Sample records for nonsense mutation causing

  1. Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs).

    PubMed

    Nagel-Wolfrum, Kerstin; Möller, Fabian; Penner, Inessa; Baasov, Timor; Wolfrum, Uwe

    2016-04-01

    In recent years, remarkable advances in the ability to diagnose genetic disorders have been made. The identification of disease-causing genes allows the development of gene-specific therapies with the ultimate goal to develop personalized medicines for each patient according to their own specific genetic defect. In-depth genotyping of many different genes has revealed that ~12% of inherited genetic disorders are caused by in-frame nonsense mutations. Nonsense (non-coding) mutations are caused by point mutations, which generate premature termination codons (PTCs) that cause premature translational termination of the mRNA, and subsequently inhibit normal full-length protein expression. Recently, a gene-based therapeutic approach for genetic diseases caused by nonsense mutations has emerged, namely the so-called translational read-through (TR) therapy. Read-through therapy is based on the discovery that small molecules, known as TR-inducing drugs (TRIDs), allow the translation machinery to suppress a nonsense codon, elongate the nascent peptide chain, and consequently result in the synthesis of full-length protein. Several TRIDs are currently under investigation and research has been performed on several genetic disorders caused by nonsense mutations over the years. These findings have raised hope for the usage of TR therapy as a gene-based pharmacogenetic therapy for nonsense mutations in various genes responsible for a variety of genetic diseases.

  2. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes.

    PubMed

    Liu, H X; Cartegni, L; Zhang, M Q; Krainer, A R

    2001-01-01

    Point mutations can generate defective and sometimes harmful proteins. The nonsense-mediated mRNA decay (NMD) pathway minimizes the potential damage caused by nonsense mutations. In-frame nonsense codons located at a minimum distance upstream of the last exon-exon junction are recognized as premature termination codons (PTCs), targeting the mRNA for degradation. Some nonsense mutations cause skipping of one or more exons, presumably during pre-mRNA splicing in the nucleus; this phenomenon is termed nonsense-mediated altered splicing (NAS), and its underlying mechanism is unclear. By analyzing NAS in BRCA1, we show here that inappropriate exon skipping can be reproduced in vitro, and results from disruption of a splicing enhancer in the coding sequence. Enhancers can be disrupted by single nonsense, missense and translationally silent point mutations, without recognition of an open reading frame as such. These results argue against a nuclear reading-frame scanning mechanism for NAS. Coding-region single-nucleotide polymorphisms (cSNPs) within exonic splicing enhancers or silencers may affect the patterns or efficiency of mRNA splicing, which may in turn cause phenotypic variability and variable penetrance of mutations elsewhere in a gene.

  3. In vitro and ex vivo suppression by aminoglycosides of PCDH15 nonsense mutations underlying type 1 Usher syndrome.

    PubMed

    Rebibo-Sabbah, Annie; Nudelman, Igor; Ahmed, Zubair M; Baasov, Timor; Ben-Yosef, Tamar

    2007-11-01

    Type 1 Usher syndrome (USH1) is a recessively inherited condition, characterized by profound prelingual deafness, vestibular areflexia, and prepubertal onset of retinitis pigmentosa (RP). While the auditory component of USH1 can be treated by cochlear implants, to date there is no effective treatment for RP. USH1 can be caused by mutations in each of at least six genes. While truncating mutations of these genes cause USH1, some missense mutations of the same genes cause nonsyndromic deafness. These observations suggest that partial or low level activity of the encoded proteins may be sufficient for normal retinal function, although not for normal hearing. In individuals with USH1 due to nonsense mutations, interventions enabling partial translation of a full-length functional protein may delay the onset and/or progression of RP. One such possible therapeutic approach is suppression of nonsense mutations by small molecules such as aminoglycosides. We decided to test this approach as a potential therapy for RP in USH1 patients due to nonsense mutations. We initially focused on nonsense mutations of the PCDH15 gene, underlying USH1F. Here, we show suppression of several PCDH15 nonsense mutations, both in vitro and ex vivo. Suppression was achieved both by commercial aminoglycosides and by NB30, a new aminoglycoside-derivative developed by us. NB30 has reduced cytotoxicity in comparison to commercial aminoglycosides, and thus may be more efficiently used for therapeutic purposes. The research described here has important implications for the development of targeted interventions that are effective for patients with USH1 caused by various nonsense mutations.

  4. Treacher Collins syndrome with craniosynostosis, choanal atresia, and esophageal regurgitation caused by a novel nonsense mutation in TCOF1.

    PubMed

    Horiuchi, Katsumi; Ariga, Tadashi; Fujioka, Hirotaka; Kawashima, Kunihiro; Yamamoto, Yuhei; Igawa, Hiroharu; Sakiyama, Yukio; Sugihara, Tsuneki

    2004-07-15

    Treacher Collins syndrome (TCS) is caused by mutations in TCOF1 of the nonsense, small deletion, and small insertion types, which most likely result in haploinsufficiency. We report a novel de novo nonsense mutation 2731C --> T, resulting in Arg911Stop, which truncates the protein. Our patient had the classic findings of TCS, but with documented craniosynostosis, choanal atresia, and esophageal regurgitation. Copyright 2004 Wiley-Liss, Inc.

  5. A G542X cystic fibrosis mouse model for examining nonsense mutation directed therapies.

    PubMed

    McHugh, Daniel R; Steele, Miarasa S; Valerio, Dana M; Miron, Alexander; Mann, Rachel J; LePage, David F; Conlon, Ronald A; Cotton, Calvin U; Drumm, Mitchell L; Hodges, Craig A

    2018-01-01

    Nonsense mutations are present in 10% of patients with CF, produce a premature termination codon in CFTR mRNA causing early termination of translation, and lead to lack of CFTR function. There are no currently available animal models which contain a nonsense mutation in the endogenous Cftr locus that can be utilized to test nonsense mutation therapies. In this study, we create a CF mouse model carrying the G542X nonsense mutation in Cftr using CRISPR/Cas9 gene editing. The G542X mouse model has reduced Cftr mRNA levels, demonstrates absence of CFTR function, and displays characteristic manifestations of CF mice such as reduced growth and intestinal obstruction. Importantly, CFTR restoration is observed in G542X intestinal organoids treated with G418, an aminoglycoside with translational readthrough capabilities. The G542X mouse model provides an invaluable resource for the identification of potential therapies of CF nonsense mutations as well as the assessment of in vivo effectiveness of these potential therapies targeting nonsense mutations.

  6. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome.

    PubMed

    Khateb, Samer; Zelinger, Lina; Mizrahi-Meissonnier, Liliana; Ayuso, Carmen; Koenekoop, Robert K; Laxer, Uri; Gross, Menachem; Banin, Eyal; Sharon, Dror

    2014-07-01

    Usher syndrome (USH) is a heterogeneous group of inherited retinitis pigmentosa (RP) and sensorineural hearing loss (SNHL) caused by mutations in at least 12 genes. Our aim is to identify additional USH-related genes. Clinical examination included visual acuity test, funduscopy and electroretinography. Genetic analysis included homozygosity mapping and whole exome sequencing (WES). A combination of homozygosity mapping and WES in a large consanguineous family of Iranian Jewish origin revealed nonsense mutations in two ciliary genes: c.3289C>T (p.Q1097*) in C2orf71 and c.3463C>T (p.R1155*) in centrosome-associated protein CEP250 (C-Nap1). The latter has not been associated with any inherited disease and the c.3463C>T mutation was absent in control chromosomes. Patients who were double homozygotes had SNHL accompanied by early-onset and severe RP, while patients who were homozygous for the CEP250 mutation and carried a single mutant C2orf71 allele had SNHL with mild retinal degeneration. No ciliary structural abnormalities in the respiratory system were evident by electron microscopy analysis. CEP250 expression analysis of the mutant allele revealed the generation of a truncated protein lacking the NEK2-phosphorylation region. A homozygous nonsense CEP250 mutation, in combination with a heterozygous C2orf71 nonsense mutation, causes an atypical form of USH, characterised by early-onset SNHL and a relatively mild RP. The severe retinal involvement in the double homozygotes indicates an additive effect caused by nonsense mutations in genes encoding ciliary proteins. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Nonaminoglycoside compounds induce readthrough of nonsense mutations

    PubMed Central

    Damoiseaux, Robert; Nahas, Shareef; Gao, Kun; Hu, Hailiang; Pollard, Julianne M.; Goldstine, Jimena; Jung, Michael E.; Henning, Susanne M.; Bertoni, Carmen

    2009-01-01

    Large numbers of genetic disorders are caused by nonsense mutations for which compound-induced readthrough of premature termination codons (PTCs) might be exploited as a potential treatment strategy. We have successfully developed a sensitive and quantitative high-throughput screening (HTS) assay, protein transcription/translation (PTT)–enzyme-linked immunosorbent assay (ELISA), for identifying novel PTC-readthrough compounds using ataxia-telangiectasia (A-T) as a genetic disease model. This HTS PTT-ELISA assay is based on a coupled PTT that uses plasmid templates containing prototypic A-T mutated (ATM) mutations for HTS. The assay is luciferase independent. We screened ∼34,000 compounds and identified 12 low-molecular-mass nonaminoglycosides with potential PTC-readthrough activity. From these, two leading compounds consistently induced functional ATM protein in ATM-deficient cells containing disease-causing nonsense mutations, as demonstrated by direct measurement of ATM protein, restored ATM kinase activity, and colony survival assays for cellular radiosensitivity. The two compounds also demonstrated readthrough activity in mdx mouse myotube cells carrying a nonsense mutation and induced significant amounts of dystrophin protein. PMID:19770270

  8. Waardenburg syndrome type II in a Chinese patient caused by a novel nonsense mutation in the SOX10 gene.

    PubMed

    Ma, Jing; Zhang, Tie-Song; Lin, Ken; Sun, Hao; Jiang, Hong-Chao; Yang, Yan-Li; Low, Fan; Gao, Ying-Qin; Ruan, Biao

    2016-06-01

    Waardenburg syndrome is a congenital genetic disorder. It is the most common type of syndromic hearing impairment with highly genetic heterogeneity and proved to be related by 6 genes as follows: PAX3, MITF, SNAI2, EDN3, EDNRB and SOX10. This article aims to identify the genetic causes of a Chinese WS child patient. A Chinese WS child was collected for clinical data collection by questionnaire survey. DNA samples of proband and his parents were extracted from peripheral blood samples. Six candidate genes were sequenced by the Trusight One sequencing panel on the illumina NextSeq 500 platform. A novel nonsense heterozygous mutation was found in the coding region of exon 2 in the SOX10 gene of proband. The novel nonsense heterozygous mutation could cause the replacement of the 55th lysine codon by stop codon (484T > C, C142R) and further more possibly cause terminating the protein translation in advance. However, both proband's parents had no mutation of genes above mentioned. The gene mutation of SOX10 [NM_006941.3 c.163A > T] is a novel nonsense mutation. No record of this mutation has been found in dbSNP, HGMD, 1000 Genomes Project, ClinVar and ESP6500 databases. It meets the condition of PS2 of strong evidence in 2015 ACMG Standards and Guidelines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Premature chain termination is a unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willing, M.C.; Deschenes, S.P.; Roberts, E.J.

    Nonsense and frameshift mutations, which predict premature termination of translation, often cause a dramatic reduction in the amount of transcript from the mutant allele (nonsense-mediated mRNA decay). In some genes, these mutations also influence RNA splicing and induce skipping of the exon that contains the nonsense codon. To begin to dissect how premature termination alters the metabolism of RNA from the COL1A1 gene, we studied nonsense and frameshift mutations distributed over exons 11-49 of the gene. These mutations were originally identified in 10 unrelated families with osteogenesis imperfecta (OI) type I. We observed marked reduction in steady-state amounts of mRNAmore » from the mutant allele in both total cellular and nuclear RNA extracts of cells from affected individuals, suggesting that nonsense-mediated decay of COL1A1 RNA is a nuclear phenomenon. Position of the mutation within the gene did not influence this observation. None of the mutations induced skipping of either the exon containing the mutation or, for the frameshifts, the downstream exons with the new termination sites. Our data suggest that nonsense and frameshift mutations throughout most of the COL1A1 gene result in a null allele, which is associated with the predictable mild clinical phenotype, OI type I. 42 refs., 6 figs., 1 tab.« less

  10. GATA3 mutation in a family with hypoparathyroidism, deafness and renal dysplasia syndrome.

    PubMed

    Zhu, Zi-Yang; Zhou, Qiao-Li; Ni, Shi-Ning; Gu, Wei

    2014-08-01

    The hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is an autosomal dominant disorder primarily caused by GATA3 gene mutation. We report here a case that both of a Chinese boy and his father had HDR syndrome which caused by a novel mutation of GATA3. Polymerase chain reaction and DNA sequencing was performed to detect the exons of the GATA3 gene for mutation analysis. Sequence analysis of GATA3 revealed a heterozygous nonsense mutation in this family: a mutation of GATA3 at exon 2 (c.515C >A) that resulted in a premature stop at codon 172 (p.S172X) with a loss of two zinc finger domains. We identified a novel nonsense mutation which will expand the spectrum of HDR-associated GATA3 mutations.

  11. Absence of NEFL in patient-specific neurons in early-onset Charcot-Marie-Tooth neuropathy.

    PubMed

    Sainio, Markus T; Ylikallio, Emil; Mäenpää, Laura; Lahtela, Jenni; Mattila, Pirkko; Auranen, Mari; Palmio, Johanna; Tyynismaa, Henna

    2018-06-01

    We used patient-specific neuronal cultures to characterize the molecular genetic mechanism of recessive nonsense mutations in neurofilament light ( NEFL ) underlying early-onset Charcot-Marie-Tooth (CMT) disease. Motor neurons were differentiated from induced pluripotent stem cells of a patient with early-onset CMT carrying a novel homozygous nonsense mutation in NEFL . Quantitative PCR, protein analytics, immunocytochemistry, electron microscopy, and single-cell transcriptomics were used to investigate patient and control neurons. We show that the recessive nonsense mutation causes a nearly total loss of NEFL messenger RNA (mRNA), leading to the complete absence of NEFL protein in patient's cultured neurons. Yet the cultured neurons were able to differentiate and form neuronal networks and neurofilaments. Single-neuron gene expression fingerprinting pinpointed NEFL as the most downregulated gene in the patient neurons and provided data of intermediate filament transcript abundancy and dynamics in cultured neurons. Blocking of nonsense-mediated decay partially rescued the loss of NEFL mRNA. The strict neuronal specificity of neurofilament has hindered the mechanistic studies of recessive NEFL nonsense mutations. Here, we show that such mutation leads to the absence of NEFL, causing childhood-onset neuropathy through a loss-of-function mechanism. We propose that the neurofilament accumulation, a common feature of many neurodegenerative diseases, mimics the absence of NEFL seen in recessive CMT if aggregation prevents the proper localization of wild-type NEFL in neurons. Our results suggest that the removal of NEFL as a proposed treatment option is harmful in humans.

  12. Novel de novo nonsense mutation of the PHEX gene (p.Lys50Ter) in a Chinese patient with hypophosphatemic rickets.

    PubMed

    Huang, Yanru; Mei, Libin; Pan, Qian; Tan, Hu; Quan, Yi; Gui, Baoheng; Chang, Jiazhen; Ma, Ruiyu; Peng, Ying; Yang, Pu; Liang, Desheng; Wu, Lingqian

    2015-07-01

    X-linked hypophosphatemic rickets (XLHR), the most common form of inherited rickets, is a dominant disorder characterized by hypophosphatemia, abnormal bone mineralization, and short stature. Mutations in the PHEX gene are major causes of XLHR. Herein, we clinically characterized four unrelated families with hypophosphatemia, bone abnormalities, short stature, and dentin malformation. Mutational analysis of the PHEX gene using Sanger sequencing revealed three recurrent mutations (c.2197T>C, c.1646G>C, and c.2198G>A) and a de novo nonsense mutation (c.148A>T). The novel mutation was not found in any of the unaffected family members or in the 100 healthy controls and was predicted to produce a truncated protein (p.K50X), a truncated form of the PHEX protein caused by nonsense mutations has been frequently detected in XLHR individuals. Thus, our work indicated that the c.148A>T (p.K50X) mutation was the likely pathogenic mutation in individual III-2 in family 2, and that PHEX gene mutations were responsible for XLHR in these Chinese families. These findings expand the mutation spectrum of PHEX and may help us to understand the molecular basis of XLHR in order to facilitate genetic counseling. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Peeling skin syndrome: genetic defects in late terminal differentiation of the epidermis.

    PubMed

    Bowden, Paul E

    2011-03-01

    In this issue, Israeli and colleagues confirm that homozygous mutations in corneodesmosin (CDSN) cause type B peeling skin syndrome (PSS), an autosomal recessive skin disorder. The deletion mutation described resulted in a frameshift, producing a downstream premature stop codon and early truncation of the protein. The recently described CDSN nonsense mutation in another PSS family also resulted in protein truncation and nonsense-mediated mRNA decay. Type B generalized PSS can now be clearly distinguished from acral PSS, caused by mutations in transglutaminase 5. This directly affects cornified envelope cross-linking rather than corneodesmosome adherence. These observations provide new insight into the molecular defects underlying two closely related forms of PSS.

  14. A Nonsense Mutation in Mycobacterium marinum That Is Suppressible by a Novel Mechanism

    PubMed Central

    Williams, Emily A.; Mba Medie, Felix; Bosserman, Rachel E.; Johnson, Benjamin K.; Reyna, Cristal; Ferrell, Micah J.; Champion, Matthew M.; Abramovitch, Robert B.

    2016-01-01

    ABSTRACT Mycobacterial pathogens use the ESAT-6 system 1 (Esx-1) exporter to promote virulence. Previously, we used gene disruption and complementation to conclude that the MMAR_0039 gene in Mycobacterium marinum is required to promote Esx-1 export. Here we applied molecular genetics, proteomics, and whole-genome sequencing to demonstrate that the MMAR_0039 gene is not required for Esx-1 secretion or virulence. These findings suggest that we initially observed an indirect mechanism of genetic complementation. We identified a spontaneous nonsense mutation in a known Esx-1-associated gene which causes a loss of Esx-1 activity. We show that the Esx-1 function was restored by nonsense suppression. Moreover, we identified a polar mutation in the ppsC gene which reduced cellular impermeability but did not impact cytotoxicity in macrophages. Our studies reveal insight into Esx-1 export, nonsense suppression, and cell envelope lipid biogenesis. PMID:27789543

  15. Inherited human complement C5 deficiency: Nonsense mutations in exons 1 (Gln{sup 1} to Stop) and 36 (Arg{sup 1458} to Stop) and compound heterozygosity in three African-American families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.; Fleischer, D.T.; Whitehead, W.T.

    1995-05-15

    Hereditary C5 deficiency has been reported in several families of different ethnic backgrounds and from different geographic regions, but the molecular genetic defect causing C5 deficiency has not been delineated in any of them. To examine the molecular basis of C5 deficiency in the African-American population, the exons and intron/exon boundaries of the C5 structural genes from three C5-deficient (C5D) African-American families were sequenced, revealing two nonsense mutations. The nonsense mutations are located in exon 1 (C{sup 84}AG to TAG) in two of the C5D families (Rhode Island and North Carolina) and in exon 36 (C{sup 4521}GA to TGA) inmore » the third C5D family (New York). The exon 1 and 36 mutations are contained in codons that encode the first amino acid of the C5 {beta}-chain (Gln{sup 1} to Stop) and residue 1458 in the {alpha}-chain (Arg{sup 1458} to Stop), respectively. Allele-specific PCR and sequence analyses demonstrated that the exon 1 mutation is present in only one of the C5 null genes in both the Rhode Island and North Carolina families, and the exon 36 mutation is contained in only one C5 null gene in the New York family. Neither of the nonsense mutations was found in the European or Caucasian-American C5D individuals examined. Collectively, these data indicate that: (1) C5 deficiency is caused by several different molecular genetic defects, (2) C5 deficiency in the African-American population can be explained in part by two distinct nonsense mutations in exons 1 and 36, and (3) compound heterozygosity exists in all of the reported African-American C5D families. 44 refs., 5 figs., 1 tab.« less

  16. Translational read-through of a nonsense mutation causing Bartter syndrome.

    PubMed

    Cho, Hee Yeon; Lee, Beom Hee; Cheong, Hae Il

    2013-06-01

    Bartter syndrome (BS) is classified into 5 genotypes according to underlying mutant genes and BS III is caused by loss-of-function mutations in the CLCNKB gene encoding for basolateral ClC-Kb. BS III is the most common genotype in Korean patients with BS and W610X is the most common CLCNKB mutation in Korean BS III. In this study, we tested the hypothesis that the CLCNKB W610X mutation can be rescued in vitro using aminoglycoside antibiotics, which are known to induce translational read-through of a nonsense mutation. The CLCNKB cDNA was cloned into a eukaryotic expression vector and the W610X nonsense mutation was generated by site-directed mutagenesis. Cultured polarized MDCK cells were transfected with the vectors, and the read-through was induced using an aminoglycoside derivative, G418. Cellular expression of the target protein was monitored via immunohistochemistry. While cells transfected with the mutant CLCNKB failed to express ClC-Kb, G418 treatment of the cells induced the full-length protein expression, which was localized to the basolateral plasma membranes. It is demonstrated that the W610X mutation in CLCNKB can be a good candidate for trial of translational read-through induction as a therapeutic modality.

  17. Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension.

    PubMed

    Drake, Kylie M; Dunmore, Benjamin J; McNelly, Lauren N; Morrell, Nicholas W; Aldred, Micheala A

    2013-09-01

    Heritable pulmonary arterial hypertension (HPAH) is a serious lung vascular disease caused by heterozygous mutations in the bone morphogenetic protein (BMP) pathway genes, BMPR2 and SMAD9. One noncanonical function of BMP signaling regulates biogenesis of a subset of microRNAs. We have previously shown that this function is abrogated in patients with HPAH, making it a highly sensitive readout of BMP pathway integrity. Ataluren (PTC124) is an investigational drug that permits ribosomal readthrough of premature stop codons, resulting in a full-length protein. It exhibits oral bioavailability and limited toxicity in human trials. Here, we tested ataluren in lung- or blood-derived cells from patients with HPAH with nonsense mutations in BMPR2 (n = 6) or SMAD9 (n = 1). Ataluren significantly increased BMP-mediated microRNA processing in six of the seven cases. Moreover, rescue was achieved even for mutations exhibiting significant nonsense-mediated mRNA decay. Response to ataluren was dose dependent, and complete correction was achieved at therapeutic doses currently used in clinical trials for cystic fibrosis. BMP receptor (BMPR)-II protein levels were normalized and ligand-dependent phosphorylation of downstream target Smads was increased. Furthermore, the usually hyperproliferative phenotype of pulmonary artery endothelial and smooth muscle cells was reversed by ataluren. These results indicate that ataluren can effectively suppress a high proportion of BMPR2 and SMAD9 nonsense mutations and correct BMP signaling in vitro. Approximately 29% of all HPAH mutations are nonsense point mutations. In light of this, we propose ataluren as a potential new personalized therapy for this significant subgroup of patients with PAH.

  18. Mutations in POLR3A and POLR3B Encoding RNA Polymerase III Subunits Cause an Autosomal-Recessive Hypomyelinating Leukoencephalopathy

    PubMed Central

    Saitsu, Hirotomo; Osaka, Hitoshi; Sasaki, Masayuki; Takanashi, Jun-ichi; Hamada, Keisuke; Yamashita, Akio; Shibayama, Hidehiro; Shiina, Masaaki; Kondo, Yukiko; Nishiyama, Kiyomi; Tsurusaki, Yoshinori; Miyake, Noriko; Doi, Hiroshi; Ogata, Kazuhiro; Inoue, Ken; Matsumoto, Naomichi

    2011-01-01

    Congenital hypomyelinating disorders are a heterogeneous group of inherited leukoencephalopathies characterized by abnormal myelin formation. We have recently reported a hypomyelinating syndrome characterized by diffuse cerebral hypomyelination with cerebellar atrophy and hypoplasia of the corpus callosum (HCAHC). We performed whole-exome sequencing of three unrelated individuals with HCAHC and identified compound heterozygous mutations in POLR3B in two individuals. The mutations include a nonsense mutation, a splice-site mutation, and two missense mutations at evolutionally conserved amino acids. Using reverse transcription-PCR and sequencing, we demonstrated that the splice-site mutation caused deletion of exon 18 from POLR3B mRNA and that the transcript harboring the nonsense mutation underwent nonsense-mediated mRNA decay. We also identified compound heterozygous missense mutations in POLR3A in the remaining individual. POLR3A and POLR3B encode the largest and second largest subunits of RNA Polymerase III (Pol III), RPC1 and RPC2, respectively. RPC1 and RPC2 together form the active center of the polymerase and contribute to the catalytic activity of the polymerase. Pol III is involved in the transcription of small noncoding RNAs, such as 5S ribosomal RNA and all transfer RNAs (tRNA). We hypothesize that perturbation of Pol III target transcription, especially of tRNAs, could be a common pathological mechanism underlying POLR3A and POLR3B mutations. PMID:22036171

  19. Whole-exome sequencing analysis of Waardenburg syndrome in a Chinese family.

    PubMed

    Chen, Dezhong; Zhao, Na; Wang, Jing; Li, Zhuoyu; Wu, Changxin; Fu, Jie; Xiao, Han

    2017-01-01

    Waardenburg syndrome (WS) is a dominantly inherited, genetically heterogeneous auditory-pigmentary syndrome characterized by non-progressive sensorineural hearing loss and iris discoloration. By whole-exome sequencing (WES), we identified a nonsense mutation (c.598C>T) in PAX3 gene, predicted to be disease causing by in silico analysis. This is the first report of genetically diagnosed case of WS PAX3 c.598C>T nonsense mutation in Chinese ethnic origin by WES and in silico functional prediction methods.

  20. Whole-exome sequencing analysis of Waardenburg syndrome in a Chinese family

    PubMed Central

    Chen, Dezhong; Zhao, Na; Wang, Jing; Li, Zhuoyu; Wu, Changxin; Fu, Jie; Xiao, Han

    2017-01-01

    Waardenburg syndrome (WS) is a dominantly inherited, genetically heterogeneous auditory-pigmentary syndrome characterized by non-progressive sensorineural hearing loss and iris discoloration. By whole-exome sequencing (WES), we identified a nonsense mutation (c.598C>T) in PAX3 gene, predicted to be disease causing by in silico analysis. This is the first report of genetically diagnosed case of WS PAX3 c.598C>T nonsense mutation in Chinese ethnic origin by WES and in silico functional prediction methods. PMID:28690861

  1. Mechanism and evidence of nonsense suppression therapy for genetic eye disorders.

    PubMed

    Richardson, Rose; Smart, Matthew; Tracey-White, Dhani; Webster, Andrew R; Moosajee, Mariya

    2017-02-01

    Between 5 and 70% of genetic disease is caused by in-frame nonsense mutations, which introduce a premature termination codon (PTC) within the disease-causing gene. Consequently, during translation, non-functional or gain-of-function truncated proteins of pathological significance, are formed. Approximately 50% of all inherited retinal disorders have been associated with PTCs, highlighting the importance of novel pharmacological or gene correction therapies in ocular disease. Pharmacological nonsense suppression of PTCs could delineate a therapeutic strategy that treats the mutation in a gene- and disease-independent manner. This approach aims to suppress the fidelity of the ribosome during protein synthesis so that a near-cognate aminoacyl-tRNA, which shares two of the three nucleotides of the PTC, can be inserted into the peptide chain, allowing translation to continue, and a full-length functional protein to be produced. Here we discuss the mechanisms and evidence of nonsense suppression agents, including the small molecule drug ataluren (or PTC124) and next generation 'designer' aminoglycosides, for the treatment of genetic eye disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability.

    PubMed

    Twigg, Stephen R F; Forecki, Jennifer; Goos, Jacqueline A C; Richardson, Ivy C A; Hoogeboom, A Jeannette M; van den Ouweland, Ans M W; Swagemakers, Sigrid M A; Lequin, Maarten H; Van Antwerp, Daniel; McGowan, Simon J; Westbury, Isabelle; Miller, Kerry A; Wall, Steven A; van der Spek, Peter J; Mathijssen, Irene M J; Pauws, Erwin; Merzdorf, Christa S; Wilkie, Andrew O M

    2015-09-03

    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5-12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability

    PubMed Central

    Twigg, Stephen R.F.; Forecki, Jennifer; Goos, Jacqueline A.C.; Richardson, Ivy C.A.; Hoogeboom, A. Jeannette M.; van den Ouweland, Ans M.W.; Swagemakers, Sigrid M.A.; Lequin, Maarten H.; Van Antwerp, Daniel; McGowan, Simon J.; Westbury, Isabelle; Miller, Kerry A.; Wall, Steven A.; van der Spek, Peter J.; Mathijssen, Irene M.J.; Pauws, Erwin; Merzdorf, Christa S.; Wilkie, Andrew O.M.

    2015-01-01

    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5–12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded. PMID:26340333

  4. Differential functional readthrough over homozygous nonsense mutations contributes to the bleeding phenotype in coagulation factor VII deficiency.

    PubMed

    Branchini, A; Ferrarese, M; Lombardi, S; Mari, R; Bernardi, F; Pinotti, M

    2016-10-01

    Essentials Potentially null homozygous Factor(F)7 nonsense mutations are associated to variable bleeding symptoms. Readthrough of p.Ser112X (life-threatening) and p.Cys132X (moderate) stop codons was investigated. Readthrough-mediated insertion of wild-type or tolerated residues produce functional proteins. Functional readthrough over homozygous F7 nonsense mutations contributes to the bleeding phenotype. Background Whereas the rare homozygous nonsense mutations causing factor (F)VII deficiency may predict null conditions that are almost completely incompatible with life, they are associated with appreciable differences in hemorrhagic symptoms. The misrecognition of premature stop codons (readthrough) may account for variable levels of functional full-length proteins. Objectives To experimentally evaluate the basal and drug-induced levels of FVII resulting from the homozygous p.Cys132X and p.Ser112X nonsense mutations that are associated with moderate (132X) or life-threatening (112X) symptoms, and that are predicted to undergo readthrough with (132X) or without (112X) production of wild-type FVII. Methods We transiently expressed recombinant FVII (rFVII) nonsense and missense variants in human embryonic kidney 293 cells, and evaluated secreted FVII protein and functional levels by ELISA, activated FX generation, and coagulation assays. Results The levels of functional FVII produced by p.Cys132X and p.Ser112X mutants (rFVII-132X, 1.1% ± 0.2% of wild-type rFVII; rFVII-112X, 0.5% ± 0.1% of wild-type rFVII) were compatible with the occurrence of spontaneous readthrough, which was magnified by the addition of G418 - up to 12% of the wild-type value for the rFVII-132X nonsense variant. The predicted missense variants arising from readthrough abolished (rFVII-132Trp/Arg) or reduced (rFVII-112Trp/Cys/Arg, 22-45% of wild-type levels) secretion and function. These data suggest that the appreciable rescue of p.Cys132X function was driven by reinsertion of the wild-type residue, whereas the minimal p.Ser112X function was explained by missense changes permitting FVII secretion and function. Conclusions The extent of functional readthrough might explain differences in the bleeding phenotype of patients homozygous for F7 nonsense mutations, and prevent null conditions even for the most readthrough-unfavorable mutations. © 2016 International Society on Thrombosis and Haemostasis.

  5. Identification of a novel nonsense mutation and a missense substitution in the AGPAT2 gene causing congenital generalized lipodystrophy type 1

    PubMed Central

    Haghighi, Amirreza; Razzaghy-Azar, Maryam; Talea, Ali; Sadeghian, Mahnaz; Ellard, Sian; Haghighi, Alireza

    2012-01-01

    Congenital generalized lipodystrophy (CGL) is an autosomal recessive disease characterized by the generalized scant of adipose tissue. CGL type 1 is caused by mutations in gene encoding 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2). A clinical and molecular genetic investigation was performed in affected and unaffected members of two families with CGL type 1. The AGPAT2 coding region was sequenced in index cases of the two families. The presence of the identified mutations in relevant parents was tested. We identified a novel nonsense mutation (c.685G>T, p.Glu229*) and a missense substitution (c.514G>A, p.Glu172Lys). The unaffected parents in both families were heterozygous carrier of the relevant mutation. The results expand genotype–phenotype spectrum in CGL1 and will have applications in prenatal and early diagnosis of the disease. This is the first report of Persian families identified with AGPAT2 mutations. PMID:22902344

  6. Homozygous nonsense mutation in SGCA is a common cause of limb-girdle muscular dystrophy in Assiut, Egypt.

    PubMed

    Reddy, Hemakumar M; Hamed, Sherifa A; Lek, Monkol; Mitsuhashi, Satomi; Estrella, Elicia; Jones, Michael D; Mahoney, Lane J; Duncan, Anna R; Cho, Kyung-Ah; Macarthur, Daniel G; Kunkel, Louis M; Kang, Peter B

    2016-10-01

    The genetic causes of limb-girdle muscular dystrophy (LGMD) have been studied in numerous countries, but such investigations have been limited in Egypt. A cohort of 30 families with suspected LGMD from Assiut, Egypt, was studied using immunohistochemistry, homozygosity mapping, Sanger sequencing, and whole exome sequencing. Six families were confirmed to have pathogenic mutations, 4 in SGCA and 2 in DMD. Of these, 3 families harbored a single nonsense mutation in SGCA, suggesting that this may be a common mutation in Assiut, Egypt, originating from a founder effect. The Assiut region in Egypt appears to share at least several of the common LGMD genes found in other parts of the world. It is notable that 4 of the 6 mutations were ascertained by means of whole exome sequencing, even though it was the last approach adopted. This illustrates the power of this technique for identifying causative mutations for muscular dystrophies. Muscle Nerve 54: 690-695, 2016. © 2016 Wiley Periodicals, Inc.

  7. Novel nonsense mutation in the katA gene of a catalase-negative Staphylococcus aureus strain.

    PubMed

    Lagos, Jaime; Alarcón, Pedro; Benadof, Dona; Ulloa, Soledad; Fasce, Rodrigo; Tognarelli, Javier; Aguayo, Carolina; Araya, Pamela; Parra, Bárbara; Olivares, Berta; Hormazábal, Juan Carlos; Fernández, Jorge

    2016-01-01

    We report the first description of a rare catalase-negative strain of Staphylococcus aureus in Chile. This new variant was isolated from blood and synovial tissue samples of a pediatric patient. Sequencing analysis revealed that this catalase-negative strain is related to ST10 strain, which has earlier been described in relation to S. aureus carriers. Interestingly, sequence analysis of the catalase gene katA revealed presence of a novel nonsense mutation that causes premature translational truncation of the C-terminus of the enzyme leading to a loss of 222 amino acids. Our study suggests that loss of catalase activity in this rare catalase-negative Chilean strain is due to this novel nonsense mutation in the katA gene, which truncates the enzyme to just 283 amino acids. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. Detection of a novel silent deletion, a missense mutation and a nonsense mutation in TCOF1.

    PubMed

    Fujioka, Hirotaka; Ariga, Tadashi; Horiuchi, Katsumi; Ishikiriyama, Satoshi; Oyama, Kimie; Otsu, Makoto; Kawashima, Kunihiro; Yamamoto, Yuhei; Sugihara, Tsuneki; Sakiyama, Yukio

    2008-12-01

    Treacher Collins syndrome (TCS) is a disorder of craniofacial development, that is caused by mutations in the TCOF1 gene. TCS is inherited as an autosomal dominant trait, and haploinsufficiency of the TCOF1 gene product treacle is proposed to be etiologically involved. Mutational analysis of the TCOF1 gene was done in 10 patients diagnosed with TCS using single-strand conformation polymorphism and direct sequencing. Among these 10 patients, a novel 9 bp deletion was found, together with a previously reported 2 bp deletion, a novel missense mutation and a novel nonsense mutation in three different families. Familial studies allowed judgment of whether these abnormal findings were responsible for the TCS phenotype, or not. The 9 bp deletion of three amino acids Lys-Glu-Lys (1378-1380), which was located in the nuclear localization domain of treacle, seemed not essential for the treacle function. In contrast, the novel mutation of Ala26Val is considered to affect the LisH domain, an important domain of treacle. All of the mutations thus far detected in exon 5 have resulted in frameshift, but a nonsense mutation was detected (Lys159Stop). The information obtained in the present study provides additional insights into the functional domains of treacle.

  9. Exome Sequencing Identifies a Novel Nonsense Mutation of MYO6 as the Cause of Deafness in a Brazilian Family.

    PubMed

    Sampaio-Silva, Juliana; Batissoco, Ana Carla; Jesus-Santos, Rafaela; Abath-Neto, Osório; Scarpelli, Luciano Cesar; Nishimura, Patricia Yoshie; Galindo, Layla Testa; Bento, Ricardo Ferreira; Oiticica, Jeanne; Lezirovitz, Karina

    2018-01-01

    We investigated 313 unrelated subjects who presented with hearing loss to identify the novel genetic causes of this condition in Brazil. Causative GJB2/GJB6 mutations were found in 12.7% of the patients. Among the familial cases (100/313), four were selected for exome sequencing. In one case, two novel heterozygous variants were found and were predicted to be pathogenic based on bioinformatics tools, that is, p.Ser906* (MYO6) and p.Arg42Cys (GJB3). We confirmed that this nonsense MYO6 mutation segregated with deafness in this family. Only the proband and her unaffected mother exhibited the GJB3 mutation, which is in the same amino acid of a known Erythrokeratodermia variabilis mutation. None of the patients exhibited this skin disease, but the proband exhibited a more severe hearing loss. Hence, the GJB3 mutation was considered to be a variant of uncertain significance. In conclusion, we described a novel nonsense MYO6 mutation that was responsible for the hearing loss in a Brazilian family. This mutation resides in the neck domain of myosin-VI after the motor domain. Thus, our data give further support for genotype-phenotype correlations, which state that when the motor domain of the protein is functioning, the hearing loss is milder and has a later onset. The three remaining families without mutations in the known genes suggest that there are still deafness genes to be revealed. © 2017 John Wiley & Sons Ltd/University College London.

  10. Designer aminoglycosides that selectively inhibit cytoplasmic rather than mitochondrial ribosomes show decreased ototoxicity: a strategy for the treatment of genetic diseases.

    PubMed

    Shulman, Eli; Belakhov, Valery; Wei, Gao; Kendall, Ann; Meyron-Holtz, Esther G; Ben-Shachar, Dorit; Schacht, Jochen; Baasov, Timor

    2014-01-24

    There is compelling evidence that aminoglycoside (AG) antibiotics can induce the mammalian ribosome to suppress disease-causing nonsense mutations and partially restore the expression of functional proteins. However, prolonged AG treatment can cause detrimental side effects in patients, including most prominently, ototoxicity. Recent mechanistic discussions have considered the relative contributions of mitochondrial and cytoplasmic protein synthesis inhibition to AG-induced ototoxicity. We show that AGs inhibit mitochondrial protein synthesis in mammalian cells and perturb cell respiration, leading to a time- and dose-dependent increase in superoxide overproduction and accumulation of free ferrous iron in mitochondria caused by oxidative damage of mitochondrial aconitase, ultimately leading to cell apoptosis via the Fenton reaction. These deleterious effects increase with the increased potency of AG to inhibit the mitochondrial rather than cytoplasmic protein synthesis, which in turn correlates with their ototoxic potential in both murine cochlear explants and the guinea pig in vivo. The deleterious effects of AGs were alleviated in synthetic derivatives specially designed for the treatment of genetic diseases caused by nonsense mutations and possessing low affinity toward mitochondrial ribosomes. This work highlights the benefit of a mechanism-based drug redesign strategy that can maximize the translational value of "readthrough therapy" while mitigating drug-induced side effects. This approach holds promise for patients suffering from genetic diseases caused by nonsense mutations.

  11. Congenital myopathy is caused by mutation of HACD1.

    PubMed

    Muhammad, Emad; Reish, Orit; Ohno, Yusuke; Scheetz, Todd; Deluca, Adam; Searby, Charles; Regev, Miriam; Benyamini, Lilach; Fellig, Yakov; Kihara, Akio; Sheffield, Val C; Parvari, Ruti

    2013-12-20

    Congenital myopathies are heterogeneous inherited diseases of muscle characterized by a range of distinctive histologic abnormalities. We have studied a consanguineous family with congenital myopathy. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous non-sense mutation in 3-hydroxyacyl-CoA dehydratase 1 (HACD1) in affected individuals. The mutation results in non-sense mediated decay of the HACD1 mRNA to 31% of control levels in patient muscle and completely abrogates the enzymatic activity of dehydration of 3-hydroxyacyl-CoA, the third step in the elongation of very long-chain fatty acids (VLCFAs). We describe clinical findings correlated with a deleterious mutation in a gene not previously known to be associated with congenital myopathy in humans. We suggest that the mutation in the HACD1 gene causes a reduction in the synthesis of VLCFAs, which are components of membrane lipids and participants in physiological processes, leading to congenital myopathy. These data indicate that HACD1 is necessary for muscle function.

  12. Congenital myopathy is caused by mutation of HACD1

    PubMed Central

    Muhammad, Emad; Reish, Orit; Ohno, Yusuke; Scheetz, Todd; DeLuca, Adam; Searby, Charles; Regev, Miriam; Benyamini, Lilach; Fellig, Yakov; Kihara, Akio; Sheffield, Val C.; Parvari, Ruti

    2013-01-01

    Congenital myopathies are heterogeneous inherited diseases of muscle characterized by a range of distinctive histologic abnormalities. We have studied a consanguineous family with congenital myopathy. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous non-sense mutation in 3-hydroxyacyl-CoA dehydratase 1 (HACD1) in affected individuals. The mutation results in non-sense mediated decay of the HACD1 mRNA to 31% of control levels in patient muscle and completely abrogates the enzymatic activity of dehydration of 3-hydroxyacyl-CoA, the third step in the elongation of very long-chain fatty acids (VLCFAs). We describe clinical findings correlated with a deleterious mutation in a gene not previously known to be associated with congenital myopathy in humans. We suggest that the mutation in the HACD1 gene causes a reduction in the synthesis of VLCFAs, which are components of membrane lipids and participants in physiological processes, leading to congenital myopathy. These data indicate that HACD1 is necessary for muscle function. PMID:23933735

  13. Mutation discovery for Mendelian traits in non-laboratory animals: a review of achievements up to 2012

    PubMed Central

    Nicholas, Frank W; Hobbs, Matthew

    2014-01-01

    Within two years of the re-discovery of Mendelism, Bateson and Saunders had described six traits in non-laboratory animals (five in chickens and one in cattle) that show single-locus (Mendelian) inheritance. In the ensuing decades, much progress was made in documenting an ever-increasing number of such traits. In 1987 came the first discovery of a causal mutation for a Mendelian trait in non-laboratory animals: a non-sense mutation in the thyroglobulin gene (TG), causing familial goitre in cattle. In the years that followed, the rate of discovery of causal mutations increased, aided mightily by the creation of genome-wide microsatellite maps in the 1990s and even more mightily by genome assemblies and single-nucleotide polymorphism (SNP) chips in the 2000s. With sequencing costs decreasing rapidly, by 2012 causal mutations were being discovered in non-laboratory animals at a rate of more than one per week. By the end of 2012, the total number of Mendelian traits in non-laboratory animals with known causal mutations had reached 499, which was half the number of published single-locus (Mendelian) traits in those species. The distribution of types of mutations documented in non-laboratory animals is fairly similar to that in humans, with almost half being missense or non-sense mutations. The ratio of missense to non-sense mutations in non-laboratory animals to the end of 2012 was 193:78. The fraction of non-sense mutations (78/271 = 0.29) was not very different from the fraction of non-stop codons that are just one base substitution away from a stop codon (21/61 = 0.34). PMID:24372556

  14. Becker muscular dystrophy with widespread muscle hypertrophy and a non-sense mutation of exon 2.

    PubMed

    Witting, N; Duno, M; Vissing, J

    2013-01-01

    Becker muscular dystrophy features progressive proximal weakness, wasting and often focal hypertrophy. We present a patient with pain and cramps from adolescence. Widespread muscle hypertrophy, preserved muscle strength and a 10-20-fold raised CPK were noted. Muscle biopsy was dystrophic, and Western blot showed a 95% reduction of dystrophin levels. Genetic analyses revealed a non-sense mutation in exon 2 of the dystrophin gene. This mutation is predicted to result in a Duchenne phenotype, but resulted in a mild Becker muscular dystrophy with widespread muscle hypertrophy. We suggest that this unusual phenotype is caused by translation re-initiation downstream from the mutation site. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A novel GATA3 nonsense mutation in a newly diagnosed adult patient of hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome.

    PubMed

    Nanba, Kazutaka; Usui, Takeshi; Nakamura, Michikazu; Toyota, Yuko; Hirota, Keisho; Tamanaha, Tamiko; Kawashima, Sachiko-Tsukamoto; Nakao, Kanako; Yuno, Akiko; Tagami, Tetsuya; Naruse, Mitsuhide; Shimatsu, Akira

    2013-01-01

    Hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome is an autosomal dominant disorder caused by a GATA3 gene mutation. Here we report a novel mutation of GATA3 in a patient diagnosed with HDR syndrome at the age of 58 with extensive intracranial calcification. A 58-year-old Japanese man showed severe hypocalcemia and marked calcification in the basal ganglia, cerebellum, deep white matter, and gray-white junction on computed tomography (CT). The serum intact parathyroid hormone level was relatively low against low serum calcium concentration. The patient had been diagnosed with bilateral sensorineural deafness in childhood and had a family history of hearing disorders. Imaging studies revealed no renal anomalies. The patient was diagnosed with HDR syndrome, and genetic testing was performed. Genetic analysis of GATA3 showed a novel nonsense mutation at codon 198 (S198X) in exon 3. The S198X mutation leads to a loss of two zinc finger deoxyribonucleic acid (DNA) binding domains and is considered to be responsible for HDR syndrome. We identified a novel nonsense mutation of GATA3 in an adult patient with HDR syndrome who showed extensive intracranial calcification.

  16. Molecular analysis of congenital goitres with hypothyroidism caused by defective thyroglobulin synthesis. Identification of a novel c.7006C>T [p.R2317X] mutation and expression of minigenes containing nonsense mutations in exon 7.

    PubMed

    Machiavelli, Gloria A; Caputo, Mariela; Rivolta, Carina M; Olcese, María C; Gruñeiro-Papendieck, Laura; Chiesa, Ana; González-Sarmiento, Rogelio; Targovnik, Héctor M

    2010-01-01

    Thyroglobulin (TG) deficiency is an autosomal-recessive disorder that results in thyroid dyshormonogenesis. A number of distinct mutations have been identified as causing human hypothyroid goitre. The purpose of this study was to identify and characterize new mutations in the TG gene in an attempt to increase the understanding of the genetic mechanism responsible for this disorder. A total of six patients from four nonconsanguineous families with marked impairment of TG synthesis were studied. Single-strand conformation polymorphism (SSCP) analysis, sequencing of DNA, genotyping, expression of chimeric minigenes and bioinformatic analysis were performed. Four different inactivating TG mutations were identified: one novel mutation (c.7006C>T [p.R2317X]) and three previously reported (c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.6725G>A [p.R2223H]). Consequently, one patient carried a compound heterozygous for p.R2223H/p.R2317X mutations; two brothers showed a homozygous p.A2215D substitution and the remaining three patients, from two families with typical phenotype, had a single p.R277X mutated allele. We also showed functional evidences that premature stop codons inserted at different positions in exon 7, which disrupt exonic splicing enhancer (ESE) sequences, do not interfere with exon definition and processing. In this study, we have identified a novel nonsense mutation p.R2317X in the acetylcholinesterase homology domain of TG. We have also observed that nonsense mutations do not interfere with the pre-mRNA splicing of exon 7. The results are in accordance with previous observations confirming the genetic heterogeneity of TG defects.

  17. Identification of the first nonsense CDSN mutation with expression of a truncated protein causing peeling skin syndrome type B.

    PubMed

    Mallet, A; Kypriotou, M; George, K; Leclerc, E; Rivero, D; Mazereeuw-Hautier, J; Serre, G; Huber, M; Jonca, N; Hohl, D

    2013-12-01

    Peeling skin disease (PSD), a generalized inflammatory form of peeling skin syndrome, is caused by autosomal recessive nonsense mutations in the corneodesmosin gene (CDSN). To investigate a novel mutation in CDSN. A 50-year-old white woman showed widespread peeling with erythema and elevated serum IgE. DNA sequencing, immunohistochemistry, Western blot and real-time polymerase chain reaction analyses of skin biopsies were performed in order to study the genetics and to characterize the molecular profile of the disease. Histology showed hyperkeratosis and acanthosis of the epidermis, and inflammatory infiltrates in the dermis. DNA sequencing revealed a homozygous mutation leading to a premature termination codon in CDSN: p.Gly142*. Protein analyses showed reduced expression of a 16-kDa corneodesmosin mutant in the upper epidermal layers, whereas the full-length protein was absent. These results are interesting regarding the genotype-phenotype correlations in diseases caused by CDSN mutations. The PSD-causing CDSN mutations identified heretofore result in total corneodesmosin loss, suggesting that PSD is due to full corneodesmosin deficiency. Here, we show for the first time that a mutant corneodesmosin can be stably expressed in some patients with PSD, and that this truncated protein is very probably nonfunctional. © 2013 British Association of Dermatologists.

  18. Mutations in CTC1, Encoding the CTS Telomere Maintenance Complex Component 1, Cause Cerebroretinal Microangiopathy with Calcifications and Cysts

    PubMed Central

    Polvi, Anne; Linnankivi, Tarja; Kivelä, Tero; Herva, Riitta; Keating, James P.; Mäkitie, Outi; Pareyson, Davide; Vainionpää, Leena; Lahtinen, Jenni; Hovatta, Iiris; Pihko, Helena; Lehesjoki, Anna-Elina

    2012-01-01

    Cerebroretinal microangiopathy with calcifications and cysts (CRMCC) is a rare multisystem disorder characterized by extensive intracranial calcifications and cysts, leukoencephalopathy, and retinal vascular abnormalities. Additional features include poor growth, skeletal and hematological abnormalities, and recurrent gastrointestinal bleedings. Autosomal-recessive inheritance has been postulated. The pathogenesis of CRMCC is unknown, but its phenotype has key similarities with Revesz syndrome, which is caused by mutations in TINF2, a gene encoding a member of the telomere protecting shelterin complex. After a whole-exome sequencing approach in four unrelated individuals with CRMCC, we observed four recessively inherited compound heterozygous mutations in CTC1, which encodes the CTS telomere maintenance complex component 1. Sanger sequencing revealed seven more compound heterozygous mutations in eight more unrelated affected individuals. Two individuals who displayed late-onset cerebral findings, a normal fundus appearance, and no systemic findings did not have CTC1 mutations, implying that systemic findings are an important indication for CTC1 sequencing. Of the 11 mutations identified, four were missense, one was nonsense, two resulted in in-frame amino acid deletions, and four were short frameshift-creating deletions. All but two affected individuals were compound heterozygous for a missense mutation and a frameshift or nonsense mutation. No individuals with two frameshift or nonsense mutations were identified, which implies that severe disturbance of CTC1 function from both alleles might not be compatible with survival. Our preliminary functional experiments did not show evidence of severely affected telomere integrity in the affected individuals. Therefore, determining the underlying pathomechanisms associated with deficient CTC1 function will require further studies. PMID:22387016

  19. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    PubMed

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Ataluren treatment of patients with nonsense mutation dystrophinopathy.

    PubMed

    Bushby, Katharine; Finkel, Richard; Wong, Brenda; Barohn, Richard; Campbell, Craig; Comi, Giacomo P; Connolly, Anne M; Day, John W; Flanigan, Kevin M; Goemans, Nathalie; Jones, Kristi J; Mercuri, Eugenio; Quinlivan, Ros; Renfroe, James B; Russman, Barry; Ryan, Monique M; Tulinius, Mar; Voit, Thomas; Moore, Steven A; Lee Sweeney, H; Abresch, Richard T; Coleman, Kim L; Eagle, Michelle; Florence, Julaine; Gappmaier, Eduard; Glanzman, Allan M; Henricson, Erik; Barth, Jay; Elfring, Gary L; Reha, Allen; Spiegel, Robert J; O'donnell, Michael W; Peltz, Stuart W; Mcdonald, Craig M

    2014-10-01

    Dystrophinopathy is a rare, severe muscle disorder, and nonsense mutations are found in 13% of cases. Ataluren was developed to enable ribosomal readthrough of premature stop codons in nonsense mutation (nm) genetic disorders. Randomized, double-blind, placebo-controlled study; males ≥ 5 years with nm-dystrophinopathy received study drug orally 3 times daily, ataluren 10, 10, 20 mg/kg (N=57); ataluren 20, 20, 40 mg/kg (N=60); or placebo (N=57) for 48 weeks. The primary endpoint was change in 6-Minute Walk Distance (6MWD) at Week 48. Ataluren was generally well tolerated. The primary endpoint favored ataluren 10, 10, 20 mg/kg versus placebo; the week 48 6MWD Δ=31.3 meters, post hoc P=0.056. Secondary endpoints (timed function tests) showed meaningful differences between ataluren 10, 10, 20 mg/kg, and placebo. As the first investigational new drug targeting the underlying cause of nm-dystrophinopathy, ataluren offers promise as a treatment for this orphan genetic disorder with high unmet medical need. Copyright © 2014 Wiley Periodicals, Inc.

  1. A Mental Retardation-linked Nonsense Mutation in Cereblon Is Rescued by Proteasome Inhibition*

    PubMed Central

    Xu, Guoqiang; Jiang, Xiaogang; Jaffrey, Samie R.

    2013-01-01

    A nonsense mutation in cereblon (CRBN) causes autosomal recessive nonsyndromic mental retardation. Cereblon is a substrate receptor for the Cullin-RING E3 ligase complex and couples the ubiquitin ligase to specific ubiquitination targets. The CRBN nonsense mutation (R419X) results in a protein lacking 24 amino acids at its C terminus. Although this mutation has been linked to mild mental retardation, the mechanism by which the mutation affects CRBN function is unknown. Here, we used biochemical and mass spectrometric approaches to explore the function of this mutant. We show that the protein retains its ability to assemble into a Cullin-RING E3 ligase complex and catalyzes the ubiquitination of CRBN-target proteins. However, we find that this mutant exhibits markedly increased levels of autoubiquitination and is more readily degraded by the proteasome than the wild type protein. We also show that the level of the mutant protein can be restored by a treatment of cells with a clinically utilized proteasome inhibitor, suggesting that this agent may be useful for the treatment of mental retardation associated with the CRBN R419X mutation. These data demonstrate that enhanced autoubiquitination and degradation account for the defect in CRBN activity that leads to mental retardation. PMID:23983124

  2. A novel non-sense mutation in the SLC2A10 gene of an arterial tortuosity syndrome patient of Kurdish origin.

    PubMed

    Zaidi, Syed H E; Meyer, Sascha; Peltekova, Vanya D; Lindinger, Angelika; Teebi, Ahmad S; Faiyaz-Ul-Haque, Muhammad

    2009-07-01

    Arterial tortuosity syndrome (ATS) is a rare autosomal recessive disorder in which patients display tortuosity of arteries in addition to hyperextensible skin, joint laxity, and other connective tissue features. This syndrome is caused by mutations in the SLC2A10 gene. In this article we describe an ATS girl of Kurdish origin who, in addition to arterial tortuosity and connective tissue features, displays stomach displacement within the thorax and bilateral hip dislocation. Clinical details of this patient have been reported previously. Sequencing of the SLC2A10 gene identified a novel homozygous non-sense c.756C>A mutation in this patient's DNA. This mutation in the SLC2A10 gene replaces a cysteine encoding codon with a stop signal. This is believed to cause a premature truncation of GLUT10 protein in this patient. We conclude that patients of Kurdish origin who display arterial tortuosity associated with skin hyperextensibility, joint hypermobility, and characteristic facial features may carry mutations in the SLC2A10 gene.

  3. Mutations in Elongation Factor Ef-1α Affect the Frequency of Frameshifting and Amino Acid Misincorporation in Saccharomyces Cerevisiae

    PubMed Central

    Sandbaken, M. G.; Culbertson, M. R.

    1988-01-01

    A mutational analysis of the eukaryotic elongation factor EF-1α indicates that this protein functions to limit the frequency of errors during genetic code translation. We found that both amino acid misincorporation and reading frame errors are controlled by EF-1α. In order to examine the function of this protein, the TEF2 gene, which encodes EF-1α in Saccharomyces cerevisiae, was mutagenized in vitro with hydroxylamine. Sixteen independent TEF2 alleles were isolated by their ability to suppress frameshift mutations. DNA sequence analysis identified eight different sites in the EF-1α protein that elevate the frequency of mistranslation when mutated. These sites are located in two different regions of the protein. Amino acid substitutions located in or near the GTP-binding and hydrolysis domain of the protein cause suppression of frameshift and nonsense mutations. These mutations may effect mistranslation by altering the binding or hydrolysis of GTP. Amino acid substitutions located adjacent to a putative aminoacyl-tRNA binding region also suppress frameshift and nonsense mutations. These mutations may alter the binding of aminoacyl-tRNA by EF-1α. The identification of frameshift and nonsense suppressor mutations in EF-1α indicates a role for this protein in limiting amino acid misincorporation and reading frame errors. We suggest that these types of errors are controlled by a common mechanism or closely related mechanisms. PMID:3066688

  4. Mutations in eukaryotic release factors 1 and 3 act as general nonsense suppressors in Drosophila.

    PubMed Central

    Chao, Anna T; Dierick, Herman A; Addy, Tracie M; Bejsovec, Amy

    2003-01-01

    In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens. PMID:14573473

  5. Suppression of nonsense mutations as a therapeutic approach to treat genetic diseases.

    PubMed

    Keeling, Kim M; Bedwell, David M

    2011-01-01

    Suppression therapy is a treatment strategy for genetic diseases caused by nonsense mutations. This therapeutic approach utilizes pharmacological agents that suppress translation termination at in-frame premature termination codons (PTCs) to restore translation of a full-length, functional polypeptide. The efficiency of various classes of compounds to suppress PTCs in mammalian cells is discussed along with the current limitations of this therapy. We also elaborate on approaches to improve the efficiency of suppression that include methods to enhance the effectiveness of current suppression drugs and the design or discovery of new, more effective suppression agents. Finally, we discuss the role of nonsense-mediated mRNA decay (NMD) in limiting the effectiveness of suppression therapy, and describe tactics that may allow the efficiency of NMD to be modulated in order to enhance suppression therapy. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay

    PubMed Central

    Nguyen, Thi A.; Zhang, Jiasheng; Devireddy, Swathi; Zhou, Ping; Karydas, Anna M.; Xu, Xialian; Miller, Bruce L.; Rigo, Frank; Ferguson, Shawn M.; Walther, Tobias C.; Farese, Robert V.

    2018-01-01

    Frontotemporal dementia (FTD) is the most common neurodegenerative disorder in individuals under age 60 and has no treatment or cure. Because many cases of FTD result from GRN nonsense mutations, an animal model for this type of mutation is highly desirable for understanding pathogenesis and testing therapies. Here, we generated and characterized GrnR493X knockin mice, which model the most common human GRN mutation, a premature stop codon at arginine 493 (R493X). Homozygous GrnR493X mice have markedly reduced Grn mRNA levels, lack detectable progranulin protein, and phenocopy Grn knockout mice, with CNS microgliosis, cytoplasmic TDP-43 accumulation, reduced synaptic density, lipofuscinosis, hyperinflammatory macrophages, excessive grooming behavior, and reduced survival. Inhibition of nonsense-mediated mRNA decay (NMD) by genetic, pharmacological, or antisense oligonucleotide-based approaches showed that NMD contributes to the reduced mRNA levels in GrnR493X mice and cell lines and in fibroblasts from patients containing the GRNR493X mutation. Moreover, the expressed truncated R493X mutant protein was functional in several assays in progranulin-deficient cells. Together, these findings establish a murine model for in vivo testing of NMD inhibition or other therapies as potential approaches for treating progranulin deficiency caused by the R493X mutation. PMID:29511098

  7. Normosmic idiopathic hypogonadotropic hypogonadism due to a novel homozygous nonsense c.C969A (p.Y323X) mutation in the KISS1R gene in three unrelated families.

    PubMed

    Demirbilek, Huseyin; Ozbek, M Nuri; Demir, Korcan; Kotan, L Damla; Cesur, Yasar; Dogan, Murat; Temiz, Fatih; Mengen, Eda; Gurbuz, Fatih; Yuksel, Bilgin; Topaloglu, A Kemal

    2015-03-01

    The spectrum of genetic alterations in cases of hypogonadotropic hypogonadism continue to expand. However, KISS1R mutations remain rare. The aim of this study was to understand the molecular basis of normosmic idiopathic hypogonadotropic hypogonadism. Clinical characteristics, hormonal studies and genetic analyses of seven cases with idiopathic normosmic hypogonadotropic hypogonadism (nIHH) from three unrelated consanguineous families are presented. One male presented with absence of pubertal onset and required surgery for severe penoscrotal hypospadias and cryptorchidism, while other two males had absence of pubertal onset. Two of four female cases required replacement therapy for pubertal onset and maintenance, whereas the other two had spontaneous pubertal onset but incomplete maturation. In sequence analysis, we identified a novel homozygous nonsense (p.Y323X) mutation (c.C969A) in the last exon of the KISS1R gene in all clinically affected cases. We identified a homozygous nonsense mutation in the KISS1R gene in three unrelated families with nIHH, which enabled us to observe the phenotypic consequences of this rare condition. Escape from nonsense-mediated decay, and thus production of abnormal proteins, may account for the variable severity of the phenotype. Although KISS1R mutations are extremely rare and can cause a heterogeneous phenotype, analysis of the KISS1R gene should be a part of genetic analysis of patients with nIHH, to allow better understanding of phenotype-genotype relationship of KISS1R mutations and the underlying genetic basis of patients with nIHH. © 2014 John Wiley & Sons Ltd.

  8. Identification of a novel homozygous TRAPPC9 gene mutation causing non-syndromic intellectual disability, speech disorder, and secondary microcephaly.

    PubMed

    Abbasi, Ansar A; Blaesius, Kathrin; Hu, Hao; Latif, Zahid; Picker-Minh, Sylvie; Khan, Muhammad N; Farooq, Sundas; Khan, Muzammil A; Kaindl, Angela M

    2017-12-01

    TRAPPC9 gene mutations have been linked recently to autosomal recessive mental retardation 13 (MRT13; MIM#613192) with only eight families reported world-wide. We assessed patients from two consanguineous pedigrees of Pakistani descent with non-syndromic intellectual disability and postnatal microcephaly through whole exome sequencing (WES) and cosegregation analysis. Here we report six further patients from two pedigrees with homozygous TRAPPC9 gene mutations, the novel nonsense mutation c.2065G>T (p.E689*) and the previously identified nonsense mutation c.1423C>T (p.R475*). We provide an overview of previously reported clinical features and highlight common symptoms and variability of MRT13. Common findings are intellectual disability and absent speech, and frequently microcephaly, motor delay and pathological findings on MRI including diminished cerebral white matter volume are present. Mutations in TRAPPC9 should be considered in non-syndromic autosomal recessive intellectual disability with severe speech disorder. © 2017 Wiley Periodicals, Inc.

  9. Readthrough of SCN5A Nonsense Mutations p.R1623X and p.S1812X Questions Gene-therapy in Brugada Syndrome.

    PubMed

    Teng, Siyong; Huang, Jian; Gao, Zhan; Hao, Jie; Yang, Yuejin; Zhang, Shu; Pu, Jielin; Hui, Rutai; Wu, Yongjian; Fan, Zheng

    2017-01-01

    Nonsense mutation readthrough is used as a gene-specific treatment in some genetic diseases. The response to readthrough treatment is determined by the readthrough efficiency of various nonsense mutations. In this manuscript, we aimed to explore the harmful effects of nonsense mutation suppression. HEK293 cells were transfected with two SCN5A (encode cardiac Na+ channel) nonsense mutations, p.R1623X and p.S1812X. We applied two readthrough-enhancing methods (either aminoglycosides or a siRNA-targeting eukaryotic release factor eRF3a (a GTPase that binds eRF1)) to suppress these SCN5A nonsense mutations. When either of readthrough methods was used, the sodium channel proteins were examined by western blot and immunoblotting and recorded by whole cell patch-clamp to observe the functional characterization of the restored channels. Upon readthrough treatment, the sodium currents were restored to the mutant cDNAs. These mutations reduced full-length sodium channel protein levels, and the sodium currents were reduced to 3% of wild-type. The mutant cDNA sodium currents were increased to 30% of wild-type, and the fulllength proteins also increased. However, the functional characterization of these channels from cDNAs carrying p.R1623X and p.S1812X exhibited abnormal biophysical properties, including a negative shift in steady-state sodium channel inactivation, a positive shift in sodium channel activation and robust late sodium currents. The ramp test showed prolonged QT intervals. These results demonstrated that readthrough-enhancing methods effectively suppressed nonsense mutations in SCN5A and restored the expression of full-length channels. However, the restored channels may increase the risk of arrhythmia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Common pathological mutations in PQBP1 induce nonsense-mediated mRNA decay and enhance exclusion of the mutant exon.

    PubMed

    Musante, Luciana; Kunde, Stella-Amrei; Sulistio, Tina O; Fischer, Ute; Grimme, Astrid; Frints, Suzanna G M; Schwartz, Charles E; Martínez, Francisco; Romano, Corrado; Ropers, Hans-Hilger; Kalscheuer, Vera M

    2010-01-01

    The polyglutamine binding protein 1 (PQBP1) gene plays an important role in X-linked mental retardation (XLMR). Nine of the thirteen PQBP1 mutations known to date affect the AG hexamer in exon 4 and cause frameshifts introducing premature termination codons (PTCs). However, the phenotype in this group of patients is variable. To investigate the pathology of these PQBP1 mutations, we evaluated their consequences on mRNA and protein expression. RT-PCRs revealed mutation-specific reduction of PQBP1 mRNAs carrying the PTCs that can be partially restored by blocking translation, thus indicating a role for the nonsense-mediated mRNA decay pathway. In addition, these mutations resulted in altered levels of PQBP1 transcripts that skipped exon 4, probably as a result of altering important splicing motifs via nonsense-associated altered splicing (NAS). This hypothesis is supported by transfection experiments using wild-type and mutant PQBP1 minigenes. Moreover, we show that a truncated PQBP1 protein is indeed present in the patients. Remarkably, patients with insertion/deletion mutations in the AG hexamer express significantly increased levels of a PQBP1 isoform, which is very likely encoded by the transcripts without exon 4, confirming the findings at the mRNA level. Our study provides significant insight into the early events contributing to the pathogenesis of the PQBP1 related XLMR disease.

  11. [Novel nonsense mutation (p.Y113X) in the human growth hormone receptor gene in a Brazilian patient with Laron syndrome].

    PubMed

    Diniz, Erik Trovão; Jorge, Alexander A L; Arnhold, Ivo J P; Rosenbloom, Arlan L; Bandeira, Francisco

    2008-11-01

    To date, about sixty different mutations within GH receptor (GHR) gene have been described in patients with GH insensitivity syndrome (GHI). In this report, we described a novel nonsense mutation of GHR. The patient was evaluated at the age of 6 yr, for short stature associated to clinical phenotype of GHI. GH, IGF-1, and GHBP levels were determined. The PCR products from exons 2-10 were sequenced. The patient had high GH (26 microg/L), low IGF-1 (22.5 ng/ml) and undetectable GHBP levels. The sequencing of GHR exon 5 disclosed adenine duplication at nucleotide 338 of GHR coding sequence (c.338dupA) in homozygous state. We described a novel mutation that causes a truncated GHR and a loss of receptor function due to the lack of amino acids comprising the transmembrane and intracellular regions of GHR protein, leading to GHI.

  12. A novel nonsense mutation in the EYA1 gene associated with branchio-oto-renal/branchiootic syndrome in an Afrikaner kindred.

    PubMed

    Clarke, J C; Honey, E M; Bekker, E; Snyman, L C; Raymond, R M; Lord, C; Brophy, P D

    2006-07-01

    Branchio-oto-renal (BOR) syndrome is an autosomal dominant disorder characterized by the associations of hearing loss, branchial arch defects and renal anomalies. Branchiootic (BO) syndrome is a related disorder that presents without the highly variable characteristic renal anomalies of BOR syndrome. Dominant mutations in the human homologue of the Drosophila eyes absent gene (EYA1) are frequently the cause of both BOR and BO syndromes. We report a South African family of Afrikaner descent with affected individuals presenting with pre-auricular abnormalities and either hearing loss or bilateral absence of the kidneys. Genetic analysis of the pedigree detected a novel EYA1 heterozygous nonsense mutation in affected family members but not in unaffected family members or a random DNA panel. Through mutational analysis, we conclude that this particular mutation is the cause of BOR/BO syndrome in this family as a result of a truncation of the EYA1 protein that ablates the critical EYA homologous region. To the best of our knowledge, this is the first case of BOR/BO syndrome reported in Africa or in those of the Afrikaner descent.

  13. Mutations in the human GlyT2 gene define a presynaptic component of human startle disease

    PubMed Central

    Rees, Mark I.; Harvey, Kirsten; Pearce, Brian R.; Chung, Seo-Kyung; Duguid, Ian C.; Thomas, Philip; Beatty, Sarah; Graham, Gail E.; Armstrong, Linlea; Shiang, Rita; Abbott, Kim J.; Zuberi, Sameer M.; Stephenson, John B.P.; Owen, Michael J.; Tijssen, Marina A.J.; van den Maagdenberg, Arn M.J.M.; Smart, Trevor G.; Supplisson, Stéphane; Harvey, Robert J.

    2011-01-01

    Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) α1 subunit (GLRA1)1-3. Genetic heterogeneity has been confirmed in isolated sporadic cases with mutations in other postsynaptic glycinergic proteins including the GlyR β subunit (GLRB)4, gephyrin (GPHN)5 and RhoGEF collybistin (ARHGEF9)6. However, many sporadic patients diagnosed with hyperekplexia do not carry mutations in these genes2-7. Here we reveal that missense, nonsense and frameshift mutations in the presynaptic glycine transporter 2 (GlyT2) gene (SLC6A5)8 also cause hyperekplexia. Patients harbouring mutations in SLC6A5 presented with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnoea episodes. GlyT2 mutations result in defective subcellular localisation and/or decreased glycine uptake, with selected mutations affecting predicted glycine and Na+ binding sites. Our results demonstrate that SLC6A5 is a major gene for hyperekplexia and define the first neurological disorder linked to mutations in a Na+/Cl−-dependent transporter for a classical fast neurotransmitter. By analogy, we suggest that in other human disorders where defects in postsynaptic receptors have been identified, similar symptoms could result from defects in the cognate presynaptic neurotransmitter transporter. PMID:16751771

  14. Molecular Analysis, Pathogenic Mechanisms, and Readthrough Therapy on a Large Cohort of Kabuki Syndrome Patients

    PubMed Central

    Micale, Lucia; Augello, Bartolomeo; Maffeo, Claudia; Selicorni, Angelo; Zucchetti, Federica; Fusco, Carmela; De Nittis, Pasquelena; Pellico, Maria Teresa; Mandriani, Barbara; Fischetto, Rita; Boccone, Loredana; Silengo, Margherita; Biamino, Elisa; Perria, Chiara; Sotgiu, Stefano; Serra, Gigliola; Lapi, Elisabetta; Neri, Marcella; Ferlini, Alessandra; Cavaliere, Maria Luigia; Chiurazzi, Pietro; Monica, Matteo Della; Scarano, Gioacchino; Faravelli, Francesca; Ferrari, Paola; Mazzanti, Laura; Pilotta, Alba; Patricelli, Maria Grazia; Bedeschi, Maria Francesca; Benedicenti, Francesco; Prontera, Paolo; Toschi, Benedetta; Salviati, Leonardo; Melis, Daniela; Di Battista, Eliana; Vancini, Alessandra; Garavelli, Livia; Zelante, Leopoldo; Merla, Giuseppe

    2014-01-01

    Kabuki syndrome (KS) is a multiple congenital anomalies syndrome characterized by characteristic facial features and varying degrees of mental retardation, caused by mutations in KMT2D/MLL2 and KDM6A/UTX genes. In this study, we performed a mutational screening on 303 Kabuki patients by direct sequencing, MLPA, and quantitative PCR identifying 133 KMT2D, 62 never described before, and four KDM6A mutations, three of them are novel. We found that a number of KMT2D truncating mutations result in mRNA degradation through the nonsense-mediated mRNA decay, contributing to protein haploinsufficiency. Furthermore, we demonstrated that the reduction of KMT2D protein level in patients’ lymphoblastoid and skin fibroblast cell lines carrying KMT2D-truncating mutations affects the expression levels of known KMT2D target genes. Finally, we hypothesized that the KS patients may benefit from a readthrough therapy to restore physiological levels of KMT2D and KDM6A proteins. To assess this, we performed a proof-of-principle study on 14 KMT2D and two KDM6A nonsense mutations using specific compounds that mediate translational readthrough and thereby stimulate the re-expression of full-length functional proteins. Our experimental data showed that both KMT2D and KDM6A nonsense mutations displayed high levels of readthrough in response to gentamicin treatment, paving the way to further studies aimed at eventually treating some Kabuki patients with readthrough inducers. PMID:24633898

  15. Nonsense mutations in the PAX3 gene cause Waardenburg syndrome type I in two Chinese patients.

    PubMed

    Yang, Shu-Zhi; Cao, Ju-Yang; Zhang, Rui-Ning; Liu, Li-Xian; Liu, Xin; Zhang, Xin; Kang, Dong-Yang; Li, Mei; Han, Dong-Yi; Yuan, Hui-Jun; Yang, Wei-Yan

    2007-01-05

    Waardenburg syndrome type I (WS1) is an autosomal dominant disorder characterized by sensorineural hearing loss, pigmental abnormalities of the eye, hair and skin, and dystopia canthorum. The gene mainly responsible for WS1 is PAX3 which is involved in melanocytic development and survival. Mutations of PAX3 have been reported in familiar or sporadic patients with WS1 in several populations of the world except Chinese. In order to explore the genetic background of Chinese WS1 patients, a mutation screening of PAX3 gene was carried out in four WS1 pedigrees. A questionnaire survey and comprehensive clinical examination were conducted in four Chinese pedigrees of WS1. Genomic DNA from each patient and their family members was extracted and exons of PAX3 were amplified by PCR. PCR fragments were ethanol-purified and sequenced in both directions on an ABI_Prism 3100 DNA sequencer with the BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sequences were obtained and aligned to the wild type sequence of PAX3 with the GeneTool program. Two nonsense PAX3 mutations have been found in the study population. One is heterozygous for a novel nonsense mutation S209X. The other is heterozygous for a previously reported mutation in European population R223X. Both mutations create stop codons leading to truncation of the PAX3 protein. This is the first demonstration of PAX3 mutations in Chinese WS1 patients and one of the few examples of an identical mutation of PAX3 occurred in different populations.

  16. A novel CYP27B1 mutation causes a feline vitamin D-dependent rickets type IA.

    PubMed

    Grahn, Robert A; Ellis, Melanie R; Grahn, Jennifer C; Lyons, Leslie A

    2012-08-01

    A 12-week-old domestic cat presented at a local veterinary clinic with hypocalcemia and skeletal abnormalities suggestive of rickets. Osteomalacia (rickets) is a disease caused by impaired bone mineralization leading to an increased prevalence of fractures and deformity. Described in a variety of species, rickets is most commonly caused by vitamin D or calcium deficiencies owing to both environmental and or genetic abnormalities. Vitamin D-dependent rickets type 1A (VDDR-1A) is a result of the enzymatic pathway defect caused by mutations in the 25-hydroxyvitamin D(3)-1-alpha-hydroxylase gene [cytochrome P27 B1 (CYP27B1)]. Calcitriol, the active form of vitamin D(3), regulates calcium homeostasis, which requires sufficient dietary calcium availability and correct hormonal function for proper bone growth and maintenance. Patient calcitriol concentrations were low while calcidiol levels were normal suggestive of VDDR-1A. The entire DNA coding sequencing of CYP27B1 was evaluated. The affected cat was wild type for previously identified VDDR-1A causative mutations. However, six novel mutations were identified, one of which was a nonsense mutation at G637T in exon 4. The exon 4 G637T nonsense mutation results in a premature protein truncation, changing a glutamic acid to a stop codon, E213X, likely causing the clinical presentation of rickets. The previously documented genetic mutation resulting in feline VDDR-1A rickets, as well as the case presented in this research, result from novel exon 4 CYP27B1 mutations, thus exon 4 should be the initial focus of future sequencing efforts.

  17. Clinical Variability in a Family with an Ectodermal Dysplasia Syndrome and a Nonsense Mutation in the TP63 Gene.

    PubMed

    Eisenkraft, Arik; Pode-Shakked, Ben; Goldstein, Nurit; Shpirer, Zvi; van Bokhoven, Hans; Anikster, Yair

    2015-01-01

    Mutations in the TP63 gene have been associated with a variety of ectodermal dysplasia syndromes, among which the clinically overlapping Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) and the Rapp-Hodgkin syndromes. We report a multiplex nonconsanguineous family of Ashkenazi-Jewish descent, in which the index patient presented with a persistent scalp skin lesion, dystrophic nails and light thin hair. Further evaluation revealed over 10 affected individuals in the kindred, over four generations, exhibiting varying degrees of ectodermal involvement. Analysis of the TP63 gene from four of the patients and from two healthy individuals of the same family was performed. Gene sequencing of the patients revealed a nonsense mutation leading to a premature termination codon (PTC) (p.Gln16X). The same mutation was found in all tested affected individuals in the family, but gave rise to marked phenotypic variability with minor clinical manifestations in some individuals, underscoring the clinical heterogeneity associated with the recently described PTC-causing mutations.

  18. Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients

    PubMed Central

    Woodley, David T.; Cogan, Jon; Hou, Yingping; Lyu, Chao; Marinkovich, M. Peter; Keene, Douglas

    2017-01-01

    BACKGROUND. Recessive dystrophic epidermolysis bullosa (RDEB) is an incurable disease caused by mutations in the gene encoding type VII collagen, the major component of anchoring fibrils (AF). We previously demonstrated that gentamicin produced functional type VII collagen in RDEB cells harboring nonsense mutations. Herein, we determined whether topical or intradermal gentamicin administration induces type VII collagen and AFs in RDEB patients. METHODS. A double-blind, placebo-controlled pilot trial assessed safety and efficacy of topical and intradermal gentamicin in 5 RDEB patients with nonsense mutations. The topical arm tested 0.1% gentamicin ointment or placebo application 3 times daily at 2 open erosion sites for 2 weeks. The intradermal arm tested daily intradermal injection of gentamicin solution (8 mg) or placebo into 2 intact skin sites for 2 days in 4 of 5 patients. Primary outcomes were induction of type VII collagen and AFs at the test sites and safety assessment. A secondary outcome assessed wound closure of topically treated erosions. RESULTS. Both topical and intradermal gentamicin administration induced type VII collagen and AFs at the dermal-epidermal junction of treatment sites. Newly created type VII collagen varied from 20% to 165% of that expressed in normal human skin and persisted for 3 months. Topical gentamicin corrected dermal-epidermal separation, improved wound closure, and reduced blister formation. There were no untoward side effects from gentamicin treatments. Type VII collagen induction did not generate anti–type VII collagen autoantibodies in patients’ blood or skin. CONCLUSION. Topical and intradermal gentamicin suppresses nonsense mutations and induces type VII collagen and AFs in RDEB patients. Gentamicin therapy may provide a readily available treatment for RDEB patients with nonsense mutations. TRIAL REGISTRATION. ClinicalTrials.gov NCT02698735. FUNDING. Epidermolysis Bullosa Research Partnership, Epidermolysis Bullosa Medical Research Foundation, NIH, and VA Merit Award. PMID:28691931

  19. A novel nonsense mutation in the NDP gene in a Chinese family with Norrie disease.

    PubMed

    Liu, Deyuan; Hu, Zhengmao; Peng, Yu; Yu, Changhong; Liu, Yalan; Mo, Xiaoyun; Li, Xiaoping; Lu, Lina; Xu, Xiaojuan; Su, Wei; Pan, Qian; Xia, Kun

    2010-12-08

    Norrie disease (ND), a rare X-linked recessive disorder, is characterized by congenital blindness and, occasionally, mental retardation and hearing loss. ND is caused by the Norrie Disease Protein gene (NDP), which codes for norrin, a cysteine-rich protein involved in ocular vascular development. Here, we report a novel mutation of NDP that was identified in a Chinese family in which three members displayed typical ND symptoms and other complex phenotypes, such as cerebellar atrophy, motor disorders, and mental disorders. We conducted an extensive clinical examination of the proband and performed a computed tomography (CT) scan of his brain. Additionally, we performed ophthalmic examinations, haplotype analyses, and NDP DNA sequencing for 26 individuals from the proband's extended family. The proband's computed tomography scan, in which the fifth ventricle could be observed, indicated cerebellar atrophy. Genome scans and haplotype analyses traced the disease to chromosome Xp21.1-p11.22. Mutation screening of the NDP gene identified a novel nonsense mutation, c.343C>T, in this region. Although recent research has shown that multiple different mutations can be responsible for the ND phenotype, additional research is needed to understand the mechanism responsible for the diverse phenotypes caused by mutations in the NDP gene.

  20. A novel nonsense mutation in the NDP gene in a Chinese family with Norrie disease

    PubMed Central

    Liu, Deyuan; Hu, Zhengmao; Peng, Yu; Yu, Changhong; Liu, Yalan; Mo, Xiaoyun; Li, Xiaoping; Lu, Lina; Xu, Xiaojuan; Su, Wei; Pan, Qian

    2010-01-01

    Purpose Norrie disease (ND), a rare X-linked recessive disorder, is characterized by congenital blindness and, occasionally, mental retardation and hearing loss. ND is caused by the Norrie Disease Protein gene (NDP), which codes for norrin, a cysteine-rich protein involved in ocular vascular development. Here, we report a novel mutation of NDP that was identified in a Chinese family in which three members displayed typical ND symptoms and other complex phenotypes, such as cerebellar atrophy, motor disorders, and mental disorders. Methods We conducted an extensive clinical examination of the proband and performed a computed tomography (CT) scan of his brain. Additionally, we performed ophthalmic examinations, haplotype analyses, and NDP DNA sequencing for 26 individuals from the proband’s extended family. Results The proband’s computed tomography scan, in which the fifth ventricle could be observed, indicated cerebellar atrophy. Genome scans and haplotype analyses traced the disease to chromosome Xp21.1-p11.22. Mutation screening of the NDP gene identified a novel nonsense mutation, c.343C>T, in this region. Conclusions Although recent research has shown that multiple different mutations can be responsible for the ND phenotype, additional research is needed to understand the mechanism responsible for the diverse phenotypes caused by mutations in the NDP gene. PMID:21179243

  1. Allelic Heterogeneity at the Equine KIT Locus in Dominant White (W) Horses

    PubMed Central

    Haase, Bianca; Brooks, Samantha A; Schlumbaum, Angela; Azor, Pedro J; Bailey, Ernest; Alaeddine, Ferial; Mevissen, Meike; Burger, Dominik; Poncet, Pierre-André; Rieder, Stefan; Leeb, Tosso

    2007-01-01

    White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from ∼50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the ∼82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations. PMID:17997609

  2. Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay.

    PubMed

    Nguyen, Andrew D; Nguyen, Thi A; Zhang, Jiasheng; Devireddy, Swathi; Zhou, Ping; Karydas, Anna M; Xu, Xialian; Miller, Bruce L; Rigo, Frank; Ferguson, Shawn M; Huang, Eric J; Walther, Tobias C; Farese, Robert V

    2018-03-20

    Frontotemporal dementia (FTD) is the most common neurodegenerative disorder in individuals under age 60 and has no treatment or cure. Because many cases of FTD result from GRN nonsense mutations, an animal model for this type of mutation is highly desirable for understanding pathogenesis and testing therapies. Here, we generated and characterized Grn R493X knockin mice, which model the most common human GRN mutation, a premature stop codon at arginine 493 (R493X). Homozygous Grn R493X mice have markedly reduced Grn mRNA levels, lack detectable progranulin protein, and phenocopy Grn knockout mice, with CNS microgliosis, cytoplasmic TDP-43 accumulation, reduced synaptic density, lipofuscinosis, hyperinflammatory macrophages, excessive grooming behavior, and reduced survival. Inhibition of nonsense-mediated mRNA decay (NMD) by genetic, pharmacological, or antisense oligonucleotide-based approaches showed that NMD contributes to the reduced mRNA levels in Grn R493X mice and cell lines and in fibroblasts from patients containing the GRN R493X mutation. Moreover, the expressed truncated R493X mutant protein was functional in several assays in progranulin-deficient cells. Together, these findings establish a murine model for in vivo testing of NMD inhibition or other therapies as potential approaches for treating progranulin deficiency caused by the R493X mutation. Copyright © 2018 the Author(s). Published by PNAS.

  3. Beneficial read-through of a USH1C nonsense mutation by designed aminoglycoside NB30 in the retina.

    PubMed

    Goldmann, Tobias; Rebibo-Sabbah, Annie; Overlack, Nora; Nudelman, Igor; Belakhov, Valery; Baasov, Timor; Ben-Yosef, Tamar; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2010-12-01

    The human Usher syndrome (USH) is the most frequent cause of inherited combined deaf-blindness. USH is clinically and genetically heterogeneous, assigned to three clinical types. The most severe type is USH1, characterized by profound inner ear defects and retinitis pigmentosa. Thus far, no effective treatment for the ophthalmic component of USH exists. The p.R31X nonsense mutation in USH1C leads to a disease causing premature termination of gene translation. Here, we investigated the capability of the novel synthetic aminoglycoside NB30 for the translational read-through of the USH1C-p.R31X nonsense mutation as a retinal therapy option. Read-through of p.R31X by three commercial, clinically applied aminoglycosides and the synthetic derivative NB30 was validated in vitro, in cell culture, and in retinal explants. Restoration of harmonin functions was monitored in GST pull-downs (scaffold function) and by F-actin bundling analysis in HEK293T cells. Biocompatibility of aminoglycosides was determined in retinal explants by TUNEL assays. In vitro translation and analyses of transfected HEK293T cells revealed a dose-dependent read-through by all aminoglycosides. In addition, gentamicin, paromomycin, and NB30 induced read-through of p.R31X in mouse retinal explants. The read-through of p.R31X restored harmonin protein function. In contrast to all commercial aminoglycosides NB30 showed good biocompatibility. Commercial aminoglycosides and NB30 induced significant read-through of the USH1C-p.R31X nonsense mutation. However, the observed read-through efficiency, along with its significantly reduced toxicity and good biocompatibility, indicate that the novel derivate NB30 represents a better choice than commercial aminoglycosides in a read-through therapy of USH1C and other ocular diseases.

  4. Identification of a nonsense mutation in APAF1 that is likely causal for a decrease in reproductive efficiency in Holstein dairy cattle

    USDA-ARS?s Scientific Manuscript database

    A haplotype on cattle chromosome 5 carrying a recessive lethal allele was found to originate in a Holstein-Friesian foundation sire. Resequencing led to the identification of a stop-gain mutation in exon 11 of APAF1, a gene known to cause embryonic lethality and neurodevelopmental abnormalities in ...

  5. Detection of novel NF1 mutations and rapid mutation prescreening with Pyrosequencing.

    PubMed

    Brinckmann, Anja; Mischung, Claudia; Bässmann, Ingelore; Kühnisch, Jirko; Schuelke, Markus; Tinschert, Sigrid; Nürnberg, Peter

    2007-12-01

    Neurofibromatosis type 1 (NF1) is caused by mutations in the neurofibromin (NF1) gene. Mutation analysis of NF1 is complicated by its large size, the lack of mutation hotspots, pseudogenes and frequent de novo mutations. Additionally, the search for NF1 mutations on the mRNA level is often hampered by nonsense-mediated mRNA decay (NMD) of the mutant allele. In this study we searched for mutations in a cohort of 38 patients and investigated the relationship between mutation type and allele-specific transcription from the wild-type versus mutant alleles. Quantification of relative mRNA transcript numbers was done by Pyrosequencing, a novel real-time sequencing method whose signals can be quantified very accurately. We identified 21 novel mutations comprising various mutation types. Pyrosequencing detected a definite relationship between allelic NF1 transcript imbalance due to NMD and mutation type in 24 of 29 patients who all carried frame-shift or nonsense mutations. NMD was absent in 5 patients with missense and silent mutations, as well as in 4 patients with splice-site mutations that did not disrupt the reading frame. Pyrosequencing was capable of detecting NMD even when the effects were only moderate. Diagnostic laboratories could thus exploit this effect for rapid prescreening for NF1 mutations as more than 60% of the mutations in this gene disrupt the reading frame and are prone to NMD.

  6. Missense and nonsense mutations in melanocortin 1 receptor (MC1R) gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences

    PubMed Central

    2009-01-01

    Background Agouti and Extension loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. The Extension locus encodes the melanocortin 1 receptor (MC1R) whose permanent activation, caused by functional mutations, results in black coat colour, whereas other inactivating mutations cause red coat colour in different mammals. Results The whole coding region of the MC1R gene was sequenced in goats of six different breeds showing different coat colours (Girgentana, white cream with usually small red spots in the face; Maltese, white with black cheeks and ears; Derivata di Siria, solid red; Murciano-Granadina, solid black or solid brown; Camosciata delle Alpi, brown with black stripes; Saanen, white; F1 goats and the parental animals). Five single nucleotide polymorphisms (SNPs) were identified: one nonsense mutation (p.Q225X), three missense mutations (p.A81V, p.F250V, and p.C267W), and one silent mutation. The stop codon at position 225 should cause the production of a shorter MC1R protein whose functionality may be altered. These SNPs were investigated in a larger sample of animals belonging to the six breeds. The Girgentana breed was almost fixed for the p.225X allele. However, there was not complete association between the presence of red spots in the face and the presence of this allele in homozygous condition. The same allele was identified in the Derivata di Siria breed. However, its frequency was only 33%, despite the fact that these animals are completely red. The p.267W allele was present in all Murciano-Granadina black goats, whereas it was never identified in the brown ones. Moreover, the same substitution was present in almost all Maltese goats providing evidence of association between this mutation and black coat colour. Conclusion According to the results obtained in the investigated goat breeds, MC1R mutations may determine eumelanic and pheomelanic phenotypes. However, they are probably not the only factors. In particular, the surprising not complete association of the nonsense mutation (p.Q225X) with red coat colour raises a few hypotheses on the determination of pheomelanic phenotypes in goats that should be further investigated. PMID:19706191

  7. Missense and nonsense mutations in melanocortin 1 receptor (MC1R) gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences.

    PubMed

    Fontanesi, Luca; Beretti, Francesca; Riggio, Valentina; Dall'Olio, Stefania; González, Elena Gómez; Finocchiaro, Raffaella; Davoli, Roberta; Russo, Vincenzo; Portolano, Baldassare

    2009-08-25

    Agouti and Extension loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. The Extension locus encodes the melanocortin 1 receptor (MC1R) whose permanent activation, caused by functional mutations, results in black coat colour, whereas other inactivating mutations cause red coat colour in different mammals. The whole coding region of the MC1R gene was sequenced in goats of six different breeds showing different coat colours (Girgentana, white cream with usually small red spots in the face; Maltese, white with black cheeks and ears; Derivata di Siria, solid red; Murciano-Granadina, solid black or solid brown; Camosciata delle Alpi, brown with black stripes; Saanen, white; F1 goats and the parental animals). Five single nucleotide polymorphisms (SNPs) were identified: one nonsense mutation (p.Q225X), three missense mutations (p.A81V, p.F250V, and p.C267W), and one silent mutation. The stop codon at position 225 should cause the production of a shorter MC1R protein whose functionality may be altered. These SNPs were investigated in a larger sample of animals belonging to the six breeds. The Girgentana breed was almost fixed for the p.225X allele. However, there was not complete association between the presence of red spots in the face and the presence of this allele in homozygous condition. The same allele was identified in the Derivata di Siria breed. However, its frequency was only 33%, despite the fact that these animals are completely red. The p.267W allele was present in all Murciano-Granadina black goats, whereas it was never identified in the brown ones. Moreover, the same substitution was present in almost all Maltese goats providing evidence of association between this mutation and black coat colour. According to the results obtained in the investigated goat breeds, MC1R mutations may determine eumelanic and pheomelanic phenotypes. However, they are probably not the only factors. In particular, the surprising not complete association of the nonsense mutation (p.Q225X) with red coat colour raises a few hypotheses on the determination of pheomelanic phenotypes in goats that should be further investigated.

  8. Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans

    PubMed Central

    Tao, Hirotaka; Manak, J. Robert; Sowers, Levi; Mei, Xue; Kiyonari, Hiroshi; Abe, Takaya; Dahdaleh, Nader S.; Yang, Tian; Wu, Shu; Chen, Shan; Fox, Mark H.; Gurnett, Christina; Montine, Thomas; Bird, Thomas; Shaffer, Lisa G.; Rosenfeld, Jill A.; McConnell, Juliann; Madan-Khetarpal, Suneeta; Berry-Kravis, Elizabeth; Griesbach, Hilary; Saneto, Russell P.; Scott, Matthew P.; Antic, Dragana; Reed, Jordan; Boland, Riley; Ehaideb, Salleh N.; El-Shanti, Hatem; Mahajan, Vinit B.; Ferguson, Polly J.; Axelrod, Jeffrey D.; Lehesjoki, Anna-Elina; Fritzsch, Bernd; Slusarski, Diane C.; Wemmie, John; Ueno, Naoto; Bassuk, Alexander G.

    2011-01-01

    Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution. PMID:21276947

  9. SLC1A4 mutations cause a novel disorder of intellectual disability, progressive microcephaly, spasticity and thin corpus callosum.

    PubMed

    Heimer, G; Marek-Yagel, D; Eyal, E; Barel, O; Oz Levi, D; Hoffmann, C; Ruzzo, E K; Ganelin-Cohen, E; Lancet, D; Pras, E; Rechavi, G; Nissenkorn, A; Anikster, Y; Goldstein, D B; Ben Zeev, B

    2015-10-01

    Two unrelated patients, presenting with significant global developmental delay, severe progressive microcephaly, seizures, spasticity and thin corpus callosum (CC) underwent trio whole-exome sequencing. No candidate variant was found in any known genes related to the phenotype. However, crossing the data of the patients illustrated that they both manifested pathogenic variants in the SLC1A4 gene which codes the ASCT1 transporter of serine and other neutral amino acids. The Ashkenazi patient is homozygous for a deleterious missense c.766G>A, p.(E256K) mutation whereas the Ashkenazi-Iraqi patient is compound heterozygous for this mutation and a nonsense c.945delTT, p.(Leu315Hisfs*42) mutation. Structural prediction demonstrates truncation of significant portion of the protein by the nonsense mutation and speculates functional disruption by the missense mutation. Both mutations are extremely rare in general population databases, however, the missense mutation was found in heterozygous mode in 1:100 Jewish Ashkenazi controls suggesting a higher carrier rate among Ashkenazi Jews. We conclude that SLC1A4 is the disease causing gene of a novel neurologic disorder manifesting with significant intellectual disability, severe postnatal microcephaly, spasticity and thin CC. The role of SLC1A4 in the serine transport from astrocytes to neurons suggests a possible pathomechanism for this disease and implies a potential therapeutic approach. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Identification a nonsense mutation of APC gene in Chinese patients with familial adenomatous polyposis.

    PubMed

    Li, Haishan; Zhang, Lingling; Jiang, Quan; Shi, Zhenwang; Tong, Hanxing

    2017-04-01

    Familial adenomatous polyposis (FAP; Mendelian of Inherintance in Man ID, 175100) is a rare autosomal dominant disorder characterized by the development of numerous adenomatous polyps throughout the colon and rectum associated with an increased risk of colorectal cancer. FAP is at time accompanied with certain extraintestinal manifestations such as congenital hypertrophy of the retinal pigment epithelium, dental disorders and desmoid tumors. It is caused by mutations in the adenomatous polyposis coli ( APC ) gene. The present study reported on a Chinese family with FAP. Polymerase chain reaction and direct sequencing of the full coding sequence of the APC gene were performed to identify the mutation in this family. A nonsense mutation of the APC gene was identified in this pedigree. It is a heterozygous G>T substitution at position 2,971 in exon 15 of the APC gene, which formed a premature stop codon at amino acid residue 991 (p.Glu991*). The resulting truncated protein lacked 1,853 amino acids. The present study expanded the database on APC gene mutations in FAP and enriched the spectrum of known germline mutations of the APC gene. Prophylactic proctocolectomy may be considered as a possible treatment for carriers of the mutation.

  11. Homozygosity mapping reveals new nonsense mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in a Palestinian family.

    PubMed

    Zobor, Ditta; Balousha, Ghassan; Baumann, Britta; Wissinger, Bernd

    2014-01-01

    Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 45 genes. Recently, the FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. We performed a clinical and molecular genetic study of a consanguineous Palestinian family with two three siblings affected with retinitis pigmentosa. DNA samples were collected from the index patient, his father, his affected sister, and two non-affected brothers. DNA sample from the index was subjected to high resolution genome-wide SNP array. Assuming identity-by-descent in this consanguineous family we applied homozygosity mapping to identify disease causing genes. The index patient reported night blindness since the age of 20 years, followed by moderate disease progression with decrease of peripheral vision, the development of photophobia and later on reduced central vision. At the age of 40 his visual acuity was counting fingers (CF) for both eyes, color discrimination was not possible and his visual fields were severely constricted. Funduscopic examination revealed a typical appearance of advanced RP with optic disc pallor, narrowed retinal vessels, bone-spicule like pigmentary changes in the mid-periphery and atrophic changes in the macula. His younger affected brother (37 years) was reported with overall milder symptoms, while the youngest sister (21 years) reported problems only with night vision. Applying high-density SNP arrays we identified several homozygous genomic regions one of which included the recently identified FAM161A gene mutated in RP28-linked autosomal recessive RP. Sequencing analysis revealed the presence of a novel homozygous nonsense mutation, c.1003C>T/p.R335X in the index patient and the affected sister. We identified an RP28-linked RP family in the Palestinian population caused by a novel nonsense mutation in FAM161A. RP in this family shows a typical disease onset with moderate to rapid progression into severe visual impairment including central vision in the index and overall milder symptoms in the younger brother and sister.

  12. Homozygosity mapping reveals new nonsense mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in a Palestinian family

    PubMed Central

    Zobor, Ditta; Balousha, Ghassan; Baumann, Britta

    2014-01-01

    Purpose: Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 45 genes. Recently, the FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. Methods: We performed a clinical and molecular genetic study of a consanguineous Palestinian family with two three siblings affected with retinitis pigmentosa. DNA samples were collected from the index patient, his father, his affected sister, and two non-affected brothers. DNA sample from the index was subjected to high resolution genome-wide SNP array. Assuming identity-by-descent in this consanguineous family we applied homozygosity mapping to identify disease causing genes. Results: The index patient reported night blindness since the age of 20 years, followed by moderate disease progression with decrease of peripheral vision, the development of photophobia and later on reduced central vision. At the age of 40 his visual acuity was counting fingers (CF) for both eyes, color discrimination was not possible and his visual fields were severely constricted. Funduscopic examination revealed a typical appearance of advanced RP with optic disc pallor, narrowed retinal vessels, bone-spicule like pigmentary changes in the mid-periphery and atrophic changes in the macula. His younger affected brother (37 years) was reported with overall milder symptoms, while the youngest sister (21 years) reported problems only with night vision. Applying high-density SNP arrays we identified several homozygous genomic regions one of which included the recently identified FAM161A gene mutated in RP28-linked autosomal recessive RP. Sequencing analysis revealed the presence of a novel homozygous nonsense mutation, c.1003C>T/p.R335X in the index patient and the affected sister. Conclusion: We identified an RP28-linked RP family in the Palestinian population caused by a novel nonsense mutation in FAM161A. RP in this family shows a typical disease onset with moderate to rapid progression into severe visual impairment including central vision in the index and overall milder symptoms in the younger brother and sister. PMID:24520187

  13. Nonsense-mediated mRNA decay: inter-individual variability and human disease

    PubMed Central

    Nguyen, Lam Son; Wilkinson, Miles; Gecz, Jozef

    2013-01-01

    Nonsense-Mediated mRNA Decay (NMD) is a regulatory pathway that functions to degrade transcripts containing premature termination codons (PTCs) and to maintain normal transcriptome homeostasis. Nonsense and frameshift mutations that generate PTCs cause approximately one-third of all known human genetic diseases and thus NMD has a potentially important role in human disease. In genetic disorders in which the affected genes carry PTC-generating mutations, NMD acts as a double-edge sword. While it can benefit the patient by degrading PTC-containing mRNAs that encode detrimental, dominant-negative truncated proteins, it can also make the disease worse when a PTC-containing mRNA is degraded that encodes a mutant but still functional protein. There is evidence that the magnitude of NMD varies between individuals, which, in turn, has been shown to correlate with both clinical presentations and the patients’ responses to drugs that promote read-through of PTCs. In this review, we examine the evidence supporting the existence of inter-individual variability in NMD efficiency and discuss the genetic factors that underlie this variability. We propose that inter-individual variability in NMD efficiency is a common phenomenon in human populations and that an individual’s NMD efficiency should be taken into consideration when testing, developing, and making therapeutic decisions for diseases caused by genes harboring PTCs. PMID:24239855

  14. A tailored mouse model of CLN2 disease: A nonsense mutant for testing personalized therapies

    PubMed Central

    Geraets, Ryan D.; Beraldi, Rosanna; Weimer, Jill M.; Pearce, David A.

    2017-01-01

    The Neuronal Ceroid Lipofuscinoses (NCLs), also known as Batten disease, result from mutations in over a dozen genes. Although, adults are susceptible, the NCLs are frequently classified as pediatric neurodegenerative diseases due to their greater pediatric prevalence. Initial clinical presentation usually consists of either seizures or retinopathy but develops to encompass both in conjunction with declining motor and cognitive function. The NCLs result in premature death due to the absence of curative therapies. Nevertheless, preclinical and clinical trials exist for various therapies. However, the genotypes of NCL animal models determine which therapeutic approaches can be assessed. Mutations of the CLN2 gene encoding a soluble lysosomal enzyme, tripeptidyl peptidase 1 (TPP1), cause late infantile NCL/CLN2 disease. The genotype of the original mouse model of CLN2 disease, Cln2-/-, excludes mutation guided therapies like antisense oligonucleotides and nonsense suppression. Therefore, the purpose of this study was to develop a model of CLN2 disease that allows for the assessment of all therapeutic approaches. Nonsense mutations in CLN2 disease are frequent, the most common being CLN2R208X. Thus, we created a mouse model that carries a mutation equivalent to the human p.R208X mutation. Molecular assessment of Cln2R207X/R207X tissues determined significant reduction in Cln2 transcript abundance and TPP1 enzyme activity. This reduction leads to the development of neurological impairment (e.g. tremors) and neuropathology (e.g. astrocytosis). Collectively, these assessments indicate that the Cln2R207X/R207X mouse is a valid CLN2 disease model which can be used for the preclinical evaluation of all therapeutic approaches including mutation guided therapies. PMID:28464005

  15. Genetic variability in CHMP2B and frontotemporal dementia.

    PubMed

    Momeni, Parastoo; Rogaeva, Ekaterina; Van Deerlin, Vivianna; Yuan, Wuxing; Grafman, Jordan; Tierney, Michael; Huey, Edward; Bell, Jason; Morris, Chris M; Kalaria, Rajesh N; van Rensburg, Susan J; Niehaus, Dana; Potocnik, Felix; Kawarai, Toshitaka; Salehi-Rad, Shabnam; Sato, Christine; St George-Hyslop, Peter; Hardy, John

    2006-01-01

    A nonsense/protein chain-terminating mutation in the CHMP2B gene has recently been reported as a cause of frontotemporal dementia (FTD) in the single large family known to show linkage to chromosome 3. Screening for mutations in this gene in a large series of FTD families and individual patients led to the identification of a protein-truncating mutation in 2 unaffected members of an Afrikaner family with FTD, but not in their affected relatives. The putative pathogenicity of CHMP2B mutations for dementia is discussed.

  16. Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: mutations in UGT76G1, a key gene of steviol glycosides synthesis.

    PubMed

    Yang, Yong-Heng; Huang, Su-Zhen; Han, Yu-Lin; Yuan, Hai-Yan; Gu, Chun-Sun; Zhao, Yan-Hai

    2014-07-01

    Steviol glycosides, extracted from the leaves of Stevia rebaudiana (Bert) Bertoni, are calorie-free sugar substitute of natural origin with intensely sweet (Boileau et al., 2012). Stevioside and rebaudioside A are the two main kinds of the diterpenic glycosides. We analyzed the concentration of stevioside and rebaudioside A in Stevia leaves of about 500 samples (hybrid progenies) and discovered a mutation plant "Z05" with very low levels of rebaudioside A. Because UGT76G1, a uridinediphosphate-dependent glycosyltransferases, is responsible for the conversion from stevioside to rebaudioside A (Richman et al., 2005), so mutation identification was done by sequencing the candidate gene, UGT76G1. In this study molecular analysis of two strains revealed a heterozygotic nonsense mutation of c.389T > G (p.L121X) in UGT76G1. Meanwhile, we found some amino acid substitutions significant change the protein structure. And the difference of enzyme activity between two strains proved the lack of functionality of UGT76G1 of the mutation "Z05". So the nonsense mutation and amino acid substitution mutation resulted in the low levels of rebaudioside A. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. A novel Werner Syndrome mutation: pharmacological treatment by read-through of nonsense mutations and epigenetic therapies

    PubMed Central

    Agrelo, Ruben; Sutz, Miguel Arocena; Setien, Fernando; Aldunate, Fabian; Esteller, Manel; Da Costa, Valeria; Achenbach, Ricardo

    2015-01-01

    Werner Syndrome (WS) is a rare inherited disease characterized by premature aging and increased propensity for cancer. Mutations in the WRN gene can be of several types, including nonsense mutations, leading to a truncated protein form. WRN is a RecQ family member with both helicase and exonuclease activities, and it participates in several cell metabolic pathways, including DNA replication, DNA repair, and telomere maintenance. Here, we reported a novel homozygous WS mutation (c.3767 C > G) in 2 Argentinian brothers, which resulted in a stop codon and a truncated protein (p.S1256X). We also observed increased WRN promoter methylation in the cells of patients and decreased messenger WRN RNA (WRN mRNA) expression. Finally, we showed that the read-through of nonsense mutation pharmacologic treatment with both aminoglycosides (AGs) and ataluren (PTC-124) in these cells restores full-length protein expression and WRN functionality. PMID:25830902

  18. A novel alpha-thalassemia nonsense mutation in HBA2: C.382 A > T globin gene.

    PubMed

    Hamid, Mohammad; Bokharaei Merci, Hanieh; Galehdari, Hamid; Saberi, Ali Hossein; Kaikhaei, Bijan; Mohammadi-Anaei, Marziye; Ahmadzadeh, Ahmad; Shariati, Gholamreza

    2014-07-01

    In this study, a new alpha globin gene mutation on the α2-globin gene is reported. This mutation resulted in a Lys > stop codon substitution at position 127 which was detected in four individuals (three males and one female). DNA sequencing revealed this mutation in unrelated persons in Khuzestan province, Southwestern Iran of Lor ethnicity. This mutation caused no severe hematological abnormalities in the carriers. From the nature of substituted residues in α2-globin, it is widely expected that this mutation leads to unstable and truncated protein and should be detected in couples at risk for α-thalassemia.

  19. A novel silent deletion, an insertion mutation and a nonsense mutation in the TCOF1 gene found in two Chinese cases of Treacher Collins syndrome.

    PubMed

    Wang, Yan; Yin, Xiao-Juan; Han, Tao; Peng, Wei; Wu, Hong-Lin; Liu, Xin; Feng, Zhi-Chun

    2014-12-01

    Treacher Collins syndrome (TCS) is the most common and well-known craniofacial disorder caused by mutations in the genes involved in pre-rRNA transcription, which include the TCOF1 gene. This study explored the role of TCOF1 mutations in Chinese patients with TCS. Mutational analysis of the TCOF1 gene was performed in three patients using polymerase chain reaction and direct sequencing. Among these three patients, two additional TCOF1 variations, a novel 18 bp deletion and a novel 1 bp insertion mutation, were found in patient 1, together with a novel nonsense mutation (p.Ser476X) and a previously reported 4 bp deletion (c.1872_1875delTGAG) in other patients. Pedigree analysis allowed for prediction of the character of the mutation, which was either pathological or not. The 18 bp deletion of six amino acids, Ser-Asp-Ser-Glu-Glu-Glu (798*803), which was located in the CKII phosphorylation site of treacle, seemed relatively benign for TCS. By contrast, another novel mutation of c.1072_1073insC (p.Gln358ProfsX23) was a frameshift mutation and expected to result in a premature stop codon. This study provides insights into the functional domain of treacle and illustrates the importance of clinical and family TCS screening for the interpretation of novel sequence alterations.

  20. Hereditary Angioedema Due to C1 Inhibitor Deficiency in Serbia: Two Novel Mutations and Evidence of Genotype-Phenotype Association

    PubMed Central

    Andrejević, Slađana; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Mijanović, Radovan; Bonači-Nikolić, Branka; Rijavec, Matija

    2015-01-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease characterized by recurrent life-threatening oedemas and/or abdominal pain and caused by mutations affecting the C1 inhibitor gene, SERPING1. We sought to investigate the spectrum of SERPING1 mutations in Serbia and the possible genotype-phenotype association. C1-INH-HAE was diagnosed on the basis of clinical and laboratory criteria in 40 patients from 27 families; four were asymptomatic. Mutational analysis of the SERPING1 gene was performed by sequencing and multiplex ligation-dependent probe amplification. Disease-causing mutations in SERPING1 were identified in all patients. In C1-INH-HAE type I, we identified 19 different mutations, including 6 missense mutations, 6 nonsense mutations, 2 small deletions, 1 small insertion, 2 splicing defects and 2 large deletions. Two of the mutations (c.300C>T and c.1184_1185insTA) are reported here for the first time. All C1-INH-HAE type II patients from three families harboured the same substitution (c.1396C>T). Based on the type of mutation identified in the SERPING1 gene, patients were divided into two groups: group 1 (nonsense, frameshift, large deletions/insertions, splicing defect, and mutations at Arg444) or group 2 (missense, excluding mutations at Arg444). Significant differences were found in the clinical severity score (P = 0.005), prevalence of laryngeal (P = 0.040) and facial (P = 0.013) oedema, and long-term prophylaxis (P = 0.023) between the groups with different types of mutations. Because our population consisted of related subjects, differences in the severity score between mutation groups were further confirmed using the generalized estimating equation (P = 0.038). Our study identified 20 different disease-causing mutations, including two novel mutations, in all C1-INH-HAE patients, highlighting the heterogeneity of mutations in the SERPING1 gene. Furthermore, it appears that mutations with a clear effect on C1-INH function might be responsible for a more severe disease phenotype. PMID:26535898

  1. Hereditary Angioedema Due to C1 Inhibitor Deficiency in Serbia: Two Novel Mutations and Evidence of Genotype-Phenotype Association.

    PubMed

    Andrejević, Slađana; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Mijanović, Radovan; Bonači-Nikolić, Branka; Rijavec, Matija

    2015-01-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease characterized by recurrent life-threatening oedemas and/or abdominal pain and caused by mutations affecting the C1 inhibitor gene, SERPING1. We sought to investigate the spectrum of SERPING1 mutations in Serbia and the possible genotype-phenotype association. C1-INH-HAE was diagnosed on the basis of clinical and laboratory criteria in 40 patients from 27 families; four were asymptomatic. Mutational analysis of the SERPING1 gene was performed by sequencing and multiplex ligation-dependent probe amplification. Disease-causing mutations in SERPING1 were identified in all patients. In C1-INH-HAE type I, we identified 19 different mutations, including 6 missense mutations, 6 nonsense mutations, 2 small deletions, 1 small insertion, 2 splicing defects and 2 large deletions. Two of the mutations (c.300C>T and c.1184_1185insTA) are reported here for the first time. All C1-INH-HAE type II patients from three families harboured the same substitution (c.1396C>T). Based on the type of mutation identified in the SERPING1 gene, patients were divided into two groups: group 1 (nonsense, frameshift, large deletions/insertions, splicing defect, and mutations at Arg444) or group 2 (missense, excluding mutations at Arg444). Significant differences were found in the clinical severity score (P = 0.005), prevalence of laryngeal (P = 0.040) and facial (P = 0.013) oedema, and long-term prophylaxis (P = 0.023) between the groups with different types of mutations. Because our population consisted of related subjects, differences in the severity score between mutation groups were further confirmed using the generalized estimating equation (P = 0.038). Our study identified 20 different disease-causing mutations, including two novel mutations, in all C1-INH-HAE patients, highlighting the heterogeneity of mutations in the SERPING1 gene. Furthermore, it appears that mutations with a clear effect on C1-INH function might be responsible for a more severe disease phenotype.

  2. Association of a homozygous nonsense mutation in the ABCA4 (ABCR) gene with cone-rod dystrophy phenotype in an Italian family.

    PubMed

    Simonelli, Francesca; Testa, Francesco; Zernant, Jana; Nesti, Anna; Rossi, Settimio; Rinaldi, Ernesto; Allikmets, Rando

    2004-01-01

    Genetic variation in the ABCA4 (ABCR) gene has been associated with several distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), retinitis pigmentosa (RP) and age-related macular degeneration. The current model of genotype/phenotype association suggests that patients harboring deleterious mutations in both ABCR alleles would develop RP-like retinal pathology. Here we describe ABCA4-associated phenotypes, including a proband with a homozygous nonsense mutation in a family from Southern Italy. The proband had been originally diagnosed with STGD. Ophthalmologic examination included kinetic perimetry, electrophysiological studies and fluorescein angiography. DNA of the affected individual and family members was analyzed for variants in all 50 exons of the ABCA4 gene by screening on the ABCR400 microarray. A homozygous nonsense mutation 2971G>T (G991X) was detected in a patient initially diagnosed with STGD based on funduscopic evidence, including bull's eye depigmentation of the fovea and flecks at the posterior pole extending to the mid-peripheral retina. Since this novel nucleotide substitution results in a truncated, nonfunctional, ABCA4 protein, the patient was examined in-depth for the severity of the disease phenotype. Indeed, subsequent electrophysiological studies determined severely reduced cone amplitude as compared to the rod amplitude, suggesting the diagnosis of CRD. ABCR400 microarray is an efficient tool for determining causal genetic variation, including new mutations. A homozygous protein-truncating mutation in ABCA4 can cause a phenotype ranging from STGD to CRD as diagnosed at an early stage of the disease. Only a combination of comprehensive genotype/phenotype correlation studies will determine the proper diagnosis and prognosis of ABCA4-associated pathology. Copyright 2004 S. Karger AG, Basel

  3. Novel nonsense mutation of the endothelin-B receptor gene in a family with Waardenburg-Hirschsprung disease.

    PubMed

    Syrris, P; Carter, N D; Patton, M A

    1999-11-05

    Waardenburg syndrome (WS) comprises sensorineural hearing loss, hypopigmentation of skin and hair, and pigmentary disturbances of the irides. Four types of WS have been classified to date; in WS type IV (WS4), patients additionally have colonic aganglionosis (Hirschsprung disease, HSCR). Mutations in the endothelin-3 (EDN3), endothelin-B receptor (EDNRB), and Sox10 genes have been identified as causative for WS type IV. We screened a family with a combined WS-HSCR phenotype for mutations in the EDNRB locus using standard DNA mutation analysis and sequencing techniques. We have identified a novel nonsense mutation at codon 253 (CGA-->TGA, Arg-->STOP). This mutation leads to a premature end of the translation of EDNRB at exon 3, and it is predicted to produce a truncated and nonfunctional endothelin-B receptor. All affected relatives were heterozygous for the Arg(253)-->STOP mutation, whereas it was not observed in over 50 unrelated individuals used as controls. These data confirm the role of EDNRB in the cause of the Waardenburg-Hirschsprung syndrome and demonstrate that in WS-HSCR there is a lack of correlation between phenotype and genotype and a variable expression of disease even within the same family. Copyright 1999 Wiley-Liss, Inc.

  4. Conserved nonsense-prone CpG sites in apoptosis-regulatory genes: conditional stop signs on the road to cell death.

    PubMed

    Zhao, Yongzhong; Epstein, Richard J

    2013-01-01

    Methylation-prone CpG dinucleotides are strongly conserved in the germline, yet are also predisposed to somatic mutation. Here we quantify the relationship between germline codon mutability and somatic carcinogenesis by comparing usage of the nonsense-prone CGA (→TGA) codons in gene groups that differ in apoptotic function; to this end, suppressor genes were subclassified as either apoptotic (gatekeepers) or repair (caretakers). Mutations affecting CGA codons in sporadic tumors proved to be highly asymmetric. Moreover, nonsense mutations were 3-fold more likely to affect gatekeepers than caretakers. In addition, intragenic CGA clustering nonrandomly affected functionally critical regions of gatekeepers. We conclude that human gatekeeper suppressor genes are enriched for nonsense-prone codons, and submit that this germline vulnerability to tumors could reflect in utero selection for a methylation-dependent capability to short-circuit environmental insults that otherwise trigger apoptosis and fetal loss.

  5. Genomic Variability of Serial Human Isolates of Salmonella enterica Serovar Typhimurium Associated with Prolonged Carriage.

    PubMed

    Octavia, Sophie; Wang, Qinning; Tanaka, Mark M; Sintchenko, Vitali; Lan, Ruiting

    2015-11-01

    Salmonella enterica serovar Typhimurium is an important foodborne human pathogen that often causes self-limiting but severe gastroenteritis. Prolonged excretion of S. Typhimurium after the infection can lead to secondary transmissions. However, little is known about within-host genomic variation in bacteria associated with asymptomatic shedding. Genomes of 35 longitudinal isolates of S. Typhimurium recovered from 11 patients (children and adults) with culture-confirmed gastroenteritis were sequenced. There were three or four isolates obtained from each patient. Single nucleotide polymorphisms (SNPs) were analyzed in these isolates, which were recovered between 1 and 279 days after the initial diagnosis. Limited genomic variation (5 SNPs or fewer) was associated with short- and long-term carriage of S. Typhimurium. None of the isolates was shown to be due to reinfection. SNPs occurred randomly, and the majority of the SNPs were nonsynonymous. Two nonsense mutations were observed. A nonsense mutation in flhC rendered the isolate nonmotile, whereas the significance of a nonsense mutation in yihV is unknown. The estimated mutation rate is 1.49 × 10(-6) substitution per site per year. S. Typhimurium isolates excreted in stools following acute gastroenteritis in children and adults demonstrated limited genomic variability over time, regardless of the duration of carriage. These findings have important implications for the detection of possible transmission events suspected by public health genomic surveillance of S. Typhimurium infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. UPF1 silenced cellular model systems for screening of read-through agents active on β039 thalassemia point mutation.

    PubMed

    Salvatori, Francesca; Pappadà, Mariangela; Breveglieri, Giulia; D'Aversa, Elisabetta; Finotti, Alessia; Lampronti, Ilaria; Gambari, Roberto; Borgatti, Monica

    2018-05-15

    Nonsense mutations promote premature translational termination, introducing stop codons within the coding region of mRNAs and causing inherited diseases, including thalassemia. For instance, in β 0 39 thalassemia the CAG (glutamine) codon is mutated to the UAG stop codon, leading to premature translation termination and to mRNA destabilization through the well described NMD (nonsense-mediated mRNA decay). In order to develop an approach facilitating translation and, therefore, protection from NMD, ribosomal read-through molecules, such as aminoglycoside antibiotics, have been tested on mRNAs carrying premature stop codons. These findings have introduced new hopes for the development of a pharmacological approach to the β 0 39 thalassemia therapy. While several strategies, designed to enhance translational read-through, have been reported to inhibit NMD efficiency concomitantly, experimental tools for systematic analysis of mammalian NMD inhibition by translational read-through are lacking. We developed a human cellular model of the β 0 39 thalassemia mutation with UPF-1 suppressed and showing a partial NMD suppression. This novel cellular model could be used for the screening of molecules exhibiting preferential read-through activity allowing a great rescue of the mutated transcripts.

  7. Mutational Survey of the PHEX Gene in Patients with X-linked Hypophosphatemic Rickets

    PubMed Central

    Ichikawa, Shoji; Traxler, Elizabeth A.; Estwick, Selina A.; Curry, Leah R.; Johnson, Michelle L.; Sorenson, Andrea H.; Imel, Erik A.; Econs, Michael J.

    2008-01-01

    X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disorder characterized by renal phosphate wasting, aberrant vitamin D metabolism, and abnormal bone mineralization. XLH is caused by inactivating mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). In this study, we sequenced the PHEX gene in subjects from 26 kindreds who were clinically diagnosed with XLH. Sequencing revealed 18 different mutations, of which thirteen have not been reported previously. In addition to deletions, splice site mutations, and missense and nonsense mutations, a rare point mutation in the 3’-untranslated region (3’-UTR) was identified as a novel cause of XLH. In summary, we identified a wide spectrum of mutations in the PHEX gene. Our data, in accord with those of others, indicate that there is no single predominant PHEX mutation responsible for XLH. PMID:18625346

  8. Mutants of the Paf1 Complex Alter Phenotypic Expression of the Yeast Prion [PSI+

    PubMed Central

    Strawn, Lisa A.; Lin, Changyi A.; Tank, Elizabeth M.H.; Osman, Morwan M.; Simpson, Sarah A.

    2009-01-01

    The yeast [PSI+] prion is an epigenetic modifier of translation termination fidelity that causes nonsense suppression. The prion [PSI+] forms when the translation termination factor Sup35p adopts a self-propagating conformation. The presence of the [PSI+] prion modulates survivability in a variety of growth conditions. Nonsense suppression is essential for many [PSI+]-mediated phenotypes, but many do not appear to be due to read-through of a single stop codon, but instead are multigenic traits. We hypothesized that other global mechanisms act in concert with [PSI+] to influence [PSI+]-mediated phenotypes. We have identified one such global regulator, the Paf1 complex (Paf1C). Paf1C is conserved in eukaryotes and has been implicated in several aspects of transcriptional and posttranscriptional regulation. Mutations in Ctr9p and other Paf1C components reduced [PSI+]-mediated nonsense suppression. The CTR9 deletion also alters nonsense suppression afforded by other genetic mutations but not always to the same extent as the effects on [PSI+]-mediated read-through. Our data suggest that the Paf1 complex influences mRNA translatability but not solely through changes in transcript stability or abundance. Finally, we demonstrate that the CTR9 deletion alters several [PSI+]-dependent phenotypes. This provides one example of how [PSI+] and genetic modifiers can interact to uncover and regulate phenotypic variability. PMID:19225160

  9. Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA).

    PubMed

    Horváth, R; Abicht, A; Holinski-Feder, E; Laner, A; Gempel, K; Prokisch, H; Lochmüller, H; Klopstock, T; Jaksch, M

    2006-01-01

    Detailed clinical, neuroradiological, histological, biochemical, and genetic investigations were undertaken in a child suffering from Leigh syndrome. The clinical symptoms started at age five months and led to a severe progressive neurodegenerative disorder causing epilepsy, psychomotor retardation, and tetraspasticity. Biochemical measurement of skeletal muscle showed a severe decrease in mitochondrial complex II. Sequencing of SDHA revealed compound heterozygosity for a nonsense mutation in exon 4 (W119X) and a missense mutation in exon 3 (A83V), both absent in normal controls. In six additional patients--five with Leigh or Leigh-like syndrome and one with neuropathy and ataxia associated with isolated deficiency of complex II--mutations in SDHA were not detected, indicating genetic heterogeneity.

  10. A nonsense loss-of-function mutation in PCSK1 contributes to dominantly inherited human obesity.

    PubMed

    Philippe, J; Stijnen, P; Meyre, D; De Graeve, F; Thuillier, D; Delplanque, J; Gyapay, G; Sand, O; Creemers, J W; Froguel, P; Bonnefond, A

    2015-02-01

    A significant proportion of severe familial forms of obesity remain genetically elusive. Taking advantage of our unique cohort of multigenerational obese families, we aimed to assess the contribution of rare mutations in 29 common obesity-associated genes to familial obesity, and to evaluate in these families the putative presence of nine known monogenic forms of obesity. Through next-generation sequencing, we sequenced the coding regions of 34 genes involved in polygenic and/or monogenic forms of obesity in 201 participants (75 normal weight individuals, 54 overweight individuals and 72 individuals with obesity class I, II or III) from 13 French families. In vitro functional analyses were performed to investigate the mutation PCSK1-p.Arg80* which was identified in a family. A novel heterozygous nonsense variant in PCSK1 (p.Arg80*), encoding a propeptide truncated to less than two exons (out of 14), was found to co-segregate with obesity in a three-generation family. We demonstrated that this mutation inhibits PCSK1 enzyme activity and that this inhibition most likely does not involve a strong physical interaction. Furthermore, both mutations PCSK1-p.Asn180Ser and POMC-p.Phe144Leu, which had previously been reported to be associated with severe obesity, were also identified in this study, but did not co-segregate with obesity. Finally, we did not identify any rare mutations co-segregating with obesity in common obesity susceptibility genes, except for CADM2 and QPCTL, where we found two novel variants (p.Arg81His and p.Leu98Pro, respectively) in three obese individuals. We showed for the first time that a nonsense mutation in PCSK1 was likely to cause dominantly inherited human obesity, due to the inhibiting properties of the propeptide fragment encoded by the null allele. Furthermore, the present family sequencing design challenged the contribution of previously reported mutations to monogenic or at least severe obesity.

  11. A novel nonsense mutation in the DMP1 gene in a Japanese family with autosomal recessive hypophosphatemic rickets.

    PubMed

    Koshida, Ryusuke; Yamaguchi, Hideki; Yamasaki, Koji; Tsuchimochi, Wakaba; Yonekawa, Tadato; Nakazato, Masamitsu

    2010-09-01

    Autosomal recessive hypophosphatemic rickets (ARHR) is an extremely rare disorder of autosomal recessive inheritance, characterized by hypophosphatemia resulting from renal phosphate wasting. Dentin matrix protein 1 (DMP1), a noncollagenous extracellular protein, plays critical roles in bone mineralization and phosphate homeostasis. Recently, loss-of-function mutations in DMP1 gene have been identified as the molecular cause of ARHR. Here, we describe a Japanese family that includes two ARHR-affected siblings carrying a novel mutation of the DMP1 gene. The patients were a 53-year-old woman and a 50-year-old man with short stature and skeletal deformities who were the offspring of a first-cousin marriage. Biochemical examination revealed hypophosphatemia with renal phosphate excretion and low levels of 1,25(OH)(2)D. Serum calcium, parathyroid hormone, and urinary calcium excretion were within the normal range, leading to clinical diagnosis of ARHR. Sequence analysis of peripheral leukocytes from the patients revealed that they carried a novel homozygous nonsense mutation in the DMP1 gene (98G>A, W33X), which leads to a truncated DMP protein with no putative biological function. Unaffected family members were heterozygous for the mutation. This is the first report of a Japanese family with ARHR carrying a novel mutation of the DMP1 gene.

  12. Deactivating germline mutations in LEMD3 cause osteopoikilosis and Buschke-Ollendorff syndrome, but not sporadic melorheostosis.

    PubMed

    Mumm, Steven; Wenkert, Deborah; Zhang, Xiafang; McAlister, William H; Mier, Richard J; Whyte, Michael P

    2007-02-01

    Autosomal dominant OPK and BOS feature widespread foci of osteosclerotic trabeculae without or with skin lesions, respectively. Occasionally, a larger area of dense bone in OPK or BOS resembles MEL, a sporadic sclerosing disorder primarily involving cortical bone. Others, finding deactivating germline LEMD3 mutations in OPK or BOS, concluded such defects explain all three conditions. We found germline LEMD3 mutations in OPK and BOS but not in sporadic MEL. In 2004, others discovered that heterozygous, loss-of-function, germline mutations in the LEMD3 gene (LEMD3 or MAN1) cause both osteopoikilosis (OPK) and Buschke-Ollendorff syndrome (BOS). OPK is an autosomal dominant, usually benign, skeletal dysplasia featuring multiple, small, especially metaphyseal, oval or round, dense trabecular foci distributed symmetrically throughout the skeleton. BOS combines OPK with connective tissue nevi comprised of collagen and elastin. In some OPK and BOS families, an individual may have relatively large, asymmetric areas of dense cortical bone interpreted as melorheostosis (MEL). MEL, however, classically refers to a sporadic, troublesome skeletal dysostosis featuring large, asymmetric, "flowing hyperostosis" of long bone cortices often with overlying, constricting soft tissue abnormalities. However, a heterozygous germline mutation in LEMD3 was offered to explain MEL. We studied 11 unrelated individuals with sclerosing bone disorders where LEMD3 mutation was a potential etiology: familial OPK (1), familial BOS (2), previously reported familial OPK with MEL (1), sporadic MEL (3), sporadic MEL with mixed-sclerosing-bone dystrophy (1), and patients with other unusual sclerosing bone disorders (3). All coding exons and adjacent mRNA splice sites for LEMD3 were amplified by PCR and sequenced using genomic DNA from leukocytes. We did not study lesional tissue from bone or skin. In the OPK family, a heterozygous nonsense mutation (c.1433T>A, p.L478X) was discovered in exon 1. In the two BOS families, a heterozygous nonsense mutation (exon 1, c.1323C>A, p.Y441X) and a heterozygous frame-shift mutation (exon 1, c.332_333insTC) were identified. In the individual with MEL and familial OPK, a heterozygous nonsense mutation (c.1963C>T, p.R655X) was detected in exon 7. However, no LEMD3 mutation was found for any other patient, including all four with sporadic MEL. We confirm that OPK and BOS individuals, including those with MEL-like lesions, have heterozygous, deactivating, germline LEMD3 mutations. However, MEL remains of unknown etiology.

  13. Homozygous SALL1 Mutation Causes a Novel Multiple Congenital Anomaly—Mental Retardation Syndrome

    PubMed Central

    Vodopiutz, Julia; Zoller, Heinz; Fenwick, Aimée L.; Arnhold, Richard; Schmid, Max; Prayer, Daniela; Müller, Thomas; Repa, Andreas; Pollak, Arnold; Aufricht, Christoph; Wilkie, Andrew O.M.; Janecke, Andreas R.

    2013-01-01

    Objective To delineate a novel autosomal recessive multiple congenital anomaly-mental retardation (MCA-MR) syndrome in 2 female siblings of a consanguineous pedigree and to identify the disease-causing mutation. Study design Both siblings were clinically characterized and homozygosity mapping and sequencing of candidate genes were applied. The contribution of nonsense-mediated messenger RNA (mRNA) decay to the expression of mutant mRNA in fibroblasts of a healthy carrier and a control was studied by pyrosequencing. Results We identified the first homozygous SALL1 mutation, c.3160C > T (p.R1054*), in 2 female siblings presenting with multiple congenital anomalies, central nervous system defects, cortical blindness, and absence of psychomotor development (ie, a novel recognizable, autosomal recessive MCA-MR). The mutant SALL1 transcript partially undergoes nonsense-mediated mRNA decay and is present at 43% of the normal transcript level in the fibroblasts of a healthy carrier. Conclusion Previously heterozygous SALL1 mutations and deletions have been associated with dominantly inherited anal-renal-radial-ear developmental anomalies. We identified an allelic recessive SALL1-related MCA-MR. Our findings imply that quantity and quality of SALL1 transcript are important for SALL1 function and determine phenotype, and mode of inheritance, of allelic SALL1-related disorders. This novel MCA-MR emphasizes SALL1 function as critical for normal central nervous system development and warrants a detailed neurologic investigation in all individuals with SALL1 mutations. PMID:23069192

  14. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Saaidi, Rasha; Rasmussen, Torsten B.; Palmfeldt, Johan

    2013-11-15

    Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representativemore » LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that heterozygosity for the nonsense mutation causes NMD degradation of the mutant transcripts blocking expression of the truncated mutant protein and an additional trans effect on lamin A protein levels expressed from the wild type allele. We discuss the possibility that skewing of the lamin A to lamin C ratio may contribute to ensuing processes that destabilize cardiomyocytes and trigger cardiomyopathy - Highlights: • We study disease mechanisms in DCM patients carrying PTC mutations in the LMNA gene. • The mutant transcript is degraded by the nonsense mediated mRNA decay system. • Skewed lamin A to lamin C protein ratio expressed from the wild type allele. • We suggest a combined pathomechanism: haploinsuffiency plus lamin A/C imbalance.« less

  15. Diagnosis of Xeroderma Pigmentosum Groups A and C by Detection of Two Prevalent Mutations in West Algerian Population: A Rapid Genotyping Tool for the Frequent XPC Mutation c.1643_1644delTG.

    PubMed

    Bensenouci, Salima; Louhibi, Lotfi; De Verneuil, Hubert; Mahmoudi, Khadidja; Saidi-Mehtar, Nadhira

    2016-01-01

    Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder. Considering that XP patients have a defect of the nucleotide excision repair (NER) pathway which enables them to repair DNA damage caused by UV light, they have an increased risk of developing skin and eyes cancers. In the present study, we investigated the involvement of the prevalent XPA and XPC genes mutations-nonsense mutation (c.682C>T, p.Arg228X) and a two-base-pair (2 bp) deletion (c.1643_1644delTG or p.Val548Ala fsX25), respectively-in 19 index cases from 19 unrelated families in the West of Algeria. For the genetic diagnosis of XPA gene, we proceeded to PCR-RFLP. For the XPC gene, we validated a routine analysis which includes a specific amplification of a short region surrounding the 2 bp deletion using a fluorescent primer and fragment sizing (GeneScan size) on a sequencing gel. Among the 19 index cases, there were 17 homozygous patients for the 2 bp deletion in the XPC gene and 2 homozygous patients carrying the nonsense XPA mutation. Finally, XPC appears to be the major disease-causing gene concerning xeroderma pigmentosum in North Africa. The use of fragment sizing is the simplest method to analyze this 2 bp deletion for the DNA samples coming from countries where the mutation c.1643_1644delTG of XPC gene is prevalent.

  16. Disorders with similar clinical phenotypes reveal underlying genetic interaction: SATB2 acts as an activator of the UPF3B gene

    PubMed Central

    Leoyklang, Petcharat; Suphapeetiporn, Kanya; Srichomthong, Chalurmpon; Tongkobpetch, Siraprapa; Fietze, Stefanie; Dorward, Heidi; Cullinane, Andrew R.; Gahl, William A.; Huizing, Marjan; Shotelersuk, Vorasuk

    2014-01-01

    Two syndromic cognitive impairment disorders have very similar craniofacial dysmorphisms. One is caused by mutations of SATB2, a transcription regulator, and the other by heterozygous mutations leading to premature stop codons in UPF3B, encoding a member of the nonsense-mediated mRNA decay complex. Here we demonstrate that the products of these two causative genes function in the same pathway. We show that the SATB2 nonsense mutation in our patient leads to a truncated protein that localizes to the nucleus, forms a dimer with wild-type SATB2 and interferes with its normal activity. This suggests that the SATB2 nonsense mutation has a dominant negative effect. The patient’s leukocytes had significantly decreased UPF3B mRNA compared to controls. This effect was replicated both in vitro, where siRNA knockdown of SATB2 in HEK293 cells resulted in decreased UPF3B expression, and in vivo, where embryonic tissue of Satb2 knock-out mice showed significantly decreased Upf3b expression. Furthermore, chromatin immunoprecipitation demonstrates that SATB2 binds to the UPF3B promoter, and a luciferase reporter assay confirmed that SATB2 expression significantly activates gene transcription using the UPF3B promoter. These findings indicate that SATB2 acts as an activator UPF3B expression through binding to its promoter. This study emphasizes the value of recognizing disorders with similar clinical phenotypes to explore underlying mechanisms of genetic interaction. PMID:23925499

  17. Increased Selectivity towards Cytoplasmic versus Mitochondrial Ribosome Confers Improved Efficiency of Synthetic Aminoglycosides in Fixing Damaged Genes: A Strategy for Treatment of Genetic Diseases Caused by Nonsense Mutations

    PubMed Central

    Kandasamy, Jeyakumar; Atia-Glikin, Dana; Shulman, Eli; Shapira, Katya; Shavit, Michal; Belakhov, Valery; Baasov, Timor

    2012-01-01

    Compelling evidence is now available that gentamicin and geneticin (G418) can induce mammalian ribosome to suppress disease-causing nonsense mutations and partially restore the expression of functional proteins. However, toxicity and relative lack of efficacy at subtoxic doses limit the use of gentamicin for suppression therapy. Although G418 exhibits strongest activity, it is very cytotoxic even at low doses. We describe here the first systematic development of the novel aminoglycoside (S)-11 exhibiting similar in vitro and ex vivo activity to that of G418, while its cell toxicity is significantly lower than those of gentamicin and G418. Using a series of biochemical assays, we provide proof of principle that antibacterial activity and toxicity of aminoglycosides can be dissected from their suppression activity. The data further indicate that the increased specificity towards cytoplasmic ribosome correlates with the increased activity, and that the decreased specificity towards mitochondrial ribosome confers to the lowered cytotoxicity. PMID:23148581

  18. MLL2 mutation detection in 86 patients with Kabuki syndrome: a genotype-phenotype study.

    PubMed

    Makrythanasis, P; van Bon, B W; Steehouwer, M; Rodríguez-Santiago, B; Simpson, M; Dias, P; Anderlid, B M; Arts, P; Bhat, M; Augello, B; Biamino, E; Bongers, E M H F; Del Campo, M; Cordeiro, I; Cueto-González, A M; Cuscó, I; Deshpande, C; Frysira, E; Izatt, L; Flores, R; Galán, E; Gener, B; Gilissen, C; Granneman, S M; Hoyer, J; Yntema, H G; Kets, C M; Koolen, D A; Marcelis, C l; Medeira, A; Micale, L; Mohammed, S; de Munnik, S A; Nordgren, A; Psoni, S; Reardon, W; Revencu, N; Roscioli, T; Ruiterkamp-Versteeg, M; Santos, H G; Schoumans, J; Schuurs-Hoeijmakers, J H M; Silengo, M C; Toledo, L; Vendrell, T; van der Burgt, I; van Lier, B; Zweier, C; Reymond, A; Trembath, R C; Perez-Jurado, L; Dupont, J; de Vries, B B A; Brunner, H G; Veltman, J A; Merla, G; Antonarakis, S E; Hoischen, A

    2013-12-01

    Recently, pathogenic variants in the MLL2 gene were identified as the most common cause of Kabuki (Niikawa-Kuroki) syndrome (MIM#147920). To further elucidate the genotype-phenotype correlation, we studied a large cohort of 86 clinically defined patients with Kabuki syndrome (KS) for mutations in MLL2. All patients were assessed using a standardized phenotype list and all were scored using a newly developed clinical score list for KS (MLL2-Kabuki score 0-10). Sequencing of the full coding region and intron-exon boundaries of MLL2 identified a total of 45 likely pathogenic mutations (52%): 31 nonsense, 10 missense and four splice-site mutations, 34 of which were novel. In five additional patients, novel, i.e. non-dbSNP132 variants of clinically unknown relevance, were identified. Patients with likely pathogenic nonsense or missense MLL2 mutations were usually more severely affected (median 'MLL2-Kabuki score' of 6) as compared to the patients without MLL2 mutations (median 'MLL2-Kabuki score' of 5), a significant difference (p < 0.0014). Several typical facial features such as large dysplastic ears, arched eyebrows with sparse lateral third, blue sclerae, a flat nasal tip with a broad nasal root, and a thin upper and a full lower lip were observed more often in mutation positive patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baserga, S.J.; Benz, E.J. Jr.

    A number of premature translation termination mutations (nonsense mutations) have been described in the human {alpha}- and {beta}-globin genes. Studies on mRNA isolated from patients with {beta}{sup 0}-thalassemia have shown that for both the {beta}-17 and the {beta}-39 mutations less than normal levels of {beta}-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human {beta}-globin mRNA). In vitro studies using the cloned {beta}-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. Themore » authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human {beta}-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation.« less

  20. The E3 Ubiquitin Ligase MIB-1 Is Necessary To Form the Nuclear Halo in Caenorhabditis elegans Sperm.

    PubMed

    Herrera, Leslie A; Starr, Daniel A

    2018-05-18

    Unlike the classical nuclear envelope with two membranes found in other eukaryotic cells, most nematode sperm nuclei are not encapsulated by membranes. Instead, they are surrounded by a nuclear halo of unknown composition. How the halo is formed and regulated is unknown. We used forward genetics to identify molecular lesions behind three classical fer (fertilization defective) mutations that disrupt the ultrastructure of the Caenorhabditis elegans sperm nuclear halo. We found fer-2 and fer-4 alleles to be nonsense mutations in mib-1. fer-3 was caused by a nonsense mutation in eri-3 GFP::MIB-1 was expressed in the germline during early spermatogenesis, but not in mature sperm. mib-1 encodes a conserved E3 ubiquitin ligase homologous to vertebrate Mib1 and Mib2, which function in Notch signaling. Here, we show that mib-1 is important for male sterility and is involved in the regulation or formation of the nuclear halo during nematode spermatogenesis. Copyright © 2018, G3: Genes, Genomes, Genetics.

  1. Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome.

    PubMed

    Gripp, Karen W; Robbins, Katherine M; Sobreira, Nara L; Witmer, P Dane; Bird, Lynne M; Avela, Kristiina; Makitie, Outi; Alves, Daniela; Hogue, Jacob S; Zackai, Elaine H; Doheny, Kimberly F; Stabley, Deborah L; Sol-Church, Katia

    2015-02-01

    Lateral meningocele syndrome (LMS, OMIM%130720), also known as Lehman syndrome, is a very rare skeletal disorder with facial anomalies, hypotonia and meningocele-related neurologic dysfunction. The characteristic lateral meningoceles represent the severe end of the dural ectasia spectrum and are typically most severe in the lower spine. Facial features of LMS include hypertelorism and telecanthus, high arched eyebrows, ptosis, midfacial hypoplasia, micrognathia, high and narrow palate, low-set ears and a hypotonic appearance. Hyperextensibility, hernias and scoliosis reflect a connective tissue abnormality, and aortic dilation, a high-pitched nasal voice, wormian bones and osteolysis may be present. Lateral meningocele syndrome has phenotypic overlap with Hajdu-Cheney syndrome. We performed exome resequencing in five unrelated individuals with LMS and identified heterozygous truncating NOTCH3 mutations. In an additional unrelated individual Sanger sequencing revealed a deleterious variant in the same exon 33. In total, five novel de novo NOTCH3 mutations were identified in six unrelated patients. One had a 26 bp deletion (c.6461_6486del, p.G2154fsTer78), two carried the same single base pair insertion (c.6692_93insC, p.P2231fsTer11), and three individuals had a nonsense point mutation at c.6247A > T (pK2083*), c.6663C > G (p.Y2221*) or c.6732C > A, (p.Y2244*). All mutations cluster into the last coding exon, resulting in premature termination of the protein and truncation of the negative regulatory proline-glutamate-serine-threonine rich PEST domain. Our results suggest that mutant mRNA products escape nonsense mediated decay. The truncated NOTCH3 may cause gain-of-function through decreased clearance of the active intracellular product, resembling NOTCH2 mutations in the clinically related Hajdu-Cheney syndrome and contrasting the NOTCH3 missense mutations causing CADASIL. © 2014 Wiley Periodicals, Inc.

  2. Neonatal-Onset Chronic Diarrhea Caused by Homozygous Nonsense WNT2B Mutations.

    PubMed

    O'Connell, Amy E; Zhou, Fanny; Shah, Manasvi S; Murphy, Quinn; Rickner, Hannah; Kelsen, Judith; Boyle, John; Doyle, Jefferson J; Gangwani, Bharti; Thiagarajah, Jay R; Kamin, Daniel S; Goldsmith, Jeffrey D; Richmond, Camilla; Breault, David T; Agrawal, Pankaj B

    2018-06-04

    Homozygous nonsense mutations in WNT2B were identified in three individuals from two unrelated families with severe, neonatal-onset osmotic diarrhea after whole-exome sequencing was performed on trios from the two families. Intestinal biopsy samples from affected individuals were used for histology and immunofluorescence and to generate enteroids ex vivo. Histopathologic evaluation demonstrated chronic inflammatory changes in the stomach, duodenum, and colon. Immunofluorescence demonstrated diminished staining for OLFM4, a marker for intestinal stem cells (ISCs). The enteroids generated from WNT2B-deficient intestinal epithelium could not be expanded and did not survive passage. Addition of CHIR-99021 (a GSK3A and GSK3B inhibitor and activator of canonical WNT/β-CATENIN signaling) could not rescue WNT2B-deficient enteroids. Addition of supplemental recombinant murine WNT2B was able to perpetuate small enteroids for multiple passages but failed to expand their number. Enteroids showed a 10-fold increase in the expression of LEF1 mRNA and a 100-fold reduction in TLR4 expression, compared with controls by quantitative RT-PCR, indicating alterations in canonical WNT and microbial pattern-recognition signaling. In summary, individuals with homozygous nonsense mutations in WNT2B demonstrate severe intestinal dysregulation associated with decreased ISC number and function, likely explaining their diarrheal phenotype. WNT2B deficiency should be considered for individuals with neonatal-onset diarrhea. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Multiple endocrine neoplasia type 1: analysis of germline MEN1 mutations in the Italian multicenter MEN1 patient database.

    PubMed

    Marini, Francesca; Giusti, Francesca; Fossi, Caterina; Cioppi, Federica; Cianferotti, Luisella; Masi, Laura; Boaretto, Francesca; Zovato, Stefania; Cetani, Filomena; Colao, Annamaria; Davì, Maria Vittoria; Faggiano, Antongiulio; Fanciulli, Giuseppe; Ferolla, Piero; Ferone, Diego; Loli, Paola; Mantero, Franco; Marcocci, Claudio; Opocher, Giuseppe; Beck-Peccoz, Paolo; Persani, Luca; Scillitani, Alfredo; Guizzardi, Fabiana; Spada, Anna; Tomassetti, Paola; Tonelli, Francesco; Brandi, Maria Luisa

    2018-03-01

    Multiple endocrine neoplasia type 1 (MEN1) is caused by germline inactivating mutations of the MEN1 gene. Currently, no direct genotype-phenotype correlation is identified. We aim to analyze MEN1 mutation site and features, and possible correlations between the mutation type and/or the affected menin functional domain and clinical presentation in patients from the Italian multicenter MEN1 database, one of the largest worldwide MEN1 mutation series published to date. The study included the analysis of MEN1 mutation profile in 410 MEN1 patients [370 familial cases from 123 different pedigrees (48 still asymptomatic at the time of this study) and 40 single cases]. We identified 99 different mutations: 41 frameshift [small intra-exon deletions (28) or insertions (13)], 13 nonsense, 26 missense and 11 splicing site mutations, 4 in-frame small deletions, and 4 intragenic large deletions spanning more than one exon. One family had two different inactivating MEN1 mutations on the same allele. Gastro-entero-pancreatic tumors resulted more frequent in patients with a nonsense mutation, and thoracic neuroendocrine tumors in individuals bearing a splicing-site mutation. Our data regarding mutation type frequency and distribution are in accordance with previously published data: MEN1 mutations are scattered through the entire coding region, and truncating mutations are the most common in MEN1 syndrome. A specific direct correlation between MEN1 genotype and clinical phenotype was not found in all our families, and wide intra-familial clinical variability and variable disease penetrance were both confirmed, suggesting a role for modifying, still undetermined, factors, explaining the variable MEN1 tumorigenesis.

  4. Phenotype and genotype in 17 patients with Goltz-Gorlin syndrome.

    PubMed

    Maas, S M; Lombardi, M P; van Essen, A J; Wakeling, E L; Castle, B; Temple, I K; Kumar, V K A; Writzl, K; Hennekam, Raoul C M

    2009-10-01

    Goltz-Gorlin syndrome or focal dermal hypoplasia is a highly variable, X-linked dominant syndrome with abnormalities of ectodermal and mesodermal origin. In 2007, mutations in the PORCN gene were found to be causative in Goltz-Gorlin syndrome. A series of 17 patients with Goltz-Gorlin syndrome is reported on, and their phenotype and genotype are described. In 14 patients (13 females and one male), a PORCN mutation was found. Mutations included nonsense (n = 5), frameshift (n = 2), aberrant splicing (n = 2) and missense (n = 5) mutations. No genotype-phenotype correlation was found. All patients with the classical features of the syndrome had a detectable mutation. In three females with atypical signs, no mutation was found. The male patient had classical features and showed mosaicism for a PORCN nonsense mutation in fibroblasts. Two affected sisters had a mutation not detectable in their parents, supporting germline mosaicism. Their father had undergone radiation for testicular cancer in the past. Two classically affected females had three severely affected female fetuses which all had midline thoracic and abdominal wall defects, resembling the pentalogy of Cantrell and the limb-body wall complex. Thoracic and abdominal wall defects were also present in two surviving patients. PORCN mutations can possibly cause pentalogy of Cantrell and limb-body wall complexes as well. Therefore, particularly in cases with limb defects, it seems useful to search for these. PORCN mutations can be found in all classically affected cases of Goltz-Gorlin syndrome, including males. Somatic and germline mosaicism occur. There is no evident genotype-phenotype correlation.

  5. Identification of IRF6 gene variants in three families with Van der Woude syndrome.

    PubMed

    Tan, Ene-Choo; Lim, Eileen Chew-Ping; Yap, Shiao-Hui; Lee, Seng-Teik; Cheng, Joanne; Por, Yong-Chen; Yeow, Vincent

    2008-06-01

    Van der Woude syndrome is the most common cause of syndromic orofacial clefting. It is characterised by the presence of lip pits, cleft lip and/or cleft palate. It is transmitted in an autosomal dominant manner, with high penetrance and variable expressivity. Several mutations in the interferon regulatory factor 6 (IRF6) gene have been found in VWS families, suggesting that this gene is the primary locus. We screened for mutations in this gene in three families in our population. There was a recurrent nonsense mutation within exon 9 of the gene for a Malay family consisting of five affected members with different presentations. We also found a co-segregating rare polymorphism which would result in a non-synonymous change 23 bases downstream of the nonsense mutation. This polymorphism was present in <1% of the Malay subjects screened, but was not found among the Chinese and Indians in our population. For another family, a 396C-->T mutation (R45W in the DNA-binding domain) was found in the proband, although the possibility of a genetic defect elsewhere could not be excluded because his mother and twin sister (both unaffected) also had this variant. In the third case with complete absence of family history, a de novo deletion spanning the whole IRF6 gene was detected in the child with VWS. This case of haploinsufficiency caused disruption of orofacial development but not other organ systems as the child has no other medical or developmental abnormalities despite the deletion of at least five other genes.

  6. Diagnosis of Xeroderma Pigmentosum Groups A and C by Detection of Two Prevalent Mutations in West Algerian Population: A Rapid Genotyping Tool for the Frequent XPC Mutation c.1643_1644delTG

    PubMed Central

    Bensenouci, Salima; Louhibi, Lotfi; De Verneuil, Hubert; Mahmoudi, Khadidja; Saidi-Mehtar, Nadhira

    2016-01-01

    Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder. Considering that XP patients have a defect of the nucleotide excision repair (NER) pathway which enables them to repair DNA damage caused by UV light, they have an increased risk of developing skin and eyes cancers. In the present study, we investigated the involvement of the prevalent XPA and XPC genes mutations—nonsense mutation (c.682C>T, p.Arg228X) and a two-base-pair (2 bp) deletion (c.1643_1644delTG or p.Val548Ala fsX25), respectively—in 19 index cases from 19 unrelated families in the West of Algeria. For the genetic diagnosis of XPA gene, we proceeded to PCR-RFLP. For the XPC gene, we validated a routine analysis which includes a specific amplification of a short region surrounding the 2 bp deletion using a fluorescent primer and fragment sizing (GeneScan size) on a sequencing gel. Among the 19 index cases, there were 17 homozygous patients for the 2 bp deletion in the XPC gene and 2 homozygous patients carrying the nonsense XPA mutation. Finally, XPC appears to be the major disease-causing gene concerning xeroderma pigmentosum in North Africa. The use of fragment sizing is the simplest method to analyze this 2 bp deletion for the DNA samples coming from countries where the mutation c.1643_1644delTG of XPC gene is prevalent. PMID:27413738

  7. Loss-of-function mutation in RUSC2 causes intellectual disability and secondary microcephaly.

    PubMed

    Alwadei, Ali H; Benini, Ruba; Mahmoud, Adel; Alasmari, Ali; Kamsteeg, Erik-Jan; Alfadhel, Majid

    2016-12-01

    Inherited aberrancies in intracellular vesicular transport are associated with a variety of neurological and non-neurological diseases. RUSC2 is a gene found on chromosome 9p13.3 that codes for iporin, a ubiquitous protein with high expression in the brain that interacts with Rab proteins (GTPases implicated in intracellular protein trafficking). Although mutations in Rab proteins have been described as causing brain abnormalities and intellectual disability, until now no disease-causing mutations in RUSC2 have ever been reported in humans. We describe, to our knowledge for the first time, three patients with inherited homozygous nonsense mutations identified in RUSC2 on whole-exome sequencing. All three patients had central hypotonia, microcephaly, and moderate to severe intellectual disability. Two patients had additional features of early-onset epilepsy and absence of the splenium. This report adds to the ever-expanding landscape of genetic causes of intellectual disability and increases our understanding of the cellular processes underlying this important neurological entity. © 2016 Mac Keith Press.

  8. Analysis of Hungarian patients with Rett syndrome phenotype for MECP2, CDKL5 and FOXG1 gene mutations.

    PubMed

    Hadzsiev, Kinga; Polgar, Noemi; Bene, Judit; Komlosi, Katalin; Karteszi, Judit; Hollody, Katalin; Kosztolanyi, Gyorgy; Renieri, Alessandra; Melegh, Bela

    2011-03-01

    Rett syndrome (RTT) is characterized by a relatively specific clinical phenotype. We screened 152 individuals with RTT phenotype. A total of 22 different known MECP2 mutations were identified in 42 subjects (27.6%). Of the 22 mutations, we identified 7 (31.8%) frameshift-causing deletions, 4 (18.2%) nonsense, 10 (45.5%) missense mutations and one insertion (4.5%). The most frequent pathologic changes were: p.Thr158Met (14.2%) and p.Arg133Cys (11.9%) missense, and p.Arg255Stop (9.5%) and p.Arg294Stop (9.5%) nonsense mutations. We also detected the c.925C >T (p.Arg309Trp) mutation in an affected patient, whose role in RTT pathogenesis is still unknown. Patients without detectable MECP2 defects were screened for mutations of cyclin-dependent kinase-like 5 (CDKL5) gene, responsible for the early-onset variant of RTT. We discovered two novel mutations: c.607G >T resulting in a termination codon at aa203, disrupting the catalytic domain, and c.1708G >T leading to a stop at aa570 of the C terminus. Both patients with CDKL5 mutation presented therapy-resistant epilepsy and a phenotype fitting with the diagnosis of early-onset variant of RTT. No FOXG1 mutation was detected in any of the remaining patients. A total of 110 (72.5%) patients remained without molecular genetic diagnosis that necessitates further search for novel gene mutations in this phenotype. Our results also suggest the need of screening for CDKL5 mutations in patients with Rett phenotype tested negative for MECP2 mutations.

  9. Identification of a mutation in CNNM4 by whole exome sequencing in an Amish family and functional link between CNNM4 and IQCB1.

    PubMed

    Li, Sisi; Xi, Quansheng; Zhang, Xiaoyu; Yu, Dong; Li, Lin; Jiang, Zhenyang; Chen, Qiuyun; Wang, Qing K; Traboulsi, Elias I

    2018-06-01

    We investigated an Amish family in which three siblings presented with an early-onset childhood retinal dystrophy inherited in an autosomal recessive fashion. Genome-wide linkage analysis identified significant linkage to marker D2S2216 on 2q11 with a two-point LOD score of 1.95 and a multi-point LOD score of 3.76. Whole exome sequencing was then performed for the three affected individuals and identified a homozygous nonsense mutation (c.C1813T, p.R605X) in the cyclin and CBS domain divalent metal cation transport mediator 4 (CNNM4) gene located within the 2p14-2q14 Jalili syndrome locus. The initial assessment and collection of the family were performed before the clinical delineation of Jalili syndrome. Another assessment was made after the discovery of the responsible gene and the dental abnormalities characteristic of Jalili syndrome were retrospectively identified. The p.R605X mutation represents the first probable founder mutation of Jalili syndrome identified in the Amish community. The molecular mechanism underlying Jalili syndrome is unknown. Here we show that CNNM4 interacts with IQCB1, which causes Leber congenital amaurosis (LCA) when mutated. A truncated CNNM4 protein starting at R605 significantly increased the rate of apoptosis, and significantly increased the interaction between CNNM4 and IQCB1. Mutation p.R605X may cause Jalili syndrome by a nonsense-mediated decay mechanism, affecting the function of IQCB1 and apoptosis, or both. Our data, for the first time, functionally link Jalili syndrome gene CNNM4 to LCA gene IQCB1, providing important insights into the molecular pathogenic mechanism of retinal dystrophy in Jalili syndrome.

  10. Mutations in WNT1 Cause Different Forms of Bone Fragility

    PubMed Central

    Keupp, Katharina; Beleggia, Filippo; Kayserili, Hülya; Barnes, Aileen M.; Steiner, Magdalena; Semler, Oliver; Fischer, Björn; Yigit, Gökhan; Janda, Claudia Y.; Becker, Jutta; Breer, Stefan; Altunoglu, Umut; Grünhagen, Johannes; Krawitz, Peter; Hecht, Jochen; Schinke, Thorsten; Makareeva, Elena; Lausch, Ekkehart; Cankaya, Tufan; Caparrós-Martín, José A.; Lapunzina, Pablo; Temtamy, Samia; Aglan, Mona; Zabel, Bernhard; Eysel, Peer; Koerber, Friederike; Leikin, Sergey; Garcia, K. Christopher; Netzer, Christian; Schönau, Eckhard; Ruiz-Perez, Victor L.; Mundlos, Stefan; Amling, Michael; Kornak, Uwe; Marini, Joan; Wollnik, Bernd

    2013-01-01

    We report that hypofunctional alleles of WNT1 cause autosomal-recessive osteogenesis imperfecta, a congenital disorder characterized by reduced bone mass and recurrent fractures. In consanguineous families, we identified five homozygous mutations in WNT1: one frameshift mutation, two missense mutations, one splice-site mutation, and one nonsense mutation. In addition, in a family affected by dominantly inherited early-onset osteoporosis, a heterozygous WNT1 missense mutation was identified in affected individuals. Initial functional analysis revealed that altered WNT1 proteins fail to activate canonical LRP5-mediated WNT-regulated β-catenin signaling. Furthermore, osteoblasts cultured in vitro showed enhanced Wnt1 expression with advancing differentiation, indicating a role of WNT1 in osteoblast function and bone development. Our finding that homozygous and heterozygous variants in WNT1 predispose to low-bone-mass phenotypes might advance the development of more effective therapeutic strategies for congenital forms of bone fragility, as well as for common forms of age-related osteoporosis. PMID:23499309

  11. Germ-line mutations in the neurofibromatosis 2 gene: Correlations with disease severity and retinal abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parry, D.M.; Kaiser-Kupfer, M.; Eldridge, R.

    Neurofibromatosis 2 (NF2) features bilateral vestibular schwannomas, other benign neural tumors, and cataracts. Patients in some families develop many tumors at an early age and have rapid clinical progression, whereas in other families, patients may not have symptoms until much later and vestibular schwannomas may be the only tumors. The NF2 gene has been cloned from chromosome 22q; most identified germ-line mutations result in a truncated protein and severe NF2. To look for additional mutations and clinical correlations, we used SSCP analysis to screen DNA from 32 unrelated patients. We identified 20 different mutations in 21 patients (66%): 10 nonsensemore » mutations, 2 frameshifts, 7 splice-site mutations, and 1 large in-frame deletion. Clinical information on 47 patients from the 21 families included ages at onset and at diagnosis, numbers of meningiomas, spinal and skin tumors, and presence of cataracts and retinal abnormalities. We compared clinical findings in patients with nonsense or frameshift mutations to those with splice-site mutations. When each patient was considered as an independent random event, the two groups differed (P {le} .05) for nearly every variable. Patients with nonsense or frameshift mutations were younger at onset and at diagnosis and had a higher frequency and mean number of tumors, supporting the correlation between nonsense and frameshift mutations and severe NF2. When each family was considered as an independent random event, statistically significant differences between the two groups were observed only for mean ages at onset and at diagnosis. A larger data set is needed to resolve these discrepancies. We observed retinal hamartomas and/or epiretinal membranes in nine patients from five families with four different nonsense mutations. This finding, which may represent a new genotype-phenotype correlation, merits further study. 58 refs., 2 tabs.« less

  12. Thomsen or Becker myotonia? A novel autosomal recessive nonsense mutation in the CLCN1 gene associated with a mild phenotype.

    PubMed

    Gurgel-Giannetti, Juliana; Senkevics, Adriano S; Zilbersztajn-Gotlieb, Dinorah; Yamamoto, Lydia U; Muniz, Viviane P; Pavanello, Rita C M; Oliveira, Acary B; Zatz, Mayana; Vainzof, Mariz

    2012-02-01

    We describe a large Brazilian consanguineous kindred with 3 clinically affected patients with a Thomsen myotonia phenotype. They carry a novel homozygous nonsense mutation in the CLCN1 gene (K248X). None of the 6 heterozygote carriers show any sign of myotonia on clinical evaluation or electromyography. These findings confirm the autosomal recessive inheritance of the novel mutation in this family, as well as the occurrence of phenotypic variability in the autosomal recessive forms of myotonia. Copyright © 2011 Wiley Periodicals, Inc.

  13. Permanent neonatal diabetes caused by a homozygous nonsense mutation in the glucokinase gene.

    PubMed

    Rubio-Cabezas, O; Díaz González, F; Aragonés, A; Argente, J; Campos-Barros, A

    2008-06-01

    Glucokinase deficiency is an unfrequent cause of permanent neonatal diabetes (PND), as only seven patients have been reported, either homozygous for a missense or frameshift mutation or compound heterozygous for both of them. We report here the first known case caused by a homozygous nonsense mutation (Y61X) in the glucokinase gene (GCK) that introduces a premature stop codon, generating a truncated protein that is predicted to be completely inactive as it lacks both the glucose- and the adenosine triphosphate-binding sites. The proband, born to consanguineous parents, was a full-term, intra-uterine growth-retarded male newborn who presented with a glycaemia of 129 mg/dL (7.16 mmol/L) on his second day of life, increasing thereafter up to 288 mg/dL (15.98 mmol/L) and 530 mg/dL (29.41 mmol/L) over the next 24 h, in the face of low serum insulin (<3 muIU/mL; <20.83 pmol/L). He was put on insulin on the third day of life. Insulin has never been discontinued since then. The patient was tested negative for anti-insulin and islet cell antibodies at age 5 months. His father had non-progressive, impaired fasting glucose for several years. The mother was found to be mildly hyperglycaemic only when her glucose was checked after the child was diagnosed. In conclusion, biallelic GCK loss should be considered as a potential cause of PND in children born to consanguineous parents, even if they are not known to be diabetic at the time of PND presentation.

  14. Mutations in the gene for X-linked adrenoleukodystrophy in patients with different clinical phenotypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, A.; Ambach, H.; Kammerer, S.

    Recently, the gene for the most common peroxisomal disorder, X-linked adrenoleukodystrophy (X-ALD), has been described encoding a peroxisomal membrane transporter protein. We analyzed the entire protein-coding sequence of this gene by reverse-transcription PCR, SSCP, and DNA sequencing in five patients with different clinical expressions were cerebral childhood ALD, adrenomyecloneuropathy (AMN), and {open_quotes}Addison disease only{close_quotes} (AD) phenotype. In the three patients exhibiting the classical picture of severe childhood ALD we identified in the 5{prime} portion of the X-ALD gene a 38-bp deletion that causes a frameshift mutation, a 3-bp deletion leading to a deletion of an amino acid in the ATP-bindingmore » domain of the ALD protein, and a missense mutation. In the patient with the clinical phenotype of AMN, a nonsense mutation in codon 212, along with a second site mutation at codon 178, was observed. Analysis of the patient with the ADO phenotype revealed a further missense mutation at a highly conserved position in the ALDP/PMP70 comparison. The disruptive nature of two mutations (i.e., the frameshift and the nonsense mutation) in patients with biochemically proved childhood ALD and AMN further strongly supports the hypothesis that alterations in this gene play a crucial role in the pathogenesis of X-ALD. Since the current biochemical techniques for X-ALD carrier detection in affected families lack sufficient reliability, our procedure described for systematic mutation scanning is also capable of improving genetic counseling and prenatal diagnosis. 19 refs., 6 figs., 3 tabs.« less

  15. Mutations in a Novel Isoform of TRIOBP That Encodes a Filamentous-Actin Binding Protein Are Responsible for DFNB28 Recessive Nonsyndromic Hearing Loss

    PubMed Central

    Shahin, Hashem; Walsh, Tom; Sobe, Tama; Abu Sa’ed, Judeh; Abu Rayan, Amal; Lynch, Eric D.; Lee, Ming K.; Avraham, Karen B.; King, Mary-Claire; Kanaan, Moein

    2006-01-01

    In a large consanguineous Palestinian kindred, we previously mapped DFNB28—a locus associated with recessively inherited, prelingual, profound sensorineural hearing impairment—to chromosome 22q13.1. We report here that mutations in a novel 218-kDa isoform of TRIOBP (TRIO and filamentous actin [F-actin] binding protein) are associated with DFNB28 hearing loss in a total of nine Palestinian families. Two nonsense mutations (R347X and Q581X) truncate the protein, and a potentially deleterious missense mutation (G1019R) occurs in a conserved motif in a putative SH3-binding domain. In seven families, 27 deaf individuals are homozygous for one of the nonsense mutations; in two other families, 3 deaf individuals are compound heterozygous for the two nonsense mutations or for Q581X and G1019R. The novel long isoform of TRIOBP has a restricted expression profile, including cochlea, retina, and fetal brain, whereas the original short isoform is widely expressed. Antibodies to TRIOBP reveal expression in sensory cells of the inner ear and colocalization with F-actin along the length of the stereocilia. PMID:16385458

  16. A new nonsense mutation in the NF1 gene with neurofibromatosis-Noonan syndrome phenotype.

    PubMed

    Yimenicioğlu, Sevgi; Yakut, Ayten; Karaer, Kadri; Zenker, Martin; Ekici, Arzu; Carman, Kürşat Bora

    2012-12-01

    Neurofibromatosis-Noonan syndrome is a rare autosomal dominant disorder which combines neurofibromatosis type 1 (NF1) features with Noonan syndrome. NF1 gene mutations are reported in the majority of these patients. Sequence analysis of the established genes for Noonan syndrome revealed no mutation; a heterozygous NF1 point mutation c.7549C>T in exon 51, creating a premature stop codon (p.R2517X), had been demonstrated. Neurofibromatosis-Noonan syndrome recently has been considered a subtype of NF1 and caused by different NF1 mutations. We report the case of a 14-year-old boy with neurofibromatosis type 1 with Noonan-like features, who complained of headache with triventricular hydrocephaly and a heterozygous NF1 point mutation c.7549C>T in exon 51.

  17. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes.

    PubMed

    Schubert, Julian; Siekierska, Aleksandra; Langlois, Mélanie; May, Patrick; Huneau, Clément; Becker, Felicitas; Muhle, Hiltrud; Suls, Arvid; Lemke, Johannes R; de Kovel, Carolien G F; Thiele, Holger; Konrad, Kathryn; Kawalia, Amit; Toliat, Mohammad R; Sander, Thomas; Rüschendorf, Franz; Caliebe, Almuth; Nagel, Inga; Kohl, Bernard; Kecskés, Angela; Jacmin, Maxime; Hardies, Katia; Weckhuysen, Sarah; Riesch, Erik; Dorn, Thomas; Brilstra, Eva H; Baulac, Stephanie; Møller, Rikke S; Hjalgrim, Helle; Koeleman, Bobby P C; Jurkat-Rott, Karin; Lehman-Horn, Frank; Roach, Jared C; Glusman, Gustavo; Hood, Leroy; Galas, David J; Martin, Benoit; de Witte, Peter A M; Biskup, Saskia; De Jonghe, Peter; Helbig, Ingo; Balling, Rudi; Nürnberg, Peter; Crawford, Alexander D; Esguerra, Camila V; Weber, Yvonne G; Lerche, Holger

    2014-12-01

    Febrile seizures affect 2-4% of all children and have a strong genetic component. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding syntaxin-1B, that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature. Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes.

  18. Identification of two novel pathogenic compound heterozygous MYO7A mutations in Usher syndrome by whole exome sequencing.

    PubMed

    Jia, Ying; Li, Xiaoge; Yang, Dong; Xu, Yi; Guo, Ying; Li, Xin

    2018-01-01

    The current study aims to identify the pathogenic sites in a core pedigree of Usher syndrome (USH). A core pedigree of USH was analyzed by whole exome sequencing (WES). Mutations were verified by polymerase chain reaction (PCR) amplification and Sanger sequencing. Two pathogenic variations (c.849+2T>C and c.5994G>A) in MYO7A were successfully identified and individually separated from parents. One variant (c.849+2T>C) was nonsense mutation, causing the protein terminated in advance, and the other one (c.5994G>A) located near the boundary of exon could cause aberrant splicing. This study provides a meaningful exploration for identification of clinical core genetic pedigrees. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1.

    PubMed

    Abdul Wahab, Siti Aishah; Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu

    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome.

  20. Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1

    PubMed Central

    Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu

    2016-01-01

    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome. PMID:27672653

  1. Severe manifestation of Bartter syndrome Type IV caused by a novel insertion mutation in the BSND gene.

    PubMed

    de Pablos, Augusto Luque; García-Nieto, Victor; López-Menchero, Jesús C; Ramos-Trujillo, Elena; González-Acosta, Hilaria; Claverie-Martín, Félix

    2014-05-01

    Bartter syndrome Type IV is a rare subtype of the Bartter syndromes that leads to both severe renal salt wasting and sensorineural deafness. This autosomal recessive disease is caused by mutations in the gene encoding barttin, BSND, an essential subunit of the ClC-K chloride channels expressed in renal and inner ear epithelia. Patients differ in the severity of renal symptoms, which appears to depend on the modification of channel function by the mutant barttin. To date, only a few BSND mutations have been reported, most of which are missense or nonsense mutations. In this study, we report the identification of the first insertion mutation, p.W102Vfs*7, in the BSND gene of a newborn girl with acute clinical symptoms including early-onset chronic renal failure. The results support previous data indicating that mutations that are predicted to abolish barttin expression are associated with a severe phenotype and early onset renal failure.

  2. Novel mutations of the carbohydrate sulfotransferase-6 (CHST6) gene causing macular corneal dystrophy in India.

    PubMed

    Sultana, Afia; Sridhar, Mittanamalli S; Jagannathan, Aparna; Balasubramanian, Dorairajan; Kannabiran, Chitra; Klintworth, Gordon K

    2003-12-22

    Macular corneal dystrophy (MCD) is an autosomal recessive disorder characterized by progressive central haze, confluent punctate opacities and abnormal deposits in the cornea. It is caused by mutations in the carbohydrate sulfotransferase-6 (CHST6) gene, encoding corneal N-acetyl glucosamine-6-O-sulfotransferase (C-GlcNAc-6-ST). We screened the CHST6 gene for mutations in Indian families with MCD, in order to determine the range of pathogenic mutations. Genomic DNA was isolated from peripheral blood leukocytes of patients with MCD and normal controls. The coding regions of the CHST6 gene were amplified using three pairs of primers and amplified products were directly sequenced. We identified 22 (5 nonsense, 5 frameshift, 2 insertion, and 10 missense) mutations in 36 patients from 31 families with MCD, supporting the conclusion that loss of function of this gene is responsible for this corneal disease. Seventeen of these mutations are novel. These data highlight the allelic heterogeneity of macular corneal dystrophy in Indian patients.

  3. Emerging genetic therapies to treat Duchenne muscular dystrophy

    PubMed Central

    Nelson, Stanley F.; Crosbie, Rachelle H.; Miceli, M. Carrie; Spencer, Melissa J.

    2010-01-01

    Purpose of review Duchenne muscular dystrophy is a progressive muscle degenerative disease caused by dystrophin mutations. The purpose of this review is to highlight two emerging therapies designed to repair the primary genetic defect, called `exon skipping' and `nonsense codon suppression'. Recent findings A drug, PTC124, was identified that suppresses nonsense codon translation termination. PTC124 can lead to restoration of some dystrophin expression in human Duchenne muscular dystrophy muscles with mutations resulting in premature stops. Two drugs developed for exon skipping, PRO051 and AVI-4658, result in the exclusion of exon 51 from mature mRNA. They can restore the translational reading frame to dystrophin transcripts from patients with a particular subset of dystrophin gene deletions and lead to some restoration of dystrophin expression in affected boys' muscle in vivo. Both approaches have concluded phase I trials with no serious adverse events. Summary These novel therapies that act to correct the primary genetic defect of dystrophin deficiency are among the first generation of therapies tailored to correct specific mutations in humans. Thus, they represent paradigm forming approaches to personalized medicine with the potential to lead to life changing treatment for those affected by Duchenne muscular dystrophy. PMID:19745732

  4. Molecular study of electron transfer flavoprotein alpha-subunit deficiency in two Japanese children with different phenotypes of glutaric acidemia type II.

    PubMed

    Purevjav, E; Kimura, M; Takusa, Y; Ohura, T; Tsuchiya, M; Hara, N; Fukao, T; Yamaguchi, S

    2002-09-01

    Electron transfer flavoprotein is a mitochondrial matrix protein composed of alpha- and beta-subunits (ETF alpha and ETF beta, respectively). This protein transfers electrons between several mitochondrial dehydrogenases and the main respiratory chain via ETF dehydrogenase (ETF-DH). Defects in ETF or ETF-DH cause glutaric acidemias type II (GAII). We investigated the molecular basis of ETF alpha deficiency in two Japanese children with different clinical phenotypes using expression study. Patient 1 had the severe form of GAII, a compound heterozygote of two mutations: 799G to A (alpha G267R) and nonsense 7C to T (alpha R3X). Patient 2 had the mild form and carried two heterozygous mutations: 764G to T (alpha G255V) and 478delG (frameshift). Both patients had one each of missense mutations in one allele; the others were either nonsense or truncated. Restriction enzyme digestion assay using genomic DNAs from 100 healthy Japanese revealed that these mutations were all novel. No signal for ETF alpha was detected by immunoblotting in cases of missense mutants, while wild-type cDNA resulted in expression of ETF alpha protein. Transfection with wild-type ETF alpha cDNA into cultured cells from both patients elevated incorporation of radioisotope-labelled fatty acids. These four mutations were pathogenic for GAII and missense mutations, alpha G255V and alpha G267R were considered anecdotal for mild and severe forms, respectively.

  5. Slowly progressive retinitis pigmentosa caused by two novel mutations in the MAK gene.

    PubMed

    Gray, Joanna Monika; Orlans, Harry Otway; Shanks, Morag; Clouston, Penny; MacLaren, Robert Elvis

    2018-05-21

    The growing number of clinical trials currently underway for inherited retinal diseases has highlighted the importance of achieving a molecular diagnosis for all new cases presenting to hospital eye services. The male germ cell-associated kinase (MAK) gene encodes a cilium-associated protein selectively expressed in the retina and testis, and has recently been implicated in autosomal recessive retinitis pigmentosa (RP). Whole exome sequencing has previously identified a homozygous Alu insertion in probands with recessive RP and nonsense and missense mutations have also been reported. Here we describe two novel mutations in different alleles of the MAK gene in a 75-year-old British female, who had a clinical diagnosis of RP () with onset in the fourth decade and no relevant family history. The mutations were established through next generation sequencing of a panel of 111 genes associated with RP and RP-like phenotypes. Two novel null mutations were identified within the MAK gene. The first c.1195_1196delAC p.(Thr399fs), was a two base-pair deletion creating a frame-shift in exon 9 predicted to result in nonsense-mediated decay. The second, c.279-2A>G, involved the splice acceptor consensus site upstream of exon 4, predicted to lead to aberrant splicing. The natural history of this individual's RP is consistent with previously described MAK mutations, being significantly milder than that associated with other photoreceptor ciliopathies. We suggest inclusion of MAK as part of wider genetic testing in all individuals presenting with RP.

  6. Maternal segmental disomy in Leigh syndrome with cytochrome c oxidase deficiency caused by homozygous SURF1 mutation.

    PubMed

    van Riesen, A K J; Antonicka, H; Ohlenbusch, A; Shoubridge, E A; Wilichowski, E K G

    2006-04-01

    Cytochrome c oxidase deficiency (COX) is the most frequent cause of Leigh syndrome (LS), a mitochondrial subacute necrotizing encephalomyelopathy. Most of these LS (COX-) patients show mutations in SURF1 on chromosome 9 (9q34), which encodes a protein essential for the assembly of the COX complex. We describe a family whose first-born boy developed characteristic features of LS. Severe COX deficiency in muscle was caused by a novel homozygous nonsense mutation in SURF1. Segregation analysis of this mutation in the family was incompatible with autosomal recessive inheritance but consistent with a maternal disomy. Haplotype analysis of microsatellite markers confirmed isodisomy involving nearly the complete long arm of chromosome 9 (9q21-9tel). No additional physical abnormalities were present in the boy, suggesting that there are no imprinted genes on the long arm of chromosome 9 which are crucial for developmental processes. This case of segmental isodisomy illustrates that genotyping of parents is crucial for correct genetic counseling.

  7. Identification of a novel mutation in a Chinese family with Nance-Horan syndrome by whole exome sequencing.

    PubMed

    Hong, Nan; Chen, Yan-hua; Xie, Chen; Xu, Bai-sheng; Huang, Hui; Li, Xin; Yang, Yue-qing; Huang, Ying-ping; Deng, Jian-lian; Qi, Ming; Gu, Yang-shun

    2014-08-01

    Nance-Horan syndrome (NHS) is a rare X-linked disorder characterized by congenital nuclear cataracts, dental anomalies, and craniofacial dysmorphisms. Mental retardation was present in about 30% of the reported cases. The purpose of this study was to investigate the genetic and clinical features of NHS in a Chinese family. Whole exome sequencing analysis was performed on DNA from an affected male to scan for candidate mutations on the X-chromosome. Sanger sequencing was used to verify these candidate mutations in the whole family. Clinical and ophthalmological examinations were performed on all members of the family. A combination of exome sequencing and Sanger sequencing revealed a nonsense mutation c.322G>T (E108X) in exon 1 of NHS gene, co-segregating with the disease in the family. The nonsense mutation led to the conversion of glutamic acid to a stop codon (E108X), resulting in truncation of the NHS protein. Multiple sequence alignments showed that codon 108, where the mutation (c.322G>T) occurred, was located within a phylogenetically conserved region. The clinical features in all affected males and female carriers are described in detail. We report a nonsense mutation c.322G>T (E108X) in a Chinese family with NHS. Our findings broaden the spectrum of NHS mutations and provide molecular insight into future NHS clinical genetic diagnosis.

  8. Correlation between connexin 32 gene mutations and clinical phenotype in X-linked dominant Charcot-Marie-Tooth neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionasescu, V.; Ionasescu, R.; Searby, C.

    1996-06-14

    We studied the relationship between the genotype and clinical phenotype in 27 families with dominant X-linked Charcot-Marie-Tooth (CMTX1) neuropathy. Twenty-two families showed mutations in the coding region of the connexin32 (cx32) gene. The mutations include four nonsense mutations, eight missense mutations, two medium size deletions, and one insertion. Most missense mutations showed a mild clinical phenotype (five out of eight), whereas all nonsense mutations, the larger of the two deletions, and the insertion that produced frameshifts showed severe phenotypes. Five CMTX1 families with mild clinical phenotype showed no point mutations of the cx32 gene coding region. Three of these familiesmore » showed positive genetic linkage with the markers of the Xq13.1 region. The genetic linkage of the remaining two families could not be evaluated because of their small size. 25 refs., 1 fig., 1 tab.« less

  9. Novel NTRK1 mutations cause hereditary sensory and autonomic neuropathy type IV: demonstration of a founder mutation in the Turkish population.

    PubMed

    Tüysüz, Beyhan; Bayrakli, Fatih; DiLuna, Michael L; Bilguvar, Kaya; Bayri, Yasar; Yalcinkaya, Cengiz; Bursali, Aysegul; Ozdamar, Elif; Korkmaz, Baris; Mason, Christopher E; Ozturk, Ali K; Lifton, Richard P; State, Matthew W; Gunel, Murat

    2008-05-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV), or congenital insensitivity to pain with anhidrosis, is an autosomal recessive disorder characterized by insensitivity to noxious stimuli, anhidrosis from deinnervated sweat glands, and delayed mental and motor development. Mutations in the neurotrophic tyrosine kinase receptor type 1 (NTRK1), a receptor in the neurotrophin signaling pathway phosphorylated in response to nerve growth factor, are associated with this disorder. We identified six families from Northern Central Turkey with HSAN IV. We screened the NTRK1 gene for mutations in these families. Microsatellite and single nucleotide polymorphism (SNP) markers on the Affymetrix 250K chip platform were used to determine the haplotypes for three families harboring the same mutation. Screening for mutations in the NTRK1 gene demonstrated one novel frameshift mutation, two novel nonsense mutations, and three unrelated kindreds with the same splice-site mutation. Genotyping of the three families with the identical splice-site mutation revealed that they share the same haplotype. This report broadens the spectrum of mutations in NTRK1 that cause HSAN IV and demonstrates a founder mutation in the Turkish population.

  10. Early Clinical Diagnosis of PC1/3 Deficiency in a Patient With a Novel Homozygous PCSK1 Splice-Site Mutation.

    PubMed

    Härter, Bettina; Fuchs, Irene; Müller, Thomas; Akbulut, Ulas Emre; Cakir, Murat; Janecke, Andreas R

    2016-04-01

    Autosomal recessive proprotein convertase 1/3 (PC1/3) deficiency, caused by mutations in the PCSK1 gene, is characterized by severe congenital malabsorptive diarrhea, early-onset obesity, and certain endocrine abnormalities. We suspected PC1/3 deficiency in a 4-month-old girl based on the presence of congenital diarrhea and polyuria. Sequencing the whole coding region and splice sites detected a novel homozygous PCSK1 splice-site mutation, c.544-2A>G, in the patient. The mutation resulted in the skipping of exon 5, the generation of a premature termination codon, and nonsense-mediated PCSK1 messenger ribonucleic acid decay, which was demonstrated in complementary DNA derived from fibroblasts.

  11. Two novel mutations in the alpha-galactosidase gene in Japanese classical hemizygotes with Fabry disease.

    PubMed

    Okumiya, T; Takenaka, T; Ishii, S; Kase, R; Kamei, S; Sakuraba, H

    1996-09-01

    Four alpha-galactosidase gene mutations were identified in Japanese male patients with Fabry disease who had no detectable alpha-galactosidase activity. Two of them were novel mutations, an 11-bp deletion in exon 2 and a g-1 to t substitution at the 3' end of the splice acceptor site in intron 1. The former caused a frameshift and led to the creation of a new stop codon at codon 118. The latter was predicted to provoke aberrant mRNA splicing followed by accelerated degradation of the mRNA. A nonsense mutation, R301X, and a 2-bp deletion starting at nucleotide position 718, which were reported previously, were also identified in unrelated patients.

  12. Using Microarrays to Facilitate Positional Cloning: Identification of Tomosyn as an Inhibitor of Neurosecretion

    PubMed Central

    Dybbs, Michael; Ngai, John; Kaplan, Joshua M

    2005-01-01

    Forward genetic screens have been used as a powerful strategy to dissect complex biological pathways in many model systems. A significant limitation of this approach has been the time-consuming and costly process of positional cloning and molecular characterization of the mutations isolated in these screens. Here, the authors describe a strategy using microarray hybridizations to facilitate positional cloning. This method relies on the fact that premature stop codons (i.e., nonsense mutations) constitute a frequent class of mutations isolated in screens and that nonsense mutant messenger RNAs are efficiently degraded by the conserved nonsense-mediated decay pathway. They validate this strategy by identifying two previously uncharacterized mutations: (1) tom-1, a mutation found in a forward genetic screen for enhanced acetylcholine secretion in Caenorhabditis elegans, and (2) an apparently spontaneous mutation in the hif-1 transcription factor gene. They further demonstrate the broad applicability of this strategy using other known mutants in C. elegans, Arabidopsis, and mouse. Characterization of tom-1 mutants suggests that TOM-1, the C. elegans ortholog of mammalian tomosyn, functions as an endogenous inhibitor of neurotransmitter secretion. These results also suggest that microarray hybridizations have the potential to significantly reduce the time and effort required for positional cloning. PMID:16103915

  13. Variants of the D{sub 5} dopamine receptor gene found in patients with schizophrenia: Identification of a nonsense mutation and multiple missense changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobell, J.L.; Lind, T.J.; Sommer, S.S.

    To determine whether mutations in the D{sub 5} dopamine receptor (D{sub 5}DR) gene are associated with schizophrenia, the gene was examined in 78 unrelated schizophrenic individuals. After amplification by the polymerase chain reaction, products were examined by dideoxy fingerprinting (ddF), a highly sensitive screening method related to single strand conformational polymorphism analysis. All samples with unusual ddF patterns were sequenced to precisely identify the sequence change. In the 156 D{sub 5}DR alleles examined, nine sequence changes were identified. Four of the nine did not affect protein structure; of these, three were silent changes and one was a transition in themore » 3{prime} untranslated region. The remaining five sequence changes result in protein alterations: of these, one is a missense change in a non-conserved amino acid, 3 are missense changes in amino acids that are conserved in some dopamine D{sub 5} receptors and the last is a nonsense mutation. To investigate whether the nonsense mutation was associated with schizophrenia, 400 additional schizophrenic cases of western European descent and 1914 ethnically-similar controls were screened for the change. One additional schizophrenic carrier was identified and verified by direct genomic sequencing (allele frequency: .0013), but eight carriers also were found and confirmed among the non-schizophrenics (allele frequency: .0021)(p>.25). The gene was re-examined in all newly identified carriers of the nonsense mutation by direct sequencing and/or ddF in search of additional mutations. None were identified. Family studies also were conducted to investigate possible cosegregation of the mutation with other neuropsychiatric diseases, but this was not demonstrated. Thus, the mutation does not appear to be associated with an increased risk of schizophrenia nor does an initial analysis suggest cosegregation with other neuropsychiatric disorders or symptom complexes.« less

  14. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landsberger, D.; Meiner, V.; Reshef, A.

    1992-02-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here the authors characterize and LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found either in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identicalmore » LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.« less

  15. TP53 Mutation Status of Tubo-ovarian and Peritoneal High-grade Serous Carcinoma with a Wild-type p53 Immunostaining Pattern.

    PubMed

    Na, Kiyong; Sung, Ji-Youn; Kim, Hyun-Soo

    2017-12-01

    Diffuse and strong nuclear p53 immunoreactivity and a complete lack of p53 expression are regarded as indicative of missense and nonsense mutations, respectively, of the TP53 gene. Tubo-ovarian and peritoneal high-grade serous carcinoma (HGSC) is characterized by aberrant p53 expression induced by a TP53 mutation. However, our experience with some HGSC cases with a wild-type p53 immunostaining pattern led us to comprehensively review previous cases and investigate the TP53 mutational status of the exceptional cases. We analyzed the immunophenotype of 153 cases of HGSC and performed TP53 gene sequencing analysis in those with a wild-type p53 immunostaining pattern. Immunostaining revealed that 109 (71.3%) cases displayed diffuse and strong p53 expression (missense mutation pattern), while 39 (25.5%) had no p53 expression (nonsense mutation pattern). The remaining five cases of HGSC showed a wild-type p53 immunostaining pattern. Direct sequencing analysis revealed that three of these cases harbored nonsense TP53 mutations and two had novel splice site deletions. TP53 mutation is almost invariably present in HGSC, and p53 immunostaining can be used as a surrogate marker of TP53 mutation. In cases with a wild-type p53 immunostaining pattern, direct sequencing for TP53 mutational status can be helpful to confirm the presence of a TP53 mutation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. A case report of reversible generalized seizures in a patient with Waardenburg syndrome associated with a novel nonsense mutation in the penultimate exon of SOX10.

    PubMed

    Suzuki, Noriomi; Mutai, Hideki; Miya, Fuyuki; Tsunoda, Tatsuhiko; Terashima, Hiroshi; Morimoto, Noriko; Matsunaga, Tatsuo

    2018-05-23

    Waardenburg syndrome type 1 (WS1) can be distinguished from Waardenburg syndrome type 2 (WS2) by the presence of dystopia canthorum. About 96% of WS1 are due to PAX3 mutations, and SOX10 mutations have been reported in 15% of WS2. This report describes a patient with WS1 who harbored a novel SOX10 nonsense mutation (c.652G > T, p.G218*) in exon 3 which is the penultimate exon. The patient had mild prodromal neurological symptoms that were followed by severe attacks of generalized seizures associated with delayed myelination of the brain. The immature myelination recovered later and the neurological symptoms could be improved. This is the first truncating mutation in exon 3 of SOX10 that is associated with neurological symptoms in Waardenburg syndrome. Previous studies reported that the neurological symptoms that associate with WS are congenital and irreversible. These findings suggest that the reversible neurological phenotype may be associated with the nonsense mutation in exon 3 of SOX10. When patients of WS show mild prodromal neurological symptoms, the clinician should be aware of the possibility that severe attacks of generalized seizures may follow, which may be associated with the truncating mutation in exon 3 of SOX10.

  17. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome.

    PubMed

    Boileau, Catherine; Guo, Dong-Chuan; Hanna, Nadine; Regalado, Ellen S; Detaint, Delphine; Gong, Limin; Varret, Mathilde; Prakash, Siddharth K; Li, Alexander H; d'Indy, Hyacintha; Braverman, Alan C; Grandchamp, Bernard; Kwartler, Callie S; Gouya, Laurent; Santos-Cortez, Regie Lyn P; Abifadel, Marianne; Leal, Suzanne M; Muti, Christine; Shendure, Jay; Gross, Marie-Sylvie; Rieder, Mark J; Vahanian, Alec; Nickerson, Deborah A; Michel, Jean Baptiste; Jondeau, Guillaume; Milewicz, Dianna M

    2012-07-08

    A predisposition for thoracic aortic aneurysms leading to acute aortic dissections can be inherited in families in an autosomal dominant manner. Genome-wide linkage analysis of two large unrelated families with thoracic aortic disease followed by whole-exome sequencing of affected relatives identified causative mutations in TGFB2. These mutations-a frameshift mutation in exon 6 and a nonsense mutation in exon 4-segregated with disease with a combined logarithm of odds (LOD) score of 7.7. Sanger sequencing of 276 probands from families with inherited thoracic aortic disease identified 2 additional TGFB2 mutations. TGFB2 encodes transforming growth factor (TGF)-β2, and the mutations are predicted to cause haploinsufficiency for TGFB2; however, aortic tissue from cases paradoxically shows increased TGF-β2 expression and immunostaining. Thus, haploinsufficiency for TGFB2 predisposes to thoracic aortic disease, suggesting that the initial pathway driving disease is decreased cellular TGF-β2 levels leading to a secondary increase in TGF-β2 production in the diseased aorta.

  18. [Hereditary hypomelanocytoses: the role of PAX3, SOX10, MITF, SNAI2, KIT, EDN3 and EDNRB genes].

    PubMed

    Otręba, Michał; Miliński, Maciej; Buszman, Ewa; Wrześniok, Dorota; Beberok, Artur

    2013-11-26

    Hypo- and hyperpigmentation disorders are the most severe dermatological diseases observed in patients from all over the world. These disorders can be divided into melanoses connected with disorders of melanocyte function and melanocytoses connected with melanocyte development. The article presents some hereditary hypomelanocytoses, which are caused by abnormal melanoblast development, migration and proliferation as well as by abnormal melanocyte viability and proliferation. These disorders are represented by Waardenburg syndrome, piebaldism and Tietz syndrome, and are caused by different mutations of various or the same genes. The types of mutations comprise missense and nonsense mutations, frameshifts (in-frame insertions or deletions), truncating variations, splice alterations and non-stop mutations. It has been demonstrated that mutations of the same gene may cause different hypopigmentation syndromes that may have similar phenotypes. For example, mutations of the MITF gene cause Waardenburg syndrome type 2A as well as Tietz syndrome. It has also been demonstrated that mutations of different genes may cause an identical syndrome. For example, mutations of MITF, SNAI2 and SOX10 genes are observed in Waardenburg syndrome type II and mutations of EDNRB, EDN3 and SOX10 genes are responsible for Waardenburg syndrome type IV. In turn, mutation of the KIT gene and/or heterozygous deletion of the SNAI2 gene result in piebaldism disease. The knowledge of the exact mechanisms of pigmentary disorders may be useful in the development of new therapeutic approaches to their treatment.

  19. ABCD syndrome is caused by a homozygous mutation in the EDNRB gene.

    PubMed

    Verheij, Joke B G M; Kunze, Jürgen; Osinga, Jan; van Essen, Anthonie J; Hofstra, Robert M W

    2002-03-15

    ABCD syndrome is an autosomal recessive syndrome characterized by albinism, black lock, cell migration disorder of the neurocytes of the gut (Hirschsprung disease [HSCR]), and deafness. This phenotype clearly overlaps with the features of the Shah-Waardenburg syndrome, comprising sensorineural deafness; hypopigmentation of skin, hair, and irides; and HSCR. Therefore, we screened DNA of the index patient of the ABCD syndrome family for mutations in the endothelin B receptor (EDNRB) gene, a gene known to be involved in Shah-Waardenburg syndrome. A homozygous nonsense mutation in exon 3 (R201X) of the EDNRB gene was found. We therefore suggest that ABCD syndrome is not a separate entity, but an expression of Shah-Waardenburg syndrome.

  20. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance.

    PubMed

    Spanakis, Elias; Milord, Edrice; Gragnoli, Claudia

    2008-12-01

    Almost 90% of nephrogenic diabetes insipidus (NDI) is due to mutations in the arginine-vasopressin receptor 2 gene (AVPR2). We retrospectively examined all the published mutations/variants in AVPR2. We planned to perform a comprehensive review of all the AVPR2 mutations/variants and to test whether any amino acid change causing a missense mutation is significantly more or less common than others. We performed a Medline search and collected detailed information regarding all AVPR2 mutations and variants. We performed a frequency comparison between mutated and wild-type amino acids and codons. We predicted the mutation effect or reported it based on published in vitro studies. We also reported the ethnicity of each mutation/variant carrier. In summary, we identified 211 AVPR2 mutations which cause NDI in 326 families and 21 variants which do not cause NDI in 71 NDI families. We described 15 different types of mutations including missense, frameshift, inframe deletion, deletion, insertion, nonsense, duplication, splicing and combined mutations. The missense mutations represent the 55.83% of all the NDI published families. Arginine and tyrosine are significantly (P = 4.07E-08 and P = 3.27E-04, respectively) the AVPR2 most commonly mutated amino acids. Alanine and glutamate are significantly (P = 0.009 and P = 0.019, respectively) the least mutated AVPR2 amino acids. The spectrum of mutations varies from rare gene variants or polymorphisms not causing NDI to rare mutations causing NDI, among which arginine and tyrosine are the most common missense. The AVPR2 mutations are spread world-wide. Our study may serve as an updated review, comprehensive of all AVPR2 variants and specific gene locations. J. Cell. Physiol. 217: 605-617, 2008. (c) 2008 Wiley-Liss, Inc.

  1. Identification of a novel mutation in a Chinese family with Nance-Horan syndrome by whole exome sequencing*

    PubMed Central

    Hong, Nan; Chen, Yan-hua; Xie, Chen; Xu, Bai-sheng; Huang, Hui; Li, Xin; Yang, Yue-qing; Huang, Ying-ping; Deng, Jian-lian; Qi, Ming; Gu, Yang-shun

    2014-01-01

    Objective: Nance-Horan syndrome (NHS) is a rare X-linked disorder characterized by congenital nuclear cataracts, dental anomalies, and craniofacial dysmorphisms. Mental retardation was present in about 30% of the reported cases. The purpose of this study was to investigate the genetic and clinical features of NHS in a Chinese family. Methods: Whole exome sequencing analysis was performed on DNA from an affected male to scan for candidate mutations on the X-chromosome. Sanger sequencing was used to verify these candidate mutations in the whole family. Clinical and ophthalmological examinations were performed on all members of the family. Results: A combination of exome sequencing and Sanger sequencing revealed a nonsense mutation c.322G>T (E108X) in exon 1 of NHS gene, co-segregating with the disease in the family. The nonsense mutation led to the conversion of glutamic acid to a stop codon (E108X), resulting in truncation of the NHS protein. Multiple sequence alignments showed that codon 108, where the mutation (c.322G>T) occurred, was located within a phylogenetically conserved region. The clinical features in all affected males and female carriers are described in detail. Conclusions: We report a nonsense mutation c.322G>T (E108X) in a Chinese family with NHS. Our findings broaden the spectrum of NHS mutations and provide molecular insight into future NHS clinical genetic diagnosis. PMID:25091991

  2. Clinical and Genetic Spectrum of Bartter Syndrome Type 3.

    PubMed

    Seys, Elsa; Andrini, Olga; Keck, Mathilde; Mansour-Hendili, Lamisse; Courand, Pierre-Yves; Simian, Christophe; Deschenes, Georges; Kwon, Theresa; Bertholet-Thomas, Aurélia; Bobrie, Guillaume; Borde, Jean Sébastien; Bourdat-Michel, Guylhène; Decramer, Stéphane; Cailliez, Mathilde; Krug, Pauline; Cozette, Paul; Delbet, Jean Daniel; Dubourg, Laurence; Chaveau, Dominique; Fila, Marc; Jourde-Chiche, Noémie; Knebelmann, Bertrand; Lavocat, Marie-Pierre; Lemoine, Sandrine; Djeddi, Djamal; Llanas, Brigitte; Louillet, Ferielle; Merieau, Elodie; Mileva, Maria; Mota-Vieira, Luisa; Mousson, Christiane; Nobili, François; Novo, Robert; Roussey-Kesler, Gwenaëlle; Vrillon, Isabelle; Walsh, Stephen B; Teulon, Jacques; Blanchard, Anne; Vargas-Poussou, Rosa

    2017-08-01

    Bartter syndrome type 3 is a clinically heterogeneous hereditary salt-losing tubulopathy caused by mutations of the chloride voltage-gated channel Kb gene ( CLCNKB ), which encodes the ClC-Kb chloride channel involved in NaCl reabsorption in the renal tubule. To study phenotype/genotype correlations, we performed genetic analyses by direct sequencing and multiplex ligation-dependent probe amplification and retrospectively analyzed medical charts for 115 patients with CLCNKB mutations. Functional analyses were performed in Xenopus laevis oocytes for eight missense and two nonsense mutations. We detected 60 mutations, including 27 previously unreported mutations. Among patients, 29.5% had a phenotype of ante/neonatal Bartter syndrome (polyhydramnios or diagnosis in the first month of life), 44.5% had classic Bartter syndrome (diagnosis during childhood, hypercalciuria, and/or polyuria), and 26.0% had Gitelman-like syndrome (fortuitous discovery of hypokalemia with hypomagnesemia and/or hypocalciuria in childhood or adulthood). Nine of the ten mutations expressed in vitro decreased or abolished chloride conductance. Severe (large deletions, frameshift, nonsense, and essential splicing) and missense mutations resulting in poor residual conductance were associated with younger age at diagnosis. Electrolyte supplements and indomethacin were used frequently to induce catch-up growth, with few adverse effects. After a median follow-up of 8 (range, 1-41) years in 77 patients, chronic renal failure was detected in 19 patients (25%): one required hemodialysis and four underwent renal transplant. In summary, we report a genotype/phenotype correlation for Bartter syndrome type 3: complete loss-of-function mutations associated with younger age at diagnosis, and CKD was observed in all phenotypes. Copyright © 2017 by the American Society of Nephrology.

  3. ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm.

    PubMed

    Yahyavi, Mani; Abouzeid, Hana; Gawdat, Ghada; de Preux, Anne-Sophie; Xiao, Tong; Bardakjian, Tanya; Schneider, Adele; Choi, Alex; Jorgenson, Eric; Baier, Herwig; El Sada, Mohamad; Schorderet, Daniel F; Slavotinek, Anne M

    2013-08-15

    The major active retinoid, all-trans retinoic acid, has long been recognized as critical for the development of several organs, including the eye. Mutations in STRA6, the gene encoding the cellular receptor for vitamin A, in patients with Matthew-Wood syndrome and anophthalmia/microphthalmia (A/M), have previously demonstrated the importance of retinol metabolism in human eye disease. We used homozygosity mapping combined with next-generation sequencing to interrogate patients with anophthalmia and microphthalmia for new causative genes. We used whole-exome and whole-genome sequencing to study a family with two affected brothers with bilateral A/M and a simplex case with bilateral anophthalmia and hypoplasia of the optic nerve and optic chiasm. Analysis of novel sequence variants revealed homozygosity for two nonsense mutations in ALDH1A3, c.568A>G, predicting p.Lys190*, in the familial cases, and c.1165A>T, predicting p.Lys389*, in the simplex case. Both mutations predict nonsense-mediated decay and complete loss of function. We performed antisense morpholino (MO) studies in Danio rerio to characterize the developmental effects of loss of Aldh1a3 function. MO-injected larvae showed a significant reduction in eye size, and aberrant axonal projections to the tectum were noted. We conclude that ALDH1A3 loss of function causes anophthalmia and aberrant eye development in humans and in animal model systems.

  4. ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm

    PubMed Central

    Yahyavi, Mani; Abouzeid, Hana; Gawdat, Ghada; de Preux, Anne-Sophie; Xiao, Tong; Bardakjian, Tanya; Schneider, Adele; Choi, Alex; Jorgenson, Eric; Baier, Herwig; El Sada, Mohamad; Schorderet, Daniel F.; Slavotinek, Anne M.

    2013-01-01

    The major active retinoid, all-trans retinoic acid, has long been recognized as critical for the development of several organs, including the eye. Mutations in STRA6, the gene encoding the cellular receptor for vitamin A, in patients with Matthew–Wood syndrome and anophthalmia/microphthalmia (A/M), have previously demonstrated the importance of retinol metabolism in human eye disease. We used homozygosity mapping combined with next-generation sequencing to interrogate patients with anophthalmia and microphthalmia for new causative genes. We used whole-exome and whole-genome sequencing to study a family with two affected brothers with bilateral A/M and a simplex case with bilateral anophthalmia and hypoplasia of the optic nerve and optic chiasm. Analysis of novel sequence variants revealed homozygosity for two nonsense mutations in ALDH1A3, c.568A>G, predicting p.Lys190*, in the familial cases, and c.1165A>T, predicting p.Lys389*, in the simplex case. Both mutations predict nonsense-mediated decay and complete loss of function. We performed antisense morpholino (MO) studies in Danio rerio to characterize the developmental effects of loss of Aldh1a3 function. MO-injected larvae showed a significant reduction in eye size, and aberrant axonal projections to the tectum were noted. We conclude that ALDH1A3 loss of function causes anophthalmia and aberrant eye development in humans and in animal model systems. PMID:23591992

  5. Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3.

    PubMed

    Eisenberger, Tobias; Slim, Rima; Mansour, Ahmad; Nauck, Markus; Nürnberg, Gudrun; Nürnberg, Peter; Decker, Christian; Dafinger, Claudia; Ebermann, Inga; Bergmann, Carsten; Bolz, Hanno Jörn

    2012-09-02

    Usher syndrome (USH) is an autosomal recessive genetically heterogeneous disorder with congenital sensorineural hearing impairment and retinitis pigmentosa (RP). We have identified a consanguineous Lebanese family with two affected members displaying progressive hearing loss, RP and cataracts, therefore clinically diagnosed as USH type 3 (USH3). Our study was aimed at the identification of the causative mutation in this USH3-like family. Candidate loci were identified using genomewide SNP-array-based homozygosity mapping followed by targeted enrichment and next-generation sequencing. Using a capture array targeting the three identified homozygosity-by-descent regions on chromosomes 1q43-q44, 20p13-p12.2 and 20p11.23-q12, we identified a homozygous nonsense mutation, p.Arg65X, in ABHD12 segregating with the phenotype. Mutations of ABHD12, an enzyme hydrolyzing an endocannabinoid lipid transmitter, cause PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract). After the identification of the ABHD12 mutation in this family, one patient underwent neurological examination which revealed ataxia, but no polyneuropathy. ABHD12 is not known to be related to the USH protein interactome. The phenotype of our patient represents a variant of PHARC, an entity that should be taken into account as differential diagnosis for USH3. Our study demonstrates the potential of comprehensive genetic analysis for improving the clinical diagnosis.

  6. Homozygous p.V116* mutation in C12orf65 results in Leigh syndrome.

    PubMed

    Imagawa, Eri; Fattal-Valevski, Aviva; Eyal, Ori; Miyatake, Satoko; Saada, Ann; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Miyake, Noriko; Matsumoto, Naomichi

    2016-02-01

    Leigh syndrome (LS) is an early-onset progressive neurodegenerative disorder associated with mitochondrial dysfunction. LS is characterised by elevated lactate and pyruvate and bilateral symmetric hyperintense lesions in the basal ganglia, thalamus, brainstem, cerebral white matter or spinal cord on T2-weighted MRI. LS is a genetically heterogeneous disease, and to date mutations in approximately 40 genes related to mitochondrial function have been linked to the disorder. We investigated a pair of female monozygotic twins diagnosed with LS from consanguineous healthy parents of Indian origin. Their common clinical features included optic atrophy, ophthalmoplegia, spastic paraparesis and mild intellectual disability. High-blood lactate and high-intensity signal in the brainstem on T2-weighted MRI were consistent with a clinical diagnosis of LS. To identify the genetic cause of their condition, we performed whole exome sequencing. We identified a homozygous nonsense mutation in C12orf65 (NM_001143905; c.346delG, p.V116*) in the affected twins. Interestingly, the identical mutation was previously reported in an Indian family with Charcot-Marie Tooth disease type 6, which displayed some overlapping clinical features with the twins. We demonstrate that the identical nonsense mutation in C12orf65 can result in different clinical features, suggesting the involvement of unknown modifiers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3

    PubMed Central

    2012-01-01

    Background Usher syndrome (USH) is an autosomal recessive genetically heterogeneous disorder with congenital sensorineural hearing impairment and retinitis pigmentosa (RP). We have identified a consanguineous Lebanese family with two affected members displaying progressive hearing loss, RP and cataracts, therefore clinically diagnosed as USH type 3 (USH3). Our study was aimed at the identification of the causative mutation in this USH3-like family. Methods Candidate loci were identified using genomewide SNP-array-based homozygosity mapping followed by targeted enrichment and next-generation sequencing. Results Using a capture array targeting the three identified homozygosity-by-descent regions on chromosomes 1q43-q44, 20p13-p12.2 and 20p11.23-q12, we identified a homozygous nonsense mutation, p.Arg65X, in ABHD12 segregating with the phenotype. Conclusion Mutations of ABHD12, an enzyme hydrolyzing an endocannabinoid lipid transmitter, cause PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract). After the identification of the ABHD12 mutation in this family, one patient underwent neurological examination which revealed ataxia, but no polyneuropathy. ABHD12 is not known to be related to the USH protein interactome. The phenotype of our patient represents a variant of PHARC, an entity that should be taken into account as differential diagnosis for USH3. Our study demonstrates the potential of comprehensive genetic analysis for improving the clinical diagnosis. PMID:22938382

  8. Molecular diagnosis of analbuminemia: a new case caused by a nonsense mutation in the albumin gene.

    PubMed

    Dagnino, Monica; Caridi, Gianluca; Haenni, Ueli; Duss, Adrian; Aregger, Fabienne; Campagnoli, Monica; Galliano, Monica; Minchiotti, Lorenzo

    2011-01-01

    Analbuminemia is a rare autosomal recessive disorder manifested by the absence, or severe reduction, of circulating serum albumin (ALB). We report here a new case diagnosed in a 45 years old man of Southwestern Asian origin, living in Switzerland, on the basis of his low ALB concentration (0.9 g/L) in the absence of renal or gastrointestinal protein loss, or liver dysfunction. The clinical diagnosis was confirmed by a mutational analysis of the albumin (ALB) gene, carried out by single-strand conformational polymorphism (SSCP), heteroduplex analysis (HA), and DNA sequencing. This screening of the ALB gene revealed that the proband is homozygous for two mutations: the insertion of a T in a stretch of eight Ts spanning positions c.1289 + 23-c.1289 + 30 of intron 10 and a c.802 G > T transversion in exon 7. Whereas the presence of an additional T in the poly-T tract has no direct deleterious effect, the latter nonsense mutation changes the codon GAA for Glu244 to the stop codon TAA, resulting in a premature termination of the polypeptide chain. The putative protein product would have a length of only 243 amino acid residues instead of the normal 585 found in the mature serum albumin, but no evidence for the presence in serum of such a truncated polypeptide chain could be obtained by two dimensional electrophoresis and western blotting analysis.

  9. New evidence for the role of calpain 10 in autosomal recessive intellectual disability: identification of two novel nonsense variants by exome sequencing in Iranian families.

    PubMed

    Oladnabi, Morteza; Musante, Luciana; Larti, Farzaneh; Hu, Hao; Abedini, Seyedeh Sedigheh; Wienker, Thomas; Ropers, Hans Hilger; Kahrizi, Kimia; Najmabadi, Hossein

    2015-03-01

    Knowledge of the genes responsible for intellectual disability, particularly autosomal recessive forms, is rapidly expanding. Increasing numbers of the gene show great heterogeneity and supports the hypothesis that human genome may contain over 2000 causative genes with a critical role in brain development. Since 2004, we have applied genome-wide SNP genotyping and next-generation sequencing in large consanguineous Iranian families with intellectual disability, to identify the genes harboring disease-causing mutations. The current study paved the way for identification of responsible genes in two unrelated Iranian families. We found two novel nonsense mutations, p.C77* and p.Q115*, in the calpain catalytic domain of CAPN10, which is a cysteine protease known to be involved in pathogenesis of noninsulin-dependent diabetes mellitus. Another different mutation in this gene (p.S138_R139ins5) has previously been reported in an Iranian family. All of these patients have common clinical features in spite of specific brain structural abnormalities on MRI. Different mutations in CAPN10 have already been found in three independent Iranian families. These results have strongly supported the possible role of CAPN10 in human brain development. Altogether, we proposed CAPN10 as a promising candidate gene for intellectual disability, which should be considered in diagnostic gene panels.

  10. A Japanese Family with Central Hypothyroidism Caused by a Novel IGSF1 Mutation.

    PubMed

    Nishigaki, Satsuki; Hamazaki, Takashi; Fujita, Keinosuke; Morikawa, Shuntaro; Tajima, Toshihiro; Shintaku, Haruo

    2016-12-01

    Hemizygous mutations in the immunoglobulin superfamily member 1 (IGSF1) gene have been demonstrated to cause congenital central hypothyroidism in males. This study reports a family with a novel mutation in the IGSF1 gene located on the long arm of the X chromosome. A two-month-old boy was diagnosed with central hypothyroidism because of prolonged jaundice. A thyrotropin-releasing hormone (TRH) stimulation test indicated dysfunction in both the hypothalamus and the pituitary gland, and prompted the IGSF1 gene to be analyzed. The patient had a novel nonsense variant, c.2713C>T (p.Q905X), in exon 14 of the IGSF1 gene. Studies of the family revealed that the patient's sister and mother were heterozygous carriers of the IGSF1 mutation. The patient's maternal uncle carried the same mutation as the proband but had no overt symptoms. The mother and uncle started levothyroxine supplementation because of subclinical hypothyroidism. A novel mutation (c.2713C>T, p.Q905X) of the IGSF1 gene was identified that causes congenital central hypothyroidism in a Japanese family. The findings further expand the clinical heterogeneity of this entity.

  11. Mutation analysis of BRCA1/2 mutations with special reference to polymorphic SNPs in Indian breast cancer patients.

    PubMed

    Shah, Nidhi D; Shah, Parth S; Panchal, Yash Y; Katudia, Kalpesh H; Khatri, Nikunj B; Ray, Hari Shankar P; Bhatiya, Upti R; Shah, Sandip C; Shah, Bhavini S; Rao, Mandava V

    2018-01-01

    Germline mutations BRCA1 and BRCA2 contribute almost equally in the causation of breast cancer (BC). The type of mutations in the Indian population that cause this condition is largely unknown. In this cohort, 79 randomized BC patients were screened for various types of BRCA1 and BRCA2 mutations including frameshift, nonsense, missense, in-frame and splice site types. The purified extracted DNA of each referral patient was subjected to Sanger gene sequencing using Codon Code Analyzer and Mutation Surveyor and next-generation sequencing (NGS) methods with Ion torrent software, after appropriate care. The data revealed that 35 cases were positive for BRCA1 or BRCA2 (35/79: 44.3%). BRCA2 mutations were higher (52.4%) than BRCA1 mutations (47.6%). Five novel mutations detected in this study were p.pro163 frameshift, p.asn997 frameshift, p.ser148 frameshift and two splice site single-nucleotide polymorphisms (SNPs). Additionally, four nonsense and one in-frame deletion were identified, which all seemed to be pathogenic. Polymorphic SNPs contributed the highest percentage of mutations (72/82: 87.8%) and contributed to pathogenic, likely pathogenic, likely benign, benign and variant of unknown significance (VUS). Young age groups (20-60 years) had a high frequency of germline mutations (62/82;75.6%) in the Indian population. This study suggested that polymorphic SNPs contributed a high percentage of mutations along with five novel types. Younger age groups are prone to having BC with a higher mutational rate. Furthermore, the SNPs detected in exons 10, 11 and 16 of BRCA1 and BRCA2 were higher than those in other exons 2, 3 and 9 polymorphic sites in two germline genes. These may be contributory for BC although missense types are known to be susceptible for cancer depending on the type of amino acid replaced in the protein and associated with pathologic events. Accordingly, appropriate counseling and treatment may be suggested.

  12. A mutation in the neurofibromatosis type 2 tumor-suppressor gene, giving rise to widely different clinical phenotypes in two unrelated individuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourn, D.; Carter, S.A.; Goodship, J.

    The authors have sought mutations in the recently identified neurofibromatosis type 2 (NF2) tumor-suppressor gene in a large panel of NF2 patients, using PCR-based SSCP and heteroduplex analysis, followed by cloning and sequencing of appropriate PCR products. Two unrelated NF2 patients were found to have identical nonsense mutations caused by a C-to-T transition in a CpG dinucleotide that is a potential mutational hot spot in the NF2 tumor-suppressor gene. Unexpectedly, the two individuals had widely different clinical phenotypes, representing the severe Wishart and mild Gardner clinical subtypes. Analysis of DNA samples from different tissues of the mildly affected patient suggestsmore » that he is a somatic mosaic for the mutation. 26 refs., 3 figs.« less

  13. Mutations in SMG9, Encoding an Essential Component of Nonsense-Mediated Decay Machinery, Cause a Multiple Congenital Anomaly Syndrome in Humans and Mice

    PubMed Central

    Shaheen, Ranad; Anazi, Shams; Ben-Omran, Tawfeg; Seidahmed, Mohammed Zain; Caddle, L. Brianna; Palmer, Kristina; Ali, Rehab; Alshidi, Tarfa; Hagos, Samya; Goodwin, Leslie; Hashem, Mais; Wakil, Salma M.; Abouelhoda, Mohamed; Colak, Dilek; Murray, Stephen A.; Alkuraya, Fowzan S.

    2016-01-01

    Nonsense-mediated decay (NMD) is an important process that is best known for degrading transcripts that contain premature stop codons (PTCs) to mitigate their potentially harmful consequences, although its regulatory role encompasses other classes of transcripts as well. Despite the critical role of NMD at the cellular level, our knowledge about the consequences of deficiency of its components at the organismal level is largely limited to model organisms. In this study, we report two consanguineous families in which a similar pattern of congenital anomalies was found to be most likely caused by homozygous loss-of-function mutations in SMG9, encoding an essential component of the SURF complex that generates phospho-UPF1, the single most important step in NMD. By knocking out Smg9 in mice via CRISPR/Cas9, we were able to recapitulate the major features of the SMG9-related multiple congenital anomaly syndrome we observed in humans. Surprisingly, human cells devoid of SMG9 do not appear to have reduction of PTC-containing transcripts but do display global transcriptional dysregulation. We conclude that SMG9 is required for normal human and murine development, most likely through a transcriptional regulatory role, the precise nature of which remains to be determined. PMID:27018474

  14. Basal exon skipping and nonsense-associated altered splicing allows bypassing complete CEP290 loss-of-function in individuals with unusually mild retinal disease.

    PubMed

    Barny, Iris; Perrault, Isabelle; Michel, Christel; Soussan, Mickael; Goudin, Nicolas; Rio, Marlène; Thomas, Sophie; Attié-Bitach, Tania; Hamel, Christian; Dollfus, Hélène; Kaplan, Josseline; Rozet, Jean-Michel; Gerard, Xavier

    2018-05-16

    CEP290 mutations cause a spectrum of ciliopathies from Leber congenital amaurosis type 10 (LCA10) to embryo-lethal Meckel syndrome (MKS). Using panel-based molecular diagnosis testing for inherited retinal diseases, we identified two individuals with some preserved vision despite biallelism for presumably truncating CEP290 mutations. The first one carried a homozygous 1 base-pair deletion in exon 17, introducing a premature termination codon (PTC) in exon 18 (c.1666del; p.Ile556Phefs*17). mRNA analysis revealed a basal exon skipping (BES) of exon 18, providing mutant cells with the ability to escape protein truncation, while disrupting the reading frame in controls. The second individual harbored compound heterozygous nonsense mutations in exon 8 (c.508A>T, p.Lys170*) and exon 32 (c.4090G>T, p.Glu1364*), respectively. Some CEP290 lacking exon 8 were detected in mutant fibroblasts but not in controls whereas some skipping of exon 32 occurred in both lines, but with higher amplitude in the mutant. Considering that the deletion of either exon maintains the reading frame in either line, skipping in mutant cells likely involves nonsense-associated altered splicing (NAS) alone (exon 8), or with BES (exon 32). Skipping of PTC-containing exons in mutant cells allowed production of CEP290 isoforms with preserved ability to assemble into a high molecular weight complex and to interact efficiently with proteins important for cilia formation and intraflagellar trafficking. In contrast, studying LCA10 and MKS fibroblasts we show moderate to severe cilia alterations, providing support for a correlation between disease severity and the ability of cells to express shortened, yet functional, CEP290 isoforms.

  15. Mutations of the aminoacyl-tRNA-synthetases SARS and WARS2 are implicated in the etiology of autosomal recessive intellectual disability.

    PubMed

    Musante, Luciana; Püttmann, Lucia; Kahrizi, Kimia; Garshasbi, Masoud; Hu, Hao; Stehr, Henning; Lipkowitz, Bettina; Otto, Sabine; Jensen, Lars R; Tzschach, Andreas; Jamali, Payman; Wienker, Thomas; Najmabadi, Hossein; Ropers, Hans Hilger; Kuss, Andreas W

    2017-06-01

    Intellectual disability (ID) is the hallmark of an extremely heterogeneous group of disorders that comprises a wide variety of syndromic and non-syndromic phenotypes. Here, we report on mutations in two aminoacyl-tRNA synthetases that are associated with ID in two unrelated Iranian families. In the first family, we identified a homozygous missense mutation (c.514G>A, p.Asp172Asn) in the cytoplasmic seryl-tRNA synthetase (SARS) gene. The mutation affects the enzymatic core domain of the protein and impairs its enzymatic activity, probably leading to reduced cytoplasmic tRNA Ser concentrations. The mutant protein was predicted to be unstable, which could be substantiated by investigating ectopic mutant SARS in transfected HEK293T cells. In the second family, we found a compound heterozygous genotype of the mitochondrial tryptophanyl-tRNA synthetase (WARS2) gene, comprising a nonsense mutation (c.325delA, p.Ser109Alafs*15), which very likely entails nonsense-mediated mRNA decay and a missense mutation (c.37T>G, p.Trp13Gly). The latter affects the mitochondrial localization signal of WARS2, causing protein mislocalization. Including AIMP1, which we have recently implicated in the etiology of ID, three genes with a role in tRNA-aminoacylation are now associated with this condition. We therefore suggest that the functional integrity of tRNAs in general is an important factor in the development and maintenance of human cognitive functions. © 2017 Wiley Periodicals, Inc.

  16. Laboratory and Genetic Investigation of Mutations Accounting for Congenital Fibrinogen Disorders.

    PubMed

    Neerman-Arbez, Marguerite; de Moerloose, Philippe; Casini, Alessandro

    2016-06-01

    Congenital fibrinogen disorders are classified into two types of plasma fibrinogen defects: type I (quantitative fibrinogen deficiencies), that is, hypofibrinogenemia or afibrinogenemia, in which there are low or absent plasma fibrinogen antigen levels, respectively, and type II (qualitative fibrinogen deficiencies), that is, dysfibrinogenemia or hypodysfibrinogenemia, in which there are normal or reduced antigen levels associated with disproportionately low functional activity. These disorders are caused by mutations in the three fibrinogen-encoding genes FGA, FGB, and FGG. Afibrinogenemia is associated with mild to severe bleeding, whereas hypofibrinogenemia is often asymptomatic. For these quantitative disorders, the majority of mutations prevent protein production. However, in some cases, missense or late-truncating nonsense mutations allow synthesis of the mutant fibrinogen chain, but intracellular fibrinogen assembly and/or secretion are impaired. Qualitative fibrinogen disorders are associated with bleeding, thrombosis, or both thrombosis and bleeding, but many dysfibrinogenemias are asymptomatic. The majority of cases are caused by heterozygous missense mutations. Here, we review the laboratory and genetic diagnosis of fibrinogen gene anomalies with an updated discussion of causative mutations identified. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Confirmation of RAX gene involvement in human anophthalmia

    PubMed Central

    Lequeux, L.; Rio, Marlène; Vigouroux, Armelle; Titeux, Matthias; Etchevers, Heather; Malecaze, François; Chassaing, Nicolas; Calvas, Patrick

    2008-01-01

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. Mutations in several genes have been involved in syndromic and non-syndromic anophthalmia. Previously, RAX recessive mutations were implicated in a single patient with right anophthalmia and left microphthalmia and sclerocornea. Here, we report the findings of novel compound heterozygous RAX mutations in a child with bilateral anophthalmia. Both mutations are located in exon 3. c.664delT is a frameshifting deletion predicted to introduce a premature stop codon (p.Ser222ArgfsX62), and c.909 C>G is a nonsense mutation with similar consequences (p.Tyr303X). This is the second report of a patient with anophthalmia caused by RAX mutations. These findings confirm that RAX plays a major role in the early stages of eye development and is involved in human anophthalmia. PMID:18783408

  18. Confirmation of RAX gene involvement in human anophthalmia.

    PubMed

    Lequeux, L; Rio, M; Vigouroux, A; Titeux, M; Etchevers, H; Malecaze, F; Chassaing, N; Calvas, P

    2008-10-01

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. Mutations in several genes have been involved in syndromic and non-syndromic anophthalmia. Previously, RAX recessive mutations were implicated in a single patient with right anophthalmia, left microphthalmia and sclerocornea. In this study, we report the findings of novel compound heterozygous RAX mutations in a child with bilateral anophthalmia. Both mutations are located in exon 3. c.664delT is a frameshifting deletion predicted to introduce a premature stop codon (p.Ser222ArgfsX62), and c.909C>G is a nonsense mutation with similar consequences (p.Tyr303X). This is the second report of a patient with anophthalmia caused by RAX mutations. These findings confirm that RAX plays a major role in the early stages of eye development and is involved in human anophthalmia.

  19. Neuroligin 2 nonsense variant associated with anxiety, autism, intellectual disability, hyperphagia, and obesity.

    PubMed

    Parente, Daniel J; Garriga, Caryn; Baskin, Berivan; Douglas, Ganka; Cho, Megan T; Araujo, Gabriel C; Shinawi, Marwan

    2017-01-01

    Neuroligins are post-synaptic, cellular adhesion molecules implicated in synaptic formation and function. NLGN2 is strongly linked to inhibitory, GABAergic signaling and is crucial for maintaining the excitation-inhibition balance in the brain. Disruption of the excitation-inhibition balance is associated with neuropsychiatric disease. In animal models, altered NLGN2 expression causes anxiety, developmental delay, motor discoordination, social impairment, aggression, and sensory processing defects. In humans, mutations in NLGN3 and NLGN4 are linked to autism and schizophrenia; NLGN2 missense variants are implicated in schizophrenia. Copy number variants encompassing NLGN2 on 17p13.1 are associated with autism, intellectual disability, metabolic syndrome, diabetes, and dysmorphic features, but an isolated NLGN2 nonsense variant has not yet been described in humans. Here, we describe a 15-year-old male with severe anxiety, obsessive-compulsive behaviors, developmental delay, autism, obesity, macrocephaly, and some dysmorphic features. Exome sequencing identified a heterozygous, de novo, c.441C>A p.(Tyr147Ter) variant in NLGN2 that is predicted to cause loss of normal protein function. This is the first report of an NLGN2 nonsense variant in humans, adding to the accumulating evidence that links synaptic proteins with a spectrum of neurodevelopmental phenotypes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Genetic Mutations in Cancer

    Cancer.gov

    Many different types of genetic mutations are found in cancer cells. This infographic outlines certain types of alterations that are present in cancer, such as missense, nonsense, frameshift, and chromosome rearrangements.

  1. Expression of Wild-Type Rp1 Protein in Rp1 Knock-in Mice Rescues the Retinal Degeneration Phenotype

    PubMed Central

    Liu, Qin; Collin, Rob W. J.; Cremers, Frans P. M.; den Hollander, Anneke I.; van den Born, L. Ingeborgh; Pierce, Eric A.

    2012-01-01

    Mutations in the retinitis pigmentosa 1 (RP1) gene are a common cause of autosomal dominant retinitis pigmentosa (adRP), and have also been found to cause autosomal recessive RP (arRP) in a few families. The 33 dominant mutations and 6 recessive RP1 mutations identified to date are all nonsense or frameshift mutations, and almost exclusively (38 out of 39) are located in the 4th and final exon of RP1. To better understand the underlying disease mechanisms of and help develop therapeutic strategies for RP1 disease, we performed a series of human genetic and animal studies using gene targeted and transgenic mice. Here we report that a frameshift mutation in the 3rd exon of RP1 (c.686delC; p.P229QfsX35) found in a patient with recessive RP1 disease causes RP in the homozygous state, whereas the heterozygous carriers are unaffected, confirming that haploinsufficiency is not the causative mechanism for RP1 disease. We then generated Rp1 knock-in mice with a nonsense Q662X mutation in exon 4, as well as Rp1 transgenic mice carrying a wild-type BAC Rp1 transgene. The Rp1-Q662X allele produces a truncated Rp1 protein, and homozygous Rp1-Q662X mice experience a progressive photoreceptor degeneration characterized disorganization of photoreceptor outer segments. This phenotype could be prevented by expression of a normal amount of Rp1 protein from the BAC transgene without removal of the mutant Rp1-Q662X protein. Over-expression of Rp1 protein in additional BAC Rp1 transgenic lines resulted in retinal degeneration. These findings suggest that the truncated Rp1-Q662X protein does not exert a toxic gain-of-function effect. These results also imply that in principle gene augmentation therapy could be beneficial for both recessive and dominant RP1 patients, but the levels of RP1 protein delivered for therapy will have to be carefully controlled. PMID:22927954

  2. Genetic and bioinformatics analysis of four novel GCK missense variants detected in Caucasian families with GCK-MODY phenotype.

    PubMed

    Costantini, S; Malerba, G; Contreas, G; Corradi, M; Marin Vargas, S P; Giorgetti, A; Maffeis, C

    2015-05-01

    Heterozygous loss-of-function mutations in the glucokinase (GCK) gene cause maturity-onset diabetes of the young (MODY) subtype GCK (GCK-MODY/MODY2). GCK sequencing revealed 16 distinct mutations (13 missense, 1 nonsense, 1 splice site, and 1 frameshift-deletion) co-segregating with hyperglycaemia in 23 GCK-MODY families. Four missense substitutions (c.718A>G/p.Asn240Asp, c.757G>T/p.Val253Phe, c.872A>C/p.Lys291Thr, and c.1151C>T/p.Ala384Val) were novel and a founder effect for the nonsense mutation (c.76C>T/p.Gln26*) was supposed. We tested whether an accurate bioinformatics approach could strengthen family-genetic evidence for missense variant pathogenicity in routine diagnostics, where wet-lab functional assays are generally unviable. In silico analyses of the novel missense variants, including orthologous sequence conservation, amino acid substitution (AAS)-pathogenicity predictors, structural modeling and splicing predictors, suggested that the AASs and/or the underlying nucleotide changes are likely to be pathogenic. This study shows how a careful bioinformatics analysis could provide effective suggestions to help molecular-genetic diagnosis in absence of wet-lab validations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Identification of FASTKD2 compound heterozygous mutations as the underlying cause of autosomal recessive MELAS-like syndrome.

    PubMed

    Yoo, Da Hye; Choi, Young-Chul; Nam, Da Eun; Choi, Sun Seong; Kim, Ji Won; Choi, Byung-Ok; Chung, Ki Wha

    2017-07-01

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a condition that affects many parts of the body, particularly the brain and muscles. This study examined a Korean MELAS-like syndrome patient with seizure, stroke-like episode, and optic atrophy. Target sequencing of whole mtDNA and 73 nuclear genes identified compound heterozygous mutations p.R205X and p.L255P in the FASTKD2. Each of his unaffected parents has one of the two mutations, and both mutations were not found in 302 controls. FASTKD2 encodes a FAS-activated serine-threonine (FAST) kinase domain 2 which locates in the mitochondrial inner compartment. A FASTKD2 nonsense mutation was once reported as the cause of a recessive infantile mitochondrial encephalomyopathy. The present case showed relatively mild symptoms with a late onset age, compared to a previous patient with FASTKD2 mutation, implicating an inter-allelic clinical heterogeneity. Because this study is the second report of an autosomal recessive mitochondrial encephalomyopathy patient with a FASTKD2 mutation, it will extend the phenotypic spectrum of the FASTKD2 mutation. Copyright © 2017. Published by Elsevier B.V.

  4. Novel GABRG2 mutations cause familial febrile seizures

    PubMed Central

    Boillot, Morgane; Morin-Brureau, Mélanie; Picard, Fabienne; Weckhuysen, Sarah; Lambrecq, Virginie; Minetti, Carlo; Striano, Pasquale; Zara, Federico; Iacomino, Michele; Ishida, Saeko; An-Gourfinkel, Isabelle; Daniau, Mailys; Hardies, Katia; Baulac, Michel; Dulac, Olivier; Leguern, Eric; Nabbout, Rima

    2015-01-01

    Objective: To identify the genetic cause in a large family with febrile seizures (FS) and temporal lobe epilepsy (TLE) and subsequently search for additional mutations in a cohort of 107 families with FS, with or without epilepsy. Methods: The cohort consisted of 1 large family with FS and TLE, 64 smaller French families recruited through a national French campaign, and 43 Italian families. Molecular analyses consisted of whole-exome sequencing and mutational screening. Results: Exome sequencing revealed a p.Glu402fs*3 mutation in the γ2 subunit of the GABAA receptor gene (GABRG2) in the large family with FS and TLE. Three additional nonsense and frameshift GABRG2 mutations (p.Arg136*, p.Val462fs*33, and p.Pro59fs*12), 1 missense mutation (p.Met199Val), and 1 exonic deletion were subsequently identified in 5 families of the follow-up cohort. Conclusions: We report GABRG2 mutations in 5.6% (6/108) of families with FS, with or without associated epilepsy. This study provides evidence that GABRG2 mutations are linked to the FS phenotype, rather than epilepsy, and that loss-of-function of GABAA receptor γ2 subunit is the probable underlying pathogenic mechanism. PMID:27066572

  5. Novel GABRG2 mutations cause familial febrile seizures.

    PubMed

    Boillot, Morgane; Morin-Brureau, Mélanie; Picard, Fabienne; Weckhuysen, Sarah; Lambrecq, Virginie; Minetti, Carlo; Striano, Pasquale; Zara, Federico; Iacomino, Michele; Ishida, Saeko; An-Gourfinkel, Isabelle; Daniau, Mailys; Hardies, Katia; Baulac, Michel; Dulac, Olivier; Leguern, Eric; Nabbout, Rima; Baulac, Stéphanie

    2015-12-01

    To identify the genetic cause in a large family with febrile seizures (FS) and temporal lobe epilepsy (TLE) and subsequently search for additional mutations in a cohort of 107 families with FS, with or without epilepsy. The cohort consisted of 1 large family with FS and TLE, 64 smaller French families recruited through a national French campaign, and 43 Italian families. Molecular analyses consisted of whole-exome sequencing and mutational screening. Exome sequencing revealed a p.Glu402fs*3 mutation in the γ2 subunit of the GABAA receptor gene (GABRG2) in the large family with FS and TLE. Three additional nonsense and frameshift GABRG2 mutations (p.Arg136*, p.Val462fs*33, and p.Pro59fs*12), 1 missense mutation (p.Met199Val), and 1 exonic deletion were subsequently identified in 5 families of the follow-up cohort. We report GABRG2 mutations in 5.6% (6/108) of families with FS, with or without associated epilepsy. This study provides evidence that GABRG2 mutations are linked to the FS phenotype, rather than epilepsy, and that loss-of-function of GABAA receptor γ2 subunit is the probable underlying pathogenic mechanism.

  6. Recessive myosin myopathy with external ophthalmoplegia associated with MYH2 mutations.

    PubMed

    Tajsharghi, Homa; Hammans, Simon; Lindberg, Christopher; Lossos, Alexander; Clarke, Nigel F; Mazanti, Ingrid; Waddell, Leigh B; Fellig, Yakov; Foulds, Nicola; Katifi, Haider; Webster, Richard; Raheem, Olayinka; Udd, Bjarne; Argov, Zohar; Oldfors, Anders

    2014-06-01

    Myosin myopathies comprise a group of inherited diseases caused by mutations in myosin heavy chain (MyHC) genes. Homozygous or compound heterozygous truncating MYH2 mutations have been demonstrated to cause recessive myopathy with ophthalmoplegia, mild-to-moderate muscle weakness and complete lack of type 2A muscle fibers. In this study, we describe for the first time the clinical and morphological characteristics of recessive myosin IIa myopathy associated with MYH2 missense mutations. Seven patients of five different families with a myopathy characterized by ophthalmoplegia and mild-to-moderate muscle weakness were investigated. Muscle biopsy was performed to study morphological changes and MyHC isoform expression. Five of the patients were homozygous for MYH2 missense mutations, one patient was compound heterozygous for a missense and a nonsense mutation and one patient was homozygous for a frame-shift MYH2 mutation. Muscle biopsy demonstrated small or absent type 2A muscle fibers and reduced or absent expression of the corresponding MyHC IIa transcript and protein. We conclude that mild muscle weakness and ophthalmoplegia in combination with muscle biopsy demonstrating small or absent type 2A muscle fibers are the hallmark of recessive myopathy associated with MYH2 mutations.

  7. [Genetic analysis of two children patients affected with CHARGE syndrome].

    PubMed

    Li, Guoqiang; Li, Niu; Xu, Yufei; Li, Juan; Ding, Yu; Shen, Yiping; Wang, Xiumin; Wang, Jian

    2018-04-10

    To analyze two Chinese pediatric patients with multiple malformations and growth and development delay. Both patients were subjected to targeted gene sequencing, and the results were analyzed with Ingenuity Variant Analysis software. Suspected pathogenic variations were verified by Sanger sequencing. High-throughput sequencing showed that both patients have carried heterozygous variants of the CHD7 gene. Patient 1 carried a nonsense mutation in exon 36 (c.7957C>T, p.Arg2653*), while patient 2 carried a nonsense mutation of exon 2 (c.718C>T, p.Gln240*). Sanger sequencing confirmed the above mutations in both patients, while their parents were of wild-type for the corresponding sites, indicating that the two mutations have happened de novo. Two patients were diagnosed with CHARGE syndrome by high-throughput sequencing.

  8. De novo MEIS2 mutation causes syndromic developmental delay with persistent gastro-esophageal reflux.

    PubMed

    Fujita, Atsushi; Isidor, Bertrand; Piloquet, Hugues; Corre, Pierre; Okamoto, Nobuhiko; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Miyake, Noriko; Matsumoto, Naomichi

    2016-09-01

    MEIS2 aberrations are considered to be the cause of intellectual disability, cleft palate and cardiac septal defect, as MEIS2 copy number variation is often observed with these phenotypes. To our knowledge, only one nucleotide-level change-specifically, an in-frame MEIS2 deletion-has so far been reported. Here, we report a female patient with a de novo nonsense mutation (c.611C>G, p.Ser204*) in MEIS2. She showed severe intellectual disability, moderate motor/verbal developmental delay, cleft palate, cardiac septal defect, hypermetropia, severe feeding difficulties with gastro-esophageal reflux and constipation. By reviewing this patient and previous patients with MEIS2 point mutations, we found that feeding difficulty with gastro-esophageal reflux appears to be one of the core clinical features of MEIS2 haploinsufficiency, in addition to intellectual disability, cleft palate and cardiac septal defect.

  9. Missense variants in plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients--disease-causing or innocent bystanders?

    PubMed

    Christensen, Alex Hørby; Benn, Marianne; Tybjaerg-Hansen, Anne; Haunso, Stig; Svendsen, Jesper Hastrup

    2010-01-01

    Mutations in genes encoding desmosomal proteins have been linked to arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). We hypothesized that a Scandinavian ARVC/D population would have a different spectrum of plakophilin-2 (PKP2) mutations and that some of the reported missense mutations may not be pathogenic. We screened 53 unrelated patients fulfilling Task Force criteria for ARVC/D for mutations in PKP2 by direct sequencing. Seven different mutations were identified: two insertion/deletions (E329fsX352, P401fsX406), 1 splice site (2146-2A>T), 1 non-sense (R79X) and 4 missense mutations (Q62K in 2 patients, G489R, G673V) of undeterminable pathogeneity. None of these mutations was present in 650 controls. Five of the mutations were novel. Seven patients carried reported missense mutations (D26N, S140F, V587I); however, these mutations were identified in our healthy controls, although at a lower frequency. Evaluation of all reported missense mutations in PKP2 showed unclear pathogeneity of several reported mutations. Fifteen percent of Danish ARVC/D patients carried PKP2 mutations. Our finding of reported disease-causing mutations at a low frequency among healthy controls suggests that these variants are disease modifying but not directly disease causing. We recommend conservative interpretation of missense variants in PKP2, functional characterization and large-scale sequencing to clarify normal variation in the gene.

  10. Acral peeling skin syndrome resulting from a homozygous nonsense mutation in the CSTA gene encoding cystatin A.

    PubMed

    Krunic, Aleksandar L; Stone, Kristina L; Simpson, Michael A; McGrath, John A

    2013-01-01

    Acral peeling skin syndrome (APSS) is a clinically and genetically heterogeneous disorder. We used whole-exome sequencing to identify the molecular basis of APSS in a consanguineous Jordanian-American pedigree. We identified a homozygous nonsense mutation (p.Lys22X) in the CSTA gene, encoding cystatin A, that was confirmed using Sanger sequencing. Cystatin A is a protease inhibitor found in the cornified cell envelope, and loss-of-function mutations have previously been reported in two cases of exfoliative ichthyosis. Our study expands the molecular pathology of APSS and demonstrates the value of next-generation sequencing in the genetic characterization of inherited skin diseases. © 2013 Wiley Periodicals, Inc.

  11. Mutations in FBXL4 Cause Mitochondrial Encephalopathy and a Disorder of Mitochondrial DNA Maintenance

    PubMed Central

    Bonnen, Penelope E.; Yarham, John W.; Besse, Arnaud; Wu, Ping; Faqeih, Eissa A.; Al-Asmari, Ali Mohammad; Saleh, Mohammad A.M.; Eyaid, Wafaa; Hadeel, Alrukban; He, Langping; Smith, Frances; Yau, Shu; Simcox, Eve M.; Miwa, Satomi; Donti, Taraka; Abu-Amero, Khaled K.; Wong, Lee-Jun; Craigen, William J.; Graham, Brett H.; Scott, Kenneth L.; McFarland, Robert; Taylor, Robert W.

    2013-01-01

    Nuclear genetic disorders causing mitochondrial DNA (mtDNA) depletion are clinically and genetically heterogeneous, and the molecular etiology remains undiagnosed in the majority of cases. Through whole-exome sequencing, we identified recessive nonsense and splicing mutations in FBXL4 segregating in three unrelated consanguineous kindreds in which affected children present with a fatal encephalopathy, lactic acidosis, and severe mtDNA depletion in muscle. We show that FBXL4 is an F-box protein that colocalizes with mitochondria and that loss-of-function and splice mutations in this protein result in a severe respiratory chain deficiency, loss of mitochondrial membrane potential, and a disturbance of the dynamic mitochondrial network and nucleoid distribution in fibroblasts from affected individuals. Expression of the wild-type FBXL4 transcript in cell lines from two subjects fully rescued the levels of mtDNA copy number, leading to a correction of the mitochondrial biochemical deficit. Together our data demonstrate that mutations in FBXL4 are disease causing and establish FBXL4 as a mitochondrial protein with a possible role in maintaining mtDNA integrity and stability. PMID:23993193

  12. Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro–costo–mandibular syndrome

    PubMed Central

    Lynch, Danielle C.; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J.; Innes, A. Micheil; Lamont, Ryan E.; Lemire, Edmond G.; Chodirker, Bernard N.; Taylor, Juliet P.; Zackai, Elaine H.; McLeod, D. Ross; Kirk, Edwin P.; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Boycott, Kym; MacKenzie, Alex; Brudno, Michael; Bulman, Dennis; Dyment, David; Majewski, Jacek; Jerome-Majewska, Loydie A.; Parboosingh, Jillian S.; Bernier, Francois P.

    2014-01-01

    Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro–costo–mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development. PMID:25047197

  13. Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro-costo-mandibular syndrome.

    PubMed

    Lynch, Danielle C; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J; Innes, A Micheil; Lamont, Ryan E; Lemire, Edmond G; Chodirker, Bernard N; Taylor, Juliet P; Zackai, Elaine H; McLeod, D Ross; Kirk, Edwin P; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Majewski, Jacek; Jerome-Majewska, Loydie A; Parboosingh, Jillian S; Bernier, Francois P

    2014-07-22

    Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro-costo-mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development.

  14. FLG mutation p.Lys4021X in the C-terminal imperfect filaggrin repeat in Japanese patients with atopic eczema.

    PubMed

    Nemoto-Hasebe, I; Akiyama, M; Nomura, T; Sandilands, A; McLean, W H I; Shimizu, H

    2009-12-01

    Mutations in the gene encoding filaggrin (FLG) have been shown to predispose to atopic eczema (AE). Further to establish population genetics of FLG mutations in the Japanese population and to elucidate effects of FLG mutations to filaggrin biosynthesis in skin of patients with AE. We searched for FLG mutations in 19 newly recruited Japanese patients with AE. We then screened 137 Japanese patients with AE and 134 Japanese control individuals for a novel mutation identified in the present study. In addition, we evaluated FLG mRNA expression by real-time reverse transcription-polymerase chain reaction and profilaggrin/filaggrin protein expression by immunohistochemical staining in the epidermis of the patients carrying the novel mutation. We identified a novel FLG nonsense mutation c.12069A>T (p.Lys4021X) in one patient with AE. Upon further screening, p.Lys4021X was identified in four patients with AE (2.9% of all the patients with AE). In total, there are at least eight FLG variants in the Japanese population. Here we show that about 27% of patients in our Japanese AE case series carry one or more of these eight FLG mutations and these variants are also carried by 3.7% of Japanese general control individuals. There is a significant statistical association between the eight FLG mutations and AE (chi(2) P = 6.50 x 10(-8)). Interestingly, the present nonsense mutation is in the C-terminal incomplete filaggrin repeat and is the mutation nearest the C-terminal among previously reported FLG mutations. Immunohistochemical staining for filaggrin revealed that this nonsense mutation leads to remarkable reduction of filaggrin protein expression in the patients' epidermis. We clearly demonstrated that FLG mutations are significantly associated with AE in the Japanese population. The present results further support the hypothesis that the C-terminal region is essential for proper processing of profilaggrin to filaggrin.

  15. Mutations in POLR3A and POLR3B are a major cause of hypomyelinating leukodystrophies with or without dental abnormalities and/or hypogonadotropic hypogonadism.

    PubMed

    Daoud, Hussein; Tétreault, Martine; Gibson, William; Guerrero, Kether; Cohen, Ana; Gburek-Augustat, Janina; Synofzik, Matthis; Brais, Bernard; Stevens, Cathy A; Sanchez-Carpintero, Rocio; Goizet, Cyril; Naidu, Sakkubai; Vanderver, Adeline; Bernard, Geneviève

    2013-03-01

    Leukodystrophies are a heterogeneous group of inherited neurodegenerative disorders characterised by abnormal central nervous system white matter. Mutations in POLR3A and POLR3B genes were recently reported to cause four clinically overlapping hypomyelinating leukodystrophy phenotypes. Our aim was to investigate the presence and frequency of POLR3A and POLR3B mutations in patients with genetically unexplained hypomyelinating leukodystrophies with typical clinical and/or radiologic features of Pol III-related leukodystrophies. The entire coding region and the flanking exon/intron boundaries of POLR3A and/or POLR3B genes were amplified and sequenced in 14 patients. Recessive mutations in POLR3A or POLR3B were uncovered in all 14 patients. Eight novel mutations were identified in POLR3A: six missenses, one nonsense, and one frameshift mutation. Seven patients carried compound heterozygous mutations in POLR3B, of whom six shared the common mutation in exon 15 (p.V523E). Seven novel mutations were identified in POLR3B: four missenses, two splice sites, and one intronic mutation. To date, our group has described 37 patients, of whom 27 have mutations in POLR3A and 10 in POLR3B, respectively. Altogether, our results further support the proposal that POLR3A and POLR3B mutations are a major cause of hypomyelinating leukodystrophies and suggest that POLR3A mutations are more frequent.

  16. Development of a practical NF1 genetic testing method through the pilot analysis of five Japanese families with neurofibromatosis type 1.

    PubMed

    Okumura, Akiko; Ozaki, Mamoru; Niida, Yo

    2015-08-01

    Mutation analysis of NF1, the responsible gene for neurofibromatosis type 1 (NF1), is still difficult due to its large size, lack of mutational hotspots, the presence of many pseudogenes, and its wide spectrum of mutations. To develop a simple and inexpensive NF1 genetic testing for clinical use, we analyzed five Japanese families with NF1 as a pilot study. Our original method, CEL endonuclease mediated heteroduplex incision with polyacrylamide gel electrophoresis and silver staining (CHIPS) was optimized for NF1 mutation screening, and reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the effect of transcription. Also, we employed DNA microarray analysis to evaluate the break points of the large deletion. A new nonsense mutation, p.Gln209(∗), was detected in family 1 and the splicing donor site mutation, c.2850+1G>T, was detected in family 2. In family 3, c.4402A>G was detected in exon 34 and the p.Ser1468Gly missense mutation was predicted. However mRNA analysis revealed that this substitution created an aberrant splicing acceptor site, thereby causing the p.Phe1457(∗) nonsense mutation. In the other two families, type-1 and unique NF1 microdeletions were detected by DNA microarray analysis. Our results show that the combination of CHIPS and RT-PCR effectively screen and characterize NF1 point mutations, and both DNA and RNA level analysis are required to understand the nature of the NF1 mutation. Our results also suggest the possibility of a higher incidence and unique profile of NF1 large deletions in the Japanese population as compared to previous studies performed in Europe. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Origin of Somatic Mutations in β-Catenin versus Adenomatous Polyposis Coli in Colon Cancer: Random Mutagenesis in Animal Models versus Nonrandom Mutagenesis in Humans.

    PubMed

    Yang, Da; Zhang, Min; Gold, Barry

    2017-07-17

    Wnt signaling is compromised early in the development of human colorectal cancer (CRC) due to truncating nonsense mutations in adenomatous polyposis coli (APC). CRC induced by chemical carcinogens, such as heterocyclic aromatic amines and azoxymethane, in mice also involves dysregulation of Wnt signaling but via activating missense mutations in the β-catenin oncogene despite the fact that genetically modified mice harboring an inactive APC allele efficiently develop CRC. In contrast, activating mutations in β-catenin are rarely observed in human CRC. Dysregulation of the Wnt signaling pathway by the two distinct mechanisms reveals insights into the etiology of human CRC. On the basis of calculations related to DNA adduct levels produced in mouse CRC models using mutagens, and the number of stem cells in the mouse colon, we show that two nonsense mutations required for biallelic disruption of APC are statistically unlikely to produce CRC in experiments using small numbers of mice. We calculate that an activating mutation in one allele near the critical GSK3β phosphorylation site on β-catenin is >10 5 -times more likely to produce CRC by random mutagenesis due to chemicals than inactivating two alleles in APC, yet it does not occur in humans. Therefore, the mutagenesis mechanism in human CRC cannot be random. We explain that nonsense APC mutations predominate in human CRC because of deamination at 5-methylcytosine at CGA and CAG codons, coupled with the number of human colonic stem cells and lifespan. Our analyses, including a comparison of mutation type and age at CRC diagnosis in U.S. and Chinese patients, also indicate that APC mutations in CRC are not due to environmental mutagens that randomly damage DNA.

  18. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittig, S.; Siggaard, C.; Pedersen, E.B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation wasmore » unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. 63 refs., 5 figs., 6 tabs.« less

  19. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus.

    PubMed Central

    Rittig, S.; Robertson, G. L.; Siggaard, C.; Kovács, L.; Gregersen, N.; Nyborg, J.; Pedersen, E. B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation was unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. Images Figure 3 PMID:8554046

  20. Multiple independent second-site mutations in two siblings with somatic mosaicism for Wiskott-Aldrich syndrome.

    PubMed

    Boztug, K; Germeshausen, M; Avedillo Díez, I; Gulacsy, V; Diestelhorst, J; Ballmaier, M; Welte, K; Maródi, L; Chernyshova, Li; Klein, C

    2008-07-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disorder associated with microthrombocytopenia, eczema, autoimmunity and predisposition to malignant lymphoma. Although rare, few cases of somatic mosaicism have been published in WAS patients to date. We here report on two Ukrainian siblings who were referred to us at the age of 3 and 4 years, respectively. Both patients suffered from severe WAS caused by a nonsense mutation in exon 1 of the WAS gene. In both siblings, flow cytometric analysis revealed the presence of Wiskott-Aldrich syndrome protein (WASp)-positive and WASp-negative cell populations among T and B lymphocytes as well as natural killer (NK) cells. In contrast to previously described cases of revertant mosaicism in WAS, molecular analyses in both children showed that the WASp-positive T cells, B cells, and NK cells carried multiple different second-site mutations, resulting in different missense mutations. To our knowledge, this is the first report describing somatic mosaicism in WAS patients caused by several independent second-site mutations in the WAS gene.

  1. Identification of a novel mutation in the PTCH gene in a patient with Gorlin-Goltz syndrome with unusual ocular disorders.

    PubMed

    Romano, Mary; Iacovello, Daniela; Cascone, Nikhil C; Contestabile, Maria Teresa

    2011-01-01

    To document the clinical, functional, and in vivo microanatomic characteristics of a patient with Gorlin-Goltz syndrome with a novel nonsense mutation in PTCH (patched). Optical coherence tomography (OCT), fluorescein angiography, electrophysiologic testing, visual field, magnetic resonance imaging, and mutation screening of PTCH gene. Visual acuity was 20/20 in the right eye and 20/25 in the left. Fundus examination revealed myelinated nerve fibers in the left eye and bilateral epiretinal membranes with lamellar macular hole also documented with macular OCT. A reduction of the retinal nerve fiber layers in both eyes was found with fiber nervous OCT. Fluorescein angiography showed bilaterally foveal hyperfluorescence and the visual field revealed inferior hemianopia in the right eye. Pattern visual evoked potentials registered a reduction of amplitude in both eyes and latency was delayed in the left eye. Pattern electroretinogram showed a reduction in P50 and N95 peak time and a delay in P50 peak time in the left eye. Flash electroretinogram was reduced in rod response, maximal response, and oscillatory potentials in both eyes. Cone response was normal and 30-Hz flicker was slightly reduced in both eyes. Mutation screening identified a novel nonsense mutation in PTCH. A novel nonsense mutation in the PTCH gene was found. We report the occurrence of epiretinal membranes and the persistence of myelinated nerve fibers. Electrophysiologic and visual field alterations, supporting a neuroretinal dysfunction, were also documented.

  2. Recurrent nonsense mutations in the growth hormone receptor from patients with Laron dwarfism.

    PubMed Central

    Amselem, S; Sobrier, M L; Duquesnoy, P; Rappaport, R; Postel-Vinay, M C; Gourmelen, M; Dallapiccola, B; Goossens, M

    1991-01-01

    In addition to its classical effects on growth, growth hormone (GH) has been shown to have a number of other actions, all of which are initiated by an interaction with specific high affinity receptors present in a variety of tissues. Purification of a rabbit liver protein via its ability to bind GH has allowed the isolation of a cDNA encoding a putative human growth hormone receptor that belongs to a new class of transmembrane receptors. We have previously shown that this putative growth hormone receptor gene is genetically linked to Laron dwarfism, a rare autosomal recessive syndrome caused by target resistance to GH. Nevertheless, the inability to express the corresponding full-length coding sequence and the lack of a test for growth-promoting function have hampered a direct confirmation of its role in growth. We have now identified three nonsense mutations within this growth hormone receptor gene, lying at positions corresponding to the amino terminal extremity and causing a truncation of the molecule, thereby deleting a large portion of both the GH binding domain and the full transmembrane and intracellular domains. Three independent patients with Laron dwarfism born of consanguineous parents were homozygous for these defects. Two defects were identical and consisted of a CG to TG transition. Not only do these results confirm the growth-promoting activity of this receptor but they also suggest that CpG doublets may represent hot spots for mutations in the growth hormone receptor gene that are responsible for hereditary dwarfism. Images PMID:1999489

  3. Identification of a novel deletion in SURF1 gene: Heterogeneity in Leigh syndrome with COX deficiency.

    PubMed

    Ribeiro, Carolina; do Carmo Macário, Maria; Viegas, Ana Teresa; Pratas, João; Santos, Maria João; Simões, Marta; Mendes, Cândida; Bacalhau, Mafalda; Garcia, Paula; Diogo, Luísa; Grazina, Manuela

    2016-11-01

    Leigh syndrome (LS) is a rare, progressive neurodegenerative mitochondrial disorder of infancy. It is a genetically heterogeneous disease. The mutations in SURF1 gene are the most frequently known cause. Here two cases of LS likely caused by SURF1 gene variants are reported: a 39-year-old male patient with a novel homozygous deletion (c.-11_13del), and a case of a 6-year-old boy with the same deletion and a nonsense mutation (c.868dupT), both in heterozygosity. Blue native PAGE showed absence of assembled complex IV. This is the first report of a variant that may abolish the SURF1 gene initiation codon in two LS patients. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  4. Characterization of six mutations in Exon 37 of neurofibromatosis type 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyaya, M.; Osborn, M.; Maynard, J.

    Neurofibromatosis type 1 (NF1) is one of the most common inherited disorders, with an incidence of 1 in 3,000. We screened a total of 320 unrelated NF1 patients for mutations in exon 37 of the NF1 gene. Six independent mutations were identified, of which three are novel, and these include a recurrent nonsense mutation identified in 2 unrelated patients at codon 2281 (G2281X), a 1-bp insertion (6791 ins A) resulting in a change of TAG (tyrosine) to a TAA (stop codon), and a 3-bp deletion (6839 del TAC) which generated a frameshift. Another recurrent nonsense mutation, Y2264X, which was detectedmore » in 2 unrelated patients in this study, was also previously reported in 2 NF1 individuals. All the mutations were identified within a contiguous 49-bp sequence. Further studies are warranted to support the notion that this region of the gene contains highly mutable sequences. 17 refs., 2 figs., 1 tab.« less

  5. Molecular Diagnosis of Analbuminemia: A New Case Caused by a Nonsense Mutation in the Albumin Gene

    PubMed Central

    Dagnino, Monica; Caridi, Gianluca; Haenni, Ueli; Duss, Adrian; Aregger, Fabienne; Campagnoli, Monica; Galliano, Monica; Minchiotti, Lorenzo

    2011-01-01

    Analbuminemia is a rare autosomal recessive disorder manifested by the absence, or severe reduction, of circulating serum albumin (ALB). We report here a new case diagnosed in a 45 years old man of Southwestern Asian origin, living in Switzerland, on the basis of his low ALB concentration (0.9 g/L) in the absence of renal or gastrointestinal protein loss, or liver dysfunction. The clinical diagnosis was confirmed by a mutational analysis of the albumin (ALB) gene, carried out by single-strand conformational polymorphism (SSCP), heteroduplex analysis (HA), and DNA sequencing. This screening of the ALB gene revealed that the proband is homozygous for two mutations: the insertion of a T in a stretch of eight Ts spanning positions c.1289 + 23–c.1289 + 30 of intron 10 and a c.802 G > T transversion in exon 7. Whereas the presence of an additional T in the poly-T tract has no direct deleterious effect, the latter nonsense mutation changes the codon GAA for Glu244 to the stop codon TAA, resulting in a premature termination of the polypeptide chain. The putative protein product would have a length of only 243 amino acid residues instead of the normal 585 found in the mature serum albumin, but no evidence for the presence in serum of such a truncated polypeptide chain could be obtained by two dimensional electrophoresis and western blotting analysis. PMID:22174600

  6. Nonsense mutation in the phosphofructokinase muscle subunit gene associated with retention of intron 10 in one of the isolated transcripts in Ashkenazi Jewish patients with Tarui disease.

    PubMed Central

    Vasconcelos, O; Sivakumar, K; Dalakas, M C; Quezado, M; Nagle, J; Leon-Monzon, M; Dubnick, M; Gajdusek, D C; Goldfarb, L G

    1995-01-01

    Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene. Images Fig. 2 Fig. 4 Fig. 5 PMID:7479776

  7. Usefulness of Genetic Study by Next-generation Sequencing in High-risk Arrhythmogenic Cardiomyopathy.

    PubMed

    Ruiz Salas, Amalio; Peña Hernández, José; Medina Palomo, Carmen; Barrera Cordero, Alberto; Cabrera Bueno, Fernando; García Pinilla, José Manuel; Guijarro, Ana; Morcillo-Hidalgo, Luis; Jiménez Navarro, Manuel; Gómez Doblas, Juan José; de Teresa, Eduardo; Alzueta, Javier

    2018-03-29

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy characterized by progressive fibrofatty replacement of predominantly right ventricular myocardium. This cardiomyopathy is a frequent cause of sudden cardiac death in young people and athletes. The aim of our study was to determine the incidence of pathological or likely pathological desmosomal mutations in patients with high-risk definite ARVC. This was an observational, retrospective cohort study, which included 36 patients diagnosed with high-risk ARVC in our hospital between January 1998 and January 2015. Genetic analysis was performed using next-generation sequencing. Most patients were male (28 patients, 78%) with a mean age at diagnosis of 45 ± 18 years. A pathogenic or probably pathogenic desmosomal mutation was detected in 26 of the 35 index cases (74%): 5 nonsense, 14 frameshift, 1 splice, and 6 missense. Novel mutations were found in 15 patients (71%). The presence or absence of desmosomal mutations causing the disease and the type of mutation were not associated with specific electrocardiographic, clinical, arrhythmic, anatomic, or prognostic characteristics. The incidence of pathological or likely pathological desmosomal mutations in ARVC is very high, with most mutations causing truncation. The presence of desmosomal mutations was not associated with prognosis. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  8. Molecular genetic analysis of consanguineous Pakistani families with autosomal recessive hypohidrotic ectodermal dysplasia.

    PubMed

    Bibi, Nosheen; Ahmad, Saeed; Ahmad, Wasim; Naeem, Muhammad

    2011-02-01

    Hypohidrotic ectodermal dysplasia is an inherited disorder characterized by defective development of teeth, hairs and sweat glands. X-linked hypohidrotic ectodermal dysplasia is caused by mutations in the EDA gene, and autosomal forms of hypohidrotic ectodermal dysplasia are caused by mutations in either the EDAR or the EDARADD genes. To study the molecular genetic cause of autosomal recessive hypohidrotic ectodermal dysplasia in three consanguineous Pakistani families (A, B and C), genotyping of 13 individuals was carried out by using polymorphic microsatellite markers that are closely linked to the EDAR gene on chromosome 2q11-q13 and the EDARADD gene on chromosome 1q42.2-q43. The results revealed linkage in the three families to the EDAR locus. Sequence analysis of the coding exons and splice junctions of the EDAR gene revealed two mutations: a novel non-sense mutation (p.E124X) in the probands of families A and B and a missense mutation (p.G382S) in the proband of family C. In addition, two synonymous single-nucleotide polymorphisms were also identified. The finding of mutations in Pakistani families extends the body of evidence that supports the importance of EDAR for the development of hypohidrotic ectodermal dysplasia. © 2010 The Authors. Australasian Journal of Dermatology © 2010 The Australasian College of Dermatologists.

  9. [Maple syrup urine disease and gene mutations in twin neonates].

    PubMed

    Li, Tao; Wang, Yu; Li, Cui; Xu, Wei-Wei; Niu, Feng-Hai; Zhang, Di

    2016-12-01

    To investigate the clinical features of one pair of twin neonates with maple syrup urine disease (MSUD) in the Chinese Han population and pathogenic mutations in related genes, and to provide guidance for the early diagnosis and treatment of MSUD. The clinical and imaging data of the twin neonates were collected. The peripheral blood samples were collected from the twin neonates and their parents to detect the genes related to MSUD (BCKDHA, BCKDHB, DBT, and DLD). The loci with gene mutations were identified, and a bioinformatic analysis was performed. Two mutations were detected in the BCKDHB gene, missense mutation c.304G>A (p.Gly102Arg) and nonsense mutation c.331C>T (p.Arg111*), and both of them were heterozygotes. The mutation c.304G>A (p.Gly102Arg) had not been reported in the world. Their father carried the missense mutation c.304G>A (p.Gly102Arg), and their mother carried the nonsense mutation c.331C>T (p.Arg111*). The c.331C>T (p.Arg111*) heterozygous mutation in BCKDHB gene is the pathogenic mutation in these twin neonates and provides a genetic and molecular basis for the clinical features of children with MSUD.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Louis, M.; Poudrier, J.; Phaneuf, D.

    The deficiency of fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolic pathway is the cause of hereditary tyrosinemia type I (HT1), an autosomal recessive disease. The disease has been reported worldwide. The incidence is much higher in two clusters: the Saguenay- Lac St-Jean region (Quebec, Canada) and in Scandinavia. Seven mutations have been reported in the last two years. Here we describe two new missense mutations identified by direct sequencing of PCR products in two HT1 patients, a Norwegian (patient No. 1) and a French-Canadian (patient No. 2). The first mutation consists of a G to A transition atmore » position 337 of the FAH gene which predicts a change from glycine to serine (G337S). The second mutation is an A to G transition at position 381 which predicts a change from arginine to glycine (R381G). Patient No. 1 seems heterozygous for the G337S mutation and for a splice mutation (IVS12+5G{r_arrow}A) which was previously described. Patient No. 2 was also found heterozygous for the R381G mutation and for a rare nonsense mutation (E357X) already reported. In vitro transcription and translation were performed on mutant cDNA to demonstrate the responsibility of these two mutations in causing the decreased amount of FAH detected by Western blot analysis.« less

  11. Diseases associated with growth hormone-releasing hormone receptor (GHRHR) mutations.

    PubMed

    Martari, Marco; Salvatori, Roberto

    2009-01-01

    The growth hormone (GH)-releasing hormone (GHRH) receptor (GHRHR) belongs to the G protein-coupled receptors family. It is expressed almost exclusively in the anterior pituitary, where it is necessary for somatotroph cells proliferation and for GH synthesis and secretion. Mutations in the human GHRHR gene (GHRHR) can impair ligand binding and signal transduction, and have been estimated to cause about 10% of autosomal recessive familial isolated growth hormone deficiency (IGHD). Mutations reported to date include five splice donor site mutations, two microdeletions, two nonsense mutations, seven missense mutations, and one mutation in the promoter. These mutations have an autosomal recessive mode of inheritance, and heterozygous individuals do not show signs of IGHD, although the presence of an intermediate phenotype has been hypothesized. Conversely, patients with biallelic mutations have low serum insulin-like growth factor-1 and GH levels (with absent or reduced GH response to exogenous stimuli), resulting--if not treated--in proportionate dwarfism. This chapter reviews the biology of the GHRHR, the mutations that affect its gene and their effects in homozygous and heterozygous individuals. Copyright © 2009 Elsevier Inc. All rights reserved.

  12. C1q deficiency: identification of a novel missense mutation and treatment with fresh frozen plasma.

    PubMed

    Topaloglu, Rezan; Taskiran, Ekim Z; Tan, Cagman; Erman, Baran; Ozaltin, Fatih; Sanal, Ozden

    2012-07-01

    A Turkish patient with C1q deficiency presented with a lupus-like disease, and a new missense mutation at A chain is presented. To characterize the genetic defect, all exons of the genes for the A, B, and C chains of C1q were sequenced in the patient. This revealed a missense mutation in the collagen-like domain of the A chain, p.Gly31 Arg. No other sequence variants, including the common silent mutations, were found in the three chains. Exon 1 of the C1q A chain was sequenced in 105 samples from healthy controls for this particular mutation. None of these carried the mutation. The C1q-deficient patient was treated with fresh frozen plasma infusions. Our findings showed that Turkish patients may have different mutations than the previously described common mutation, and once again, not only nonsense mutations but also missense mutations cause hereditary C1q deficiency. Regular fresh frozen plasma infusions to the patient have been clinically and therapeutically successful.

  13. Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome C oxidase deficiency.

    PubMed

    Péquignot, M O; Dey, R; Zeviani, M; Tiranti, V; Godinot, C; Poyau, A; Sue, C; Di Mauro, S; Abitbol, M; Marsac, C

    2001-05-01

    Cytochrome c oxidase (COX) deficiency is one of the major causes of Leigh Syndrome (LS), a fatal encephalopathy of infancy or childhood, characterized by symmetrical lesions in the basal ganglia and brainstem. Mutations in the nuclear genes encoding COX subunits have not been found in patients with LS and COX deficiency, but mutations have been identified in SURF1. SURF1 encodes a factor involved in COX biogenesis. To date, 30 different mutations have been reported in 40 unrelated patients. We aim to provide an overview of all known mutations in SURF1, and to propose a common nomenclature. Twelve of the mutations were insertion/deletion mutations in exons 1, 4, 6, 8, and 9; 10 were missense/nonsense mutations in exons 2, 4, 5, 7, and 8; and eight were detected at splicing sites in introns 3 to 7. The most frequent mutation was 312_321del 311_312insAT which was found in 12 patients out of 40. Twenty mutations have been described only once. We also list all polymorphisms discovered to date. Copyright 2001 Wiley-Liss, Inc.

  14. Total colonic aganglionosis and imperforate anus in a severely affected infant with Pallister-Hall syndrome.

    PubMed

    Li, Mindy H; Eberhard, Moriah; Mudd, Pamela; Javia, Luv; Zimmerman, Robert; Khalek, Nahla; Zackai, Elaine H

    2015-03-01

    Pallister-Hall syndrome is a complex malformation syndrome characterized by a wide range of anomalies including hypothalamic hamartoma, polydactyly, bifid epiglottis, and genitourinary abnormalities. It is usually caused by truncating frameshift/nonsense and splicing mutations in the middle third of GLI3. The clinical course ranges from mild to lethal in the neonatal period. We present the first patient with Pallister-Hall syndrome reported with total colonic aganglionosis, a rare form of Hirschsprung disease with poor long-term outcome. The patient also had an imperforate anus, which is the third individual with Pallister-Hall syndrome reported with both Hirschsprung disease and an imperforate anus. Molecular testing via amniocentesis showed an apparently de novo novel nonsense mutation c.2641 C>T (p.Gln881*). His overall medical course was difficult and was complicated by respiratory failure and pan-hypopituitarism. Invasive care was ultimately withdrawn, and the patient expired at three months of age. This patient's phenotype was complex with unusual gastrointestinal features ultimately leading to a unfavorable prognosis and outcome, highlighting the range of clinical severity in patients with Pallister-Hall syndrome. © 2015 Wiley Periodicals, Inc.

  15. Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy.

    PubMed

    Miyake, Noriko; Fukai, Ryoko; Ohba, Chihiro; Chihara, Takahiro; Miura, Masayuki; Shimizu, Hiroshi; Kakita, Akiyoshi; Imagawa, Eri; Shiina, Masaaki; Ogata, Kazuhiro; Okuno-Yuguchi, Jiu; Fueki, Noboru; Ogiso, Yoshifumi; Suzumura, Hiroshi; Watabe, Yoshiyuki; Imataka, George; Leong, Huey Yin; Fattal-Valevski, Aviva; Kramer, Uri; Miyatake, Satoko; Kato, Mitsuhiro; Okamoto, Nobuhiko; Sato, Yoshinori; Mitsuhashi, Satomi; Nishino, Ichizo; Kaneko, Naofumi; Nishiyama, Akira; Tamura, Tomohiko; Mizuguchi, Takeshi; Nakashima, Mitsuko; Tanaka, Fumiaki; Saitsu, Hirotomo; Matsumoto, Naomichi

    2016-10-06

    We describe four families with affected siblings showing unique clinical features: early-onset (before 1 year of age) progressive diffuse brain atrophy with regression, postnatal microcephaly, postnatal growth retardation, muscle weakness/atrophy, and respiratory failure. By whole-exome sequencing, we identified biallelic TBCD mutations in eight affected individuals from the four families. TBCD encodes TBCD (tubulin folding co-factor D), which is one of five tubulin-specific chaperones playing a pivotal role in microtubule assembly in all cells. A total of seven mutations were found: five missense mutations, one nonsense, and one splice site mutation resulting in a frameshift. In vitro cell experiments revealed the impaired binding between most mutant TBCD proteins and ARL2, TBCE, and β-tubulin. The in vivo experiments using olfactory projection neurons in Drosophila melanogaster indicated that the TBCD mutations caused loss of function. The wide range of clinical severity seen in this neurodegenerative encephalopathy may result from the residual function of mutant TBCD proteins. Furthermore, the autopsied brain from one deceased individual showed characteristic neurodegenerative findings: cactus and somatic sprout formations in the residual Purkinje cells in the cerebellum, which are also seen in some diseases associated with mitochondrial impairment. Defects of microtubule formation caused by TBCD mutations may underlie the pathomechanism of this neurodegenerative encephalopathy. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Two novel cases of cerebral haemorrhages at the neonatal period associated with inherited factor VII deficiency, one of them revealing a new nonsense mutation (Ser52Stop).

    PubMed

    Giansily-Blaizot, Muriel; Aguilar-Martinez, Patricia; Briquel, Marie-Elisabeth; d'Oiron, Roseline; De Maistre, Emmanuel; Epelbaum, Serge; Schved, Jean-François

    2003-02-01

    Factor VII (FVII) is a plasma glycoprotein that plays a key role in the initiation of blood coagulation cascade. Inherited FVII deficiency is a rare autosomal recessive disorder with a wide heterogeneous clinical pattern. The severe form may be associated with intracranial haemorrhages occurring closely to birth with a high mortality rate. In the present article, we report two novel cases of neonatal intracerebral bleeding associated with FVII activity levels below 1% of normal. FVII genotyping investigations revealed particular genotypes including the deleterious Cys135Arg mutation and a novel Ser52Stop nonsense mutation at the homozygous state. Both mutations, through different mechanisms, are expected to be inconsistent with the production of functional FVII. These putative mechanisms are discussed through a review of the literature on phenotypic and genotypic characteristics of cerebral haemorrhages in severe inherited FVII deficiency.

  17. Mutation in LEMD3 (Man1) Associated with Osteopoikilosis and Late-Onset Generalized Morphea: A New Buschke-Ollendorf Syndrome Variant

    PubMed Central

    Korman, Benjamin; Wei, Jun; Laumann, Anne; Ferguson, Polly; Varga, John

    2016-01-01

    Introduction. Buschke-Ollendorf syndrome (BOS) is an uncommon syndrome characterized by osteopoikilosis and other bone abnormalities, accompanied by skin lesions, most frequently connective tissue nevi. BOS is caused by mutations in the LEMD3 gene, which encodes the inner nuclear membrane protein Man1. We describe a unique case of osteopoikilosis associated with late-onset localized scleroderma and familial LEMD3 mutations. Case Report. A 72-year-old woman presented with adult-onset diffuse morphea and bullous skin lesions. Evaluation revealed multiple hyperostotic lesions (osteopoikilosis) suggestive of BOS. DNA sequencing identified a previously undescribed nonsense mutation (Trp621X) in the LEMD3 gene encoding Man1. Two additional family members were found to have osteopoikilosis and carry the same LEMD3 mutation. Conclusions and Relevance. We report a unique familial LEMD3 mutation in an individual with osteopoikilosis and late-onset morphea. We propose that this constellation represents a novel syndromic variant of BOS. PMID:27382493

  18. Biallelic Mutations in GNB3 Cause a Unique Form of Autosomal-Recessive Congenital Stationary Night Blindness

    PubMed Central

    Vincent, Ajoy; Audo, Isabelle; Tavares, Erika; Maynes, Jason T.; Tumber, Anupreet; Wright, Thomas; Li, Shuning; Michiels, Christelle; Banin, Eyal; Bocquet, Beatrice; De Baere, Elfride; Casteels, Ingele; Defoort-Dhellemmes, Sabine; Drumare, Isabelle; Friedburg, Christoph; Gottlob, Irene; Jacobson, Samuel G.; Kellner, Ulrich; Koenekoop, Robert; Kohl, Susanne; Leroy, Bart P.; Lorenz, Birgit; McLean, Rebecca; Meire, Francoise; Meunier, Isabelle; Munier, Francis; de Ravel, Thomy; Reiff, Charlotte M.; Mohand-Saïd, Saddek; Sharon, Dror; Schorderet, Daniel; Schwartz, Sharon; Zanlonghi, Xavier; Condroyer, Christel; MacDonald, Heather; Verdet, Robert; Sahel, José-Alain; Hamel, Christian P.; Zeitz, Christina; Héon, Elise

    2016-01-01

    Congenital stationary night blindness (CSNB) is a heterogeneous group of non-progressive inherited retinal disorders with characteristic electroretinogram (ERG) abnormalities. Riggs and Schubert-Bornschein are subtypes of CSNB and demonstrate distinct ERG features. Riggs CSNB demonstrates selective rod photoreceptor dysfunction and occurs due to mutations in genes encoding proteins involved in rod phototransduction cascade; night blindness is the only symptom and eye examination is otherwise normal. Schubert-Bornschein CSNB is a consequence of impaired signal transmission between the photoreceptors and bipolar cells. Schubert-Bornschein CSNB is subdivided into complete CSNB with an ON bipolar signaling defect and incomplete CSNB with both ON and OFF pathway involvement. Both subtypes are associated with variable degrees of night blindness or photophobia, reduced visual acuity, high myopia, and nystagmus. Whole-exome sequencing of a family screened negative for mutations in genes associated with CSNB identified biallelic mutations in the guanine nucleotide-binding protein subunit beta-3 gene (GNB3). Two siblings were compound heterozygous for a deletion (c.170_172delAGA [p.Lys57del]) and a nonsense mutation (c.1017G>A [p.Trp339∗]). The maternal aunt was homozygous for the nonsense mutation (c.1017G>A [p.Trp339∗]). Mutational analysis of GNB3 in a cohort of 58 subjects with CSNB identified a sporadic case individual with a homozygous GNB3 mutation (c.200C>T [p.Ser67Phe]). GNB3 encodes the β subunit of G protein heterotrimer (Gαβγ) and is known to modulate ON bipolar cell signaling and cone transducin function in mice. Affected human subjects showed an unusual CSNB phenotype with variable degrees of ON bipolar dysfunction and reduced cone sensitivity. This unique retinal disorder with dual anomaly in visual processing expands our knowledge about retinal signaling. PMID:27063057

  19. The Escherichia coli supX locus is topA, the structural gene for DNA topoisomerase I.

    PubMed Central

    Margolin, P; Zumstein, L; Sternglanz, R; Wang, J C

    1985-01-01

    Mutations in the supX locus, which result in the absence of DNA topoisomerase I enzyme activity in both Salmonella typhimurium and Escherichia coli, are all selected as suppressors of the leu-500 promoter mutation in S. typhimurium. To determine whether the supX locus is the structural gene topA for the DNA topoisomerase I enzyme or is a positive-acting regulator/activator gene for a nearby topA structural gene, nonsense mutations were selected in the E. coli supX gene carried on an F' episome in S. typhimurium cells. The cysB-topA region of the episomes with nonsense-mutant supX alleles were then cloned onto plasmid pBR322 and transformed into E. coli cells lacking a chromosomal supX gene. Three such E. coli strains, each carrying cloned DNA from episomes with different nonsense-mutant supX alleles, all lacked DNA topoisomerase I activity but expressed antigenic determinants specific to the enzyme; control cells lacked both enzyme activity and antigenic determinants. Maxicell studies of plasmid-coded proteins demonstrated the absence of the DNA topoisomerase I protein (100 kDa) in the three strains but the appearance of a new smaller peptide in each (36, 47, and 64 kDa). These new peptides must represent fragments of the enzyme resulting from translation termination at the supX nonsense codons and confirm the interpretation that the supX gene is topA, the structural gene for DNA topoisomerase I. Images PMID:2991925

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koivisto, U.M.; Viikari, J.S.; Kontula, K.

    Two deletions of the low-density lipoprotein (LDL) receptor gene were previously shown to account for about two thirds of all mutations causing familial hypercholesterolemia (FH) in Finland. We screened the DNA samples from a cohort representing the remaining 30% of Finnish heterozygous FH patients by amplifying all the 18 exons of the receptor gene by PCR and searching for DNA variations with the SSCP technique. Ten novel mutations were identified, comprising two nonsense and seven missense mutations as well as one frameshift mutation caused by a 13-bp deletion. A single nucleotide change, substituting adenine for guanidine at position 2533 andmore » resulting in an amino acid change of glycine to aspartic acid at codon 823, was found in DNA samples from 14 unrelated FH probands. This mutation (FH-Turku) affects the sequence encoding the putative basolateral sorting signal of the LDL receptor protein; however, the exact functional consequences of this mutation are yet to be examined. The FH-Turku gene and another point mutation (Leu380{r_arrow}His or FH-Pori) together account for {approximately}8% of the FH-causing genes in Finland and are particularly common among FH patients from the southwestern part of the country (combined, 30%). Primer-introduced restriction analysis was applied for convenient assay of the FH-Turku and FH-Pori point mutations. In conclusion, this paper demonstrates the unique genetic background of FH in Finland and describes a commonly occurring FH gene with a missense mutation closest to the C terminus thus far reported. 32 refs., 5 figs., 2 tabs.« less

  1. De novo mutations in genes of mediator complex causing syndromic intellectual disability: mediatorpathy or transcriptomopathy?

    PubMed

    Caro-Llopis, Alfonso; Rosello, Monica; Orellana, Carmen; Oltra, Silvestre; Monfort, Sandra; Mayo, Sonia; Martinez, Francisco

    2016-12-01

    Mutations in the X-linked gene MED12 cause at least three different, but closely related, entities of syndromic intellectual disability. Recently, a new syndrome caused by MED13L deleterious variants has been described, which shows similar clinical manifestations including intellectual disability, hypotonia, and other congenital anomalies. Genotyping of 1,256 genes related with neurodevelopment was performed by next-generation sequencing in three unrelated patients and their healthy parents. Clinically relevant findings were confirmed by conventional sequencing. Each patient showed one de novo variant not previously reported in the literature or databases. Two different missense variants were found in the MED12 or MED13L genes and one nonsense mutation was found in the MED13L gene. The phenotypic consequences of these mutations are closely related and/or have been previously reported in one or other gene. Additionally, MED12 and MED13L code for two closely related partners of the mediator kinase module. Consequently, we propose the concept of a common MED12/MED13L clinical spectrum, encompassing Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, Ohdo syndrome, MED13L haploinsufficiency syndrome, and others.

  2. Genetic counseling for a three-generation Chinese family with Waardenburg syndrome type II associated with a rare SOX10 mutation.

    PubMed

    Chen, Kaitian; Zong, Ling; Zhan, Yuan; Wu, Xuan; Liu, Min; Jiang, Hongyan

    2015-05-01

    Waardenburg syndrome is clinically and genetically heterogeneous. The SOX10 mutation related with Waardenburg syndrome type II is rare in Chinese. This study aimed to uncover the genetic causes of Waardenburg syndrome type II in a three-generation family to improve genetic counseling. Complete clinical and molecular evaluations were conducted in a three-generation Han Chinese family with Waardenburg syndrome type II. Targeted genetic counseling was provided to this family. We identified a rare heterozygous dominant mutation c.621C>A (p.Y207X) in SOX10 gene in this family. The premature termination codon occurs in exon 4, 27 residues downstream of the carboxyl end of the high mobility group box. Bioinformatics prediction suggested this variant to be disease-causing, probably due to nonsense-mediated mRNA decay. Useful genetic counseling was given to the family for prenatal guidance. Identification of a rare dominant heterozygous SOX10 mutation c.621C>A in this family provided an efficient way to understand the causes of Waardenburg syndrome type II and improved genetic counseling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. A novel nonsense mutation in CRYBB1 associated with autosomal dominant congenital cataract

    PubMed Central

    Yang, Juhua; Zhu, Yihua; Gu, Feng; He, Xiang; Cao, Zongfu; Li, Xuexi; Tong, Yi

    2008-01-01

    Purpose To identify the molecular defect underlying an autosomal dominant congenital nuclear cataract in a Chinese family. Methods Twenty-two members of a three-generation pedigree were recruited, clinical examinations were performed, and genomic DNA was extracted from peripheral blood leukocytes. All members were genotyped with polymorphic microsatellite markers adjacent to each of the known cataract-related genes. Linkage analysis was performed after genotyping. Candidate genes were screened for mutation using direct sequencing. Individuals were screened for presence of a mutation by restriction fragment length polymorphism (RFLP) analysis. Results Linkage analysis identified a maximum LOD score of 3.31 (recombination fraction [θ]=0.0) with marker D22S1167 on chromosome 22, which flanks the β-crystallin gene cluster (CRYBB3, CRYBB2, CRYBB1, and CRYBA4). Sequencing the coding regions and the flanking intronic sequences of these four candidate genes identified a novel, heterozygous C→T transition in exon 6 of CRYBB1 in the affected individuals of the family. This single nucleotide change introduced a novel BfaI site and was predicted to result in a nonsense mutation at codon 223 that changed a phylogenetically conserved amino acid to a stop codon (p.Q223X). RFLP analysis confirmed that this mutation co-segregated with the disease phenotype in all available family members and was not found in 100 normal unrelated individuals from the same ethnic background. Conclusions This study has identified a novel nonsense mutation in CRYBB1 (p.Q223X) associated with autosomal dominant congenital nuclear cataract. PMID:18432316

  4. Culture adaptation of malaria parasites selects for convergent loss-of-function mutants.

    PubMed

    Claessens, Antoine; Affara, Muna; Assefa, Samuel A; Kwiatkowski, Dominic P; Conway, David J

    2017-01-24

    Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide polymorphism (SNP) variants emerging over time were detected. Out of a total of five positively selected SNPs, four represented nonsense mutations resulting in stop codons, three of these in a single ApiAP2 transcription factor gene, and one in SRPK1. To survey further for nonsense mutants associated with culture, genome sequences of eleven long-term laboratory-adapted parasite strains were examined, revealing four independently acquired nonsense mutations in two other ApiAP2 genes, and five in Epac. No mutants of these genes exist in a large database of parasite sequences from uncultured clinical samples. This implicates putative master regulator genes in which multiple independent stop codon mutations have convergently led to culture adaptation, affecting most laboratory lines of P. falciparum. Understanding the adaptive processes should guide development of experimental models, which could include targeted gene disruption to adapt fastidious malaria parasite species to culture.

  5. Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation.

    PubMed

    Tarpey, Patrick S; Stevens, Claire; Teague, Jon; Edkins, Sarah; O'Meara, Sarah; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Butler, Adam; Cole, Jennifer; Dicks, Ed; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Hinton, Jonathon; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Tofts, Calli; Varian, Jennifer; West, Sofie; Widaa, Sara; Yates, Andy; Catford, Rachael; Butler, Julia; Mallya, Uma; Moon, Jenny; Luo, Ying; Dorkins, Huw; Thompson, Deborah; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Carpenter, Nancy; Simensen, Richard J; Schwartz, Charles E; Stevenson, Roger E; Turner, Gillian; Partington, Michael; Gecz, Jozef; Stratton, Michael R; Futreal, P Andrew; Raymond, F Lucy

    2006-12-01

    In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.

  6. Exome-first approach identified a novel gloss deletion associated with Lowe syndrome.

    PubMed

    Watanabe, Miki; Nakagawa, Ryuji; Kohmoto, Tomohiro; Naruto, Takuya; Suga, Ken-Ichi; Goji, Aya; Horikawa, Hideaki; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei

    2016-01-01

    Lowe syndrome (LS) is an X-linked disorder affecting the eyes, nervous system and kidneys, typically caused by missense or nonsense/frameshift OCRL mutations. We report a 6-month-old male clinically suspected to have LS, but without the Fanconi-type renal dysfunction. Using a targeted-exome sequencing-first approach, LS was diagnosed by the identification of a deletion involving 1.7 Mb at Xq25-q26.1, encompassing the entire OCRL gene and neighboring loci.

  7. Exome-first approach identified a novel gloss deletion associated with Lowe syndrome

    PubMed Central

    Watanabe, Miki; Nakagawa, Ryuji; Kohmoto, Tomohiro; Naruto, Takuya; Suga, Ken-ichi; Goji, Aya; Horikawa, Hideaki; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei

    2016-01-01

    Lowe syndrome (LS) is an X-linked disorder affecting the eyes, nervous system and kidneys, typically caused by missense or nonsense/frameshift OCRL mutations. We report a 6-month-old male clinically suspected to have LS, but without the Fanconi-type renal dysfunction. Using a targeted-exome sequencing-first approach, LS was diagnosed by the identification of a deletion involving 1.7 Mb at Xq25-q26.1, encompassing the entire OCRL gene and neighboring loci. PMID:27867521

  8. A novel recessive mutation in the gene ELOVL4 causes a neuro-ichthyotic disorder with variable expressivity

    PubMed Central

    2014-01-01

    Background A rare neuro-ichthyotic disorder characterized by ichthyosis, spastic quadriplegia and intellectual disability and caused by recessive mutations in ELOVL4, encoding elongase-4 protein has recently been described. The objective of the study was to search for sequence variants in the gene ELOVL4 in three affected individuals of a consanguineous Pakistani family exhibiting features of neuro-ichthyotic disorder. Methods Linkage in the family was searched by genotyping microsatellite markers linked to the gene ELOVL4, mapped at chromosome 6p14.1. Exons and splice junction sites of the gene ELOVL4 were polymerase chain reaction amplified and sequenced in an automated DNA sequencer. Results DNA sequence analysis revealed a novel homozygous nonsense mutation (c.78C > G; p.Tyr26*). Conclusions Our report further confirms the recently described ELOVL4-related neuro-ichthyosis and shows that the neurological phenotype can be absent in some individuals. PMID:24571530

  9. Canine chondrodysplasia caused by a truncating mutation in collagen-binding integrin alpha subunit 10.

    PubMed

    Kyöstilä, Kaisa; Lappalainen, Anu K; Lohi, Hannes

    2013-01-01

    The skeletal dysplasias are disorders of the bone and cartilage tissues. Similarly to humans, several dog breeds have been reported to suffer from different types of genetic skeletal disorders. We have studied the molecular genetic background of an autosomal recessive chondrodysplasia that affects the Norwegian Elkhound and Karelian Bear Dog breeds. The affected dogs suffer from disproportionate short stature dwarfism of varying severity. Through a genome-wide approach, we mapped the chondrodysplasia locus to a 2-Mb region on canine chromosome 17 in nine affected and nine healthy Elkhounds (praw = 7.42×10(-6), pgenome-wide = 0.013). The associated locus contained a promising candidate gene, cartilage specific integrin alpha 10 (ITGA10), and mutation screening of its 30 exons revealed a nonsense mutation in exon 16 (c.2083C>T; p.Arg695*) that segregated fully with the disease in both breeds (p = 2.5×10(-23)). A 24% mutation carrier frequency was indicated in NEs and an 8% frequency in KBDs. The ITGA10 gene product, integrin receptor α10-subunit combines into a collagen-binding α10β1 integrin receptor, which is expressed in cartilage chondrocytes and mediates chondrocyte-matrix interactions during endochondral ossification. As a consequence of the nonsense mutation, the α10-protein was not detected in the affected cartilage tissue. The canine phenotype highlights the importance of the α10β1 integrin in bone growth, and the large animal model could be utilized to further delineate its specific functions. Finally, this study revealed a candidate gene for human chondrodysplasias and enabled the development of a genetic test for breeding purposes to eradicate the disease from the two dog breeds.

  10. Growth Hormone Receptor Mutations Related to Individual Dwarfism

    PubMed Central

    Li, Charles; Zhang, Xiquan

    2018-01-01

    Growth hormone (GH) promotes body growth by binding with two GH receptors (GHRs) at the cell surface. GHRs interact with Janus kinase, signal transducers, and transcription activators to stimulate metabolic effects and insulin-like growth factor (IGF) synthesis. However, process dysfunctions in the GH–GHR–IGF-1 axis cause animal dwarfism. If, during the GH process, GHR is not successfully recognized and/or bound, or GHR fails to transmit the GH signal to IGF-1, the GH dysfunction occurs. The goal of this review was to focus on the GHR mutations that lead to failures in the GH–GHR–IGF-1 signal transaction process in the dwarf phenotype. Until now, more than 90 GHR mutations relevant to human short stature (Laron syndrome and idiopathic short stature), including deletions, missense, nonsense, frameshift, and splice site mutations, and four GHR defects associated with chicken dwarfism, have been described. Among the 93 identified mutations of human GHR, 68 occur extracellularly, 13 occur in GHR introns, 10 occur intracellularly, and two occur in the transmembrane. These mutations interfere with the interaction between GH and GHRs, GHR dimerization, downstream signaling, and the expression of GHR. These mutations cause aberrant functioning in the GH-GHR-IGF-1 axis, resulting in defects in the number and diameter of muscle fibers as well as bone development. PMID:29748515

  11. DEPDC5 mutations are not a frequent cause of familial temporal lobe epilepsy.

    PubMed

    Striano, Pasquale; Serioli, Elena; Santulli, Lia; Manna, Ida; Labate, Angelo; Dazzo, Emanuela; Pasini, Elena; Gambardella, Antonio; Michelucci, Roberto; Striano, Salvatore; Nobile, Carlo

    2015-10-01

    Mutations in the DEPDC5 (DEP domain-containing protein 5) gene are a major cause of familial focal epilepsy with variable foci (FFEVF) and are predicted to account for 12-37% of families with inherited focal epilepsies. To assess the clinical impact of DEPDC5 mutations in familial temporal lobe epilepsy, we screened a collection of Italian families with either autosomal dominant lateral temporal epilepsy (ADLTE) or familial mesial temporal lobe epilepsy (FMTLE). The probands of 28 families classified as ADLTE and 17 families as FMTLE were screened for DEPDC5 mutations by whole exome or targeted massive parallel sequencing. Putative mutations were validated by Sanger sequencing. We identified a DEPDC5 nonsense mutation (c.918C>G; p.Tyr306*) in a family with two affected members, clinically classified as FMTLE. The proband had temporal lobe seizures with prominent psychic symptoms (déjà vu, derealization, and forced thoughts); her mother had temporal lobe seizures, mainly featuring visceral epigastric auras and anxiety. In total, we found a single DEPDC5 mutation in one of (2.2%) 45 families with genetic temporal lobe epilepsy, a proportion much lower than that reported in other inherited focal epilepsies. © 2015 The Authors. Epilepsia published by Wiley Periodicals Inc. on behalf of International League Against Epilepsy.

  12. An uncommon phenotype with familial central hypogonadism caused by a novel PROP1 gene mutant truncated in the transactivation domain.

    PubMed

    Reynaud, Rachel; Barlier, Anne; Vallette-Kasic, Sophie; Saveanu, Alexandru; Guillet, Marie-Pierre; Simonin, Gilbert; Enjalbert, Alain; Valensi, Paul; Brue, Thierry

    2005-08-01

    PROP1 gene mutations are usually associated with childhood onset GH and TSH deficiencies, whereas gonadotroph deficiency is diagnosed at pubertal age. We report a novel PROP1 mutation revealed by familial normosmic hypogonadotropic hypogonadism. We performed in vitro transactivation and DNA binding experiments to study functional consequences of this mutation. Three brothers were followed in the Department of Endocrinology of a French university hospital. These patients from a consanguineous kindred were referred for cryptorchidism and/or delayed puberty. Initial investigations revealed hypogonadotropic hypogonadism. One of the patients had psychomotor retardation, intracranial hypertension, and minor renal malformations. The brothers reached normal adult height and developed GH and TSH deficiencies after age 30. A novel homozygous nonsense mutation (W194X) was found in the PROP1 gene, indicating that the protein is truncated in its transactivation domain. Transfection studies confirmed the deleterious effect of this mutation, whose transactivation capacity was only 34.4% of that of the wild-type. Unexpectedly altered DNA-binding properties suggested that the C-terminal end of the factor plays a role in protein-DNA interaction. PROP1 mutations should be considered among the growing number of genetic causes of initially isolated hypogonadotropic hypogonadism. This report extends the phenotype variability associated with PROP1 mutations.

  13. Association of a nonsense mutation (W1282X), the most common mutation in the Ashkenazi Jewish cystic fibrosis patients in Israel, with presentation of severe disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoshani, T.; Bashan, N.; Seret, H.

    1992-01-01

    Only about 30% of the cystic fibrosis chromosomes in the Israeli cystic fibrosis patient populations carry the major CF mutation ({Delta}F508). Since different Jewish ethnic groups tended to live as closed isolates until recent times, high frequencies of specific mutations are expected among the remainder cystic fibrosis chromosomes of these ethnic groups. Genetic factors appear to influence the severity of the disease. It is therefore expected that different mutations will be associated with either severe or mild phenotype. Direct genomic sequencing of exons included in the two nucleotide-binding folds of the putative CFTR protein was performed on 119 Israeli cysticmore » fibrosis patients from 97 families. One sequence alteration which is expected to create a termination at residue 1282 (W1282X) was found in 63 chromosomes. Of 95 chromosomes, 57(60%) are of Ashkenazi origin. In conclusion, the W1282X mutation is the most common cystic fibrosis mutation in the Ashkenazi Jewish patient population in Israel. This nonsense mutation is associated with presentation of severe disease.« less

  14. Alu element insertion in PKLR gene as a novel cause of pyruvate kinase deficiency in Middle Eastern patients.

    PubMed

    Lesmana, Harry; Dyer, Lisa; Li, Xia; Denton, James; Griffiths, Jenna; Chonat, Satheesh; Seu, Katie G; Heeney, Matthew M; Zhang, Kejian; Hopkin, Robert J; Kalfa, Theodosia A

    2018-03-01

    Pyruvate kinase deficiency (PKD) is the most frequent red blood cell enzyme abnormality of the glycolytic pathway and the most common cause of hereditary nonspherocytic hemolytic anemia. Over 250 PKLR-gene mutations have been described, including missense/nonsense, splicing and regulatory mutations, small insertions, small and gross deletions, causing PKD and hemolytic anemia of variable severity. Alu retrotransposons are the most abundant mobile DNA sequences in the human genome, contributing to almost 11% of its mass. Alu insertions have been associated with a number of human diseases either by disrupting a coding region or a splice signal. Here, we report on two unrelated Middle Eastern patients, both born from consanguineous parents, with transfusion-dependent hemolytic anemia, where sequence analysis revealed a homozygous insertion of AluYb9 within exon 6 of the PKLR gene, causing precipitous decrease of PKLR RNA levels. This Alu element insertion consists a previously unrecognized mechanism underlying pathogenesis of PKD. © 2017 Wiley Periodicals, Inc.

  15. Targeted next-generation sequencing reveals that a compound heterozygous mutation in phosphodiesterase 6a gene leads to retinitis pigmentosa in a Chinese family.

    PubMed

    Zhang, Shanshan; Li, Jie; Li, Shujin; Yang, Yeming; Yang, Mu; Yang, Zhenglin; Zhu, Xianjun; Zhang, Lin

    2018-04-25

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease with over 70 causative genes identified to date. However, approximately 40% of RP cases remain genetically unsolved, suggesting that many novel disease-causing mutations are yet to be identified. The purpose of this study is to identify the causative mutations of a Chinese RP family. Targeted next-generation sequencing (NGS) for a total of 163 genes which involved in inherited retinal disorders were used to screen the possible causative mutations. Sanger sequencing was used to verify the mutations. As results, we identified two heterozygous mutations: a splicing site mutation c.1407 + 1G>C and a nonsense mutation c. 1957C>T (p.R653X) in phosphodiesterase 6A (PDE6A) gene in the RP patient. These two mutations are inherited from his father and mother, respectively. Furthermore, these mutations are unique in our in-house database and are rare in human genome databases, implicating that these two mutations are pathological. By using targeted NGS method, we identified a compound heterozygous mutation in PDE6A gene that is associated with RP in a Chinese family.

  16. The Genome of a Bacillus Isolate Causing Anthrax in Chimpanzees Combines Chromosomal Properties of B. cereus with B. anthracis Virulence Plasmids

    PubMed Central

    Nattermann, Herbert; Brüggemann, Holger; Dupke, Susann; Wollherr, Antje; Franz, Tatjana; Pauli, Georg; Appel, Bernd; Liebl, Wolfgang; Couacy-Hymann, Emmanuel; Boesch, Christophe; Meyer, Frauke-Dorothee; Leendertz, Fabian H.; Ellerbrok, Heinz; Gottschalk, Gerhard; Grunow, Roland; Liesegang, Heiko

    2010-01-01

    Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as “B. cereus variety (var.) anthracis”. PMID:20634886

  17. Whole Exome Sequencing, Familial Genomic Triangulation, and Systems Biology Converge to Identify a Novel Nonsense Mutation in TAB2-encoded TGF-beta Activated Kinase 1 in a Child with Polyvalvular Syndrome.

    PubMed

    Ackerman, Jaeger P; Smestad, John A; Tester, David J; Qureshi, Muhammad Y; Crabb, Beau A; Mendelsohn, Nancy J; Ackerman, Michael J

    2016-09-01

    To use whole exome sequencing (WES) of a family trio to identify a genetic cause for polyvalvular syndrome. A male child was born with mild pulmonary valve stenosis and mild aortic root dilatation, and an atrial septal defect, ventricular septal defect, and patent ductus arteriosus that were closed surgically. Subsequently, the phenotype of polyvalvular syndrome with involvement of both semilunar and both atrioventricular valves emerged. His family history was negative for congenital heart disease. Because of hypotonia, myopia, soft pale skin, joint hypermobility, and mild facial dysmorphism, either Noonan syndrome- or William syndrome-spectrum disorders were suspected clinically. However, chromosomal analysis was normal and commercially available Noonan syndrome and William syndrome genetic tests were negative. Whole exome sequencing of the patient and both parents was performed. Variants were analyzed by sporadic and autosomal recessive inheritance models. A sporadic mutation, annotated as c.1491 T > A, in TAB2, resulting in a nonsense mutation, p.Y497X, in the TAB2-encoded TGF-beta activated kinase 1 (TAK1) was identified as the most likely disease-susceptibility gene. This mutation results in elimination of the terminal 197 amino acids, including the C-terminal binding motif critical for interactions with TRAF6 and TAK1. The combination of WES, genomic triangulation, and systems biology has uncovered perturbations in TGF-beta activated kinase 1 signaling as a novel pathogenic substrate for polyvalvular syndrome. © 2016 Wiley Periodicals, Inc.

  18. Spectrum of FANCA mutations in Italian Fanconi anemia patients: identification of six novel alleles and phenotypic characterization of the S858R variant.

    PubMed

    Savino, Maria; Borriello, Adriana; D'Apolito, Maria; Criscuolo, Maria; Del Vecchio, Maria; Bianco, Anna Monica; Di Perna, Michele; Calzone, Rita; Nobili, Bruno; Zatterale, Adriana; Zelante, Leopoldo; Joenje, Hans; Della Ragione, Fulvio; Savoia, Anna

    2003-10-01

    Fanconi anemia (FA) is an autosomal recessive disorder characterized by genomic instability, bone marrow failure, congenital malformations, and cancer predisposition. FA is a genetically heterogeneous disease with at least seven genes so far identified. The role of FA proteins is unknown although they interact in a common functional pathway. Here, we report six novel FANCA sequence changes and review all the mutations identified in Italy. Except for two missense substitutions, all are expected to cause a premature termination of the FANCA protein at various sites throughout the molecule. The premature terminations are due to nonsense and splice site mutations, as well as small insertions and deletions, and large genomic rearrangements. The expected truncated proteins were not detectable on Western blot analyses. The FANCA-S858R variant is instead expressed at lower level than that seen in normal cell lines and is associated with a non-ubiquinated FANCD2 protein, strongly suggesting that the amino acid substitution is a disease-causing mutation. The spectrum of FA mutations is widely in agreement with the heterogeneous ethnic origin of the Italian population. Copyright 2003 Wiley-Liss, Inc.

  19. Diversified clinical presentations associated with a novel sal-like 4 gene mutation in a Chinese pedigree with Duane retraction syndrome.

    PubMed

    Yang, Ming-ming; Ho, Mary; Lau, Henry H W; Tam, Pancy O S; Young, Alvin L; Pang, Chi Pui; Yip, Wilson W K; Chen, LiJia

    2013-01-01

    To determine the underlying genetic cause of Duane retraction syndrome (DRS) in a non-consanguineous Chinese Han family. Detailed ophthalmic and physical examinations were performed on all members from a pedigree with DRS. All exons and their adjacent splicing junctions of the sal-like 4 (SALL4) gene were amplified with polymerase chain reaction and analyzed with direct sequencing in all the recruited family members and 200 unrelated control subjects. Clinical examination revealed a broad spectrum of phenotypes in the DRS family. Mutation analysis of SALL4 identified a novel heterozygous duplication mutation, c.1919dupT, which was completely cosegregated with the disease in the family and absent in controls. This mutation was predicted to cause a frameshift, introducing a premature stop codon, when translated, resulting in a truncated SALL4 protein, i.e., p.Met640IlefsX25. Bioinformatics analysis showed that the affected region of SALL4 shared a highly conserved sequence across different species. Diversified clinical manifestations were observed in the c.1919dupT carriers of the family. We identified a novel truncating mutation in the SALL4 gene that leads to diversified clinical features of DRS in a Chinese family. This mutation is predicted to result in a truncated SALL4 protein affecting two functional domains and cause disease development due to haploinsufficiency through nonsense-mediated mRNA decay.

  20. Short communication: novel truncating mutations in the CFTR gene causing a severe form of cystic fibrosis in Italian patients.

    PubMed

    Lenarduzzi, S; Morgutti, M; Crovella, S; Coiana, A; Rosatelli, M C

    2014-11-14

    Cystic fibrosis (CF) is a common recessive genetic disease caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. More than 1800 different mutations have been described to date. Here, we report 3 novel mutations in CFTR in 3 Italian CF patients. To detect and identify 36 frequent mutations in Caucasians, we used the INNO-LiPA CFTR19 and INNO-LiPA CFTR17+Tn Update kits (Innogenetics; Ghent, Belgium). Our first analysis did not reveal both of the responsible mutations; thus, direct sequencing of the CFTR gene coding region was performed. The 3 patients were compound heterozygous. In one allele, the F508del (c.1521_1523delCTT, p.PHE508del) mutation in exon 11 was observed in each case. For the second allele, in patient No.1, direct sequencing revealed an 11-base pair deletion (GAGGCGATACT) in exon 14 (c.2236_2246del; pGlu746Alafs*29). In patient No. 2, direct sequencing revealed a nonsense mutation at nucleotide 3892 (c.3892G>T) in exon 24. In patient No. 3, direct sequencing revealed a deletion of cytosine in exon 27 (c.4296delC; p.Asn1432Lysfs*16). These 3 novel mutations indicate the production of a truncated protein, which consequently results in a non-functional polypeptide.

  1. A nonsense mutation in cGMP-dependent type II protein kinase (PRKG2) causes dwarfism in American Angus cattle.

    PubMed

    Koltes, James E; Mishra, Bishnu P; Kumar, Dinesh; Kataria, Ranjit S; Totir, Liviu R; Fernando, Rohan L; Cobbold, Rowland; Steffen, David; Coppieters, Wouter; Georges, Michel; Reecy, James M

    2009-11-17

    Historically, dwarfism was the major genetic defect in U.S. beef cattle. Aggressive culling and sire testing were used to minimize its prevalence; however, neither of these practices can eliminate a recessive genetic defect. We assembled a 4-generation pedigree to identify the mutation underlying dwarfism in American Angus cattle. An adaptation of the Elston-Steward algorithm was used to overcome small pedigree size and missing genotypes. The dwarfism locus was fine-mapped to BTA6 between markers AFR227 and BM4311. Four candidate genes were sequenced, revealing a nonsense mutation in exon 15 of cGMP-dependant type II protein kinase (PRKG2). This C/T transition introduced a stop codon (R678X) that truncated 85 C-terminal amino acids, including a large portion of the kinase domain. Of the 75 mutations discovered in this region, only this mutation was 100% concordant with the recessive pattern of inheritance in affected and carrier individuals (log of odds score = 6.63). Previous research has shown that PRKG2 regulates SRY (sex-determining region Y) box 9 (SOX9)-mediated transcription of collagen 2 (COL2). We evaluated the ability of wild-type (WT) or R678X PRKG2 to regulate COL2 expression in cell culture. Real-time PCR results confirmed that COL2 is overexpressed in cells that overexpressed R678X PRKG2 as compared with WT PRKG2. Furthermore, COL2 and COL10 mRNA expression was increased in dwarf cattle compared with unaffected cattle. These experiments indicate that the R678X mutation is functional, resulting in a loss of PRKG2 regulation of COL2 and COL10 mRNA expression. Therefore, we present PRKG2 R678X as a causative mutation for dwarfism cattle.

  2. A nonsense mutation in cGMP-dependent type II protein kinase (PRKG2) causes dwarfism in American Angus cattle

    PubMed Central

    Koltes, James E.; Mishra, Bishnu P.; Kumar, Dinesh; Kataria, Ranjit S.; Totir, Liviu R.; Fernando, Rohan L.; Cobbold, Rowland; Steffen, David; Coppieters, Wouter; Georges, Michel; Reecy, James M.

    2009-01-01

    Historically, dwarfism was the major genetic defect in U.S. beef cattle. Aggressive culling and sire testing were used to minimize its prevalence; however, neither of these practices can eliminate a recessive genetic defect. We assembled a 4-generation pedigree to identify the mutation underlying dwarfism in American Angus cattle. An adaptation of the Elston-Steward algorithm was used to overcome small pedigree size and missing genotypes. The dwarfism locus was fine-mapped to BTA6 between markers AFR227 and BM4311. Four candidate genes were sequenced, revealing a nonsense mutation in exon 15 of cGMP-dependant type II protein kinase (PRKG2). This C/T transition introduced a stop codon (R678X) that truncated 85 C-terminal amino acids, including a large portion of the kinase domain. Of the 75 mutations discovered in this region, only this mutation was 100% concordant with the recessive pattern of inheritance in affected and carrier individuals (log of odds score = 6.63). Previous research has shown that PRKG2 regulates SRY (sex-determining region Y) box 9 (SOX9)-mediated transcription of collagen 2 (COL2). We evaluated the ability of wild-type (WT) or R678X PRKG2 to regulate COL2 expression in cell culture. Real-time PCR results confirmed that COL2 is overexpressed in cells that overexpressed R678X PRKG2 as compared with WT PRKG2. Furthermore, COL2 and COL10 mRNA expression was increased in dwarf cattle compared with unaffected cattle. These experiments indicate that the R678X mutation is functional, resulting in a loss of PRKG2 regulation of COL2 and COL10 mRNA expression. Therefore, we present PRKG2 R678X as a causative mutation for dwarfism cattle. PMID:19887637

  3. Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta.

    PubMed

    Wang, Xin; Zhao, Yuming; Yang, Yuan; Qin, Man

    2015-01-01

    Amelogenesis imperfecta is a group of inherited diseases affecting the quality and quantity of dental enamel. To date, mutations in more than ten genes have been associated with non-syndromic amelogenesis imperfecta (AI). Among these, ENAM and LAMB3 mutations are known to be parts of the etiology of hypoplastic AI in human cases. When both alleles of LAMB3 are defective, it could cause junctional epidermolysis bullosa (JEB), while with only one mutant allele in the C-terminus of LAMB3, it could result in severe hypoplastic AI without skin fragility. We enrolled three Chinese families with hypoplastic autosomal-dominant AI. Despite the diagnosis falling into the same type, the characteristics of their enamel hypoplasia were different. Screening of ENAM and LAMB3 genes was performed by direct sequencing of genomic DNA from blood samples. Disease-causing mutations were identified and perfectly segregated with the enamel defects in three families: a 19-bp insertion mutation in the exon 7 of ENAM (c.406_407insTCAAAAAAGCCGACCACAA, p.K136Ifs*16) in Family 1, a single-base deletion mutation in the exon 5 of ENAM (c. 139delA, p. M47Cfs*11) in Family 2, and a LAMB3 nonsense mutation in the last exon (c.3466C>T, p.Q1156X) in Family 3. Our results suggest that heterozygous mutations in ENAM and LAMB3 genes can cause hypoplastic AI with markedly different phenotypes in Chinese patients. And these findings extend the mutation spectrum of both genes and can be used for mutation screening of AI in the Chinese population.

  4. Structure of the human MSH2 locus and analysis of two Muir-Torre kindreds for msh2 mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodner, R.D.; Lipford, J.; Kane, M.F.

    1994-12-01

    Hereditary nonpolyposis colorectal carcinoma (HNPCC) is a major cancer susceptibility syndrome known to be caused by inheritance of mutations in genes such as hMSH2 and hMLH1, which encode components of a DNA mismatch repair system. The MSH2 genomic locus has been cloned and shown to cover {approximately}73 kb of genomic DNA and to contain 16 exons. The sequence of all of the intron-exon junctions has been determined and used to develop methods for analyzing each MSH2 exon for mutations. These methods have been used to analyze two large HNPCC kindreds exhibiting features of the Muir-Torre syndrome and demonstrate that cancermore » susceptibility is due to the inheritance of a frameshift mutation in the MSH2 gene in one family and a nonsense mutation in the MSH2 gene in the other family. 59 refs., 5 figs., 1 tab.« less

  5. Novel compound heterozygous mutations in the OTOF Gene identified by whole-exome sequencing in auditory neuropathy spectrum disorder.

    PubMed

    Tang, Fengzhu; Ma, Dengke; Wang, Yulan; Qiu, Yuecai; Liu, Fei; Wang, Qingqing; Lu, Qiutian; Shi, Min; Xu, Liang; Liu, Min; Liang, Jianping

    2017-03-23

    Many hearing-loss diseases are demonstrated to have Mendelian inheritance caused by mutations in single gene. However, many deaf individuals have diseases that remain genetically unexplained. Auditory neuropathy is a sensorineural deafness in which sounds are able to be transferred into the inner ear normally but the transmission of the signals from inner ear to auditory nerve and brain is injured, also known as auditory neuropathy spectrum disorder (ANSD). The pathogenic mutations of the genes responsible for the Chinese ANSD population remain poorly understood. A total of 127 patients with non-syndromic hearing loss (NSHL) were enrolled in Guangxi Zhuang Autonomous Region. A hereditary deafness gene mutation screening was performed to identify the mutation sites in four deafness-related genes (GJB2, GJB3, 12S rRNA, and SLC26A4). In addition, whole-exome sequencing (WES) was applied to explore unappreciated mutation sites in the cases with the singularity of its phenotype. Well-characterized mutations were found in only 8.7% (11/127) of the patients. Interestingly, two mutations in the OTOF gene were identified in two affected siblings with ANSD from a Chinese family, including one nonsense mutation c.1273C > T (p.R425X) and one missense mutation c.4994 T > C (p.L1665P). Furthermore, we employed Sanger sequencing to confirm the mutations in each subject. Two compound heterozygous mutations in the OTOF gene were observed in the two affected siblings, whereas the two parents and unaffected sister were heterozygous carriers of c.1273C > T (father and sister) and c.4994 T > C (mother). The nonsense mutation p.R425X, contributes to a premature stop codon, may result in a truncated polypeptide, which strongly suggests its pathogenicity for ANSD. The missense mutation p.L1665P results in a single amino acid substitution in a highly conserved region. Two mutations in the OTOF gene in the Chinese deaf population were recognized for the first time. These findings not only extend the OTOF gene mutation spectrum for ANSD but also indicate that whole-exome sequencing is an effective approach to clarify the genetic characteristics in non-syndromic ANSD patients.

  6. Haploinsufficiency of ARID1B, a Member of the SWI/SNF-A Chromatin-Remodeling Complex, Is a Frequent Cause of Intellectual Disability

    PubMed Central

    Hoyer, Juliane; Ekici, Arif B.; Endele, Sabine; Popp, Bernt; Zweier, Christiane; Wiesener, Antje; Wohlleber, Eva; Dufke, Andreas; Rossier, Eva; Petsch, Corinna; Zweier, Markus; Göhring, Ina; Zink, Alexander M.; Rappold, Gudrun; Schröck, Evelin; Wieczorek, Dagmar; Riess, Olaf; Engels, Hartmut; Rauch, Anita; Reis, André

    2012-01-01

    Intellectual disability (ID) is a clinically and genetically heterogeneous common condition that remains etiologically unresolved in the majority of cases. Although several hundred diseased genes have been identified in X-linked, autosomal-recessive, or syndromic types of ID, the establishment of an etiological basis remains a difficult task in unspecific, sporadic cases. Just recently, de novo mutations in SYNGAP1, STXBP1, MEF2C, and GRIN2B were reported as relatively common causes of ID in such individuals. On the basis of a patient with severe ID and a 2.5 Mb microdeletion including ARID1B in chromosomal region 6q25, we performed mutational analysis in 887 unselected patients with unexplained ID. In this cohort, we found eight (0.9%) additional de novo nonsense or frameshift mutations predicted to cause haploinsufficiency. Our findings indicate that haploinsufficiency of ARID1B, a member of the SWI/SNF-A chromatin-remodeling complex, is a common cause of ID, and they add to the growing evidence that chromatin-remodeling defects are an important contributor to neurodevelopmental disorders. PMID:22405089

  7. Sequence variants in four genes underlying Bardet-Biedl syndrome in consanguineous families

    PubMed Central

    Ullah, Asmat; Umair, Muhammad; Yousaf, Maryam; Khan, Sher Alam; Nazim-ud-din, Muhammad; Shah, Khadim; Ahmad, Farooq; Azeem, Zahid; Ali, Ghazanfar; Alhaddad, Bader; Rafique, Afzal; Jan, Abid; Haack, Tobias B.; Strom, Tim M.; Meitinger, Thomas; Ghous, Tahseen

    2017-01-01

    Purpose To investigate the molecular basis of Bardet-Biedl syndrome (BBS) in five consanguineous families of Pakistani origin. Methods Linkage in two families (A and B) was established to BBS7 on chromosome 4q27, in family C to BBS8 on chromosome 14q32.1, and in family D to BBS10 on chromosome 12q21.2. Family E was investigated directly with exome sequence analysis. Results Sanger sequencing revealed two novel mutations and three previously reported mutations in the BBS genes. These mutations include two deletions (c.580_582delGCA, c.1592_1597delTTCCAG) in the BBS7 gene, a missense mutation (p.Gln449His) in the BBS8 gene, a frameshift mutation (c.271_272insT) in the BBS10 gene, and a nonsense mutation (p.Ser40*) in the MKKS (BBS6) gene. Conclusions Two novel mutations and three previously reported variants, identified in the present study, further extend the body of evidence implicating BBS6, BBS7, BBS8, and BBS10 in causing BBS. PMID:28761321

  8. Hypomorphic NOTCH3 mutation in an Italian family with CADASIL features.

    PubMed

    Moccia, Marcello; Mosca, Lorena; Erro, Roberto; Cervasio, Mariarosaria; Allocca, Roberto; Vitale, Carmine; Leonardi, Antonio; Caranci, Ferdinando; Del Basso-De Caro, Maria Laura; Barone, Paolo; Penco, Silvana

    2015-01-01

    The cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) is because of NOTCH3 mutations affecting the number of cysteine residues. In this view, the role of atypical NOTCH3 mutations is still debated. Therefore, we investigated a family carrying a NOTCH3 nonsense mutation, with dominantly inherited recurrent cerebrovascular disorders. Among 7 family members, 4 received a clinical diagnosis of CADASIL. A heterozygous truncating mutation in exon 3 (c.307C>T, p.Arg103X) was found in the 4 clinically affected subjects and in one 27-year old lady, only complaining of migraine with aura. Magnetic resonance imaging scans found typical signs of small-vessel disease in the 4 affected subjects, supporting the clinical diagnosis. Skin biopsies did not show the typical granular osmiophilic material, but only nonspecific signs of vascular damage, resembling those previously described in Notch3 knockout mice. Interestingly, messenger RNA (mRNA) analysis supports the hypothesis of an atypical NOTCH3 mutation, suggesting a nonsense-mediated mRNA decay. In conclusion, the present study broadens the spectrum of CADASIL mutations, and, therefore, opens new insights about Notch3 signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Generation and analysis of the thiazide-sensitive Na+ -Cl- cotransporter (Ncc/Slc12a3) Ser707X knockin mouse as a model of Gitelman syndrome.

    PubMed

    Yang, Sung-Sen; Lo, Yi-Fen; Yu, I-Shing; Lin, Shu-Wha; Chang, Tai-Hsiang; Hsu, Yu-Juei; Chao, Tai-Kuang; Sytwu, Huey-Kang; Uchida, Shinichi; Sasaki, Sei; Lin, Shih-Hua

    2010-12-01

    Gitelman syndrome (GS) is characterized by salt-losing hypotension, hypomagnesemia, hypokalemic metabolic alkalosis, and hypocalciuria. To better model human GS caused by a specific mutation in the thiazide-sensitive Na(+) -Cl(-) cotransporter (NCC) gene SLC12A3, we generated a nonsense Ncc Ser707X knockin mouse corresponding to human p.Ser710X (c.2135C>A), a recurrent mutation with severe phenotypes in Chinese GS patients. Compared with wild-type or heterozygous littermates, homozygous (Hom) knockin mice fully recapitulated the phenotype of human GS. The markedly reduced Ncc mRNA and virtually absent Ncc protein expression in kidneys of Hom mice was primarily due to nonsense-mediated mRNA decay (NMD) surveillance mechanisms. Expression of epithelial Na(+) channel (Enac), Ca(2+) channels (Trpv5 and Trpv6), and K(+) channels (Romk1 and maxi-K) were significantly increased. Late distal convoluted tubules (DCT) volume was increased and DCT cell ultrastructure appeared intact. High K(+) intake could not correct hypokalemia but caused a further increase in maxi-K but not Romk1 expression. Renal tissue from a patient with GS also showed the enhanced TRPV5 and ROMK1 expression in distal tubules. We suggest that the upregulation of TRPV5/6 and of ROMK1 and Maxi-K may contribute to hypocalciuria and hypokalemia in Ncc Ser707X knockin mice and human GS, respectively. © 2010 Wiley-Liss, Inc.

  10. [Using exon combined target region capture sequencing chip to detect the disease-causing genes of retinitis pigmentosa].

    PubMed

    Rong, Weining; Chen, Xuejuan; Li, Huiping; Liu, Yani; Sheng, Xunlun

    2014-06-01

    To detect the disease-causing genes of 10 retinitis pigmentosa pedigrees by using exon combined target region capture sequencing chip. Pedigree investigation study. From October 2010 to December 2013, 10 RP pedigrees were recruited for this study in Ningxia Eye Hospital. All the patients and family members received complete ophthalmic examinations. DNA was abstracted from patients, family members and controls. Using exon combined target region capture sequencing chip to screen the candidate disease-causing mutations. Polymerase chain reaction (PCR) and direct sequencing were used to confirm the disease-causing mutations. Seventy patients and 23 normal family members were recruited from 10 pedigrees. Among 10 RP pedigrees, 1 was autosomal dominant pedigrees and 9 were autosomal recessive pedigrees. 7 mutations related to 5 genes of 5 pedigrees were detected. A frameshift mutation on BBS7 gene was detected in No.2 pedigree, the patients of this pedigree combined with central obesity, polydactyly and mental handicap. No.2 pedigree was diagnosed as Bardet-Biedl syndrome finally. A missense mutation was detected in No.7 and No.10 pedigrees respectively. Because the patients suffered deafness meanwhile, the final diagnosis was Usher syndrome. A missense mutation on C3 gene related to age-related macular degeneration was also detected in No. 7 pedigrees. A nonsense mutation and a missense mutation on CRB1 gene were detected in No. 1 pedigree and a splicesite mutation on PROM1 gene was detected in No. 5 pedigree. Retinitis pigmentosa is a kind of genetic eye disease with diversity clinical phenotypes. Rapid and effective genetic diagnosis technology combined with clinical characteristics analysis is helpful to improve the level of clinical diagnosis of RP.

  11. Using whole-exome sequencing to investigate the genetic bases of lysosomal storage diseases of unknown etiology.

    PubMed

    Wang, Nan; Zhang, Yeting; Gedvilaite, Erika; Loh, Jui Wan; Lin, Timothy; Liu, Xiuping; Liu, Chang-Gong; Kumar, Dibyendu; Donnelly, Robert; Raymond, Kimiyo; Schuchman, Edward H; Sleat, David E; Lobel, Peter; Xing, Jinchuan

    2017-11-01

    Lysosomes are membrane-bound, acidic eukaryotic cellular organelles that play important roles in the degradation of macromolecules. Mutations that cause the loss of lysosomal protein function can lead to a group of disorders categorized as the lysosomal storage diseases (LSDs). Suspicion of LSD is frequently based on clinical and pathologic findings, but in some cases, the underlying genetic and biochemical defects remain unknown. Here, we performed whole-exome sequencing (WES) on 14 suspected LSD cases to evaluate the feasibility of using WES for identifying causal mutations. By examining 2,157 candidate genes potentially associated with lysosomal function, we identified eight variants in five genes as candidate disease-causing variants in four individuals. These included both known and novel mutations. Variants were corroborated by targeted sequencing and, when possible, functional assays. In addition, we identified nonsense mutations in two individuals in genes that are not known to have lysosomal function. However, mutations in these genes could have resulted in phenotypes that were diagnosed as LSDs. This study demonstrates that WES can be used to identify causal mutations in suspected LSD cases. We also demonstrate cases where a confounding clinical phenotype may potentially reflect more than one lysosomal protein defect. © 2017 Wiley Periodicals, Inc.

  12. Genetic variations in the hotspot region of RS1 gene in Indian patients with juvenile X-linked retinoschisis.

    PubMed

    Suganthalakshmi, Balasubbu; Shukla, Dhananjay; Rajendran, Anand; Kim, Ramasamy; Nallathambi, Jeyabalan; Sundaresan, Periasamy

    2007-04-19

    X-linked juvenile retinoschisis (XLRS) is the leading cause of macular degeneration in males. This condition is caused by mutations in the RS1 gene and is, characterized by schisis within the retina. The purpose of this study was to identify the mutations in the RS1 gene associated with XLRS in an Indian cohort. The coding region of RS1 was analyzed for mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and restriction fragment length polymorphism (RFLP) analysis in six unrelated subjects clinically diagnosed as having XLRS and in their available family members. Direct sequencing was performed for all samples that displayed an electrophoretic mobility shift in SSCP gel. Mutation analysis of RS1 gene revealed five mutations in exon 6 like c.574C>T, c.583A>G, c.608C>T, c.617G>A, and c.637C>T, respectively, among them four missense mutations, one nonsense mutation, and two novel sequence variations. These mutations were found in individuals who exhibited clinical features of bilateral foveal and peripheral retinoschisis consistent with XLRS. The mutations were absent in the 100 age matched control samples analyzed. This is the first report of mutations in RS1 to be associated with XLRS in the Indian population. The identified genetic variations, phenotype and genotype correlations were consistent with other studies. Identification of the causative mutation in patients with XLRS is helpful in confirming the diagnosis and in counseling of family members.

  13. Foxp2 mutations impair auditory-motor association learning.

    PubMed

    Kurt, Simone; Fisher, Simon E; Ehret, Günter

    2012-01-01

    Heterozygous mutations of the human FOXP2 transcription factor gene cause the best-described examples of monogenic speech and language disorders. Acquisition of proficient spoken language involves auditory-guided vocal learning, a specialized form of sensory-motor association learning. The impact of etiological Foxp2 mutations on learning of auditory-motor associations in mammals has not been determined yet. Here, we directly assess this type of learning using a newly developed conditioned avoidance paradigm in a shuttle-box for mice. We show striking deficits in mice heterozygous for either of two different Foxp2 mutations previously implicated in human speech disorders. Both mutations cause delays in acquiring new motor skills. The magnitude of impairments in association learning, however, depends on the nature of the mutation. Mice with a missense mutation in the DNA-binding domain are able to learn, but at a much slower rate than wild type animals, while mice carrying an early nonsense mutation learn very little. These results are consistent with expression of Foxp2 in distributed circuits of the cortex, striatum and cerebellum that are known to play key roles in acquisition of motor skills and sensory-motor association learning, and suggest differing in vivo effects for distinct variants of the Foxp2 protein. Given the importance of such networks for the acquisition of human spoken language, and the fact that similar mutations in human FOXP2 cause problems with speech development, this work opens up a new perspective on the use of mouse models for understanding pathways underlying speech and language disorders.

  14. Differential protein structural disturbances and suppression of assembly partners produced by nonsense GABRG2 epilepsy mutations: implications for disease phenotypic heterogeneity

    PubMed Central

    Wang, Juexin; Shen, Dingding; Xia, Geqing; Shen, Wangzhen; Macdonald, Robert L.; Xu, Dong; Kang, Jing-Qiong

    2016-01-01

    Mutations in GABAA receptor subunit genes are frequently associated with epilepsy, and nonsense mutations in GABRG2 are associated with several epilepsy syndromes including childhood absence epilepsy, generalized tonic clonic seizures and the epileptic encephalopathy, Dravet syndrome. The molecular basis for the phenotypic heterogeneity of mutations is unclear. Here we focused on three nonsense mutations in GABRG2 (GABRG2(R136*), GABRG2(Q390*) and GABRG2(W429*)) associated with epilepsies of different severities. Structural modeling and structure-based analysis indicated that the surface of the wild-type γ2 subunit was naturally hydrophobic, which is suitable to be buried in the cell membrane. Different mutant γ2 subunits had different stabilities and different interactions with their wild-type subunit binding partners because they adopted different conformations and had different surface hydrophobicities and different tendency to dimerize. We utilized flow cytometry and biochemical approaches in combination with lifted whole cell patch-clamp recordings. We demonstrated that the truncated subunits had no to minimal surface expression and unchanged or reduced surface expression of wild-type partnering subunits. The amplitudes of GABA-evoked currents from the mutant α1β2γ2(R136*), α1β2γ2(Q390*) and α1β2γ2(W429*) receptors were reduced compared to the currents from α1β2γ2 receptors but with differentially reduced levels. This thus suggests differential protein structure disturbances are correlated with disease severity. PMID:27762395

  15. CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88(L265P) -directed survival signalling in Waldenström macroglobulinaemia cells.

    PubMed

    Cao, Yang; Hunter, Zachary R; Liu, Xia; Xu, Lian; Yang, Guang; Chen, Jie; Tsakmaklis, Nickolas; Kanan, Sandra; Castillo, Jorge J; Treon, Steven P

    2015-03-01

    CXCR4(WHIM) frameshift and nonsense mutations follow MYD88(L265P) as the most common somatic variants in Waldenström Macroglobulinaemia (WM), and impact clinical presentation and ibrutinib response. While the nonsense (CXCR4(S338X) ) mutation has been investigated, little is known about CXCR4 frameshift (CXCR4(FS) ) mutations. We engineered WM cells to express CXCR4(FS) mutations present in patients, and compared their CXCL12 (SDF-1a) induced signalling and ibrutinib sensitivity to CXCR4(wild-type (WT)) and CXCR4(S338X) cells. Following CXCL12 stimulation, CXCR4(FS) and CXCR4(S338X) WM cells showed impaired CXCR4 receptor internalization, and enhanced AKT1 (also termed AKT) and MAPK1 (also termed ERK) activation versus CXCR(WT) cells (P < 0·05), though MAPK1 activation was more prolonged in CXCR4(S338X) cells (P < 0·05). CXCR4(FS) and CXCR4(S338X) cells, but not CXCR4(WT) cells, were rescued from ibrutinib-triggered apoptosis by CXCL12 that was reversed by AKT1, MAPK1 or CXCR4 antagonists. Treatment with an inhibitor that blocks MYD88(L265P) signalling triggered similar levels of apoptosis that was not abrogated by CXCL12 treatment in CXCR4(WT) and CXCR4(WHIM) cells. These studies show a functional role for CXCR4(FS) mutations in WM, and provide a framework for the investigation of CXCR4 antagonists with ibrutinib in CXCR4(WHIM) -mutated WM patients. Direct inhibition of MYD88(L265P) signalling overcomes CXCL12 triggered survival effects in CXCR4(WHIM) -mutated cells supporting a primary role for this survival pathway in WM. © 2014 John Wiley & Sons Ltd.

  16. First de novo ANK3 nonsense mutation in a boy with intellectual disability, speech impairment and autistic features.

    PubMed

    Kloth, Katja; Denecke, Jonas; Hempel, Maja; Johannsen, Jessika; Strom, Tim M; Kubisch, Christian; Lessel, Davor

    2017-09-01

    Ankyrin-G, encoded by ANK3, plays an important role in neurodevelopment and neuronal function. There are multiple isoforms of Ankyrin-G resulting in differential tissue expression and function. Heterozygous missense mutations in ANK3 have been associated with autism spectrum disorder. Further, in three siblings a homozygous frameshift mutation affecting only the longest isoform and a patient with a balanced translocation disrupting all isoforms were documented. The latter four patients were affected by a variable degree of intellectual disability, attention deficit hyperactivity disorder and autism. Here, we report on a boy with speech impairment, intellectual disability, autistic features, macrocephaly, macrosomia, chronic hunger and an altered sleeping pattern. By trio-whole-exome sequencing, we identified the first de novo nonsense mutation affecting all ANK3 transcripts. Thus, our data expand the phenotype of ANK3-associated diseases and suggest an isoform-based, phenotypic continuum between dominant and recessive ANK3-associated pathologies. Copyright © 2017. Published by Elsevier Masson SAS.

  17. Further expansion of the mutational spectrum of spondylo-meta-epiphyseal dysplasia with abnormal calcification.

    PubMed

    Ürel-Demir, Gizem; Simsek-Kiper, Pelin Ozlem; Akgün-Doğan, Özlem; Göçmen, Rahşan; Wang, Zheng; Matsumoto, Naomichi; Miyake, Noriko; Utine, Gülen Eda; Nishimura, Gen; Ikegawa, Shiro; Boduroglu, Koray

    2018-06-08

    Spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type, is a rare autosomal recessive disorder of the skeleton characterized by disproportionate short stature with narrow chest and dysmorphic facial features. The skeletal manifestations include platyspondyly, short flared ribs, short tubular bones with abnormal metaphyses and epiphyses, severe brachydactyly, and premature stippled calcifications in the cartilage. The abnormal calcifications are so distinctive as to point to the definitive diagnosis. However, they may be too subtle to attract diagnostic attention in infancy. Homozygous variants in DDR2 cause this disorder. We report on a 5-year-old girl with the classic phenotype of SMED, SL-AC in whom a novel homozygous nonsense mutation in DDR2 was detected using exome sequencing.

  18. A novel intronic mutation in the DDP1 gene in a family with X-linked dystonia-deafness syndrome.

    PubMed

    Ezquerra, Mario; Campdelacreu, Jaume; Muñoz, Esteban; Tolosa, Eduardo; Martí, María J

    2005-02-01

    X-linked dystonia-deafness syndrome (Mohr-Tranebjaerg syndrome) is a rare neurodegenerative disease characterized by hearing loss and dystonia. So far, 7 mutations in the coding region of the DDP1 gene have been described. They consist of frameshift, nonsense, missense mutations or deletions. To investigate the presence of mutations in the DDP1 gene in a family with dystonia-deafness syndrome. Seven members belonging to 2 generations of a family with 2 affected subjects underwent genetic analysis. Mutational screening in the DDP1 gene was made through DNA direct sequencing. We found an intronic mutation in the DDP1 gene. It consists of an A-to-C substitution in the position -23 in reference to the first nucleotide of exon 2 (IVS1-23A>C). The mutation was present in 2 affected men and their respective unaffected mothers, whereas it was absent in the healthy men from this family and in 90 healthy controls. Intronic mutations in the DDP1 gene can also cause X-linked dystonia-deafness syndrome. In our case, the effect of the mutation could be due to a splicing alteration.

  19. Fused pulmonary lobes is a rat model of human Fraser syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyozumi, Daiji; Nakano, Itsuko; Takahashi, Ken L.

    Highlights: {yields} Fused pulmonary lobes (fpl) mutant rats exhibit similar phenotypes to Fraser syndrome. {yields} The fpl gene harbors a nonsense mutation in Fraser syndrome-associated gene Frem2. {yields} Fpl mutant is defined as a first model of human Fraser syndrome in rats. -- Abstract: Fused pulmonary lobes (fpl) is a mutant gene that is inherited in an autosomal recessive manner and causes various developmental defects, including fusion of pulmonary lobes, and eyelid and digit anomalies in rats. Since these developmental defects closely resemble those observed in patients with Fraser syndrome, a recessive multiorgan disorder, and its model animals, we investigatedmore » whether the abnormal phenotypes observed in fpl/fpl mutant rats are attributable to a genetic disorder similar to Fraser syndrome. At the epidermal basement membrane in fpl/fpl mutant neonates, the expression of QBRICK, a basement membrane protein whose expression is attenuated in Fraser syndrome model mice, was greatly diminished compared with control littermates. Quantitative RT-PCR analyses of Fraser syndrome-related genes revealed that Frem2 transcripts were markedly diminished in QBRICK-negative embryos. Genomic DNA sequencing of the fpl/fpl mutant identified a nonsense mutation that introduced a stop codon at serine 2005 in Frem2. These findings indicate that the fpl mutant is a rat model of human Fraser syndrome.« less

  20. Stickler syndrome caused by COL2A1 mutations: genotype–phenotype correlation in a series of 100 patients

    PubMed Central

    Hoornaert, Kristien P; Vereecke, Inge; Dewinter, Chantal; Rosenberg, Thomas; Beemer, Frits A; Leroy, Jules G; Bendix, Laila; Björck, Erik; Bonduelle, Maryse; Boute, Odile; Cormier-Daire, Valerie; De Die-Smulders, Christine; Dieux-Coeslier, Anne; Dollfus, Hélène; Elting, Mariet; Green, Andrew; Guerci, Veronica I; Hennekam, Raoul C M; Hilhorts-Hofstee, Yvonne; Holder, Muriel; Hoyng, Carel; Jones, Kristi J; Josifova, Dragana; Kaitila, Ilkka; Kjaergaard, Suzanne; Kroes, Yolande H; Lagerstedt, Kristina; Lees, Melissa; LeMerrer, Martine; Magnani, Cinzia; Marcelis, Carlo; Martorell, Loreto; Mathieu, Michèle; McEntagart, Meriel; Mendicino, Angela; Morton, Jenny; Orazio, Gabrielli; Paquis, Véronique; Reish, Orit; Simola, Kalle O J; Smithson, Sarah F; Temple, Karen I; Van Aken, Elisabeth; Van Bever, Yolande; van den Ende, Jenneke; Van Hagen, Johanna M; Zelante, Leopoldo; Zordania, Riina; De Paepe, Anne; Leroy, Bart P; De Buyzere, Marc; Coucke, Paul J; Mortier, Geert R

    2010-01-01

    Stickler syndrome is an autosomal dominant connective tissue disorder caused by mutations in different collagen genes. The aim of our study was to define more precisely the phenotype and genotype of Stickler syndrome type 1 by investigating a large series of patients with a heterozygous mutation in COL2A1. In 188 probands with the clinical diagnosis of Stickler syndrome, the COL2A1 gene was analyzed by either a mutation scanning technique or bidirectional fluorescent DNA sequencing. The effect of splice site alterations was investigated by analyzing mRNA. Multiplex ligation-dependent amplification analysis was used for the detection of intragenic deletions. We identified 77 different COL2A1 mutations in 100 affected individuals. Analysis of the splice site mutations showed unusual RNA isoforms, most of which contained a premature stop codon. Vitreous anomalies and retinal detachments were found more frequently in patients with a COL2A1 mutation compared with the mutation-negative group (P<0.01). Overall, 20 of 23 sporadic patients with a COL2A1 mutation had either a cleft palate or retinal detachment with vitreous anomalies. The presence of vitreous anomalies, retinal tears or detachments, cleft palate and a positive family history were shown to be good indicators for a COL2A1 defect. In conclusion, we confirm that Stickler syndrome type 1 is predominantly caused by loss-of-function mutations in the COL2A1 gene as >90% of the mutations were predicted to result in nonsense-mediated decay. On the basis of binary regression analysis, we developed a scoring system that may be useful when evaluating patients with Stickler syndrome. PMID:20179744

  1. Identifying RNA splicing factors using IFT genes in Chlamydomonas reinhardtii.

    PubMed

    Lin, Huawen; Zhang, Zhengyan; Iomini, Carlo; Dutcher, Susan K

    2018-03-01

    Intraflagellar transport moves proteins in and out of flagella/cilia and it is essential for the assembly of these organelles. Using whole-genome sequencing, we identified splice site mutations in two IFT genes, IFT81 ( fla9 ) and IFT121 ( ift121-2 ), which lead to flagellar assembly defects in the unicellular green alga Chlamydomonas reinhardtii The splicing defects in these ift mutants are partially corrected by mutations in two conserved spliceosome proteins, DGR14 and FRA10. We identified a dgr14 deletion mutant, which suppresses the 3' splice site mutation in IFT81 , and a frameshift mutant of FRA10 , which suppresses the 5' splice site mutation in IFT121 Surprisingly, we found dgr14-1 and fra10 mutations suppress both splice site mutations. We suggest these two proteins are involved in facilitating splice site recognition/interaction; in their absence some splice site mutations are tolerated. Nonsense mutations in SMG1 , which is involved in nonsense-mediated decay, lead to accumulation of aberrant transcripts and partial restoration of flagellar assembly in the ift mutants. The high density of introns and the conservation of noncore splicing factors, together with the ease of scoring the ift mutant phenotype, make Chlamydomonas an attractive organism to identify new proteins involved in splicing through suppressor screening. © 2018 The Authors.

  2. Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome.

    PubMed

    Hannibal, Mark C; Buckingham, Kati J; Ng, Sarah B; Ming, Jeffrey E; Beck, Anita E; McMillin, Margaret J; Gildersleeve, Heidi I; Bigham, Abigail W; Tabor, Holly K; Mefford, Heather C; Cook, Joseph; Yoshiura, Koh-ichiro; Matsumoto, Tadashi; Matsumoto, Naomichi; Miyake, Noriko; Tonoki, Hidefumi; Naritomi, Kenji; Kaname, Tadashi; Nagai, Toshiro; Ohashi, Hirofumi; Kurosawa, Kenji; Hou, Jia-Woei; Ohta, Tohru; Liang, Deshung; Sudo, Akira; Morris, Colleen A; Banka, Siddharth; Black, Graeme C; Clayton-Smith, Jill; Nickerson, Deborah A; Zackai, Elaine H; Shaikh, Tamim H; Donnai, Dian; Niikawa, Norio; Shendure, Jay; Bamshad, Michael J

    2011-07-01

    Kabuki syndrome is a rare, multiple malformation disorder characterized by a distinctive facial appearance, cardiac anomalies, skeletal abnormalities, and mild to moderate intellectual disability. Simplex cases make up the vast majority of the reported cases with Kabuki syndrome, but parent-to-child transmission in more than a half-dozen instances indicates that it is an autosomal dominant disorder. We recently reported that Kabuki syndrome is caused by mutations in MLL2, a gene that encodes a Trithorax-group histone methyltransferase, a protein important in the epigenetic control of active chromatin states. Here, we report on the screening of 110 families with Kabuki syndrome. MLL2 mutations were found in 81/110 (74%) of families. In simplex cases for which DNA was available from both parents, 25 mutations were confirmed to be de novo, while a transmitted MLL2 mutation was found in two of three familial cases. The majority of variants found to cause Kabuki syndrome were novel nonsense or frameshift mutations that are predicted to result in haploinsufficiency. The clinical characteristics of MLL2 mutation-positive cases did not differ significantly from MLL2 mutation-negative cases with the exception that renal anomalies were more common in MLL2 mutation-positive cases. These results are important for understanding the phenotypic consequences of MLL2 mutations for individuals and their families as well as for providing a basis for the identification of additional genes for Kabuki syndrome. Copyright © 2011 Wiley-Liss, Inc.

  3. Novel compound heterozygous mutations in MYO7A Associated with Usher syndrome 1 in a Chinese family.

    PubMed

    Gao, Xue; Wang, Guo-Jian; Yuan, Yong-Yi; Xin, Feng; Han, Ming-Yu; Lu, Jing-Qiao; Zhao, Hui; Yu, Fei; Xu, Jin-Cao; Zhang, Mei-Guang; Dong, Jiang; Lin, Xi; Dai, Pu

    2014-01-01

    Usher syndrome is an autosomal recessive disease characterized by sensorineural hearing loss, age-dependent retinitis pigmentosa (RP), and occasionally vestibular dysfunction. The most severe form is Usher syndrome type 1 (USH1). Mutations in the MYO7A gene are responsible for USH1 and account for 29-55% of USH1 cases. Here, we characterized a Chinese family (no. 7162) with USH1. Combining the targeted capture of 131 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified two deleterious compound heterozygous mutations in the MYO7A gene: a reported missense mutation c.73G>A (p.G25R) and a novel nonsense mutation c.462C>A (p.C154X). The two compound variants are absent in 219 ethnicity-matched controls, co-segregates with the USH clinical phenotypes, including hearing loss, vestibular dysfunction, and age-dependent penetrance of progressive RP, in family 7162. Therefore, we concluded that the USH1 in this family was caused by compound heterozygous mutations in MYO7A.

  4. Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG) Profiles.

    PubMed

    Fofana, Bourlaye; Ghose, Kaushik; Somalraju, Ashok; McCallum, Jason; Main, David; Deyholos, Michael K; Rowland, Gordon G; Cloutier, Sylvie

    2017-01-01

    Flax secoisolariciresinol (SECO) diglucoside (SDG) lignan is an emerging natural product purported to prevent chronic diseases in humans. SECO, the aglycone form of SDG, has shown higher intestinal cell absorption but it is not accumulated naturally in planta . Recently, we have identified and characterized a UDP-glucosyltransferase gene, UGT74S1 , that glucosylates SECO into its monoglucoside (SMG) and SDG forms when expressed in yeast. However, whether this gene is unique in controlling SECO glucosylation into SDG in planta is unclear. Here, we report on the use of UGT74S1 in reverse and forward genetics to characterize an ethyl methane sulfonate (EMS) mutagenized flax population from cultivar CDC Bethune and consisting of 1996 M2 families. EMS mutagenesis generated 73 SNP variants causing 79 mutational events in the UGT74S1 exonic regions of 93 M2 families. The mutation frequency in the exonic regions was determined to be one per 28 Kb. Of these mutations, 13 homozygous missense mutations and two homozygous nonsense mutations were observed and all were transmitted into the M3 and M4 generations. Forward genetics screening of the population showed homozygous nonsense mutants completely lacking SDG biosynthesis while the production of SMG was observed only in a subset of the M4 lines. Heterozygous or homozygous M4 missense mutants displayed a wide range of SDG levels, some being greater than those of CDC Bethune. No additional deleterious mutations were detected in these mutant lines using a panel of 10 other genes potentially involved in the lignan biosynthesis. This study provides further evidence that UGT74S1 is unique in controlling SDG formation from SECO and this is the first report of non-transgenic flax germplasm with simultaneous knockout of SDG and presence of SMG in planta .

  5. Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG) Profiles

    PubMed Central

    Fofana, Bourlaye; Ghose, Kaushik; Somalraju, Ashok; McCallum, Jason; Main, David; Deyholos, Michael K.; Rowland, Gordon G.; Cloutier, Sylvie

    2017-01-01

    Flax secoisolariciresinol (SECO) diglucoside (SDG) lignan is an emerging natural product purported to prevent chronic diseases in humans. SECO, the aglycone form of SDG, has shown higher intestinal cell absorption but it is not accumulated naturally in planta. Recently, we have identified and characterized a UDP-glucosyltransferase gene, UGT74S1, that glucosylates SECO into its monoglucoside (SMG) and SDG forms when expressed in yeast. However, whether this gene is unique in controlling SECO glucosylation into SDG in planta is unclear. Here, we report on the use of UGT74S1 in reverse and forward genetics to characterize an ethyl methane sulfonate (EMS) mutagenized flax population from cultivar CDC Bethune and consisting of 1996 M2 families. EMS mutagenesis generated 73 SNP variants causing 79 mutational events in the UGT74S1 exonic regions of 93 M2 families. The mutation frequency in the exonic regions was determined to be one per 28 Kb. Of these mutations, 13 homozygous missense mutations and two homozygous nonsense mutations were observed and all were transmitted into the M3 and M4 generations. Forward genetics screening of the population showed homozygous nonsense mutants completely lacking SDG biosynthesis while the production of SMG was observed only in a subset of the M4 lines. Heterozygous or homozygous M4 missense mutants displayed a wide range of SDG levels, some being greater than those of CDC Bethune. No additional deleterious mutations were detected in these mutant lines using a panel of 10 other genes potentially involved in the lignan biosynthesis. This study provides further evidence that UGT74S1 is unique in controlling SDG formation from SECO and this is the first report of non-transgenic flax germplasm with simultaneous knockout of SDG and presence of SMG in planta. PMID:28983308

  6. Isolated growth hormone deficiency in two siblings because of paternal mosaicism for a mutation in the GH1 gene.

    PubMed

    Tsubahara, Mayuko; Hayashi, Yoshitaka; Niijima, Shin-ichi; Yamamoto, Michiyo; Kamijo, Takashi; Murata, Yoshiharu; Haruna, Hidenori; Okumura, Akihisa; Shimizu, Toshiaki

    2012-03-01

      Mutations in the GH1 gene have been identified in patients with isolated growth hormone deficiency (IGHD). Mutations causing aberrant splicing of exon 3 of GH1 that have been identified in IGHD are inherited in an autosomal dominant manner, whereas other mutations in GH1 that have been identified in IGHD are inherited in an autosomal recessive manner.   Two siblings born from nonconsanguineous healthy parents exhibited IGHD. To elucidate the cause, GH1 in all family members was analysed.   Two novel mutations in GH1, a point mutation in intron 3 and a 16-bp deletion in exon 3, were identified by sequence analyses. The intronic mutation was present in both siblings and was predicted to cause aberrant splicing. The deletion was present in one of the siblings as well as the mother with normal stature and was predicted to cause rapid degradation of mRNA through nonsense-mediated mRNA decay. The point mutation was not identified in the parents' peripheral blood DNA; however, it was detected in the DNA extracted from the father's sperms. As a trace of the mutant allele was detected in the peripheral blood of the father using PCR-RFLP, the mutation is likely to have occurred de novo at an early developmental stage before differentiation of somatic cells and germline cells.   This is the first report of mosaicism for a mutation in GH1 in a family with IGHD. It is clear that the intronic mutation plays a dominant role in the pathogenesis of IGHD in this family, as one of the siblings who had only the point mutation was affected. On the other hand, the other sibling was a compound heterozygote for the point mutation and the 16-bp deletion and it may be arguable whether IGHD in this patient should be regarded as autosomal dominant or recessive. © 2012 Blackwell Publishing Ltd.

  7. A novel mutation in SCN9A in a child with congenital insensitivity to pain.

    PubMed

    Shorer, Zamir; Wajsbrot, Einav; Liran, Tamir-Hostovsky; Levy, Jacov; Parvari, Ruti

    2014-01-01

    [corrected] Congenital insensitivity to pain (CIP) is a rare condition in which patients have no pain perception and anosmia but are otherwise essentially normal (OMIM 243000). The recent discovery of the genetic defects underlying 3 monogenic pain disorders has provided additional and important insights about some components of human pain. Genetic studies in families demonstrating recessively inherited channelopathy-associated insensitivity to pain have identified nonsense mutations that result in truncation of the voltage-gated sodium channel type IX subunit (SCN9A), a 113.5-kb gene comprising coding 26 exons. Here we describe a patient with CIP with a new mutation in SCN9A not described yet. All exons were sequenced. All 26 coding exons were sequenced and two changes were identified in homozygosity in exon 10: c.1126 A > C causing K376Q and c.1124delG causing p.G375Afs* frame shift. We report a novel, loss-of-function mutation in homozygosity that causes congenital insensitivity to pain and provide a comprehensive clinical description of the patient. This contributes to the clinical and neurophysiological characteristic of the sodium channel Nav1.7 channelopathy and expand our genetic knowledge which might provide more accurate and comprehensive clinical electrophysiological and genetic information. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Association of a Novel Nonsense Mutation in KIAA1279 with Goldberg-Shprintzen Syndrome.

    PubMed

    Salehpour, Shadab; Hashemi-Gorji, Feyzollah; Soltani, Ziba; Ghafouri-Fard, Soudeh; Miryounesi, Mohammad

    2017-01-01

    Goldberg-Shprintzen syndrome (OMIM 609460) (GOSHS) is an autosomal recessive multiple congenital anomaly syndrome distinguished by intellectual disability, microcephaly, and dysmorphic facial characteristics. Most affected individuals also have Hirschsprung disease and/or gyral abnormalities of the brain. This syndrome has been associated with KIAA1279 gene mutations at 10q22.1. Here we report a 16 yr old male patient referred to Center for Comprehensive Genetic Services, Tehran, Iran in 2015 with cardinal features of GOSHS in addition to refractory seizures. Whole exome sequencing in the patient revealed a novel nonsense (stop gain) homozygous mutation in KIAA1279 gene (KIAA1279: NM_015634:exon6:c.C976T:p.Q326X). Considering the wide range of phenotypic variations in GOSHS, relying on phenotypic characteristics for discrimination of GOSH from similar syndromes may lead to misdiagnosis. Consequently, molecular diagnostic tools would help in accurate diagnosis of such overlapping phenotypes.

  9. An Indian child with Kindler syndrome resulting from a new homozygous nonsense mutation (C468X) in the KIND1 gene.

    PubMed

    Sethuraman, G; Fassihi, H; Ashton, G H S; Bansal, A; Kabra, M; Sharma, V K; McGrath, J A

    2005-05-01

    Kindler syndrome is an inherited skin condition that presents with blistering followed by photosensitivity and a progressive poikiloderma. The disorder results from mutations in the KIND1 gene, encoding the protein kindlin-1, a recently characterized 677-amino acid protein involved in anchorage of the actin cytoskeleton to the extracellular matrix. We report the clinical features of an 11-year-old boy with Kindler syndrome from a consanguineous Indian family and the identification of a homozygous nonsense mutation (C468X) in exon 12 of the KIND1 gene in his genomic DNA. This mutation has not been described previously but is similar to the 17 previously published KIND1 mutations that are all predicted to lead to loss of kindlin-1 protein expression and function. The clinical features in this boy highlight the relevance of kindlin-1 in skin biology, specifically to epidermal adhesion and response to acute and chronic sun exposure. Delineation of this new pathogenic mutation in KIND1 is also useful for genetic counselling in this family and in assessing carrier status in unaffected family members.

  10. Concentration of mutations causing Schmid metaphyseal chondrodysplasia in the NC1 domain of type X collagen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntosh, I.; Abbott, M.H.; Francomano, C.A.

    1994-09-01

    Schmid metaphyseal chondrodysplasia (SMCD, MIM 156500) is an autosomal dominant disorder of the osseous skeleton resulting in short stature, coxa vara and a waddling gait. Type X collagen is an extracellular matrix protein expressed exclusively by hypertrophic chondrocytes. We have previously identified four mutations in the type X collagen gene (COL10A1) in patients with SMCD. Each of these mutations, as well as another three reported by other investigators, are in the carboxy-terminal non-collagenous domain (NC1). Here, we present data for another three mutations each predicted to cause premature termination of translation within the NC1 domain. Two are nonsense mutations, Y628Xmore » and W651X, while the third is a frameshift resulting from the deletion of two nucleotides, 1856delCC. Each of these mutations occurred de novo, resulting in sporadic cases of SMCD. Four frameshift mutations have now been reported to initiate within 10bp of each other in the NC1 domain, namely 1865delC, 1856delCC, 1856del13 and 1866del10. These findings further support the hypothesis that SMCD is the result of the mutant type X collagen molecule being unable to participate in trimerization, although a dominant-negative model of disease pathogenesis has not been formally excluded.« less

  11. Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta

    PubMed Central

    Huckert, Mathilde; Stoetzel, Corinne; Morkmued, Supawich; Laugel-Haushalter, Virginie; Geoffroy, Véronique; Muller, Jean; Clauss, François; Prasad, Megana K.; Obry, Frédéric; Raymond, Jean Louis; Switala, Marzena; Alembik, Yves; Soskin, Sylvie; Mathieu, Eric; Hemmerlé, Joseph; Weickert, Jean-Luc; Dabovic, Branka Brukner; Rifkin, Daniel B.; Dheedene, Annelies; Boudin, Eveline; Caluseriu, Oana; Cholette, Marie-Claude; Mcleod, Ross; Antequera, Reynaldo; Gellé, Marie-Paule; Coeuriot, Jean-Louis; Jacquelin, Louis-Frédéric; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Van Hul, Wim; Bertola, Debora; Dollé, Pascal; Verloes, Alain; Mortier, Geert; Dollfus, Hélène; Bloch-Zupan, Agnès

    2015-01-01

    Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder. PMID:25669657

  12. Novel monoamine oxidase A knock out mice with human-like spontaneous mutation.

    PubMed

    Scott, Anna L; Bortolato, Marco; Chen, Kevin; Shih, Jean C

    2008-05-07

    A novel line of mutant mice [monoamine oxidase A knockout (MAOA KO)] harboring a spontaneous point nonsense mutation in exon 8 of the MAO A gene was serendipitously identified in a 129/SvEvTac colony. This mutation is analogous to the cause of a rare human disorder, Brunner syndrome, characterized by complete MAO A deficiency and impulsive aggressiveness. Concurrent with previous studies of MAO A KO mice generated by insertional mutagenesis ('Tg8'), MAOA(A863T) KO lack MAO A enzyme activity and display enhanced aggression toward intruder mice. MAOA(A863T) KO, however, exhibited lower locomotor activity in a novel, inescapable open field and similar immobility during tail suspension compared with wild type, observations which differ from reports of Tg8. These findings consolidate evidence linking MAO A to aggression and highlight subtle yet distinctive phenotypical characteristics.

  13. Novel monoamine oxidase A knock out mice with human-like spontaneous mutation

    PubMed Central

    Scott, Anna L.; Bortolato, Marco; Chen, Kevin; Shih, Jean C.

    2012-01-01

    A novel line of mutant mice [monoamine oxidase A knockout (MAOAA863T KO)] harboring a spontaneous point nonsense mutation in exon 8 of the MAO A gene was serendipitously identified in a 129/SvEvTac colony. This mutation is analogous to the cause of a rare human disorder, Brunner syndrome, characterized by complete MAO A deficiency and impulsive aggressiveness. Concurrent with previous studies of MAO A KO mice generated by insertional mutagenesis (‘Tg8’), MAOAA863T KO lack MAO A enzyme activity and display enhanced aggression toward intruder mice. MAOAA863T KO, however, exhibited lower locomotor activity in a novel, inescapable open field and similar immobility during tail suspension compared with wild type, observations which differ from reports of Tg8. These findings consolidate evidence linking MAO A to aggression and highlight subtle yet distinctive phenotypical characteristics. PMID:18418249

  14. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa

    PubMed Central

    McGee, Terri L.; Seyedahmadi, Babak Jian; Sweeney, Meredith O.; Dryja, Thaddeus P.; Berson, Eliot L.

    2010-01-01

    Background Usher syndrome type II (USH2) is an autosomal recessive disorder characterized by retinitis pigmentosa (RP) and mild to moderate sensorineural hearing loss. Mutations in the USH2A gene are the most common cause of USH2 and are also a cause of some forms of RP without hearing loss (ie non-syndromic RP). The USH2A gene was initially identified as a transcript comprised of 21 exons but subsequently a longer isoform containing 72 exons was identified. Methods The 51 exons unique to the long isoform of USH2A were screened for mutations among a core set of 108 patients diagnosed with USH2 and 80 patients with non-syndromic RP who were all included in a previously reported screen of the short isoform of USH2A. For several exons, additional patients were screened. Results In total, 35 deleterious mutations were identified including 17 nonsense mutations, 9 frameshift mutations, 5 splice-site mutations, and 4 small in-frame deletions or insertions. Twenty-seven mutations were novel. In addition, 65 rare missense changes were identified. A method of classifying the deleterious effect of the missense changes was developed using the summed results of 4 different mutation assessment algorithms, SIFT, pMUT, PolyPhen, and AGVGD. This system classified 8 of the 65 changes as “likely deleterious” and 9 as “possibly deleterious”. Conclusion At least one mutation was identified in 57–63% of USH2 cases and 19–23% of cases of non-syndromic recessive RP (calculated without and including probable/possible deleterious changes) thus supporting that USH2A is the most common known cause of RP in the United States. PMID:20507924

  15. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa.

    PubMed

    McGee, Terri L; Seyedahmadi, Babak Jian; Sweeney, Meredith O; Dryja, Thaddeus P; Berson, Eliot L

    2010-07-01

    Usher syndrome type II (USH2) is an autosomal recessive disorder characterised by retinitis pigmentosa (RP) and mild to moderate sensorineural hearing loss. Mutations in the USH2A gene are the most common cause of USH2 and are also a cause of some forms of RP without hearing loss (ie, non-syndromic RP). The USH2A gene was initially identified as a transcript comprised of 21 exons but subsequently a longer isoform containing 72 exons was identified. The 51 exons unique to the long isoform of USH2A were screened for mutations among a core set of 108 patients diagnosed with USH2 and 80 patients with non-syndromic RP who were all included in a previously reported screen of the short isoform of USH2A. For several exons, additional patients were screened. In total, 35 deleterious mutations were identified including 17 nonsense mutations, 9 frameshift mutations, 5 splice-site mutations, and 4 small in-frame deletions or insertions. Twenty-seven mutations were novel. In addition, 65 rare missense changes were identified. A method of classifying the deleterious effect of the missense changes was developed using the summed results of four different mutation assessment algorithms, SIFT, pMUT, PolyPhen, and AGVGD. This system classified 8 of the 65 changes as 'likely deleterious' and 9 as 'possibly deleterious'. At least one mutation was identified in 57-63% of USH2 cases and 19-23% of cases of non-syndromic recessive RP (calculated without and including probable/possible deleterious changes) thus supporting that USH2A is the most common known cause of RP in the USA.

  16. Erythrocytic Pyruvate Kinase Mutations Causing Hemolytic Anemia, Osteosclerosis, and Secondary Hemochromatosis in Dogs

    PubMed Central

    Gultekin, G. Inal; Raj, K.; Foureman, P.; Lehman, S.; Manhart, K.; Abdulmalik, O.; Giger, U.

    2013-01-01

    Background Erythrocytic pyruvate kinase (PK) deficiency, first documented in Basenjis, is the most common inherited erythroenzymopathy in dogs. Objectives To report 3 new breed-specific PK-LR gene mutations and a retrospective survey of PK mutations in a small and selected group of Beagles and West Highland White Terriers (WHWT). Animals Labrador Retrievers (2 siblings, 5 unrelated), Pugs (2 siblings, 1 unrelated), Beagles (39 anemic, 29 other), WHWTs (22 anemic, 226 nonanemic), Cairn Terrier (n = 1). Methods Exons of the PK-LR gene were sequenced from genomic DNA of young dogs (<2 years) with persistent highly regenerative hemolytic anemia. Results A nonsense mutation (c.799C>T) resulting in a premature stop codon was identified in anemic Labrador Retriever siblings that had osteosclerosis, high serum ferritin concentrations, and severe hepatic secondary hemochromatosis. Anemic Pug and Beagle revealed 2 different missense mutations (c.848T>C, c.994G>A, respectively) resulting in intolerable amino acid changes to protein structure and enzyme function. Breed-specific mutation tests were developed. Among the biased group of 248 WHWTs, 9% and 35% were homozygous (affected) and heterozygous, respectively, for the previously described mutation (mutant allele frequency 0.26). A PK-deficient Cairn Terrier had the same insertion mutation as the affected WHWTs. Of the selected group of 68 Beagles, 35% were PK-deficient and 3% were carriers (0.37). Conclusions and Clinical Importance Erythrocytic PK deficiency is caused by different mutations in different dog breeds and causes chronic severe hemolytic anemia, hemosiderosis, and secondary hemochromatosis because of chronic hemolysis and, an as yet unexplained osteosclerosis. The newly developed breed-specific mutation assays simplify the diagnosis of PK deficiency. PMID:22805166

  17. Growth hormone receptor gene mutations in two Italian patients with Laron Syndrome.

    PubMed

    Fassone, L; Corneli, G; Bellone, S; Camacho-Hübner, C; Aimaretti, G; Cappa, M; Ubertini, G; Bona, G

    2007-05-01

    Laron Syndrome (LS) represents a condition characterized by GH insensitivity caused by molecular defects in the GH receptor (GHR) gene or in the post-receptor signalling pathway. We report the molecular characterization of two unrelated Italian girls from Sicily diagnosed with LS. The DNA sequencing of the GHR gene revealed the presence of different nonsense mutations, occurring in the same background haplotype. The molecular defects occurred in the extracellular domain of the GHR leading to a premature termination signal and to a truncated non-functional receptor. In one patient, a homozygous G to T transversion, in exon 6, led to the mutation GAA to TAA at codon 180 (E180X), while in the second patient a homozygous C to T transition in exon 7 was detected, causing the CGA to TAA substitution at codon 217 (R217X). Both probands presented the polymorphisms Gly168Gly and Ile544Leu in a homozygous state in exons 6 and 10, respectively. The E180X represents a novel defect of the GHR gene, while the R217X mutation has been previously reported in several patients from different ethnic backgrounds but all from countries located in the Mediterranean and Middle Eastern region.

  18. Genetic heterogeneity in patients with Bartter syndrome type 1

    PubMed Central

    Sun, Mingran; Ning, Jing; Xu, Weihong; Zhang, Han; Zhao, Kaishu; Li, Wenfu; Li, Guiying; Li, Shibo

    2017-01-01

    Bartter syndrome (BS) type 1 is an autosomal recessive kidney disorder caused by loss-of-function mutations in the solute carrier family 12 member 1 (SLC12A1) gene. To date, 72 BS type 1 patients harboring SLC12A1 mutations have been documented. Of these 144 alleles studied, 68 different disease-causing mutations have been detected in 129 alleles, and no mutation was detected in the remaining 15 alleles. The mutation types included missense/nonsense mutations, splicing mutations and small insertions and deletions ranging from 1 to 4 nucleotides. A large deletion encompassing a whole exon in the SLC12A1 gene has not yet been reported. The current study initially identified an undocumented homozygous frameshift mutation (c.1833delT) by Sanger sequencing analysis of a single infant with BS type 1. However, in a subsequent analysis, the mutation was detected only in the father's DNA. Upon further investigation using a next-generation sequencing approach, a deletion in exons 14 and 15 in both the patient and patient's mother was detected. The deletion was subsequently confirmed by use of a long-range polymerase chain reaction and was determined to be 3.16 kb in size based on sequencing of the junction fragment. The results of the present study demonstrated that pathogenic variants of SLC12A1 are heterogeneous. Large deletions appear to serve an etiological role in BS type 1, and may be more prevalent than previously thought. PMID:28000888

  19. Genetic heterogeneity in patients with Bartter syndrome type 1.

    PubMed

    Sun, Mingran; Ning, Jing; Xu, Weihong; Zhang, Han; Zhao, Kaishu; Li, Wenfu; Li, Guiying; Li, Shibo

    2017-02-01

    Bartter syndrome (BS) type 1 is an autosomal recessive kidney disorder caused by loss‑of‑function mutations in the solute carrier family 12 member 1 (SLC12A1) gene. To date, 72 BS type 1 patients harboring SLC12A1 mutations have been documented. Of these 144 alleles studied, 68 different disease‑causing mutations have been detected in 129 alleles, and no mutation was detected in the remaining 15 alleles. The mutation types included missense/nonsense mutations, splicing mutations and small insertions and deletions ranging from 1 to 4 nucleotides. A large deletion encompassing a whole exon in the SLC12A1 gene has not yet been reported. The current study initially identified an undocumented homozygous frameshift mutation (c.1833delT) by Sanger sequencing analysis of a single infant with BS type 1. However, in a subsequent analysis, the mutation was detected only in the father's DNA. Upon further investigation using a next‑generation sequencing approach, a deletion in exons 14 and 15 in both the patient and patient's mother was detected. The deletion was subsequently confirmed by use of a long‑range polymerase chain reaction and was determined to be 3.16 kb in size based on sequencing of the junction fragment. The results of the present study demonstrated that pathogenic variants of SLC12A1 are heterogeneous. Large deletions appear to serve an etiological role in BS type 1, and may be more prevalent than previously thought.

  20. A mutation in canine CLN5 causes neuronal ceroid lipofuscinosis in Border collie dogs.

    PubMed

    Melville, Scott A; Wilson, Carmen L; Chiang, Chiu S; Studdert, Virginia P; Lingaas, Frode; Wilton, Alan N

    2005-09-01

    Neuronal ceroid lipofuscinosis (NCL) is a neurodegenerative disease found in Border collie dogs, humans, and other animals. Disease gene studies in humans and animals provided candidates for the NCL gene in Border collies. A combination of linkage analysis and comparative genomics localized the gene to CFA22 in an area syntenic to HSA13q that contains the CLN5 gene responsible for the Finnish variant of human late infantile NCL. Sequencing of CLN5 revealed a nonsense mutation (Q206X) within exon 4 that correlated with NCL in Border collies. This truncation mutation should result in a protein product of a size similar to that of some mutations identified in human CLN5 and therefore the Border collie may make a good model for human NCL. A simple test was developed to enable screening of the Border collie population for carriers so the disease can be eliminated as a problem in the breed.

  1. Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae.

    PubMed

    Benjak, Andrej; Avanzi, Charlotte; Singh, Pushpendra; Loiseau, Chloé; Girma, Selfu; Busso, Philippe; Fontes, Amanda N Brum; Miyamoto, Yuji; Namisato, Masako; Bobosha, Kidist; Salgado, Claudio G; da Silva, Moisés B; Bouth, Raquel C; Frade, Marco A C; Filho, Fred Bernardes; Barreto, Josafá G; Nery, José A C; Bührer-Sékula, Samira; Lupien, Andréanne; Al-Samie, Abdul R; Al-Qubati, Yasin; Alkubati, Abdul S; Bretzel, Gisela; Vera-Cabrera, Lucio; Sakho, Fatoumata; Johnson, Christian R; Kodio, Mamoudou; Fomba, Abdoulaye; Sow, Samba O; Gado, Moussa; Konaté, Ousmane; Stefani, Mariane M A; Penna, Gerson O; Suffys, Philip N; Sarno, Euzenir Nunes; Moraes, Milton O; Rosa, Patricia S; Baptista, Ida M F Dias; Spencer, John S; Aseffa, Abraham; Matsuoka, Masanori; Kai, Masanori; Cole, Stewart T

    2018-01-24

    Leprosy is a chronic human disease caused by the yet-uncultured pathogen Mycobacterium leprae. Although readily curable with multidrug therapy (MDT), over 200,000 new cases are still reported annually. Here, we obtain M. leprae genome sequences from DNA extracted directly from patients' skin biopsies using a customized protocol. Comparative and phylogenetic analysis of 154 genomes from 25 countries provides insight into evolution and antimicrobial resistance, uncovering lineages and phylogeographic trends, with the most ancestral strains linked to the Far East. In addition to known MDT-resistance mutations, we detect other mutations associated with antibiotic resistance, and retrace a potential stepwise emergence of extensive drug resistance in the pre-MDT era. Some of the previously undescribed mutations occur in genes that are apparently subject to positive selection, and two of these (ribD, fadD9) are restricted to drug-resistant strains. Finally, nonsense mutations in the nth excision repair gene are associated with greater sequence diversity and drug resistance.

  2. Insertion of an SVA element, a nonautonomous retrotransposon, in PMS2 intron 7 as a novel cause of Lynch syndrome.

    PubMed

    van der Klift, Heleen M; Tops, Carli M; Hes, Frederik J; Devilee, Peter; Wijnen, Juul T

    2012-07-01

    Heterozygous germline mutations in the mismatch repair gene PMS2 predispose carriers for Lynch syndrome, an autosomal dominant predisposition to cancer. Here, we present a LINE-1-mediated retrotranspositional insertion in PMS2 as a novel mutation type for Lynch syndrome. This insertion, detected with Southern blot analysis in the genomic DNA of the patient, is characterized as a 2.2 kb long 5' truncated SVA_F element. The insertion is not detectable by current diagnostic testing limited to MLPA and direct Sanger sequencing on genomic DNA. The molecular nature of this insertion could only be resolved in RNA from cultured lymphocytes in which nonsense-mediated RNA decay was inhibited. Our report illustrates the technical problems encountered in the detection of this mutation type. Especially large heterozygous insertions will remain unnoticed because of preferential amplification of the smaller wild-type allele in genomic DNA, and are probably underreported in the mutation spectra of autosomal dominant disorders. © 2012 Wiley Periodicals, Inc.

  3. Diverse growth hormone receptor gene mutations in Laron syndrome.

    PubMed Central

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  4. Bulldog dwarfism in Dexter cattle is caused by mutations in ACAN.

    PubMed

    Cavanagh, Julie A L; Tammen, Imke; Windsor, Peter A; Bateman, John F; Savarirayan, Ravi; Nicholas, Frank W; Raadsma, Herman W

    2007-11-01

    Bulldog dwarfism in Dexter cattle is one of the earliest single-locus disorders described in animals. Affected fetuses display extreme disproportionate dwarfism, reflecting abnormal cartilage development (chondrodysplasia). Typically, they die around the seventh month of gestation, precipitating a natural abortion. Heterozygotes show a milder form of dwarfism, most noticeably having shorter legs. Homozygosity mapping in candidate regions in a small Dexter pedigree suggested aggrecan (ACAN) as the most likely candidate gene. Mutation screening revealed a 4-bp insertion in exon 11 (2266_2267insGGCA) (called BD1 for diagnostic testing) and a second, rarer transition in exon 1 (-198C>T) (called BD2) that cosegregate with the disorder. In chondrocytes from cattle heterozygous for the insertion, mutant mRNA is subject to nonsense-mediated decay, showing only 8% of normal expression. Genotyping in Dexter families throughout the world shows a one-to-one correspondence between genotype and phenotype at this locus. The heterozygous and homozygous-affected Dexter cattle could prove invaluable as a model for human disorders caused by mutations in ACAN.

  5. Mutations in SNRPB, encoding components of the core splicing machinery, cause cerebro-costo-mandibular syndrome.

    PubMed

    Bacrot, Séverine; Doyard, Mathilde; Huber, Céline; Alibeu, Olivier; Feldhahn, Niklas; Lehalle, Daphné; Lacombe, Didier; Marlin, Sandrine; Nitschke, Patrick; Petit, Florence; Vazquez, Marie-Paule; Munnich, Arnold; Cormier-Daire, Valérie

    2015-02-01

    Cerebro-costo-mandibular syndrome (CCMS) is a developmental disorder characterized by the association of Pierre Robin sequence and posterior rib defects. Exome sequencing and Sanger sequencing in five unrelated CCMS patients revealed five heterozygous variants in the small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB) gene. This gene includes three transcripts, namely transcripts 1 and 2, encoding components of the core spliceosomal machinery (SmB' and SmB) and transcript 3 undergoing nonsense-mediated mRNA decay. All variants were located in the premature termination codon (PTC)-introducing alternative exon of transcript 3. Quantitative RT-PCR analysis revealed a significant increase in transcript 3 levels in leukocytes of CCMS individuals compared to controls. We conclude that CCMS is due to heterozygous mutations in SNRPB, enhancing inclusion of a SNRPB PTC-introducing alternative exon, and show that this developmental disease is caused by defects in the splicing machinery. Our finding confirms the report of SNRPB mutations in CCMS patients by Lynch et al. (2014) and further extends the clinical and molecular observations. © 2014 WILEY PERIODICALS, INC.

  6. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    PubMed

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  7. Novel PHEX nonsense mutation in a patient with X-linked hypophosphatemic rickets and review of current therapeutic regimens.

    PubMed

    Kienitz, T; Ventz, M; Kaminsky, E; Quinkler, M

    2011-07-01

    The most common form of familial hypophosphatemic rickets is X-linked. PHEX has been identified as the gene defective in this phosphate wasting disorder leading to decreased renal phosphate reabsorption, hypophosphatemia and inappropriate concentrations of 1,25-dihydroxyvitamin D in regard to hypophosphatemia. Clinical manifestation are skeletal deformities, short stature, osteomalacia, dental abscesses, bone pain, and loss of hearing. We report 3 cases of hypophosphatemic rickets with genetic mutational analysis of the PHEX gene. In 1 male patient an unknown nonsense mutation was found in exon 7, codon 245 (c.735T>G, Tyr245Term, Y245X). In both female patients known mutations were found: c.682delTC (exon 6, codon 228) and c.1952G>C (exon 19, codon 651, R651P). Age at diagnosis ranged from early childhood to the age of 35 years. Clinical complications were hip replacement in 1 patient, mild nephrocalcinosis in 2 patients and loss of hearing in 1 patient. All 3 patients have been treated with phosphate supplements and receive 1,25-dihydroxyvitamin D. Under this regimen all patients show stable biochemical markers with slight hyperparathyreoidism. In all patients at least one family member is affected by rickets, as well. We report a novel nonsense mutation of PHEX that has not been identified so far. The recent discovery of FGF23 and MEPE has changed our understanding of the kidney-bone metabolism, but also raises concerns about the efficacy of current therapeutic regimens that are reviewed in this context. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  8. Mutation analysis of the APC gene in Taiwanese FAP families: low incidence of APC germline mutation in a distinct subgroup of FAP families.

    PubMed

    Chiang, J M; Chen, H W; Tang, R P; Chen, J S; Changchien, C R; Hsieh, P S; Wang, J Y

    2010-06-01

    Familial adenomatous polyposis (FAP) is an autosomal-dominant disease caused by germline mutations in the adenomatous polyposis coli (APC) gene. The affected individuals develop colorectal polyposis and show various extra-colonic manifestations. In this study, we aimed to investigate the genetic and clinical characteristics of FAP in Taiwanese families and analyze the genotype-phenotype correlations. Blood samples were obtained from 66 FAP patients registered in the hereditary colorectal cancer database. Then, germline mutations in the APC genes of these 66 polyposis patients from 47 unrelated FAP families were analyzed. The germline-mutation-negative cases were analyzed by performing multiplex ligation-dependent probe amplification (MLPA) and single-strand conformation polymorphism (SSCP) analysis of the MUTYH gene. Among the analyzed families, 79% (37/47) of the families showed 28 APC mutations, including 19 frameshift mutations, 4 nonsense mutations, 3 genomic deletion mutations, 1 missense mutation, and 1 splice-site mutation. In addition, we identified 15 novel mutations in 32% (15/47) of the families. The cases in which APC mutations were not identified showed significantly lower incidence of profuse polyposis (P = 0.034) and gastroduodenal polyps (P = 0.027). Furthermore, FAP families in which some affected individuals had less than 100 polyps showed significant association with low incidence of APC germline mutations (P = 0.002). We have added the APC germline-mutation data for Taiwanese FAP patients and indicated the presence of an FAP subgroup comprising affected individuals with nonadenomatous polyps or less than 100 adenomatous polyps; this form of FAP is less frequently caused by germline mutations of the APC gene.

  9. Genetic variations in the hotspot region of RS1 gene in Indian patients with juvenile X-linked retinoschisis

    PubMed Central

    Suganthalakshmi, Balasubbu; Shukla, Dhananjay; Rajendran, Anand; Kim, Ramasamy; Nallathambi, Jeyabalan

    2007-01-01

    Purpose X-linked juvenile retinoschisis (XLRS) is the leading cause of macular degeneration in males. This condition is caused by mutations in the RS1 gene and is, characterized by schisis within the retina. The purpose of this study was to identify the mutations in the RS1 gene associated with XLRS in an Indian cohort. Methods The coding region of RS1 was analyzed for mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and restriction fragment length polymorphism (RFLP) analysis in six unrelated subjects clinically diagnosed as having XLRS and in their available family members. Direct sequencing was performed for all samples that displayed an electrophoretic mobility shift in SSCP gel. Results Mutation analysis of RS1 gene revealed five mutations in exon 6 like c.574C>T, c.583A>G, c.608C>T, c.617G>A, and c.637C>T, respectively, among them four missense mutations, one nonsense mutation, and two novel sequence variations. These mutations were found in individuals who exhibited clinical features of bilateral foveal and peripheral retinoschisis consistent with XLRS. The mutations were absent in the 100 age matched control samples analyzed. Conclusions This is the first report of mutations in RS1 to be associated with XLRS in the Indian population. The identified genetic variations, phenotype and genotype correlations were consistent with other studies. Identification of the causative mutation in patients with XLRS is helpful in confirming the diagnosis and in counseling of family members. PMID:17515881

  10. Alteration of DNA binding, dimerization, and nuclear translocation of SHOX homeodomain mutations identified in idiopathic short stature and Leri-Weill dyschondrosteosis.

    PubMed

    Schneider, Katja U; Marchini, Antonio; Sabherwal, Nitin; Röth, Ralph; Niesler, Beate; Marttila, Tiina; Blaschke, Rüdiger J; Lawson, Margaret; Dumic, Miroslav; Rappold, Gudrun

    2005-07-01

    Haploinsufficiency of the short stature homeobox gene SHOX has been found in patients with idiopathic short stature (ISS) and Leri-Weill dyschondrosteosis (LWD). In addition to complete gene deletions and nonsense mutations, several missense mutations have been identified in both patient groups, leading to amino acid substitutions in the SHOX protein. The majority of missense mutations were found to accumulate in the region encoding the highly conserved homeodomain of the paired-like type. In this report, we investigated nine different amino acid exchanges in the homeodomain of SHOX patients with ISS and LWD. We were able show that these mutations cause an alteration of the biological function of SHOX by loss of DNA binding, reduced dimerization ability, and/or impaired nuclear translocation. Additionally, one of the mutations (c.458G>T, p.R153L) is defective in transcriptional activation even though it is still able to bind to DNA, dimerize, and translocate to the nucleus. Thus, we demonstrate that single missense mutations in the homeodomain fundamentally impair SHOX key functions, thereby leading to the phenotype observed in patients with LWD and ISS.

  11. Next-generation sequencing-based method shows increased mutation detection sensitivity in an Indian retinoblastoma cohort

    PubMed Central

    Singh, Jaya; Mishra, Avshesh; Pandian, Arunachalam Jayamuruga; Mallipatna, Ashwin C.; Khetan, Vikas; Sripriya, S.; Kapoor, Suman; Agarwal, Smita; Sankaran, Satish; Katragadda, Shanmukh; Veeramachaneni, Vamsi; Hariharan, Ramesh; Subramanian, Kalyanasundaram

    2016-01-01

    Purpose Retinoblastoma (Rb) is the most common primary intraocular cancer of childhood and one of the major causes of blindness in children. India has the highest number of patients with Rb in the world. Mutations in the RB1 gene are the primary cause of Rb, and heterogeneous mutations are distributed throughout the entire length of the gene. Therefore, genetic testing requires screening of the entire gene, which by conventional sequencing is time consuming and expensive. Methods In this study, we screened the RB1 gene in the DNA isolated from blood or saliva samples of 50 unrelated patients with Rb using the TruSight Cancer panel. Next-generation sequencing (NGS) was done on the Illumina MiSeq platform. Genetic variations were identified using the Strand NGS software and interpreted using the StrandOmics platform. Results We were able to detect germline pathogenic mutations in 66% (33/50) of the cases, 12 of which were novel. We were able to detect all types of mutations, including missense, nonsense, splice site, indel, and structural variants. When we considered bilateral Rb cases only, the mutation detection rate increased to 100% (22/22). In unilateral Rb cases, the mutation detection rate was 30% (6/20). Conclusions Our study suggests that NGS-based approaches increase the sensitivity of mutation detection in the RB1 gene, making it fast and cost-effective compared to the conventional tests performed in a reflex-testing mode. PMID:27582626

  12. Epilepsy caused by CDKL5 mutations.

    PubMed

    Castrén, Maija; Gaily, Eija; Tengström, Carola; Lähdetie, Jaana; Archer, Hayley; Ala-Mello, Sirpa

    2011-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been identified in female patients with early onset epileptic encephalopathy and severe mental retardation with a Rett-like phenotype. Subsequently CDKL5 mutations were shown to be associated with more diverse phenotypes including mild epilepsy and autism without epilepsy. Furthermore, CDKL5 mutations were found in patients with Angelman-like phenotype. The severity of epilepsy associated with CDKL5 mutations was recently shown to correlate with the type of CDKL5 mutations and epilepsy was identified to involve three distinct sequential stages. Here, we describe the phenotype of a severe form of neurodevelopmental disease in a female patient with a de novo nonsense mutation of the CDKL5 gene c.175C > T (p.R59X) affecting the catalytic domain of CDKL5 protein. Mutations in the CDKL5 gene are less common in males and can be associated with a genomic deletion as found in our male patient with a deletion of 0.3 Mb at Xp22.13 including the CDKL5 gene. We review phenotypes associated with CDKL5 mutations and examine putative relationships between the clinical epilepsy phenotype and the type of the mutation in the CDKL5 gene. © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  13. Characterization of a germline mosaicism in families with Lowe syndrome, and identification of seven novel mutations in the OCRL1 gene.

    PubMed Central

    Satre, V; Monnier, N; Berthoin, F; Ayuso, C; Joannard, A; Jouk, P S; Lopez-Pajares, I; Megabarne, A; Philippe, H J; Plauchu, H; Torres, M L; Lunardi, J

    1999-01-01

    The oculocerebrorenal syndrome of Lowe (OCRL) is an X-linked disorder characterized by major abnormalities of eyes, nervous system, and kidneys. Mutations in the OCRL1 gene have been associated with the disease. OCRL1 encodes a phosphatidylinositol 4, 5-biphosphate (PtdIns[4,5]P2) 5-phosphatase. We have examined the OCRL1 gene in eight unrelated patients with OCRL and have found seven new mutations and one recurrent in-frame deletion. Among the new mutations, two nonsense mutations (R317X and E558X) and three other frameshift mutations caused premature termination of the protein. A missense mutation, R483G, was located in the highly conserved PtdIns(4,5)P2 5-phosphatase domain. Finally, one frameshift mutation, 2799delC, modifies the C-terminal part of OCRL1, with an extension of six amino acids. Altogether, 70% of missense mutations are located in exon 15, and 52% of all mutations cluster in exons 11-15. We also identified two new microsatellite markers for the OCRL1 locus, and we detected a germline mosaicism in one family. This observation has direct implications for genetic counseling of Lowe syndrome families. PMID:10364518

  14. De novo frameshift mutation in fibroblast growth factor 8 in a male patient with gonadotropin deficiency.

    PubMed

    Suzuki, Erina; Yatsuga, Shuichi; Igarashi, Maki; Miyado, Mami; Nakabayashi, Kazuhiko; Hayashi, Keiko; Hata, Kenichirou; Umezawa, Akihiro; Yamada, Gen; Ogata, Tsutomu; Fukami, Maki

    2014-01-01

    Missense, nonsense, and splice mutations in the Fibroblast Growth Factor 8(FGF8) have recently been identified in patients with hypothalamo-pituitary dysfunction and craniofacial anomalies. Here, we report a male patient with a frameshift mutation in FGF8. The patient exhibited micropenis, craniofacial anomalies, and ventricular septal defect at birth. Clinical evaluation at 16 years and 8 months of age revealed delayed puberty, hyposmia, borderline mental retardation, and mild hearing difficulty. Endocrine findings included gonadotropin deficiency and primary hypothyroidism. Molecular analysis identified a de novo heterozygous p.S192fsX204 mutation in the last exon of FGF8. RT-PCR analysis of normal human tissues detected FGF8 expression in the genital skin, and whole-mount in situ hybridization analysis of mouse embryos revealed Fgf8 expression in the anlage of the penis. The results indicate that frameshift mutations in FGF8 account for a part of the etiology of hypothalamo-pituitary dysfunction. Micropenis in patients with FGF8 abnormalities appears to be caused by gonadotropin deficiency and defective outgrowth of the anlage of the penis.

  15. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication

    PubMed Central

    Shinbrot, Eve; Henninger, Erin E.; Weinhold, Nils; Covington, Kyle R.; Göksenin, A. Yasemin; Schultz, Nikolaus; Chao, Hsu; Doddapaneni, HarshaVardhan; Muzny, Donna M.; Gibbs, Richard A.; Sander, Chris; Pursell, Zachary F.

    2014-01-01

    Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C→A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication. PMID:25228659

  16. Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F.

    PubMed

    Alagramam, K N; Yuan, H; Kuehn, M H; Murcia, C L; Wayne, S; Srisailpathy, C R; Lowry, R B; Knaus, R; Van Laer, L; Bernier, F P; Schwartz, S; Lee, C; Morton, C C; Mullins, R F; Ramesh, A; Van Camp, G; Hageman, G S; Woychik, R P; Smith, R J; Hagemen, G S

    2001-08-01

    We have determined the molecular basis for Usher syndrome type 1F (USH1F) in two families segregating for this type of syndromic deafness. By fluorescence in situ hybridization, we placed the human homolog of the mouse protocadherin Pcdh15 in the linkage interval defined by the USH1F locus. We determined the genomic structure of this novel protocadherin, and found a single-base deletion in exon 10 in one USH1F family and a nonsense mutation in exon 2 in the second. Consistent with the phenotypes observed in these families, we demonstrated expression of PCDH15 in the retina and cochlea by RT-PCR and immunohistochemistry. This report shows that protocadherins are essential for maintenance of normal retinal and cochlear function.

  17. Nonsense-Mediated Decay in Genetic Disease: Friend or Foe?

    PubMed Central

    Miller, Jake N.; Pearce, David A.

    2014-01-01

    Eukaryotic cells utilize various RNA quality control mechanisms to ensure high fidelity of gene expression, thus protecting against the accumulation of nonfunctional RNA and the subsequent production of abnormal peptides. Messenger RNAs (mRNAs) are largely responsible for protein production, and mRNA quality control is particularly important for protecting the cell against the downstream effects of genetic mutations. Nonsense-mediated decay (NMD) is an evolutionarily conserved mRNA quality control system in all eukaryotes that degrades transcripts containing premature termination codons (PTCs). By degrading these aberrant transcripts, NMD acts to prevent the production of truncated proteins that could otherwise harm the cell through various insults, such as dominant negative effects or the ER stress response. Although NMD functions to protect the cell against the deleterious effects of aberrant mRNA, there is a growing body of evidence that mutation-, codon-, gene-, cell-, and tissue-specific differences in NMD efficiency can alter the underlying pathology of genetic disease. In addition, the protective role that NMD plays in genetic disease can undermine current therapeutic strategies aimed at increasing the production of full-length functional protein from genes harboring nonsense mutations. Here, we review the normal function of this RNA surveillance pathway and how it is regulated, provide current evidence for the role that it plays in modulating genetic disease phenotypes, and how NMD can be used as a therapeutic target. PMID:25485595

  18. [Identification of new genes that affect [PSI^(+)] prion toxicity in Saccharomyces cerevisiae yeast].

    PubMed

    Matveenko, A G; Belousov, M V; Bondarev, S A; Moskalenko, S E; Zhouravleva, G A

    2016-01-01

    Translation termination is an important step in gene expression. Its correct processing is governed by eRF1 (Sup45) and eRF3 (Sup35) proteins. In Saccharomyces cerevisiae, mutations in the corresponding genes, as well as Sup35 aggregation in [PSI^(+)] cells that propagate the prion form of Sup35 lead to inaccurate stop codon recognition and, consequently, nonsense suppression. The presence of stronger prion variants results in the more efficient suppression of nonsense mutations. Previously, we proposed a synthetic lethality test that enables the identification of genes that may influence either translation termination factors or [PSI^(+)] manifestation. This is based on the fact that the combination of sup45 mutations with the strong [PSI^(+)] prion variant in diploids is lethal. In this work, a set of genes that were previously shown to enhance nonsense suppression was analyzed. It was found that ABF1, FKH2, and REB1 overexpression decreased the growth of strains in a prion-dependent manner and, thus, might influence [PSI^(+)] prion toxicity. It was also shown that the synthetic lethality of [PSI^(+)] and sup45 mutations increased with the overexpression of GLN3 and MOT3 that encode Q/N-rich transcription factors. An analysis of the effects of their expression on the transcription of the release factors genes revealed an increase in SUP35 transcription in both cases. Since SUP35 overexpression is known to be toxic in [PSI^(+)] strains, these genes apparently enhance [PSI^(+)] toxicity via the regulation of SUP35 transcription.

  19. Limited phenotypic variation of hypocalcified amelogenesis imperfecta in a Danish five-generation family with a novel FAM83H nonsense mutation.

    PubMed

    Haubek, Dorte; Gjørup, Hans; Jensen, Lillian G; Juncker, Inger; Nyegaard, Mette; Børglum, Anders D; Poulsen, Sven; Hertz, Jens M

    2011-11-01

    BACKGROUND.  Autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI) is a disease with severe dental manifestations. OBJECTIVES.  The aims were by means of a genome-wide linkage scan to search for the gene underlying the ADHCAI phenotype in a Danish five-generation family and to study the phenotypic variation of the enamel in affected family members. RESULTS.  Significant linkage was found to a locus at chromosome 8q24.3 comprising the gene FAM83H identified to be responsible for ADHCAI in other families. Subsequent sequencing of FAM83H in affected family members revealed a novel nonsense mutation, p.Y302X. Limited phenotypic variation was found among affected family members with loss of translucency and discoloration of the enamel. Extensive posteruptive loss of enamel was found in all teeth of affected subjects. The tip of the cusps on the premolars and molars and a zone along the gingival margin seemed resistant to posteruptive loss of enamel. We have screened FAM83H in another five unrelated Danish patients with a phenotype of ADHCAI similar to that in the five-generation family, and identified a de novo FAM83H nonsense mutation, p.Q452X in one of these patients. CONCLUSION.  We have identified a FAM83H mutation in two of six unrelated families with ADHCAI and found limited phenotypic variation of the enamel in these patients. © 2011 The Authors. International Journal of Paediatric Dentistry © 2011 BSPD, IAPD and Blackwell Publishing Ltd.

  20. Chlamydia muridarum Genital and Gastrointestinal Infection Tropism Is Mediated by Distinct Chromosomal Factors.

    PubMed

    Morrison, Sandra G; Giebel, Amanda M; Toh, Evelyn C; Spencer, Horace J; Nelson, David E; Morrison, Richard P

    2018-07-01

    Some members of the genus Chlamydia , including the human pathogen Chlamydia trachomatis , infect multiple tissues, including the genital and gastrointestinal (GI) tracts. However, it is unknown if bacterial targeting to these sites is mediated by multifunctional or distinct chlamydial factors. We previously showed that disruption of individual large clostridial toxin homologs encoded within the Chlamydia muridarum plasticity zone were not critical for murine genital tract infection. Here, we assessed whether cytotoxin genes contribute to C. muridarum GI tropism. Infectivity and shedding of wild-type (WT) C. muridarum and three mutants containing nonsense mutations in different cytotoxin genes, tc0437 , tc0438 , and tc0439 , were compared in mouse genital and GI infection models. One mutant, which had a nonsense mutation in tc0439 , was highly attenuated for GI infection and had a GI 50% infectious dose (ID 50 ) that was 1,000 times greater than that of the WT. GI inoculation with this mutant failed to elicit anti-chlamydial antibodies or to protect against subsequent genital tract infection. Genome sequencing of the tc0439 mutant revealed additional chromosomal mutations, and phenotyping of additional mutants suggested that the GI attenuation might be linked to a nonsense mutation in tc0600 The molecular mechanism underlying this dramatic difference in tissue-tropic virulence is not fully understood. However, isolation of these mutants demonstrates that distinct chlamydial chromosomal factors mediate chlamydial tissue tropism and provides a basis for vaccine initiatives to isolate chlamydia strains that are attenuated for genital infection but retain the ability to colonize the GI tract and elicit protective immune responses. Copyright © 2018 Morrison et al.

  1. Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation.

    PubMed

    Schüle, Birgitt; Oviedo, Angelica; Johnston, Kathreen; Pai, Shashidhar; Francke, Uta

    2005-12-01

    The rare, autosomal recessive Roberts syndrome (RBS) is characterized by tetraphocomelia, profound growth deficiency of prenatal onset, craniofacial anomalies, microcephaly, and mental deficiency. SC phocomelia (SC) has a milder phenotype, with a lesser degree of limb reduction and with survival to adulthood. Since heterochromatin repulsion (HR) is characteristic for both disorders and is not complemented in somatic-cell hybrids, it has been hypothesized that the disorders are allelic. Recently, mutations in ESCO2 (establishment of cohesion 1 homolog 2) on 8p21.1 have been reported in RBS. To determine whether ESCO2 mutations are also responsible for SC, we studied three families with SC and two families in which variable degrees of limb and craniofacial abnormalities, detected by fetal ultrasound, led to pregnancy terminations. All cases were positive for HR. We identified seven novel mutations in exons 3-8 of ESCO2. In two families, affected individuals were homozygous--for a 5-nucleotide deletion in one family and a splice-site mutation in the other. In three nonconsanguineous families, probands were compound heterozygous for a single-nucleotide insertion or deletion, a nonsense mutation, or a splice-site mutation. Abnormal splice products were characterized at the RNA level. Since only protein-truncating mutations were identified, regardless of clinical severity, we conclude that genotype does not predict phenotype. Having established that RBS and SC are caused by mutations in the same gene, we delineated the clinical phenotype of the tetraphocomelia spectrum that is associated with HR and ESCO2 mutations and differentiated it from other types of phocomelia that are negative for HR.

  2. Novel and recurrent mutations in the C1NH gene of Arab patients affected with hereditary angioedema.

    PubMed

    Faiyaz-Ul-Haque, Muhammad; Al-Gazlan, Sulaiman; Abalkhail, Halah A; Al-Abdulatif, Ahmad; Toulimat, Mohamed; Peltekova, Iskra; Khaliq, Agha M R; Al-Dayel, Fouad; Zaidi, Syed H E

    2010-01-01

    Autosomal dominant hereditary angioedema (HAE) results in episodes of subcutaneous edema in any body part and/or submucosal edema of the upper respiratory or gastrointestinal tracts. This disorder is caused by mutations in the C1NH gene, many of which have been described primarily in European patients. However, the genetic cause of HAE in Middle Eastern Arab patients has not yet been determined. Four unrelated Arab families, in which 15 patients were diagnosed with HAE, were studied. DNA from 13 patients was analyzed for mutations in the C1NH gene by DNA sequencing. Three novel and 2 recurrent mutations were identified in the C1NH gene of HAE patients. In family 1, the patient was heterozygous for a novel c.856C>T and a recurrent c.1361T>A missense mutation encoding for p.Arg264Cys and p.Val432Glu, respectively. In patients from family 2, a novel c.509C>T missense mutation encoding for a p.Ser148Phe was identified. In patients from family 3, a novel c.1142delC nonsense mutation encoding for a p.Ala359AlafsX15 was discovered. In family 4, a recurrent c.1397G>A missense mutation encoding for a p.Arg444His was present. This is the first ever report of C1NH gene mutations in Middle Eastern Arab patients. Our study suggests that, despite the numerous existing mutations in the C1NH gene, there are novel and recurrent mutations in HAE patients of non-European origin. We conclude that the spectrum of C1NH gene mutations in HAE patients is wider due to the likely presence of novel and recurrent mutations in patients of other ethnicities. 2009 S. Karger AG, Basel.

  3. Spectrum of genetic variation at the ABCC6 locus in South Africans: Pseudoxanthoma elasticum patients and healthy individuals.

    PubMed

    Ramsay, Michèle; Greenberg, Tarryn; Lombard, Zane; Labrum, Robyn; Lubbe, Steven; Aron, Shaun; Marais, Anna-Susan; Terry, Sharon; Bercovitch, Lionel; Viljoen, Denis

    2009-06-01

    Pseudoxanthoma elasticum (PXE) is an autosomal recessive metabolic disorder with ectopic mineralization in the skin, eyes and cardiovascular system. PXE is caused by mutations in ABCC6. To examine 54 unrelated South African PXE patients for ABCC6 PXE causing mutations. Patients were screened for mutations in ABCC6 using two strategies. The first involved a comprehensive screening of all the ABCC6 exons and flanking regions by dHPLC or sequencing whereas the second involved screening patients only for the common PXE mutations. The ABCC6 gene was screened in ten white and ten black healthy unrelated South Africans in order to examine the level of common non-PXE associated variation. The Afrikaner founder mutation, R1339C, was present in 0.41 of white ABCC6 PXE alleles, confirming the founder effect and its presence in both Afrikaans- (34/63 PXE alleles) and English-speakers (4/28). Eleven mutations were detected in the white patients (of European origin), including two nonsense mutations, 6 missense mutations, two frameshift mutations and a large deletion mutation. The five "Coloured" patients (of mixed Khoisan, Malay, European and African origin) included three compound heterozygotes with R1339C as one of the mutations. The three black patients (sub-Saharan African origin) were all apparent homozygotes for the R1314W mutation. Blacks showed a trend towards a higher degree of neurtral variation (18 variants) when compared to whites (12 variants). Delineation of the ABCC6 mutation profile in South African PXE patients will be used as a guide for molecular genetic testing in a clinical setting and for genetic counselling.

  4. Whole exome sequencing identifies a homozygous nonsense variation in ALMS1 gene in a patient with syndromic obesity.

    PubMed

    Das Bhowmik, Aneek; Gupta, Neerja; Dalal, Ashwin; Kabra, Madhulika

    In the present study we report on genetic analysis in a patient with developmental delay, truncal obesity and vision problem, to find the causative mutation. Whole exome sequencing was performed on genomic DNA extracted from whole blood of the patient which revealed a homozygous nonsense variant (c.2816T>A) in exon 8 of ALMS1 gene that results in a stop codon and premature truncation at codon 939 (p.L939Ter) of the protein. The mutation was confirmed by Sanger sequencing. Exome sequencing was helpful in establishing diagnosis of Alstrom syndrome in this patient. This case highlights the utility of exome sequencing in clinical practice. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  5. Evaluation of amplification refractory mutation system (ARMS) technique for quick and accurate prenatal gene diagnosis of CHM variant in choroideremia.

    PubMed

    Yang, Lisha; Ijaz, Iqra; Cheng, Jingliang; Wei, Chunli; Tan, Xiaojun; Khan, Md Asaduzzaman; Fu, Xiaodong; Fu, Junjiang

    2018-01-01

    Choroideremia is a rare X-linked recessive inherited disorder that causes chorioretinal dystrophy leading to visual impairment in its early stages which finally causes total blindness in the affected person. It is caused due to mutations in the CHM gene. In this study, we have recruited a pedigree with choroideremia and detected a nonsense variant (c.C799T:p.R267X) in CHM of the proband (I:1). Different primer sets for amplification refractory mutation system (ARMS) were designed and PCR conditions were optimized. Then, we evaluated the sequence variant in the patient, carrier, and a fetus by using ARMS technique to identify if they inherited the pathogenic gene from parental generation; we used amniotic fluid DNA for the diagnosis of the gene in the fetus. The primer pairs, WT2+C and MT+C, amplified high specific products in different DNAs which were verified by Sanger sequencing. Based on our results, ARMS technique is fast, accurate, and reliable prenatal gene diagnostic tool to assess CHM variants. Taken together, our study indicates that ARMS technique can be used as a potential molecular tool in the diagnosis of prenatal mutation for choroideremia as well as other genetic diseases in undeveloped and developing countries, where there might be shortage of medical resources and supplies.

  6. Disruption of the Flnb gene in mice phenocopies the human disease spondylocarpotarsal synostosis syndrome.

    PubMed

    Farrington-Rock, Claire; Kirilova, Veneta; Dillard-Telm, Lisa; Borowsky, Alexander D; Chalk, Sara; Rock, Matthew J; Cohn, Daniel H; Krakow, Deborah

    2008-03-01

    Spondylocarpotarsal synostosis syndrome (SCT) is an autosomal recessive disease that is characterized by short stature, and fusions of the vertebrae and carpal and tarsal bones. SCT results from homozygosity or compound heterozygosity for nonsense mutations in FLNB. FLNB encodes filamin B, a multifunctional cytoplasmic protein that plays a critical role in skeletal development. Protein extracts derived from cells of SCT patients with nonsense mutations in FLNB did not contain filamin B, demonstrating that SCT results from absence of filamin B. To understand the role of filamin B in skeletal development, an Flnb-/- mouse model was generated. The Flnb-/- mice were phenotypically similar to individuals with SCT as they exhibited short stature and similar skeletal abnormalities. Newborn Flnb-/- mice had fusions between the neural arches of the vertebrae in the cervical and thoracic spine. At postnatal day 60, the vertebral fusions were more widespread and involved the vertebral bodies as well as the neural arches. In addition, fusions were seen in sternum and carpal bones. Analysis of the Flnb-/- mice phenotype showed that an absence of filamin B causes progressive vertebral fusions, which is contrary to the previous hypothesis that SCT results from failure of normal spinal segmentation. These findings suggest that spinal segmentation can occur normally in the absence of filamin B, but the protein is required for maintenance of intervertebral, carpal and sternal joints, and the joint fusion process commences antenatally.

  7. Innate Resistance and Susceptibility to Norovirus Infection

    DOE PAGES

    Nordgren, Johan; Sharma, Sumit; Kambhampati, Anita; ...

    2016-04-26

    The notion that certain individuals appear more or less susceptible to infections or to specific microbes is not new, but, until recently, it was assumed that clinical outcome of an infection was mainly owing to virulence factors of the microorganism. Relatively little attention has been given to host genetic factors involved in innate or adaptive immunity or expression of pathogen receptors. A remarkable example of susceptibility dependence is the strong Mendelian trait resistance to the most common noroviruses among individuals with a nonsense mutation in chromosome 19. Norovirus is recognized as the leading cause of gastroenteritis worldwide, affecting children andmore » adults alike. Noroviruses are highly contagious and genetically diverse RNA viruses, but not all individuals are susceptible to infection to the same norovirus genotypes. Presence of histo-blood group antigens (HBGAs) on gut epithelial surfaces is essential for susceptibility to many norovirus genotypes. The synthesis of these HBGAs, specifically of the ABH and Lewis families, requires the use of several fucosyl and glycosyltransferases encoded by the FUT2, FUT3, and ABH genes. Polymorphisms in these genes vary considerably depending on ethnicity, with a homozygous nonsense mutation (individuals called non-secretors) in the FUT2 gene occurring in approximately 5%–50% of different populations worldwide. Secretor status also affects gut microbiota composition, including HBGA-expressing bacteria and bacteria inducing fucosylation in the gut. These could be intermediary factors that govern norovirus susceptibility.« less

  8. Innate Resistance and Susceptibility to Norovirus Infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordgren, Johan; Sharma, Sumit; Kambhampati, Anita

    The notion that certain individuals appear more or less susceptible to infections or to specific microbes is not new, but, until recently, it was assumed that clinical outcome of an infection was mainly owing to virulence factors of the microorganism. Relatively little attention has been given to host genetic factors involved in innate or adaptive immunity or expression of pathogen receptors. A remarkable example of susceptibility dependence is the strong Mendelian trait resistance to the most common noroviruses among individuals with a nonsense mutation in chromosome 19. Norovirus is recognized as the leading cause of gastroenteritis worldwide, affecting children andmore » adults alike. Noroviruses are highly contagious and genetically diverse RNA viruses, but not all individuals are susceptible to infection to the same norovirus genotypes. Presence of histo-blood group antigens (HBGAs) on gut epithelial surfaces is essential for susceptibility to many norovirus genotypes. The synthesis of these HBGAs, specifically of the ABH and Lewis families, requires the use of several fucosyl and glycosyltransferases encoded by the FUT2, FUT3, and ABH genes. Polymorphisms in these genes vary considerably depending on ethnicity, with a homozygous nonsense mutation (individuals called non-secretors) in the FUT2 gene occurring in approximately 5%–50% of different populations worldwide. Secretor status also affects gut microbiota composition, including HBGA-expressing bacteria and bacteria inducing fucosylation in the gut. These could be intermediary factors that govern norovirus susceptibility.« less

  9. Phase 3 Study of Ataluren in Patients With Nonsense Mutation Duchenne Muscular Dystrophy

    ClinicalTrials.gov

    2017-12-11

    Muscular Dystrophy, Duchenne; Muscular Dystrophies; Muscular Disorders, Atrophic; Muscular Diseases; Musculoskeletal Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  10. Novel autosomal dominant TNNT1 mutation causing nemaline myopathy.

    PubMed

    Konersman, Chamindra G; Freyermuth, Fernande; Winder, Thomas L; Lawlor, Michael W; Lagier-Tourenne, Clotilde; Patel, Shailendra B

    2017-11-01

    Nemaline myopathy (NEM) is one of the three major forms of congenital myopathy and is characterized by diffuse muscle weakness, hypotonia, respiratory insufficiency, and the presence of nemaline rod structures on muscle biopsy. Mutations in troponin T1 (TNNT1) is 1 of 10 genes known to cause NEM. To date, only homozygous nonsense mutations or compound heterozygous truncating or internal deletion mutations in TNNT1 gene have been identified in NEM. This extended family is of historical importance as some members were reported in the 1960s as initial evidence that NEM is a hereditary disorder. Proband and extended family underwent Sanger sequencing for TNNT1. We performed RT-PCR and immunoblot on muscle to assess TNNT1 RNA expression and protein levels in proband and father. We report a novel heterozygous missense mutation of TNNT1 c.311A>T (p.E104V) that segregated in an autosomal dominant fashion in a large family residing in the United States. Extensive sequencing of the other known genes for NEM failed to identify any other mutant alleles. Muscle biopsies revealed a characteristic pattern of nemaline rods and severe myofiber hypotrophy that was almost entirely restricted to the type 1 fiber population. This novel mutation alters a residue that is highly conserved among vertebrates. This report highlights not only a family with autosomal dominant inheritance of NEM, but that this novel mutation likely acts via a dominant negative mechanism. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  11. How the Leopard Hides Its Spots: ASIP Mutations and Melanism in Wild Cats

    PubMed Central

    Schneider, Alexsandra; David, Victor A.; Johnson, Warren E.; O'Brien, Stephen J.; Barsh, Gregory S.; Menotti-Raymond, Marilyn; Eizirik, Eduardo

    2012-01-01

    The occurrence of melanism (darkening of the background coloration) is documented in 13 felid species, in some cases reaching high frequencies at the population level. Recent analyses have indicated that it arose multiple times in the Felidae, with three different species exhibiting unique mutations associated with this trait. The causative mutations in the remaining species have so far not been identified, precluding a broader assessment of the evolutionary dynamics of melanism in the Felidae. Among these, the leopard (Panthera pardus) is a particularly important target for research, given the iconic status of the ‘black panther’ and the extremely high frequency of melanism observed in some Asian populations. Another felid species from the same region, the Asian golden cat (Pardofelis temminckii), also exhibits frequent records of melanism in some areas. We have sequenced the coding region of the Agouti Signaling Protein (ASIP) gene in multiple leopard and Asian golden cat individuals, and identified distinct mutations strongly associated with melanism in each of them. The single nucleotide polymorphism (SNP) detected among the P. pardus individuals was caused by a nonsense mutation predicted to completely ablate ASIP function. A different SNP was identified in P. temminckii, causing a predicted amino acid change that should also induce loss of function. Our results reveal two additional cases of species-specific mutations implicated in melanism in the Felidae, and indicate that ASIP mutations may play an important role in naturally-occurring coloration polymorphism. PMID:23251368

  12. How the leopard hides its spots: ASIP mutations and melanism in wild cats.

    PubMed

    Schneider, Alexsandra; David, Victor A; Johnson, Warren E; O'Brien, Stephen J; Barsh, Gregory S; Menotti-Raymond, Marilyn; Eizirik, Eduardo

    2012-01-01

    The occurrence of melanism (darkening of the background coloration) is documented in 13 felid species, in some cases reaching high frequencies at the population level. Recent analyses have indicated that it arose multiple times in the Felidae, with three different species exhibiting unique mutations associated with this trait. The causative mutations in the remaining species have so far not been identified, precluding a broader assessment of the evolutionary dynamics of melanism in the Felidae. Among these, the leopard (Panthera pardus) is a particularly important target for research, given the iconic status of the 'black panther' and the extremely high frequency of melanism observed in some Asian populations. Another felid species from the same region, the Asian golden cat (Pardofelis temminckii), also exhibits frequent records of melanism in some areas. We have sequenced the coding region of the Agouti Signaling Protein (ASIP) gene in multiple leopard and Asian golden cat individuals, and identified distinct mutations strongly associated with melanism in each of them. The single nucleotide polymorphism (SNP) detected among the P. pardus individuals was caused by a nonsense mutation predicted to completely ablate ASIP function. A different SNP was identified in P. temminckii, causing a predicted amino acid change that should also induce loss of function. Our results reveal two additional cases of species-specific mutations implicated in melanism in the Felidae, and indicate that ASIP mutations may play an important role in naturally-occurring coloration polymorphism.

  13. A novel gene for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss.

    PubMed

    Ebermann, Inga; Scholl, Hendrik P N; Charbel Issa, Peter; Becirovic, Elvir; Lamprecht, Jürgen; Jurklies, Bernhard; Millán, José M; Aller, Elena; Mitter, Diana; Bolz, Hanno

    2007-04-01

    Usher syndrome is an autosomal recessive condition characterized by sensorineural hearing loss, variable vestibular dysfunction, and visual impairment due to retinitis pigmentosa (RP). The seven proteins that have been identified for Usher syndrome type 1 (USH1) and type 2 (USH2) may interact in a large protein complex. In order to identify novel USH genes, we followed a candidate strategy, assuming that mutations in proteins interacting with this "USH network" may cause Usher syndrome as well. The DFNB31 gene encodes whirlin, a PDZ scaffold protein with expression in both hair cell stereocilia and retinal photoreceptor cells. Whirlin represents an excellent candidate for USH2 because it binds to Usherin (USH2A) and VLGR1b (USH2C). Genotyping of microsatellite markers specific for the DFNB31 gene locus on chromosome 9q32 was performed in a German USH2 family that had been excluded for all known USH loci. Patients showed common haplotypes. Sequence analysis of DFNB31 revealed compound heterozygosity for a nonsense mutation, p.Q103X, in exon 1, and a mutation in the splice donor site of exon 2, c.837+1G>A. DFNB31 mutations appear to be a rare cause of Usher syndrome, since no mutations were identified in an additional 96 USH2 patients. While mutations in the C-terminal half of whirlin have previously been reported in non-syndromic deafness (DFNB31), both alterations identified in our USH2 family affect the long protein isoform. We propose that mutations causing Usher syndrome are probably restricted to exons 1-6 that are specific for the long isoform and probably crucial for retinal function. We describe a novel genetic subtype for Usher syndrome, which we named USH2D and which is caused by mutations in whirlin. Moreover, this is the first case of USH2 that is allelic to non-syndromic deafness.

  14. Germline mutations in SUFU cause Gorlin syndrome-associated childhood medulloblastoma and redefine the risk associated with PTCH1 mutations.

    PubMed

    Smith, Miriam J; Beetz, Christian; Williams, Simon G; Bhaskar, Sanjeev S; O'Sullivan, James; Anderson, Beverley; Daly, Sarah B; Urquhart, Jill E; Bholah, Zaynab; Oudit, Deemesh; Cheesman, Edmund; Kelsey, Anna; McCabe, Martin G; Newman, William G; Evans, D Gareth R

    2014-12-20

    Heterozygous germline PTCH1 mutations are causative of Gorlin syndrome (naevoid basal cell carcinoma), but detection rates > 70% have rarely been reported. We aimed to define the causative mutations in individuals with Gorlin syndrome without PTCH1 mutations. We undertook exome sequencing on lymphocyte DNA from four unrelated individuals from families with Gorlin syndrome with no PTCH1 mutations found by Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), or RNA analysis. A germline heterozygous nonsense mutation in SUFU was identified in one of four exomes. Sanger sequencing of SUFU in 23 additional PTCH1-negative Gorlin syndrome families identified a SUFU mutation in a second family. Copy-number analysis of SUFU by MLPA revealed a large heterozygous deletion in a third family. All three SUFU-positive families fulfilled diagnostic criteria for Gorlin syndrome, although none had odontogenic jaw keratocysts. Each SUFU-positive family included a single case of medulloblastoma, whereas only two (1.7%) of 115 individuals with Gorlin syndrome and a PTCH1 mutation developed medulloblastoma. We demonstrate convincing evidence that SUFU mutations can cause classical Gorlin syndrome. Our study redefines the risk of medulloblastoma in Gorlin syndrome, dependent on the underlying causative gene. Previous reports have found a 5% risk of medulloblastoma in Gorlin syndrome. We found a < 2% risk in PTCH1 mutation-positive individuals, with a risk up to 20× higher in SUFU mutation-positive individuals. Our data suggest childhood brain magnetic resonance imaging surveillance is justified in SUFU-related, but not PTCH1-related, Gorlin syndrome. © 2014 by American Society of Clinical Oncology.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirastu, M.; Galanello, R.; Doherty, M.A.

    The predominant ..beta..-thalassemia in Sardinia is the ..beta../sup 0/ type in which no ..beta..-globin chains are synthesized in the homozygous state. The authors determined the ..beta..-thalassemia mutations in this population by the oligonucleotide-probe method and defined the chromosome haplotypes on which the mutation resides. The same ..beta../sup 39(CAG..-->..TAG)/ nonsense mutation was found on nine different chromosome haplotypes. Although this mutation may have arisen more than once, the multiple haplotypes could also be generated by crossing over and gene conversion events. These findings underscore the frequency of mutational events in the ..beta..-globin gene region.

  16. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie.

    PubMed

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol; Na, Ki-Jeong

    2010-12-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance.

  17. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie

    PubMed Central

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol

    2010-01-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance. PMID:21113104

  18. Characterization of variegate porphyria mutations using a minigene approach.

    PubMed

    Granata, Barbara Xoana; Baralle, Marco; De Conti, Laura; Parera, Victoria; Rossetti, Maria Victoria

    2015-01-01

    Porphyrias are a group of metabolic diseases that affect the skin and/or nervous system. In 2008, three unrelated patients were diagnosed with variegate porphyria at the CIPYP (Centro de Investigaciones sobre Porfirinas y Porfirias). Sequencing of the protoporphyrinogen oxidase gene, the gene altered in this type of porphyria, revealed three previously undescribed mutations: c.338+3insT, c.807G>A, and c.808-1G>C. As these mutations do not affect the protein sequence, we hypothesized that they might be splicing mutations. RT-PCRs performed on the patient's mRNAs showed normal mRNA or no amplification at all. This result indicated that the aberrant spliced transcript is possibly being degraded. In order to establish whether they were responsible or not for the patient's disease by causing aberrant splicing, we utilized a minigene approach. We found that the three mutations lead to exon skipping; therefore, the abnormal mRNAs are most likely degraded by a mechanism such as nonsense-mediated decay. In conclusion, these mutations are responsible for the disease because they alter the normal splicing pathway, thus providing a functional explanation for the appearance of disease and highlighting the use of minigene assays to complement transcript analysis.

  19. Phase 3 Extension Study of Ataluren (PTC124) in Patients With Nonsense Mutation Dystrophinopathy

    ClinicalTrials.gov

    2018-01-16

    Muscular Dystrophy, Duchenne; Muscular Dystrophies; Muscular Disorders, Atrophic; Muscular Diseases; Musculoskeletal Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  20. Allelic heterogeneity of the carbohydrate sulfotransferase-6 gene in patients with macular corneal dystrophy.

    PubMed

    Sultana, A; Sridhar, M S; Klintworth, G K; Balasubramanian, D; Kannabiran, C

    2005-11-01

    Allelic heterogeneity of the carbohydrate sulfotransferase-6 gene in patients with macular corneal dystrophy. Macular corneal dystrophy (MCD) is an autosomal recessive disorder characterized by grayish white opacities in the cornea. It is caused by mutations in the carbohydrate sulfotransferase-6 (CHST6) gene, which codes for the enzyme corneal N-acetylglucosamine-6-sulfotransferase. This enzyme catalyzes the sulfation of keratan sulfate, an important component of corneal proteoglycans. We screened 31 patients from 26 families with MCD for mutations in the coding region of the CHST6 gene. Twenty-six different mutations were identified, of which 14 mutations are novel. The novel mutations are one nonsense mutation found in one patient (Trp2Ter), one frameshift (insertion plus deletion) mutation in two patients (His335fs), and 12 missense mutations (Leu3Met, Ser54Phe, Val56Arg, Ala73Thr, Ser98Leu, Cys165Trp, Ser167Phe, Phe178Cys, Leu193Pro, Pro204Arg, Arg272Ser, and Arg334Cys) in 11 patients. These data demonstrate a high degree of allelic heterogeneity of the CHST6 gene in patient populations with MCD from Southern India, where this disease may have a relatively higher prevalence than in outbred communities.

  1. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae.

    PubMed

    Zadorsky, S P; Sopova, Y V; Andreichuk, D Y; Startsev, V A; Medvedeva, V P; Inge-Vechtomov, S G

    2015-06-01

    The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Pitfalls and caveats in BRCA sequencing.

    PubMed

    Bellosillo, Beatriz; Tusquets, Ignacio

    2006-01-01

    Between 5 and 10% of breast cancer cases are considered to result from hereditary predisposition. Germ-line mutations in BRCA1 and BRCA2 are responsible for an inherited predisposition of breast and ovarian cancer. Direct nucleotide sequencing is considered the gold standard technique for mutation detection for genes such as BRCA1 and BRCA2. In many laboratories that analyze BRCA1 and BRCA2, previous to direct sequencing, screening techniques to identify sequence variants in the PCR amplicons are performed. The mutations detected in these genes may be frameshift mutations (insertions or deletions), nonsense mutations, or missense mutations. The clinical interpretation of the mutation as the cause of the disease may be difficult to establish in the case of missense mutations. Only in 30-70% of the families in which a hereditary component is suspected, a mutation in BRCA1 and/or BRCA2 is detected. Negative results may be due to: wrong selection of the proband; mutations in the regulatory portion of the genes; gene silencing due to epigenetic phenomena; or large genomic rearrangements that produce deletions of whole exons. Another possibility that explains the lack of detection of alterations in BRCA1 or BRCA2 is the presence of mutations in undiscovered genes or in genes that interact with BRCA1 and/or BRCA2, which may be low-penetrance genes, like CHEK2.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toki, Hideaki; Minowa, Osamu; Inoue, Maki

    Dominant mutations in the Serca2 gene, which encodes sarco(endo)plasmic reticulum calcium-ATPase, predispose mice to gastrointestinal epithelial carcinoma [1–4] and humans to Darier disease (DD) [14–17]. In this study, we generated mice harboring N-ethyl-N-nitrosourea (ENU)-induced allelic mutations in Serca2: three missense mutations and one nonsense mutation. Mice harboring these Serca2 mutations developed tumors that were categorized as either early onset squamous cell tumors (SCT), with development similar to null-type knockout mice [2,4] (aggressive form; M682, M814), or late onset tumors (mild form; M1049, M1162). Molecular analysis showed no aberration in Serca2 mRNA or protein expression levels in normal esophageal cells ofmore » any of the four mutant heterozygotes. There was no loss of heterozygosity at the Serca2 locus in the squamous cell carcinomas in any of the four lines. The effect of each mutation on Ca{sup 2+}-ATPase activity was predicted using atomic-structure models and accumulated mutated protein studies, suggesting that putative complete loss of Serca2 enzymatic activity may lead to early tumor onset, whereas mutations in which Serca2 retains residual enzymatic activity result in late onset. We propose that impaired Serca2 gene product activity has a long-term effect on squamous cell carcinogenesis from onset to the final carcinoma stage through an as-yet unrecognized but common regulatory pathway. -- Highlights: •Novel mutations in murine Serca2 caused early onset or late onset of tumorigenesis. •They also caused higher or lower incidence of Darier Disease phenotype. •3D structure model suggested the former mutations led to severer defect on ATPase. •Driver gene mutations via long-range effect on Ca2+ distributions are suggested.« less

  4. Mutations in SULT2B1 Cause Autosomal-Recessive Congenital Ichthyosis in Humans.

    PubMed

    Heinz, Lisa; Kim, Gwang-Jin; Marrakchi, Slaheddine; Christiansen, Julie; Turki, Hamida; Rauschendorf, Marc-Alexander; Lathrop, Mark; Hausser, Ingrid; Zimmer, Andreas D; Fischer, Judith

    2017-06-01

    Ichthyoses are a clinically and genetically heterogeneous group of genodermatoses associated with abnormal scaling of the skin over the whole body. Mutations in nine genes are known to cause non-syndromic forms of autosomal-recessive congenital ichthyosis (ARCI). However, not all genetic causes for ARCI have been discovered to date. Using whole-exome sequencing (WES) and multigene panel screening, we identified 6 ARCI-affected individuals from three unrelated families with mutations in Sulfotransferase family 2B member 1 (SULT2B1), showing their causative association with ARCI. Cytosolic sulfotransferases form a large family of enzymes that are involved in the synthesis and metabolism of several steroids in humans. We identified four distinct mutations including missense, nonsense, and splice site mutations. We demonstrated the loss of SULT2B1 expression at RNA and protein levels in keratinocytes from individuals with ARCI by functional analyses. Furthermore, we succeeded in reconstructing the morphologic skin alterations in a 3D organotypic tissue culture model with SULT2B1-deficient keratinocytes and fibroblasts. By thin layer chromatography (TLC) of extracts from these organotypic cultures, we could show the absence of cholesterol sulfate, the metabolite of SULT2B1, and an increased level of cholesterol, indicating a disturbed cholesterol metabolism of the skin upon loss-of-function mutation in SULT2B1. In conclusion, our study reveals an essential role for SULT2B1 in the proper development of healthy human skin. Mutation in SULT2B1 leads to an ARCI phenotype via increased proliferation of human keratinocytes, thickening of epithelial layers, and altered epidermal cholesterol metabolism. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. MECR Mutations Cause Childhood-Onset Dystonia and Optic Atrophy, a Mitochondrial Fatty Acid Synthesis Disorder.

    PubMed

    Heimer, Gali; Kerätär, Juha M; Riley, Lisa G; Balasubramaniam, Shanti; Eyal, Eran; Pietikäinen, Laura P; Hiltunen, J Kalervo; Marek-Yagel, Dina; Hamada, Jeffrey; Gregory, Allison; Rogers, Caleb; Hogarth, Penelope; Nance, Martha A; Shalva, Nechama; Veber, Alvit; Tzadok, Michal; Nissenkorn, Andreea; Tonduti, Davide; Renaldo, Florence; Kraoua, Ichraf; Panteghini, Celeste; Valletta, Lorella; Garavaglia, Barbara; Cowley, Mark J; Gayevskiy, Velimir; Roscioli, Tony; Silberstein, Jonathon M; Hoffmann, Chen; Raas-Rothschild, Annick; Tiranti, Valeria; Anikster, Yair; Christodoulou, John; Kastaniotis, Alexander J; Ben-Zeev, Bruria; Hayflick, Susan J

    2016-12-01

    Mitochondrial fatty acid synthesis (mtFAS) is an evolutionarily conserved pathway essential for the function of the respiratory chain and several mitochondrial enzyme complexes. We report here a unique neurometabolic human disorder caused by defective mtFAS. Seven individuals from five unrelated families presented with childhood-onset dystonia, optic atrophy, and basal ganglia signal abnormalities on MRI. All affected individuals were found to harbor recessive mutations in MECR encoding the mitochondrial trans-2-enoyl-coenzyme A-reductase involved in human mtFAS. All six mutations are extremely rare in the general population, segregate with the disease in the families, and are predicted to be deleterious. The nonsense c.855T>G (p.Tyr285 ∗ ), c.247_250del (p.Asn83Hisfs ∗ 4), and splice site c.830+2_830+3insT mutations lead to C-terminal truncation variants of MECR. The missense c.695G>A (p.Gly232Glu), c.854A>G (p.Tyr285Cys), and c.772C>T (p.Arg258Trp) mutations involve conserved amino acid residues, are located within the cofactor binding domain, and are predicted by structural analysis to have a destabilizing effect. Yeast modeling and complementation studies validated the pathogenicity of the MECR mutations. Fibroblast cell lines from affected individuals displayed reduced levels of both MECR and lipoylated proteins as well as defective respiration. These results suggest that mutations in MECR cause a distinct human disorder of the mtFAS pathway. The observation of decreased lipoylation raises the possibility of a potential therapeutic strategy. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Increased prevalence of mutant null alleles that cause hereditary fructose intolerance in the American population.

    PubMed

    Coffee, Erin M; Yerkes, Laura; Ewen, Elizabeth P; Zee, Tiffany; Tolan, Dean R

    2010-02-01

    Mutations in the aldolase B gene (ALDOB) impairing enzyme activity toward fructose-1-phosphate cleavage cause hereditary fructose intolerance (HFI). Diagnosis of the disease is possible by identifying known mutant ALDOB alleles in suspected patients; however, the frequencies of mutant alleles can differ by population. Here, 153 American HFI patients with 268 independent alleles were analyzed to identify the prevalence of seven known HFI-causing alleles (A149P, A174D, N334K, Delta4E4, R59Op, A337V, and L256P) in this population. Allele-specific oligonucleotide hybridization analysis was performed on polymerase chain reaction (PCR)-amplified genomic DNA from these patients. In the American population, the missense mutations A149P and A174D are the two most common alleles, with frequencies of 44% and 9%, respectively. In addition, the nonsense mutations Delta4E4 and R59Op are the next most common alleles, with each having a frequency of 4%. Together, the frequencies of all seven alleles make up 65% of HFI-causing alleles in this population. Worldwide, these same alleles make up 82% of HFI-causing mutations. This difference indicates that screening for common HFI alleles is more difficult in the American population. Nevertheless, a genetic screen for diagnosing HFI in America can be improved by including all seven alleles studied here. Lastly, identification of HFI patients presenting with classic symptoms and who have homozygous null genotypes indicates that aldolase B is not required for proper development or metabolic maintenance.

  7. Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production.

    PubMed

    Mukai, Nobuhiko; Masaki, Kazuo; Fujii, Tsutomu; Iefuji, Haruyuki

    2014-07-01

    Among industrial yeasts used for alcoholic beverage production, most wine and weizen beer yeasts decarboxylate ferulic acid to 4-vinylguaiacol, which has a smoke-like flavor, whereas sake, shochu, top-fermenting, and bottom-fermenting yeast strains lack this ability. However, the factors underlying this difference among industrial yeasts are not clear. We previously confirmed that both PAD1 (phenylacrylic acid decarboxylase gene, YDR538W) and FDC1 (ferulic acid decarboxylase gene, YDR539W) are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. In the present study, single nucleotide polymorphisms (SNPs) of PAD1 and FDC1 in sake, shochu, wine, weizen, top-fermenting, bottom-fermenting, and laboratory yeast strains were examined to clarify the differences in ferulic acid decarboxylation ability between these types of yeast. For PAD1, a nonsense mutation was observed in the gene sequence of standard top-fermenting yeast. Gene sequence analysis of FDC1 revealed that sake, shochu, and standard top-fermenting yeasts contained a nonsense mutation, whereas a frameshift mutation was identified in the FDC1 gene of bottom-fermenting yeast. No nonsense or frameshift mutations were detected in laboratory, wine, or weizen beer yeast strains. When FDC1 was introduced into sake and shochu yeast strains, the transformants exhibited ferulic acid decarboxylation activity. Our findings indicate that a positive relationship exists between SNPs in PAD1 and FDC1 genes and the ferulic acid decarboxylation ability of industrial yeast strains. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita.

    PubMed

    Ballew, Bari J; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Boland, Joseph; Burdett, Laurie; Alter, Blanche P; Savage, Sharon A

    2013-04-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. In addition, inheritance of only the missense mutation led to very short telomeres in the proband's brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC.

  9. Germline Mutations of Regulator of Telomere Elongation Helicase 1, RTEL1, In Dyskeratosis Congenita

    PubMed Central

    Ballew, Bari J.; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Boland, Joseph; Burdett, Laurie; Alter, Blanche P.; Savage, Sharon A.

    2013-01-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. Additionally, inheritance of only the missense mutation led to very short telomeres in the proband’s brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC. PMID:23329068

  10. CCR4 frameshift mutation identifies a distinct group of adult T cell leukaemia/lymphoma with poor prognosis.

    PubMed

    Yoshida, Noriaki; Miyoshi, Hiroaki; Kato, Takeharu; Sakata-Yanagimoto, Mamiko; Niino, Daisuke; Taniguchi, Hiroaki; Moriuchi, Yukiyoshi; Miyahara, Masaharu; Kurita, Daisuke; Sasaki, Yuya; Shimono, Joji; Kawamoto, Keisuke; Utsunomiya, Atae; Imaizumi, Yoshitaka; Seto, Masao; Ohshima, Koichi

    2016-04-01

    Adult T cell leukaemia/lymphoma (ATLL) is an intractable T cell neoplasm caused by human T cell leukaemia virus type 1. Next-generation sequencing-based comprehensive mutation studies have revealed recurrent somatic CCR4 mutations in ATLL, although clinicopathological findings associated with CCR4 mutations remain to be delineated. In the current study, 184 cases of peripheral T cell lymphoma, including 113 cases of ATLL, were subjected to CCR4 mutation analysis. This sequence analysis identified mutations in 27% (30/113) of cases of ATLL and 9% (4/44) of cases of peripheral T cell lymphoma not otherwise specified. Identified mutations included nonsense (NS) and frameshift (FS) mutations. No significant differences in clinicopathological findings were observed between ATLL cases stratified by presence of CCR4 mutation. All ATLL cases with CCR4 mutations exhibited cell-surface CCR4 positivity. Semi-quantitative CCR4 protein analysis of immunohistochemical sections revealed higher CCR4 expression in cases with NS mutations of CCR4 than in cases with wild-type (WT) CCR4. Furthermore, among ATLL cases, FS mutation was significantly associated with a poor prognosis, compared with NS mutation and WT CCR4. These results suggest that CCR4 mutation is an important determinant of the clinical course in ATLL cases, and that NS and FS mutations of CCR4 behave differently with respect to ATLL pathophysiology. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Mechanistic Basis for Type 2 Long QT Syndrome Caused by KCNH2 Mutations that Disrupt Conserved Arginine Residue in the Voltage Sensor

    PubMed Central

    McBride, Christie M.; Smith, Ashley M.; Smith, Jennifer L.; Reloj, Allison R.; Velasco, Ellyn J.; Powell, Jonathan; Elayi, Claude S.; Bartos, Daniel C.; Burgess, Don E.

    2013-01-01

    KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (IKr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing IKr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (IKv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients’ genotypes) mostly corrected the changes in IKv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing IKr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease IKr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient. PMID:23546015

  12. Mechanistic basis for type 2 long QT syndrome caused by KCNH2 mutations that disrupt conserved arginine residues in the voltage sensor.

    PubMed

    McBride, Christie M; Smith, Ashley M; Smith, Jennifer L; Reloj, Allison R; Velasco, Ellyn J; Powell, Jonathan; Elayi, Claude S; Bartos, Daniel C; Burgess, Don E; Delisle, Brian P

    2013-05-01

    KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (I Kr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing I Kr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (I Kv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients' genotypes) mostly corrected the changes in I Kv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing I Kr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease I Kr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient.

  13. Recessive HYDIN Mutations Cause Primary Ciliary Dyskinesia without Randomization of Left-Right Body Asymmetry

    PubMed Central

    Olbrich, Heike; Schmidts, Miriam; Werner, Claudius; Onoufriadis, Alexandros; Loges, Niki T.; Raidt, Johanna; Banki, Nora Fanni; Shoemark, Amelia; Burgoyne, Tom; Al Turki, Saeed; Hurles, Matthew E.; Köhler, Gabriele; Schroeder, Josef; Nürnberg, Gudrun; Nürnberg, Peter; Chung, Eddie M.K.; Reinhardt, Richard; Marthin, June K.; Nielsen, Kim G.; Mitchison, Hannah M.; Omran, Heymut

    2012-01-01

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder characterized by defective cilia and flagella motility. Chronic destructive-airway disease is caused by abnormal respiratory-tract mucociliary clearance. Abnormal propulsion of sperm flagella contributes to male infertility. Genetic defects in most individuals affected by PCD cause randomization of left-right body asymmetry; approximately half show situs inversus or situs ambiguous. Almost 70 years after the hy3 mouse possessing Hydin mutations was described as a recessive hydrocephalus model, we report HYDIN mutations in PCD-affected persons without hydrocephalus. By homozygosity mapping, we identified a PCD-associated locus, chromosomal region 16q21-q23, which contains HYDIN. However, a nearly identical 360 kb paralogous segment (HYDIN2) in chromosomal region 1q21.1 complicated mutational analysis. In three affected German siblings linked to HYDIN, we identified homozygous c.3985G>T mutations that affect an evolutionary conserved splice acceptor site and that subsequently cause aberrantly spliced transcripts predicting premature protein termination in respiratory cells. Parallel whole-exome sequencing identified a homozygous nonsense HYDIN mutation, c.922A>T (p.Lys307∗), in six individuals from three Faroe Island PCD-affected families that all carried an 8.8 Mb shared haplotype across HYDIN, indicating an ancestral founder mutation in this isolated population. We demonstrate by electron microscopy tomography that, consistent with the effects of loss-of-function mutations, HYDIN mutant respiratory cilia lack the C2b projection of the central pair (CP) apparatus; similar findings were reported in Hydin-deficient Chlamydomonas and mice. High-speed videomicroscopy demonstrated markedly reduced beating amplitudes of respiratory cilia and stiff sperm flagella. Like the hy3 mouse model, all nine PCD-affected persons had normal body composition because nodal cilia function is apparently not dependent on the function of the CP apparatus. PMID:23022101

  14. Further delineation of the SATB2 phenotype.

    PubMed

    Döcker, Dennis; Schubach, Max; Menzel, Moritz; Munz, Marita; Spaich, Christiane; Biskup, Saskia; Bartholdi, Deborah

    2014-08-01

    SATB2 is an evolutionarily highly conserved chromatin remodeling gene located on chromosome 2q33.1. Vertebrate animal models have shown that Satb2 has a crucial role in craniofacial patterning and osteoblast differentiation, as well as in determining the fates of neuronal projections in the developing neocortex. In humans, chromosomal translocations and deletions of 2q33.1 leading to SATB2 haploinsufficiency are associated with cleft palate (CP), facial dysmorphism and intellectual disability (ID). A single patient carrying a nonsense mutation in SATB2 has been described to date. In this study, we performed trio-exome sequencing in a 3-year-old girl with CP and severely delayed speech development, and her unaffected parents. Previously, the girl had undergone conventional and molecular karyotyping (microarray analysis), as well as targeted analysis for different diseases associated with developmental delay, including Angelman syndrome, Rett syndrome and Fragile X syndrome. No diagnosis could be established. Exome sequencing revealed a de novo nonsense mutation in the SATB2 gene (c.715C>T; p.R239*). The identification of a second patient carrying a de novo nonsense mutation in SATB2 confirms that this gene is essential for normal craniofacial patterning and cognitive development. Based on our data and the literature published so far, we propose a new clinically recognizable syndrome - the SATB2-associated syndrome (SAS). SAS is likely to be underdiagnosed and should be considered in children with ID, severe speech delay, cleft or high-arched palate and abnormal dentition with crowded and irregularly shaped teeth.

  15. GM2 gangliosidosis AB variant: novel mutation from India - a case report with a review.

    PubMed

    Sheth, Jayesh; Datar, Chaitanya; Mistri, Mehul; Bhavsar, Riddhi; Sheth, Frenny; Shah, Krati

    2016-07-11

    GM2 gangliosidosis-AB variants a rare autosomal recessive neurodegenerative disorder occurring due to deficiency of GM2 activator protein resulting from the mutation in GM2A gene. Only seven mutations in nine cases have been reported from different population except India. Present case is a one year old male born to 3rd degree consanguineous Indian parents from Maharashtra. He was presented with global developmental delay, hypotonia and sensitive to hyperacusis. Horizontal nystagmus and cherry red spot was detected during ophthalmic examination. MRI of brain revealed putaminal hyperintensity and thalamic hypointensity with some unmyelinated white matter in T2/T1 weighted images. Initially he was suspected having Tay-Sachs disease and finally diagnosed as GM2 gangliosidosis, AB variant due to truncated protein caused by nonsense mutation c.472 G > T (p.E158X) in GM2Agene. Children with phenotypic presentation as GM2 gangliosidosis (Tay-Sachs or Sandhoff disease) and normal enzyme activity of β-hexosaminidase-A and -B in leucocytes need to be investigated for GM2 activator protein deficiency.

  16. Novel Mutations in the ZEB1 Gene Identified in Czech and British Patients With Posterior Polymorphous Corneal Dystrophy

    PubMed Central

    Liskova, Petra; Tuft, Stephen J.; Gwilliam, Rhian; Ebenezer, Neil D.; Jirsova, Katerina; Prescott, Quincy; Martincova, Radka; Pretorius, Marike; Sinclair, Neil; Boase, David L.; Jeffrey, Margaret J.; Deloukas, Panos; Hardcastle, Alison J.; Filipec, Martin; Bhattacharya, Shomi S.

    2009-01-01

    We describe the search for mutations in six unrelated Czech and four unrelated British families with posterior polymorphous corneal dystrophy (PPCD); a relatively rare eye disorder. Coding exons and intron/exon boundaries of all three genes (VSX1, COL8A2, and ZEB1/TCF8) previously reported to be implicated in the pathogenesis of this disorder were screened by DNA sequencing. Four novel pathogenic mutations were identified in four families; two deletions, one nonsense, and one duplication within exon 7 in the ZEB1 gene located at 10p11.2. We also genotyped the Czech patients to test for a founder haplotype and lack of disease segregation with the 20p11.2 locus we previously described. Although a systematic clinical examination was not performed, our investigation does not support an association between ZEB1 changes and self reported non-ocular anomalies. In the remaining six families no disease causing mutations were identified thereby indicating that as yet unidentified gene(s) are likely to be responsible for PPCD. PMID:17437275

  17. Identification of a novel mutation in a patient with pseudohypoparathyroidism type Ia

    PubMed Central

    Lee, Ye Seung; Kim, Hui Kwon; Kim, Hye Rim; Lee, Jong Yoon; Choi, Joong Wan; Bae, Eun Ju; Oh, Phil Soo; Park, Won Il; Ki, Chang Seok

    2014-01-01

    Pseudohypoparathyroidism type Ia (PHP Ia) is a disorder characterized by multiform hormonal resistance including parathyroid hormone (PTH) resistance and Albright hereditary osteodystrophy (AHO). It is caused by heterozygous inactivating mutations within the Gs alpha-encoding GNAS exons. A 9-year-old boy presented with clinical and laboratory abnormalities including hypocalcemia, hyperphosphatemia, PTH resistance, multihormone resistance and AHO (round face, short stature, obesity, brachydactyly and osteoma cutis) which were typical of PHP Ia. He had a history of repeated convulsive episodes that started from the age of 2 months. A cranial computed tomography scan showed bilateral calcifications in the basal ganglia and his intelligence quotient testing indicated mild mental retardation. Family history revealed that the patient's maternal relatives, including his grandmother and 2 of his mother's siblings, had features suggestive of AHO. Sequencing of the GNAS gene of the patient identified a heterozygous nonsense mutation within exon 11 (c.637 C>T). The C>T transversion results in an amino acid substitution from Gln to stop codon at codon 213 (p.Gln213*). To our knowledge, this is a novel mutation in GNAS. PMID:25045367

  18. A broad spectrum of genomic changes in latinamerican patients with EXT1/EXT2-CDG

    PubMed Central

    Delgado, M. A.; Martinez-Domenech, G.; Sarrión, P.; Urreizti, R.; Zecchini, L.; Robledo, H. H.; Segura, F.; de Kremer, R. Dodelson; Balcells, S.; Grinberg, D.; Asteggiano, C. G.

    2014-01-01

    Multiple osteochondromatosis (MO), or EXT1/EXT2-CDG, is an autosomal dominant O-linked glycosylation disorder characterized by the formation of multiple cartilage-capped tumors (osteochondromas). In contrast, solitary osteochondroma (SO) is a non-hereditary condition. EXT1 and EXT2, are tumor suppressor genes that encode glycosyltransferases involved in heparan sulfate elongation. We present the clinical and molecular analysis of 33 unrelated Latin American patients (27 MO and 6 SO). Sixty-three percent of all MO cases presented severe phenotype and two malignant transformations to chondrosarcoma (7%). We found the mutant allele in 78% of MO patients. Ten mutations were novel. The disease-causing mutations remained unknown in 22% of the MO patients and in all SO patients. No second mutational hit was detected in the DNA of the secondary chondrosarcoma from a patient who carried a nonsense EXT1 mutation. Neither EXT1 nor EXT2 protein could be detected in this sample. This is the first Latin American research program on EXT1/EXT2-CDG. PMID:25230886

  19. A broad spectrum of genomic changes in latinamerican patients with EXT1/EXT2-CDG.

    PubMed

    Delgado, M A; Martinez-Domenech, G; Sarrión, P; Urreizti, R; Zecchini, L; Robledo, H H; Segura, F; de Kremer, R Dodelson; Balcells, S; Grinberg, D; Asteggiano, C G

    2014-09-18

    Multiple osteochondromatosis (MO), or EXT1/EXT2-CDG, is an autosomal dominant O-linked glycosylation disorder characterized by the formation of multiple cartilage-capped tumors (osteochondromas). In contrast, solitary osteochondroma (SO) is a non-hereditary condition. EXT1 and EXT2, are tumor suppressor genes that encode glycosyltransferases involved in heparan sulfate elongation. We present the clinical and molecular analysis of 33 unrelated Latin American patients (27 MO and 6 SO). Sixty-three percent of all MO cases presented severe phenotype and two malignant transformations to chondrosarcoma (7%). We found the mutant allele in 78% of MO patients. Ten mutations were novel. The disease-causing mutations remained unknown in 22% of the MO patients and in all SO patients. No second mutational hit was detected in the DNA of the secondary chondrosarcoma from a patient who carried a nonsense EXT1 mutation. Neither EXT1 nor EXT2 protein could be detected in this sample. This is the first Latin American research program on EXT1/EXT2-CDG.

  20. Wiedemann-Steiner Syndrome With 2 Novel KMT2A Mutations.

    PubMed

    Min Ko, Jung; Cho, Jae So; Yoo, Yongjin; Seo, Jieun; Choi, Murim; Chae, Jong-Hee; Lee, Hye-Ran; Cho, Tae-Joon

    2017-02-01

    Wiedemann-Steiner syndrome is a rare genetic disorder characterized by short stature, hairy elbows, facial dysmorphism, and developmental delay. It can also be accompanied by musculoskeletal anomalies such as muscular hypotonia and small hands and feet. Mutations in the KMT2A gene have only recently been identified as the cause of Wiedemann-Steiner syndrome; therefore, only 16 patients from 15 families have been described, and new phenotypic features continue to be added. In this report, we describe 2 newly identified patients with Wiedemann-Steiner syndrome who presented with variable severity. One girl exhibited developmental dysplasia of the hip and fibromatosis colli accompanied by other clinical features, including facial dysmorphism, hypertrichosis, patent ductus arteriosus, growth retardation, and borderline intellectual disability. The other patient, a boy, showed severe developmental retardation with automatic self-mutilation, facial dysmorphism, and hypertrichosis at a later age. Exome sequencing analysis of these patients and their parents revealed a de novo nonsense mutation, p.Gln1978*, of KMT2A in the former, and a missense mutation, p.Gly1168Asp, in the latter, which molecularly confirmed the diagnosis of Wiedemann-Steiner syndrome.

  1. Consecutive analysis of mutation spectrum in the dystrophin gene of 507 Korean boys with Duchenne/Becker muscular dystrophy in a single center.

    PubMed

    Cho, Anna; Seong, Moon-Woo; Lim, Byung Chan; Lee, Hwa Jeen; Byeon, Jung Hye; Kim, Seung Soo; Kim, Soo Yeon; Choi, Sun Ah; Wong, Ai-Lynn; Lee, Jeongho; Kim, Jon Soo; Ryu, Hye Won; Lee, Jin Sook; Kim, Hunmin; Hwang, Hee; Choi, Ji Eun; Kim, Ki Joong; Hwang, Young Seung; Hong, Ki Ho; Park, Seungman; Cho, Sung Im; Lee, Seung Jun; Park, Hyunwoong; Seo, Soo Hyun; Park, Sung Sup; Chae, Jong Hee

    2017-05-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are allelic X-linked recessive muscle diseases caused by mutations in the large and complex dystrophin gene. We analyzed the dystrophin gene in 507 Korean DMD/BMD patients by multiple ligation-dependent probe amplification and direct sequencing. Overall, 117 different deletions, 48 duplications, and 90 pathogenic sequence variations, including 30 novel variations, were identified. Deletions and duplications accounted for 65.4% and 13.3% of Korean dystrophinopathy, respectively, suggesting that the incidence of large rearrangements in dystrophin is similar among different ethnic groups. We also detected sequence variations in >100 probands. The small variations were dispersed across the whole gene, and 12.3% were nonsense mutations. Precise genetic characterization in patients with DMD/BMD is timely and important for implementing nationwide registration systems and future molecular therapeutic trials in Korea and globally. Muscle Nerve 55: 727-734, 2017. © 2016 Wiley Periodicals, Inc.

  2. Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta.

    PubMed

    Huckert, Mathilde; Stoetzel, Corinne; Morkmued, Supawich; Laugel-Haushalter, Virginie; Geoffroy, Véronique; Muller, Jean; Clauss, François; Prasad, Megana K; Obry, Frédéric; Raymond, Jean Louis; Switala, Marzena; Alembik, Yves; Soskin, Sylvie; Mathieu, Eric; Hemmerlé, Joseph; Weickert, Jean-Luc; Dabovic, Branka Brukner; Rifkin, Daniel B; Dheedene, Annelies; Boudin, Eveline; Caluseriu, Oana; Cholette, Marie-Claude; Mcleod, Ross; Antequera, Reynaldo; Gellé, Marie-Paule; Coeuriot, Jean-Louis; Jacquelin, Louis-Frédéric; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Van Hul, Wim; Bertola, Debora; Dollé, Pascal; Verloes, Alain; Mortier, Geert; Dollfus, Hélène; Bloch-Zupan, Agnès

    2015-06-01

    Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder. © The Author 2015. Published by Oxford University Press.

  3. De Novo Mutations of the Gene Encoding the Histone Acetyltransferase KAT6B Cause Genitopatellar Syndrome

    PubMed Central

    Simpson, Michael A.; Deshpande, Charu; Dafou, Dimitra; Vissers, Lisenka E.L.M.; Woollard, Wesley J.; Holder, Susan E.; Gillessen-Kaesbach, Gabriele; Derks, Ronny; White, Susan M.; Cohen-Snuijf, Ruthy; Kant, Sarina G.; Hoefsloot, Lies H.; Reardon, Willie; Brunner, Han G.; Bongers, Ernie M.H.F.; Trembath, Richard C.

    2012-01-01

    Genitopatellar syndrome (GPS) is a rare disorder in which patellar aplasia or hypoplasia is associated with external genital anomalies and severe intellectual disability. Using an exome-sequencing approach, we identified de novo mutations of KAT6B in five individuals with GPS; a single nonsense variant and three frameshift indels, including a 4 bp deletion observed in two cases. All identified mutations are located within the terminal exon of the gene and are predicted to generate a truncated protein product lacking evolutionarily conserved domains. KAT6B encodes a member of the MYST family of histone acetyltranferases. We demonstrate a reduced level of both histone H3 and H4 acetylation in patient-derived cells suggesting that dysregulation of histone acetylation is a direct functional consequence of GPS alleles. These findings define the genetic basis of GPS and illustrate the complex role of the regulation of histone acetylation during development. PMID:22265017

  4. The cyc1-11 mutation in yeast reverts by recombination with a nonallelic gene: composite genes determining the iso-cytochromes c.

    PubMed Central

    Ernst, J F; Stewart, J W; Sherman, F

    1981-01-01

    DNA sequence analysis of a cloned fragment directly established that the cyc1-11 mutation of iso-1-cytochrome c in the yeast Saccharomyces cerevisiae is a two-base-pair substitution that changes the CCA proline codon at amino acid position 76 to a UAA nonsense codon. Analysis of 11 revertant proteins and one cloned revertant gene showed that reversion of the cyc1-11 mutation can occur in three ways: a single base-pair substitution, which produces a serine replacement at position 76; recombination with the nonallelic CYC7 gene of iso-2-cytochrome c, which causes replacement of a segment in the cyc1-11 gene by the corresponding segment of the CYC7 gene; and either a two-base-pair substitution or recombination with the CYC7 gene, which causes the formation of the normal iso-1-cytochrome c sequence. These results demonstrate the occurrence of low frequencies of recombination between nonallelic genes having extensive but not complete homology. The formation of composite genes that share sequences from nonallelic genes may be an evolutionary mechanism for producing protein diversities and for maintaining identical sequences at different loci. Images PMID:6273865

  5. Inactivating Mutations in ESCO2 Cause SC Phocomelia and Roberts Syndrome: No Phenotype-Genotype Correlation

    PubMed Central

    Schüle, Birgitt; Oviedo, Angelica; Johnston, Kathreen; Pai, Shashidhar; Francke, Uta

    2005-01-01

    The rare, autosomal recessive Roberts syndrome (RBS) is characterized by tetraphocomelia, profound growth deficiency of prenatal onset, craniofacial anomalies, microcephaly, and mental deficiency. SC phocomelia (SC) has a milder phenotype, with a lesser degree of limb reduction and with survival to adulthood. Since heterochromatin repulsion (HR) is characteristic for both disorders and is not complemented in somatic-cell hybrids, it has been hypothesized that the disorders are allelic. Recently, mutations in ESCO2 (establishment of cohesion 1 homolog 2) on 8p21.1 have been reported in RBS. To determine whether ESCO2 mutations are also responsible for SC, we studied three families with SC and two families in which variable degrees of limb and craniofacial abnormalities, detected by fetal ultrasound, led to pregnancy terminations. All cases were positive for HR. We identified seven novel mutations in exons 3–8 of ESCO2. In two families, affected individuals were homozygous—for a 5-nucleotide deletion in one family and a splice-site mutation in the other. In three nonconsanguineous families, probands were compound heterozygous for a single-nucleotide insertion or deletion, a nonsense mutation, or a splice-site mutation. Abnormal splice products were characterized at the RNA level. Since only protein-truncating mutations were identified, regardless of clinical severity, we conclude that genotype does not predict phenotype. Having established that RBS and SC are caused by mutations in the same gene, we delineated the clinical phenotype of the tetraphocomelia spectrum that is associated with HR and ESCO2 mutations and differentiated it from other types of phocomelia that are negative for HR. PMID:16380922

  6. ZMYND10--Mutation Analysis in Slavic Patients with Primary Ciliary Dyskinesia.

    PubMed

    Kurkowiak, Małgorzata; Ziętkiewicz, Ewa; Greber, Agnieszka; Voelkel, Katarzyna; Wojda, Alina; Pogorzelski, Andrzej; Witt, Michał

    2016-01-01

    Primary ciliary dyskinesia (PCD) is a rare recessive disease with a prevalence of 1/10,000; its symptoms are caused by a kinetic dysfunction of motile cilia in the respiratory epithelium, flagella in spermatozoids, and primary cilia in the embryonic node. PCD is genetically heterogeneous: genotyping the already known PCD-related genes explains the genetic basis in 60-65% of the cases, depending on the population. While identification of new genes involved in PCD pathogenesis remains crucial, the search for new, population-specific mutations causative for PCD is equally important. The Slavs remain far less characterized in this respect compared to West European populations, which significantly limits diagnostic capability. The main goal of this study was to characterize the profile of causative genetic defects in one of the PCD-causing genes, ZMYND10, in the cohort of PCD patients of Slavic origin. The study was carried out using biological material from 172 unrelated PCD individuals of Polish origin, with no causative mutation found in nine major PCD genes. While none of the previously described mutations was found using the HRM-based screening, a novel frameshift mutation (c.367delC) in ZMYND10, unique for Slavic PCD population, was found in homozygous state in two unrelated PCD patients. Immunofluorescence analysis confirmed the absence of outer and inner dynein arms from the ciliary axoneme, consistent with the already published ZMYND10-mutated phenotype; cDNA analysis revealed the lack of ZMYND10 mRNA, indicating nonsense-mediated decay of the truncated transcript.

  7. Mutation analysis in the long isoform of USH2A in American patients with Usher Syndrome type II.

    PubMed

    Yan, Denise; Ouyang, Xiaomei; Patterson, D Michael; Du, Li Lin; Jacobson, Samuel G; Liu, Xue-Zhong

    2009-12-01

    Usher syndrome type II (USH2) is an autosomal recessive disorder characterized by moderate to severe hearing impairment and progressive visual loss due to retinitis pigmentosa (RP). To identify novel mutations and determine the frequency of USH2A mutations as a cause of USH2, we have carried out mutation screening of all 72 coding exons and exon-intron splice sites of the USH2A gene. A total of 20 USH2 American probands of European descent were analyzed using single strand conformational polymorphism (SSCP) and direct sequencing methods. Ten different USH2A mutations were identified in 55% of the probands, five of which were novel mutations. The detected mutations include three missense, three frameshifts and four nonsense mutations, with c.2299delG/p.E767fs mutation, accounting for 38.9% of the pathological alleles. Two cases were homozygotes, two cases were compound heterozygotes and one case had complex allele with three variants. In seven probands, only one USH2A mutation was detected and no pathological mutation was found in the remaining eight individuals. Altogether, our data support the fact that c.2299delG/p.E767fs is indeed the most common USH2A mutation found in USH2 patients of European Caucasian background. Thus, if screening for mutations in USH2A is considered, it is reasonable to screen for the c.2299delG mutation first.

  8. Novel folliculin (FLCN) mutation and familial spontaneous pneumothorax.

    PubMed

    Zhu, J-F; Shen, X-Q; Zhu, F; Tian, L

    2017-01-01

    Familial spontaneous pneumothorax is one of the characteristics of Birt-Hogg-Dubé syndrome (BHDS), which is an autosomal dominant disease caused by the mutation of folliculin (FLCN). To investigate the mutation of FLCN gene in a familial spontaneous pneumothorax. Prospective case study. Clinical and genetic data of a Chinese family with four patients who presented spontaneous pneumothorax in the absence of skin lesions or renal tumors were collected. CT scan of patient's lung was applied for observation of pneumothorax. DNA sequencing of the coding exons (4-14 exons) of FLCN was performed for all 11 members of the family and 100 unrelated healthy controls. CT scan of patient's lung showed spontaneous pneumothorax. A mutation (c. 510C > G) that leads to a premature stop codon (p. Y170X) was found in the proband using DNA sequencing of coding exons (4-14 exons) of FLCN. This mutation was also observed in the other affected members of the family. A nonsense mutation of FLCN was found in a spontaneous pneumothorax family. Our results expand the mutational spectrum of FLCN in patients with BHDS. © The Author 2016. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Late-onset spastic paraplegia: Aberrant SPG11 transcripts generated by a novel splice site donor mutation.

    PubMed

    Kawarai, Toshitaka; Miyamoto, Ryosuke; Mori, Atsuko; Oki, Ryosuke; Tsukamoto-Miyashiro, Ai; Matsui, Naoko; Miyazaki, Yoshimichi; Orlacchio, Antonio; Izumi, Yuishin; Nishida, Yoshihiko; Kaji, Ryuji

    2015-12-15

    We identified a novel homozygous mutation in the splice site donor (SSD) of intron 30 (c.5866+1G>A) in consanguineous Japanese SPG11 siblings showing late-onset spastic paraplegia using the whole-exome sequencing. Phenotypic variability was observed, including age-at-onset, dysarthria and pes cavus. Coding DNA sequencing revealed that the mutation affected the recognition of the constitutive SSD of intron 30, splicing upstream onto a nearby cryptic SSD in exon 30. The use of constitutive splice sites of intron 29 was confirmed by sequencing. The mutant transcripts are mostly subject to degradation by the nonsense-mediated mRNA decay system. SPG11 transcripts, escaping from the nonsense-mediated mRNA decay pathway, would generate a truncated protein (p.Tyr1900Phefs5X) containing the first 1899 amino acids and followed by 4 aberrant amino acids. This study showed a successful clinical application of whole-exome sequencing in spastic paraplegia and demonstrated a further evidence of allelic heterogeneity in SPG11. The confirmation of aberrant transcript by splice site mutation is a prerequisite for a more precise molecular diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Novel NEK8 Mutations Cause Severe Syndromic Renal Cystic Dysplasia through YAP Dysregulation

    PubMed Central

    Grampa, Valentina; Odye, Gweltas; Thomas, Sophie; Elkhartoufi, Nadia; Filhol, Emilie; Niel, Olivier; Silbermann, Flora; Lebreton, Corinne; Collardeau-Frachon, Sophie; Rouvet, Isabelle; Alessandri, Jean-Luc; Devisme, Louise; Dieux-Coeslier, Anne; Cordier, Marie-Pierre; Capri, Yline; Khung-Savatovsky, Suonavy; Sigaudy, Sabine; Salomon, Rémi; Antignac, Corinne; Gubler, Marie-Claire; Benmerah, Alexandre; Terzi, Fabiola; Attié-Bitach, Tania; Jeanpierre, Cécile; Saunier, Sophie

    2016-01-01

    Ciliopathies are a group of genetic multi-systemic disorders related to dysfunction of the primary cilium, a sensory organelle present at the cell surface that regulates key signaling pathways during development and tissue homeostasis. In order to identify novel genes whose mutations would cause severe developmental ciliopathies, >500 patients/fetuses were analyzed by a targeted high throughput sequencing approach allowing exome sequencing of >1200 ciliary genes. NEK8/NPHP9 mutations were identified in five cases with severe overlapping phenotypes including renal cystic dysplasia/hypodysplasia, situs inversus, cardiopathy with hypertrophic septum and bile duct paucity. These cases highlight a genotype-phenotype correlation, with missense and nonsense mutations associated with hypodysplasia and enlarged cystic organs, respectively. Functional analyses of NEK8 mutations in patient fibroblasts and mIMCD3 cells showed that these mutations differentially affect ciliogenesis, proliferation/apoptosis/DNA damage response, as well as epithelial morphogenesis. Notably, missense mutations exacerbated some of the defects due to NEK8 loss of function, highlighting their likely gain-of-function effect. We also showed that NEK8 missense and loss-of-function mutations differentially affect the regulation of the main Hippo signaling effector, YAP, as well as the expression of its target genes in patient fibroblasts and renal cells. YAP imbalance was also observed in enlarged spheroids of Nek8-invalidated renal epithelial cells grown in 3D culture, as well as in cystic kidneys of Jck mice. Moreover, co-injection of nek8 MO with WT or mutated NEK8-GFP RNA in zebrafish embryos led to shortened dorsally curved body axis, similar to embryos injected with human YAP RNA. Finally, treatment with Verteporfin, an inhibitor of YAP transcriptional activity, partially rescued the 3D spheroid defects of Nek8-invalidated cells and the abnormalities of NEK8-overexpressing zebrafish embryos. Altogether, our study demonstrates that NEK8 human mutations cause major organ developmental defects due to altered ciliogenesis and cell differentiation/proliferation through deregulation of the Hippo pathway. PMID:26967905

  11. A Novel Nonsense Mutation in Exon 5 of KIND1 Gene in an Iranian Family with Kindler Syndrome.

    PubMed

    Heidari, Mohammad Mehdi; Khatami, Mehri; Kargar, Saeed; Azari, Mojdeh; Hoseinzadeh, Hassan; Fallah, Hamedeh

    2016-06-01

    Kindler syndrome (KS) is an autosomal recessive skin disease characterized by actual blistering, photosensitivity and a progressive poikiloderma. The disorder results from rare mutations in the KIND1 gene. This gene contains 15 exons and expresses two kindlin-1 isoforms. The aim of this investigation was to analyze mutations in the exons 1 to 15 of KIND1 gene in an Iranian family clinically affected with Kindler syndrome. The mutations analysis of 15 coding exons of KIND1 gene was performed with PCR-SSCP and direct sequencing in 14 subjects from one Iranian family clinically affected with Kindler syndrome. We identified eight new nucleotide changes in KIND1 in this family. These changes were found in g.3892delA, g.3951T>C, g.3962T>G, g.4190G>T, g.7497G>A, g.11076T>C, g.11102C>T and g.13177C>T positions. Among them, the g.13177C>T mutation resulting in the formation of a premature stop codon (Q226X) was detected only in seven affected family individuals as homozygous but was not present in 100 unrelated healthy controls. This study suggests that nonsense mutation may lead to incomplete and non-functional protein products and is pathogenic and has meaningful implications for the diagnosis of patients with Kindler syndrome.

  12. Nonsense-mediated mRNA degradation of CtFAD2-1 and development of a perfect molecular marker for olol mutation in high oleic safflower (Carthamus tinctorius L.).

    PubMed

    Liu, Qing; Cao, Shijiang; Zhou, Xue-Rong; Wood, Craig; Green, Allan; Singh, Surinder

    2013-09-01

    There are two types of safflower oil, high oleic (HO) with 70-75 % oleic acid and high linoleic (HL) with about 70 % linoleic acid. The original HO trait in safflower, found in an introduction from India, is controlled by a partially recessive allele ol at a single locus (Knowles and Bill 1964). In the lipid biosynthesis pathway of developing safflower seeds, microsomal oleoyl phosphatidylcholine desaturase (FAD2) is largely responsible for the conversion of oleic acid to linoleic acid. In vitro microsomal assays indicated drastically reduced FAD2 enzyme activity in the HO genotype compared to conventional HL safflower. A previous study indicated that a single-nucleotide deletion was found in the coding region of CtFAD2-1 that causes premature termination of translation in the HO genotypes, and the expression of the mutant CtFAD2-1Δ was attenuated in the HO genotypes compared to conventional HL safflower (Guan et al. 2012). In this study, we hypothesise that down-regulation of CtFAD2-1 expression in the HO genotype may be explained by nonsense-mediated RNA decay (NMD). NMD phenomenon, indicated by gene-specific RNA degradation of defective CtFAD2-1Δ, was subsequently confirmed in Arabidopsis thaliana seed as well as in the transient expression system in Nicotiana benthamiana leaves. We have developed a perfect molecular marker corresponding to the olol mutation that can facilitate a rapid screening and early detection of genotypes carrying the olol mutation for use in marker-assisted selection for the management of the HO trait in safflower breeding programmes.

  13. Interpretation of acid α-glucosidase activity in creatine kinase elevation: A case of Becker muscular dystrophy.

    PubMed

    Oitani, Yoshiki; Ishiyama, Akihiko; Kosuga, Motomichi; Iwasawa, Kentaro; Ogata, Ayako; Tanaka, Fumiko; Takeshita, Eri; Shimizu-Motohashi, Yuko; Komaki, Hirofumi; Nishino, Ichizo; Okuyama, Torayuki; Sasaki, Masayuki

    2018-05-16

    Diagnosis of Pompe disease is sometimes challenging because it exhibits clinical similarities to muscular dystrophy. We describe a case of Becker muscular dystrophy (BMD) with a remarkable reduction in activity of the acid α-glucosidase (GAA) enzyme, caused by a combination of pathogenic mutation and polymorphism variants resulting in pseudodeficiency in GAA. The three-year-old boy demonstrated asymptomatic creatine kinase elevation. Neither exon deletion nor duplication was detected on multiplex ligation-dependent probe amplification (MLPA) of DMD. GAA enzyme activity in both dried blood spots and lymphocytes was low, at 11.7% and 7.7% of normal, respectively. However, genetic analysis of GAA detected only heterozygosity for a nonsense mutation (c.118C > T, p.Arg40 ∗ ). Muscle pathology showed no glycogen deposits and no high acid phosphatase activity. Hematoxylin-eosin staining detected scattered regenerating fibers; the fibers were faint and patchy on immunochemistry staining of dystrophin. The amount of dystrophin protein was reduced to 11.8% of normal, on Western blotting analysis. Direct sequencing analysis of DMD revealed hemizygosity for a nonsense mutation (c.72G > A, p.Trp24 ∗ ). The boy was diagnosed with BMD, despite remarkable reduction in GAA activity; further, he demonstrated heterozygosity for [p.Gly576Ser; p.Glu689Lys] polymorphism variants that indicated pseudodeficiency on another allele in GAA. Pseudodeficiency alleles are detected in approximately 4% of the Asian population; these demonstrate low activity of acid α-glucosidase (GAA), similar to levels found in Pompe disease. Clinicians should be careful in their interpretations of pseudodeficiency alleles that complicate diagnosis in cases of elevated creatine kinase. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  14. Two recessive mutations in FGF5 are associated with the long-hair phenotype in donkeys.

    PubMed

    Legrand, Romain; Tiret, Laurent; Abitbol, Marie

    2014-09-25

    Seven donkey breeds are recognized by the French studbook. Individuals from the Pyrenean, Provence, Berry Black, Normand, Cotentin and Bourbonnais breeds are characterized by a short coat, while those from the Poitou breed (Baudet du Poitou) are characterized by a long-hair phenotype. We hypothesized that loss-of-function mutations in the FGF5 (fibroblast growth factor 5) gene, which are associated with a long-hair phenotype in several mammalian species, may account for the special coat feature of Poitou donkeys. To the best of our knowledge, mutations in FGF5 have never been described in Equidae. We sequenced the FGF5 gene from 35 long-haired Poitou donkeys, as well as from a panel of 67 short-haired donkeys from the six other French breeds and 131 short-haired ponies and horses. We identified a recessive c.433_434delAT frameshift deletion in FGF5, present in Poitou and three other donkey breeds and a recessive nonsense c.245G > A substitution, present in Poitou and four other donkey breeds. The frameshift deletion was associated with the long-hair phenotype in Poitou donkeys when present in two copies (n = 31) or combined with the nonsense mutation (n = 4). The frameshift deletion led to a stop codon at position 159 whereas the nonsense mutation led to a stop codon at position 82 in the FGF5 protein. In silico, the two truncated FGF5 proteins were predicted to lack the critical β strands involved in the interaction between FGF5 and its receptor, a mandatory step to inhibit hair growth. Our results highlight the allelic heterogeneity of the long-hair phenotype in donkeys and enlarge the panel of recessive FGF5 loss-of-function alleles described in mammals. Thanks to the DNA test developed in this study, breeders of non-Poitou breeds will have the opportunity to identify long-hair carriers in their breeding stocks.

  15. Unusual splice site mutations disrupt FANCA exon 8 definition.

    PubMed

    Mattioli, Chiara; Pianigiani, Giulia; De Rocco, Daniela; Bianco, Anna Monica Rosaria; Cappelli, Enrico; Savoia, Anna; Pagani, Franco

    2014-07-01

    The pathological role of mutations that affect not conserved splicing regulatory sequences can be difficult to determine. In a patient with Fanconi anemia, we identified two unpredictable splicing mutations that act on either sides of FANCA exon 8. In patients-derived cells and in minigene splicing assay, we showed that both an apparently benign intronic c.710-5T>C transition and the nonsense c.790C>T substitution induce almost complete exon 8 skipping. Site-directed mutagenesis experiments indicated that the c.710-5T>C transition affects a polypyrimidine tract where most of the thymidines cannot be compensated by cytidines. The c.790C>T mutation located in position -3 relative to the donor site induce exon 8 skipping in an NMD-independent manner and complementation experiments with modified U1 snRNAs showed that U1 snRNP is only partially involved in the splicing defect. Our results highlight the importance of performing splicing functional assay for correct identification of disease-causing mechanism of genomic variants and provide mechanistic insights on how these two FANCA mutations affect exon 8 definition. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects.

    PubMed

    Granados-Riveron, Javier T; Ghosh, Tushar K; Pope, Mark; Bu'Lock, Frances; Thornborough, Christopher; Eason, Jacqueline; Kirk, Edwin P; Fatkin, Diane; Feneley, Michael P; Harvey, Richard P; Armour, John A L; David Brook, J

    2010-10-15

    Congenital heart defects (CHD) are collectively the most common form of congenital malformation. Studies of human cases and animal models have revealed that mutations in several genes are responsible for both familial and sporadic forms of CHD. We have previously shown that a mutation in MYH6 can cause an autosomal dominant form of atrial septal defect (ASD), whereas others have identified mutations of the same gene in patients with hypertrophic and dilated cardiomyopathy. In the present study, we report a mutation analysis of MYH6 in patients with a wide spectrum of sporadic CHD. The mutation analysis of MYH6 was performed in DNA samples from 470 cases of isolated CHD using denaturing high-performance liquid chromatography and sequence analysis to detect point mutations and small deletions or insertions, and multiplex amplifiable probe hybridization to detect partial or complete copy number variations. One non-sense mutation, one splicing site mutation and seven non-synonymous coding mutations were identified. Transfection of plasmids encoding mutant and non-mutant green fluorescent protein-MYH6 fusion proteins in mouse myoblasts revealed that the mutations A230P and A1366D significantly disrupt myofibril formation, whereas the H252Q mutation significantly enhances myofibril assembly in comparison with the non-mutant protein. Our data indicate that functional variants of MYH6 are associated with cardiac malformations in addition to ASD and provide a novel potential mechanism. Such phenotypic heterogeneity has been observed in other genes mutated in CHD.

  17. CDH23 mutation and phenotype heterogeneity: a profile of 107 diverse families with Usher syndrome and nonsyndromic deafness.

    PubMed

    Astuto, L M; Bork, J M; Weston, M D; Askew, J W; Fields, R R; Orten, D J; Ohliger, S J; Riazuddin, S; Morell, R J; Khan, S; Riazuddin, S; Kremer, H; van Hauwe, P; Moller, C G; Cremers, C W R J; Ayuso, C; Heckenlively, J R; Rohrschneider, K; Spandau, U; Greenberg, J; Ramesar, R; Reardon, W; Bitoun, P; Millan, J; Legge, R; Friedman, T B; Kimberling, W J

    2002-08-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP-like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia.

  18. CDH23 Mutation and Phenotype Heterogeneity: A Profile of 107 Diverse Families with Usher Syndrome and Nonsyndromic Deafness

    PubMed Central

    Astuto, L. M.; Bork, J. M.; Weston, M. D.; Askew, J. W.; Fields, R. R.; Orten, D. J.; Ohliger, S. J.; Riazuddin, S.; Morell, R. J.; Khan, S.; Riazuddin, S.; Kremer, H.; van Hauwe, P.; Moller, C. G.; Cremers, C. W. R. J.; Ayuso, C.; Heckenlively, J. R.; Rohrschneider, K.; Spandau, U.; Greenberg, J.; Ramesar, R.; Reardon, W.; Bitoun, P.; Millan, J.; Legge, R.; Friedman, T. B.; Kimberling, W. J.

    2002-01-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP–like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia. PMID:12075507

  19. RNA-based analysis of two SMARCB1 mutations associated with familial schwannomatosis with meningiomas.

    PubMed

    Melean, German; Velasco, Ana; Hernández-Imaz, Elisabete; Rodríguez-Álvarez, Francisco Javier; Martín, Yolanda; Valero, Ana; Hernández-Chico, Concepción

    2012-08-01

    Germline mutations in the SMARCB1 gene cause familial schwannomatosis, a condition characterized by the presence of multiple schwannomas, although mutations in SMARCB1 have also been associated with rhadboid tumor predisposition syndrome 1 (RTPS1). Both schwannomatosis and RTPS1 are autosomal dominant conditions that predispose individuals to develop distinct types of tumors. We clinically and genetically characterized two families with schwannomatosis associated with SMARCB1 mutations. Eight affected members of these families developed different numbers of schwannomas and/or meningiomas at distinct ages, evidence that meningiomas are variably expressed in this condition. We identified two germline mutations in SMARCB1 associated with the familial disease, c.233-1G>A and the novel c.207_208dupTA mutation, which both proved to affect the main SMARCB1 isoforms at the RNA level distinctly. Interestingly, the c.207_208dupTA mutation had no effect on the coding sequence, pre-mRNA splicing or the level of expression of the SMARCB1 isoform 2. Furthermore, SMARCB1 isoforms harboring a premature termination codon were largely eliminated via the nonsense-mediated mRNA decay pathway. Our results highlight the importance of RNA-based studies to characterize SMARCB1 germline mutations in order to determine their impact on protein expression and gain further insight into the genetic basis of conditions associated with SMARCB1 mutations.

  20. Novel compound heterozygous mutations identified by whole exome sequencing in a Japanese patient with geroderma osteodysplastica.

    PubMed

    Takeda, Ryojun; Takagi, Masaki; Shinohara, Hiroyuki; Futagawa, Hiroshi; Narumi, Satoshi; Hasegawa, Tomonobu; Nishimura, Gen; Yoshihashi, Hiroshi

    2017-12-01

    Geroderma osteodysplastica (GO) is a subtype of cutis laxa syndrome characterized by congenital wrinkly skin, a prematurely aged face, extremely short stature, and osteoporosis leading to recurrent fractures. GO exhibits an autosomal recessive inheritance pattern and is caused by loss-of-function mutations in GORAB, which encodes a protein important for Golgi-related transport. Using whole exome sequencing, we identified novel compound heterozygous nonsense mutations in the GORAB in a GO patient. The patient was a 14-year-old Japanese boy. Wrinkled skin and joint laxity were present at birth. At 1 year of age, he was clinically diagnosed with cutis laxa syndrome based on recurrent long bone fractures and clinical features, including wrinkled skin, joint laxity, and a distinctive face. He did not show retarded gross motor and cognitive development. At 11 years of age, he was treated with oral bisphosphonate and vitamin D owing to recurrent multiple spontaneous fractures of the vertebral and extremity bones associated with a low bone mineral density (BMD). Bisphosphonate treatment improved his BMD and fracture rate. Whole exome sequencing revealed two novel compound heterozygous nonsense mutations in the GORAB gene (p.Arg60* and p.Gln124*), and the diagnosis of GO was established. GO is a rare connective tissue disorder. Approximately 60 cases have been described to date, and this is the first report of a patient from Japan. Few studies have reported the effects of bisphosphonate treatment in GO patients with recurrent spontaneous fractures. Based on this case study, we hypothesize that oral bisphosphonate and vitamin D are effective and safe treatment options for the management of recurrent fractures in GO patients. It is important to establish a precise diagnosis of GO to prevent recurrent fractures and optimize treatment plans. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Cosegregation of intragenic markers with a novel mutation that causes Crigler-Najjar syndrome type I: implication in carrier detection and prenatal diagnosis.

    PubMed Central

    Moghrabi, N; Clarke, D J; Burchell, B; Boxer, M

    1993-01-01

    Crigler-Najjar syndrome type 1 (CN-1) is a familial disorder characterized by severe unconjugated hyperbilirubinemia and jaundice and leads to kernicterus, neurological damage, and eventual death unless treated with liver transplantation. Previous reports identified mutations in the UGT1 gene complex to be the cause of the disease. The total absence of all phenol/bilirubin UGT proteins and their activities in liver homogenate of a CN-1 patient was determined by enzymological and immunochemical analysis. A novel homozygous nonsense mutation (CGA-->TGA) was identified in the patient by the combined techniques of PCR and direct sequencing. This mutation was located in exon 3 of the constant region in the gene complex which is common to all phenol and bilirubin UGTs. The segregation of the mutation in the patient's family was analyzed and confirmed the recessive nature of the disease. Newly developed intragenic polymorphic probes (UGT1* 4 and UGT-Const) were used on Southern blots of MspI-digested genomic DNA of the patient and his family. The segregation of individual alleles within the family was observed from haplotypes generated. Comparison of the segregation of haplotypes with the mutation for the patient and his family revealed the allele identified by the A1-B1-C2 haplotype to be carrying the mutation. The risk of recombination occurring is negligible, because of the intragenic nature of the probes. This study demonstrates the potential usefulness of these probes in carrier detection and prenatal/presymptomatic diagnosis. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:8102509

  2. Molecular genetic analysis of patients with sporadic and X-linked infantile nystagmus

    PubMed Central

    Zhao, Hui; Huang, Xiu-Feng; Zheng, Zhi-Li; Deng, Wen-Li; Lei, Xin-Lan; Xing, Dong-Jun; Ye, Liang; Xu, Su-Zhong; Chen, Jie; Zhang, Fang; Yu, Xin-Ping; Jin, Zi-Bing

    2016-01-01

    Objectives Infantile nystagmus (IN) is a genetically heterogeneous condition characterised by involuntary rhythmic oscillations of the eyes accompanied by different degrees of vision impairment. Two genes have been identified as mainly causing IN: FRMD7 and GPR143. The aim of our study was to identify the genetic basis of both sporadic IN and X-linked IN. Design Prospective analysis. Patients Twenty Chinese patients, including 15 sporadic IN cases and 5 from X-linked IN families, were recruited and underwent molecular genetic analysis. We first performed PCR-based DNA sequencing of the entire coding region and the splice junctions of the FRMD7 and GPR143 genes in participants. Mutational analysis and co-segregation confirmation were then performed. Setting All clinical examinations and genetic experiments were performed in the Eye Hospital of Wenzhou Medical University. Results Two mutations in the FRMD7 gene, including one novel nonsense mutation (c.1090C>T, p.Q364X) and one reported missense mutation (c.781C>G, p.R261G), were identified in two of the five (40%) X-linked IN families. However, none of putative mutations were identified in FRMD7 or GPR143 in any of the sporadic cases. Conclusions The results suggest that mutations in FRMD7 appeared to be the major genetic cause of X-linked IN, but not of sporadic IN. Our findings provide further insights into FRMD7 mutations, which could be helpful for future genetic diagnosis and genetic counselling of Chinese patients with nystagmus. PMID:27036142

  3. NSD1 Mutations Are the Major Cause of Sotos Syndrome and Occur in Some Cases of Weaver Syndrome but Are Rare in Other Overgrowth Phenotypes

    PubMed Central

    Douglas, Jenny; Hanks, Sandra; Temple, I. Karen; Davies, Sally; Murray, Alexandra; Upadhyaya, Meena; Tomkins, Susan; Hughes, Helen E.; Cole, Trevor R. P.; Rahman, Nazneen

    2003-01-01

    Sotos syndrome is a childhood overgrowth syndrome characterized by a distinctive facial appearance, height and head circumference >97th percentile, advanced bone age, and developmental delay. Weaver syndrome is characterized by the same criteria but has its own distinctive facial gestalt. Recently, a 2.2-Mb chromosome 5q35 microdeletion, encompassing NSD1, was reported as the major cause of Sotos syndrome, with intragenic NSD1 mutations identified in a minority of cases. We evaluated 75 patients with childhood overgrowth, for intragenic mutations and large deletions of NSD1. The series was phenotypically scored into four groups, prior to the molecular analyses: the phenotype in group 1 (n=37) was typical of Sotos syndrome; the phenotype in group 2 (n=13) was Sotos-like but with some atypical features; patients in group 3 (n=7) had Weaver syndrome, and patients in group 4 (n=18) had an overgrowth condition that was neither Sotos nor Weaver syndrome. We detected three deletions and 32 mutations (13 frameshift, 8 nonsense, 2 splice-site, and 9 missense) that are likely to impair NSD1 functions. The truncating mutations were spread throughout NSD1, but there was evidence of clustering of missense mutations in highly conserved functional domains between exons 13 and 23. There was a strong correlation between presence of an NSD1 alteration and clinical phenotype, in that 28 of 37 (76%) patients in group 1 had NSD1 mutations or deletions, whereas none of the patients in group 4 had abnormalities of NSD1. Three patients with Weaver syndrome had NSD1 mutations, all between amino acids 2142 and 2184. We conclude that intragenic mutations of NSD1 are the major cause of Sotos syndrome and account for some Weaver syndrome cases but rarely occur in other childhood overgrowth phenotypes. PMID:12464997

  4. Acute myeloid leukaemia after treatment for acute lymphoblastic leukaemia in girl with Bloom syndrome

    PubMed Central

    Adams, Madeleine; Jenney, Meriel; Lazarou, Laz; White, Rhian; Birdsall, Sanda; Staab, Timo; Schindler, Detlev; Meyer, Stefan

    2014-01-01

    Bloom syndrome (BS) is an inherited genomic instability disorder caused by disruption of the BLM helicase and confers an extreme cancer predisposition. Here we report on a girl with BS who developed acute lymphoblastic leukaemia (ALL) at age nine, and treatment-related acute myeloid leukaemia (t-AML) aged 12. She was compound heterozygous for the novel BLM frameshift deletion c.1624delG and the previously described c.3415C>T nonsense mutation. Two haematological malignancies in a child with BS imply a fundamental role for BLM for normal haematopoiesis, in particular in the presence of genotoxic stress. PMID:24932421

  5. Somatic mutations in cancer: Stochastic versus predictable.

    PubMed

    Gold, Barry

    2017-02-01

    The origins of human cancers remain unclear except for a limited number of potent environmental mutagens, such as tobacco and UV light, and in rare cases, familial germ line mutations that affect tumor suppressor genes or oncogenes. A significant component of cancer etiology has been deemed stochastic and correlated with the number of stem cells in a tissue, the number of times the stem cells divide and a low incidence of random DNA polymerase errors that occur during each cell division. While somatic mutations occur during each round of DNA replication, mutations in cancer driver genes are not stochastic. Out of a total of 2843 codons, 1031 can be changed to stop codons by a single base substitution in the tumor suppressor APC gene, which is mutated in 76% of colorectal cancers (CRC). However, the nonsense mutations, which comprise 65% of all the APC driver mutations in CRC, are not random: 43% occur at Arg CGA codons, although they represent <3% of the codons. In TP53, CGA codons comprise <3% of the total 393 codons but they account for 72% and 39% of the mutations in CRC and ovarian cancer OVC, respectively. This mutation pattern is consistent with the kinetically slow, but not stochastic, hydrolytic deamination of 5-methylcytosine residues at specific methylated CpG sites to afford T·G mismatches that lead to C→T transitions and stop codons at CGA. Analysis of nonsense mutations in CRC, OVC and a number of other cancers indicates the need to expand the predictable risk factors for cancer to include, in addition to random polymerase errors, the methylation status of gene body CGA codons in tumor suppressor genes. Copyright © 2017. Published by Elsevier B.V.

  6. Expanding the Oro-Dental and Mutational Spectra of Kabuki Syndrome and Expression of KMT2D and KDM6A in Human Tooth Germs

    PubMed Central

    Porntaveetus, Thantrira; Abid, Mushriq F; Theerapanon, Thanakorn; Srichomthong, Chalurmpon; Ohazama, Atsushi; Kawasaki, Katsushige; Kawasaki, Maiko; Suphapeetiporn, Kanya; Sharpe, Paul T.; Shotelersuk, Vorasuk

    2018-01-01

    Kabuki syndrome is a rare genetic disorder characterized by distinct dysmorphic facial features, intellectual disability, and multiple developmental abnormalities. Despite more than 350 documented cases, the oro-dental spectrum associated with kabuki syndrome and expression of KMT2D (histone-lysine N-methyltransferase 2D) or KDM6A (lysine-specific demethylase 6A) genes in tooth development have not been well defined. Here, we report seven unrelated Thai patients with Kabuki syndrome having congenital absence of teeth, malocclusion, high-arched palate, micrognathia, and deviated tooth shape and size. Exome sequencing successfully identified that six patients were heterozygous for mutations in KMT2D, and one in KDM6A. Six were novel mutations, of which five were in KMT2D and one in KDM6A. They were truncating mutations including four frameshift deletions and two nonsense mutations. The predicted non-functional KMT2D and KDM6A proteins are expected to cause disease by haploinsufficiency. Our study expands oro-dental, medical, and mutational spectra associated with Kabuki syndrome. We also demonstrate for the first time that KMT2D and KDM6A are expressed in the dental epithelium of human tooth germs. PMID:29725259

  7. Mutations in the human UBR1 gene and the associated phenotypic spectrum.

    PubMed

    Sukalo, Maja; Fiedler, Ariane; Guzmán, Celina; Spranger, Stephanie; Addor, Marie-Claude; McHeik, Jiad N; Oltra Benavent, Manuel; Cobben, Jan M; Gillis, Lynette A; Shealy, Amy G; Deshpande, Charu; Bozorgmehr, Bita; Everman, David B; Stattin, Eva-Lena; Liebelt, Jan; Keller, Klaus-Michael; Bertola, Débora Romeo; van Karnebeek, Clara D M; Bergmann, Carsten; Liu, Zhifeng; Düker, Gesche; Rezaei, Nima; Alkuraya, Fowzan S; Oğur, Gönül; Alrajoudi, Abdullah; Venegas-Vega, Carlos A; Verbeek, Nienke E; Richmond, Erick J; Kirbiyik, Ozgür; Ranganath, Prajnya; Singh, Ankur; Godbole, Koumudi; Ali, Fouad A M; Alves, Crésio; Mayerle, Julia; Lerch, Markus M; Witt, Heiko; Zenker, Martin

    2014-05-01

    Johanson-Blizzard syndrome (JBS) is a rare, autosomal recessive disorder characterized by exocrine pancreatic insufficiency, typical facial features, dental anomalies, hypothyroidism, sensorineural hearing loss, scalp defects, urogenital and anorectal anomalies, short stature, and cognitive impairment of variable degree. This syndrome is caused by a defect of the E3 ubiquitin ligase UBR1, which is part of the proteolytic N-end rule pathway. Herein, we review previously reported (n = 29) and a total of 31 novel UBR1 mutations in relation to the associated phenotype in patients from 50 unrelated families. Mutation types include nonsense, frameshift, splice site, missense, and small in-frame deletions consistent with the hypothesis that loss of UBR1 protein function is the molecular basis of JBS. There is an association of missense mutations and small in-frame deletions with milder physical abnormalities and a normal intellectual capacity, thus suggesting that at least some of these may represent hypomorphic UBR1 alleles. The review of clinical data of a large number of molecularly confirmed JBS cases allows us to define minimal clinical criteria for the diagnosis of JBS. For all previously reported and novel UBR1 mutations together with their clinical data, a mutation database has been established at LOVD. © 2014 WILEY PERIODICALS, INC.

  8. Three rare diseases in one Sib pair: RAI1, PCK1, GRIN2B mutations associated with Smith-Magenis Syndrome, cytosolic PEPCK deficiency and NMDA receptor glutamate insensitivity.

    PubMed

    Adams, David R; Yuan, Hongjie; Holyoak, Todd; Arajs, Katrina H; Hakimi, Parvin; Markello, Thomas C; Wolfe, Lynne A; Vilboux, Thierry; Burton, Barbara K; Fajardo, Karin Fuentes; Grahame, George; Holloman, Conisha; Sincan, Murat; Smith, Ann C M; Wells, Gordon A; Huang, Yan; Vega, Hugo; Snyder, James P; Golas, Gretchen A; Tifft, Cynthia J; Boerkoel, Cornelius F; Hanson, Richard W; Traynelis, Stephen F; Kerr, Douglas S; Gahl, William A

    2014-11-01

    The National Institutes of Health Undiagnosed Diseases Program evaluates patients for whom no diagnosis has been discovered despite a comprehensive diagnostic workup. Failure to diagnose a condition may arise from the mutation of genes previously unassociated with disease. However, we hypothesized that this could also co-occur with multiple genetic disorders. Demonstrating a complex syndrome caused by multiple disorders, we report two siblings manifesting both similar and disparate signs and symptoms. They shared a history of episodes of hypoglycemia and lactic acidosis, but had differing exam findings and developmental courses. Clinical acumen and exome sequencing combined with biochemical and functional studies identified three genetic conditions. One sibling had Smith-Magenis Syndrome and a nonsense mutation in the RAI1 gene. The second sibling had a de novo mutation in GRIN2B, which resulted in markedly reduced glutamate potency of the encoded receptor. Both siblings had a protein-destabilizing homozygous mutation in PCK1, which encodes the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). In summary, we present the first clinically-characterized mutation of PCK1 and demonstrate that complex medical disorders can represent the co-occurrence of multiple diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Genotype-Phenotype Correlation in Primary Carnitine Deficiency

    PubMed Central

    Rose, Emily Cornforth; di San Filippo, Cristina Amat; Ndukwe Erlingsson, Uzochi C.; Ardon, Orly; Pasquali, Marzia; Longo, Nicola

    2011-01-01

    Primary carnitine deficiency is caused by defective OCTN2 carnitine transporters encoded by the SLC22A5 gene. Lack of carnitine impairs fatty acid oxidation resulting in hypoketotic hypoglycemia, hepatic encephalopathy, skeletal and cardiac myopathy. Recently, asymptomatic mothers with primary carnitine deficiency were identified by low carnitine levels in their infant by newborn screening. Here we evaluate mutations in the SLC22A5 gene and carnitine transport in fibroblasts from symptomatic patients and asymptomatic women. Carnitine transport was significantly reduced in fibroblasts obtained from all patients with primary carnitine deficiency, but was significantly higher in the asymptomatic women’s than in the symptomatic patients’ fibroblasts (p<0.01). By contrast, ergothioneine transport (a selective substrate of the OCTN1 transporter, tested here as a control) was similar in cells from controls and patients with carnitine deficiency. DNA sequencing indicated an increased frequency of nonsense mutations in symptomatic patients (p<0.001). Expression of the missense mutations in CHO cells indicated that many mutations retained residual carnitine transport activity, with no difference in the average activity of missense mutations identified in symptomatic versus asymptomatic patients. These results indicate that cells from asymptomatic women have on average higher levels of residual carnitine transport activity as compared to that of symptomatic patients due to the presence of at least one missense mutation. PMID:21922592

  10. High prevalence of the point mutation in exon 6 of the xeroderma pigmentosum group A-complementing (XPAC) gene in xeroderma pigmentosum group A patients in Tunisia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishigori, Chikako; Imamura, Sadao; Yagi, Takashi

    1993-11-01

    Xeroderma pigmentosum (XP) patients in Tunisia who belong to the genetic complementation group A (XPA) have milder skin symptoms than do Japanese XPA patients. Such difference in the clinical features might be caused by the difference in the site of mutation in the XP A-complementing (XPAC) gene. The purpose of this study is to identify the genetic alterations in the XPAC gene in the Tunisian XPA patients and to investigate the relationship between the clinical symptoms and the genetic alterations. Three sites of mutation in the XPAC gene have been identified in the Japanese XPA patients, and about 85% ofmore » them have a G [yields] C point mutation at the splicing acceptor site of intron 3. The authors found that six (86%) of seven Tunisian XPA patients had a nonsense mutation in codon 228 in exon 6, because of a CGA [yields] TGA point mutation, which can be detected by the HphI RFLP. This type of mutation is the same as those found in two Japanese XPA patients with mild clinical RFLP. Milder skin symptoms in the XPA patients in Tunisia than in those in Japan, despite mostly sunny weather and the unsatisfactory sun protection in Tunisia, should be due to the difference in the mutation site. 11 refs., 2 figs., 2 tabs.« less

  11. Genome-wide SNP scan of pooled DNA reveals nonsense mutation in FGF20 in the scaleless line of featherless chickens

    PubMed Central

    2012-01-01

    Background Scaleless (sc/sc) chickens carry a single recessive mutation that causes a lack of almost all body feathers, as well as foot scales and spurs, due to a failure of skin patterning during embryogenesis. This spontaneous mutant line, first described in the 1950s, has been used extensively to explore the tissue interactions involved in ectodermal appendage formation in embryonic skin. Moreover, the trait is potentially useful in tropical agriculture due to the ability of featherless chickens to tolerate heat, which is at present a major constraint to efficient poultry meat production in hot climates. In the interests of enhancing our understanding of feather placode development, and to provide the poultry industry with a strategy to breed heat-tolerant meat-type chickens (broilers), we mapped and identified the sc mutation. Results Through a cost-effective and labour-efficient SNP array mapping approach using DNA from sc/sc and sc/+ blood sample pools, we map the sc trait to chromosome 4 and show that a nonsense mutation in FGF20 is completely associated with the sc/sc phenotype. This mutation, common to all sc/sc individuals and absent from wild type, is predicted to lead to loss of a highly conserved region of the FGF20 protein important for FGF signalling. In situ hybridisation and quantitative RT-PCR studies reveal that FGF20 is epidermally expressed during the early stages of feather placode patterning. In addition, we describe a dCAPS genotyping assay based on the mutation, developed to facilitate discrimination between wild type and sc alleles. Conclusions This work represents the first loss of function genetic evidence supporting a role for FGF ligand signalling in feather development, and suggests FGF20 as a novel central player in the development of vertebrate skin appendages, including hair follicles and exocrine glands. In addition, this is to our knowledge the first report describing the use of the chicken SNP array to map genes based on genotyping of DNA samples from pooled whole blood. The identification of the sc mutation has important implications for the future breeding of this potentially useful trait for the poultry industry, and our genotyping assay can facilitate its rapid introgression into production lines. PMID:22712610

  12. Further delineation of the SATB2 phenotype

    PubMed Central

    Döcker, Dennis; Schubach, Max; Menzel, Moritz; Munz, Marita; Spaich, Christiane; Biskup, Saskia; Bartholdi, Deborah

    2014-01-01

    SATB2 is an evolutionarily highly conserved chromatin remodeling gene located on chromosome 2q33.1. Vertebrate animal models have shown that Satb2 has a crucial role in craniofacial patterning and osteoblast differentiation, as well as in determining the fates of neuronal projections in the developing neocortex. In humans, chromosomal translocations and deletions of 2q33.1 leading to SATB2 haploinsufficiency are associated with cleft palate (CP), facial dysmorphism and intellectual disability (ID). A single patient carrying a nonsense mutation in SATB2 has been described to date. In this study, we performed trio-exome sequencing in a 3-year-old girl with CP and severely delayed speech development, and her unaffected parents. Previously, the girl had undergone conventional and molecular karyotyping (microarray analysis), as well as targeted analysis for different diseases associated with developmental delay, including Angelman syndrome, Rett syndrome and Fragile X syndrome. No diagnosis could be established. Exome sequencing revealed a de novo nonsense mutation in the SATB2 gene (c.715C>T; p.R239*). The identification of a second patient carrying a de novo nonsense mutation in SATB2 confirms that this gene is essential for normal craniofacial patterning and cognitive development. Based on our data and the literature published so far, we propose a new clinically recognizable syndrome – the SATB2-associated syndrome (SAS). SAS is likely to be underdiagnosed and should be considered in children with ID, severe speech delay, cleft or high-arched palate and abnormal dentition with crowded and irregularly shaped teeth. PMID:24301056

  13. Using complementary DNA from MyoD-transduced fibroblasts to sequence large muscle genes.

    PubMed

    Waddell, Leigh B; Monnier, Nicole; Cooper, Sandra T; North, Kathryn N; Clarke, Nigel F

    2011-08-01

    Large muscle genes are often sequenced using complementary DNA (cDNA) made from muscle messenger RNA (mRNA) to reduce the cost and workload associated with sequencing from genomic DNA. Two potential barriers are the availability of a frozen muscle biopsy, and difficulties in detecting nonsense mutations due to nonsense-mediated mRNA decay (NMD). We present patient examples showing that use of MyoD-transduced fibroblasts as a source of muscle-specific mRNA overcomes these potential difficulties in sequencing large muscle-related genes. Copyright © 2011 Wiley Periodicals, Inc.

  14. A novel pathogenic mutation of the CYP27B1 gene in a patient with vitamin D-dependent rickets type 1: a case report.

    PubMed

    Babiker, Amir M I; Al Gadi, Iman; Al-Jurayyan, Nasir A M; Al Nemri, Abdulrahman M H; Al Haboob, Ali Abdu N; Al Boukai, Ahmed Amer; Al Zahrani, Ali; Habib, Hanan Ahmed

    2014-11-05

    Rickets can occur due to Vitamin D deficiency or defects in its metabolism. Three rare genetic types of rickets with different alterations of genes have been reported, including: Vitamin D dependent rickets type 1, Vitamin D dependent rickets type 2 or also known as Vitamin D resistant rickets and 25 hydroxylase deficiency rickets. Vitamin D dependent rickets type 1 is inherited in an autosomal recessive pattern, and is caused by mutations in the CYP27B1 gene encoding the 1α-hydroxylase enzyme. We report here a new mutation in CYP27B1, which lead to Vitamin D dependent rickets type 1. We report on a 13-month-old Arabic Saudi girl with Vitamin D dependent rickets type 1 presented with multiple fractures and classic features of rickets. A whole exome sequencing identified a novel pathogenic missense mutation (CYP27B1:Homozygous c.1510C > T(p.Q504X)) which results in a protein truncating alteration. Both parents are heterozygous carriers of the mutation. Based on data search in Human Gene Mutation Database, 63 CYP27B1 alterations were reported: only 28.6% are protein truncating (5 nonsense, 13 frameshift insertions/deletions, 0 gross deletions), while 61.9% are non-truncating (38 missense, 1 small in-frame insertions/deletion), and 9.5% are possible protein-truncating (5 splice, 1 regulatory). The deleterious effect of this alteration, which was the only mutation detected in the CYP27B1 common gene of Vitamin D dependent rickets type 1 in the proband, and its autosomal recessive inheritance fashion, both support a pathogenic nature of this mutation as the cause of Vitamin D dependent rickets type 1.

  15. Deregulation of Fas ligand expression as a novel cause of autoimmune lymphoproliferative syndrome-like disease.

    PubMed

    Nabhani, Schafiq; Ginzel, Sebastian; Miskin, Hagit; Revel-Vilk, Shoshana; Harlev, Dan; Fleckenstein, Bernhard; Hönscheid, Andrea; Oommen, Prasad T; Kuhlen, Michaela; Thiele, Ralf; Laws, Hans-Jürgen; Borkhardt, Arndt; Stepensky, Polina; Fischer, Ute

    2015-09-01

    Autoimmune lymphoproliferative syndrome is frequently caused by mutations in genes involved in the Fas death receptor pathway, but for 20-30% of patients the genetic defect is unknown. We observed that treatment of healthy T cells with interleukin-12 induces upregulation of Fas ligand and Fas ligand-dependent apoptosis. Consistently, interleukin-12 could not induce apoptosis in Fas ligand-deficient T cells from patients with autoimmune lymphoproliferative syndrome. We hypothesized that defects in the interleukin-12 signaling pathway may cause a similar phenotype as that caused by mutations of the Fas ligand gene. To test this, we analyzed 20 patients with autoimmune lymphoproliferative syndrome of unknown cause by whole-exome sequencing. We identified a homozygous nonsense mutation (c.698G>A, p.R212*) in the interleukin-12/interleukin-23 receptor-component IL12RB1 in one of these patients. The mutation led to IL12RB1 protein truncation and loss of cell surface expression. Interleukin-12 and -23 signaling was completely abrogated as demonstrated by deficient STAT4 phosphorylation and interferon γ production. Interleukin-12-mediated expression of membrane-bound and soluble Fas ligand was lacking and basal expression was much lower than in healthy controls. The patient presented with the classical symptoms of autoimmune lymphoproliferative syndrome: chronic non-malignant, non-infectious lymphadenopathy, splenomegaly, hepatomegaly, elevated numbers of double-negative T cells, autoimmune cytopenias, and increased levels of vitamin B12 and interleukin-10. Sanger sequencing and whole-exome sequencing excluded the presence of germline or somatic mutations in genes known to be associated with the autoimmune lymphoproliferative syndrome. Our data suggest that deficient regulation of Fas ligand expression by regulators such as the interleukin-12 signaling pathway may be an alternative cause of autoimmune lymphoproliferative syndrome-like disease. Copyright© Ferrata Storti Foundation.

  16. SDN-1/syndecan regulates growth factor signaling in distal tip cell migrations in C. elegans.

    PubMed

    Schwabiuk, Megan; Coudiere, Ludivine; Merz, David C

    2009-10-01

    Mutations in the sdn-1/syndecan gene act as genetic enhancers of the ventral-to-dorsal distal tip cell (DTC) migration defects caused by a weak allele of the netrin receptor gene unc-5. The sdn-1(ev697) allele was identified in a genetic screen for enhancers of unc-5 DTC migration defects, and carried a nonsense mutation predicted to truncate the SDN-1 protein prior to the transmembrane domain. The enhancement of unc-5 caused by an sdn-1 mutation was rescued by expression of wild-type sdn-1 in the hypodermis or nervous system rather than the DTCs, indicating a cell non-autonomous function of sdn-1. The enhancement was also partially reversed by mutations in the egl-17/FGF or egl-20/Wnt genes, suggesting that sdn-1 affects UNC-5 function through a mis-regulation of signaling in growth factor pathways. egl-20 reporter constructs exhibited increased and mis-localized EGL-20 distribution in sdn-1 mutants compared to wild-type animals. Finally, using loss of function mutations, we show that egl-17/Fgf and egl-20/Wnt are partially redundant in regulating the migration pattern of the posterior DTC, as double mutants exhibit significant frequencies of defects in migration phases along both the anteroposterior and dorsoventral axes. Together these results suggest that SDN-1 affects UNC-5 function by regulating the proper extracellular distribution of growth factors.

  17. Functional Studies of Tyrosine Hydroxylase Missense Variants Reveal Distinct Patterns of Molecular Defects in Dopa-Responsive Dystonia

    PubMed Central

    Fossbakk, Agnete; Kleppe, Rune; Knappskog, Per M; Martinez, Aurora; Haavik, Jan

    2014-01-01

    Congenital tyrosine hydroxylase deficiency (THD) is found in autosomal-recessive Dopa-responsive dystonia and related neurological syndromes. The clinical manifestations of THD are variable, ranging from early-onset lethal disease to mild Parkinson disease-like symptoms appearing in adolescence. Until 2014, approximately 70 THD patients with a total of 40 different disease-related missense mutations, five nonsense mutations, and three mutations in the promoter region of the tyrosine hydroxylase (TH) gene have been reported. We collected clinical and biochemical data in the literature for all variants, and also generated mutant forms of TH variants previously not studied (N = 23). We compared the in vitro solubility, thermal stability, and kinetic properties of the TH variants to determine the cause(s) of their impaired enzyme activity, and found great heterogeneity in all these properties among the mutated forms. Some TH variants had specific kinetic anomalies and phenylalanine hydroxylase, and Dopa oxidase activities were measured for variants that showed signs of altered substrate binding. p.Arg233His, p.Gly247Ser, and p.Phe375Leu had shifted substrate specificity from tyrosine to phenylalanine and Dopa, whereas p.Cys359Phe had an impaired activity toward these substrates. The new data about pathogenic mechanisms presented are expected to contribute to develop individualized therapy for THD patients. PMID:24753243

  18. Whole-exome sequencing and digital PCR identified a novel compound heterozygous mutation in the NPHP1 gene in a case of Joubert syndrome and related disorders.

    PubMed

    Koyama, Shingo; Sato, Hidenori; Wada, Manabu; Kawanami, Toru; Emi, Mitsuru; Kato, Takeo

    2017-03-27

    Joubert syndrome and related disorders (JSRD) is a clinically and genetically heterogeneous condition with autosomal recessive or X-linked inheritance, which share a distinctive neuroradiological hallmark, the so-called molar tooth sign. JSRD is classified into six clinical subtypes based on associated variable multiorgan involvement. To date, 21 causative genes have been identified in JSRD, which makes genetic diagnosis difficult. We report here a case of a 28-year-old Japanese woman diagnosed with JS with oculorenal defects with a novel compound heterozygous mutation (p.Ser219*/deletion) in the NPHP1 gene. Whole-exome sequencing (WES) of the patient identified the novel nonsense mutation in an apparently homozygous state. However, it was absent in her mother and heterozygous in her father. A read depth-based copy number variation (CNV) detection algorithm using WES data of the family predicted a large heterozygous deletion mutation in the patient and her mother, which was validated by digital polymerase chain reaction, indicating that the patient was compound heterozygous for the paternal nonsense mutation and the maternal deletion mutation spanning the site of the single nucleotide change. It should be noted that analytical pipelines that focus purely on sequence information cannot distinguish homozygosity from hemizygosity because of its inability to detect large deletions. The ability to detect CNVs in addition to single nucleotide variants and small insertion/deletions makes WES an attractive diagnostic tool for genetically heterogeneous disorders.

  19. An exon 53 frameshift mutation in CUBN abrogates cubam function and causes Imerslund-Gräsbeck syndrome in dogs

    PubMed Central

    Fyfe, John C.; Hemker, Shelby L.; Venta, Patrick J.; Fitzgerald, Caitlin A.; Outerbridge, Catherine A.; Myers, Sherry L.; Giger, Urs

    2013-01-01

    Cobalamin malabsorption accompanied by selective proteinuria is an autosomal recessive disorder known as Imerslund-Gräsbeck syndrome in humans and was previously described in dogs due to amnionless (AMN) mutations. The resultant vitamin B12 deficiency causes dyshematopoiesis, lethargy, failure to thrive, and life-threatening metabolic disruption in the juvenile period. We studied 3 kindreds of border collies with cobalamin malabsorption and mapped the disease locus in affected dogs to a 2.9 Mb region of homozygosity on canine chromosome 2. The region included CUBN, the locus encoding cubilin, a peripheral membrane protein that in concert with AMN forms the functional intrinsic factor-cobalamin receptor expressed in ileum and a multi-ligand receptor in renal proximal tubules. Cobalamin malabsorption and proteinuria comprising CUBN ligands were demonstrated by radiolabeled cobalamin uptake studies and SDS-PAGE, respectively. CUBN mRNA and protein expression were reduced ~10 fold and ~20 fold, respectively, in both ileum and kidney of affected dogs. DNA sequencing demonstrated a single base deletion in exon 53 predicting a translational frameshift and early termination codon likely triggering nonsense mediated mRNA decay. The mutant allele segregated with disease in the border collie kindred. The border collie disorder indicates that a CUBN mutation far C-terminal from the intrinsic factor-cobalamin binding site can abrogate receptor expression and cause Imerslund-Gräsbeck syndrome. PMID:23746554

  20. Molecular and clinical studies of X-linked deafness among Pakistani families.

    PubMed

    Waryah, Ali M; Ahmed, Zubair M; Bhinder, Munir A; Binder, Munir A; Choo, Daniel I; Sisk, Robert A; Shahzad, Mohsin; Khan, Shaheen N; Friedman, Thomas B; Riazuddin, Sheikh; Riazuddin, Saima

    2011-07-01

    There are 68 sex-linked syndromes that include hearing loss as one feature and five sex-linked nonsyndromic deafness loci listed in the OMIM database. The possibility of additional such sex-linked loci was explored by ascertaining three unrelated Pakistani families (PKDF536, PKDF1132 and PKDF740) segregating X-linked recessive deafness. Sequence analysis of POU3F4 (DFN3) in affected members of families PKDF536 and PKDF1132 revealed two novel nonsense mutations, p.Q136X and p.W114X, respectively. Family PKDF740 is segregating congenital blindness, mild-to-profound progressive hearing loss that is characteristic of Norrie disease (MIM#310600). Sequence analysis of NDP among affected members of this family revealed a novel single nucleotide deletion c.49delG causing a frameshift and premature truncation (p.V17fsX1) of the encoded protein. These mutations were not found in 150 normal DNA samples. Identification of pathogenic alleles causing X-linked recessive deafness will improve molecular diagnosis, genetic counseling and molecular epidemiology of hearing loss among Pakistanis.

  1. Susceptibility to mycobacterial disease due to mutations in IL-12Rβ1 in three Iranian patients.

    PubMed

    Alinejad Dizaj, Maryam; Mortaz, Esmaeil; Mahdaviani, Seyed Alireza; Mansouri, Davood; Mehrian, Payam; Verhard, Els M; Varahram, Mohammad; Babaie, Delara; Adcock, Ian M; Garssen, Johan; van de Vosse, Esther; Velayati, Aliakbar

    2018-06-01

    In the last decade, autosomal recessive interleukin-12 receptor β1 (IL-12Rβ1) deficiency, the most common cause of Mendelian susceptibility to mycobacterial disease (MSMD), has been diagnosed in a few children and adults with severe tuberculosis in Iran. Here, we report three cases referred to the Immunology, Asthma and Allergy ward at the National Research Institute of Tuberculosis and Lung Diseases (NRITLD) at Masih Daneshvari Hospital from 2012 to 2017 with Mycobacterium tuberculosis and non-tuberculous mycobacteria infections due to defects in IL-12Rβ1 but with different clinical manifestations. All three were homozygous for either an IL-12Rβ1 missense or nonsense mutation that caused the IL-12Rβ1 protein not to be expressed on the cell membrane and completely abolished the cellular response to recombinant IL-12. Our findings suggest that the presence of IL-12Rβ1 deficiency should be determined in children with mycobacterial infections at least in countries with a high prevalence of parental consanguinity and in areas endemic for TB like Iran.

  2. Molecular and Clinical Studies of X-linked Deafness Among Pakistani Families

    PubMed Central

    Waryah, Ali M.; Ahmed, Zubair M.; Choo, Daniel I.; Sisk, Robert A.; Binder, Munir A.; Shahzad, Mohsin; Khan, Shaheen N.; Friedman, Thomas B.; Riazuddin, Sheikh; Riazuddin, Saima

    2011-01-01

    There are 68 sex-linked syndromes that include hearing loss as one feature and five sex-linked nonsyndromic deafness loci listed in the OMIM database. The possibility of additional such sex-linked loci was explored by ascertaining three unrelated Pakistani families (PKDF536, PKDF1132, PKDF740) segregating X-linked recessive deafness. Sequence analysis of POU3F4 (DFN3) in affected members of families PKDF536 and PKDF1132 revealed two novel nonsense mutations, p.Q136X and p.W114X, respectively. Family PKDF740 is segregating congenital blindness, mild to profound progressive hearing loss that is characteristic of Norrie disease (MIM#310600). Sequence analysis of NDP among affected members of this family revealed a novel single nucleotide deletion c.49delG causing a frameshift and premature truncation (p.V17fsX1) of the encoded protein. These mutations were not found in 150 normal DNA samples. Identification of pathogenic alleles causing X-linked recessive deafness will improve molecular diagnosis, genetic counseling, and molecular epidemiology of hearing loss among Pakistanis. PMID:21633365

  3. Molecular analysis of mucopolysaccharidosis IVA: Common mutations and racial difference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomatsu, S.; Hori, T.; Nakashima, Y.

    1994-09-01

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency in N-acetylgalactosamine -6-sulfate sulfatase (GALNS). Studies on the molecular basis of MPS IVA have been facilitated following cloning of the full-length cDNA and genomic DNA. In this study we detected mutations from 20 Caucasian and 19 Japanese MPS IVA patients using SSCP system and compared mutations of Caucasian origin with those of Japanese origin. The results showed the presence of 16 various mutations (3 small, deletions, 2 nonsense and 11 missense mutations) for Caucasian patients and 15 (1 deletion, 1 large alteration and 13 missense mutations) formore » Japanese. Moreover, two common mutations existed; one is double gene deletion characteristic for Japanese (6 alleles; 15%) and the other is a point mutation (1113F A{yields}T transition) characteristic for Caucasian (9 alleles; 22.5%). And the clear genotype/phenotype relationship among 1342delCA, IVS1(-2), P151S, Q148X, R386C, I113F, Q473X, W220G, P151L, A291T, R90W, and P77R, for a severe type, G96B N204K and V138A for a milder type, was observed. Only R386 mutation was seen in both of the populations. Further, the precise DNA analysis for double gene deletion of a common double gene deletion has been performed by defining the breakpoints and the results showed that one deletion was caused by homologous recombination due to Alu repetitive sequences and the other was due to nonhomologous recombination of short direct repeat. Haplotype analysis for six alleles with double deletion were different, indicating the different origin of this mutation or the frequent recombination events before a mutational event. Thus the mutations in GALNS gene are very heterogeneous and the racial difference is characteristic.« less

  4. A CNGB1 Frameshift Mutation in Papillon and Phalène Dogs with Progressive Retinal Atrophy

    PubMed Central

    Ahonen, Saija J.; Arumilli, Meharji; Lohi, Hannes

    2013-01-01

    Progressive retinal degenerations are the most common causes of complete blindness both in human and in dogs. Canine progressive retinal atrophy (PRA) or degeneration resembles human retinitis pigmentosa (RP) and is characterized by a progressive loss of rod photoreceptor cells followed by a loss of cone function. The primary clinical signs are detected as vision impairment in a dim light. Although several genes have been associated with PRAs, there are still PRAs of unknown genetic cause in many breeds, including Papillons and Phalènes. We have performed a genome wide association and linkage studies in cohort of 6 affected Papillons and Phalènes and 14 healthy control dogs to map a novel PRA locus on canine chromosome 2, with a 1.9 Mb shared homozygous region in the affected dogs. Parallel exome sequencing of a trio identified an indel mutation, including a 1-bp deletion, followed by a 6-bp insertion in the CNGB1 gene. This mutation causes a frameshift and premature stop codon leading to probable nonsense mediated decay (NMD) of the CNGB1 mRNA. The mutation segregated with the disease and was confirmed in a larger cohort of 145 Papillons and Phalènes (PFisher = 1.4×10−8) with a carrier frequency of 17.2 %. This breed specific mutation was not present in 334 healthy dogs from 10 other breeds or 121 PRA affected dogs from 44 other breeds. CNGB1 is important for the photoreceptor cell function its defects have been previously associated with retinal degeneration in both human and mouse. Our study indicates that a frameshift mutation in CNGB1 is a cause of PRA in Papillons and Phalènes and establishes the breed as a large functional animal model for further characterization of retinal CNGB1 biology and possible retinal gene therapy trials. This study enables also the development of a genetic test for breeding purposes. PMID:24015210

  5. Balancing Selection of a Frame-Shift Mutation in the MRC2 Gene Accounts for the Outbreak of the Crooked Tail Syndrome in Belgian Blue Cattle

    PubMed Central

    Li, Wanbo; Dive, Marc; Tamma, Nico; Michaux, Charles; Druet, Tom; Huijbers, Ivo J.; Isacke, Clare M.; Coppieters, Wouter; Georges, Michel; Charlier, Carole

    2009-01-01

    We herein describe the positional identification of a 2-bp deletion in the open reading frame of the MRC2 receptor causing the recessive Crooked Tail Syndrome in cattle. The resulting frame-shift reveals a premature stop codon that causes nonsense-mediated decay of the mutant messenger RNA, and the virtual absence of functional Endo180 protein in affected animals. Cases exhibit skeletal anomalies thought to result from impaired extracellular matrix remodeling during ossification, and as of yet unexplained muscular symptoms. We demonstrate that carrier status is very significantly associated with desired characteristics in the general population, including enhanced muscular development, and that the resulting heterozygote advantage caused a selective sweep which explains the unexpectedly high frequency (25%) of carriers in the Belgian Blue Cattle Breed. PMID:19779552

  6. A homozygous FITM2 mutation causes a deafness-dystonia syndrome with motor regression and signs of ichthyosis and sensory neuropathy.

    PubMed

    Zazo Seco, Celia; Castells-Nobau, Anna; Joo, Seol-Hee; Schraders, Margit; Foo, Jia Nee; van der Voet, Monique; Velan, S Sendhil; Nijhof, Bonnie; Oostrik, Jaap; de Vrieze, Erik; Katana, Radoslaw; Mansoor, Atika; Huynen, Martijn; Szklarczyk, Radek; Oti, Martin; Tranebjærg, Lisbeth; van Wijk, Erwin; Scheffer-de Gooyert, Jolanda M; Siddique, Saadat; Baets, Jonathan; de Jonghe, Peter; Kazmi, Syed Ali Raza; Sadananthan, Suresh Anand; van de Warrenburg, Bart P; Khor, Chiea Chuen; Göpfert, Martin C; Qamar, Raheel; Schenck, Annette; Kremer, Hannie; Siddiqi, Saima

    2017-02-01

    A consanguineous family from Pakistan was ascertained to have a novel deafness-dystonia syndrome with motor regression, ichthyosis-like features and signs of sensory neuropathy. By applying a combined strategy of linkage analysis and whole-exome sequencing in the presented family, a homozygous nonsense mutation, c.4G>T (p.Glu2*), in FITM2 was identified. FITM2 and its paralog FITM1 constitute an evolutionary conserved protein family involved in partitioning of triglycerides into cellular lipid droplets. Despite the role of FITM2 in neutral lipid storage and metabolism, no indications for lipodystrophy were observed in the affected individuals. In order to obtain independent evidence for the involvement of FITM2 in the human pathology, downregulation of the single Fitm ortholog, CG10671, in Drosophila melanogaster was pursued using RNA interference. Characteristics of the syndrome, including progressive locomotor impairment, hearing loss and disturbed sensory functions, were recapitulated in Drosophila, which supports the causative nature of the FITM2 mutation. Mutation-based genetic counseling can now be provided to the family and insight is obtained into the potential impact of genetic variation in FITM2. © 2017. Published by The Company of Biologists Ltd.

  7. Exome sequencing reveals a novel Moroccan founder mutation in SLC19A3 as a new cause of early-childhood fatal Leigh syndrome.

    PubMed

    Gerards, Mike; Kamps, Rick; van Oevelen, Jo; Boesten, Iris; Jongen, Eveline; de Koning, Bart; Scholte, Hans R; de Angst, Isabel; Schoonderwoerd, Kees; Sefiani, Abdelaziz; Ratbi, Ilham; Coppieters, Wouter; Karim, Latifa; de Coo, René; van den Bosch, Bianca; Smeets, Hubert

    2013-03-01

    Leigh syndrome is an early onset, often fatal progressive neurodegenerative disorder caused by mutations in the mitochondrial or nuclear DNA. Until now, mutations in more than 35 genes have been reported to cause Leigh syndrome, indicating an extreme genetic heterogeneity for this disorder, but still only explaining part of the cases. The possibility of whole exome sequencing enables not only mutation detection in known candidate genes, but also the identification of new genes associated with Leigh syndrome in small families and isolated cases. Exome sequencing was combined with homozygosity mapping to identify the genetic defect in a Moroccan family with fatal Leigh syndrome in early childhood and specific magnetic resonance imaging abnormalities in the brain. We detected a homozygous nonsense mutation (c.20C>A; p.Ser7Ter) in the thiamine transporter SLC19A3. In vivo overexpression of wild-type SLC19A3 showed an increased thiamine uptake, whereas overexpression of mutant SLC19A3 did not, confirming that the mutation results in an absent or non-functional protein. Seventeen additional patients with Leigh syndrome were screened for mutations in SLC19A3 using conventional Sanger sequencing. Two unrelated patients, both from Moroccan origin and one from consanguineous parents, were homozygous for the same p.Ser7Ter mutation. One of these patients showed the same MRI abnormalities as the patients from the first family. Strikingly, patients receiving thiamine had an improved life-expectancy. One patient in the third family deteriorated upon interruption of the thiamine treatment and recovered after reinitiating. Although unrelated, all patients came from the province Al Hoceima in Northern Morocco. Based on the recombination events the mutation was estimated to have occurred 1250-1750 years ago. Our data shows that SLC19A3 is a new candidate for mutation screening in patients with Leigh syndrome, who might benefit from high doses of thiamine and/or biotin. Especially, Moroccan patients with Leigh syndrome should be tested for the c.20C>A founder mutation in SLC19A3.

  8. Novel splice site mutation in the growth hormone receptor gene in Turkish patients with Laron-type dwarfism.

    PubMed

    Arman, Ahmet; Ozon, Alev; Isguven, Pinar S; Coker, Ajda; Peker, Ismail; Yordam, Nursen

    2008-01-01

    Growth hormone (GH) is involved in growth, and fat and carbohydrate metabolism. Interaction of GH with the GH receptor (GHR) is necessary for systemic and local production of insulin-like growth factor-I (IGF-I) which mediates GH actions. Mutations in the GHR cause severe postnatal growth failure; the disorder is an autosomal recessive genetic disease resulting in GH insensitivity, called Laron syndrome. It is characterized by dwarfism with elevated serum GH and low levels of IGF-I. We analyzed the GHR gene for mutations and polymorphisms in eight patients with Laron-type dwarfism from six families. We found three missense mutations (S40L, V125A, I526L), one nonsense mutation (W157X), and one splice site mutation in the extracellular domain of GHR. Furthermore, G168G and exon 3 deletion polymorphisms were detected in patients with Laron syndrome. The splice site mutation, which is a novel mutation, was located at the donor splice site of exon 2/ intron 2 within GHR. Although this mutation changed the highly conserved donor splice site consensus sequence GT to GGT by insertion of a G residue, the intron splicing between exon 2 and exon 3 was detected in the patient. These results imply that the splicing occurs arthe GT site in intron 2, leaving the extra inserted G residue at the end of exon 2, thus changing the open reading frame of GHR resulting in a premature termination codon in exon 3.

  9. Genetic heterogeneity of pseudoxanthoma elasticum: the Chinese signature profile of ABCC6 and ENPP1 mutations.

    PubMed

    Jin, Liang; Jiang, Qiujie; Wu, Zhengsheng; Shao, Changxia; Zhou, Yong; Yang, Luting; Uitto, Jouni; Wang, Gang

    2015-05-01

    Pseudoxanthoma elasticum (PXE), an autosomal recessive disorder characterized by ectopic mineralization, is caused by mutations in the ABCC6 gene. We examined clinically 29 Chinese PXE patients from unrelated families, so far the largest cohort of Asian PXE patients. In a subset of 22 patients, we sequenced ABCC6 and another candidate gene, ENPP1, and conducted pathogenicity analyses for each variant. We identified a total of 17 distinct mutations in ABCC6, 15 of them being, to our knowledge, previously unreported, including 5 frameshift and 10 missense variants. In addition, a missense mutation in combination with a recurrent nonsense mutation in ENPP1 was discovered in a pediatric PXE case. No cases with p.R1141X or del23-29 mutations, common in Caucasian patient populations, were identified. The 10 missense mutations in ABCC6 were expressed in the mouse liver via hydrodynamic tail-vein injections. One mutant protein showed cytoplasmic accumulation indicating abnormal subcellular trafficking, while the other nine mutants showed correct plasma membrane location. These nine mutations were further investigated for their pathogenicity using a recently developed zebrafish mRNA rescue assay. Minimal rescue of the morpholino-induced phenotype was achieved with eight of the nine mutant human ABCC6 mRNAs tested, implying pathogenicity. This study demonstrates that the Chinese PXE population harbors unique ABCC6 mutations. These genetic data have implications for allele-specific therapy currently being developed for PXE.

  10. Predisposition to Cancer Caused by Genetic and Functional Defects of Mammalian Atad5

    PubMed Central

    Bell, Daphne W.; Chatterjee, Raghunath; Park, Hee-Dong; Fox, Jennifer; Ishiai, Masamichi; Rudd, Meghan L.; Pollock, Lana M.; Fogoros, Sarah K.; Mohamed, Hassan; Hanigan, Christin L.; Zhang, Suiyuan; Cruz, Pedro; Renaud, Gabriel; Hansen, Nancy F.; Cherukuri, Praveen F.; Borate, Bhavesh; McManus, Kirk J.; Stoepel, Jan; Sipahimalani, Payal; Godwin, Andrew K.; Sgroi, Dennis C.; Merino, Maria J.; Elliot, Gene; Elkahloun, Abdel; Vinson, Charles; Takata, Minoru; Mullikin, James C.; Wolfsberg, Tyra G.; Hieter, Philip; Lim, Dae-Sik; Myung, Kyungjae

    2011-01-01

    ATAD5, the human ortholog of yeast Elg1, plays a role in PCNA deubiquitination. Since PCNA modification is important to regulate DNA damage bypass, ATAD5 may be important for suppression of genomic instability in mammals in vivo. To test this hypothesis, we generated heterozygous (Atad5+/m) mice that were haploinsuffficient for Atad5. Atad5+/m mice displayed high levels of genomic instability in vivo, and Atad5+/m mouse embryonic fibroblasts (MEFs) exhibited molecular defects in PCNA deubiquitination in response to DNA damage, as well as DNA damage hypersensitivity and high levels of genomic instability, apoptosis, and aneuploidy. Importantly, 90% of haploinsufficient Atad5+/m mice developed tumors, including sarcomas, carcinomas, and adenocarcinomas, between 11 and 20 months of age. High levels of genomic alterations were evident in tumors that arose in the Atad5+/m mice. Consistent with a role for Atad5 in suppressing tumorigenesis, we also identified somatic mutations of ATAD5 in 4.6% of sporadic human endometrial tumors, including two nonsense mutations that resulted in loss of proper ATAD5 function. Taken together, our findings indicate that loss-of-function mutations in mammalian Atad5 are sufficient to cause genomic instability and tumorigenesis. PMID:21901109

  11. Allelic hierarchy of CDH23 mutations causing non-syndromic deafness DFNB12 or Usher syndrome USH1D in compound heterozygotes.

    PubMed

    Schultz, Julie M; Bhatti, Rashid; Madeo, Anne C; Turriff, Amy; Muskett, Julie A; Zalewski, Christopher K; King, Kelly A; Ahmed, Zubair M; Riazuddin, Saima; Ahmad, Nazir; Hussain, Zawar; Qasim, Muhammad; Kahn, Shaheen N; Meltzer, Meira R; Liu, Xue Z; Munisamy, Murali; Ghosh, Manju; Rehm, Heidi L; Tsilou, Ekaterini T; Griffith, Andrew J; Zein, Wadih M; Brewer, Carmen C; Riazuddin, Sheikh; Friedman, Thomas B

    2011-11-01

    Recessive mutant alleles of MYO7A, USH1C, CDH23, and PCDH15 cause non-syndromic deafness or type 1 Usher syndrome (USH1) characterised by deafness, vestibular areflexia, and vision loss due to retinitis pigmentosa. For CDH23, encoding cadherin 23, non-syndromic DFNB12 deafness is associated primarily with missense mutations hypothesised to have residual function. In contrast, homozygous nonsense, frame shift, splice site, and some missense mutations of CDH23, all of which are presumably functional null alleles, cause USH1D. The phenotype of a CDH23 compound heterozygote for a DFNB12 allele in trans configuration to an USH1D allele is not known and cannot be predicted from current understanding of cadherin 23 function in the retina and vestibular labyrinth. To address this issue, this study sought CDH23 compound heterozygotes by sequencing this gene in USH1 probands, and families segregating USH1D or DFNB12. Five non-syndromic deaf individuals were identified with normal retinal and vestibular phenotypes that segregate compound heterozygous mutations of CDH23, where one mutation is a known or predicted USH1 allele. One DFNB12 allele in trans configuration to an USH1D allele of CDH23 preserves vision and balance in deaf individuals, indicating that the DFNB12 allele is phenotypically dominant to an USH1D allele. This finding has implications for genetic counselling and the development of therapies for retinitis pigmentosa in Usher syndrome. ACCESSION NUMBERS: The cDNA and protein Genbank accession numbers for CDH23 and cadherin 23 used in this paper are AY010111.2 and AAG27034.2, respectively.

  12. Molecular Diagnostics of Copper-Transporting Protein Mutations Allows Early Onset Individual Therapy of Menkes Disease.

    PubMed

    Králík, L; Flachsová, E; Hansíková, H; Saudek, V; Zeman, J; Martásek, P

    2017-01-01

    Menkes disease is a severe X-linked recessive disorder caused by a defect in the ATP7A gene, which encodes a membrane copper-transporting ATPase. Deficient activity of the ATP7A protein results in decreased intestinal absorption of copper, low copper level in serum and defective distribution of copper in tissues. The clinical symptoms are caused by decreased activities of copper-dependent enzymes and include neurodegeneration, connective tissue disorders, arterial changes and hair abnormalities. Without therapy, the disease is fatal in early infancy. Rapid diagnosis of Menkes disease and early start of copper therapy is critical for the effectiveness of treatment. We report a molecular biology-based strategy that allows early diagnosis of copper transport defects and implementation of individual therapies before the full development of pathological symptoms. Low serum copper and decreased activity of copperdependent mitochondrial cytochrome c oxidase in isolated platelets found in three patients indicated a possibility of functional defects in copper-transporting proteins, especially in the ATPA7 protein, a copper- transporting P-type ATPase. Rapid mutational screening of the ATP7A gene using high-resolution melting analysis of DNA indicated presence of mutations in the patients. Molecular investigation for mutations in the ATP7A gene revealed three nonsense mutations: c.2170C>T (p.Gln724Ter); c.3745G>T (p.Glu1249Ter); and c.3862C>T (p.Gln1288Ter). The mutation c.3745G>T (p.Glu1249Ter) has not been identified previously. Molecular analysis of the ATOX1 gene as a possible modulating factor of Menkes disease did not reveal presence of pathogenic mutations. Molecular diagnostics allowed early onset of individual therapies, adequate genetic counselling and prenatal diagnosis in the affected families.

  13. Alagille syndrome in a Vietnamese cohort: mutation analysis and assessment of facial features.

    PubMed

    Lin, Henry C; Le Hoang, Phuc; Hutchinson, Anne; Chao, Grace; Gerfen, Jennifer; Loomes, Kathleen M; Krantz, Ian; Kamath, Binita M; Spinner, Nancy B

    2012-05-01

    Alagille syndrome (ALGS, OMIM #118450) is an autosomal dominant disorder that affects multiple organ systems including the liver, heart, eyes, vertebrae, and face. ALGS is caused by mutations in one of two genes in the Notch Signaling Pathway, Jagged1 (JAG1) or NOTCH2. In this study, analysis of 21 Vietnamese ALGS individuals led to the identification of 19 different mutations (18 JAG1 and 1 NOTCH2), 17 of which are novel, including the third reported NOTCH2 mutation in Alagille Syndrome. The spectrum of JAG1 mutations in the Vietnamese patients is similar to that previously reported, including nine frameshift, three missense, two splice site, one nonsense, two whole gene, and one partial gene deletion. The missense mutations are all likely to be disease causing, as two are loss of cysteines (C22R and C78G) and the third creates a cryptic splice site in exon 9 (G386R). No correlation between genotype and phenotype was observed. Assessment of clinical phenotype revealed that skeletal manifestations occur with a higher frequency than in previously reported Alagille cohorts. Facial features were difficult to assess and a Vietnamese pediatric gastroenterologist was only able to identify the facial phenotype in 61% of the cohort. To assess the agreement among North American dysmorphologists at detecting the presence of ALGS facial features in the Vietnamese patients, 37 clinical dysmorphologists evaluated a photographic panel of 20 Vietnamese children with and without ALGS. The dysmorphologists were unable to identify the individuals with ALGS in the majority of cases, suggesting that evaluation of facial features should not be used in the diagnosis of ALGS in this population. This is the first report of mutations and phenotypic spectrum of ALGS in a Vietnamese population. Copyright © 2012 Wiley Periodicals, Inc.

  14. SLC25A13 Gene Analysis in Citrin Deficiency: Sixteen Novel Mutations in East Asian Patients, and the Mutation Distribution in a Large Pediatric Cohort in China

    PubMed Central

    Song, Yuan-Zong; Zhang, Zhan-Hui; Lin, Wei-Xia; Zhao, Xin-Jing; Deng, Mei; Ma, Yan-Li; Guo, Li; Chen, Feng-Ping; Long, Xiao-Ling; He, Xiang-Ling; Sunada, Yoshihide; Soneda, Shun; Nakatomi, Akiko; Dateki, Sumito; Ngu, Lock-Hock; Kobayashi, Keiko; Saheki, Takeyori

    2013-01-01

    Background The human SLC25A13 gene encodes citrin, the liver-type mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), and SLC25A13 mutations cause citrin deficiency (CD), a disease entity that encompasses different age-dependant clinical phenotypes such as Adult-onset Citrullinemia Type II (CTLN2) and Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD). The analyses of SLC25A13 gene and its protein/mRNA products remain reliable tools for the definitive diagnoses of CD patients, and so far, the SLC25A13 mutation spectrum in Chinese CD patients has not been well-characterized yet. Methods and Results By means of direct DNA sequencing, cDNA cloning and SNP analyses, 16 novel pathogenic mutations, including 9 missense, 4 nonsense, 1 splice-site, 1 deletion and 1 large transposal insertion IVS4ins6kb (GenBank accession number KF425758), were identified in CTLN2 or NICCD patients from China, Japan and Malaysia, respectively, making the SLC25A13 variations worldwide reach the total number of 81. A large NICCD cohort of 116 Chinese cases was also established, and the 4 high-frequency mutations contributed a much larger proportion of the mutated alleles in the patients from south China than in those from the north (χ2 = 14.93, P<0.01), with the latitude of 30°N as the geographic dividing line in mainland China. Conclusions This paper further enriched the SLC25A13 variation spectrum worldwide, and formed a substantial contribution to the in-depth understanding of the genotypic feature of Chinese CD patients. PMID:24069319

  15. Recessive distal motor neuropathy with pyramidal signs in an Omani kindred: underlying novel mutation in the SIGMAR1 gene.

    PubMed

    Nandhagopal, R; Meftah, D; Al-Kalbani, S; Scott, P

    2018-02-01

    Distal hereditary motor neuropathy (dHMN) due to sigma non-opioid intracellular receptor 1 (SIGMAR1) gene mutation (OMIM 601978.0003) is a rare neuromuscular disorder characterized by prominent amyotrophic distal limb weakness and co-existing pyramidal signs initially described in a Chinese family recently. We report an extended consanguineous Omani family segregating dHMN with pyramidal signs in an autosomal recessive pattern and describe a novel mutation in the SIGMAR1 gene underlying this motor phenotype. We also provide an update on the reported phenotypic profile of SIGMAR1 mutations. We utilized homozygosity mapping and whole-exome sequencing of leucocyte DNA obtained from three affected members of an Omani family who manifested with a length-dependent motor neuropathy and pyramidal signs. We identified a novel C>T transition at nucleotide position 238 (c.238C>T) in exon 2 of the SIGMAR1 gene. Sanger sequencing and segregation analysis confirmed the presence of two copies of the variant in the affected subjects, unlike the unaffected healthy parents/sibling who carried, at most, a single copy. The T allele is predicted to cause a truncating mutation (p.Gln80*), probably flagging the mRNA for nonsense-mediated decay leading to a complete loss of function, thereby potentially contributing to the disease process. Our finding expands the spectrum of SIGMAR1 mutations causing recessive dHMN and indicates that this disorder is pan-ethnic. SIGMAR1 mutation should be included in the diagnostic panel of a dHMN, especially if there are co-existing pyramidal signs and autosomal recessive inheritance. © 2017 EAN.

  16. Genome-first approach diagnosed Cabezas syndrome via novel CUL4B mutation detection.

    PubMed

    Okamoto, Nobuhiko; Watanabe, Miki; Naruto, Takuya; Matsuda, Keiko; Kohmoto, Tomohiro; Saito, Masako; Masuda, Kiyoshi; Imoto, Issei

    2017-01-01

    Cabezas syndrome is a syndromic form of X-linked intellectual disability primarily characterized by a short stature, hypogonadism and abnormal gait, with other variable features resulting from mutations in the CUL4B gene. Here, we report a clinically undiagnosed 5-year-old male with severe intellectual disability. A genome-first approach using targeted exome sequencing identified a novel nonsense mutation [NM_003588.3:c.2698G>T, p.(Glu900*)] in the last coding exon of CUL4B , thus diagnosing this patient with Cabezas syndrome.

  17. Genome-first approach diagnosed Cabezas syndrome via novel CUL4B mutation detection

    PubMed Central

    Okamoto, Nobuhiko; Watanabe, Miki; Naruto, Takuya; Matsuda, Keiko; Kohmoto, Tomohiro; Saito, Masako; Masuda, Kiyoshi; Imoto, Issei

    2017-01-01

    Cabezas syndrome is a syndromic form of X-linked intellectual disability primarily characterized by a short stature, hypogonadism and abnormal gait, with other variable features resulting from mutations in the CUL4B gene. Here, we report a clinically undiagnosed 5-year-old male with severe intellectual disability. A genome-first approach using targeted exome sequencing identified a novel nonsense mutation [NM_003588.3:c.2698G>T, p.(Glu900*)] in the last coding exon of CUL4B, thus diagnosing this patient with Cabezas syndrome. PMID:28144446

  18. A homozygous nonsense mutation in the gene for Tmem79, a component for the lamellar granule secretory system, produces spontaneous eczema in an experimental model of atopic dermatitis.

    PubMed

    Sasaki, Takashi; Shiohama, Aiko; Kubo, Akiharu; Kawasaki, Hiroshi; Ishida-Yamamoto, Akemi; Yamada, Taketo; Hachiya, Takayuki; Shimizu, Atsushi; Okano, Hideyuki; Kudoh, Jun; Amagai, Masayuki

    2013-11-01

    Flaky tail (ma/ma Flg(ft/ft)) mice have a frameshift mutation in the filaggrin (Flg(ft)) gene and are widely used as a model of human atopic dermatitis associated with FLG mutations. These mice possess another recessive hair mutation, matted (ma), and develop spontaneous dermatitis under specific pathogen-free conditions, whereas genetically engineered Flg(-/-) mice do not. We identified and characterized the gene responsible for the matted hair and dermatitis phenotype in flaky tail mice. We narrowed down the responsible region by backcrossing ma/ma mice with wild-type mice and identified the mutation using next-generation DNA sequencing. We attempted to rescue the matted phenotype by introducing the wild-type matted transgene. We characterized the responsible gene product by using whole-mount immunostaining of epidermal sheets. We demonstrated that ma, but not Flg(ft), was responsible for the dermatitis phenotype and corresponded to a Tmem79 gene nonsense mutation (c.840C>G, p.Y280*), which encoded a 5-transmembrane protein. Exogenous Tmem79 expression rescued the matted hair and dermatitis phenotype of Tmem79(ma/ma) mice. Tmem79 was mainly expressed in the trans-Golgi network in stratum granulosum cells in the epidermis in both mice and humans. The Tmem79(ma/ma) mutation impaired the lamellar granule secretory system, which resulted in altered stratum corneum formation and a subsequent spontaneous dermatitis phenotype. The Tmem79(ma/ma) mutation is responsible for the spontaneous dermatitis phenotype in matted mice, probably as a result of impaired lamellar granule secretory system and altered stratum corneum barrier function. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  19. De novo PHIP-predicted deleterious variants are associated with developmental delay, intellectual disability, obesity, and dysmorphic features.

    PubMed

    Webster, Emily; Cho, Megan T; Alexander, Nora; Desai, Sonal; Naidu, Sakkubai; Bekheirnia, Mir Reza; Lewis, Andrea; Retterer, Kyle; Juusola, Jane; Chung, Wendy K

    2016-11-01

    Using whole-exome sequencing, we have identified novel de novo heterozygous pleckstrin homology domain-interacting protein ( PHIP ) variants that are predicted to be deleterious, including a frameshift deletion, in two unrelated patients with common clinical features of developmental delay, intellectual disability, anxiety, hypotonia, poor balance, obesity, and dysmorphic features. A nonsense mutation in PHIP has previously been associated with similar clinical features. Patients with microdeletions of 6q14.1, including PHIP , have a similar phenotype of developmental delay, intellectual disability, hypotonia, and obesity, suggesting that the phenotype of our patients is a result of loss-of-function mutations. PHIP produces multiple protein products, such as PHIP1 (also known as DCAF14), PHIP, and NDRP. PHIP1 is one of the multiple substrate receptors of the proteolytic CUL4-DDB1 ubiquitin ligase complex. CUL4B deficiency has been associated with intellectual disability, central obesity, muscle wasting, and dysmorphic features. The overlapping phenotype associated with CUL4B deficiency suggests that PHIP mutations cause disease through disruption of the ubiquitin ligase pathway.

  20. Rare mutation in the SLC26A3 transporter causes life-long diarrhoea with metabolic alkalosis

    PubMed Central

    Abou Ziki, Maen D; Verjee, Mohamud A

    2015-01-01

    SLC26A3, a chloride/bicarbonate transporter mainly expressed in the intestines, plays a pivotal role in chloride absorption. We present a 23-year-old woman with a history of congenital chloride diarrhoea (CCD) and renal transplant who was admitted for rehydration and treatment of acute kidney injury after she presented with an acute diarrhoeal episode. Laboratory investigations confirmed metabolic alkalosis and severe hypochloraemia, consistent with her underlying CCD. This contrasts with most other forms of diarrhoea, which are normally associated with metabolic acidosis. Genetic testing was offered and revealed a homozygous non-sense mutation in SLC26A3 (Gly-187-Stop). This loss-of-function mutation results in bicarbonate retention in the blood and chloride loss into the intestinal lumen. Symptomatic management with daily NaCl and KCl oral syrups was supplemented with omeprazole therapy. The loss of her own kidneys is most likely due to crystal-induced nephropathy secondary to chronic volume contraction and chloride depletion. This case summarises the pathophysiology and management of CCD. PMID:25568271

  1. De Novo Truncating Mutations in the Last and Penultimate Exons of PPM1D Cause an Intellectual Disability Syndrome.

    PubMed

    Jansen, Sandra; Geuer, Sinje; Pfundt, Rolph; Brough, Rachel; Ghongane, Priyanka; Herkert, Johanna C; Marco, Elysa J; Willemsen, Marjolein H; Kleefstra, Tjitske; Hannibal, Mark; Shieh, Joseph T; Lynch, Sally Ann; Flinter, Frances; FitzPatrick, David R; Gardham, Alice; Bernhard, Birgitta; Ragge, Nicola; Newbury-Ecob, Ruth; Bernier, Raphael; Kvarnung, Malin; Magnusson, E A Helena; Wessels, Marja W; van Slegtenhorst, Marjon A; Monaghan, Kristin G; de Vries, Petra; Veltman, Joris A; Lord, Christopher J; Vissers, Lisenka E L M; de Vries, Bert B A

    2017-04-06

    Intellectual disability (ID) is a highly heterogeneous disorder involving at least 600 genes, yet a genetic diagnosis remains elusive in ∼35%-40% of individuals with moderate to severe ID. Recent meta-analyses statistically analyzing de novo mutations in >7,000 individuals with neurodevelopmental disorders highlighted mutations in PPM1D as a possible cause of ID. PPM1D is a type 2C phosphatase that functions as a negative regulator of cellular stress-response pathways by mediating a feedback loop of p38-p53 signaling, thereby contributing to growth inhibition and suppression of stress-induced apoptosis. We identified 14 individuals with mild to severe ID and/or developmental delay and de novo truncating PPM1D mutations. Additionally, deep phenotyping revealed overlapping behavioral problems (ASD, ADHD, and anxiety disorders), hypotonia, broad-based gait, facial dysmorphisms, and periods of fever and vomiting. PPM1D is expressed during fetal brain development and in the adult brain. All mutations were located in the last or penultimate exon, suggesting escape from nonsense-mediated mRNA decay. Both PPM1D expression analysis and cDNA sequencing in EBV LCLs of individuals support the presence of a stable truncated transcript, consistent with this hypothesis. Exposure of cells derived from individuals with PPM1D truncating mutations to ionizing radiation resulted in normal p53 activation, suggesting that p53 signaling is unaffected. However, a cell-growth disadvantage was observed, suggesting a possible effect on the stress-response pathway. Thus, we show that de novo truncating PPM1D mutations in the last and penultimate exons cause syndromic ID, which provides additional insight into the role of cell-cycle checkpoint genes in neurodevelopmental disorders. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. Novel Nonsense Variants c.58C>T (p.Q20X) and c.256G>T (p.E85X) in the CHEK2 Gene Identified in Breast Cancer Patients from Balochistan.

    PubMed

    Baloch, Abdul Hameed; Khosa, Ahmad Nawaz; Bangulzai, Nasrullah; Shuja, Jamila; Naseeb, Hafiz Khush; Jan, Mohammad; Marghazani, Illahi Bakhsh; Kakar, MasoodulHaq; Baloch, Dost Mohammad; Cheema, Abdul Majeed; Ahmad, Jamil

    2016-01-01

    Breast cancer is very common and the leading cause of cancer deaths among women globally. Hereditary cases account for 510% of the total burden and CHEK2, which plays crucial role in response to DNA damage to promote cell cycle arrest and repair or induce apoptosis, is considered as a moderate penetrance breast cancer risk gene. Our objective in the current study was to analyze mutations in related to breast cancer. A total of 271 individuals including breast cancer patients and normal subjects were enrolled and all 14 exons of CHEK2 were amplified and sequenced. The majority of the patients (>95%) were affected with invasive ductal carcinoma (IDC), 52.1% were diagnosed with grade III tumors and 56.2% and 27.5% with advanced stages III and IV. Two novel nonsense variants i.e. c.58C>T (P.Q20X) and c.256G>T (p.E85X) at exon 1 and 2 in two breast cancer patients were identified, both novel and not reported elsewhere.

  3. Bathing suit ichthyosis is caused by transglutaminase-1 deficiency: evidence for a temperature-sensitive phenotype.

    PubMed

    Oji, Vinzenz; Hautier, Juliette Mazereeuw; Ahvazi, Bijan; Hausser, Ingrid; Aufenvenne, Karin; Walker, Tatjana; Seller, Natalia; Steijlen, Peter M; Küster, Wolfgang; Hovnanian, Alain; Hennies, Hans Christian; Traupe, Heiko

    2006-11-01

    Bathing suit ichthyosis (BSI) is a striking and unique clinical form of autosomal recessive congenital ichthyosis characterized by pronounced scaling on the bathing suit areas but sparing of the extremities and the central face. Here we report on a series of 10 BSI patients. Our genetic, ultrastructural and biochemical investigations show that BSI is caused by transglutaminase-1 (TGase-1) deficiency. Altogether, we identified 13 mutations in TGM1-among them seven novel missense mutations and one novel nonsense mutation. Structural modeling for the Tyr276Asn mutation reveals that the residue is buried in the hydrophobic interior of the enzyme and that the hydroxyl side chain of Tyr276 is exposed to solvent in a cavity of the enzyme. Cryosections of healthy skin areas demonstrated an almost normal TGase activity, in contrast to the affected BSI skin, which only showed a cytoplasmic and clearly reduced TGase-1 activity. The distribution of TGase-1 substrates in the epidermis of affected skin corresponded to the situation in TGase-1 deficiency. Interestingly, the expression of TGase-3 and cathepsin D was reduced. Digital thermography validated a striking correlation between warmer body areas and presence of scaling in patients suggesting a decisive influence of the skin temperature. In situ TGase testing in skin of BSI patients demonstrated a marked decrease of enzyme activity when the temperature was increased from 25 to 37 degrees C. We conclude that BSI is caused by TGase-1 deficiency and suggest that it is a temperature-sensitive phenotype.

  4. Translational bypass of nonsense mutations in zebrafish rep1, pax2.1 and lamb1 highlights a viable therapeutic option for untreatable genetic eye disease.

    PubMed

    Moosajee, Mariya; Gregory-Evans, Kevin; Ellis, Charles D; Seabra, Miguel C; Gregory-Evans, Cheryl Y

    2008-12-15

    The extensive molecular genetic heterogeneity seen with inherited eye disease is a major barrier to the development of gene-based therapeutics. The underlying molecular pathology in a considerable proportion of these diseases however are nonsense mutations leading to premature termination codons. A therapeutic intervention targeted at this abnormality would therefore potentially be relevant to a wide range of inherited eye diseases. We have taken advantage of the ability of aminoglycoside drugs to suppress such nonsense mutations and partially restore full-length, functional protein in a zebrafish model of choroideraemia (chm(ru848); juvenile chorio-retinal degeneration) and in two models of ocular coloboma (noi(tu29a) and gup(m189); congenital optic fissure closure defects). In vitro cell-based assays showed significant readthrough with two drugs, gentamicin and paromomycin, which was confirmed by western blot and in vitro prenylation assays. The presence of either aminoglycoside during zebrafish development in vivo showed remarkable prevention of mutant ocular phenotypes in each model and a reduction in multisystemic defects leading to a 1.5-1.7-fold increase in survival. We also identified a significant reduction in abnormal cell death shown by TUNEL assay. To test the hypothesis that optic fissure closure was apoptosis-dependent, the anti-apoptotic agents, curcumin and zVAD-fmk, were tested in gup(m189) embryos. Both drugs were found to reduce the size of the coloboma, providing molecular evidence that cell death is required for optic fissure remodelling. These findings draw attention to the value of zebrafish models of eye disease as useful preclinical drug screening tools in studies to identify molecular mechanisms amenable to therapeutic intervention.

  5. Four novel RS1 gene mutations in Polish patients with X-linked juvenile retinoschisis.

    PubMed

    Skorczyk, Anna; Krawczyński, Maciej R

    2012-01-01

    To determine the clinical features and to identify mutations in the retinoschisis gene (RS1) in ten patients with X-linked retinoschisis (XLRS). Ten male patients from nine Polish families were included in this study. Ophthalmologic examinations, including optical coherence tomography (OCT) and full-field electroretinography (ERG), were performed in all affected boys. The entire coding region encompassing six exons of the RS1 gene was amplified with PCR and directly sequenced in all the patients. All affected individuals showed typical retinoschisis signs and symptoms, and all appeared to have a mutation in the RS1 gene. Seven different mutations were identified, including two novel missense substitutions: c.176G>C (p.Cys59Ser), c.451T>A (p.Tyr151Asp); one novel nonsense substitution: c.218C>A (p.Ser73*); and one novel frameshift mutation: c.354_355delCA (p.Asp118Glufs*2). We also found two missense substitutions that had been previously described: c.214G>A (p.Glu72Lys) and c.626G>T (p.Arg209Leu) and one known splice site mutation in intron 5: c.522+1G>T (IVS5+1G>T). This study provides the first molecular genetic characteristics of patients with juvenile retinoschisis from the previously unexplored Polish population. We investigated the molecular background of XLRS in ten boys. The present study reports for the first time four novel mutations, including two missense substitutions, one nonsense substitution, and one frameshift deletion. One of these substitutions and 2-bp deletion created stop codons. Moreover, we described three substitutions that had been previously reported (one is a splicing mutation). Further genetic characterization of Polish patients with XLRS will be helpful in understanding the worldwide spectrum of RS1 mutations. Despite the mutation heterogeneity found in a small group of our patients, they presented a relatively uniform clinical picture. Identifying the causative mutation is helpful in confirming diagnosis and counseling, but cannot provide prognostic data.

  6. Positive selection of a CD36 nonsense variant in sub-Saharan Africa, but no association with severe malaria phenotypes

    PubMed Central

    Fry, Andrew E.; Ghansa, Anita; Small, Kerrin S.; Palma, Alejandro; Auburn, Sarah; Diakite, Mahamadou; Green, Angela; Campino, Susana; Teo, Yik Y.; Clark, Taane G.; Jeffreys, Anna E.; Wilson, Jonathan; Jallow, Muminatou; Sisay-Joof, Fatou; Pinder, Margaret; Griffiths, Michael J.; Peshu, Norbert; Williams, Thomas N.; Newton, Charles R.; Marsh, Kevin; Molyneux, Malcolm E.; Taylor, Terrie E.; Koram, Kwadwo A.; Oduro, Abraham R.; Rogers, William O.; Rockett, Kirk A.; Sabeti, Pardis C.; Kwiatkowski, Dominic P.

    2009-01-01

    The prevalence of CD36 deficiency in East Asian and African populations suggests that the causal variants are under selection by severe malaria. Previous analysis of data from the International HapMap Project indicated that a CD36 haplotype bearing a nonsense mutation (T1264G; rs3211938) had undergone recent positive selection in the Yoruba of Nigeria. To investigate the global distribution of this putative selection event, we genotyped T1264G in 3420 individuals from 66 populations. We confirmed the high frequency of 1264G in the Yoruba (26%). However, the 1264G allele is less common in other African populations and absent from all non-African populations without recent African admixture. Using long-range linkage disequilibrium, we studied two West African groups in depth. Evidence for recent positive selection at the locus was demonstrable in the Yoruba, although not in Gambians. We screened 70 variants from across CD36 for an association with severe malaria phenotypes, employing a case–control study of 1350 subjects and a family study of 1288 parent–offspring trios. No marker was significantly associated with severe malaria. We focused on T1264G, genotyping 10 922 samples from four African populations. The nonsense allele was not associated with severe malaria (pooled allelic odds ratio 1.0; 95% confidence interval 0.89–1.12; P = 0.98). These results suggest a range of possible explanations including the existence of alternative selection pressures on CD36, co-evolution between host and parasite or confounding caused by allelic heterogeneity of CD36 deficiency. PMID:19403559

  7. Positive selection of a CD36 nonsense variant in sub-Saharan Africa, but no association with severe malaria phenotypes.

    PubMed

    Fry, Andrew E; Ghansa, Anita; Small, Kerrin S; Palma, Alejandro; Auburn, Sarah; Diakite, Mahamadou; Green, Angela; Campino, Susana; Teo, Yik Y; Clark, Taane G; Jeffreys, Anna E; Wilson, Jonathan; Jallow, Muminatou; Sisay-Joof, Fatou; Pinder, Margaret; Griffiths, Michael J; Peshu, Norbert; Williams, Thomas N; Newton, Charles R; Marsh, Kevin; Molyneux, Malcolm E; Taylor, Terrie E; Koram, Kwadwo A; Oduro, Abraham R; Rogers, William O; Rockett, Kirk A; Sabeti, Pardis C; Kwiatkowski, Dominic P

    2009-07-15

    The prevalence of CD36 deficiency in East Asian and African populations suggests that the causal variants are under selection by severe malaria. Previous analysis of data from the International HapMap Project indicated that a CD36 haplotype bearing a nonsense mutation (T1264G; rs3211938) had undergone recent positive selection in the Yoruba of Nigeria. To investigate the global distribution of this putative selection event, we genotyped T1264G in 3420 individuals from 66 populations. We confirmed the high frequency of 1264G in the Yoruba (26%). However, the 1264G allele is less common in other African populations and absent from all non-African populations without recent African admixture. Using long-range linkage disequilibrium, we studied two West African groups in depth. Evidence for recent positive selection at the locus was demonstrable in the Yoruba, although not in Gambians. We screened 70 variants from across CD36 for an association with severe malaria phenotypes, employing a case-control study of 1350 subjects and a family study of 1288 parent-offspring trios. No marker was significantly associated with severe malaria. We focused on T1264G, genotyping 10,922 samples from four African populations. The nonsense allele was not associated with severe malaria (pooled allelic odds ratio 1.0; 95% confidence interval 0.89-1.12; P = 0.98). These results suggest a range of possible explanations including the existence of alternative selection pressures on CD36, co-evolution between host and parasite or confounding caused by allelic heterogeneity of CD36 deficiency.

  8. Mutations in epigenetic regulators including SETD2 are gained during relapse in paediatric acute lymphoblastic leukaemia.

    PubMed

    Mar, Brenton G; Bullinger, Lars B; McLean, Kathleen M; Grauman, Peter V; Harris, Marian H; Stevenson, Kristen; Neuberg, Donna S; Sinha, Amit U; Sallan, Stephen E; Silverman, Lewis B; Kung, Andrew L; Lo Nigro, Luca; Ebert, Benjamin L; Armstrong, Scott A

    2014-03-24

    Relapsed paediatric acute lymphoblastic leukaemia (ALL) has high rates of treatment failure. Epigenetic regulators have been proposed as modulators of chemoresistance, here, we sequence genes encoding epigenetic regulators in matched diagnosis-remission-relapse ALL samples. We find significant enrichment of mutations in epigenetic regulators at relapse with recurrent somatic mutations in SETD2, CREBBP, MSH6, KDM6A and MLL2, mutations in signalling factors are not enriched. Somatic alterations in SETD2, including frameshift and nonsense mutations, are present at 12% in a large de novo ALL patient cohort. We conclude that the enrichment of mutations in epigenetic regulators at relapse is consistent with a role in mediating therapy resistance.

  9. Identification of a novel COL1A1 frameshift mutation, c.700delG, in a Chinese osteogenesis imperfecta family

    PubMed Central

    Wang, Xiran; Pei, Yu; Dou, Jingtao; Lu, Juming; Li, Jian; Lv, Zhaohui

    2015-01-01

    Osteogenesis imperfecta (OI) is a family of genetic disorders associated with bone loss and fragility. Mutations associated with OI have been found in genes encoding the type I collagen chains. People with OI type I often produce insufficient α1-chain type I collagen because of frameshift, nonsense, or splice site mutations in COL1A1 or COL1A2. This report is of a Chinese daughter and mother who had both experienced two bone fractures. Because skeletal fragility is predominantly inherited, we focused on identifying mutations in COL1A1 and COL1A2 genes. A novel mutation in COL1A1, c.700delG, was detected by genomic DNA sequencing in the mother and daughter, but not in their relatives. The identification of this mutation led to the conclusion that they were affected by mild OI type I. Open reading frame analysis indicated that this frameshift mutation would truncate α1-chain type I collagen at residue p263 (p.E234KfsX264), while the wild-type protein would contain 1,464 residues. The clinical data were consistent with the patients’ diagnosis of mild OI type I caused by haploinsufficiency of α1-chain type I collagen. Combined with previous reports, identification of the novel mutation COL1A1-c.700delG in these patients suggests that additional genetic and environmental factors may influence the severity of OI. PMID:25983617

  10. Novel NCC mutants and functional analysis in a new cohort of patients with Gitelman syndrome.

    PubMed

    Glaudemans, Bob; Yntema, Helger G; San-Cristobal, Pedro; Schoots, Jeroen; Pfundt, Rolph; Kamsteeg, Erik-J; Bindels, René J; Knoers, Nine V A M; Hoenderop, Joost G; Hoefsloot, Lies H

    2012-03-01

    Gitelman syndrome (GS) is an autosomal recessive disorder characterized by hypokalemic metabolic alkalosis in conjunction with significant hypomagnesemia and hypocalciuria. The GS phenotype is caused by mutations in the solute carrier family 12, member 3 (SLC12A3) gene that encodes the thiazide-sensitive NaCl cotransporter (NCC). We analyzed DNA samples of 163 patients with a clinical suspicion of GS by direct sequencing of all 26 exons of the SLC12A3 gene. In total, 114 different mutations were identified, 31 of which have not been reported before. These novel variants include 3 deletions, 18 missense, 6 splice site and 4 nonsense mutations. We selected seven missense mutations to investigate their effect on NCC activity and plasma membrane localization by using the Xenopus laevis oocyte expression system. The Thr392Ile mutant did not display transport activity (probably class 2 mutation), while the Asn442Ser and Gln1030Arg NCC mutants showed decreased plasma membrane localization and consequently function, likely due to impaired trafficking (class 3 mutation). Even though the NaCl uptake was hampered for NCC mutants Glu121Asp, Pro751Leu, Ser475Cys and Tyr489His, the transporters reached the plasma membrane (class 4 mutation), suggesting an effect on NCC regulation or ion affinity. The present study shows the identification of 38 novel mutations in the SLC12A3 gene and provides insight into the mechanisms that regulate NCC.

  11. Identification of two novel mutations in the SLC45A2 gene in a Hungarian pedigree affected by unusual OCA type 4.

    PubMed

    Tóth, Lola; Fábos, Beáta; Farkas, Katalin; Sulák, Adrienn; Tripolszki, Kornélia; Széll, Márta; Nagy, Nikoletta

    2017-03-15

    Oculocutaneous albinism (OCA) is a clinically and genetically heterogenic group of pigmentation abnormalities. OCA type IV (OCA4, OMIM 606574) develops due to homozygous or compound heterozygous mutations in the solute carrier family 45, member 2 (SLC45A2) gene. This gene encodes a membrane-associated transport protein, which regulates tyrosinase activity and, thus, melanin content by changing melanosomal pH and disrupting the incorporation of copper into tyrosinase. Here we report two Hungarian siblings affected by an unusual OCA4 phenotype. After genomic DNA was isolated from peripheral blood of the patients, the coding regions of the SLC45A2 gene were sequenced. In silico tools were applied to identify the functional impact of the newly detected mutations. Direct sequencing of the SLC45A2 gene revealed two novel, heterozygous mutations, one missense (c.1226G > A, p.Gly409Asp) and one nonsense (c.1459C > T, p.Gln437*), which were present in both patients, suggesting the mutations were compound heterozygous. In silico tools suggest that these variations are disease causing mutations. The newly identified mutations may affect the transmembrane domains of the protein, and could impair transport function, resulting in decreases in both melanosomal pH and tyrosinase activity. Our study provides expands on the mutation spectrum of the SLC45A2 gene and the genetic background of OCA4.

  12. An intronic mutation c.6430-3C>G in the F8 gene causes splicing efficiency and premature termination in hemophilia A.

    PubMed

    Xia, Zunjing; Lin, Jie; Lu, Lingping; Kim, Chol; Yu, Ping; Qi, Ming

    2018-06-01

    : Hemophilia A is a bleeding disorder caused by coagulation factor VIII protein deficiency or dysfunction, which is classified into severe, moderate, and mild according to factor clotting activity. An overwhelming majority of missense and nonsense mutations occur in exons of F8 gene, whereas mutations in introns can also be pathogenic. This study aimed to investigate the effect of an intronic mutation, c.6430-3C>G (IVS22-3C>G), on pre-mRNA splicing of the F8 gene. We applied DNA and cDNA sequencing in a Chinese boy with hemophilia A to search if any pathogenic mutation in the F8 gene. Functional analysis was performed to investigate the effect of an intronic mutation at the transcriptional level. Human Splicing Finder and PyMol were also used to predict its effect. We found the mutation c.6430-3C>G (IVS22-3C>G) in the F8 gene in the affected boy, with his mother being a carrier. cDNA from the mother and pSPL3 splicing assay showed that the mutation IVS22-3C>G results in a two-nucleotide AG inclusion at the 3' end of intron 22 and leads to a truncated coagulation factor VIII protein, with partial loss of the C1 domain and complete loss of the C2 domain. The in-silico tool predicted that the mutation induces altered pre-mRNA splicing by using a cryptic acceptor site in intron 22. The IVS22-3C>G mutation was confirmed to affect pre-mRNA splicing and produce a truncated protein, which reduces the stability of binding between the F8 protein and von Willebrand factor carrier protein due to the loss of an interaction domain.

  13. Mutations in the interleukin receptor IL11RA cause autosomal recessive Crouzon-like craniosynostosis

    PubMed Central

    Keupp, Katharina; Li, Yun; Vargel, Ibrahim; Hoischen, Alexander; Richardson, Rebecca; Neveling, Kornelia; Alanay, Yasemin; Uz, Elif; Elcioğlu, Nursel; Rachwalski, Martin; Kamaci, Soner; Tunçbilek, Gökhan; Akin, Burcu; Grötzinger, Joachim; Konas, Ersoy; Mavili, Emin; Müller-Newen, Gerhard; Collmann, Hartmut; Roscioli, Tony; Buckley, Michael F; Yigit, Gökhan; Gilissen, Christian; Kress, Wolfram; Veltman, Joris; Hammerschmidt, Matthias; Akarsu, Nurten A; Wollnik, Bernd

    2013-01-01

    We have characterized a novel autosomal recessive Crouzon-like craniosynostosis syndrome in a 12-affected member family from Antakya, Turkey, the presenting features of which include: multiple suture synostosis, midface hypoplasia, variable degree of exophthalmos, relative prognathism, a beaked nose, and conductive hearing loss. Homozygosity mapping followed by targeted next-generation sequencing identified a c.479+6T>G mutation in the interleukin 11 receptor alpha gene (IL11RA) on chromosome 9p21. This donor splice-site mutation leads to a high percentage of aberrant IL11RA mRNA transcripts in an affected individual and altered mRNA splicing determined by in vitro exon trapping. An extended IL11RA mutation screen was performed in a cohort of 79 patients with an initial clinical diagnosis of Crouzon syndrome, pansynostosis, or unclassified syndromic craniosynostosis. We identified mutations segregating with the disease in five families: a German patient of Turkish origin and a Turkish family with three affected sibs all of whom were homozygous for the previously identified IL11RA c.479+6T>G mutation; a family with pansynostosis with compound heterozygous missense mutations, p.Pro200Thr and p.Arg237Pro; and two further Turkish families with Crouzon-like syndrome carrying the homozygous nonsense mutations p.Tyr232* and p.Arg292*. Using transient coexpression in HEK293T and COS7 cells, we demonstrated dramatically reduced IL11-mediated STAT3 phosphorylation for all mutations. Immunofluorescence analysis of mouse Il11ra demonstrated specific protein expression in cranial mesenchyme which was localized around the coronal suture tips and in the lambdoidal suture. In situ hybridization analysis of adult zebrafish also detected zfil11ra expression in the coronal suture between the overlapping frontal and parietal plates. This study demonstrates that mutations in the IL11RA gene cause an autosomal recessive Crouzon-like craniosynostosis. PMID:24498618

  14. Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders.

    PubMed

    Nguyen, Lam S; Kim, Hyung-Goo; Rosenfeld, Jill A; Shen, Yiping; Gusella, James F; Lacassie, Yves; Layman, Lawrence C; Shaffer, Lisa G; Gécz, Jozef

    2013-05-01

    The nonsense-mediated mRNA decay (NMD) pathway functions not only to degrade transcripts containing premature termination codons (PTC), but also to regulate the transcriptome. UPF3B and RBM8A, important components of NMD, have been implicated in various forms of intellectual disability (ID) and Thrombocytopenia with Absent Radius (TAR) syndrome, which is also associated with ID. To gauge the contribution of other NMD factors to ID, we performed a comprehensive search for copy number variants (CNVs) of 18 NMD genes among individuals with ID and/or congenital anomalies. We identified 11 cases with heterozygous deletions of the genomic region encompassing UPF2, which encodes for a direct interacting protein of UPF3B. Using RNA-Seq, we showed that the genome-wide consequence of reduced expression of UPF2 is similar to that seen in patients with UPF3B mutations. Out of the 1009 genes found deregulated in patients with UPF2 deletions by at least 2-fold, majority (95%) were deregulated similarly in patients with UPF3B mutations. This supports the major role of deletion of UPF2 in ID. Furthermore, we found that four other NMD genes, UPF3A, SMG6, EIF4A3 and RNPS1 are frequently deleted and/or duplicated in the patients. We postulate that dosage imbalances of these NMD genes are likely to be the causes or act as predisposing factors for neuro-developmental disorders. Our findings further emphasize the importance of NMD pathway(s) in learning and memory.

  15. Band 3 nullVIENNA , a novel homozygous SLC4A1 p.Ser477X variant causing severe hemolytic anemia, dyserythropoiesis and complete distal renal tubular acidosis.

    PubMed

    Kager, Leo; Bruce, Lesley J; Zeitlhofer, Petra; Flatt, Joanna F; Maia, Tabita M; Ribeiro, M Leticia; Fahrner, Bernhard; Fritsch, Gerhard; Boztug, Kaan; Haas, Oskar A

    2017-03-01

    We describe the second patient with anionic exchanger 1/band 3 null phenotype (band 3 null VIENNA ), which was caused by a novel nonsense mutation c.1430C>A (p.Ser477X) in exon 12 of SLC4A1. We also update on the previous band 3 null COIMBRA patient, thereby elucidating the physiological implications of total loss of AE1/band 3. Besides transfusion-dependent severe hemolytic anemia and complete distal renal tubular acidosis, dyserythropoiesis was identified in the band 3 null VIENNA patient, suggesting a role for band 3 in erythropoiesis. Moreover, we also, for the first time, report that long-term survival is possible in band 3 null patients. © 2016 Wiley Periodicals, Inc.

  16. Characterization of an MPS I-H Knock-In Mouse that Carries a Nonsense Mutation Analogous to the Human IDUA-W402X Mutation

    PubMed Central

    Wang, Dan; Shukla, Charu; Liu, Xiaoli; Schoeb, Trenton R.; Clarke, Lorne A.; Bedwell, David M.; Keeling, Kim M.

    2009-01-01

    Here we report the characterization of a knock-in mouse model for the autosomal recessive disorder mucopolysaccharidosis type I-Hurler (MPS I-H), also known as Hurler syndrome. MPS I-H is the most severe form of α-L-iduronidase deficiency. α-L-iduronidase (encoded by the IDUA gene) is a lysosomal enzyme that participates in the degradation of dermatan sulfate and heparan sulfate. Using gene replacement methodology, a nucleotide change was introduced into the mouse Idua locus that resulted in a nonsense mutation at codon W392. The Idua-W392X mutation is analogous to the human IDUA-W402X mutation commonly found in MPS I-H patients. We found that the phenotype in homozygous Idua-W392X mice closely correlated with the human MPS I-H disease. Homozygous W392X mice showed no detectable α-L-iduronidase activity. We observed a defect in GAG degradation as evidenced by an increase in sulfated GAGs excreted in the urine and stored in multiple tissues. Histology and electron microscopy also revealed evidence of GAG storage in all tissues examined. Additional assessment revealed bone abnormalities and altered metabolism within the Idua-W392X mouse. This new mouse will provide an important tool to investigate therapeutic approaches for MPS I-H that cannot be addressed using current MPS I-H animal models. PMID:19751987

  17. Ineffectiveness of the presence of H-ras/p53 combination of mutations in squamous cell carcinoma cells to induce a conversion of a nontumorigenic to a tumorigenic phenotype.

    PubMed

    Lee, H; Li, D; Prior, T; Casto, B C; Weghorst, C M; Shuler, C F; Milo, G E

    1997-10-01

    Human tumor cells have properties in vitro or in surrogate hosts that are distinct from those of normal cells, such as immortality, anchorage independence, and tumor formation in nude mice. However, different cells from individual tumors may exhibit some, but not all of these features. In previous years, human tumor cell lines derived from different tumor and tissue types have been studied to determine those molecular changes that are associated with the in vitro properties listed above and with tumorigenicity in nude mice. In the present study, seven cell lines derived from human tumors were characterized for p53 and ras mutations that may occur in SCC tumor phenotypes and for tumor formation in nude mice. This investigation was designed to examine whether co-occurrence of mutated ras and p53 lead to a malignant stage in the progression process. None of the seven cell lines contained mutations in the recognized "hot spots" of the p53 tumor suppressor gene, but four had a nonsense/splice mutation in codon 126 and a mutation in codon 12 of the H-ras gene. The remaining three cell lines had p53 mutations in intron 5, in codon 193, and a missense mutation in codon 126, respectively. Four of seven cell lines were nontumorigenic; two of these cell lines contained a nonsense p53-126 mutation and mutated ras; one had a missense mutation at codon 126 but no mutated ras; the the fourth had only a p53 mutation at codon 193. Two of the nontumorigenic cell lines were converted to tumorigenicity after treatment with methyl methanesulfonate or N-methyl-N'-nitro-N-nitrosoguanidine with no apparent additional mutations in either gene. Our analysis revealed that there was a high frequency of genetic diversity and mutations in both p53 and H-ras. There was also a lack of a causal relationship in the presence of mutations in p53 and the cells' ability to exhibit a malignant potential in nude mice.

  18. Spectrum of SMPD1 mutations in Asian-Indian patients with acid sphingomyelinase (ASM)-deficient Niemann-Pick disease.

    PubMed

    Ranganath, Prajnya; Matta, Divya; Bhavani, Gandham SriLakshmi; Wangnekar, Savita; Jain, Jamal Mohammed Nurul; Verma, Ishwar C; Kabra, Madhulika; Puri, Ratna Dua; Danda, Sumita; Gupta, Neerja; Girisha, Katta M; Sankar, Vaikom H; Patil, Siddaramappa J; Ramadevi, Akella Radha; Bhat, Meenakshi; Gowrishankar, Kalpana; Mandal, Kausik; Aggarwal, Shagun; Tamhankar, Parag Mohan; Tilak, Preetha; Phadke, Shubha R; Dalal, Ashwin

    2016-10-01

    Acid sphingomyelinase (ASM)-deficient Niemann-Pick disease is an autosomal recessive lysosomal storage disorder caused by biallelic mutations in the SMPD1 gene. To date, around 185 mutations have been reported in patients with ASM-deficient NPD world-wide, but the mutation spectrum of this disease in India has not yet been reported. The aim of this study was to ascertain the mutation profile in Indian patients with ASM-deficient NPD. We sequenced SMPD1 in 60 unrelated families affected with ASM-deficient NPD. A total of 45 distinct pathogenic sequence variants were found, of which 14 were known and 31 were novel. The variants included 30 missense, 4 nonsense, and 9 frameshift (7 single base deletions and 2 single base insertions) mutations, 1 indel, and 1 intronic duplication. The pathogenicity of the novel mutations was inferred with the help of the mutation prediction software MutationTaster, SIFT, Polyphen-2, PROVEAN, and HANSA. The effects of the identified sequence variants on the protein structure were studied using the structure modeled with the help of the SWISS-MODEL workspace program. The p. (Arg542*) (c.1624C>T) mutation was the most commonly identified mutation, found in 22% (26 out of 120) of the alleles tested, but haplotype analysis for this mutation did not identify a founder effect for the Indian population. To the best of our knowledge, this is the largest study on mutation analysis of patients with ASM-deficient Niemann-Pick disease reported in literature and also the first study on the SMPD1 gene mutation spectrum in India. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Novel CREB3L3 Nonsense Mutation in a Family With Dominant Hypertriglyceridemia.

    PubMed

    Cefalù, Angelo B; Spina, Rossella; Noto, Davide; Valenti, Vincenza; Ingrassia, Valeria; Giammanco, Antonina; Panno, Maria D; Ganci, Antonina; Barbagallo, Carlo M; Averna, Maurizio R

    2015-12-01

    Cyclic AMP responsive element-binding protein 3-like 3 (CREB3L3) is a novel candidate gene for dominant hypertriglyceridemia. To date, only 4 kindred with dominant hypertriglyceridemia have been found to be carriers of 2 nonsense mutations in CREB3L3 gene (245fs and W46X). We investigated a family in which hypertriglyceridemia displayed an autosomal dominant pattern of inheritance. The proband was a 49-year-old woman with high plasma triglycerides (≤1300 mg/dL; 14.68 mmol/L). Her father had a history of moderate hypertriglyceridemia, and her 51-year-old brother had triglycerides levels as high as 1600 mg/dL (18.06 mmol/L). To identify the causal mutation in this family, we analyzed the candidate genes of recessive and dominant forms of primary hypertriglyceridemia by direct sequencing. The sequencing of CREB3L3 gene led to the discovery of a novel minute frame shift mutation in exon 3 of CREB3L3 gene, predicted to result in the formation of a truncated protein devoid of function (c.359delG-p.K120fsX20). Heterozygosity for the c.359delG mutation resulted in a severe phenotype occurring later in life in the proband and her brother and a good response to diet and a hypotriglyceridemic treatment. The same mutation was detected in a 13-year-old daughter who to date is normotriglyceridemic. We have identified a novel pathogenic mutation in CREB3L3 gene in a family with dominant hypertriglyceridemia with a variable pattern of penetrance. © 2015 American Heart Association, Inc.

  20. Nonsense mutation p.Q548X in BLM, the gene mutated in Bloom's syndrome, is associated with breast cancer in Slavic populations.

    PubMed

    Prokofyeva, Darya; Bogdanova, Natalia; Dubrowinskaja, Natalia; Bermisheva, Marina; Takhirova, Zalina; Antonenkova, Natalia; Turmanov, Nurzhan; Datsyuk, Ihor; Gantsev, Shamil; Christiansen, Hans; Park-Simon, Tjoung-Won; Hillemanns, Peter; Khusnutdinova, Elza; Dörk, Thilo

    2013-01-01

    Bloom's syndrome is a rare autosomal recessive chromosomal instability disorder with a high incidence of various types of neoplasia, including breast cancer. Whether monoallelic BLM mutations predispose to breast cancer has been a long-standing question. A nonsense mutation, p.Q548X, has recently been associated with an increased risk for breast cancer in a Russian case-control study. In the present work, we have investigated the prevalence of this Slavic BLM founder mutation in a total of 3,188 breast cancer cases and 2,458 controls from Bashkortostan, Belarus, Ukraine, and Kazakhstan. The p.Q548X allele was most frequent in Russian patients (0.8 %) but was also prevalent in Byelorussian and Ukrainian patients (0.5 and 0.6 %, respectively), whereas it was absent in Altaic or other non-European subpopulations. In a combined analysis of our four case-control series, the p.Q548X mutation was significantly associated with breast cancer (Mantel-Haenszel OR 5.1, 95 % CI 1.2; 21.9, p = 0.03). A meta-analysis with the previous study from the St. Petersburg area corroborates the association (OR 5.7, 95 % CI 2.0; 15.9, p = 3.7 × 10(-4)). A meta-analysis for all published truncating mutations further supports the association of BLM with breast cancer, with an estimated two- to five-fold increase in risk (OR 3.3, 95 %CI 1.9; 5.6, p = 1.9 × 10(-5)). Altogether, these data indicate that BLM is not only a gene for Bloom's syndrome but also might represent a breast cancer susceptibility gene.

  1. Insights into Mutation Effect in Three Poikiloderma with Neutropenia Patients by Transcript Analysis and Disease Evolution of Reported Patients with the Same Pathogenic Variants.

    PubMed

    Colombo, Elisa A; Elcioglu, Nursel H; Graziano, Claudio; Farinelli, Pamela; Di Fede, Elisabetta; Neri, Iria; Facchini, Elena; Greco, Mariangela; Gervasini, Cristina; Larizza, Lidia

    2018-05-16

    Poikiloderma with neutropenia (PN) is a genodermatosis currently described in 77 patients, all presenting with early-onset poikiloderma, neutropenia, and several additional signs. Biallelic loss-of-function mutations in USB1 gene are detected in all molecularly tested patients but genotype-phenotype correlation remains elusive. Cancer predisposition is recognized among PN features and pathogenic variants found in patients who developed early in life myelodysplasia (n = 12), acute myeloid leukemia (n = 2), and squamous cell carcinoma (n = 2) should be kept into account in management and follow-up of novel patients. This will hopefully allow achieving data clustered on specific mutations relevant to oncological surveillance of the carrier patients. We describe the clinical features of three unreported PN patients and characterize their USB1 pathogenic variants by transcript analysis to get insights into the effect on the overall phenotype and disease evolution. A Turkish boy is homozygous for the c.531delA deletion, a recurrent mutation in Turkey; an adult Italian male is compound heterozygous for two nonsense mutations, c.243G>A and c.541C>T, while an Italian boy is homozygous for the splicing c.683_693+1del variant. The identified mutations have already been reported in PN patients who developed hematologic or skin cancer. Aberrant mRNAs of all four mutated alleles could be identified confirming that transcripts of USB1 main isoform either carrying stop codons or mis-spliced may at least partially escape nonsense-mediated decay. Our study addresses the need of gathering insights on genotype-phenotype correlations in newly described PN patients, by transcript analysis and information on disease evolution of reported patients with the same pathogenic variants.

  2. Inactivation of IL11 Signaling Causes Craniosynostosis, Delayed Tooth Eruption, and Supernumerary Teeth

    PubMed Central

    Nieminen, Pekka; Morgan, Neil V.; Fenwick, Aimée L.; Parmanen, Satu; Veistinen, Lotta; Mikkola, Marja L.; van der Spek, Peter J.; Giraud, Andrew; Judd, Louise; Arte, Sirpa; Brueton, Louise A.; Wall, Steven A.; Mathijssen, Irene M.J.; Maher, Eamonn R.; Wilkie, Andrew O.M.; Kreiborg, Sven; Thesleff, Irma

    2011-01-01

    Craniosynostosis and supernumerary teeth most often occur as isolated developmental anomalies, but they are also separately manifested in several malformation syndromes. Here, we describe a human syndrome featuring craniosynostosis, maxillary hypoplasia, delayed tooth eruption, and supernumerary teeth. We performed homozygosity mapping in three unrelated consanguineous Pakistani families and localized the syndrome to a region in chromosome 9. Mutational analysis of candidate genes in the region revealed that all affected children harbored homozygous missense mutations (c.662C>G [p.Pro221Arg], c.734C>G [p.Ser245Cys], or c.886C>T [p.Arg296Trp]) in IL11RA (encoding interleukin 11 receptor, alpha) on chromosome 9p13.3. In addition, a homozygous nonsense mutation, c.475C>T (p.Gln159X), and a homozygous duplication, c.916_924dup (p.Thr306_Ser308dup), were observed in two north European families. In cell-transfection experiments, the p.Arg296Trp mutation rendered the receptor unable to mediate the IL11 signal, indicating that the mutation causes loss of IL11RA function. We also observed disturbed cranial growth and suture activity in the Il11ra null mutant mice, in which reduced size and remodeling of limb bones has been previously described. We conclude that IL11 signaling is essential for the normal development of craniofacial bones and teeth and that its function is to restrict suture fusion and tooth number. The results open up the possibility of modulation of IL11 signaling for the treatment of craniosynostosis. PMID:21741611

  3. Spontaneous Loss of Virulence in Natural Populations of Listeria monocytogenes.

    PubMed

    Maury, Mylène M; Chenal-Francisque, Viviane; Bracq-Dieye, Hélène; Han, Lei; Leclercq, Alexandre; Vales, Guillaume; Moura, Alexandra; Gouin, Edith; Scortti, Mariela; Disson, Olivier; Vázquez-Boland, José A; Lecuit, Marc

    2017-11-01

    The pathogenesis of Listeria monocytogenes depends on the ability of this bacterium to escape from the phagosome of the host cells via the action of the pore-forming toxin listeriolysin O (LLO). Expression of the LLO-encoding gene ( hly ) requires the transcriptional activator PrfA, and both hly and prfA genes are essential for L. monocytogenes virulence. Here, we used the hemolytic activity of LLO as a phenotypic marker to screen for spontaneous virulence-attenuating mutations in L. monocytogenes Sixty nonhemolytic isolates were identified among a collection of 57,820 confirmed L. monocytogenes strains isolated from a variety of sources (0.1%). In most cases (56/60; 93.3%), the nonhemolytic phenotype resulted from nonsense, missense, or frameshift mutations in prfA Five strains carried hly mutations leading to a single amino acid substitution (G299V) or a premature stop codon causing strong virulence attenuation in mice. In one strain, both hly and gshF (encoding a glutathione synthase required for full PrfA activity) were missing due to genomic rearrangements likely caused by a transposable element. The PrfA/LLO loss-of-function (PrfA - /LLO - ) mutants belonged to phylogenetically diverse clades of L. monocytogenes , and most were identified among nonclinical strains (57/60). Consistent with the rare occurrence of loss-of-virulence mutations, we show that prfA and hly are under purifying selection. Although occurring at a low frequency, PrfA - /LLO - mutational events in L. monocytogenes lead to niche restriction and open an evolutionary path for obligate saprophytism in this facultative intracellular pathogen. Copyright © 2017 Maury et al.

  4. The Dwarfs of Sindh: severe growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene.

    PubMed

    Baumann, G; Maheshwari, H

    1997-11-01

    We report the discovery of a cluster of severe familial dwarfism in two villages in the Province of Sindh in Pakistan. Dwarfism is proportionate and occurs in members of a kindred with a high degree of consanguinity. Only the last generation is affected, with the oldest dwarf being 28 years old. The mode of inheritance is autosomal recessive. Phenotype analysis and endocrine testing revealed isolated growth hormone deficiency (GHD) as the reason for growth failure. Linkage analysis for the loci of several candidate genes yielded a high lod score for the growth hormone-releasing hormone receptor (GHRH-R) locus on chromosome 7. Amplification and sequencing of the GHRH-R gene in affected subjects demonstrated an amber nonsense mutation (GAG-->TAG; Glu50-->Stop) in exon 3. The mutation, in its homozygous form, segregated 100% with the dwarf phenotype. It predicts a truncation of the GHRH-R in its extracellular domain, which is likely to result in a severely disabled or non-existent receptor protein. Subjects who are heterozygous for the mutation show mild biochemical abnormalities in the growth hormone-releasing hormone (GHRH)--growth hormone--insulin-like growth factor axis, but have only minimal or no growth retardation. The occurrence of an offspring of two dwarfed parents indicates that the GHRH-R is not necessary for fertility in either sex. We conclude that Sindh dwarfism is caused by an inactivating mutation in the GHRH-R gene, resulting in the inability to transmit a GHRH signal and consequent severe isolated GHD.

  5. Spontaneous Loss of Virulence in Natural Populations of Listeria monocytogenes

    PubMed Central

    Maury, Mylène M.; Chenal-Francisque, Viviane; Bracq-Dieye, Hélène; Han, Lei; Leclercq, Alexandre; Vales, Guillaume; Moura, Alexandra; Gouin, Edith; Scortti, Mariela; Disson, Olivier

    2017-01-01

    ABSTRACT The pathogenesis of Listeria monocytogenes depends on the ability of this bacterium to escape from the phagosome of the host cells via the action of the pore-forming toxin listeriolysin O (LLO). Expression of the LLO-encoding gene (hly) requires the transcriptional activator PrfA, and both hly and prfA genes are essential for L. monocytogenes virulence. Here, we used the hemolytic activity of LLO as a phenotypic marker to screen for spontaneous virulence-attenuating mutations in L. monocytogenes. Sixty nonhemolytic isolates were identified among a collection of 57,820 confirmed L. monocytogenes strains isolated from a variety of sources (0.1%). In most cases (56/60; 93.3%), the nonhemolytic phenotype resulted from nonsense, missense, or frameshift mutations in prfA. Five strains carried hly mutations leading to a single amino acid substitution (G299V) or a premature stop codon causing strong virulence attenuation in mice. In one strain, both hly and gshF (encoding a glutathione synthase required for full PrfA activity) were missing due to genomic rearrangements likely caused by a transposable element. The PrfA/LLO loss-of-function (PrfA−/LLO−) mutants belonged to phylogenetically diverse clades of L. monocytogenes, and most were identified among nonclinical strains (57/60). Consistent with the rare occurrence of loss-of-virulence mutations, we show that prfA and hly are under purifying selection. Although occurring at a low frequency, PrfA−/LLO− mutational events in L. monocytogenes lead to niche restriction and open an evolutionary path for obligate saprophytism in this facultative intracellular pathogen. PMID:28827366

  6. Mutation screening of SEMA3A and SEMA7A in patients with congenital hypogonadotropic hypogonadism.

    PubMed

    Känsäkoski, Johanna; Fagerholm, Rainer; Laitinen, Eeva-Maria; Vaaralahti, Kirsi; Hackman, Peter; Pitteloud, Nelly; Raivio, Taneli; Tommiska, Johanna

    2014-05-01

    Congenital hypogonadotropic hypogonadism (HH), a rare disorder characterized by absent, partial, or delayed puberty, can be caused by the lack or deficient number of hypothalamic gonadotropin-releasing hormone (GnRH) neurons. SEMA3A was recently implicated in the etiology of the disorder, and Sema7A-deficient mice have a reduced number of GnRH neurons in their brains. SEMA3A and SEMA7A were screened by Sanger sequencing in altogether 50 Finnish HH patients (34 with Kallmann syndrome (KS; HH with hyposmia/anosmia) and 16 with normosmic HH (nHH)). In 20 patients, mutation(s) had already been found in genes known to be implicated in congenital HH. Three heterozygous variants (c.458A>G (p.Asn153Ser), c.1253A>G (p.Asn418Ser), and c.1303G>A (p.Val435Ile)) were found in SEMA3A in three KS patients, two of which also had a mutation in FGFR1. Two rare heterozygous variants (c.442C>T (p.Arg148Trp) and c.1421G>A (p.Arg474Gln)) in SEMA7A were found in one male nHH patient with a previously identified KISS1R nonsense variant and one male KS patient with a previously identified mutation in KAL1, respectively. Our results suggest that heterozygous missense variants in SEMA3A and SEMA7A may modify the phenotype of KS but most likely are not alone sufficient to cause the disorder.

  7. APOA5 Q97X mutation identified through homozygosity mapping causes severe hypertriglyceridemia in a Chilean consanguineous family.

    PubMed

    Dussaillant, Catalina; Serrano, Valentina; Maiz, Alberto; Eyheramendy, Susana; Cataldo, Luis Rodrigo; Chavez, Matías; Smalley, Susan V; Fuentes, Marcela; Rigotti, Attilio; Rubio, Lorena; Lagos, Carlos F; Martinez, José Alfredo; Santos, José Luis

    2012-11-15

    Severe hypertriglyceridemia (HTG) has been linked to defects in LPL, APOC2, APOA5, LMF1 and GBIHBP1 genes. However, a number of severe HTG cases are probably caused by as yet unidentified mutations. Very high triglyceride plasma levels (>112 mmol/L at diagnosis) were found in two sisters of a Chilean consanguineous family, which is strongly suggestive of a recessive highly penetrant mutation. The aim of this study was to determine the genetic locus responsible for the severe HTG in this family. We carried out a genome-wide linkage study with nearly 300,000 biallelic markers (Illumina Human CytoSNP-12 panel). Using the homozygosity mapping strategy, we searched for chromosome regions with excess of homozygous genotypes in the affected cases compared to non-affected relatives. A large homozygous segment was found in the long arm of chromosome 11, with more than 2,500 consecutive homozygous SNP shared by the proband with her affected sister, and containing the APOA5/A4/C3/A1 cluster. Direct sequencing of the APOA5 gene revealed a known homozygous nonsense Q97X mutation (p.Gln97Ter) found in both affected sisters but not in non-affected relatives nor in a sample of unrelated controls. The Q97X mutation of the APOA5 gene in homozygous status is responsible for the severe hypertriglyceridemia in this family. We have shown that homozygosity mapping correctly pinpointed the genomic region containing the gene responsible for severe hypertriglyceridemia in this consanguineous Chilean family.

  8. APOA5 Q97X Mutation Identified through homozygosity mapping causes severe hypertriglyceridemia in a Chilean consanguineous family

    PubMed Central

    2012-01-01

    Background Severe hypertriglyceridemia (HTG) has been linked to defects in LPL, APOC2, APOA5, LMF1 and GBIHBP1 genes. However, a number of severe HTG cases are probably caused by as yet unidentified mutations. Very high triglyceride plasma levels (>112 mmol/L at diagnosis) were found in two sisters of a Chilean consanguineous family, which is strongly suggestive of a recessive highly penetrant mutation. The aim of this study was to determine the genetic locus responsible for the severe HTG in this family. Methods We carried out a genome-wide linkage study with nearly 300,000 biallelic markers (Illumina Human CytoSNP-12 panel). Using the homozygosity mapping strategy, we searched for chromosome regions with excess of homozygous genotypes in the affected cases compared to non-affected relatives. Results A large homozygous segment was found in the long arm of chromosome 11, with more than 2,500 consecutive homozygous SNP shared by the proband with her affected sister, and containing the APOA5/A4/C3/A1 cluster. Direct sequencing of the APOA5 gene revealed a known homozygous nonsense Q97X mutation (p.Gln97Ter) found in both affected sisters but not in non-affected relatives nor in a sample of unrelated controls. Conclusion The Q97X mutation of the APOA5 gene in homozygous status is responsible for the severe hypertriglyceridemia in this family. We have shown that homozygosity mapping correctly pinpointed the genomic region containing the gene responsible for severe hypertriglyceridemia in this consanguineous Chilean family. PMID:23151256

  9. Missense mutation (E150K) of rhodopsin in autosomal recessive retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orth, U.; Oehlmann, R.; Gal, A.

    1994-09-01

    Missense or nonsense mutations of the rhodopsin gene have been implied in the pathogenesis of at least 3 different traits; autosomal dominant retinitis pigmentosa (adRP), congenital stationary night blindness (CSNB), and autosomal recessive retinitis pigmentosa (arRP). For the latter, a single patient has been reported with a nonsense mutation at codon 249 on both alleles. Heterozygous carriers of missense mutations of rhodopsin develop either adRP or CSNB depending on the particular amino acid substitution. Four of the 9 siblings from a consanguineous marriage in southern India were reported the have arRP. Mutational screening and sequencing of the rhodopsin gene revealedmore » a G-to-A transition of the first nucleotide at codon 150 in exon II, which alters glutamate to lysine. The E150K mutation was present in the 4 patients in homozygous form, whereas the parents and 2 of the siblings were heterozygotes. Two-point analysis produced a Zmax=3.46 at theta=0.00. Two unaffected siblings who are heterozygotes for the E150K mutation underwent a thorough ophthalmological and psychophysical examination. No clinical abnormalities were found although these individuals were over forty, whereas the onset of RP in their affected siblings was in the second decade. Collectively, both the genetic and clinical findings strongly suggest that the E150K mutation of rhodopsin is recessive in this family. Glu150 forms part of the CD cytoplasmic loop of rhodopsin, which has been implicated in the binding and activation of transducin. We speculate that E150K leads to RP because the mutant protein may be incapable of activating transducin. It is tempting to speculate that, in addition to mutations in the genes for rhodopsin and the {beta}-subunit of PDE, mutations in the genes for transducin may also result in arRP.« less

  10. Whole-exome sequencing and targeted gene sequencing provide insights into the role of PALB2 as a male breast cancer susceptibility gene.

    PubMed

    Silvestri, Valentina; Zelli, Veronica; Valentini, Virginia; Rizzolo, Piera; Navazio, Anna Sara; Coppa, Anna; Agata, Simona; Oliani, Cristina; Barana, Daniela; Castrignanò, Tiziana; Viel, Alessandra; Russo, Antonio; Tibiletti, Maria Grazia; Zanna, Ines; Masala, Giovanna; Cortesi, Laura; Manoukian, Siranoush; Azzollini, Jacopo; Peissel, Bernard; Bonanni, Bernardo; Peterlongo, Paolo; Radice, Paolo; Palli, Domenico; Giannini, Giuseppe; Chillemi, Giovanni; Montagna, Marco; Ottini, Laura

    2017-01-01

    Male breast cancer (MBC) is a rare disease whose etiology appears to be largely associated with genetic factors. BRCA1 and BRCA2 mutations account for about 10% of all MBC cases. Thus, a fraction of MBC cases are expected to be due to genetic factors not yet identified. To further explain the genetic susceptibility for MBC, whole-exome sequencing (WES) and targeted gene sequencing were applied to high-risk, BRCA1/2 mutation-negative MBC cases. Germ-line DNA of 1 male and 2 female BRCA1/2 mutation-negative breast cancer (BC) cases from a pedigree showing a first-degree family history of MBC was analyzed with WES. Targeted gene sequencing for the validation of WES results was performed for 48 high-risk, BRCA1/2 mutation-negative MBC cases from an Italian multicenter study of MBC. A case-control series of 433 BRCA1/2 mutation-negative MBC and female breast cancer (FBC) cases and 849 male and female controls was included in the study. WES in the family identified the partner and localizer of BRCA2 (PALB2) c.419delA truncating mutation carried by the proband, her father, and her paternal uncle (all affected with BC) and the N-acetyltransferase 1 (NAT1) c.97C>T nonsense mutation carried by the proband's maternal aunt. Targeted PALB2 sequencing detected the c.1984A>T nonsense mutation in 1 of the 48 BRCA1/2 mutation-negative MBC cases. NAT1 c.97C>T was not found in the case-control series. These results add strength to the evidence showing that PALB2 is involved in BC risk for both sexes and indicate that consideration should be given to clinical testing of PALB2 for BRCA1/2 mutation-negative families with multiple MBC and FBC cases. Cancer 2017;123:210-218. © 2016 American Cancer Society. © 2016 American Cancer Society.

  11. Alu-mediated recombination defect in IGF1R: haploinsufficiency in a patient with short stature.

    PubMed

    Harmel, Eva-Maria; Binder, Gerhard; Barnikol-Oettler, Anja; Caliebe, Janina; Kiess, Wieland; Losekoot, Monique; Ranke, Michael B; Rappold, Gudrun A; Schlicke, Marina; Stobbe, Heike; Wit, Jan M; Pfäffle, Roland; Klammt, Jürgen

    2013-01-01

    The insulin-like growth factor (IGF) receptor (IGF1R) is essential for normal development and growth. IGF1R mutations cause IGF-1 resistance resulting in intrauterine and postnatal growth failure. The phenotypic spectrum related to IGF1R mutations remains to be fully understood. Auxological and endocrinological data of a patient identified previously were assessed. The patient's fibroblasts were studied to characterize the IGF1R deletion, mRNA fate, protein expression and signalling capabilities. The boy, who carries a heterozygous IGF1R exon 6 deletion caused by Alu element-mediated recombination and a heterozygous SHOX variant (p.Met240Ile), was born appropriate for gestational age but developed proportionate short stature postnatally. IGF-1 levels were low-normal. None of the stigmata associated with SHOX deficiency or sporadically observed in IGF1R mutation carriers were present. Nonsense-mediated mRNA decay led to a substantial decline of IGF1R dosage and IGF-1-dependent receptor autophosphorylation but not impaired downstream signalling. We present the first detailed report of an intragenic IGF1R deletion identified in a patient who, apart from short stature, deviates from all established markers that qualify a growth-retarded child for IGF1R analysis. Although such children will usually escape routine clinical mutation screenings, they can contribute to the understanding of factors and mechanisms that cooperate with the IGF1R. © 2013 S. Karger AG, Basel.

  12. POLR2C Mutations Are Associated With Primary Ovarian Insufficiency in Women.

    PubMed

    Moriwaki, Mika; Moore, Barry; Mosbruger, Timothy; Neklason, Deborah W; Yandell, Mark; Jorde, Lynn B; Welt, Corrine K

    2017-03-01

    Primary ovarian insufficiency (POI) results from a premature loss of oocytes, causing infertility and early menopause. The etiology of POI remains unknown in a majority of cases. To identify candidate genes in families affected by POI. This was a family-based genetic study. The study was performed at two academic institutions. A family with four generations of women affected by POI (n = 5). Four of these women, three with an associated autoimmune diagnosis, were studied. The controls (n = 387) were recruited for health in old age. Whole-genome sequencing was performed. Candidate genes were identified by comparing gene mutations in three family members and 387 control subjects analyzed simultaneously using the pedigree Variant Annotation, Analysis and Search Tool. Data were also compared with that in publicly available databases. We identified a heterozygous nonsense mutation in a subunit of RNA polymerase II ( POLR2C ) that synthesizes messenger RNA. A rare sequence variant in POLR2C was also identified in one of 96 women with sporadic POI. POLR2C expression was decreased in the proband compared with women with POI from another cause. Knockdown in an embryonic carcinoma cell line resulted in decreased protein production and impaired cell proliferation. These data support a role for RNA polymerase II mutations as candidates in the etiology of POI. The current data also support results from genome-wide association studies that hypothesize a role for RNA polymerase II subunits in age at menopause in the population.

  13. Clinical and mutational spectrum in Korean patients with Rubinstein-Taybi syndrome: the spectrum of brain MRI abnormalities.

    PubMed

    Lee, Jin Sook; Byun, Christine K; Kim, Hunmin; Lim, Byung Chan; Hwang, Hee; Choi, Ji Eun; Hwang, Yong Seung; Seong, Moon-Woo; Park, Sung Sup; Kim, Ki Joong; Chae, Jong-Hee

    2015-04-01

    Rubinstein-Taybi syndrome (RSTS) is one of the neurodevelopmental disorders caused by mutations of epigenetic genes. The CREBBP gene is the most common causative gene, encoding the CREB-binding protein with histone acetyltransferase (HAT) activity, an epigenetic modulator. To date, there have been few reports on the structural abnormalities of the brain in RSTS patients. In addition, there are no reports on the analysis of CREBBP mutations in Korean RSTS patients. We performed mutational analyses on 16 unrelated patients with RSTS, with diagnosis based on the typical clinical features. Their medical records and brain MRI images were reviewed retrospectively. Ten of 16 patients (62.5%) had mutations in the CREBBP gene. The mutations included five frameshift mutations (31.2%), two nonsense mutations (12.5%), and three multiexon deletions (18.8%). There were no remarkable significant differences in the clinical features between those with and without a CREBBP mutation, although brain MRI abnormalities were more frequently observed in those with a CREBBP mutation. Seven of 10 patients in whom brain imaging was performed had structural abnormalities, including Chiari malformation type 1, thinning of the corpus callosum, and delayed myelination. There were no differences in delayed development or cognitive impairment between those with and without abnormal brain images, while epilepsy was involved in two patients who had abnormalities on brain MRI images. We investigated the spectrum of CREBBP mutations in Korean patients with RSTS for the first time. Eight novel mutations extended the genetic spectrum of CREBBP mutations in RSTS patients. This is also the first study showing the prevalence and spectrum of abnormalities on brain MRI in RSTS patients. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  14. Sonic Hedgehog mutations are not a common cause of congenital hypopituitarism in the absence of complex midline cerebral defects.

    PubMed

    Paulo, Sabrina Soares; Fernandes-Rosa, Fábio L; Turatti, Wendy; Coeli-Lacchini, Fernanda Borchers; Martinelli, Carlos E; Nakiri, Guilherme S; Moreira, Ayrton C; Santos, Antônio C; de Castro, Margaret; Antonini, Sonir R

    2015-04-01

    Sonic Hedgehog (SHH) and GLI2, an obligatory mediator of SHH signal transduction, are holoprosencephaly (HPE)-associated genes essential in pituitary formation. GLI2 variants have been found in patients with congenital hypopituitarism without complex midline cerebral defects (MCD). However, data on the occurrence of SHH mutations in these patients are limited. We screened for SHH and GLI2 mutations or copy number variations (CNV) in patients with congenital hypopituitarism without MCD or with variable degrees of MCD. Detailed data on clinical, laboratory and neuroimaging findings of 115 patients presenting with congenital hypopituitarism without MCD, septo-optic dysplasia or HPE were analysed. The SHH and GLI2 genes were directly sequenced, and the presence of gene CNV was analysed by multiplex ligation-dependent probe amplification (MLPA). Anterior pituitary deficiency was found in 74% and 53% of patients with SOD or HPE, respectively. Diabetes insipidus was common in patients with HPE (47%) but infrequent in patients with congenital hypopituitarism or SOD (7% and 8%, respectively). A single heterozygous nonsense SHH mutation (p.Tyr175Ter) was found in a patient presenting with hypopituitarism and alobar HPE. No other SHH mutations or CNV were found. Nine GLI2 variations (8 missense and 1 frameshift) including a homozygous and a compound heterozygous variation were found in patients with congenital hypopituitarism or SOD, but not in HPE patients. No GLI2 CNV were found. SHH mutations or copy number variations are not a common cause of congenital hypopituitarism in patients without complex midline cerebral defects. GLI2 variants are found in some patients with congenital hypopituitarism without complex midline cerebral defects or septo-optic dysplasia. However, functional analyses of these variants are needed to strengthen genotype-phenotype relationship. © 2014 John Wiley & Sons Ltd.

  15. A Nonsense Mutation in TMEM95 Encoding a Nondescript Transmembrane Protein Causes Idiopathic Male Subfertility in Cattle

    PubMed Central

    Pausch, Hubert; Kölle, Sabine; Wurmser, Christine; Schwarzenbacher, Hermann; Emmerling, Reiner; Jansen, Sandra; Trottmann, Matthias; Fuerst, Christian; Götz, Kay-Uwe; Fries, Ruedi

    2014-01-01

    Genetic variants underlying reduced male reproductive performance have been identified in humans and model organisms, most of them compromising semen quality. Occasionally, male fertility is severely compromised although semen analysis remains without any apparent pathological findings (i.e., idiopathic subfertility). Artificial insemination (AI) in most cattle populations requires close examination of all ejaculates before insemination. Although anomalous ejaculates are rejected, insemination success varies considerably among AI bulls. In an attempt to identify genetic causes of such variation, we undertook a genome-wide association study (GWAS). Imputed genotypes of 652,856 SNPs were available for 7962 AI bulls of the Fleckvieh (FV) population. Male reproductive ability (MRA) was assessed based on 15.3 million artificial inseminations. The GWAS uncovered a strong association signal on bovine chromosome 19 (P = 4.08×10−59). Subsequent autozygosity mapping revealed a common 1386 kb segment of extended homozygosity in 40 bulls with exceptionally poor reproductive performance. Only 1.7% of 35,671 inseminations with semen samples of those bulls were successful. None of the bulls with normal reproductive performance was homozygous, indicating recessive inheritance. Exploiting whole-genome re-sequencing data of 43 animals revealed a candidate causal nonsense mutation (rs378652941, c.483C>A, p.Cys161X) in the transmembrane protein 95 encoding gene TMEM95 which was subsequently validated in 1990 AI bulls. Immunohistochemical investigations evidenced that TMEM95 is located at the surface of spermatozoa of fertile animals whereas it is absent in spermatozoa of subfertile animals. These findings imply that integrity of TMEM95 is required for an undisturbed fertilisation. Our results demonstrate that deficiency of TMEM95 severely compromises male reproductive performance in cattle and reveal for the first time a phenotypic effect associated with genomic variation in TMEM95. PMID:24391514

  16. Novel mutations in PATL2 cause female infertility with oocyte germinal vesicle arrest.

    PubMed

    Huang, Lingli; Tong, Xianhong; Wang, Fengsong; Luo, Lihua; Jin, Rentao; Fu, Yingyun; Zhou, Guixiang; Li, Daojing; Song, Gaojie; Liu, Yusheng; Zhu, Fuxi

    2018-06-01

    Do PATL2 mutations account for female infertility with oocyte germinal vesicle (GV) arrest? Four of nine independent families with oocyte GV arrest were identified with biallelic PATL2 mutations, suggesting that these mutations may be responsible for oocyte maturation arrest in primary infertile women. Recently, two independent studies have demonstrated that infertility in some women with oocyte maturation arrest at the GV stage was caused by biallelic mutations in PATL2. PATL2 encodes protein PAT1 homolog 2, an RNA-binding protein that may act as a translational repressor. In this study, nine unrelated primary infertile females presenting with oocyte GV arrest were recruited during the treatment of early rescue ICSI or ICSI from January 2013 to December 2016. Genomic DNA was isolated from blood samples obtained from all nine affected individuals and all of their available family members. All the coding regions of PATL2 were sequenced by Sanger sequencing. The pathogenicity of the identified variants and their possible effects on the protein were evaluated in silico. Five novel point mutations and one recurrent splicing mutation in PATL2 were identified in four of nine (44.4%) unrelated patients. We found a consanguineous family with a homozygous missense mutation in two affected sisters, and their fertile brother. There were no clear phenotypic differences in oocytes between the patient with the homozygous missense mutation, patients with nonsense mutations and undiagnosed patients. n/a. The function of PATL2 remains largely unknown. Both the exact pathogenic mechanism(s) of mutated PATL2 causing human oocyte maturation arrest and the strategies to overcome this condition should be further investigated in the future. According to our data, mutations in PATL2 account for 44.4% of the individuals with oocyte GV arrest. Our study further confirms that PATL2 is required for human oocyte maturation and female fertility, which indicates a potential prognostic value of testing for PATL2 mutations in primary infertile women with oocyte maturation arrest. Natural Science Foundation of Anhui Province (1808085MH241), National Natural Science Foundation of China (81401251 and 81370757) and Central Guided Local Development of Science and Technology Special Fund (2016080802D114) supported this study. None of the authors have any competing interests.

  17. An exon 53 frameshift mutation in CUBN abrogates cubam function and causes Imerslund-Gräsbeck syndrome in dogs.

    PubMed

    Fyfe, John C; Hemker, Shelby L; Venta, Patrick J; Fitzgerald, Caitlin A; Outerbridge, Catherine A; Myers, Sherry L; Giger, Urs

    2013-08-01

    Cobalamin malabsorption accompanied by selective proteinuria is an autosomal recessive disorder known as Imerslund-Gräsbeck syndrome in humans and was previously described in dogs due to amnionless (AMN) mutations. The resultant vitamin B12 deficiency causes dyshematopoiesis, lethargy, failure to thrive, and life-threatening metabolic disruption in the juvenile period. We studied 3 kindreds of border collies with cobalamin malabsorption and mapped the disease locus in affected dogs to a 2.9Mb region of homozygosity on canine chromosome 2. The region included CUBN, the locus encoding cubilin, a peripheral membrane protein that in concert with AMN forms the functional intrinsic factor-cobalamin receptor expressed in ileum and a multi-ligand receptor in renal proximal tubules. Cobalamin malabsorption and proteinuria comprising CUBN ligands were demonstrated by radiolabeled cobalamin uptake studies and SDS-PAGE, respectively. CUBN mRNA and protein expression were reduced ~10 fold and ~20 fold, respectively, in both ileum and kidney of affected dogs. DNA sequencing demonstrated a single base deletion in exon 53 predicting a translational frameshift and early termination codon likely triggering nonsense mediated mRNA decay. The mutant allele segregated with the disease in the border collie kindred. The border collie disorder indicates that a CUBN mutation far C-terminal from the intrinsic factor-cobalamin binding site can abrogate receptor expression and cause Imerslund-Gräsbeck syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities.

    PubMed

    van der Crabben, Saskia N; Harakalova, Magdalena; Brilstra, Eva H; van Berkestijn, Frédérique M C; Hofstede, Floris C; van Vught, Adrianus J; Cuppen, Edwin; Kloosterman, Wigard; Ploos van Amstel, Hans Kristian; van Haaften, Gijs; van Haelst, Mieke M

    2014-01-01

    Phosphatidyl inositol glycan (PIG) enzyme subclasses are involved in distinct steps of glycosyl phosphatidyl inositol anchor protein biosynthesis. Glycolsyl phosphatidyl inositol-anchored proteins have heterogeneous functions; they can function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Germline mutations in genes encoding different members of the PIG family result in diverse conditions with (severe) developmental delay, (neonatal) seizures, hypotonia, CNS abnormalities, growth abnormalities, and congenital abnormalities as hallmark features. The variability of clinical features resembles the typical diversity of other glycosylation pathway deficiencies such as the congenital disorders of glycosylation. Here, we report the first germline missense mutation in the PIGA gene associated with accelerated linear growth, obesity, central hypotonia, severe refractory epilepsy, cardiac anomalies, mild facial dysmorphic features, mildly elevated alkaline phosphatase levels, and CNS anomalies consisting of progressive cerebral atrophy, insufficient myelinization, and cortical MRI signal abnormalities. X-exome sequencing in the proband identified a c.278C>T (p.Pro93Leu) mutation in the PIGA gene. The mother and maternal grandmother were unaffected carriers and the mother showed 100% skewing of the X-chromosome harboring the mutation. These results together with the clinical similarity of the patient reported here and the previously reported patients with a germline nonsense mutation in PIGA support the determination that this mutation caused the phenotype in this family. © 2013 Wiley Periodicals, Inc.

  19. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement

    PubMed Central

    Schmidts, Miriam; Arts, Heleen H; Bongers, Ernie M H F; Yap, Zhimin; Oud, Machteld M; Antony, Dinu; Duijkers, Lonneke; Emes, Richard D; Stalker, Jim; Yntema, Jan-Bart L; Plagnol, Vincent; Hoischen, Alexander; Gilissen, Christian; Forsythe, Elisabeth; Lausch, Ekkehart; Veltman, Joris A; Roeleveld, Nel; Superti-Furga, Andrea; Kutkowska-Kazmierczak, Anna; Kamsteeg, Erik-Jan; Elçioğlu, Nursel; van Maarle, Merel C; Graul-Neumann, Luitgard M; Devriendt, Koenraad; Smithson, Sarah F; Wellesley, Diana; Verbeek, Nienke E; Hennekam, Raoul C M; Kayserili, Hulya; Scambler, Peter J; Beales, Philip L; Knoers, Nine VAM; Roepman, Ronald; Mitchison, Hannah M

    2013-01-01

    Background Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis. Aims and methods To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing. Results and conclusions We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype–phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes. PMID:23456818

  20. Identification and Functional Analysis of ZIC3 Mutations in Heterotaxy and Related Congenital Heart Defects

    PubMed Central

    Ware, Stephanie M.; Peng, Jianlan; Zhu, Lirong; Fernbach, Susan; Colicos, Suzanne; Casey, Brett; Towbin, Jeffrey; Belmont, John W.

    2004-01-01

    Mutations in the zinc finger transcription factor ZIC3 cause X-linked heterotaxy and have also been identified in patients with isolated congenital heart disease (CHD). To determine the relative contribution of ZIC3 mutations to both heterotaxy and isolated CHD, we screened the coding region of ZIC3 in 194 unrelated patients, including 61 patients with classic heterotaxy, 93 patients with heart defects characteristic of heterotaxy, and 11 patients with situs inversus totalis. Five novel ZIC3 mutations in three classic heterotaxy kindreds and two sporadic CHD cases were identified. None of these alleles was found in 97 ethnically matched control samples. On the basis of these analyses, we conclude that the phenotypic spectrum of ZIC3 mutations should be expanded to include affected females and CHD not typical for heterotaxy. This screening of a cohort of patients with sporadic heterotaxy indicates that ZIC3 mutations account for ∼1% of affected individuals. Missense and nonsense mutations were found in the highly conserved zinc finger–binding domain and in the N-terminal protein domain. Functional analysis of all currently known ZIC3 point mutations indicates that mutations in the putative zinc finger DNA binding domain and in the N-terminal domain result in loss of reporter gene transactivation. It is surprising that transfection studies demonstrate aberrant cytoplasmic localization resulting from mutations between amino acids 253–323 of the ZIC3 protein, indicating that the pathogenesis of a subset of ZIC3 mutations results at least in part from failure of appropriate nuclear localization. These results further expand the phenotypic and genotypic spectrum of ZIC3 mutations and provide initial mechanistic insight into their functional consequences. PMID:14681828

  1. Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters' anomaly.

    PubMed

    Hanson, I M; Fletcher, J M; Jordan, T; Brown, A; Taylor, D; Adams, R J; Punnett, H H; van Heyningen, V

    1994-02-01

    Mutation or deletion of the PAX6 gene underlies many cases of aniridia. Three lines of evidence now converge to implicate PAX6 more widely in anterior segment malformations including Peters' anomaly. First, a child with Peters' anomaly is deleted for one copy of PAX6. Second, affected members of a family with dominantly inherited anterior segment malformations, including Peters' anomaly are heterozygous for an R26G mutation in the PAX6 paired box. Third, a proportion of Sey/+ Smalleye mice, heterozygous for a nonsense mutation in murine Pax-6, have an ocular phenotype resembling Peters' anomaly. We therefore propose that a variety of anterior segment anomalies may be associated with PAX6 mutations.

  2. Hypomorphic mutations of SEC23B gene account for mild phenotypes of congenital dyserythropoietic anemia type II

    PubMed Central

    Russo, Roberta; Langella, Concetta; Esposito, Maria Rosaria; Gambale, Antonella; Vitiello, Francesco; Vallefuoco, Fara; Ek, Torben; Yang, Elizabeth; Iolascon, Achille

    2013-01-01

    Congenital dyserythropoietic anemia type II, a recessive disorder of erythroid differentiation, is due to mutations in SEC23B, a component of the core trafficking machinery COPII. In no case homozygosity or compound heterozygosity for nonsense mutation(s) was found. This study represents the first description of molecular mechanisms underlying SEC23B hypomorphic genotypes by the analysis of five novel mutations. Our findings suggest that reduction of SEC23B gene expression is not associated with CDA II severe clinical presentation; conversely, the combination of a hypomorphic allele with one functionally altered results in more severe phenotypes. We propose a mechanism of compensation SEC23A-mediated which justifies these observations. PMID:23453696

  3. Compound heterozygous HAX1 mutations in a Swedish patient with severe congenital neutropenia and no neurodevelopmental abnormalities.

    PubMed

    Carlsson, Göran; Elinder, Göran; Malmgren, Helena; Trebinska, Alicja; Grzybowska, Ewa; Dahl, Niklas; Nordenskjöld, Magnus; Fadeel, Bengt

    2009-12-01

    Kostmann disease or severe congenital neutropenia (SCN) is an autosomal recessive disorder of neutrophil production. Homozygous HAX1 mutations were recently identified in SCN patients belonging to the original family in northern Sweden described by Kostmann. Moreover, recent studies have suggested an association between neurological dysfunction and HAX1 deficiency. Here we describe a patient with a compound heterozygous HAX1 mutation consisting of a nonsense mutation (c.568C > T, p.Glu190X) and a frame-shift mutation (c.91delG, p.Glu31LysfsX54) resulting in a premature stop codon. The patient has a history of neutropenia and a propensity for infections, but has shown no signs of neurodevelopmental abnormalities.

  4. Loss of corneodesmosin leads to severe skin barrier defect, pruritus, and atopy: unraveling the peeling skin disease.

    PubMed

    Oji, Vinzenz; Eckl, Katja-Martina; Aufenvenne, Karin; Nätebus, Marc; Tarinski, Tatjana; Ackermann, Katharina; Seller, Natalia; Metze, Dieter; Nürnberg, Gudrun; Fölster-Holst, Regina; Schäfer-Korting, Monika; Hausser, Ingrid; Traupe, Heiko; Hennies, Hans Christian

    2010-08-13

    Generalized peeling skin disease is an autosomal-recessive ichthyosiform erythroderma characterized by lifelong patchy peeling of the skin. After genome-wide linkage analysis, we have identified a homozygous nonsense mutation in CDSN in a large consanguineous family with generalized peeling skin, pruritus, and food allergies, which leads to a complete loss of corneodesmosin. In contrast to hypotrichosis simplex, which can be associated with specific dominant CDSN mutations, peeling skin disease is characterized by a complete loss of CDSN expression. The skin phenotype is consistent with a recent murine Cdsn knockout model. Using three-dimensional human skin models, we demonstrate that lack of corneodesmosin causes an epidermal barrier defect supposed to account for the predisposition to atopic diseases, and we confirm the role of corneodesmosin as a decisive epidermal adhesion molecule. Therefore, peeling skin disease will represent a new model disorder for atopic diseases, similarly to Netherton syndrome and ichthyosis vulgaris in the recent past.

  5. Loss of Corneodesmosin Leads to Severe Skin Barrier Defect, Pruritus, and Atopy: Unraveling the Peeling Skin Disease

    PubMed Central

    Oji, Vinzenz; Eckl, Katja-Martina; Aufenvenne, Karin; Nätebus, Marc; Tarinski, Tatjana; Ackermann, Katharina; Seller, Natalia; Metze, Dieter; Nürnberg, Gudrun; Fölster-Holst, Regina; Schäfer-Korting, Monika; Hausser, Ingrid; Traupe, Heiko; Hennies, Hans Christian

    2010-01-01

    Generalized peeling skin disease is an autosomal-recessive ichthyosiform erythroderma characterized by lifelong patchy peeling of the skin. After genome-wide linkage analysis, we have identified a homozygous nonsense mutation in CDSN in a large consanguineous family with generalized peeling skin, pruritus, and food allergies, which leads to a complete loss of corneodesmosin. In contrast to hypotrichosis simplex, which can be associated with specific dominant CDSN mutations, peeling skin disease is characterized by a complete loss of CDSN expression. The skin phenotype is consistent with a recent murine Cdsn knockout model. Using three-dimensional human skin models, we demonstrate that lack of corneodesmosin causes an epidermal barrier defect supposed to account for the predisposition to atopic diseases, and we confirm the role of corneodesmosin as a decisive epidermal adhesion molecule. Therefore, peeling skin disease will represent a new model disorder for atopic diseases, similarly to Netherton syndrome and ichthyosis vulgaris in the recent past. PMID:20691404

  6. The Gpn3 Q279* cancer-associated mutant inhibits Gpn1 nuclear export and is deficient in RNA polymerase II nuclear targeting.

    PubMed

    Barbosa-Camacho, Angel A; Méndez-Hernández, Lucía E; Lara-Chacón, Bárbara; Peña-Gómez, Sonia G; Romero, Violeta; González-González, Rogelio; Guerra-Moreno, José A; Robledo-Rivera, Angélica Y; Sánchez-Olea, Roberto; Calera, Mónica R

    2017-11-01

    Gpn3 is required for RNA polymerase II (RNAPII) nuclear targeting. Here, we investigated the effect of a cancer-associated Q279* nonsense mutation in Gpn3 cellular function. Employing RNAi, we replaced endogenous Gpn3 by wt or Q279* RNAi-resistant Gpn3R in epithelial model cells. RNAPII nuclear accumulation and transcriptional activity were markedly decreased in cells expressing only Gpn3R Q279*. Wild-type Gpn3R localized to the cytoplasm but a fraction of Gpn3R Q279* entered the cell nucleus and inhibited Gpn1-EYFP nuclear export. This property and the transcriptional deficit in Gpn3R Q279*-expressing cells required a PDZ-binding motif generated by the Q279* mutation. We conclude that an acquired PDZ-binding motif in Gpn3 Q279* caused Gpn3 nuclear entry, and inhibited Gpn1 nuclear export and Gpn3-mediated RNAPII nuclear targeting. © 2017 Federation of European Biochemical Societies.

  7. MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations

    PubMed Central

    Le Meur, Nathalie; Holder-Espinasse, Muriel; Jaillard, Sylvie; Goldenberg, Alice; Joriot, Sylvie; Amati-Bonneau, Patrizia; Guichet, Agnès; Barth, Magalie; Charollais, Aude; Journel, Hubert; Auvin, Stéphane; Boucher, Cécile; Kerckaert, Jean-Pierre; David, Véronique; Manouvrier-Hanu, Sylvie; Saugier-Veber, Pascale; Frébourg, Thierry; Dubourg, Christèle; Andrieux, Joris; Bonneau, Dominique

    2010-01-01

    Over the last few years, array-CGH has remarkably improved the ability to detect cryptic unbalanced rearrangements in patients presenting with syndromic mental retardation. Using whole genome oligonucleotide array-CGH, we detected 5q14.3 microdeletions ranging from 216 kb to 8.8 Mb in 5 unrelated patients showing phenotypic similarities, namely severe mental retardation with absent speech, hypotonia and stereotypic movements. Most of the patients presented also with facial dysmorphic features, epilepsy and/or cerebral malformations. The minimal common deleted region of these 5q14 microdeletions encompassed only MEF2C, known to act in brain as a neurogenesis effector which regulates excitatory synapse number. In a patient presenting a similar phenotype, we subsequently identified a MEF2C nonsense mutation. Taken together, these results strongly suggest that haploinsufficiency of MEF2C is responsible for severe mental retardation with stereotypic movements, seizures and/or cerebral malformations. PMID:19592390

  8. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia.

    PubMed

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Malek, Sami N

    2011-11-24

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML.

  9. Premature termination of SMARCB1 translation may be followed by reinitiation in schwannomatosis-associated schwannomas, but results in absence of SMARCB1 expression in rhabdoid tumors.

    PubMed

    Hulsebos, Theo J M; Kenter, Susan; Verhagen, Wim I M; Baas, Frank; Flucke, Uta; Wesseling, Pieter

    2014-09-01

    In schwannomatosis, germline SMARCB1 mutations predispose to the development of multiple schwannomas, but not vestibular schwannomas. Many of these are missense or splice-site mutations or in-frame deletions, which are presumed to result in the synthesis of altered SMARCB1 proteins. However, also nonsense and frameshift mutations, which are characteristic for rhabdoid tumors and are predicted to result in the absence of SMARCB1 protein via nonsense-mediated mRNA decay, have been reported in schwannomatosis patients. We investigated the consequences of four of the latter mutations, i.e. c.30delC, c.34C>T, c.38delA, and c.46A>T, all in SMARCB1-exon 1. We could demonstrate for the c.30delC and c.34C>T mutations that the respective mRNAs were still present in the schwannomas of the patients. We hypothesized that these were prevented from degradation by translation reinitiation at the AUG codon encoding methionine at position 27 of the SMARCB1 protein. To test this, we expressed the mutations in MON cells, rhabdoid cells without endogenous SMARCB1 protein, and found that all four resulted in synthesis of the N-terminally truncated protein. Mutation of the reinitiation methionine codon into a valine codon prevented synthesis of the truncated protein, thereby confirming its identity. Immunohistochemistry with a SMARCB1 antibody revealed a mosaic staining pattern in schwannomas of the patients with the c.30delC and c.34C>T mutations. Our findings support the concept that, in contrast to the complete absence of SMARCB1 expression in rhabdoid tumors, altered SMARCB1 proteins with modified activity and reduced (mosaic) expression are formed in the schwannomas of schwannomatosis patients with a germline SMARCB1 mutation.

  10. Identification of a nonsense mutation in CWC15 associated with decreased reproductive efficiency in Jersey cattle

    USDA-ARS?s Scientific Manuscript database

    With the recent advent of genomic tools for cattle, several recessive conditions affecting fertility have been identified and selected against, such as deficiency of uridine monophosphate synthase, complex vertebral malformation, and brachyspina. The current report refines the location of a recessiv...

  11. A novel mutation in the FGB: c.1105C>T turns the codon for amino acid Bβ Q339 into a stop codon causing hypofibrinogenemia.

    PubMed

    Marchi, Rita; Brennan, Stephen; Meyer, Michael; Rojas, Héctor; Kanzler, Daniela; De Agrela, Marisela; Ruiz-Saez, Arlette

    2013-03-01

    Routine coagulation tests on a 14year-old male with frequent epistaxis showed a prolonged thrombin time together with diminished functional (162mg/dl) and gravimetric (122mg/dl) fibrinogen concentrations. His father showed similar aberrant results and sequencing of the three fibrinogen genes revealed a novel heterozygous nonsense mutation in the FGB gene c.1105C>T, which converts the codon for residue Bβ 339Q to stop, causing deletion of Bβ chain residues 339-461. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and RP-HPLC (reverse-phase high-pressure liquid chromatography) of purified fibrinogen showed only normal Aα, Bβ, and γ chains, indicating that molecules with the truncated 37,990Da β chain were not secreted into plasma. Functional analysis showed impaired fibrin polymerization, fibrin porosity, and elasticity compared to controls. By laser scanning confocal microscopy the patient's fibers were slightly thinner than normal. Electrospray ionization mass spectrometry (ESI MS) presented normal sialylation of the oligosaccharide chains, and liver function tests showed no evidence of liver dysfunction that might explain the functional abnormalities. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients.

    PubMed

    Petersen, Sanne M; Dandanell, Mette; Rasmussen, Lene J; Gerdes, Anne-Marie; Krogh, Lotte N; Bernstein, Inge; Okkels, Henrik; Wikman, Friedrik; Nielsen, Finn C; Hansen, Thomas V O

    2013-10-03

    Germ-line mutations in the DNA mismatch repair genes MLH1, MSH2, and MSH6 predispose to the development of colorectal cancer (Lynch syndrome or hereditary nonpolyposis colorectal cancer). These mutations include disease-causing frame-shift, nonsense, and splicing mutations as well as large genomic rearrangements. However, a large number of mutations, including missense, silent, and intronic variants, are classified as variants of unknown clinical significance. Intronic MLH1, MSH2, or MSH6 variants were investigated using in silico prediction tools and mini-gene assay to asses the effect on splicing. We describe in silico and in vitro characterization of nine intronic MLH1, MSH2, or MSH6 mutations identified in Danish colorectal cancer patients, of which four mutations are novel. The analysis revealed aberrant splicing of five mutations (MLH1 c.588 + 5G > A, MLH1 c.677 + 3A > T, MLH1 c.1732-2A > T, MSH2 c.1276 + 1G > T, and MSH2 c.1662-2A > C), while four mutations had no effect on splicing compared to wild type (MLH1 c.117-34A > T, MLH1 c.1039-8 T > A, MSH2 c.2459-18delT, and MSH6 c.3439-16C > T). In conclusion, we classify five MLH1/MSH2 mutations as pathogenic, whereas four MLH1/MSH2/MSH6 mutations are classified as neutral. This study supports the notion that in silico prediction tools and mini-gene assays are important for the classification of intronic variants, and thereby crucial for the genetic counseling of patients and their family members.

  13. Novel mutations in the USH1C gene in Usher syndrome patients.

    PubMed

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Aller, Elena; Millán, José María

    2010-12-31

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population.

  14. Novel mutations in the USH1C gene in Usher syndrome patients

    PubMed Central

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Millán, José María

    2010-01-01

    Purpose Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Methods Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Results Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. Conclusions In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population. PMID:21203349

  15. Partial androgen insensitivity syndrome caused by a deep intronic mutation creating an alternative splice acceptor site of the AR gene.

    PubMed

    Ono, Hiroyuki; Saitsu, Hirotomo; Horikawa, Reiko; Nakashima, Shinichi; Ohkubo, Yumiko; Yanagi, Kumiko; Nakabayashi, Kazuhiko; Fukami, Maki; Fujisawa, Yasuko; Ogata, Tsutomu

    2018-02-02

    Although partial androgen insensitivity syndrome (PAIS) is caused by attenuated responsiveness to androgens, androgen receptor gene (AR) mutations on the coding regions and their splice sites have been identified only in <25% of patients with a diagnosis of PAIS. We performed extensive molecular studies including whole exome sequencing in a Japanese family with PAIS, identifying a deep intronic variant beyond the branch site at intron 6 of AR (NM_000044.4:c.2450-42 G > A). This variant created the splice acceptor motif that was accompanied by pyrimidine-rich sequence and two candidate branch sites. Consistent with this, reverse transcriptase (RT)-PCR experiments for cycloheximide-treated lymphoblastoid cell lines revealed a relatively large amount of aberrant mRNA produced by the newly created splice acceptor site and a relatively small amount of wildtype mRNA produced by the normal splice acceptor site. Furthermore, most of the aberrant mRNA was shown to undergo nonsense mediated decay (NMD) and, if a small amount of aberrant mRNA may have escaped NMD, such mRNA was predicted to generate a truncated AR protein missing some functional domains. These findings imply that the deep intronic mutation creating an alternative splice acceptor site resulted in the production of a relatively small amount of wildtype AR mRNA, leading to PAIS.

  16. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability

    PubMed Central

    Sansregret, Laurent; López-García, Carlos; Koch, André; McGranahan, Nicholas; Chao, William Chong Hang; Barry, David J.; Rowan, Andrew; Instrell, Rachael; Horswell, Stuart; Way, Michael; Howell, Michael; Singleton, Martin R.; Medema, René H.; Nurse, Paul; Petronczki, Mark; Swanton, Charles

    2017-01-01

    Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. Significance We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. PMID:28069571

  17. Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome.

    PubMed

    Bénit, Paule; Steffann, Julie; Lebon, Sophie; Chretien, Dominique; Kadhom, Noman; de Lonlay, Pascale; Goldenberg, Alice; Dumez, Yves; Dommergues, Marc; Rustin, Pierre; Munnich, Arnold; Rötig, Agnès

    2003-05-01

    Complex I deficiency, the most common cause of mitochondrial disorders, accounts for a variety of clinical symptoms and its genetic heterogeneity makes identification of the disease genes particularly tedious. Indeed, most of the 43 complex I subunits are encoded by nuclear genes, only seven of them being mitochondrially encoded. In order to offer urgent prenatal diagnosis, we have studied an inbred/multiplex family with complex I deficiency by using microsatellite DNA markers flanking the putative disease loci. Microsatellite DNA markers have allowed us to exclude the NDUFS7, NDUFS8, NDUFV1 and NDUFS1 genes and to find homozygosity at the NDUFS4 locus. Direct sequencing has led to identification of a homozygous splice acceptor site mutation in intron 1 of the NDUFS4 gene (IVS1nt -1, G-->A); this was not found in chorion villi of the ongoing pregnancy. We suggest that genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families helps to identify the disease-causing mutation. More generally, we suggest giving consideration to a more systematic microsatellite analysis of putative disease loci for identification of disease genes in inbred/multiplex families affected with genetically heterogeneous conditions.

  18. Mutations in HPSE2 cause urofacial syndrome.

    PubMed

    Daly, Sarah B; Urquhart, Jill E; Hilton, Emma; McKenzie, Edward A; Kammerer, Richard A; Lewis, Malcolm; Kerr, Bronwyn; Stuart, Helen; Donnai, Dian; Long, David A; Burgu, Berk; Aydogdu, Ozgu; Derbent, Murat; Garcia-Minaur, Sixto; Reardon, Willie; Gener, Blanca; Shalev, Stavit; Smith, Rupert; Woolf, Adrian S; Black, Graeme C; Newman, William G

    2010-06-11

    Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction.

  19. The prevalence of ABCB1:c.227_230delATAG mutation in affected dog breeds from European countries.

    PubMed

    Firdova, Zuzana; Turnova, Evelina; Bielikova, Marcela; Turna, Jan; Dudas, Andrej

    2016-06-01

    Deletion of 4-base pairs in the canine ABCB1 (MDR1) gene, responsible for encoding P-glycoprotein, leads to nonsense frame-shift mutation, which causes hypersensitivity to macrocyclic lactones drugs (e.g. ivermectin). To date, at least 12 purebred dog breeds have been found to be affected by this mutation. The aim of this study was to update information about the prevalence of ABCB1 mutation (c.227_230delATAG) in predisposed breeds in multiple European countries. This large scale survey also includes countries which were not involved in previous studies. The samples were collected in the period from 2012 to 2014. The overview is based on genotyping data of 4729 individuals. The observed mutant allele frequencies were 58.5% (Smooth Collie), 48.3% (Rough Collie), 35% (Australian Shepherd), 30.3% (Shetland Sheepdog), 28.1% (Silken Windhound), 26.1% (Miniature Australian Shepherd), 24.3% (Longhaired Whippet), 16.2% (White Swiss Shepherd) and 0% (Border Collie). The possible presence of an ABCB1 mutant allele in Akita-Inu breed has been investigated with negative results. This information could be helpful for breeders in optimization of their breeding strategy and for veterinarians when prescribing drug therapy for dogs of predisposed breeds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mutations in HPSE2 Cause Urofacial Syndrome

    PubMed Central

    Daly, Sarah B.; Urquhart, Jill E.; Hilton, Emma; McKenzie, Edward A.; Kammerer, Richard A.; Lewis, Malcolm; Kerr, Bronwyn; Stuart, Helen; Donnai, Dian; Long, David A.; Burgu, Berk; Aydogdu, Ozgu; Derbent, Murat; Garcia-Minaur, Sixto; Reardon, Willie; Gener, Blanca; Shalev, Stavit; Smith, Rupert; Woolf, Adrian S.; Black, Graeme C.; Newman, William G.

    2010-01-01

    Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction. PMID:20560210

  1. Mutation in WNT10A Is Associated with an Autosomal Recessive Ectodermal Dysplasia: The Odonto-onycho-dermal Dysplasia

    PubMed Central

    Adaimy, Lynn ; Chouery, Eliane ; Mégarbané, Hala ; Mroueh, Salman ; Delague, Valérie ; Nicolas, Elsa ; Belguith, Hanen ; de Mazancourt, Philippe ; Mégarbané, André 

    2007-01-01

    Odonto-onycho-dermal dysplasia is a rare autosomal recessive syndrome in which the presenting phenotype is dry hair, severe hypodontia, smooth tongue with marked reduction of fungiform and filiform papillae, onychodysplasia, keratoderma and hyperhidrosis of palms and soles, and hyperkeratosis of the skin. We studied three consanguineous Lebanese Muslim Shiite families that included six individuals affected with odonto-onycho-dermal dysplasia. Using a homozygosity-mapping strategy, we assigned the disease locus to an ∼9-cM region at chromosome 2q35-q36.2, located between markers rs16853834 and D2S353, with a maximum multipoint LOD score of 5.7. Screening of candidate genes in this region led us to identify the same c.697G→T (p.Glu233X) homozygous nonsense mutation in exon 3 of the WNT10A gene in all patients. At the protein level, the mutation is predicted to result in a premature truncated protein of 232 aa instead of 417 aa. This is the first report to our knowledge of a human phenotype resulting from a mutation in WNT10A, and it is the first demonstration of an ectodermal dysplasia caused by an altered WNT signaling pathway, expanding the list of WNT-related diseases. PMID:17847007

  2. Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia.

    PubMed

    Adaimy, Lynn; Chouery, Eliane; Megarbane, Hala; Mroueh, Salman; Delague, Valerie; Nicolas, Elsa; Belguith, Hanen; de Mazancourt, Philippe; Megarbane, Andre

    2007-10-01

    Odonto-onycho-dermal dysplasia is a rare autosomal recessive syndrome in which the presenting phenotype is dry hair, severe hypodontia, smooth tongue with marked reduction of fungiform and filiform papillae, onychodysplasia, keratoderma and hyperhidrosis of palms and soles, and hyperkeratosis of the skin. We studied three consanguineous Lebanese Muslim Shiite families that included six individuals affected with odonto-onycho-dermal dysplasia. Using a homozygosity-mapping strategy, we assigned the disease locus to an ~9-cM region at chromosome 2q35-q36.2, located between markers rs16853834 and D2S353, with a maximum multipoint LOD score of 5.7. Screening of candidate genes in this region led us to identify the same c.697G-->T (p.Glu233X) homozygous nonsense mutation in exon 3 of the WNT10A gene in all patients. At the protein level, the mutation is predicted to result in a premature truncated protein of 232 aa instead of 417 aa. This is the first report to our knowledge of a human phenotype resulting from a mutation in WNT10A, and it is the first demonstration of an ectodermal dysplasia caused by an altered WNT signaling pathway, expanding the list of WNT-related diseases.

  3. Gene correction of HAX1 reversed Kostmann disease phenotype in patient-specific induced pluripotent stem cells.

    PubMed

    Pittermann, Erik; Lachmann, Nico; MacLean, Glenn; Emmrich, Stephan; Ackermann, Mania; Göhring, Gudrun; Schlegelberger, Brigitte; Welte, Karl; Schambach, Axel; Heckl, Dirk; Orkin, Stuart H; Cantz, Tobias; Klusmann, Jan-Henning

    2017-06-13

    Severe congenital neutropenia (SCN, Kostmann disease) is a heritable disorder characterized by a granulocytic maturation arrest. Biallelic mutations in HCLS1 associated protein X-1 ( HAX1 ) are frequently detected in affected individuals, including those of the original pedigree described by Kostmann in 1956. To date, no faithful animal model has been established to study SCN mediated by HAX1 deficiency. Here we demonstrate defective neutrophilic differentiation and compensatory monocyte overproduction from patient-derived induced pluripotent stem cells (iPSCs) carrying the homozygous HAX1 W44X nonsense mutation. Targeted correction of the HAX1 mutation using the CRISPR-Cas9 system and homologous recombination rescued neutrophil differentiation and reestablished an HAX1 and HCLS1 -centered transcription network in immature myeloid progenitors, which is involved in the regulation of apoptosis, apoptotic mitochondrial changes, and myeloid differentiation. These findings made in isogenic iPSC-derived myeloid cells highlight the complex transcriptional changes underlying Kostmann disease. Thus, we show that patient-derived HAX1 W44X -iPSCs recapitulate the Kostmann disease phenotype in vitro and confirm HAX1 mutations as the disease-causing monogenic lesion. Finally, our study paves the way for nonvirus-based gene therapy approaches in SCN.

  4. Evidence for a founder effect for pseudoxanthoma elasticum in the Afrikaner population of South Africa.

    PubMed

    Le Saux, Olivier; Beck, Konstanze; Sachsinger, Christine; Treiber, Carina; Göring, Harald H H; Curry, Katie; Johnson, Eric W; Bercovitch, Lionel; Marais, Anna-Susan; Terry, Sharon F; Viljoen, Denis L; Boyd, Charles D

    2002-10-01

    Pseudoxanthoma elasticum (PXE) is a heritable elastic tissue disorder recently shown to be attributable to mutations in the ABCC6 ( MRP6) gene. Whereas PXE has been identified in all ethnic groups studied to date, the prevalence of this disease in various populations is uncertain, although often assumed to be similar. A notable exception however is the prevalence of PXE among South African Afrikaners. A previous report has suggested that a founder effect may explain the higher prevalence of PXE in Afrikaners, a European-derived population that first settled in South Africa in the 17th century. To investigate this hypothesis, we performed haplotype and mutational analysis of DNA from 24 South African families of Afrikaner, British and Indian descent. Among the 17 Afrikaner families studied, three common haplotypes and six different disease-causing variants were identified. Three of these mutant alleles were missense variants, two were nonsense mutations and one was a single base-pair insertion. The most common variant accounted for 53% of the PXE alleles, whereas other mutant alleles appeared at lower frequencies ranging from 3% to 12%. Haplotype analysis of the Afrikaner families showed that the three most frequent mutations were identical-by-descent, indicating a founder origin of PXE in this population.

  5. Loss of Function of KCNC1 is associated with intellectual disability without seizures

    PubMed Central

    Poirier, Karine; Viot, Géraldine; Lombardi, Laura; Jauny, Clémence; Billuart, Pierre; Bienvenu, Thierry

    2017-01-01

    p.(Arg320His) mutation in the KCNC1 gene in human 11p15.1 has recently been identified in patients with progressive myoclonus epilepsies, a group of rare inherited disorders manifesting with action myoclonus, myoclonic epilepsy, and ataxia. This KCNC1 variant causes a dominant-negative effect. Here we describe three patients from the same family with intellectual disability and dysmorphic features. The three affected individuals carry a c.1015C>T (p.(Arg339*)) nonsense variant in KCNC1 gene. As previously observed in the mutant mouse carrying a disrupted KCNC1 gene, these findings reveal that individuals with a KCNC1 loss-of-function variant can present intellectual disability without seizure and epilepsy. PMID:28145425

  6. Modeling Treatment Response for Lamin A/C Related Dilated Cardiomyopathy in Human Induced Pluripotent Stem Cells.

    PubMed

    Lee, Yee-Ki; Lau, Yee-Man; Cai, Zhu-Jun; Lai, Wing-Hon; Wong, Lai-Yung; Tse, Hung-Fat; Ng, Kwong-Man; Siu, Chung-Wah

    2017-07-28

    Precision medicine is an emerging approach to disease treatment and prevention that takes into account individual variability in the environment, lifestyle, and genetic makeup of patients. Patient-specific human induced pluripotent stem cells hold promise to transform precision medicine into real-life clinical practice. Lamin A/C (LMNA)-related cardiomyopathy is the most common inherited cardiomyopathy in which a substantial proportion of mutations in the LMNA gene are of nonsense mutation. PTC124 induces translational read-through over the premature stop codon and restores production of the full-length proteins from the affected genes. In this study we generated human induced pluripotent stem cells-derived cardiomyocytes from patients who harbored different LMNA mutations (nonsense and frameshift) to evaluate the potential therapeutic effects of PTC124 in LMNA -related cardiomyopathy. We generated human induced pluripotent stem cells lines from 3 patients who carried distinctive mutations (R225X, Q354X, and T518fs) in the LMNA gene. The cardiomyocytes derived from these human induced pluripotent stem cells lines reproduced the pathophysiological hallmarks of LMNA -related cardiomyopathy. Interestingly, PTC124 treatment increased the production of full-length LMNA proteins in only the R225X mutant, not in other mutations. Functional evaluation experiments on the R225X mutant further demonstrated that PTC124 treatment not only reduced nuclear blebbing and electrical stress-induced apoptosis but also improved the excitation-contraction coupling of the affected cardiomyocytes. Using cardiomyocytes derived from human induced pluripotent stem cells carrying different LMNA mutations, we demonstrated that the effect of PTC124 is codon selective. A premature stop codon UGA appeared to be most responsive to PTC124 treatment. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  7. Four novel cases of periaxin-related neuropathy and review of the literature.

    PubMed

    Marchesi, C; Milani, M; Morbin, M; Cesani, M; Lauria, G; Scaioli, V; Piccolo, G; Fabrizi, G M; Cavallaro, T; Taroni, F; Pareyson, D

    2010-11-16

    To report 4 cases of autosomal recessive hereditary neuropathy associated with novel mutations in the periaxin gene (PRX) with a review of the literature. Periaxin protein is required for the maintenance of peripheral nerve myelin. Patients with PRX mutations have early-onset autosomal recessive demyelinating Charcot-Marie-Tooth disease (CMT4F) or Déjèrine-Sottas neuropathy (DSN). Only 12 different mutations have been described thus far. Case reports and literature review. Four patients from 3 unrelated families (2 siblings and 2 unrelated patients) were affected by an early-onset, slowly progressive demyelinating neuropathy with relevant sensory involvement. All carried novel frameshift or nonsense mutations in the PRX gene. The 2 siblings were compound heterozygotes for 2 PRX null mutations (p.Q547X and p.K808SfsX2), the third patient harbored a homozygous nonsense mutation (p.E682X), and the last patient had a homozygous 2-nt insertion predicting a premature protein truncation (p.S259PfsX55). Electrophysiologic analysis showed a severe slowing of motor nerve conduction velocities (MNCVs, between 3 and 15.3 m/s) with undetectable sensory nerve action potentials (SNAPs). Sural nerve biopsy, performed in 2 patients, demonstrated a severe demyelinating neuropathy and onion bulb formations. Interestingly, we observed some variability of disease severity within the same family. These cases and review of the literature indicate that PRX-related neuropathies have early onset but overall slow progression. Typical features are prominent sensory involvement, often with sensory ataxia; a moderate-to-dramatic reduction of MNCVs and almost invariable absence of SNAPs; and pathologic demyelination with classic onion bulbs, and less commonly myelin folding and basal lamina onion bulbs.

  8. Stearoyl-Acyl Carrier Protein Desaturase Mutations Uncover an Impact of Stearic Acid in Leaf and Nodule Structure.

    PubMed

    Lakhssassi, Naoufal; Colantonio, Vincent; Flowers, Nicholas D; Zhou, Zhou; Henry, Jason; Liu, Shiming; Meksem, Khalid

    2017-07-01

    Stearoyl-acyl carrier protein desaturase (SACPD-C) has been reported to control the accumulation of seed stearic acid; however, no study has previously reported its involvement in leaf stearic acid content and impact on leaf structure and morphology. A subset of an ethyl methanesulfonate mutagenized population of soybean ( Glycine max ) 'Forrest' was screened to identify mutants within the GmSACPD-C gene. Using a forward genetics approach, one nonsense and four missense Gmsacpd-c mutants were identified to have high levels of seed, nodule, and leaf stearic acid content. Homology modeling and in silico analysis of the GmSACPD-C enzyme revealed that most of these mutations were localized near or at conserved residues essential for diiron ion coordination. Soybeans carrying Gmsacpd-c mutations at conserved residues showed the highest stearic acid content, and these mutations were found to have deleterious effects on nodule development and function. Interestingly, mutations at nonconserved residues show an increase in stearic acid content yet retain healthy nodules. Thus, random mutagenesis and mutational analysis allows for the achievement of high seed stearic acid content with no associated negative agronomic characteristics. Additionally, expression analysis demonstrates that nodule leghemoglobin transcripts were significantly more abundant in soybeans with deleterious mutations at conserved residues of GmSACPD-C. Finally, we report that Gmsacpd-c mutations cause an increase in leaf stearic acid content and an alteration of leaf structure and morphology in addition to differences in nitrogen-fixing nodule structure. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. PubMed Central

    Bello, Luca

    2016-01-01

    Accurate definition of genetic mutations causing Duchenne muscular dystrophy (DMD) has always been relevant in order to provide genetic counseling to patients and families, and helps to establish the prognosis in the case where the distinction between Duchenne, Becker, or intermediate muscular dystrophy is not obvious. As molecular treatments aimed at dystrophin restoration in DMD are increasingly available as commercialized drugs or within clinical trials, genetic diagnosis has become an indispensable tool in order to determine eligibility for these treatments. DMD patients in which multiplex ligation-dependent probe amplification (MLPA) or similar techniques show a deletion suitable to exon skipping of exons 44, 45, 51, or 53, may be currently treated with AONs targeting these exons, in the context of clinical trials, or, as is the case for exon 51 skipping in the United States, with the first commercialized drug (eteplirsen). Patients who test negative at MLPA, but in whom DMD gene sequencing shows a nonsense mutation, may be amenable for treatment with stop codon readthrough compounds such as ataluren. Novel molecular approaches such as CRISPR-Cas9 targeting of specific DMD mutations are still in the preclinical stages, but appear promising. In conclusion, an accurate genetic diagnosis represents the entrance into a new scenario of personalized medicine in DMD. PMID:28484312

  10. Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse.

    PubMed

    Fletcher, Sue; Honeyman, Kaite; Fall, Abbie M; Harding, Penny L; Johnsen, Russell D; Steinhaus, Joshua P; Moulton, Hong M; Iversen, Patrick L; Wilton, Stephen D

    2007-09-01

    Duchenne and Becker muscular dystrophies are allelic disorders arising from mutations in the dystrophin gene. Duchenne muscular dystrophy is characterized by an absence of functional protein, whereas Becker muscular dystrophy, commonly caused by in-frame deletions, shows synthesis of partially functional protein. Anti-sense oligonucleotides can induce specific exon removal during processing of the dystrophin primary transcript, while maintaining or restoring the reading frame, and thereby overcome protein-truncating mutations. The mdx mouse has a non-sense mutation in exon 23 of the dystrophin gene that precludes functional dystrophin production, and this model has been used in the development of treatment strategies for dystrophinopathies. A phosphorodiamidate morpholino oligomer (PMO) has previously been shown to exclude exon 23 from the dystrophin gene transcript and induce dystrophin expression in the mdxmouse, in vivo and in vitro. In this report, a cell-penetrating peptide (CPP)-conjugated oligomer targeted to the mouse dystrophin exon 23 donor splice site was administered to mdxmice by intraperitoneal injection. We demonstrate dystrophin expression and near-normal muscle architecture in all muscles examined, except for cardiac muscle. The CPP greatly enhanced uptake of the PMO, resulting in widespread dystrophin expression.

  11. A novel Xp22.13 microdeletion in Nance-Horan syndrome.

    PubMed

    Accogli, Andrea; Traverso, Monica; Madia, Francesca; Bellini, Tommaso; Vari, Maria Stella; Pinto, Francesca; Capra, Valeria

    2017-07-03

    Nance-Horan syndrome (NHS) is a rare X-linked developmental disorder characterized by congenital cataract, dental anomalies and facial dysmorphisms. Notably, up to 30% of NHS patients have intellectual disability and a few patients have been reported to have congenital cardiac defects. Nance-Horan syndrome is caused by mutations in the NHS gene that is highly expressed in the midbrain, retina, lens, tooth, and is conserved across vertebrate species. Although most pathogenic mutations are nonsense mutations, a few genomic rearrangements involving NHS locus have been reported, suggesting a possible pathogenic role of the flanking genes. Here, we report a microdeletion of 170,6 Kb at Xp22.13 (17.733.948-17.904.576) (GRCh37/hg19), detected by array-based comparative genomic hybridization in an Italian boy with NHS syndrome. The microdeletion harbors the NHS, SCLML1, and RAI2 genes and results in a phenotype consistent with NSH syndrome and developmental delay. We compare our case with the previous Xp22.13 microdeletions and discuss the possible pathogenetic role of the flanking genes. Birth Defects Research 109:866-868, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Whole Exome Sequencing Identifies de Novo Mutations in GATA6 Associated with Congenital Diaphragmatic Hernia

    PubMed Central

    Yu, Lan; Bennett, James T.; Wynn, Julia; Carvill, Gemma L.; Cheung, Yee Him; Shen, Yufeng; Mychaliska, George B.; Azarow, Kenneth S.; Crombleholme, Timothy M.; Chung, Dai H.; Potoka, Douglas; Warner, Brad W.; Bucher, Brian; Lim, Foong-Yen; Pietsch, John; Stolar, Charles; Aspelund, Gudrun; Arkovitz, Marc S.; Mefford, Heather; Chung, Wendy K.

    2014-01-01

    Background Congenital diaphragmatic hernia (CDH) is a common birth defect affecting 1 in 3,000 births. It is characterized by herniation of abdominal viscera through an incompletely formed diaphragm. Although chromosomal anomalies and mutations in several genes have been implicated, the cause for most patients is unknown. Methods We used whole exome sequencing in two families with CDH and congenital heart disease, and identified mutations in GATA6 in both. Results In the first family, we identified a de novo missense mutation (c.1366C>T, p.R456C) in a sporadic CDH patient with tetralogy of Fallot. In the second, a nonsense mutation (c.712G>T, p.G238*) was identified in two siblings with CDH and a large ventricular septal defect. The G238* mutation was inherited from their mother, who was clinically affected with congenital absence of the pericardium, patent ductus arteriosus, and intestinal malrotation. Deep sequencing of blood and saliva derived DNA from the mother suggested somatic mosaicism as an explanation for her milder phenotype, with only approximately 15% mutant alleles. To determine the frequency of GATA6 mutations in CDH, we sequenced the gene in 378 patients with CDH. We identified one additional de novo mutation (c.1071delG, p.V358Cfs34*). Conclusions Mutations in GATA6 have been previously associated with pancreatic agenesis and congenital heart disease. We conclude that, in addition to the heart and the pancreas, GATA6 is involved in development of two additional organs, the diaphragm and the pericardium. In addition we have shown that de novo mutations can contribute to the development of CDH, a common birth defect. PMID:24385578

  13. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia

    PubMed Central

    Duriez, Bénédicte; Duquesnoy, Philippe; Escudier, Estelle; Bridoux, Anne-Marie; Escalier, Denise; Rayet, Isabelle; Marcos, Elisabeth; Vojtek, Anne-Marie; Bercher, Jean-François; Amselem, Serge

    2007-01-01

    Thioredoxins belong to a large family of enzymatic proteins that function as general protein disulfide reductases, therefore participating in several cellular processes via redox-mediated reactions. So far, none of the 18 members of this family has been involved in human pathology. Here we identified TXNDC3, which encodes a thioredoxin–nucleoside diphosphate kinase, as a gene implicated in primary ciliary dyskinesia (PCD), a genetic condition characterized by chronic respiratory tract infections, left–right asymmetry randomization, and male infertility. We show that the disease, which segregates as a recessive trait, results from the unusual combination of the following two transallelic defects: a nonsense mutation and a common intronic variant found in 1% of control chromosomes. This variant affects the ratio of two physiological TXNDC3 transcripts: the full-length isoform and a novel isoform, TXNDC3d7, carrying an in-frame deletion of exon 7. In vivo and in vitro expression data unveiled the physiological importance of TXNDC3d7 (whose expression was reduced in the patient) and the corresponding protein that was shown to bind microtubules. PCD is known to result from defects of the axoneme, an organelle common to respiratory cilia, embryonic nodal cilia, and sperm flagella, containing dynein arms, with, to date, the implication of genes encoding dynein proteins. Our findings, which identify a another class of molecules involved in PCD, disclose the key role of TXNDC3 in ciliary function; they also point to an unusual mechanism underlying a Mendelian disorder, which is an SNP-induced modification of the ratio of two physiological isoforms generated by alternative splicing. PMID:17360648

  14. Rare Autosomal Recessive Cardiac Valvular Form of Ehlers-Danlos Syndrome Results from Mutations in the COL1A2 Gene That Activate the Nonsense-Mediated RNA Decay Pathway

    PubMed Central

    Schwarze, Ulrike; Hata, Ryu-Ichiro; McKusick, Victor A.; Shinkai, Hiroshi; Hoyme, H. Eugene; Pyeritz, Reed E.; Byers, Peter H.

    2004-01-01

    Splice site mutations in the COL1A2 gene of type I collagen can give rise to forms of Ehlers-Danlos syndrome (EDS) because of partial or complete skipping of exon 6, as well as to mild, moderate, or lethal forms of osteogenesis imperfecta as a consequence of skipping of other exons. We identified three unrelated individuals with a rare recessively inherited form of EDS (characterized by joint hypermobility, skin hyperextensibility, and cardiac valvular defects); in two of them, COL1A2 messenger RNA (mRNA) instability results from compound heterozygosity for splice site mutations in the COL1A2 gene, and, in the third, it results from homozygosity for a nonsense codon. The splice site mutations led to use of cryptic splice donor sites, creation of a downstream premature termination codon, and extremely unstable mRNA. In the wild-type allele, the two introns (IVS11 and IVS24) in which these mutations occurred were usually spliced slowly in relation to their respective immediate upstream introns. In the mutant alleles, the upstream intron was removed, so that exon skipping could not occur. In the context of the mutation in IVS24, computer-generated folding of a short stretch of mRNA surrounding the mutation site demonstrated realignment of the relationships between the donor and acceptor sites that could facilitate use of a cryptic donor site. These findings suggest that the order of intron removal is an important variable in prediction of mutation outcome at splice sites and that folding of the nascent mRNA could be one element that contributes to determination of order of splicing. The complete absence of proα2(I) chains has the surprising effect of producing cardiac valvular disease without bone involvement. PMID:15077201

  15. Rare autosomal recessive cardiac valvular form of Ehlers-Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway.

    PubMed

    Schwarze, Ulrike; Hata, Ryu-Ichiro; McKusick, Victor A; Shinkai, Hiroshi; Hoyme, H Eugene; Pyeritz, Reed E; Byers, Peter H

    2004-05-01

    Splice site mutations in the COL1A2 gene of type I collagen can give rise to forms of Ehlers-Danlos syndrome (EDS) because of partial or complete skipping of exon 6, as well as to mild, moderate, or lethal forms of osteogenesis imperfecta as a consequence of skipping of other exons. We identified three unrelated individuals with a rare recessively inherited form of EDS (characterized by joint hypermobility, skin hyperextensibility, and cardiac valvular defects); in two of them, COL1A2 messenger RNA (mRNA) instability results from compound heterozygosity for splice site mutations in the COL1A2 gene, and, in the third, it results from homozygosity for a nonsense codon. The splice site mutations led to use of cryptic splice donor sites, creation of a downstream premature termination codon, and extremely unstable mRNA. In the wild-type allele, the two introns (IVS11 and IVS24) in which these mutations occurred were usually spliced slowly in relation to their respective immediate upstream introns. In the mutant alleles, the upstream intron was removed, so that exon skipping could not occur. In the context of the mutation in IVS24, computer-generated folding of a short stretch of mRNA surrounding the mutation site demonstrated realignment of the relationships between the donor and acceptor sites that could facilitate use of a cryptic donor site. These findings suggest that the order of intron removal is an important variable in prediction of mutation outcome at splice sites and that folding of the nascent mRNA could be one element that contributes to determination of order of splicing. The complete absence of pro alpha 2(I) chains has the surprising effect of producing cardiac valvular disease without bone involvement.

  16. Loss-of-Function Mutations in SERPINB8 Linked to Exfoliative Ichthyosis with Impaired Mechanical Stability of Intercellular Adhesions.

    PubMed

    Pigors, Manuela; Sarig, Ofer; Heinz, Lisa; Plagnol, Vincent; Fischer, Judith; Mohamad, Janan; Malchin, Natalia; Rajpopat, Shefali; Kharfi, Monia; Lestringant, Giles G; Sprecher, Eli; Kelsell, David P; Blaydon, Diana C

    2016-08-04

    SERPINS comprise a large and functionally diverse family of serine protease inhibitors. Here, we report three unrelated families with loss-of-function mutations in SERPINB8 in association with an autosomal-recessive form of exfoliative ichthyosis. Whole-exome sequencing of affected individuals from a consanguineous Tunisian family and a large Israeli family revealed a homozygous frameshift mutation, c.947delA (p.Lys316Serfs(∗)90), and a nonsense mutation, c.850C>T (p.Arg284(∗)), respectively. These two mutations are located in the last exon of SERPINB8 and, hence, would not be expected to lead to nonsense-mediated decay of the mRNA; nonetheless, both mutations are predicted to lead to loss of the reactive site loop of SERPINB8, which is crucial for forming the SERPINB8-protease complex. Using Sanger sequencing, a homozygous missense mutation, c.2T>C (p.Met1?), predicted to result in an N-terminal truncated protein, was identified in an additional family from UAE. Histological analysis of a skin biopsy from an individual homozygous for the variant p.Arg284(∗) showed disadhesion of keratinocytes in the lower epidermal layers plus decreased SERPINB8 levels compared to control. In vitro studies utilizing siRNA-mediated knockdown of SERPINB8 in keratinocytes demonstrated that in the absence of the protein, there is a cell-cell adhesion defect, particularly when cells are subjected to mechanical stress. In addition, immunoblotting and immunostaining revealed an upregulation of desmosomal proteins. In conclusion, we report mutations in SERPINB8 that are associated with exfoliative ichthyosis and provide evidence that SERPINB8 contributes to the mechanical stability of intercellular adhesions in the epidermis. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. De novo SOX10 Nonsense Mutation in a Patient with Kallmann Syndrome, Deafness, Iris Hypopigmentation, and Hyperthyroidism.

    PubMed

    Wang, Fang; Zhao, Shaoli; Xie, Yanhong; Yang, Wenjun; Mo, Zhaohui

    2018-03-01

    Kallmann syndrome (KS) is a clinically and genetically heterogeneous disorder characterized by hypogonadotropic hypogonadism and olfactory dysfunction. Recently, mutations in SOX10, a well-known causative gene of Waardenburg syndrome (WS), have been identified in a few KS patients with additional developmental defects including hearing loss. However, the understanding of SOX10 mutation associates with KS and other clinical consequences remains fragmentary. A 30-year-old Chinese male patient presented with no pubertal sex development when he was at the age of twelve years. Additionally, he showed anosmia, sensory deafness, and blue irises. Last year, he developed clinical symptoms of hyperthyroidism with a fast heartbeat, heat intolerance and weight loss. Blood examinations revealed low levels of FSH, LH, and testosterone. Thyroid function showed high levels of FT3, FT4 and extremely low level of TSH. Molecular analysis detected a de novo (c.565G>T/p.E189X) mutation in SOX10, which has previously been reported in a patient with WS4 (WS with Hirschsprung). The mutation was predicted to be probably damaging. These results highlight the significance of SOX10 haploinsufficiency as a genetic cause of KS. Importantly, our result implies that the same SOX10 mutation can underlie both typical KS and WS, while the correlation between SOX10 and hyperthyroidism still needs to be clarified in the future. © 2018 by the Association of Clinical Scientists, Inc.

  18. Novel Nonsense Variants c.58C>T (p.Q20X) and c.256G>T (p.E85X) in the CHEK2 Gene Identified dentified in Breast Cancer Patients from Balochistan.

    PubMed

    Baloch, Abdul Hameed; Khosa, Ahmad Nawaz; Bangulzai, Nasrullah; Shuja, Jamila; Naseeb, Hafiz Khush; Jan, Mohammad; Marghazani, Illahi Bakhsh; Kakar, Masood-Ul-Haq; Baloch, Dost Mohammad; Cheema, Abdul Majeed; Ahmad, Jamil

    2016-01-01

    Breast cancer is the most commonly occurring and leading cause of cancer deaths among women globally. Hereditary cases account 5-10% of all the cases and CHEK2 is considered as a moderate penetrance breast cancer risk gene. CHEK2 plays a crucial role in response to DNA damage to promote cell cycle arrest and repair DNA damage or induce apoptosis. Our objective in the current study was to analyze mutations in the CHEK2 gene related to breast cancer in Balochistan. A total of 271 individuals including breast cancer patients and normal subjects were enrolled. All 14 exons of CHEK2 were amplified and sequenced. The majority of the patients (>95%) had invasive ductal carcinomas (IDCs), 52.1% were diagnosed with tumor grade III and 56.1% and 27.5% were diagnosed with advance stages III and IV. Two novel nonsense variants i.e. c.58C>T (P.Q20X) and c.256G>T (p.E85X) at exon 1 and 2 in two breast cancer patients were identified in the current study. Both the variants identified were novel and have not been reported elsewhere.

  19. A novel NOTCH3 mutation identified in patients with oral cancer by whole exome sequencing.

    PubMed

    Yi, Yanjun; Tian, Zhuowei; Ju, Houyu; Ren, Guoxin; Hu, Jingzhou

    2017-06-01

    Oral cancer is a serious disease caused by environmental factors and/or susceptible genes. In the present study, in order to identify useful genetic biomarkers for cancer prediction and prevention, and for personalized treatment, we detected somatic mutations in 5 pairs of oral cancer tissues and blood samples using whole exome sequencing (WES). Finally, we confirmed a novel nonsense single-nucleotide polymorphism (SNP; chr19:15288426A>C) in the NOTCH3 gene with sanger sequencing, which resulted in a N1438T mutation in the protein sequence. Using multiple in silico analyses, this variant was found to mildly damaging effects on the NOTCH3 gene, which was supported by the results from analyses using PANTHER, SNAP and SNPs&GO. However, further analysis using Mutation Taster revealed that this SNP had a probability of 0.9997 to be 'disease causing'. In addition, we performed 3D structure simulation analysis and the results suggested that this variant had little effect on the solubility and hydrophobicity of the protein and thus on its function; however, it decreased the stability of the protein by increasing the total energy following minimization (-1,051.39 kcal/mol for the mutant and -1,229.84 kcal/mol for the native) and decreasing one stabilizing residue of the protein. Less stability of the N1438T mutant was also supported by analysis using I-Mutant with a DDG value of -1.67. Overall, the present study identified and confirmed a novel mutation in the NOTCH3 gene, which may decrease the stability of NOTCH3, and may thus prove to be helpful in cancer prognosis.

  20. Adaptor Protein Complex 4 Deficiency Causes Severe Autosomal-Recessive Intellectual Disability, Progressive Spastic Paraplegia, Shy Character, and Short Stature

    PubMed Central

    Abou Jamra, Rami; Philippe, Orianne; Raas-Rothschild, Annick; Eck, Sebastian H.; Graf, Elisabeth; Buchert, Rebecca; Borck, Guntram; Ekici, Arif; Brockschmidt, Felix F.; Nöthen, Markus M.; Munnich, Arnold; Strom, Tim M.; Reis, Andre; Colleaux, Laurence

    2011-01-01

    Intellectual disability inherited in an autosomal-recessive fashion represents an important fraction of severe cognitive-dysfunction disorders. Yet, the extreme heterogeneity of these conditions markedly hampers gene identification. Here, we report on eight affected individuals who were from three consanguineous families and presented with severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. Using a combination of autozygosity mapping and either Sanger sequencing of candidate genes or next-generation exome sequencing, we identified one mutation in each of three genes encoding adaptor protein complex 4 (AP4) subunits: a nonsense mutation in AP4S1 (NM_007077.3: c.124C>T, p.Arg42∗), a frameshift mutation in AP4B1 (NM_006594.2: c.487_488insTAT, p.Glu163_Ser739delinsVal), and a splice mutation in AP4E1 (NM_007347.3: c.542+1_542+4delGTAA, r.421_542del, p.Glu181Glyfs∗20). Adaptor protein complexes (AP1-4) are ubiquitously expressed, evolutionarily conserved heterotetrameric complexes that mediate different types of vesicle formation and the selection of cargo molecules for inclusion into these vesicles. Interestingly, two mutations affecting AP4M1 and AP4E1 have recently been found to cause cerebral palsy associated with severe intellectual disability. Combined with previous observations, these results support the hypothesis that AP4-complex-mediated trafficking plays a crucial role in brain development and functioning and demonstrate the existence of a clinically recognizable syndrome due to deficiency of the AP4 complex. PMID:21620353

  1. Novel KRAS Gene Mutations in Sporadic Colorectal Cancer

    PubMed Central

    Naser, Walid M.; Shawarby, Mohamed A.; Al-Tamimi, Dalal M.; Seth, Arun; Al-Quorain, Abdulaziz; Nemer, Areej M. Al; Albagha, Omar M. E.

    2014-01-01

    Introduction In this article, we report 7 novel KRAS gene mutations discovered while retrospectively studying the prevalence and pattern of KRAS mutations in cancerous tissue obtained from 56 Saudi sporadic colorectal cancer patients from the Eastern Province. Methods Genomic DNA was extracted from formalin-fixed, paraffin-embedded cancerous and noncancerous colorectal tissues. Successful and specific PCR products were then bi-directionally sequenced to detect exon 4 mutations while Mutector II Detection Kits were used for identifying mutations in codons 12, 13 and 61. The functional impact of the novel mutations was assessed using bioinformatics tools and molecular modeling. Results KRAS gene mutations were detected in the cancer tissue of 24 cases (42.85%). Of these, 11 had exon 4 mutations (19.64%). They harbored 8 different mutations all of which except two altered the KRAS protein amino acid sequence and all except one were novel as revealed by COSMIC database. The detected novel mutations were found to be somatic. One mutation is predicted to be benign. The remaining mutations are predicted to cause substantial changes in the protein structure. Of these, the Q150X nonsense mutation is the second truncating mutation to be reported in colorectal cancer in the literature. Conclusions Our discovery of novel exon 4 KRAS mutations that are, so far, unique to Saudi colorectal cancer patients may be attributed to environmental factors and/or racial/ethnic variations due to genetic differences. Alternatively, it may be related to paucity of clinical studies on mutations other than those in codons 12, 13, 61 and 146. Further KRAS testing on a large number of patients of various ethnicities, particularly beyond the most common hotspot alleles in exons 2 and 3 is needed to assess the prevalence and explore the exact prognostic and predictive significance of the discovered novel mutations as well as their possible role in colorectal carcinogenesis. PMID:25412182

  2. Four novel RS1 gene mutations in Polish patients with X-linked juvenile retinoschisis

    PubMed Central

    Skorczyk, Anna

    2012-01-01

    Purpose To determine the clinical features and to identify mutations in the retinoschisis gene (RS1) in ten patients with X-linked retinoschisis (XLRS). Methods Ten male patients from nine Polish families were included in this study. Ophthalmologic examinations, including optical coherence tomography (OCT) and full-field electroretinography (ERG), were performed in all affected boys. The entire coding region encompassing six exons of the RS1 gene was amplified with PCR and directly sequenced in all the patients. Results All affected individuals showed typical retinoschisis signs and symptoms, and all appeared to have a mutation in the RS1 gene. Seven different mutations were identified, including two novel missense substitutions: c.176G>C (p.Cys59Ser), c.451T>A (p.Tyr151Asp); one novel nonsense substitution: c.218C>A (p.Ser73*); and one novel frameshift mutation: c.354_355delCA (p.Asp118Glufs*2). We also found two missense substitutions that had been previously described: c.214G>A (p.Glu72Lys) and c.626G>T (p.Arg209Leu) and one known splice site mutation in intron 5: c.522+1G>T (IVS5+1G>T). Conclusions This study provides the first molecular genetic characteristics of patients with juvenile retinoschisis from the previously unexplored Polish population. We investigated the molecular background of XLRS in ten boys. The present study reports for the first time four novel mutations, including two missense substitutions, one nonsense substitution, and one frameshift deletion. One of these substitutions and 2-bp deletion created stop codons. Moreover, we described three substitutions that had been previously reported (one is a splicing mutation). Further genetic characterization of Polish patients with XLRS will be helpful in understanding the worldwide spectrum of RS1 mutations. Despite the mutation heterogeneity found in a small group of our patients, they presented a relatively uniform clinical picture. Identifying the causative mutation is helpful in confirming diagnosis and counseling, but cannot provide prognostic data. PMID:23288992

  3. Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat.

    PubMed

    Guo, Huijun; Liu, Yunchuan; Li, Xiao; Yan, Zhihui; Xie, Yongdun; Xiong, Hongchun; Zhao, Linshu; Gu, Jiayu; Zhao, Shirong; Liu, Luxiang

    2017-05-08

    Transient starch provides carbon and energy for plant growth, and its synthesis is regulated by the joint action of a series of enzymes. Starch synthesis IV (SSIV) is one of the important starch synthase isoforms, but its impact on wheat starch synthesis has not yet been reported due to the lack of mutant lines. Using the TILLING approach, we identified 54 mutations in the wheat gene TaSSIVb-D, with a mutation density of 1/165 Kb. Among these, three missense mutations and one nonsense mutation were predicted to have severe impacts on protein function. In the mutants, TaSSIVb-D was significantly down-regulated without compensatory increases in the homoeologous genes TaSSIVb-A and TaSSIVb-B. Altered expression of TaSSIVb-D affected granule number per chloroplast; compared with wild type, the number of chloroplasts containing 0-2 granules was significantly increased, while the number containing 3-4 granules was decreased. Photosynthesis was affected accordingly; the maximum quantum yield and yield of PSII were significantly reduced in the nonsense mutant at the heading stage. These results indicate that TaSSIVb-D plays an important role in the formation of transient starch granules in wheat, which in turn impact the efficiency of photosynthesis. The mutagenized population created in this study allows the efficient identification of novel alleles of target genes and could be used as a resource for wheat functional genomics.

  4. Characterization of high density lipoprotein particles in familial apolipoprotein A-I deficiency

    USDA-ARS?s Scientific Manuscript database

    Our aim was to characterize HDL subspecies and fat-soluble vitamin levels in a kindred with familial apolipoprotein A-I (apoA-I) deficiency. Sequencing of the APOA1 gene revealed a nonsense mutation at codon 22, Q[22]X, with two documented homozygotes, eight heterozygotes, and two normal subjects in...

  5. NHS Gene Mutations in Ashkenazi Jewish Families with Nance-Horan Syndrome.

    PubMed

    Shoshany, Nadav; Avni, Isaac; Morad, Yair; Weiner, Chen; Einan-Lifshitz, Adi; Pras, Eran

    2017-09-01

    To describe ocular and extraocular abnormalities in two Ashkenazi Jewish families with infantile cataract and X-linked inheritance, and to identify their underlying mutations. Seven affected members were recruited. Medical history, clinical findings, and biometric measurements were recorded. Mutation analysis of the Nance-Horan syndrome (NHS) gene was performed by direct sequencing of polymerase chain reaction-amplified exons. An unusual anterior Y-sutural cataract was documented in the affected male proband. Other clinical features among examined patients included microcorneas, long and narrow faces, and current or previous dental anomalies. A nonsense mutation was identified in each family, including a previously described 742 C>T, p.(Arg248*) mutation in Family A, and a novel mutation 2915 C>A, p.(Ser972*) in Family B. Our study expands the repertoire of NHS mutations and the related phenotype, including newly described anterior Y-sutural cataract and dental findings.

  6. A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma

    PubMed Central

    Liu, Chunqiao; Widen, Sonya A.; Williamson, Kathleen A.; Ratnapriya, Rinki; Gerth-Kahlert, Christina; Rainger, Joe; Alur, Ramakrishna P.; Strachan, Erin; Manjunath, Souparnika H.; Balakrishnan, Archana; Floyd, James A.; Li, Tiansen; Waskiewicz, Andrew; Brooks, Brian P.; Lehmann, Ordan J.; FitzPatrick, David R.; Swaroop, Anand

    2016-01-01

    Ocular coloboma is a common eye malformation resulting from incomplete fusion of the optic fissure during development. Coloboma is often associated with microphthalmia and/or contralateral anophthalmia. Coloboma shows extensive locus heterogeneity associated with causative mutations identified in genes encoding developmental transcription factors or components of signaling pathways. We report an ultra-rare, heterozygous frameshift mutation in FZD5 (p.Ala219Glufs*49) that was identified independently in two branches of a large family with autosomal dominant non-syndromic coloboma. FZD5 has a single-coding exon and consequently a transcript with this frameshift variant is not a canonical substrate for nonsense-mediated decay. FZD5 encodes a transmembrane receptor with a conserved extracellular cysteine rich domain for ligand binding. The frameshift mutation results in the production of a truncated protein, which retains the Wingless-type MMTV integration site family member-ligand-binding domain, but lacks the transmembrane domain. The truncated protein was secreted from cells, and behaved as a dominant-negative FZD5 receptor, antagonizing both canonical and non-canonical WNT signaling. Expression of the resultant mutant protein caused coloboma and microphthalmia in zebrafish, and disruption of the apical junction of the retinal neural epithelium in mouse, mimicking the phenotype of Fz5/Fz8 compound conditional knockout mutants. Our studies have revealed a conserved role of Wnt–Frizzled (FZD) signaling in ocular development and directly implicate WNT–FZD signaling both in normal closure of the human optic fissure and pathogenesis of coloboma. PMID:26908622

  7. Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features

    PubMed Central

    Ouyang, Qing; Nakayama, Tojo; Baytas, Ozan; Davidson, Shawn M.; Yang, Chendong; Schmidt, Michael; Lizarraga, Sofia B.; Mishra, Sasmita; EI-Quessny, Malak; Niaz, Saima; Gul Butt, Mirrat; Imran Murtaza, Syed; Javed, Afzal; Chaudhry, Haroon Rashid; Vaughan, Dylan J.; Hill, R. Sean; Partlow, Jennifer N.; Yoo, Seung-Yun; Lam, Anh-Thu N.; Nasir, Ramzi; Al-Saffar, Muna; Barkovich, A. James; Schwede, Matthew; Nagpal, Shailender; Rajab, Anna; DeBerardinis, Ralph J.; Housman, David E.; Mochida, Ganeshwaran H.; Morrow, Eric M.

    2016-01-01

    Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. In addition to IDD, all affected individuals show postnatal microcephaly and ∼80% of those followed over time show progressive motor symptoms, a spastic paraplegia. Homozygous nonsense p.Arg404* and missense p.Pro272Leu mutations are shown biochemically to be loss of function. The GPT2 gene demonstrates increasing expression in brain in the early postnatal period, and GPT2 protein localizes to mitochondria. Akin to the human phenotype, Gpt2-null mice exhibit reduced brain growth. Through metabolomics and direct isotope tracing experiments, we find a number of metabolic abnormalities associated with loss of Gpt2. These include defects in amino acid metabolism such as low alanine levels and elevated essential amino acids. Also, we find defects in anaplerosis, the metabolic process involved in replenishing TCA cycle intermediates. Finally, mutant brains demonstrate misregulated metabolites in pathways implicated in neuroprotective mechanisms previously associated with neurodegenerative disorders. Overall, our data reveal an important role for the GPT2 enzyme in mitochondrial metabolism with relevance to developmental as well as potentially to neurodegenerative mechanisms. PMID:27601654

  8. Prevalence of Novel MAGED2 Mutations in Antenatal Bartter Syndrome.

    PubMed

    Legrand, Anne; Treard, Cyrielle; Roncelin, Isabelle; Dreux, Sophie; Bertholet-Thomas, Aurélia; Broux, Françoise; Bruno, Daniele; Decramer, Stéphane; Deschenes, Georges; Djeddi, Djamal; Guigonis, Vincent; Jay, Nadine; Khalifeh, Tackwa; Llanas, Brigitte; Morin, Denis; Morin, Gilles; Nobili, François; Pietrement, Christine; Ryckewaert, Amélie; Salomon, Rémi; Vrillon, Isabelle; Blanchard, Anne; Vargas-Poussou, Rosa

    2018-02-07

    Mutations in the MAGED2 gene, located on the X chromosome, have been recently detected in males with a transient form of antenatal Bartter syndrome or with idiopathic polyhydramnios. The aim of this study is to analyze the proportion of the population with mutations in this gene in a French cohort of patients with antenatal Bartter syndrome. The French cohort of patients with antenatal Bartter syndrome encompasses 171 families. Mutations in genes responsible for types 1-4 have been detected in 75% of cases. In patients without identified genetic cause ( n =42), transient antenatal Bartter syndrome was reported in 12 cases. We analyzed the MAGED2 gene in the entire cohort of negative cases by Sanger sequencing and retrospectively collected clinical data regarding pregnancy as well as the postnatal outcome for positive cases. We detected mutations in MAGED2 in 17 patients, including the 12 with transient antenatal Bartter syndrome, from 16 families. Fifteen different mutations were detected (one whole deletion, three frameshift, three splicing, three nonsense, two inframe deletions, and three missense); 13 of these mutations had not been previously described. Interestingly, two patients are females; in one of these patients our data are consistent with selective inactivation of chromosome X explaining the severity. The phenotypic presentation in our patients was variable and less severe than that of the originally described cases. MAGED2 mutations explained 9% of cases of antenatal Bartter syndrome in a French cohort, and accounted for 38% of patients without other characterized mutations and for 44% of male probands of negative cases. Our study confirmed previously published data and showed that females can be affected. As a result, this gene must be included in the screening of the most severe clinical form of Bartter syndrome. Copyright © 2018 by the American Society of Nephrology.

  9. Novel mutations in the Wiskott-Aldrich syndrome protein gene and their effects on transcriptional, translational, and clinical phenotypes.

    PubMed

    Lemahieu, V; Gastier, J M; Francke, U

    1999-01-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked recessive immunodeficiency characterized by thrombocytopenia, eczema, and recurrent infections, and caused by mutations in the WAS protein (WASP) gene. WASP contains several functional domains through which it interacts with proteins involved in intracellular signaling and regulation of the actin cytoskeleton. In this report, 17 WASP gene mutations were identified, 12 of which are novel. DNA of affected males and obligate carriers was PCR amplified and analyzed by SSCA, heteroduplex analysis, and direct sequencing. The effects of the mutations at the mRNA and protein level were ascertained by RT-PCR and Western blot analyses. All missense mutations were located in exons 1-4. Most of the nonsense, frameshift and splice site mutations were found in exons 6-11. Mutations that alter splice sites led to the synthesis of several types of mRNAs, a fraction of which represented the normally spliced product. The presence of normally spliced transcripts was correlated with a milder phenotype. When one such case was studied by Western blotting, reduced amounts of normal-size WASP were present. In other cases as well, a correlation was found between the amount of normal or mutant WASP present and the phenotypes of the affected individuals. No protein was detected in two individuals with severe WAS. Reduced levels of a normal-size WASP with a missense mutation were seen in two individuals with XLT. It is concluded that mutation analysis at the DNA level is not sufficient for predicting clinical course. Studies at the transcript and protein level are needed for a better assessment.

  10. Germline PMS2 and somatic POLE exonuclease mutations cause hypermutability of the leading DNA strand in biallelic mismatch repair deficiency syndrome brain tumours.

    PubMed

    Andrianova, Maria A; Chetan, Ghati Kasturirangan; Sibin, Madathan Kandi; Mckee, Thomas; Merkler, Doron; Narasinga, Rao Kvl; Ribaux, Pascale; Blouin, Jean-Louis; Makrythanasis, Periklis; Seplyarskiy, Vladimir B; Antonarakis, Stylianos E; Nikolaev, Sergey I

    2017-11-01

    Biallelic mismatch repair deficiency (bMMRD) in tumours is frequently associated with somatic mutations in the exonuclease domains of DNA polymerases POLE or POLD1, and results in a characteristic mutational profile. In this article, we describe the genetic basis of ultramutated high-grade brain tumours in the context of bMMRD. We performed exome sequencing of two second-cousin patients from a large consanguineous family of Indian origin with early onset of high-grade glioblastoma and astrocytoma. We identified a germline homozygous nonsense variant, p.R802*, in the PMS2 gene. Additionally, by genome sequencing of these tumours, we found extremely high somatic mutation rates (237/Mb and 123/Mb), as well as somatic mutations in the proofreading domain of POLE polymerase (p.P436H and p.L424V), which replicates the leading DNA strand. Most interestingly, we found, in both cancers, that the vast majority of mutations were consistent with the signature of POLE exo - , i.e. an abundance of C>A and C>T mutations, particularly in special contexts, on the leading strand. We showed that the fraction of mutations under positive selection among mutations in tumour suppressor genes is more than two-fold lower in ultramutated tumours than in other glioblastomas. Genetic analyses enabled the diagnosis of the two consanguineous childhood brain tumours as being due to a combination of PMS2 germline and POLE somatic variants, and confirmed them as bMMRD/POLE exo - disorders. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Rubinstein-Taybi 2 associated to novel EP300 mutations: deepening the clinical and genetic spectrum.

    PubMed

    López, María; García-Oguiza, Alberto; Armstrong, Judith; García-Cobaleda, Inmaculada; García-Miñaur, Sixto; Santos-Simarro, Fernando; Seidel, Verónica; Domínguez-Garrido, Elena

    2018-03-05

    Rubinstein-Taybi syndrome (RSTS) is a rare autosomal dominant neurodevelopmental disorder characterized by broad thumbs and halluces. RSTS is caused by mutations in CREBBP and in EP300 genes in 50-60% and 8%, respectively. Up to now, 76 RSTS-EP300 patients have been described. We present the clinical and molecular characterization of a cohort of RSTS patients carrying EP300 mutations. Patients were selected from a cohort of 72 individuals suspected of RSTS after being negative in CREBBP study. MLPA and panel-based NGS EP300 were performed. Eight patients were found to carry EP300 mutations. Phenotypic characteristics included: intellectual disability (generally mild), postnatal growth retardation, infant feeding problems, psychomotor and language delay and typical facial dysmorphisms (microcephaly, downslanting palpebral fissures, columella below the alae nasi, and prominent nose). Broad thumbs and/or halluces were common, but angulated thumbs were only found in two patients. We identified across the gene novel mutations, including large deletion, frameshift mutations, nonsense, missense and splicing alterations, confirming de novo origin in all but one (the mother, possibly underdiagnosed, has short and broad thumbs and had learning difficulties). The clinical evaluation of our patients corroborates that clinical features in EP300 are less marked than in CREBBP patients although it is difficult to establish a genotype-phenotype correlation although. It is remarkable that these findings are observed in a RSTS-diagnosed cohort; some patients harbouring EP300 mutations could present a different phenotype. Broadening the knowledge about EP300-RSTS phenotype may contribute to improve the management of patients and the counselling to the families.

  12. Sporadic Kindler syndrome with a novel mutation.

    PubMed

    Almeida, Hiram Larangeira de; Heckler, Gláucia Thomas; Fong, Kenneth; Lai-Cheong, Joey; McGrath, John

    2013-01-01

    We report the case of a 28-year-old woman with Kindler syndrome, a rare form of epidermolysis bullosa. Clinically, since childhood, she had widespread pigmentary changes in her skin as well as photosensitivity and fragility of the skin and mucous membranes. The mucosal involvement led to an erosive stomatitis as well as esophageal, anal and vaginal stenoses, requiring surgical intervention. The diagnosis of Kindler syndrome was confirmed by DNA sequencing with compound heterozygosity for a nonsense/frameshift combination of mutations (p.Arg110X; p.Ala289GlyfsX7) in the FERMT1 gene.

  13. Screening for Ataxia-Telangiectasia Mutations in a Population-Based Sample of Women with Early-Onset Breast Cancer

    DTIC Science & Technology

    1999-09-01

    nuclear phosphoprotein. J Biol Chem 271: skipping of fibrillin-1 gene in Marfan syndrome . Nat Genet 33693-33697 16:328-329 Concannon P, Gatti RA (1997...1989) ATFresno: a phenotype linking ataxia-tel- ilnikova OM, Lenoir GM (1998) A BRCA1 nonsense mu- angiectasia with the Nijmegen breakage syndrome ...effectors. Am J Hum Genet 62:269-277 tions and Ehlers-Danlos syndrome type IV. Am J Hum Genet Hull J, Shackleton S, Harris A (1994) The stop mutation 61:1276

  14. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia

    PubMed Central

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W.

    2011-01-01

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML. PMID:21989985

  15. Identification and functional analysis of CBLB mutations in type 1 diabetes.

    PubMed

    Yokoi, Norihide; Fujiwara, Yuuka; Wang, He-Yao; Kitao, Mai; Hayashi, Chihiro; Someya, Tomohiro; Kanamori, Masao; Oiso, Yutaka; Tajima, Naoko; Yamada, Yuichiro; Seino, Yutaka; Ikegami, Hiroshi; Seino, Susumu

    2008-03-28

    Casitas B-lineage lymphoma b (Cblb) is a negative regulator of T-cell activation and dysfunction of Cblb in rats and mice results in autoimmunity. In particular, a nonsense mutation in Cblb has been identified in a rat model of autoimmune type 1 diabetes. To clarify the possible involvement of CBLB mutation in type 1 diabetes in humans, we performed mutation screening of CBLB and characterized functional properties of the mutations in Japanese subjects. Six missense mutations (A155V, F328L, N466D, K837R, T882A, and R968L) were identified in one diabetic subject each, excepting N466D. Of these mutations, F328L showed impaired suppression of T-cell activation and was a loss-of-function mutation. These data suggest that the F328L mutation is involved in the development of autoimmune diseases including type 1 diabetes, and also provide insight into the structure-function relationship of CBLB protein.

  16. The mutY gene: a mutator locus in Escherichia coli that generates G.C----T.A transversions.

    PubMed Central

    Nghiem, Y; Cabrera, M; Cupples, C G; Miller, J H

    1988-01-01

    We have used a strain with an altered lacZ gene, which reverts to wild type via only certain transversions, to detect transversion-specific mutators in Escherichia coli. Detection relied on a papillation technique that uses a combination of beta-galactosides to reveal blue Lac+ papillae. One class of mutators is specific for the G.C----T.A transversion as determined by the reversion pattern of a set of lacZ mutations and by the distribution of forward nonsense mutations in the lacI gene. The locus responsible for the mutator phenotype is designated mutY and maps near 64 min on the genetic map of E. coli. The mutY locus may act in a similar but reciprocal fashion to the previously characterized mutT locus, which results in A.T----C.G transversions. Images PMID:3128795

  17. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants.

    PubMed

    Haghshenas, Maryam; Akbari, Mohammad Taghi; Karizi, Shohreh Zare; Deilamani, Faravareh Khordadpoor; Nafissi, Shahriar; Salehi, Zivar

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50-79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.

  18. Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome.

    PubMed

    Ahmed, Zubair M; Riazuddin, Saima; Aye, Sandar; Ali, Rana A; Venselaar, Hanka; Anwar, Saima; Belyantseva, Polina P; Qasim, Muhammad; Riazuddin, Sheikh; Friedman, Thomas B

    2008-10-01

    Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be composed of 35 exons and encodes a variety of isoforms with 3-11 ectodomains (ECs), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations, we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1, we identified homozygous mutant alleles (one missense, one splice site, three nonsense and two deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date, in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1.

  19. Loss of function mutations in VARS encoding cytoplasmic valyl-tRNA synthetase cause microcephaly, seizures, and progressive cerebral atrophy.

    PubMed

    Stephen, Joshi; Nampoothiri, Sheela; Banerjee, Aditi; Tolman, Nathanial J; Penninger, Josef Martin; Elling, Ullrich; Agu, Chukwuma A; Burke, John D; Devadathan, Kalpana; Kannan, Rajesh; Huang, Yan; Steinbach, Peter J; Martinis, Susan A; Gahl, William A; Malicdan, May Christine V

    2018-04-01

    Progressive microcephaly and neurodegeneration are genetically heterogenous conditions, largely associated with genes that are essential for the survival of neurons. In this study, we interrogate the genetic etiology of two siblings from a non-consanguineous family with severe early onset of neurological manifestations. Whole exome sequencing identified novel compound heterozygous mutations in VARS that segregated with the proband: a missense (c.3192G>A; p.Met1064Ile) and a splice site mutation (c.1577-2A>G). The VARS gene encodes cytoplasmic valyl-tRNA synthetase (ValRS), an enzyme that is essential during eukaryotic translation. cDNA analysis on patient derived fibroblasts revealed that the splice site acceptor variant allele led to nonsense mediated decay, thus resulting in a null allele. Three-dimensional modeling of ValRS predicts that the missense mutation lies in a highly conserved region and could alter side chain packing, thus affecting tRNA binding or destabilizing the interface between the catalytic and tRNA binding domains. Further quantitation of the expression of VARS showed remarkably reduced levels of mRNA and protein in skin derived fibroblasts. Aminoacylation experiments on patient derived cells showed markedly reduced enzyme activity of ValRS suggesting the mutations to be loss of function. Bi-allelic mutations in cytoplasmic amino acyl tRNA synthetases are well-known for their role in neurodegenerative disorders, yet human disorders associated with VARS mutations have not yet been clinically well characterized. Our study describes the phenotype associated with recessive VARS mutations and further functional delineation of the pathogenicity of novel variants identified, which widens the clinical and genetic spectrum of patients with progressive microcephaly.

  20. Targeted next generation sequencing for molecular diagnosis of Usher syndrome.

    PubMed

    Aparisi, María J; Aller, Elena; Fuster-García, Carla; García-García, Gema; Rodrigo, Regina; Vázquez-Manrique, Rafael P; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Françoise; Jaijo, Teresa; Millán, José M

    2014-11-18

    Usher syndrome is an autosomal recessive disease that associates sensorineural hearing loss, retinitis pigmentosa and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous. To date, 10 genes have been associated with the disease, making its molecular diagnosis based on Sanger sequencing, expensive and time-consuming. Consequently, the aim of the present study was to develop a molecular diagnostics method for Usher syndrome, based on targeted next generation sequencing. A custom HaloPlex panel for Illumina platforms was designed to capture all exons of the 10 known causative Usher syndrome genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31 and CLRN1), the two Usher syndrome-related genes (HARS and PDZD7) and the two candidate genes VEZT and MYO15A. A cohort of 44 patients suffering from Usher syndrome was selected for this study. This cohort was divided into two groups: a test group of 11 patients with known mutations and another group of 33 patients with unknown mutations. Forty USH patients were successfully sequenced, 8 USH patients from the test group and 32 patients from the group composed of USH patients without genetic diagnosis. We were able to detect biallelic mutations in one USH gene in 22 out of 32 USH patients (68.75%) and to identify 79.7% of the expected mutated alleles. Fifty-three different mutations were detected. These mutations included 21 missense, 8 nonsense, 9 frameshifts, 9 intronic mutations and 6 large rearrangements. Targeted next generation sequencing allowed us to detect both point mutations and large rearrangements in a single experiment, minimizing the economic cost of the study, increasing the detection ratio of the genetic cause of the disease and improving the genetic diagnosis of Usher syndrome patients.

  1. Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome

    PubMed Central

    Ahmed, Zubair M.; Riazuddin, Saima; Aye, Sandar; Ali, Rana A.; Venselaar, Hanka; Anwar, Saima; Belyantseva, Polina P.; Qasim, Muhammad; Riazuddin, Sheikh; Friedman, Thomas B.

    2009-01-01

    Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be comprised of 35 exons and encodes a variety of isoforms with 3 to 11 ectodomains (EC), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1 we identified homozygous mutant alleles (1 missense, 1 splice site, 3 nonsense and 2 deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1. PMID:18719945

  2. Phenotypic variability in patients with osteogenesis imperfecta caused by BMP1 mutations.

    PubMed

    Pollitt, Rebecca C; Saraff, Vrinda; Dalton, Ann; Webb, Emma A; Shaw, Nick J; Sobey, Glenda J; Mughal, M Zulf; Hobson, Emma; Ali, Farhan; Bishop, Nicholas J; Arundel, Paul; Högler, Wolfgang; Balasubramanian, Meena

    2016-12-01

    Osteogenesis Imperfecta (OI) is an inherited bone fragility disorder most commonly associated with autosomal dominant mutations in the type I collagen genes. Autosomal recessive mutations in a number of genes have also been described, including the BMP1 gene that encodes the mammalian Tolloid (mTLD) and its shorter isoform bone morphogenic protein-1 (BMP1). To date, less than 20 individuals with OI have been identified with BMP1 mutations, with skeletal phenotypes ranging from mild to severe and progressively deforming. In the majority of patients, bone fragility was associated with increased bone mineral density (BMD); however, the full range of phenotypes associated with BMP1 remains unclear. Here, we describe three children with mutations in BMP1 associated with a highly variable phenotype: a sibship homozygous for the c.2188delC mutation that affects only the shorter BMP1 isoform and a further patient who is compound heterozygous for a c.1293C>G nonsense mutation and a c.1148G>A missense mutation in the CUB1 domain. These individuals had recurrent fractures from early childhood, are hypermobile and have no evidence of dentinogenesis imperfecta. The homozygous siblings with OI had normal areal BMD by dual energy X-ray absorptiometry whereas the third patient presented with a high bone mass phenotype. Intravenous bisphosphonate therapy was started in all patients, but discontinued in two patients and reduced in another due to concerns about increasing bone stiffness leading to chalk-stick fractures. Given the association of BMP1-related OI with very high bone material density, concerns remain whether anti-resorptive therapy is indicated in this ultra-rare form of OI.© 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. HPV-negative penile squamous cell carcinoma: disruptive mutations in the TP53 gene are common.

    PubMed

    Kashofer, Karl; Winter, Elke; Halbwedl, Iris; Thueringer, Andrea; Kreiner, Marisa; Sauer, Stefan; Regauer, Sigrid

    2017-07-01

    The majority of penile squamous cell carcinomas is caused by transforming human papilloma virus (HPV) infection. The etiology of HPV-negative cancers is unclear, but TP53 mutations have been implicated. Archival tissues of 108 invasive squamous cell carcinoma from a single pathology institution in a low-incidence area were analyzed for HPV-DNA and p16 ink4a overexpression and for TP53 mutations by ion torrent next-generation sequencing. Library preparation failed in 32/108 squamous cell carcinomas. Institutional review board approval was obtained. Thirty of 76 squamous cell carcinomas (43%; average 63 years) were HPV-negative with 8/33 squamous cell carcinomas being TP53 wild-type (24%; average 63 years). Twenty-five of 33 squamous cell carcinomas (76%; average 65 years) showed 32 different somatic TP53 mutations (23 missense mutations in exons 5-8, 6 nonsense, 1 frameshift and 2 splice-site mutations). Several hotspot mutations were detected multiple times (R175H, R248, R282, and R273). Eighteen of 19 squamous cell carcinomas with TP53 expression in immunohistochemistry had TP53 mutations. Fifty percent of TP53-negative squamous cell carcinomas showed mostly truncating loss-of-function TP53 mutations. Patients without mutations had longer survival (5 years: 86% vs 61%; 10 years: 60% vs 22%), but valid clinically relevant conclusions cannot be drawn due to different tumor stages and heterogeneous treatment of the cases presented in this study. Somatic TP53 mutations are a common feature in HPV-negative penile squamous cell carcinomas and offer an explanation for HPV-independent penile carcinogenesis. About half of HPV-negative penile cancers are driven by oncogenic activation of TP53, while a quarter is induced by loss of TP53 tumor suppressor function. Detection of TP53 mutations should be carried out by sequencing, as immunohistochemical TP53 staining could not identify all squamous cell carcinomas with TP53 mutations.

  4. Type I Glanzmann thrombasthenia caused by an apparently silent beta3 mutation that results in aberrant splicing and reduced beta3 mRNA.

    PubMed

    Xie, Jingli; Pabón, Dina; Jayo, Asier; Butta, Nora; González-Manchón, Consuelo

    2005-05-01

    We report a novel genetic defect in a patient with type I Glanzmann thrombasthenia. Flow cytometry analysis revealed undetectable levels of platelet glycoproteins alphaIIb and beta3, although residual amounts of both proteins were detectable in immunoblotting analysis. Sequence analysis of reversely transcribed platelet beta3 mRNA showed a 100-base pair deletion in the 3'-boundary of exon 11, that results in a frame shift and appearance of a premature STOP codon. Analysis of the corresponding genomic DNA fragment revealed the presence of a homozygous C1815T transition in exon 11. The mutation does not change the amino acid residue but it creates an ectopic consensus splice donor site that is used preferentially, causing splicing out of part of exon 11. The parents of the proband, heterozygous for this mutation, were asymptomatic and had reduced platelet content of alphaIIbbeta3. PCR-based relative quantification of beta3 mRNA failed to detect the mutant transcript in the parents and showed a marked reduction in the patient. The results suggest that the thrombasthenic phenotype is, mainly, the result of the reduced availability of beta3-mRNA, most probably due to activation of the nonsense-mediated mRNA decay mechanism. They also show the convenience of analyzing both genomic DNA and mRNA, in order to ascertain the functional consequences of single nucleotide substitutions.

  5. Mutations in SNX14 Cause a Distinctive Autosomal-Recessive Cerebellar Ataxia and Intellectual Disability Syndrome

    PubMed Central

    Thomas, Anna C.; Williams, Hywel; Setó-Salvia, Núria; Bacchelli, Chiara; Jenkins, Dagan; O’Sullivan, Mary; Mengrelis, Konstantinos; Ishida, Miho; Ocaka, Louise; Chanudet, Estelle; James, Chela; Lescai, Francesco; Anderson, Glenn; Morrogh, Deborah; Ryten, Mina; Duncan, Andrew J.; Pai, Yun Jin; Saraiva, Jorge M.; Ramos, Fabiana; Farren, Bernadette; Saunders, Dawn; Vernay, Bertrand; Gissen, Paul; Straatmaan-Iwanowska, Anna; Baas, Frank; Wood, Nicholas W.; Hersheson, Joshua; Houlden, Henry; Hurst, Jane; Scott, Richard; Bitner-Glindzicz, Maria; Moore, Gudrun E.; Sousa, Sérgio B.; Stanier, Philip

    2014-01-01

    Intellectual disability and cerebellar atrophy occur together in a large number of genetic conditions and are frequently associated with microcephaly and/or epilepsy. Here we report the identification of causal mutations in Sorting Nexin 14 (SNX14) found in seven affected individuals from three unrelated consanguineous families who presented with recessively inherited moderate-severe intellectual disability, cerebellar ataxia, early-onset cerebellar atrophy, sensorineural hearing loss, and the distinctive association of progressively coarsening facial features, relative macrocephaly, and the absence of seizures. We used homozygosity mapping and whole-exome sequencing to identify a homozygous nonsense mutation and an in-frame multiexon deletion in two families. A homozygous splice site mutation was identified by Sanger sequencing of SNX14 in a third family, selected purely by phenotypic similarity. This discovery confirms that these characteristic features represent a distinct and recognizable syndrome. SNX14 encodes a cellular protein containing Phox (PX) and regulator of G protein signaling (RGS) domains. Weighted gene coexpression network analysis predicts that SNX14 is highly coexpressed with genes involved in cellular protein metabolism and vesicle-mediated transport. All three mutations either directly affected the PX domain or diminished SNX14 levels, implicating a loss of normal cellular function. This manifested as increased cytoplasmic vacuolation as observed in cultured fibroblasts. Our findings indicate an essential role for SNX14 in neural development and function, particularly in development and maturation of the cerebellum. PMID:25439728

  6. Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome.

    PubMed

    Thomas, Anna C; Williams, Hywel; Setó-Salvia, Núria; Bacchelli, Chiara; Jenkins, Dagan; O'Sullivan, Mary; Mengrelis, Konstantinos; Ishida, Miho; Ocaka, Louise; Chanudet, Estelle; James, Chela; Lescai, Francesco; Anderson, Glenn; Morrogh, Deborah; Ryten, Mina; Duncan, Andrew J; Pai, Yun Jin; Saraiva, Jorge M; Ramos, Fabiana; Farren, Bernadette; Saunders, Dawn; Vernay, Bertrand; Gissen, Paul; Straatmaan-Iwanowska, Anna; Baas, Frank; Wood, Nicholas W; Hersheson, Joshua; Houlden, Henry; Hurst, Jane; Scott, Richard; Bitner-Glindzicz, Maria; Moore, Gudrun E; Sousa, Sérgio B; Stanier, Philip

    2014-11-06

    Intellectual disability and cerebellar atrophy occur together in a large number of genetic conditions and are frequently associated with microcephaly and/or epilepsy. Here we report the identification of causal mutations in Sorting Nexin 14 (SNX14) found in seven affected individuals from three unrelated consanguineous families who presented with recessively inherited moderate-severe intellectual disability, cerebellar ataxia, early-onset cerebellar atrophy, sensorineural hearing loss, and the distinctive association of progressively coarsening facial features, relative macrocephaly, and the absence of seizures. We used homozygosity mapping and whole-exome sequencing to identify a homozygous nonsense mutation and an in-frame multiexon deletion in two families. A homozygous splice site mutation was identified by Sanger sequencing of SNX14 in a third family, selected purely by phenotypic similarity. This discovery confirms that these characteristic features represent a distinct and recognizable syndrome. SNX14 encodes a cellular protein containing Phox (PX) and regulator of G protein signaling (RGS) domains. Weighted gene coexpression network analysis predicts that SNX14 is highly coexpressed with genes involved in cellular protein metabolism and vesicle-mediated transport. All three mutations either directly affected the PX domain or diminished SNX14 levels, implicating a loss of normal cellular function. This manifested as increased cytoplasmic vacuolation as observed in cultured fibroblasts. Our findings indicate an essential role for SNX14 in neural development and function, particularly in development and maturation of the cerebellum. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Genetic characteristics of eighty-seven patients with the Wiskott-Aldrich syndrome.

    PubMed

    Gulácsy, Vera; Freiberger, Tomas; Shcherbina, Anna; Pac, Malgorzata; Chernyshova, Liudmyla; Avcin, Tadej; Kondratenko, Irina; Kostyuchenko, Larysa; Prokofjeva, Tatjana; Pasic, Srdjan; Bernatowska, Ewa; Kutukculer, Necil; Rascon, Jelena; Iagaru, Nicolae; Mazza, Cinzia; Tóth, Beáta; Erdos, Melinda; van der Burg, Mirjam; Maródi, László

    2011-02-01

    The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive immune deficiency disorder characterized by thrombocytopenia, small platelet size, eczema, recurrent infections, and increased risk of autoimmune disorders and malignancies. WAS is caused by mutations in the WASP gene which encodes WASP, a 502-amino acid protein. WASP plays a critical role in actin cytoskeleton organization and signalling, and functions of immune cells. We present here the results of genetic analysis of patients with WAS from eleven Eastern and Central European (ECE) countries and Turkey. Clinical and haematological information of 87 affected males and 48 carrier females from 77 WAS families were collected. The WASP gene was sequenced from genomic DNA of patients with WAS, as well as their family members to identify carriers. In this large cohort, we identified 62 unique mutations including 17 novel sequence variants. The mutations were scattered throughout the WASP gene and included single base pair changes (17 missense and 11 nonsense mutations), 7 small insertions, 18 deletions, and 9 splice site defects. Genetic counselling and prenatal diagnosis were applied in four affected families. This study was part of the J Project aimed at identifying genetic basis of primary immunodeficiency disease in ECE countries. This report provides the first comprehensive overview of the molecular genetic and demographic features of WAS in ECE. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Molecular basis of maple syrup urine disease: Novel mutations at the E1[alpha] locus that impair E1([alpha][sub 2][beta][sub 2]) assembly or decrease steady-state E1[alpha] mRNA levels of branched-chain [alpha]-keto acid dehydrogenase complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, J.L.; Fisher, C.R.; Chuang, D.T.

    1994-08-01

    The authors report the occurrence of three novel mutations in the E1[alpha] (BCKDHA) locus of the branched-chain [alpha]-keto acid dehydrogenase (BCKAD) complex that cause maple syrup urine disease (MSUD). An 8-bp deletion in exon 7 is present in one allele of a compound-heterozygous patient (GM-649). A single C nucleotide insertion in exon 2 occurs in one allele of an intermediate-MSUD patient (Lo). The second allele of patient Lo carries an A-to-G transition in exon 9 of the E1[alpha] gene. This missense mutation changes Tyr-368 to Cys (Y368C) in the E1[alpha] subunit. Both the 8-bp deletion and the single C insertionmore » generate a downstream nonsense codon. Both mutations appear to be associated with a low abundance of the mutant E1[alpha] mRNA, as determined by allele-specific oligonucleotide probing. Transfection studies strongly suggest that the Y368C substitution in the E1[alpha] subunit impairs its proper assembly with the normal E1[beta]. Unassembled as well as misassembled E1[alpha] and E1[beta] subunits are degraded in the cell. 32 refs., 8 figs.« less

  9. Hereditary spastic paraplegia in Greece: characterisation of a previously unexplored population using next-generation sequencing.

    PubMed

    Lynch, David S; Koutsis, Georgios; Tucci, Arianna; Panas, Marios; Baklou, Markella; Breza, Marianthi; Karadima, Georgia; Houlden, Henry

    2016-06-01

    Hereditary Spastic Paraplegia (HSP) is a syndrome characterised by lower limb spasticity, occurring alone or in association with other neurological manifestations, such as cognitive impairment, seizures, ataxia or neuropathy. HSP occurs worldwide, with different populations having different frequencies of causative genes. The Greek population has not yet been characterised. The purpose of this study was to describe the clinical presentation and molecular epidemiology of the largest cohort of HSP in Greece, comprising 54 patients from 40 families. We used a targeted next-generation sequencing (NGS) approach to genetically assess a proband from each family. We made a genetic diagnosis in >50% of cases and identified 11 novel variants. Variants in SPAST and KIF5A were the most common causes of autosomal dominant HSP, whereas SPG11 and CYP7B1 were the most common cause of autosomal recessive HSP. We identified a novel variant in SPG11, which led to disease with later onset and may be unique to the Greek population and report the first nonsense mutation in KIF5A. Interestingly, the frequency of HSP mutations in the Greek population, which is relatively isolated, was very similar to other European populations. We confirm that NGS approaches are an efficient diagnostic tool and should be employed early in the assessment of HSP patients.

  10. A novel truncating mutation in FLNA causes periventricular nodular heterotopia, Ehlers-Danlos-like collagenopathy and macrothrombocytopenia.

    PubMed

    Ieda, Daisuke; Hori, Ikumi; Nakamura, Yuji; Ohshita, Hironori; Negishi, Yutaka; Shinohara, Tsutomu; Hattori, Ayako; Kato, Takenori; Inukai, Sachiko; Kitamura, Katsumasa; Kawai, Tomoki; Ohara, Osamu; Kunishima, Shinji; Saitoh, Shinji

    2018-06-01

    Filamin A (FLNA) is located in Xq28, and encodes the actin binding protein, filamin A. A mutation in FLNA is the most common cause of periventricular nodular heterotopia (PVNH), but a clear phenotype-genotype correlation has not been established. Indeed, some patients with a FLNA mutation have recently been shown to additionally have Ehlers-Danlos-like collagenopathy or macrothrombocytopenia. In an attempt to establish a clearer correlation between clinical symptoms and genotype, we have investigated a phenotype that involves thrombocytopenia in a patient with a truncation of the FLNA gene. We present the case of a 4-year-old girl who, at birth, showed a ventral hernia. At 2 months of age, she was diagnosed with patent ductus arteriosus (PDA) and aortic valve regurgitation. At 11 months, she underwent ligation of the PDA. She was also diagnosed with diaphragmatic eventration by a preoperative test. At 19 months, motor developmental delay was noted, and brain MRI revealed bilateral PVNH with mega cisterna magna. Presently, there is no evidence of epilepsy, intellectual disability or motor developmental delay. She has chronic, mild thrombocytopenia, and a platelet count that transiently decreases after viral infection. Dilation of the ascending aorta is progressing gradually. Genetic testing revealed a de novo nonsense heterozygous mutation in FLNA (NM_001456.3: c.1621G > T; p.Glu541Ter). Immunofluorescence staining of a peripheral blood smear showed a lack of filamin A expression in 21.1% of her platelets. These filamin A-negative platelets were slightly larger than her normal platelets. Our data suggests immunofluorescence staining of peripheral blood smears is a convenient diagnostic approach to identify patients with a FLNA mutation, which will facilitate further investigation of the correlation between FLNA mutations and patient phenotype. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  11. Homozygosity Mapping in Leber Congenital Amaurosis and Autosomal Recessive Retinitis Pigmentosa in South Indian Families

    PubMed Central

    Srilekha, Sundaramurthy; Arokiasamy, Tharigopala; Srikrupa, Natarajan N.; Umashankar, Vetrivel; Meenakshi, Swaminathan; Sen, Parveen; Kapur, Suman; Soumittra, Nagasamy

    2015-01-01

    Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP) are retinal degenerative diseases which cause severe retinal dystrophy affecting the photoreceptors. LCA is predominantly inherited as an autosomal recessive trait and contributes to 5% of all retinal dystrophies; whereas RP is inherited by all the Mendelian pattern of inheritance and both are leading causes of visual impairment in children and young adults. Homozygosity mapping is an efficient strategy for mapping both known and novel disease loci in recessive conditions, especially in a consanguineous mating, exploiting the fact that the regions adjacent to the disease locus will also be homozygous by descent in such inbred children. Here we have studied eleven consanguineous LCA and one autosomal recessive RP (arRP) south Indian families to know the prevalence of mutations in known genes and also to know the involvement of novel loci, if any. Complete ophthalmic examination was done for all the affected individuals including electroretinogram, fundus photograph, fundus autofluorescence, and optical coherence tomography. Homozygosity mapping using Affymetrix 250K HMA GeneChip on eleven LCA families followed by screening of candidate gene(s) in the homozygous block identified mutations in ten families; AIPL1 – 3 families, RPE65- 2 families, GUCY2D, CRB1, RDH12, IQCB1 and SPATA7 in one family each, respectively. Six of the ten (60%) mutations identified are novel. Homozygosity mapping using Affymetrix 10K HMA GeneChip on the arRP family identified a novel nonsense mutation in MERTK. The mutations segregated within the family and was absent in 200 control chromosomes screened. In one of the eleven LCA families, the causative gene/mutation was not identified but many homozygous blocks were noted indicating that a possible novel locus/gene might be involved. The genotype and phenotype features, especially the fundus changes for AIPL1, RPE65, CRB1, RDH12 genes were as reported earlier. PMID:26147992

  12. Homozygosity Mapping in Leber Congenital Amaurosis and Autosomal Recessive Retinitis Pigmentosa in South Indian Families.

    PubMed

    Srilekha, Sundaramurthy; Arokiasamy, Tharigopala; Srikrupa, Natarajan N; Umashankar, Vetrivel; Meenakshi, Swaminathan; Sen, Parveen; Kapur, Suman; Soumittra, Nagasamy

    2015-01-01

    Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP) are retinal degenerative diseases which cause severe retinal dystrophy affecting the photoreceptors. LCA is predominantly inherited as an autosomal recessive trait and contributes to 5% of all retinal dystrophies; whereas RP is inherited by all the Mendelian pattern of inheritance and both are leading causes of visual impairment in children and young adults. Homozygosity mapping is an efficient strategy for mapping both known and novel disease loci in recessive conditions, especially in a consanguineous mating, exploiting the fact that the regions adjacent to the disease locus will also be homozygous by descent in such inbred children. Here we have studied eleven consanguineous LCA and one autosomal recessive RP (arRP) south Indian families to know the prevalence of mutations in known genes and also to know the involvement of novel loci, if any. Complete ophthalmic examination was done for all the affected individuals including electroretinogram, fundus photograph, fundus autofluorescence, and optical coherence tomography. Homozygosity mapping using Affymetrix 250K HMA GeneChip on eleven LCA families followed by screening of candidate gene(s) in the homozygous block identified mutations in ten families; AIPL1 - 3 families, RPE65- 2 families, GUCY2D, CRB1, RDH12, IQCB1 and SPATA7 in one family each, respectively. Six of the ten (60%) mutations identified are novel. Homozygosity mapping using Affymetrix 10K HMA GeneChip on the arRP family identified a novel nonsense mutation in MERTK. The mutations segregated within the family and was absent in 200 control chromosomes screened. In one of the eleven LCA families, the causative gene/mutation was not identified but many homozygous blocks were noted indicating that a possible novel locus/gene might be involved. The genotype and phenotype features, especially the fundus changes for AIPL1, RPE65, CRB1, RDH12 genes were as reported earlier.

  13. Biallelic Mutations in MRPS34 Lead to Instability of the Small Mitoribosomal Subunit and Leigh Syndrome.

    PubMed

    Lake, Nicole J; Webb, Bryn D; Stroud, David A; Richman, Tara R; Ruzzenente, Benedetta; Compton, Alison G; Mountford, Hayley S; Pulman, Juliette; Zangarelli, Coralie; Rio, Marlene; Boddaert, Nathalie; Assouline, Zahra; Sherpa, Mingma D; Schadt, Eric E; Houten, Sander M; Byrnes, James; McCormick, Elizabeth M; Zolkipli-Cunningham, Zarazuela; Haude, Katrina; Zhang, Zhancheng; Retterer, Kyle; Bai, Renkui; Calvo, Sarah E; Mootha, Vamsi K; Christodoulou, John; Rötig, Agnes; Filipovska, Aleksandra; Cristian, Ingrid; Falk, Marni J; Metodiev, Metodi D; Thorburn, David R

    2017-08-03

    The synthesis of all 13 mitochondrial DNA (mtDNA)-encoded protein subunits of the human oxidative phosphorylation (OXPHOS) system is carried out by mitochondrial ribosomes (mitoribosomes). Defects in the stability of mitoribosomal proteins or mitoribosome assembly impair mitochondrial protein translation, causing combined OXPHOS enzyme deficiency and clinical disease. Here we report four autosomal-recessive pathogenic mutations in the gene encoding the small mitoribosomal subunit protein, MRPS34, in six subjects from four unrelated families with Leigh syndrome and combined OXPHOS defects. Whole-exome sequencing was used to independently identify all variants. Two splice-site mutations were identified, including homozygous c.321+1G>T in a subject of Italian ancestry and homozygous c.322-10G>A in affected sibling pairs from two unrelated families of Puerto Rican descent. In addition, compound heterozygous MRPS34 mutations were identified in a proband of French ancestry; a missense (c.37G>A [p.Glu13Lys]) and a nonsense (c.94C>T [p.Gln32 ∗ ]) variant. We demonstrated that these mutations reduce MRPS34 protein levels and the synthesis of OXPHOS subunits encoded by mtDNA. Examination of the mitoribosome profile and quantitative proteomics showed that the mitochondrial translation defect was caused by destabilization of the small mitoribosomal subunit and impaired monosome assembly. Lentiviral-mediated expression of wild-type MRPS34 rescued the defect in mitochondrial translation observed in skin fibroblasts from affected subjects, confirming the pathogenicity of MRPS34 mutations. Our data establish that MRPS34 is required for normal function of the mitoribosome in humans and furthermore demonstrate the power of quantitative proteomic analysis to identify signatures of defects in specific cellular pathways in fibroblasts from subjects with inherited disease. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Novel homozygous mutation, c.400C>T (p.Arg134*), in the PVRL1 gene underlies cleft lip/palate-ectodermal dysplasia syndrome in an Asian patient.

    PubMed

    Yoshida, Kazue; Hayashi, Ryota; Fujita, Hideki; Kubota, Masaya; Kondo, Mai; Shimomura, Yutaka; Niizeki, Hironori

    2015-07-01

    Cleft lip/palate-ectodermal dysplasia syndrome is a rare, autosomal recessive disorder caused by homozygous loss-of-function mutations of the poliovirus receptor-like 1 (PVRL1) gene encoding nectin-1. Nectin-1 is a cell-cell adhesion molecule that is important for the initial step in the formation of adherens junctions and tight junctions; it is expressed in keratinocytes, neurons, and the developing face and palate. Clinical manifestations comprise a unique facial appearance with cleft lip/palate, ectodermal dysplasia, cutaneous syndactyly of the fingers and/or toes, and in some cases, mental retardation. We present the first report, to our knowledge, of an Asian individual with cleft lip/palate-ectodermal dysplasia syndrome with a novel PVRL1 mutation. A 7-year-old Japanese boy, the first child of a consanguineous marriage, showed hypohidrotic ectodermal dysplasia with sparse, brittle, fine, dry hair and hypodontia, the unique facial appearance with cleft lip/palate, cutaneous syndactyly of the fingers and mild mental retardation. Scanning electron microscopic examination of the hair demonstrated pili torti and pili trianguli et canaliculi. Mutation analysis of exon 2 of PVRL1 revealed a novel homozygous nonsense mutation, c.400C>T (p.Arg134*). His parents were heterozygous for the mutant alleles. All four PVRL1 mutations identified in cleft lip/palate-ectodermal dysplasia syndrome to date, including this study, resulted in truncated proteins that lack the transmembrane domain and intracellular domain of nectin-1, which is necessary to initiate the cell-cell adhesion process. © 2015 Japanese Dermatological Association.

  15. A novel homozygous mutation in the FSHR gene is causative for primary ovarian insufficiency.

    PubMed

    Liu, Hongli; Xu, Xiaofei; Han, Ting; Yan, Lei; Cheng, Lei; Qin, Yingying; Liu, Wen; Zhao, Shidou; Chen, Zi-Jiang

    2017-12-01

    To identify the potential FSHR mutation in a Chinese woman with primary ovarian insufficiency (POI). Genetic and functional studies. University-based reproductive medicine center. A POI patient, her family members, and another 192 control women with regular menstruation. Ovarian biopsy was performed in the patient. Sanger sequencing was carried out for the patient, her sister, and parents. The novel variant identified was further confirmed with the use of control subjects. Sanger sequencing and genotype analysis to identify the potential variant of the FSHR gene; hematoxylin and eosin staining of the ovarian section to observe the follicular development; Western blotting and immunofluorescence to detect FSH receptor (FSHR) expression; and cyclic adenosine monophosphate (cAMP) assay to monitor FSH-induced signaling. Histologic examination of the ovaries in the patient revealed follicular development up to the early antral stage. Mutational screening and genotype analysis of the FSHR gene identified a novel homozygous mutation c.175C>T (p.R59X) in exon 2, which was inherited in the autosomal recessive mode from her heterozygous parents but was absent in her sister and the 192 control women. Functional studies demonstrated that in vitro the nonsense mutation caused the loss of full-length FSHR expression and that p.R59X mutant showed no response to FSH stimulation in the cAMP level. The mutation p.R59X in FSHR is causative for POI by means of arresting folliculogenesis. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Aggrecan Mutations in Nonfamilial Short Stature and Short Stature Without Accelerated Skeletal Maturation.

    PubMed

    Tatsi, Christina; Gkourogianni, Alexandra; Mohnike, Klaus; DeArment, Diana; Witchel, Selma; Andrade, Anenisia C; Markello, Thomas C; Baron, Jeffrey; Nilsson, Ola; Jee, Youn Hee

    2017-08-01

    Aggrecan, a proteoglycan, is an important component of cartilage extracellular matrix, including that of the growth plate. Heterozygous mutations in ACAN , the gene encoding aggrecan, cause autosomal dominant short stature, accelerated skeletal maturation, and joint disease. The inheritance pattern and the presence of bone age equal to or greater than chronological age have been consistent features, serving as diagnostic clues. From family 1, a 6-year-old boy presented with short stature [height standard deviation score (SDS), -1.75] and bone age advanced by 3 years. There was no family history of short stature (height SDS: father, -0.76; mother, 0.7). Exome sequencing followed by Sanger sequencing identified a de novo novel heterozygous frameshift mutation in ACAN (c.6404delC: p.A2135Dfs). From family 2, a 12-year-old boy was evaluated for short stature (height SDS, -3.9). His bone age at the time of genetic evaluation was approximately 1 year less than his chronological age. Family history was consistent with an autosomal dominant inheritance of short stature, with several affected members also showing early-onset osteoarthritis. Exome sequencing, confirmed by Sanger sequencing, identified a novel nonsense mutation in ACAN (c.4852C>T: p.Q1618X), which cosegregated with the phenotype. In conclusion, patients with ACAN mutations may present with nonfamilial short stature and with bone age less than chronological age. These findings expand the known phenotypic spectrum of heterozygous ACAN mutations and indicate that this diagnosis should be considered in children without a family history of short stature and in children without accelerated skeletal maturation.

  17. Novel mutations of RPGR in Chinese retinitis pigmentosa patients and the genotype-phenotype correlation.

    PubMed

    Yang, Liping; Yin, Xiaobei; Feng, Lina; You, Debo; Wu, Lemeng; Chen, Ningning; Li, Aijun; Li, Genlin; Ma, Zhizhong

    2014-01-01

    X-linked Retinitis Pigmentosa (XLRP) accounts for 10-20% of all RP cases, and represents the most severe subtype of this disease. Mutations in the Retinitis Pigmentosa GTPase Regulator (RPGR) gene are the most common causes of XLRP, accounting for over 70-75% of all XLRP cases. In this work, we analyzed all the exons of RPGR gene with Sanger sequencing in seven Chinese XLRP families, two of these with a provisional diagnosis of adRP but without male-to-male transmission. Three novel deletions (c.2233_34delAG; c.2236_37delGA and c.2403_04delAG) and two known nonsense mutations (c.851C→G and c.2260G→T) were identified in five families. Two novel deletions (c.2233_34delAG and c.2236_37delGA) resulted in the same frame shift (p.E746RfsX22), created similar phenotype in Family 3 and 4. The novel deletion (c.2403_04delAG; p.E802GfsX31) resulted in both XLRP and x-linked cone-rod dystrophy within the male patients of family 5, which suggested the presence of either genetic or environmental modifiers, or both, play a substantial role in disease expression. Genotype-phenotype correlation analysis suggested that (1) both patients and female carriers with mutation in Exon 8 (Family 1) manifest more severe disease than did those with ORF15 mutations (Family 2&3&4); (2) mutation close to downstream of ORF15 (Family 5) demonstrate the early preferential loss of cone function with moderate loss of rod function.

  18. Novel mutations of the RS1 gene in a cohort of Chinese families with X-linked retinoschisis

    PubMed Central

    Chen, Jieqiong; Xu, Ke; Zhang, Xiaohui; Pan, Zhe; Dong, Bing

    2014-01-01

    Purpose X-linked retinoschisis is a retinal dystrophy caused by mutations in the RS1 gene in Xp22.1. These mutations lead to schisis (splitting) of the neural retina and subsequent reduction in visual acuity in affected men (OMIM # 312700). The aim of this study was to identify the RS1 gene mutations in a cohort of Chinese patients with X-linked retinoschisis, and to describe the associated phenotypes. Methods Patients and unaffected individuals from 16 unrelated families underwent detailed ophthalmic examinations. After informed consent was obtained, genomic DNA was extracted from the venous blood of all participants. All exons including the exon-intron boundaries of the RS1 gene, were amplified by PCR and the products were analyzed by direct sequencing. Long-range PCR followed by DNA sequencing was used to define the breakpoints of the large deletion. Results Sixteen male individuals from 16 families were diagnosed with retinoschisis by clinical examination. The median age at review was 13.2 years (range: 5–34 years); the median best-corrected visual acuity upon review was 0.26 (range 0.02–1.0). Foveal schisis was found in 82.8% of the eyes (24/29) while peripheral schisis was present in 27.5% of the eyes (8/29). Sequencing of the RS1 gene identified 16 mutations, nine of which were novel. The mutations included eight missense mutations, all located in exons 4–6 (50.0%), two nonsense mutations (12.5%), four small deletions or insertions (25.0%), one splice site mutation (6.25%), and one large genomic deletion that included exon1 (6.25%). Conclusions The mutations found in our study broaden the spectrum of RS1 mutations. The identification of the specific mutation in each pedigree will allow future determination of female carrier status for genetic counseling purposes. PMID:24505212

  19. [Gene mutation analysis of X-linked hypophosphatemic rickets].

    PubMed

    Song, Ying; Ma, Hong-Wei; Li, Fang; Hu, Man; Ren, Shuang; Yu, Ya-Fen; Zhao, Gui-Jie

    2013-11-01

    To investigate the frequency and type of PHEX gene mutations in children with X-linked hypophosphatemic rickets (XLH), the possible presence of mutational hot spots, and the relationship between genotype and clinical phenotype. Clinical data of 10 children with XLH was retrospectively reviewed. The relationship between gene mutation type and severity of XLH was evaluated. PHEX gene mutations were detected in all 10 children with XLH, including 6 cases of missense mutation, 2 cases of splice site mutation, 1 case of frameshift mutation, and 1 case of nonsense mutation. Two new mutations, c.2048T>C and IVS14+1delAG, were found. The type of PHEX gene mutation was not associated with the degree of short stature and leg deformity (P=0.571 and 0.467), and the mutation site was also not associated with the degree of short stature and leg deformity (P=0.400 and 1.000). Missense mutation is the most common type of PHEX gene mutation in children with XLH, and c.2048T>C and IVS14+1delAG are two new PHEX gene mutations. The type and site of PHEX gene mutation are not associated with the severity of XLH.

  20. A novel two-nucleotide deletion in the ATP7A gene associated with delayed infantile onset of Menkes disease.

    PubMed

    Wada, Takahito; Haddad, Marie Reine; Yi, Ling; Murakami, Tomomi; Sasaki, Akiko; Shimbo, Hiroko; Kodama, Hiroko; Osaka, Hitoshi; Kaler, Stephen G

    2014-04-01

    Determining the relationship between clinical phenotype and genotype in genetic diseases is important in clinical practice. In general, frameshift mutations are expected to produce premature termination codons, leading to production of mutant transcripts destined for degradation by nonsense-mediated decay. In X-linked recessive diseases, male patients with frameshift mutations typically have a severe or even lethal phenotype. We report a case of a 17-month-old boy with Menkes disease (NIM #309400), an X-linked recessive copper metabolism disorder caused by mutations in the ATP7A copper transporter gene. He exhibited an unexpectedly late onset and experienced milder symptoms. His genomic DNA showed a de novo two-nucleotide deletion in exon 4 of ATP7A, predicting a translational frameshift and premature stop codon, and a classic severe phenotype. Characterization of his ATP7A mRNA showed no abnormal splicing. We speculate that translation reinitiation could occur downstream to the premature termination codon and produce a partially functional ATP7A protein. Study of the child's fibroblasts found no evidence of translation reinitiation; however, the possibility remains that this phenomenon occurred in neural tissues and influenced the clinical phenotype. Copyright © 2014 Elsevier Inc. All rights reserved.

Top