Fortran (HSPF) from 1995 to 2013 and a regression model were used to estimate total annual loads of various water quality parameters. The concentrations of total phosphorus (TP) and total nitrogen (TN) were much higher during the flood seasons, but the concentrations of ammonia nitrogen (NH3-N) and nitrate nitrogen (NO3-N) were lower during the flood seasons. Nevertheless, only TP concentration was positively correlated with the flow rate. The fluctuation of annual load from this watershed was significant. Statistical results indicated the significant contribution of pollutant fluxes during flood seasons to annual fluxes. The loads of TP, TN, NH3-N, and NO3-N in the flood seasons were accounted for 58-85, 60-82, 63-88, 64-81% of the total annual loads, respectively. This study presented a new method for estimation of the water and NPS loads in the watershed with limited data availability, which simplified data collection to watershed model and overcame the scale problem of field experiment method.

  5. Assessing the effects of non-point source pollution on American Samoa's coral reef communities.

    PubMed

    Houk, Peter; Didonato, Guy; Iguel, John; Van Woesik, Robert

    2005-08-01

    Surveys were completed on Tutuila Island, American Samoa, to characterize reef development and assess the impacts of non-point source pollution on adjacent coral reefs at six sites. Multivariate analyses of benthic and coral community data found similar modern reef development at three locations; Aoa, Alofau, and Leone. These sites are situated in isolated bays with gentle sloping foundations. Aoa reefs had the highest estimates of crustose coralline algae cover and coral species richness, while Leone and Alofau showed high abundances of macroalgae and Porites corals. Aoa has the largest reef flat between watershed discharge and the reef slope, and the lowest human population density. Masefau and Fagaalu have a different geomorphology consisting of cemented staghorn coral fragments and steep slopes, however, benthic and coral communities were not similar. Benthic data suggest Fagaalu is heavily impacted compared with all other sites. Reef communities were assessed as bio-criteria indicators for waterbody health, using the EPA aquatic life use support designations of (1) fully supportive, (2) partially supportive, and (3) non-supportive for aquatic life. All sites resulted in a partially supportive ranking except Fagaalu, which was non-supportive. The results of this rapid assessment based upon relative benthic community measures are less desirable than long-term dataset analyses from monitoring programs, however it fills an important role for regulatory agencies required to report annual waterbody assessments. Future monitoring sites should be established to increase the number of replicates within each geological and physical setting to allow for meaningful comparisons along a gradient of hypothesized pollution levels.

  6. Predicting the Impacts of Climate Change on Runoff and Sediment Processes in Agricultural Watersheds: A Case Study from the Sunflower Watershed in the Lower Mississippi Basin

    NASA Astrophysics Data System (ADS)

    Elkadiri, R.; Momm, H.; Yasarer, L.; Armour, G. L.

    2017-12-01

    Climatic conditions play a major role in physical processes impacting soil and agrochemicals detachment and transportation from/in agricultural watersheds. In addition, these climatic conditions are projected to significantly vary spatially and temporally in the 21st century, leading to vast uncertainties about the future of sediment and non-point source pollution transport in agricultural watersheds. In this study, we selected the sunflower basin in the lower Mississippi River basin, USA to contribute in the understanding of how climate change affects watershed processes and the transport of pollutant loads. The climate projections used in this study were retrieved from the archive of World Climate Research Programme's (WCRP) Coupled Model Intercomparison Phase 5 (CMIP5) project. The CMIP5 dataset was selected because it contains the most up-to-date spatially downscaled and bias corrected climate projections. A subset of ten GCMs representing a range in projected climate were spatially downscaled for the sunflower watershed. Statistics derived from downscaled GCM output representing the 2011-2040, 2041-2070 and 2071-2100 time periods were used to generate maximum/minimum temperature and precipitation on a daily time step using the USDA Synthetic Weather Generator, SYNTOR. These downscaled climate data were then utilized as inputs to run in the Annualized Agricultural Non-Point Source (AnnAGNPS) pollution watershed model to estimate time series of runoff, sediment, and nutrient loads produced from the watershed. For baseline conditions a validated simulation of the watershed was created and validated using historical data from 2000 until 2015.

  7. Enabling and enacting 'practical action' in catchments: responding to the 'wicked problem' of nonpoint source pollution in coastal subtropical Australia.

    PubMed

    Patterson, James J; Smith, Carl; Bellamy, Jennifer

    2015-02-01

    Enabling and enacting 'practical action' (i.e., purposeful and concerted collective action) in catchments is a key challenge in responding to a wide range of pressing catchment and natural resource management (NRM) issues. It is particularly a challenge in responding to 'wicked problems,' where generating action is not straightforward and cannot be brought about solely by any single actor, policy or intervention. This paper responds to the critical need to better understand how practical action can be generated in catchments, by conducting an in-depth empirical case study of efforts to manage nonpoint source (NPS) pollution in South East Queensland (SEQ), Australia. SEQ has seen substantial concerted efforts to manage waterway and catchment issues over two decades, yet NPS pollution remains a major problem for waterway health. A novel framework was applied to empirically analyze practical action in three local catchment cases embedded within the broader SEQ region. The analysis focuses on 'enabling capacities' underpinning practical action in catchments. Findings reveal that capacities manifested in different ways in different cases, yet many commonalities also occurred across cases. Interplay between capacities was critical to the emergence of adaptive and contextual forms of practical action in all cases. These findings imply that in order to enable and enact practical action in catchments, it is vital to recognize and support a diversity of enabling capacities across both local and regional levels of decision making and action. This is likely to have relevance for other 'wicked' catchment and NRM problems requiring local responses within broader multiscalar regional problem situations.

  8. Simulated effects of existing and proposed surface-water impoundments and gas-well pads on streamflow and suspended sediment in the Cypress Creek watershed, Arkansas

    USGS Publications Warehouse

    Hart, Rheannon M.

    2014-01-01

    The Arkansas Natural Resources Commission and the Arkansas Department of Environmental Quality list suspended sediment from “poor pastures” as a primary source of nonpoint-source pollution in north-central Arkansas, but unpaved (gravel) roads are another important source of suspended sediment. Because of the high sediment-loading rates associated with gravel roads and the large amount of pasture within the watershed, the factors most responsible for suspended sediment within the Cypress Creek watershed are likely associated more with the pastureland and gravel roads, than factors associated with gas-well pads/pipelines.

  9. Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA.

    PubMed

    Brezonik, Patrick L; Stadelmann, Teresa H

    2002-04-01

    Urban nonpoint source pollution is a significant contributor to water quality degradation. Watershed planners need to be able to estimate nonpoint source loads to lakes and streams if they are to plan effective management strategies. To meet this need for the twin cities metropolitan area, a large database of urban and suburban runoff data was compiled. Stormwater runoff loads and concentrations of 10 common constituents (six N and P forms, TSS, VSS, COD, Pb) were characterized, and effects of season and land use were analyzed. Relationships between runoff variables and storm and watershed characteristics were examined. The best regression equation to predict runoff volume for rain events was based on rainfall amount, drainage area, and percent impervious area (R2 = 0.78). Median event-mean concentrations (EMCs) tended to be higher in snowmelt runoff than in rainfall runoff, and significant seasonal differences were found in yields (kg/ha) and EMCs for most constituents. Simple correlations between explanatory variables and stormwater loads and EMCs were weak. Rainfall amount and intensity and drainage area were the most important variables in multiple linear regression models to predict event loads, but uncertainty was high in models developed with the pooled data set. The most accurate models for EMCs generally were found when sites were grouped according to common land use and size.

  10. Influence of rainfall data scarcity on non-point source pollution prediction: Implications for physically based models

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Xu, Jiajia; Wang, Guobo; Liu, Hongbin; Zhai, Limei; Li, Shuang; Sun, Cheng; Shen, Zhenyao

    2018-07-01

    Hydrological and non-point source pollution (H/NPS) predictions in ungagged basins have become the key problem for watershed studies, especially for those large-scale catchments. However, few studies have explored the comprehensive impacts of rainfall data scarcity on H/NPS predictions. This study focused on: 1) the effects of rainfall spatial scarcity (by removing 11%-67% of stations based on their locations) on the H/NPS results; and 2) the impacts of rainfall temporal scarcity (10%-60% data scarcity in time series); and 3) the development of a new evaluation method that incorporates information entropy. A case study was undertaken using the Soil and Water Assessment Tool (SWAT) in a typical watershed in China. The results of this study highlighted the importance of critical-site rainfall stations that often showed greater influences and cross-tributary impacts on the H/NPS simulations. Higher missing rates above a certain threshold as well as missing locations during the wet periods resulted in poorer simulation results. Compared to traditional indicators, information entropy could serve as a good substitute because it reflects the distribution of spatial variability and the development of temporal heterogeneity. This paper reports important implications for the application of Distributed Hydrological Models and Semi-distributed Hydrological Models, as well as for the optimal design of rainfall gauges among large basins.

  11. A paddy eco-ditch and wetland system to reduce non-point source pollution from rice-based production system while maintaining water use efficiency.

    PubMed

    Xiong, Yujiang; Peng, Shizhang; Luo, Yufeng; Xu, Junzeng; Yang, Shihong

    2015-03-01

    Non-point source (NPS) pollution from agricultural drainage has aroused widespread concerns throughout the world due to its contribution to eutrophication of water bodies. To remove nitrogen (N) and phosphorus (P) from agricultural drainage in situ, a Paddy Eco-ditch and Wetland System (PEDWS) was designed and built based on the characteristics of the irrigated rice district. A 2-year (2012-2013) field experiment was conducted to evaluate the performance of this system in Gaoyou Irrigation District in Eastern China. The results showed that the reduction in water input in paddy field of the PEDWS enabled the maintenance of high rice yield; it significantly increased irrigation water productivity (WPI), gross water productivity (WPG), and evapotranspiration water productivity (WPET) by 109.2, 67.1, and 17.6%, respectively. The PEDWS dramatically decreased N and P losses from paddy field. Compared with conventional irrigation and drainage system (CIDS), the amount of drainage water from PEDWS was significantly reduced by 56.2%, the total nitrogen (TN) concentration in drainage was reduced by 42.6%, and thus the TN and total phosphorus (TP) losses were reduced by 87.8 and 70.4%. PEDWS is technologically feasible and applicable to treat nutrient losses from paddy fields in situ and can be used in similar areas.

  12. Pairing high-frequency data with a link-node model to manage dissolved oxygen impairment in a dredged estuary.

    PubMed

    Camarillo, Mary Kay; Weissmann, Gregory A; Gulati, Shelly; Herr, Joel; Sheeder, Scott; Stringfellow, William T

    2016-08-01

    High-frequency data and a link-node model were used to investigate the relative importance of mass loads of oxygen-demanding substances and channel geometry on recurrent low dissolved oxygen (DO) in the San Joaquin River Estuary in California. The model was calibrated using 6 years of data. The calibrated model was then used to determine the significance of the following factors on low DO: excavation of the river to allow navigation of large vessels, non-point source pollution from the agricultural watershed, effluent from a wastewater treatment plant, and non-point source pollution from an urban area. An alternative metric for low DO, excess net oxygen demand (ENOD), was applied to better characterize DO impairment. Model results indicate that the dredged ship channel had the most significant effect on DO (62 % fewer predicted hourly DO violations), followed by mass load inputs from the watershed (52 % fewer predicted hourly DO violations). Model results suggest that elimination of any one factor will not completely resolve DO impairment and that continued use of supplemental aeration is warranted. Calculation of ENOD proved more informative than the sole use of DO. Application of the simple model allowed for interpretation of the extensive data collected. The current monitoring program could be enhanced by additional monitoring stations that would provide better volumetric estimates of low DO.

  13. Spatiotemporal patterns and source attribution of nitrogen pollution in a typical headwater agricultural watershed in Southeastern China.

    PubMed

    Chen, Wenjun; He, Bin; Nover, Daniel; Duan, Weili; Luo, Chuan; Zhao, Kaiyan; Chen, Wen

    2018-01-01

    Excessive nitrogen (N) discharge from agriculture causes widespread problems in aquatic ecosystems. Knowledge of spatiotemporal patterns and source attribution of N pollution is critical for nutrient management programs but is poorly studied in headwaters with various small water bodies and mini-point pollution sources. Taking a typical small watershed in the low mountains of Southeastern China as an example, N pollution and source attribution were studied for a multipond system around a village using the Hydrological Simulation Program-Fortran (HSPF) model. The results exhibited distinctive spatio-seasonal variations with an overall seriousness rank for the three indicators: total nitrogen (TN) > nitrate/nitrite nitrogen (NO x - -N) > ammonia nitrogen (NH 3 -N), according to the Chinese Surface Water Quality Standard. TN pollution was severe for the entire watershed, while NO x - -N pollution was significant for ponds and ditches far from the village, and the NH 3 -N concentrations were acceptable except for the ponds near the village in summer. Although food and cash crop production accounted for the largest source of N loads, we discovered that mini-point pollution sources, including animal feeding operations, rural residential sewage, and waste, together contributed as high as 47% of the TN and NH 3 -N loads in ponds and ditches. So, apart from eco-fertilizer programs and concentrated animal feeding operations, the importance of environmental awareness building for resource management is highlighted for small farmers in headwater agricultural watersheds. As a first attempt to incorporate multipond systems into the process-based modeling of nonpoint source (NPS) pollution, this work can inform other hydro-environmental studies on scattered and small water bodies. The results are also useful to water quality improvement for entire river basins.

  14. Optimal selection and placement of green infrastructure to reduce impacts of land use change and climate change on hydrology and water quality: An application to the Trail Creek Watershed, Indiana.

    PubMed

    Liu, Yaoze; Theller, Lawrence O; Pijanowski, Bryan C; Engel, Bernard A

    2016-05-15

    The adverse impacts of urbanization and climate change on hydrology and water quality can be mitigated by applying green infrastructure practices. In this study, the impacts of land use change and climate change on hydrology and water quality in the 153.2 km(2) Trail Creek watershed located in northwest Indiana were estimated using the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for the following environmental concerns: runoff volume, Total Suspended Solids (TSS), Total Phosphorous (TP), Total Kjeldahl Nitrogen (TKN), and Nitrate+Nitrite (NOx). Using a recent 2001 land use map and 2050 land use forecasts, we found that land use change resulted in increased runoff volume and pollutant loads (8.0% to 17.9% increase). Climate change reduced runoff and nonpoint source pollutant loads (5.6% to 10.2% reduction). The 2050 forecasted land use with current rainfall resulted in the largest runoff volume and pollutant loads. The optimal selection and placement of green infrastructure practices using L-THIA-LID 2.1 model were conducted. Costs of applying green infrastructure were estimated using the L-THIA-LID 2.1 model considering construction, maintenance, and opportunity costs. To attain the same runoff volume and pollutant loads as in 2001 land uses for 2050 land uses, the runoff volume, TSS, TP, TKN, and NOx for 2050 needed to be reduced by 10.8%, 14.4%, 13.1%, 15.2%, and 9.0%, respectively. The corresponding annual costs of implementing green infrastructure to achieve the goals were $2.1, $0.8, $1.6, $1.9, and $0.8 million, respectively. Annual costs of reducing 2050 runoff volume/pollutant loads were estimated, and results show green infrastructure annual cost greatly increased for larger reductions in runoff volume and pollutant loads. During optimization, the most cost-efficient green infrastructure practices were selected and implementation levels increased for greater reductions of runoff and nonpoint source pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Establishment and application of the estimation model for pollutant concentrfation in agriculture drain

    NASA Astrophysics Data System (ADS)

    Li, Qiangkun; Hu, Yawei; Jia, Qian; Song, Changji

    2018-02-01

    It is the key point of quantitative research on agricultural non-point source pollution load, the estimation of pollutant concentration in agricultural drain. In the guidance of uncertainty theory, the synthesis of fertilization and irrigation is used as an impulse input to the farmland, meanwhile, the pollutant concentration in agricultural drain is looked as the response process corresponding to the impulse input. The migration and transformation of pollutant in soil is expressed by Inverse Gaussian Probability Density Function. The law of pollutants migration and transformation in soil at crop different growth periods is reflected by adjusting parameters of Inverse Gaussian Distribution. Based on above, the estimation model for pollutant concentration in agricultural drain at field scale was constructed. Taking the of Qing Tong Xia Irrigation District in Ningxia as an example, the concentration of nitrate nitrogen and total phosphorus in agricultural drain was simulated by this model. The results show that the simulated results accorded with measured data approximately and Nash-Sutcliffe coefficients were 0.972 and 0.964, respectively.

  16. Integrating water quality responses to best management practices in Portugal.

    PubMed

    Fonseca, André; Boaventura, Rui A R; Vilar, Vítor J P

    2018-01-01

    Nutrient nonpoint pollution has a significant impact on water resources worldwide. The main challenge of this work was to assess the application of best management practices in agricultural land to comply with water quality legislation for surface waters. The Hydrological Simulation Program-FORTRAN was used to evaluate water quality of Ave River in Portugal. Best management practices (infiltration basin) (BMP) were applied to agricultural land (for 3, 6, 9, 12, and 15% area) with removal efficiencies of 50% for fecal coliforms and 30% for nitrogen, phosphorus, and biochemical oxygen demand. The inflow of water quality constituents was reduced for all scenarios, with fecal coliforms achieving the highest reduction between 5.8 and 28.9% and nutrients and biochemical oxygen demand between 2 and 13%. Biochemical oxygen demand and orthophosphates concentrations achieved a good water quality status according to the European Legislation for scenarios of BMP applied to 3 and 12% agricultural area, respectively. Fecal coliform levels in Ave River basin require further treatment to fall below the established value in the abovementioned legislation. This study shows that agricultural watersheds such as Ave basins demand special attention in regard to nonpoint pollution sources effects on water quality and nutrient loads.

  17. Setting priorities for research on pollution reduction functions of agricultural buffers.

    PubMed

    Dosskey, Michael G

    2002-11-01

    The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An assessment of these uncertainties cautions that there is greater risk of overestimating buffer impact than underestimating it. Priorities for future research are proposed that will lead more quickly to major advances in predictive capabilities. Highest priority is given for work on the surface runoff filtration function, which is almost universally important to the amount of pollution reduction expected from buffer installation and for which there remain major sources of uncertainty for predicting level of impact. Foremost uncertainties surround the extent and consequences of runoff flow concentration and pollutant accumulation. Other buffer functions, including filtration of groundwater nitrate and stabilization of channel erosion sources of sediments, may be important in some regions. However, uncertainty surrounds our ability to identify and quantify the extent of site conditions where buffer installation can substantially reduce stream pollution in these ways. Deficiencies in predictive models reflect gaps in experimental information as well as technology to account for spatial heterogeneity of pollutant sources, pathways, and buffer capabilities across watersheds. Since completion of a comprehensive watershed-scale buffer model is probably far off, immediate needs call for simpler techniques to gage the probable impacts of buffer installation at local scales.

  18. Soil and nutrient retention in winter-flooded ricefields with implications for watershed management

    USGS Publications Warehouse

    Manley, S.W.; Kaminski, R.M.; Rodrigue, P.B.; Dewey, J.C.; Schoenholtz, S.H.; Gerard, P.D.; Reinecke, K.J.

    2009-01-01

    The ability of water resources to support aquatic life and human needs depends, in part, on reducing nonpoint source pollution amid contemporary agricultural practices. Winter retention of shallow water on rice and other agricultural fields is an accepted management practice for wildlife conservation; however, soil and water conservation benefits are not well documented. We evaluated the ability of four post-harvest ricefield treatment combinations (stubble-flooded, stubble-open, disked-flooded and disked-open) to abate nonpoint source exports into watersheds of the Mississippi Alluvial Valley. Total suspended solid exports were 1,121 kg ha-1 (1,000 lb ac-1) from disked-open fields where rice stubble was disked after harvest and fields were allowed to drain, compared with 35 kg ha-1 (31 lb ac-1) from stubble-flooded fields where stubble was left standing after harvest and fields captured rainfall from November 1 to March 1. Estimates of total suspended solid exports from ricefields based on Landsat imagery and USDA crop data are 0.43 and 0.40 Mg km-2 day-1 in the Big Sunflower and L'Anguille watersheds, respectively. Estimated reductions in total suspended solid exports from ricefields into the Big Sunflower and L'Anguille water-sheds range from 26% to 64% under hypothetical scenarios in which 65% to 100% of the rice production area is managed to capture winter rainfall. Winter ricefield management reduced nonpoint source export by decreasing concentrations of solids and nutrients in, and reducing runoff volume from, ricefields in the Mississippi Alluvial Valley.

  19. Characterization of sources and loadings of fecal pollutants using microbial source tracking assays in urban and rural areas of the Grand River Watershed, Southwestern Ontario.

    PubMed

    Lee, Dae-Young; Lee, Hung; Trevors, Jack T; Weir, Susan C; Thomas, Janis L; Habash, Marc

    2014-04-15

    Sources of fecal water pollution were assessed in the Grand River and two of its tributaries (Ontario, Canada) using total and host-specific (human and bovine) Bacteroidales genetic markers in conjunction with reference information, such as land use and weather. In-stream levels of the markers and culturable Escherichia coli were also monitored during multiple rain events to gain information on fecal loadings to catchment from diffuse sources. Elevated human-specific marker levels were accurately identified in river water impacted by a municipal wastewater treatment plant (WWTP) effluent and at a downstream site in the Grand River. In contrast, the bovine-specific marker showed high levels of cattle fecal pollution in two tributaries, both of which are characterized as intensely farmed areas. The bovine-specific Bacteroidales marker increased with rainfall in the agricultural tributaries, indicating enhanced loading of cattle-derived fecal pollutants to river from non-point sources following rain events. However, rain-triggered fecal loading was not substantiated in urban settings, indicating continuous inputs of human-originated fecal pollutants from point sources, such as WWTP effluent. This study demonstrated that the Bacteroidales source tracking assays, in combination with land use information and hydrological data, may provide additional insight into the spatial and temporal distribution of source-specific fecal contamination in streams impacted by varying land uses. Using the approach described in this study may help to characterize impacted water sources and to design targeted land use management plans in other watersheds in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. [Treatment of Urban Runoff Pollutants by a Multilayer Biofiltration System].

    PubMed

    Wang, Xiao-lu; Zuo, Jian-e; Gan, Li-li; Xing, Wei; Miao, Heng-feng; Ruan, Wen-quan

    2015-07-01

    In order to control the non-point source pollution from road runoff in Wuxi City effectively, a multilayer biofiltration system was designed to remove a variety of pollutants according to the characteristics of road runoff in Wuxi, and the experimental research was carried out to study the effect on rainwater pollution purification. The results show that the system has a good performance on removing suspended solids (SS), organic pollutant (COD), nitrogen and phosphorus: all types of multilayer biofiltration systems have a high removal rate for SS, which can reach 90%. The system with activated carbon (GAC) has higher removal rates for COD and phosphorus. The system with zeolite (ZFM) has a relatively better removal efficiency for nitrogen. The addition of wood chips in the system can significantly improve the system efficiency for nitrogen removal. Between the two configurations of layered and distributed wood chips, configurations of distributed wood chips reach higher COD, phosphorus and nitrogen pollutants removal efficiencies since they can reduce the release of wood chips dissolution.

  1. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    PubMed

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Characterization of Stormwater Runoff from a Light Rail Transit Area.

    PubMed

    Sajjad, Raja Umer; Kim, Kyoung Jin; Memon, Sheeraz; Sukhbaatar, Chinzorig; Paule, Ma Cristina; Lee, Bum-Yeon; Lee, Chang-Hee

    2015-09-01

    The monitoring of stormwater runoff from Light Rail Transit (LRT) facilities is insufficient in many regions around the world. In this study, runoff quality and quantity were monitored during operational and non-operational LRT phases during 2010-2013. The event mean concentration (EMC) of pollutants showed little statistical variability during both phases. The antecedent dry day (ADD) showed a strong to moderate positive correlation with most pollutant EMCs during the non-operational phase. The existence and magnitude of the first flush from LRT runoff was found to be similar to those from other transportation land uses. The comparison of LRT runoff data with an adjacent road bridge site showed that the pollutant EMC and unit load were 2 to 9 times higher from the road bridge. It was suggested that LRT automated operation and the elevated track makes this transportation mode a viable option for the management of non-point source pollution.

  3. A Comparison of Erosion and Water Pollution Control Strategies for an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Prato, Tony; Shi, Hongqi

    1990-02-01

    The effectiveness and efficiency of two erosion control strategies and one water pollution control (riparian) strategy are compared for Idaho's Tom Beall watershed. Erosion control strategies maximize annualized net returns per hectare on each field and restrict field erosion rates to no more than 11.2 or 16.8 tons per hectare. The riparian strategy uses good vegetative cover on all fields adjacent to the creek and in noncropland areas and the resource management system that maximizes annualized net returns per hectare on remaining fields. The Agricultural Nonpoint Source Pollution model is used to simulate the levels and concentrations of sediment, nitrogen, phosphorus, and chemical oxygen demand at the outlet of the watershed. Erosion control strategies generate less total erosion and water pollution but are less efficient than the riparian strategy. The riparian strategy is less equitable for farmers than the erosion control strategies.

  4. Numerical Simulation of Pollutants' Transport and Fate in AN Unsteady Flow in Lower Bear River, Box Elder County, Utah

    NASA Astrophysics Data System (ADS)

    Salha, A. A.; Stevens, D. K.

    2013-12-01

    This study presents numerical application and statistical development of Stream Water Quality Modeling (SWQM) as a tool to investigate, manage, and research the transport and fate of water pollutants in Lower Bear River, Box elder County, Utah. The concerned segment under study is the Bear River starting from Cutler Dam to its confluence with the Malad River (Subbasin HUC 16010204). Water quality problems arise primarily from high phosphorus and total suspended sediment concentrations that were caused by five permitted point source discharges and complex network of canals and ducts of varying sizes and carrying capacities that transport water (for farming and agriculture uses) from Bear River and then back to it. Utah Department of Environmental Quality (DEQ) has designated the entire reach of the Bear River between Cutler Reservoir and Great Salt Lake as impaired. Stream water quality modeling (SWQM) requires specification of an appropriate model structure and process formulation according to nature of study area and purpose of investigation. The current model is i) one dimensional (1D), ii) numerical, iii) unsteady, iv) mechanistic, v) dynamic, and vi) spatial (distributed). The basic principle during the study is using mass balance equations and numerical methods (Fickian advection-dispersion approach) for solving the related partial differential equations. Model error decreases and sensitivity increases as a model becomes more complex, as such: i) uncertainty (in parameters, data input and model structure), and ii) model complexity, will be under investigation. Watershed data (water quality parameters together with stream flow, seasonal variations, surrounding landscape, stream temperature, and points/nonpoint sources) were obtained majorly using the HydroDesktop which is a free and open source GIS enabled desktop application to find, download, visualize, and analyze time series of water and climate data registered with the CUAHSI Hydrologic Information System. Processing, assessment of validity, and distribution of time-series data was explored using the GNU R language (statistical computing and graphics environment). Physical, chemical, and biological processes equations were written in FORTRAN codes (High Performance Fortran) in order to compute and solve their hyperbolic and parabolic complexities. Post analysis of results conducted using GNU R language. High performance computing (HPC) will be introduced to expedite solving complex computational processes using parallel programming. It is expected that the model will assess nonpoint sources and specific point sources data to understand pollutants' causes, transfer, dispersion, and concentration in different locations of Bear River. Investigation the impact of reduction/removal in non-point nutrient loading to Bear River water quality management could be addressed. Keywords: computer modeling; numerical solutions; sensitivity analysis; uncertainty analysis; ecosystem processes; high Performance computing; water quality.

  5. Nonpoint source of nutrients and herbicides associated with sugarcane production and its impact on Louisiana coastal water quality.

    PubMed

    Yu, Kewei; Delaune, Ronald D; Tao, Rui; Beine, Robert L

    2008-01-01

    A watershed analysis of nonpoint-source pollution associated with sugarcane (Saccharum officinarum L.) production was conducted. Runoff water samples following major rainfall events from two representative sugarcane fields (SC1 and SC2) were collected and analyzed. The impact of runoff on two receiving water bodies, St. James canal (SJC) and Bayou Chevreuil (BC) in a drainage basin (Baratarian Basin), was studied. Results show that runoff flow/rainfall ratios at the SC1 were significantly higher (P < 0.0001, n = 14) than at the SC2, probably mainly due to higher sand content and higher infiltration rate of surface soil at the SC2. In runoff water samples, total suspended solids (TSS) showed a significant correlation with the concentrations of N and P. Sugarcane runoff showed a direct impact on the SJC and BC locations where seasonal variations of pollutant concentrations in the waters followed the patterns of runoff loadings. Swamp forest runoff (SFR) location showed a buffering effect of forested wetlands on water quality with the lowest measured pollutant concentrations. The ratios in total N/total P and in inorganic N/organic N in runoff waters indicated that fertilization in spring greatly contributed to the temporal increase of N loadings, especially in forms of inorganic N. Isotope signature of (15)N-nitrate in the water samples verified that the nitrate was derived from fertilizers and was consumed during transportation. Both N and P concentrations in the receiving water bodies were above the eutrophic level. During the study period, herbicide concentrations in the receiving water bodies rarely exceeded the drinking water standards.

  6. Distributed source pollutant transport module based on BTOPMC: a case study of the Laixi River basin in the Sichuan province of southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Ao, Tianqi; Gusyev, Maksym; Ishidaira, Hiroshi; Magome, Jun; Takeuchi, Kuniyoshi

    2018-06-01

    Nitrogen and phosphorus concentrations in Chinese river catchments are contributed by agricultural non-point and industrial point sources causing deterioration of river water quality and degradation of ecosystem functioning for a long distance downstream. To evaluate these impacts, a distributed pollutant transport module was developed on the basis of BTOPMC (Block-Wise Use of TOPMODEL with Muskingum-Cunge Method), a grid-based distributed hydrological model, using the water flow routing process of BTOPMC as the carrier of pollutant transport due a direct runoff. The pollutant flux at each grid is simulated based on mass balance of pollutants within the grid and surface water transport of these pollutants occurs between grids in the direction of the water flow on daily time steps. The model was tested in the study area of the Lu county area situated in the Laixi River basin in the Sichuan province of southwest China. The simulated concentrations of nitrogen and phosphorus are compared with the available monthly data at several water quality stations. These results demonstrate a greater pollutant concentration in the beginning of high flow period indicating the main mechanism of pollution transport. From these preliminary results, we suggest that the distributed pollutant transport model can reflect the characteristics of the pollutant transport and reach the expected target.

  7. Discrete Organic Phosphorus Signatures are Evident in Pollutant Sources within a Lake Erie Tributary.

    PubMed

    Brooker, M R; Longnecker, K; Kujawinski, E B; Evert, M H; Mouser, P J

    2018-06-19

    Phosphorus loads are strongly associated with the severity of harmful algal blooms in Lake Erie, a Great Lake situated between the United States and Canada. Inorganic and total phosphorus measurements have historically been used to estimate nonpoint and point source contributions, from contributing watersheds with organic phosphorus often neglected. Here, we used ultrahigh resolution mass spectrometry to characterize the dissolved organic matter and specifically dissolved organic phosphorus composition of several nutrient pollutant source materials and aqueous samples in a Lake Erie tributary. We detected between 23 and 313 organic phosphorus formulas across our samples, with manure samples having greater abundance of phosphorus- and nitrogen containing compounds compared to other samples. Manures also were enriched in lipids and protein-like compounds. The greatest similarities were observed between the Sandusky River and wastewater treatment plant effluent (WWTP), or the Sandusky River and agricultural edge of field samples. These sample pairs shared 84% of organic compounds and 59-73% of P-containing organic compounds, respectively. This similarity suggests that agricultural and/or WWTP sources dominate the supply of organic phosphorus compounds to the river. We identify formulas shared between the river and pollutant sources that could serve as possible markers of source contamination in the tributary.

  8. 40 CFR 35.3150 - Intended Use Plan (IUP).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) The IUP must also contain a list of the nonpoint source and national estuary protection activities... projects or programs to be funded as eligible activities for nonpoint sources and estuary protection...

  9. 40 CFR 35.3150 - Intended Use Plan (IUP).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) The IUP must also contain a list of the nonpoint source and national estuary protection activities... projects or programs to be funded as eligible activities for nonpoint sources and estuary protection...

  10. 40 CFR 35.3150 - Intended Use Plan (IUP).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) The IUP must also contain a list of the nonpoint source and national estuary protection activities... projects or programs to be funded as eligible activities for nonpoint sources and estuary protection...

  11. 40 CFR 35.3150 - Intended Use Plan (IUP).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) The IUP must also contain a list of the nonpoint source and national estuary protection activities... projects or programs to be funded as eligible activities for nonpoint sources and estuary protection...

  12. Nonpoint Source Tribal: Award Projects

    EPA Pesticide Factsheets

    Tribal CWA section 319 funding is awarded via base grants and competitive grants. To learn about current nonpoint source funded work in Indian Country, see the project summary descriptions of recent competitive grant awardees.

  13. Long-term variations in sediment heavy metals of a reservoir with changing trophic states: Implications for the impact of climate change.

    PubMed

    Wu, Qiong; Qi, Jun; Xia, Xinghui

    2017-12-31

    Two dated sediment cores from the Miyun Reservoir of Beijing in China were analyzed to reconstruct the pollution history of heavy metals including cadmium (Cd), chromium (Cr), iron (Fe), nickel (Ni), and zinc (Zn) as well as phosphorus (P). Enrichment factor (EF) and geoaccumulation index (I geo ) were applied to assess the enrichment status of heavy metals. Average EF and I geo values indicated that the studied heavy metals in the sediments mainly originated from non-point source pollution and soil-water erosion, showing low ecological risks. In addition, correlation analysis and principal component analysis (PCA) identified that Cd, Zn, and P were mainly from agricultural diffusion pollution caused by utilization of the phosphate fertilizer; Zn, Ni, and Cr originated from soil erosion. PCA analysis was further conducted to investigate the relationships among meteorological factors, algae-dominant total organic carbon (TOC), and heavy metals. Results showed that algae-dominant TOC had strong positive correlation with temperature, which can be explained by that increased temperature accelerated the growth of algae. Meanwhile the opposite loadings between algae-dominant TOC and heavy metal suggested that primary production played an important role in migration and transformation of metals. Moreover, stepwise multiple regression models showed that Fe was sensitive to temperature, which accounted for approximately 39.0% and 40.1% of the variations in Fe of two sediment cores, respectively. Fe showed significant decreasing trends during the past 50years. Reductive environment of water-sediment interface caused by increasing temperature probably contributed to the restoration of ferric iron, resulting in the release of soluble Fe to overlying waters. Future climate change with elevated temperature and extreme weather events will aggravate the ecological risk of heavy metals in water environment due to the enhanced leaching effect and non-point source pollution as well as the release of heavy metals from sediments to water environment. Copyright © 2017. Published by Elsevier B.V.

  14. Beach boundary layer: a framework for addressing recreational water quality impairment at enclosed beaches.

    PubMed

    Grant, Stanley B; Sanders, Brett F

    2010-12-01

    Nearshore waters in bays, harbors, and estuaries are frequently contaminated with human pathogens and fecal indicator bacteria. Tracking down and mitigating this contamination is complicated by the many point and nonpoint sources of fecal pollution that can degrade water quality along the shore. From a survey of the published literature, we propose a conceptual and mathematical framework, the "beach boundary layer model", for understanding and quantifying the relative impact of beach-side and bay-side sources of fecal pollution on nearshore water quality. In the model, bacterial concentration in ankle depth water C(ankle) [bacteria L(-3)] depends on the flux m'' [bacteria L(-2) T(-1)] of fecal bacteria from beach-side sources (bather shedding, bird and dog feces, tidal washing of sediments, decaying vegetation, runoff from small drains, and shallow groundwater discharge), a cross-shore mass transfer velocity k [L T(-1)] that accounts for the physics of nearshore transport and mixing, and a background concentration C(bay) [bacteria L(-3)] attributable to bay-side sources of pollution that impact water quality over large regions (sewage outfalls, creeks and rivers): C(ankle) = m''/k + C(bay). We demonstrate the utility of the model for identifying risk factors and pollution sources likely to impact shoreline water quality, and evaluate the model's underlying assumptions using computational fluid dynamic simulations of flow, turbulence, and mass transport in a trapezoidal channel.

  15. NONPOINT SOURCES AND WATER QUALITY TRADING

    EPA Science Inventory

    Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...

  16. Assessment of the environmental significance of nutrients and heavy metal pollution in the river network of Serbia.

    PubMed

    Dević, Gordana; Sakan, Sanja; Đorđević, Dragana

    2016-01-01

    In this paper, the data for ten water quality variables collected during 2009 at 75 monitoring sites along the river network of Serbia are considered. The results are alarming because 48% of the studied sites were contaminated by Ni, Mn, Pb, As, and nutrients, which are key factors impairing the water quality of the rivers in Serbia. Special attention should be paid to Zn and Cu, listed in the priority toxic pollutants of US EPA for aquatic life protection. The employed Q-model cluster analysis grouped the data into three major pollution zones (low, moderate, and high). Most sites classified as "low pollution zones" (LP) were in the main rivers, whereas those classified as "moderate and high pollution zones" (MP and HP, respectively) were in the large and small tributaries/hydro-system. Principal component analysis/factor analysis (PCA/FA) showed that the dissolved metals and nutrients in the Serbian rivers varied depending on the river, the heterogeneity of the anthropogenic activities in the basins (influenced primarily by industrial wastewater, agricultural activities, and urban runoff pollution), and natural environmental variability, such as geological characteristics. In LP dominated non-point source pollution, such as agricultural and urban runoff, whereas mixed source pollution dominated in the MP and HP zones. These results provide information to be used for developing better pollution control strategies for the river network of Serbia.

  17. The feasibility of effluent trading in the energy industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J.A.

    1997-05-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing effluent trading in watersheds, hoping to spur additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This report evaluates the feasibility of effluent trading for facilities in the oil and gas industry (exploration and production, refining, and distribution and marketing segments), electric power industry, and the coal industry (mines and preparation plants). Nonpoint source/nonpoint source trades are not considered since the energy industry facilities evaluated here are all pointmore » sources. EPA has administered emission trading programs in its air quality program for many years. Programs for offsets, bubbles, banking, and netting are supported by federal regulations, and the 1990 Clean Air Act (CAA) amendments provide a statutory basis for trading programs to control ozone and acid rain. Different programs have had varying degrees of success, but few have come close to meeting their expectations. Few trading programs have been established under the Clean Water Act (CWA). One intraplant trading program was established by EPA in its effluent limitation guidelines (ELGs) for the iron and steel industry. The other existing effluent trading programs were established by state or local governments and have had minimal success.« less

  18. Better Assessment Science Integrating Point and Non-point Sources (BASINS)

    EPA Pesticide Factsheets

    Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) is a multipurpose environmental analysis system designed to help regional, state, and local agencies perform watershed- and water quality-based studies.

  19. Adsorption experiment of toxic micro-pollutants derived from automobiles using red soil.

    PubMed

    Kawai, Takahiro; Ichiki, Atsushi; Sawada, Yasunori

    2015-01-01

    In some countries, non-point source pollution derived from a city's economic activities tends to be a barrier to the improvement of water quality. Roadway runoff is known to contain toxic micro-pollutants such as polycyclic aromatic hydrocarbons (PAHs). Conversely, red soil is known to adsorb some organic matter. In this study, artificial roadway runoff water containing toxic micro-pollutants was made using roadway dust collected from a highway, and used for both batch-type tests and soil column tests with red soil in order to understand adsorption ability of the red soil on such toxic micro-pollutants, especially PAHs. In the batch-type tests, PAHs could be removed by approximately 40% when the contact time was 90 minutes. In the soil column tests, PAHs were removed by more than 80% while suspended solids were removed by more than 90%. Notably, PAHs with a high molecular weight were removed more readily in the tests than PAHs with a low molecular weight.

  20. Mercury Export from Mainland China to Adjacent Seas and Its Influence on the Marine Mercury Balance.

    PubMed

    Liu, Maodian; Chen, Long; Wang, Xuejun; Zhang, Wei; Tong, Yindong; Ou, Langbo; Xie, Han; Shen, Huizhong; Ye, Xuejie; Deng, Chunyan; Wang, Huanhuan

    2016-06-21

    Exports from mainland China are a significant source of mercury (Hg) in the adjacent seas (Bohai Sea, Yellow Sea, East China Sea, and South China Sea) near China. A total of 240 ± 23 Mg was contributed in 2012 (30% from natural sources and 70% from anthropogenic sources), including Hg from rivers, industrial wastewater, domestic sewage, groundwater, nonpoint sources, and coastal erosion. Among the various sources, the Hg from rivers amounts to 160 ± 21 Mg and plays a dominant role. The Hg that is exported from mainland China increased from 1984 to 2013; the contributions from rivers, industrial wastewater, domestic sewage and groundwater increased, and the contributions from nonpoint sources and coastal erosion remained stable. A box model is constructed to simulate the mass balance of Hg in these seas and quantify the sources, sinks and Hg biogeochemical cycle in the seas. In total, 160 Mg of Hg was transported to the Pacific Ocean and other oceans from these seas through oceanic currents in 2012, which could have negative impacts on the marine ecosystem. A prediction of the changes in Hg exportation through 2030 shows that the impacts of terrestrial export might worsen without effective pollution reduction measures and that the Hg load in these seas will increase, especially in the seawater of the Bohai Sea, Yellow Sea, and East China Sea and in the sea margin sediments of the Bohai Sea and East China Sea.

  1. GIS Based Distributed Runoff Predictions in Variable Source Area Watersheds Employing the SCS-Curve Number

    NASA Astrophysics Data System (ADS)

    Steenhuis, T. S.; Mendoza, G.; Lyon, S. W.; Gerard Marchant, P.; Walter, M. T.; Schneiderman, E.

    2003-04-01

    Because the traditional Soil Conservation Service Curve Number (SCS-CN) approach continues to be ubiquitously used in GIS-BASED water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed within an integrated GIS modeling environment a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Spatial representation of hydrologic processes is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point source pollution. The methodology presented here uses the traditional SCS-CN method to predict runoff volume and spatial extent of saturated areas and uses a topographic index to distribute runoff source areas through watersheds. The resulting distributed CN-VSA method was incorporated in an existing GWLF water quality model and applied to sub-watersheds of the Delaware basin in the Catskill Mountains region of New York State. We found that the distributed CN-VSA approach provided a physically-based method that gives realistic results for watersheds with VSA hydrology.

  2. Economic total maximum daily load for watershed-based pollutant trading.

    PubMed

    Zaidi, A Z; deMonsabert, S M

    2015-04-01

    Water quality trading (WQT) is supported by the US Environmental Protection Agency (USEPA) under the framework of its total maximum daily load (TMDL) program. An innovative approach is presented in this paper that proposes post-TMDL trade by calculating pollutant rights for each pollutant source within a watershed. Several water quality trading programs are currently operating in the USA with an objective to achieve overall pollutant reduction impacts that are equivalent or better than TMDL scenarios. These programs use trading ratios for establishing water quality equivalence among pollutant reductions. The inbuilt uncertainty in modeling the effects of pollutants in a watershed from both the point and nonpoint sources on receiving waterbodies makes WQT very difficult. A higher trading ratio carries with it increased mitigation costs, but cannot ensure the attainment of the required water quality with certainty. The selection of an applicable trading ratio, therefore, is not a simple process. The proposed approach uses an Economic TMDL optimization model that determines an economic pollutant reduction scenario that can be compared with actual TMDL allocations to calculate selling/purchasing rights for each contributing source. The methodology is presented using the established TMDLs for the bacteria (fecal coliform) impaired Muddy Creek subwatershed WAR1 in Rockingham County, Virginia, USA. Case study results show that an environmentally and economically superior trading scenario can be realized by using Economic TMDL model or any similar model that considers the cost of TMDL allocations.

  3. Nonpoint sources as external threats to coastal water quality: lessons from Park Service experience

    USGS Publications Warehouse

    Burroughs, R.H.

    1993-01-01

    Program design for nonpoint source control was considered through an analogous problem, external threats to national parks. Nonpoint sources are diffuse land activities that degrade water quality, and recent federal legislation seeks to limit them in coastal areas. External threats occur outside a park boundary but affect the purposes for, or resources within, a park. They have been subject to federal management for many decades. Nonpoint sources are a class of external threat. Therefore, programs to limit them should consider techniques used in part protection. These park techniques include 'hard approaches', which rely on power, usually through legal devices, and 'soft approaches', which utilize shared values and objectives. A linked approach, as exemplified at the Cape Cod National Seashore, appears most promising. In a linked approach, if a soft approach fails, the manager of the protected unit is empowered to take an alternative hard action to protect the resource.

  4. Uncertainty analysis for an effluent trading system in a typical nonpoint-sources-polluted watershed

    PubMed Central

    Chen, Lei; Han, Zhaoxing; Wang, Guobo; Shen, Zhenyao

    2016-01-01

    Conventional effluent trading systems (ETSs) between point sources (PSs) and nonpoint sources (NPSs) are often unreliable because of the uncertain characteristics of NPSs. In this study, a new framework was established for PS-NPS ETSs, and a comprehensive analysis was conducted by quantifying the impacts of the uncertainties associated with the water assimilative capacity (WAC), NPS emissions, and measurement effectiveness. On the basis of these results, the uncertain characteristics of NPSs would result in a less cost-effective PS-NPS ETS during most hydrological periods, and there exists a clear transition occurs from the WAC constraint to the water quality constraint if these stochastic factors are considered. Specifically, the emission uncertainty had a greater impact on PSs, but an increase in the emission or abatement uncertainty caused the abatement efforts to shift from NPSs toward PSs. Moreover, the error transitivity from the WAC to conventional ETS approaches is more obvious than that to the WEFZ-based ETS. When NPSs emissions are relatively high, structural BMPs should be considered for trading, and vice versa. These results are critical to understand the impacts of uncertainty on the functionality of PS-NPS ETSs and to provide a trade-off between the confidence level and abatement efforts. PMID:27406070

  5. Uncertainty analysis for an effluent trading system in a typical nonpoint-sources-polluted watershed

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Han, Zhaoxing; Wang, Guobo; Shen, Zhenyao

    2016-07-01

    Conventional effluent trading systems (ETSs) between point sources (PSs) and nonpoint sources (NPSs) are often unreliable because of the uncertain characteristics of NPSs. In this study, a new framework was established for PS-NPS ETSs, and a comprehensive analysis was conducted by quantifying the impacts of the uncertainties associated with the water assimilative capacity (WAC), NPS emissions, and measurement effectiveness. On the basis of these results, the uncertain characteristics of NPSs would result in a less cost-effective PS-NPS ETS during most hydrological periods, and there exists a clear transition occurs from the WAC constraint to the water quality constraint if these stochastic factors are considered. Specifically, the emission uncertainty had a greater impact on PSs, but an increase in the emission or abatement uncertainty caused the abatement efforts to shift from NPSs toward PSs. Moreover, the error transitivity from the WAC to conventional ETS approaches is more obvious than that to the WEFZ-based ETS. When NPSs emissions are relatively high, structural BMPs should be considered for trading, and vice versa. These results are critical to understand the impacts of uncertainty on the functionality of PS-NPS ETSs and to provide a trade-off between the confidence level and abatement efforts.

  6. Uncertainty analysis for an effluent trading system in a typical nonpoint-sources-polluted watershed.

    PubMed

    Chen, Lei; Han, Zhaoxing; Wang, Guobo; Shen, Zhenyao

    2016-07-11

    Conventional effluent trading systems (ETSs) between point sources (PSs) and nonpoint sources (NPSs) are often unreliable because of the uncertain characteristics of NPSs. In this study, a new framework was established for PS-NPS ETSs, and a comprehensive analysis was conducted by quantifying the impacts of the uncertainties associated with the water assimilative capacity (WAC), NPS emissions, and measurement effectiveness. On the basis of these results, the uncertain characteristics of NPSs would result in a less cost-effective PS-NPS ETS during most hydrological periods, and there exists a clear transition occurs from the WAC constraint to the water quality constraint if these stochastic factors are considered. Specifically, the emission uncertainty had a greater impact on PSs, but an increase in the emission or abatement uncertainty caused the abatement efforts to shift from NPSs toward PSs. Moreover, the error transitivity from the WAC to conventional ETS approaches is more obvious than that to the WEFZ-based ETS. When NPSs emissions are relatively high, structural BMPs should be considered for trading, and vice versa. These results are critical to understand the impacts of uncertainty on the functionality of PS-NPS ETSs and to provide a trade-off between the confidence level and abatement efforts.

  7. The effects of climate change on instream nitrogen transport in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Alam, M. J.; Goodall, J. L.

    2011-12-01

    Excessive nitrogen loading has caused significant environmental impacts such as eutrophication and hypoxia in waterbodies around the world. Nitrogen loading is largely dependent on nonpoint source pollution and nitrogen transport from nonpoint source pollution is greatly impacted by climate conditions. For example, increased precipitation leads to more runoff and a higher nitrogen yield. However, higher temperatures also impact nitrogen transport in that higher temperatures increase denitrification and therefore reduce nitrogen yield. The purpose of this research is to quantify potential changes in nitrogen yield for the contiguous United States under predicted climate change scenarios, specifically changes in precipitation and air temperature. The analysis was performed for high (A2) and low (B1) emission scenarios and for the year 2030, 2050 and 2090. We used 11 different IPCC (The Intergovernmental Panel on Climate Change) models predicted precipitation and temperature estimates to capture uncertainty. The SPARROW model was calibrated using historical nitrogen loading data and used to predict nitrogen yields for future climate conditions. We held nitrogen source data constant in order to isolate the impact of predicted precipitation and temperature changes for each model scenario. Preliminary results suggest an overall decrease in nitrogen yield if climate change impacts are considered in isolation. For the A2 scenario, the model results indicated an overall incremental nitrogen yield decrease of 2-17% by the year 2030, 4-26% by the year 2050, and 11-45% by the year 2090. The B1 emission scenario also indicated an incremental yield decrease, but at lesser amounts of 2-18%, 5-21% and 10-38% by the years 2030, 2050, and 2090, respectively. This decrease is mainly due to higher predicted temperatures that result in increased denitrification rates.

  8. Controlled-release Hydrogen Peroxide for On-site Treatment of Organic Pollutants in Urban Storm Runoff

    NASA Astrophysics Data System (ADS)

    Lee, E.; Sun, S.; Kim, Y.

    2011-12-01

    Nonpoint source (NPS) pollutants are the remaining cause of the environment problems, significantly impairing the hydrologic and biologic function of urban water systems and human health. Managing the NPS loads to urban aquatic systems remains a challenge because of ubiquitous contaminant sources and large pollutants loads in the first flush. Best management practices (BMPs) exist for reducing the NPS pollutants in urban storm waters, but the remedial efficiencies of these passive schemes are unpredictable. This study aims to develop a controlled-release system as part of an in situ chemical oxidation scheme designed for on-site treatment of organic pollutants in urban runoff. Controlled-release hydrogen peroxide (CR-HP) solids were manufactured by dispersing fine sodium percarbonate granules in paraffin wax matrices. Release kinetics and treatment efficiencies of CR-HP for BTEX and MTBE were investigated through a series of column tests. Release data indicated that the CR-HP could continually release hydrogen peroxide (H2O2) in flowing water at controlled rates over 276-1756 days, and the release rates could be adjusted by changing the mixing ratios of sodium percarbonate and wax matrices. Additional column tests and model calculations demonstrated that CR-HP/UV systems can provide low-cost, target-specific, and persistent source of oxidants for efficient treatment of organic compounds in urban storm runoff.

  9. Land use change in California, USA: Nonpoint source water quality impacts

    NASA Astrophysics Data System (ADS)

    Charbonneau, Robert; Kondolf, G. M.

    1993-07-01

    California’s population increased 25% between 1980 and 1990, resulting in rapid and extensive urbanization. Of a total 123,000 ha urbanized in 42 of the state’s 58 counties between 1984 and 1990, an estimated 13% occurred on irrigated prime farmland, and 48% on wildlands or fallow marginal farmlands. Sixty-six percent of all new irrigated farmland put into production between 1984 and 1990 was of lesser quality than the prime farmland taken out of production by urbanization. Factors dictating the agricultural development of marginal farmlands include the availability and price of water and land, agricultural commodity prices, and technical innovations such as drip irrigation systems that impact the feasibility and costs of production. The increasing amount of marginal farmland being put into production could have significant water quality consequences because marginal lands are generally steeper, have more erodible soils, poorer drainage, and require more fertilizer than prime farmlands. Although no data exist to test our hypothesis, and numerous variables preclude definitive predictions, the evidence suggests that new irrigated marginal lands can increase nonpoint source (NPS) pollution for a given size area by an order of magnitude in some cases.

  10. Oyster reef restoration in controlling coastal pollution around India: A viewpoint.

    PubMed

    Chakraborty, Parthasarathi

    2017-02-15

    Coastal waters receive large amounts of nutrients and pollutants from different point and nonpoint sources through bays and estuaries. Excess supply of nutrients in coastal waters may have detrimental effects, leading to hypoxia and anoxia from eutrophication. Reduction in concentrations of excess nutrients/pollutants in bays/estuarine system is must for healthy coastal ecosystem functioning. Conservations of bays, estuaries and coastal zones are must for sustainable development in any maritime country. Excellent ability of oyster in removing and controlling the concentrations of nutrients, pollutants, suspended particulate matters from bays and estuarine waters stimulated me to provide a viewpoint on oyster reef restoration in controlling nutrient/heavy metals fluxes and marine coastal pollution around India. Oyster reefs restoration may decrease nutrient and heavy metals fluxes in coastal waters and reduce the intensity of oxygen depletion in the coastal Arabian Sea (seasonal) and Bay of Bengal. However, extensive research is recommended to understand the impact of oyster reef restoration in controlling coastal pollution which is essential for sustainable development around India. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Toxicological database of soil and derived products (BDT).

    PubMed

    Uricchio, Vito Felice

    2008-01-01

    The Toxicological database of soil and derived products is a project firstly proposed by the Regional Environmental Authority of Apulia. Such a project aims to provide comprehensive and updated information on the regional environmental characteristics, on the pollution state of the regional soil, on the main pollutants and on the reclaim techniques to be used in case of both non-point (agricultural activities) and point (industrial activities) sources of pollution. The project's focus is on the soil pollution because of the fundamental role played by the soil in supporting the biological cycle. Furthermore, the reasons for the project are related both to the reduction of human health risks due to toxic substances ingestion (these substances are present in some ring of the eating chain), and to the recognition of the importance of the groundwater quality safety (primary source of fresh water in many Mediterranean Regions). The essential requirements of a data entry are the following: speed and simplicity of the data entry; reliability and stability of the database structures; speed, easiness and pliability of the queries. Free consultation of the database represents one of the most remarkable advantages coming from the use of an "open" system.

  12. Relationship between landscape characteristics and surface water quality.

    PubMed

    Chang, C L; Kuan, W H; Lui, P S; Hu, C Y

    2008-12-01

    The effects of landscape characteristics on surface water quality were evaluated in terms of land-use condition, soil type and slope. The case area, the Chichiawan stream in the Wulin catchment in Taiwan, is Formosan landlocked salmon's natural habitat. Due to the agriculture behavior and mankind's activities, the water and environmental quality has gradually worsened. This study applied WinVAST model to predict hydrological responses and non-point source pollution (NPSP) exports in the Wulin catchment. The land-use condition and the slope of land surface in a catchment are major effect factors for watershed responses, including flows and pollutant exports. This work discussed the possible variation of watershed responses induced by the change of land-use condition, soil type and slope, etc. The results show that hydrological responses are highly relative to the value of Curve Number (CN); Pollutant exports have large relation to the average slope of the land surface in the Wulin catchment.

  13. Periphytic biofilms: A promising nutrient utilization regulator in wetlands.

    PubMed

    Wu, Yonghong; Liu, Junzhuo; Rene, Eldon R

    2018-01-01

    Low nutrient utilization efficiency in agricultural ecosystems is the main cause of nonpoint source (NPS) pollution. Therefore, novel approaches should be explored to improve nutrient utilization in these ecosystems. Periphytic biofilms composed of microalgae, bacteria and other microbial organisms are ubiquitous and form a 'third phase' in artificial wetlands such as paddy fields. Periphytic biofilms play critical roles in nutrient transformation between the overlying water and soil/sediment, however, their contributions to nutrient utilization improvement and NPS pollution control have been largely underestimated. This mini review summarizes the contributions of periphytic biofilms to nutrient transformation processes, including assimilating and storing bioavailable nitrogen and phosphorus, fixing nitrogen, and activating occluded phosphorus. Future research should focus on augmenting the nitrogen fixing, phosphate solubilizing and phosphatase producing microorganisms in periphytic biofilms to improve nutrient utilization and thereby reduce NPS pollution production in artificial and natural wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. DISCRIMINATION OF NATURAL AND NON-POINT SOURCE EFFECTS FROM ANTHROGENIC EFFECTS AS REFLECTED IN BENTHIC STATE IN THREE ESTUARIES IN NEW ENGLAND

    EPA Science Inventory

    In order to protect estuarine resources, managers must be able to discern the effects of natural conditions and non-point source effects, and separate them from multiple anthropogenic point source effects. Our approach was to evaluate benthic community assemblages, riverine nitro...

  15. [Coupling SWAT and CE-QUAL-W2 models to simulate water quantity and quality in Shanmei Reservoir watershed].

    PubMed

    Liu, Mei-Bing; Chen, Dong-Ping; Chen, Xing-Wei; Chen, Ying

    2013-12-01

    A coupled watershed-reservoir modeling approach consisting of a watershed distributed model (SWAT) and a two-dimensional laterally averaged model (CE-QUAL-W2) was adopted for simulating the impact of non-point source pollution from upland watershed on water quality of Shanmei Reservoir. Using the daily serial output from Shanmei Reservoir watershed by SWAT as the input to Shanmei Reservoir by CE-QUAL-W2, the coupled modeling was calibrated for runoff and outputs of sediment and pollutant at watershed scale and for elevation, temperature, nitrate, ammonium and total nitrogen in Shanmei Reservoir. The results indicated that the simulated values agreed fairly well with the observed data, although the calculation precision of downstream model would be affected by the accumulative errors generated from the simulation of upland model. The SWAT and CE-QUAL-W2 coupled modeling could be used to assess the hydrodynamic and water quality process in complex watershed comprised of upland watershed and downstream reservoir, and might further provide scientific basis for positioning key pollution source area and controlling the reservoir eutrophication.

  16. EPA Office of Water (OW): Impaired Waters with TMDLs NHDPlus Indexed Dataset

    EPA Pesticide Factsheets

    The Total Maximum Daily Load (TMDL) Tracking System contains information on waters that are Not Supporting their designated uses. These waters are listed by the state as impaired under Section 303(d) of the Clean Water Act. The status of TMDLs are also tracked. TMDLs are pollution control measures that reduce the discharge of pollutants into impaired waters. A TMDL or Total Maximum Daily Load is a calculation of the maximum amount of a pollutant that a waterbody can receive and still meet water quality standards, and an allocation of that amount to the pollutant's sources. What is a total maximum daily load (TMDL)? Water quality standards are set by States, Territories, and Tribes. They identify the uses for each waterbody, for example, drinking water supply, contact recreation (swimming), and aquatic life support (fishing), and the scientific criteria to support that use. A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and nonpoint sources. The calculation must include a margin of safety to ensure that the waterbody can be used for the purposes the state has designated. The calculation must also account for seasonal variation in water quality. The Clean Water Act, section 303, establishes the water quality standards and TMDL programs.

  17. The Beaver Creek story

    USGS Publications Warehouse

    Doyle, W.H.; Whitworth, B.G.; Smith, G.F.; Byl, T.D.

    1996-01-01

    Beaver Creek watershed in West Tennessee includes about 95,000 acres of the Nation's most productive farmland and most highly erodible soils. In 1989 the U.S. Geological Survey, in cooperation with the Tennessee Department of Agriculture, began a study to evaluate the effect of agricultural activities on water quality in the watershed and for best management practices designed to reduce agricultural nonpoint-source pollution. Agrichemical monitoring included testing the soils, ground water, and streams at four farm sites ranging from 27 to 420 acres. Monitoring stations were operated downstream to gain a better understanding of the water chemistry as runoff moved from small ditches into larger streams to the outlet of the Beaver Creek watershed. Prior to the implementation of best management practices at one of the farm study sites, some storms produced an average suspended-sediment concentration of 70,000 milligrams per liter. After the implementation of BMP's, however, the average value never exceeded 7,000 milligrams per liter. No-till crop production was the most effective best management practice for conserving soil on the farm fields tested. A natural bottomland hardwood wetland and a constructed wetland were evaluated as instream resource-management systems. The wetlands improved water quality downstream by acting as a filter and removing a significant amount of nonpoint-source pollution from the agricultural runoff. The constructed wetland reduced the sediment, pesticide, and nutrient load by approximately 50 percent over a 4-month period. The results of the Beaver Creek watershed study have increased the understanding of the effects of agriculture on water resources. Study results also demonstrated that BMP's do protect and improve water quality.

  18. 40 CFR 35.630 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... management grants to eligible Tribes and Intertribal Consortia under sections 319(h) and 518(f) of the Clean Water Act. (b) Purpose of program. Nonpoint source management grants may be awarded for the... ASSISTANCE Environmental Program Grants for Tribes Nonpoint Source Management Grants (sections 319(h) and 518...

  19. 40 CFR 35.630 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... management grants to eligible Tribes and Intertribal Consortia under sections 319(h) and 518(f) of the Clean Water Act. (b) Purpose of program. Nonpoint source management grants may be awarded for the... ASSISTANCE Environmental Program Grants for Tribes Nonpoint Source Management Grants (sections 319(h) and 518...

  20. 40 CFR 35.630 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... management grants to eligible Tribes and Intertribal Consortia under sections 319(h) and 518(f) of the Clean Water Act. (b) Purpose of program. Nonpoint source management grants may be awarded for the... ASSISTANCE Environmental Program Grants for Tribes Nonpoint Source Management Grants (sections 319(h) and 518...

Top