Science.gov

Sample records for nonsense mutation w1282x

  1. Association of a nonsense mutation (W1282X), the most common mutation in the Ashkenazi Jewish cystic fibrosis patients in Israel, with presentation of severe disease

    SciTech Connect

    Shoshani, T.; Bashan, N.; Seret, H.; Kerem, B.; Kerem, E. ); Augarten, A.; Gazit, E.; Yahav, Y.; Yaar, L. ); Rivlin, Y. ); Tal, A. )

    1992-01-01

    Only about 30% of the cystic fibrosis chromosomes in the Israeli cystic fibrosis patient populations carry the major CF mutation ({Delta}F508). Since different Jewish ethnic groups tended to live as closed isolates until recent times, high frequencies of specific mutations are expected among the remainder cystic fibrosis chromosomes of these ethnic groups. Genetic factors appear to influence the severity of the disease. It is therefore expected that different mutations will be associated with either severe or mild phenotype. Direct genomic sequencing of exons included in the two nucleotide-binding folds of the putative CFTR protein was performed on 119 Israeli cystic fibrosis patients from 97 families. One sequence alteration which is expected to create a termination at residue 1282 (W1282X) was found in 63 chromosomes. Of 95 chromosomes, 57(60%) are of Ashkenazi origin. In conclusion, the W1282X mutation is the most common cystic fibrosis mutation in the Ashkenazi Jewish patient population in Israel. This nonsense mutation is associated with presentation of severe disease.

  2. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators.

    PubMed

    Wang, Wei; Hong, Jeong S; Rab, Andras; Sorscher, Eric J; Kirk, Kevin L

    2016-01-01

    W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3-5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein. PMID:27007499

  3. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators

    PubMed Central

    Wang, Wei; Hong, Jeong S.; Rab, Andras; Sorscher, Eric J.; Kirk, Kevin L.

    2016-01-01

    W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3–5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein. PMID:27007499

  4. Exploring the readthrough of nonsense mutations by non-acidic Ataluren analogues selected by ligand-based virtual screening.

    PubMed

    Pibiri, Ivana; Lentini, Laura; Tutone, Marco; Melfi, Raffaella; Pace, Andrea; Di Leonardo, Aldo

    2016-10-21

    Ataluren, also known as PTC124, is a 5-(fluorophenyl)-1,2,4-oxadiazolyl-benzoic acid suggested to suppress nonsense mutations by readthrough of premature stop codons in the mRNA. Potential interaction of PTC124 with mRNA has been recently studied by molecular dynamics simulations highlighting the importance of H-bonding and stacking π-π interactions. A series of non-acidic analogues of PTC124 were selected from a large database via a ligand-based virtual screening approach. Eight of them were synthesized and tested for their readthrough activity using the Fluc reporter harboring the UGA premature stop codon. The most active compound was further tested for suppression of the UGA nonsense mutation in the bronchial epithelial IB3.1 cell line carrying the W1282X mutation in the CFTR gene. PMID:27404557

  5. Homozygous Nonsense Mutations in TWIST2 Cause Setleis Syndrome

    PubMed Central

    Tukel, Turgut; Šošić, Dražen; Al-Gazali, Lihadh I.; Erazo, Mónica; Casasnovas, Jose; Franco, Hector L.; Richardson, James A.; Olson, Eric N.; Cadilla, Carmen L.; Desnick, Robert J.

    2010-01-01

    The focal facial dermal dysplasias (FFDDs) are a group of inherited developmental disorders in which the characteristic diagnostic feature is bitemporal scar-like lesions that resemble forceps marks. To date, the genetic defects underlying these ectodermal dysplasias have not been determined. To identify the gene defect causing autosomal-recessive Setleis syndrome (type III FFDD), homozygosity mapping was performed with genomic DNAs from five affected individuals and 26 members of the consanguineous Puerto Rican (PR) family originally described by Setleis and colleagues. Microsatellites D2S1397 and D2S2968 were homozygous in all affected individuals, mapping the disease locus to 2q37.3. Haplotype analyses of additional markers in the PR family and a consanguineous Arab family further limited the disease locus to ∼3 Mb between D2S2949 and D2S2253. Of the 29 candidate genes in this region, the bHLH transcription factor, TWIST2, was initially sequenced on the basis of its known involvement in murine facial development. Homozygous TWIST2 nonsense mutations, c.324C>T and c.486C>T, were identified in the affected members of the Arab and PR families, respectively. Characterization of the expressed mutant proteins, p.Q65X and p.Q119X, by electrophoretic mobility shift assays and immunoblot analyses indicated that they were truncated and unstable. Notably, Setleis syndrome patients and Twist2 knockout mice have similar facial features, indicating the gene's conserved role in mammalian development. Although human TWIST2 and TWIST1 encode highly homologous bHLH transcription factors, the finding that TWIST2 recessive mutations cause an FFDD and dominant TWIST1 mutations cause Saethre-Chotzen craniocynostosis suggests that they function independently in skin and bone development. PMID:20691403

  6. Nonsense mutation-associated Becker muscular dystrophy: interplay between exon definition and splicing regulatory elements within the DMD gene

    PubMed Central

    Flanigan, Kevin M.; Dunn, Diane M.; von Niederhausern, Andrew; Soltanzadeh, Payam; Howard, Michael T.; Sampson, Jacinda B.; Swoboda, Kathryn J.; Bromberg, Mark B.; Mendell, Jerry R.; Taylor, Laura; Anderson, Christine B.; Pestronk, Alan; Florence, Julaine; Connolly, Anne M.; Mathews, Katherine D.; Wong, Brenda; Finkel, Richard S.; Bonnemann, Carsten G.; Day, John W.; McDonald, Craig; Weiss, Robert B.

    2013-01-01

    Nonsense mutations are usually predicted to function as null alleles due to premature termination of protein translation. However, nonsense mutations in the DMD gene, encoding the dystrophin protein, have been associated with both the severe Duchenne Muscular Dystrophy (DMD) and milder Becker Muscular Dystrophy (BMD) phenotypes. In a large survey, we identified 243 unique nonsense mutations in the DMD gene, and for 210 of these we could establish definitive phenotypes. We analyzed the reading frame predicted by exons flanking those in which nonsense mutations were found, and present evidence that nonsense mutations resulting in BMD likely do so by inducing exon skipping, confirming that exonic point mutations affecting exon definition have played a significant role in determining phenotype. We present a new model based on the combination of exon definition and intronic splicing regulatory elements for the selective association of BMD nonsense mutations with a subset of DMD exons prone to mutation-induced exon skipping. PMID:21972111

  7. Nonsense mutation-associated Becker muscular dystrophy: interplay between exon definition and splicing regulatory elements within the DMD gene.

    PubMed

    Flanigan, Kevin M; Dunn, Diane M; von Niederhausern, Andrew; Soltanzadeh, Payam; Howard, Michael T; Sampson, Jacinda B; Swoboda, Kathryn J; Bromberg, Mark B; Mendell, Jerry R; Taylor, Laura E; Anderson, Christine B; Pestronk, Alan; Florence, Julaine M; Connolly, Anne M; Mathews, Katherine D; Wong, Brenda; Finkel, Richard S; Bonnemann, Carsten G; Day, John W; McDonald, Craig; Weiss, Robert B

    2011-03-01

    Nonsense mutations are usually predicted to function as null alleles due to premature termination of protein translation. However, nonsense mutations in the DMD gene, encoding the dystrophin protein, have been associated with both the severe Duchenne Muscular Dystrophy (DMD) and milder Becker Muscular Dystrophy (BMD) phenotypes. In a large survey, we identified 243 unique nonsense mutations in the DMD gene, and for 210 of these we could establish definitive phenotypes. We analyzed the reading frame predicted by exons flanking those in which nonsense mutations were found, and present evidence that nonsense mutations resulting in BMD likely do so by inducing exon skipping, confirming that exonic point mutations affecting exon definition have played a significant role in determining phenotype. We present a new model based on the combination of exon definition and intronic splicing regulatory elements for the selective association of BMD nonsense mutations with a subset of DMD exons prone to mutation-induced exon skipping.

  8. Mutations in eukaryotic release factors 1 and 3 act as general nonsense suppressors in Drosophila.

    PubMed Central

    Chao, Anna T; Dierick, Herman A; Addy, Tracie M; Bejsovec, Amy

    2003-01-01

    In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens. PMID:14573473

  9. A mouse model for nonsense mutation bypass therapy shows a dramatic multiday response to geneticin

    PubMed Central

    Yang, Chunmei; Feng, Jinong; Song, Wenjia; Wang, Jicheng; Tsai, Becky; Zhang, Yunwu; Scaringe, William A.; Hill, Kathleen A.; Margaritis, Paris; High, Katherine A.; Sommer, Steve S.

    2007-01-01

    Aminoglycosides can bypass nonsense mutations and are the prototypic agents for translational bypass therapy (TBT). Initial results demonstrate the need for more potent drugs and an in vivo model system for quantitative assessment of TBT. Herein, we present an in vivo system for evaluating the efficacy of premature stop codon management therapies: in vivo quantitative stop codon management repli-sampling TBT efficacy assay (IQSCMaRTEA). Application of IQSCMaRTEA reveals that geneticin is much more efficacious in vivo than gentamicin. Treatment with geneticin elicits a multiday response, and residual F9 antigen can be detected after 3 weeks. These data demonstrate the utility of IQSCMaRTEA for evaluating drugs that bypass nonsense mutations. In addition, IQSCMaRTEA may be helpful for testing inhibitors of nonsense-mediated decay, as stop codon management therapy will sometimes require inhibition of nonsense-mediated decay and translational bypass of the nonsense mutation. Furthermore, geneticin, its metabolites, or better tolerated analogues should be evaluated as a general treatment with multiday response for severe genetic disease caused by nonsense mutation. PMID:17881586

  10. Nonsense mutations in the human. beta. -globin gene affect mRNA metabolism

    SciTech Connect

    Baserga, S.J.; Benz, E.J. Jr. )

    1988-04-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human {alpha}- and {beta}-globin genes. Studies on mRNA isolated from patients with {beta}{sup 0}-thalassemia have shown that for both the {beta}-17 and the {beta}-39 mutations less than normal levels of {beta}-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human {beta}-globin mRNA). In vitro studies using the cloned {beta}-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human {beta}-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation.

  11. Homozygous missense and nonsense mutations in BMPR1B cause acromesomelic chondrodysplasia-type Grebe.

    PubMed

    Graul-Neumann, Luitgard M; Deichsel, Alexandra; Wille, Ulrike; Kakar, Naseebullah; Koll, Randi; Bassir, Christian; Ahmad, Jamil; Cormier-Daire, Valerie; Mundlos, Stefan; Kubisch, Christian; Borck, Guntram; Klopocki, Eva; Mueller, Thomas D; Doelken, Sandra C; Seemann, Petra

    2014-06-01

    Acromesomelic chondrodysplasias (ACDs) are characterized by disproportionate shortening of the appendicular skeleton, predominantly affecting the middle (forearms and forelegs) and distal segments (hands and feet). Here, we present two consanguineous families with missense (c.157T>C, p.(C53R)) or nonsense (c.657G>A, p.(W219*)) mutations in BMPR1B. Homozygous affected individuals show clinical and radiographic findings consistent with ACD-type Grebe. Functional analysis of the missense mutation C53R revealed that the mutated receptor was partially located at the cell membrane. In contrast to the wild-type receptor, C53R mutation hindered the activation of the receptor by its ligand GDF5, as shown by reporter gene assay. Further, overexpression of the C53R mutation in an in vitro chondrogenesis assay showed no effect on cell differentiation, indicating a loss of function. The nonsense mutation (c.657G>A, p.(W219*)) introduces a premature stop codon, which is predicted to be subject to nonsense-mediated mRNA decay, causing reduced protein translation of the mutant allele. A loss-of-function effect of both mutations causing recessive ACD-type Grebe is further supported by the mild brachydactyly or even non-penetrance of these mutations observed in the heterozygous parents. In contrast, dominant-negative BMPR1B mutations described previously are associated with autosomal-dominant brachydactyly-type A2. PMID:24129431

  12. Nonsense mutation in the regulatory gene ETH2 involved in methionine biosynthesis in Saccharomyces cervisiae.

    PubMed

    Masselot, M; Robichon-Szulmajster, H

    1972-08-01

    Ethionine-resistant mutants, mapping at the locus eth2-the product of which is involved in pleiotropic regulation of methionine biosynthesis-have been isolated in a strain carrying five ochre nonsense mutations. Selection for nonsense suppressors in such a strain led to characterization of several allele-specific but gene non-specific suppressors which are active on the recessive heteroallele eth2-2 (resulting in partial recovery of sensitivity toward ethionine) as well as on the five other suppressible alleles. Two of these suppressors are unlinked to the eth2 gene and either dominant or semi-dominant. It is concluded that the mutation eth2-2 resulted in a nonsense codon. Enzyme studies indicate that this mutation results in a complete absence of an active product of gene eth2, in contrast with the effect of a former mutation eth2-1 which was interpreted as leading to a modified product of this gene (Cherest, Surdin-Kerjan and de Robichon-Szulmajster 1971). This conclusion is based on the absence of repressibility of methionine group I enzymes and the observation that in a heteroallelic diploid, eth2-1 expression is not masked by eth2-2. The nonsense suppressors studied lead to at least partial recovery of repressibility of methionine group I enzymes. All these results support the idea that the product of gene ETH2 is an aporepressor protein. PMID:4560067

  13. A patient with a novel homozygous missense mutation in FTO and concomitant nonsense mutation in CETP

    PubMed Central

    Çağlayan, Ahmet Okay; Tüysüz, Beyhan; Coşkun, Süleyman; Quon, Jennifer; Harmanci, Akdes Serin; Baranoski, Jacob F.; Baran, Burçin; Erson-Omay, E. Zeynep; Henegariu, Octavian; Mane, Shrikant M.; Bilgüvar, Kaya; Yasuno, Katsuhito; Günel, Murat

    2015-01-01

    The fat mass and obesity associated gene (FTO) has previously been associated with a variety of diseases and conditions, notably obesity, acute coronary syndrome and metabolic syndrome. Reports describing mutations in FTO as well as FTO animal models have further demonstrated a role for FTO in the development of the brain and other organs. Here, we describe a patient born of consanguineous union who presented with microcephaly, developmental delay, behavioral abnormalities, dysmorphic facial features, hypotonia, and other various phenotypic abnormalities. Whole exome sequencing revealed a novel homozygous missense mutation in FTO and a nonsense mutation in the cholesteryl ester transfer protein (CETP). Exome CNV analysis revealed no disease causing large duplications or deletions within coding regions. Patient’s, her parents’ and non-related control’ fibroblasts were analyzed for morphologic defects, abnormal proliferation, apoptosis and transcriptome profile. We have shown that FTO is located in nucleus of cells from each tested samples. Western blot analysis demonstrated no changes in patient FTO. Q-PCR analysis revealed slightly decreased levels of FTO expression in patient cells compared to controls. No morphological or proliferation differences between the patient and control fibroblasts were observed. There is still much to be learned about the molecular mechanisms by which mutations in FTO contribute to such severe phenotypes. PMID:26740239

  14. Identification and characterization of small molecules that inhibit nonsense mediated RNA decay and suppress nonsense p53 mutations

    PubMed Central

    Martin, Leenus; Grigoryan, Arsen; Wang, Ding; Wang, Jinhua; Breda, Laura; Rivella, Stefano; Cardozo, Timothy; Gardner, Lawrence B.

    2014-01-01

    Many of the gene mutations found in genetic disorders, including cancer, result in premature termination codons (PTCs) and the rapid degradation of their mRNAs by nonsense mediated RNA decay (NMD). We used virtual library screening (VLS) targeting a pocket in the SMG7 protein, a key component of the NMD mechanism, to identify compounds that disrupt the SMG7-UPF1 complex and inhibit NMD. Several of these compounds upregulated NMD targeted mRNAs at nanomolar concentrations with minimal toxicity in cell based assays. As expected, pharmacological NMD inhibition disrupted SMG7-UPF1 interactions. When used in cells with PTC mutated p53, pharmacological NMD inhibition combined with a PTC “read-through” drug led to restoration of full-length p53 protein, upregulation of p53 downstream transcripts, and cell death. These studies serve as proof-of-concept that pharmacological NMD inhibitors can restore mRNA integrity in the presence of PTC and be used as part of a strategy to restore full length protein in a variety of genetic diseases. PMID:24662918

  15. A novel Werner Syndrome mutation: pharmacological treatment by read-through of nonsense mutations and epigenetic therapies

    PubMed Central

    Agrelo, Ruben; Sutz, Miguel Arocena; Setien, Fernando; Aldunate, Fabian; Esteller, Manel; Da Costa, Valeria; Achenbach, Ricardo

    2015-01-01

    Werner Syndrome (WS) is a rare inherited disease characterized by premature aging and increased propensity for cancer. Mutations in the WRN gene can be of several types, including nonsense mutations, leading to a truncated protein form. WRN is a RecQ family member with both helicase and exonuclease activities, and it participates in several cell metabolic pathways, including DNA replication, DNA repair, and telomere maintenance. Here, we reported a novel homozygous WS mutation (c.3767 C > G) in 2 Argentinian brothers, which resulted in a stop codon and a truncated protein (p.S1256X). We also observed increased WRN promoter methylation in the cells of patients and decreased messenger WRN RNA (WRN mRNA) expression. Finally, we showed that the read-through of nonsense mutation pharmacologic treatment with both aminoglycosides (AGs) and ataluren (PTC-124) in these cells restores full-length protein expression and WRN functionality. PMID:25830902

  16. Novel Compound Heterozygous Nonsense PRX Mutations in a Korean Dejerine-Sottas Neuropathy Family

    PubMed Central

    Choi, Ye Ji; Hyun, Young Se; Nam, Soo Hyun; Koo, Heasoo; Hong, Young Bin

    2015-01-01

    Background Mutations in the gene encoding periaxin (PRX) are known to cause autosomal recessive Dejerine-Sottas neuropathy (DSN) or Charcot-Marie-Tooth disease type 4F. However, there have been no reports describing Korean patients with these mutations. Case Report We examined a Korean DSN patient with an early-onset, slowly progressive, demyelinating neuropathy with prominent sensory involvement. Whole-exome sequencing and subsequent capillary sequencing revealed novel compound heterozygous nonsense mutations (p.R392X and p.R679X) in PRX. One mutation was transmitted from each of the patient's parents. No unaffected family member had both mutations, and the mutations were not found in healthy controls. Conclusions We believe that these novel compound heterozygous nonsense mutations are the underlying cause of DSN. The clinical, electrophysiologic, and pathologic phenotypes in this family were similar to those described previously for patients with PRX mutations. We have identified the first PRX mutation in a Korean patient with DSN. PMID:25628743

  17. Nonsense-codon mutations of the ornithine aminotransferase gene with decreased levels of mutant mRNA in gyrate atrophy.

    PubMed

    Mashima, Y; Murakami, A; Weleber, R G; Kennaway, N G; Clarke, L; Shiono, T; Inana, G

    1992-07-01

    A generalized deficiency of the mitochondrial matrix enzyme ornithine aminotransferase (OAT) is the inborn error in gyrate atrophy (GA), an autosomal recessive degenerative disease of the retina and choroid of the eye. Mutations in the OAT gene show a high degree of molecular heterogeneity in GA, reflecting the genetic heterogeneity in this disease. Using the combined techniques of PCR, denaturing gradient gel electrophoresis, and direct sequencing, we have identified three nonsense-codon mutations and one nonsense codon-generating mutation of the OAT gene in GA pedigrees. Three of them are single-base substitutions, and one is a 2-bp deletion resulting in a reading frameshift. A nonsense codon created at position 79 (TGA) by a frameshift and nonsense mutations at codons 209 (TAT----TAA) and 299 (TAC----TAG) result in abnormally low levels of OAT mRNA in the patient's skin fibroblasts. A nonsense mutation at codon 426 (CGA----TGA) in the last exon, however, has little effect on the mRNA level. Thus, the mRNA level can be reduced by nonsense-codon mutations, but the position of the mutation may be important, with earlier premature-translation termination having a greater effect than a later mutation.

  18. Sporadic Hirschsprung`s disease due to a novel nonsense mutation in the RET protooncogene

    SciTech Connect

    Carlson, K.M.; Donis-Keller, H.; Langer, J.C.

    1994-09-01

    Hirschsprung`s disease (HSCR, aganglionic megacolon) is characterized by a lack of ganglion cells along variable lengths of the hindgut. This is most likely due to a failure of the progenitor cells (that are destined to become the ganglion cells of the submucosal and myenteric plexuses) to complete their distal migration in the colon. Recently, mutations in the RET protoocogene have been reported in association with HSCR. We report a novel nonsense mutation resulting in a severely truncated protein. Germline DNA from a panel of 6 HSCR patients was analyzed by SSCP for 20 exons of RET. Eight exons were also directly sequenced. We identified a novel mutation within RET exon 2. The mutation (TAC{sub 36}{yields}TAG{sub 36}), which occurs at nucleotide position 108, involves the replacement of tyrosine with a stop codon and results in a truncated 35 amino acid protein. This mutation is the most 5{prime} nonsense mutation reported thus far. Interestingly, the patient has no prior family history of HSCR and was also diagnosed with multiple developmental anomalies including dysplastic kidney. Recent gene targeting studies with mouse models have shown that RET is essential for normal renal development. However, a parallel phenotype has not been seen in other reported HSCR patients with RET mutations. The observations reported here provide evidence that RET plays a role in human renal development. Ongoing studies will determine the extent of RET involvement in sporadic cases of HSCR.

  19. A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes

    PubMed Central

    Lyons, Susan E.; Lawson, Nathan D.; Lei, Lin; Bennett, Paul E.; Weinstein, Brant M.; Liu, P. Paul

    2002-01-01

    Vlad tepes (vltm651) is one of only five “bloodless” zebrafish mutants isolated through large-scale chemical mutagenesis screening. It is characterized by a severe reduction in blood cell progenitors and few or no blood cells at the onset of circulation. We now report characterization of the mutant phenotype and the identification of the gene mutated in vltm651. Embryos homozygous for the vltm651 mutation had normal expression of hematopoietic stem cell markers through 24 h postfertilization, as well as normal expression of myeloid and lymphoid markers. Analysis of erythroid development revealed variable expression of erythroid markers. Through positional and candidate gene cloning approaches we identified a nonsense mutation in the gata1 gene, 1015C → T (Arg-339 → Stop), in vltm651. The nonsense mutation was located C-terminal to the two zinc fingers and resulted in a truncated protein that was unable to bind DNA or mediate GATA-specific transactivation. A BAC clone containing the zebrafish gata1 gene was able to rescue the bloodless phenotype in vltm651. These results show that the vltm651 mutation is a previously uncharacterized gata1 allele in the zebrafish. The vltm651 mutation sheds new light on Gata1 structure and function in vivo, demonstrates that Gata1 plays an essential role in zebrafish hematopoiesis with significant conservation of function between mammals and zebrafish, and offers a powerful tool for future studies of the hematopoietic pathway. PMID:11960002

  20. Novel nonsense mutation of GPC3 gene in a patient with Simpson-Golabi-Behmel syndrome.

    PubMed

    Ratbi, Ilham; Elalaoui, Siham Chafai; Moizard, Marie-Pierre; Raynaud, Martine; Sefiani, Abdelaziz

    2010-01-01

    Simpson-Golabi-Behmel Syndrome (SGBS) is a rare recessive X-linked disorder characterized by pre- and postnatal overgrowth, distinctive dysmorphic facies and variable congenital malformations. Most cases have been attributed to mutations in the Glypican-3 (GPC3) gene located at Xq26. Glypican-3 plays essential roles in development by modulating cellular responses to growth factors and morphogens. We report here a novel nonsense mutation of the GPC3 gene in a five-year-old Moroccan patient of consanguineous parents who had SGBS phenotype associated with congenital hypothyroidism.

  1. A de novo nonsense mutation of the FUS gene in an apparently familial ALS case

    PubMed Central

    Calvo, Andrea; Moglia, Cristina; Canosa, Antonio; Brunetti, Maura; Barberis, Marco; Traynor, Bryan J.; Carrara, Giovanna; Valentini, Consuelo; Restagno, Gabriella; Chiò, Adriano

    2014-01-01

    Mutations in C9ORF72, SOD1, TARDBP and FUS genes account for approximately two third of familial cases and 5% of sporadic amyotrophic lateral sclerosis (ALS) cases. We present the first case of an ALS patient carrying a de novo nonsense mutation in exon 14 of the FUS gene (c.1483c>t; p.R495X) in a young patient with an apparently familial ALS. This mutation cause a phenotype characterized by a young age at onset, a rapid course (<24 months) and a bulbar onset with early respiratory involvement with a predominant lower motor neuron disease. De novo mutations could account for a sizable number of apparently sporadic ALS patients carrying mutations of ALS-related genes. PMID:24439481

  2. Suppression of nonsense mutations as a therapeutic approach to treat genetic diseases.

    PubMed

    Keeling, Kim M; Bedwell, David M

    2011-01-01

    Suppression therapy is a treatment strategy for genetic diseases caused by nonsense mutations. This therapeutic approach utilizes pharmacological agents that suppress translation termination at in-frame premature termination codons (PTCs) to restore translation of a full-length, functional polypeptide. The efficiency of various classes of compounds to suppress PTCs in mammalian cells is discussed along with the current limitations of this therapy. We also elaborate on approaches to improve the efficiency of suppression that include methods to enhance the effectiveness of current suppression drugs and the design or discovery of new, more effective suppression agents. Finally, we discuss the role of nonsense-mediated mRNA decay (NMD) in limiting the effectiveness of suppression therapy, and describe tactics that may allow the efficiency of NMD to be modulated in order to enhance suppression therapy.

  3. Suppression of Nonsense Mutations As A Therapeutic Approach To Treat Genetic Diseases

    PubMed Central

    Keeling, Kim M.; Bedwell, David M.

    2011-01-01

    Suppression therapy is a treatment strategy for genetic diseases caused by nonsense mutations. This therapeutic approach utilizes pharmacological agents that suppress translation termination at in-frame premature termination codons (PTCs) to restore translation of a full-length, functional polypeptide. The efficiency of various classes of compounds to suppress PTCs in mammalian cells is discussed along with the current limitations of this therapy. We also elaborate on approaches to improve the efficiency of suppression that include methods to enhance the effectiveness of current suppression drugs, and the design or discovery of new, more effective suppression agents. Finally, we discuss the role of nonsense-mediated mRNA decay (NMD) in limiting the effectiveness of suppression therapy, and describe tactics that may allow the efficiency of NMD to be modulated in order to enhance suppression therapy. PMID:21976286

  4. A Novel Missense Mutation in POMT1 Modulates the Severe Congenital Muscular Dystrophy Phenotype Associated with POMT1 Nonsense Mutations

    PubMed Central

    Wallace, Stephanie E.; Conta, Jessie H.; Winder, Thomas L.; Willer, Tobias; Eskuri, Jamie M.; Haas, Richard; Patterson, Kathleen; Campbell, Kevin P.; Moore, Steven A.; Gospe, Sidney M.

    2014-01-01

    Mutations in POMT1 lead to a group of neuromuscular conditions ranging in severity from Walker-Warburg syndrome to limb girdle muscular dystrophy. We report two male siblings, ages 19 and 14, and an unrelated 6-year old female with early onset muscular dystrophy and intellectual disability with minimal structural brain anomalies and no ocular abnormalities. Compound heterozygous mutations in POMT1 were identified including a previously reported nonsense mutation (c.2167dupG; p.Asp723Glyfs*8) associated with Walker-Warburg syndrome and a novel missense mutation in a highly conserved region of the protein O-mannosyltransferase 1 protein (c.1958C>T; p.Pro653Leu). This novel variant reduces the phenotypic severity compared to patients with homozygous c.2167dupG mutations or compound heterozygous patients with a c.2167dupG mutation and a wide range of other mutant POMT1 alleles. PMID:24491487

  5. Identification of a nonsense mutation in the PAX9 gene in molar oligodontia.

    PubMed

    Nieminen, P; Arte, S; Tanner, D; Paulin, L; Alaluusua, S; Thesleff, I; Pirinen, S

    2001-10-01

    Development of dentition is controlled by numerous genes, as has been shown by experimental animal studies and mutations that have been identified by genetic studies in man. Here we report a nonsense mutation in the PAX9 gene that is associated with molar tooth agenesis in a Finnish family. The A340T transversion creates a stop codon at lysine 114, and truncates the coded PAX9 protein at the end of the DNA-binding paired-box. All the affected members of the family were heterozygous for the mutation. The tooth agenesis phenotype involves all permanent second and third molars and most of the first molars and resembles the earlier reported phenotype that was also associated with a PAX9 mutation. The phenotype is presumably a consequence of haploinsufficiency of PAX9. In another Finnish family with molar tooth agenesis, we could not find similar sequence changes in PAX9. PMID:11781684

  6. Identification of a nonsense mutation in the PAX9 gene in molar oligodontia.

    PubMed

    Nieminen, P; Arte, S; Tanner, D; Paulin, L; Alaluusua, S; Thesleff, I; Pirinen, S

    2001-10-01

    Development of dentition is controlled by numerous genes, as has been shown by experimental animal studies and mutations that have been identified by genetic studies in man. Here we report a nonsense mutation in the PAX9 gene that is associated with molar tooth agenesis in a Finnish family. The A340T transversion creates a stop codon at lysine 114, and truncates the coded PAX9 protein at the end of the DNA-binding paired-box. All the affected members of the family were heterozygous for the mutation. The tooth agenesis phenotype involves all permanent second and third molars and most of the first molars and resembles the earlier reported phenotype that was also associated with a PAX9 mutation. The phenotype is presumably a consequence of haploinsufficiency of PAX9. In another Finnish family with molar tooth agenesis, we could not find similar sequence changes in PAX9.

  7. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9.

    PubMed

    Cohen, Jonathan; Pertsemlidis, Alexander; Kotowski, Ingrid K; Graham, Randall; Garcia, Christine Kim; Hobbs, Helen H

    2005-02-01

    The low-density lipoprotein receptor (LDLR) prevents hypercholesterolemia and atherosclerosis by removing low-density lipoprotein (LDL) from circulation. Mutations in the genes encoding either LDLR or its ligand (APOB) cause severe hypercholesterolemia. Missense mutations in PCSK9, encoding a serine protease in the secretory pathway, also cause hypercholesterolemia. These mutations are probably gain-of-function mutations, as overexpression of PCSK9 in the liver of mice produces hypercholesterolemia by reducing LDLR number. To test whether loss-of-function mutations in PCSK9 have the opposite effect, we sequenced the coding region of PCSK9 in 128 subjects (50% African American) with low plasma levels of LDL and found two nonsense mutations (Y142X and C679X). These mutations were common in African Americans (combined frequency, 2%) but rare in European Americans (<0.1%) and were associated with a 40% reduction in plasma levels of LDL cholesterol. These data indicate that common sequence variations have large effects on plasma cholesterol levels in selected populations. PMID:15654334

  8. Translational read-through of a nonsense mutation in ATP7A impacts treatment outcome in Menkes disease

    PubMed Central

    Kaler, Stephen G.; Tang, Jingrong; Donsante, Anthony; Kaneski, Christine

    2009-01-01

    Protein translation ends when a stop codon in a gene’s messenger RNA transcript enters the ribosomal A site. Mutations that create premature stop codons (nonsense mutations) typically cause premature translation termination. An alternative outcome, read-through translation (or nonsense suppression), is well known in prokaryotic, viral, and yeast genes but has not been clearly documented in humans except in the context of pharmacological manipulations. Here, we identify and characterize native read-through of a nonsense mutation (R201X) in the human copper transport gene, ATP7A. Western blotting, in vitro expression analyses, immunohistochemistry, and yeast complementation assays using cultured fibroblasts from a classical Menkes disease patient all indicated small amounts of native ATP7AR201X read-through and were associated with a dramatic clinical response to early copper treatment. PMID:19194885

  9. Exome sequencing reveals a nebulin nonsense mutation in a dog model of nemaline myopathy.

    PubMed

    Evans, Jacquelyn M; Cox, Melissa L; Huska, Jonathan; Li, Frank; Gaitero, Luis; Guo, Ling T; Casal, Margaret L; Granzier, Henk L; Shelton, G Diane; Clark, Leigh Anne

    2016-10-01

    Nemaline myopathy (NM) is a congenital muscle disorder associated with muscle weakness, hypotonia, and rod bodies in the skeletal muscle fibers. Mutations in 10 genes have been implicated in human NM, but spontaneous cases in dogs have not been genetically characterized. We identified a novel recessive myopathy in a family of line-bred American bulldogs (ABDs); rod bodies in muscle biopsies established this as NM. Using SNP profiles from the nuclear family, we evaluated inheritance patterns at candidate loci and prioritized TNNT1 and NEB for further investigation. Whole exome sequencing of the dam, two affected littermates, and an unaffected littermate revealed a nonsense mutation in NEB (g.52734272 C>A, S8042X). Whole tissue gel electrophoresis and western blots confirmed a lack of full-length NEB in affected tissues, suggesting nonsense-mediated decay. The pathogenic variant was absent from 120 dogs of 24 other breeds and 100 unrelated ABDs, suggesting that it occurred recently and may be private to the family. This study presents the first molecularly characterized large animal model of NM, which could provide new opportunities for therapeutic approaches. PMID:27215641

  10. Identification of a novel WFS1 homozygous nonsense mutation in Jordanian children with Wolfram syndrome.

    PubMed

    Bodoor, Khaldon; Batiha, Osama; Abu-Awad, Ayman; Al-Sarihin, Khaldon; Ziad, Haya; Jarun, Yousef; Abu-Sheikha, Aya; Abu Jalboush, Sara; Alibrahim, Khoulod S

    2016-09-01

    Wolfram syndrome (WS) is a rare autosomal recessive neurodegenerative disorder characterized by the presentation of early onset type I diabetes mellitus and optic atrophy with later onset diabetes insipidus and deafness. WFS1 gene was identified on chromosome 4p16.1 as the gene responsible for WS disease given that most of the WS patients were found to carry mutations in this gene. This study was carried out to investigate the molecular spectrum of WFS1 gene in Jordanian families. Molecular and clinical characterization was performed on five WS patients from two unrelated Jordanian families. Our data indicated that WS patients of the first family harbored two deletion mutations (V415del and F247fs) located in exon 8 and exon 7 respectively, with a compound heterozygous pattern of inheritance; while in the second family, we identified a novel nonsense mutation (W185X) located in exon 5 in the N-terminal cytoplasmic domain with a homozygous pattern of inheritance. This mutation can be considered as loss of function mutation since the resulting truncated protein lost both the transmembrane domain and the C-terminal domain. Additionally, the W185X mutation lies within the CaM binding domain in wolframin protein which is thought to have a role in the regulation of wolframin function in response to calcium levels. PMID:27617222

  11. A new homozygous nonsense mutation in LAMA3A underlying laryngo-onycho-cutaneous syndrome.

    PubMed

    Barzegar, M; Mozafari, N; Kariminejad, A; Asadikani, Z; Ozoemena, L; McGrath, J A

    2013-12-01

    Laryngo-onycho-cutaneous (LOC) syndrome is a subtype of autosomal recessive junctional epidermolysis bullosa in which there is prominent skin and mucosal granulation tissue that can lead to delayed wound healing, laryngeal obstruction and blindness. Thus far, all cases are of Punjabi ancestry and have been shown to result from a founder mutation in the LAMA3 gene, notably involving a single nucleotide insertion mutation in exon 39, which is specific to the LAMA3A (designated exon 1 of LAMA3A) and not the LAMA3B1 or LAMA3B2 isoforms. Here, we describe a new pedigree with LOC syndrome. Affected individuals (from Iran) have the characteristic clinicopathological and molecular features of LOC syndrome: prominent granulation tissue (especially affecting the eyes), normal intensity laminin-332 immunostaining at the dermal-epidermal junction, and autosomal recessive mutations in the LAMA3A-specific exon. The pathogenic mutation is a homozygous nonsense mutation, designated p.Gln57X, which just affects the laminin-α3a transcript. These findings therefore expand the molecular basis of LOC syndrome. PMID:23869449

  12. Compound heterozygosity for nonsense ans missense mutations in the LAMB3 gene in nonlethal junctional epidermolysis bullosa.

    PubMed

    McGarth, J A; Christiano, A M; Pulkkinen, L; Eady, R A; Uitto, J

    1996-05-01

    Mutations in the genes encoding laminin 5 (LAMA3, LAMB3, and LAMC2) have been delineated in the autosomal recessive blistering skin disorder, junctional epidermolysis bullosa, particularly in the lethal (Herlitz) variant. In this study, we searched for mutations in these genes in two patients with nonlethal forms of junctional epidermolysis bullosa using polymerase chain reaction amplification of genomic DA, followed by heteroduplex analysis and direct automated nucleotide sequencing. Both patients were found to be compound heterozygotes for the same nonsense mutation on one LAMB3 allele, and different missense mutations on the other LAMB3 allele. The combination of a nonsense and a missense mutation in the LAMB3 gene appears to be important in determining the milder clinical phenotype in some cases of the nonlethal forms of junctional epidermolysis bullosa involving abnormalities in laminin 5. PMID:8618058

  13. Compound heterozygosity for nonsense and missense mutations in the LAMB3 gene in nonlethal junctional epidermolysis bullosa.

    PubMed

    Christiano, A M; Pulkkinen, L; Eady, R A; Uitto, J

    1996-04-01

    Mutations in the genes encoding laminin 5 (LAMA3, LAMB3, and LAMC2) have been delineated in the autosomal recessive blistering skin disorder, junctional epidermolysis bullosa, particularly in the lethal (Herlitz) variant. In this study, we searched for mutations in these genes in two patients with nonlethal forms of junctional epidermolysis bullosa using polymerase chain reaction amplification of genomic DNA, followed by heteroduplex analysis and direct automated nucleotide sequencing. Both patients were found to be compound heterozygotes for the same nonsense mutation on one LAMB3 allele, and different missense mutations on the other LAMB3 allele. The combination of nonsense and a missense mutation in the LAMB3 gene appears to be important in determining the milder clinical phenotype in some cases of the nonlethal forms of junctional epidermolysis bullosa involving abnormalities in laminin 5. PMID:8618020

  14. Hereditary tyrosinemia type 1: Identification of nonsense, missense and splicesite mutations of the FAH gene

    SciTech Connect

    Ploos van Amstel, J.K.; Royers, J.F.M.; Kol, M.A.

    1994-09-01

    Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disease due to deficiency of the enzyme fumarylacetoacetase (FAH). The FAH gene has a length of 35 kb and contains 14 exons that encode an mRNA of 1400 nt. To get more insight into the molecular basis of the disorder, probands of nine unrelated HT1 families were screened for abnormalities in the FAH gene using PCR. SSCP analysis and direct sequencing of the amplified exons revealed 7 different mutations. Three mutations involve splice consensus sites viz. IVS6-1(g-a)(identified 4x), IVS7-1(del g)(2x) and IVS12+5(g-a)(7x). Analysis of the FAH mRNA by RT-PCR for the effect of these mutations showed a 1 nt frameshift for IVS7-1 and the skipping of exon 12 for IVS12+5. The IVS6-1 transition results in three different mRNAs: all three transcripts missed the first 5 nt of exon 7; one transcript showed in addition a 13 nt deletion in exon 8. Two nonsense mutations were identified viz. E357X(1x) and E364X (2x); both mutations result in a reduced level of FAH mRNA. One missense mutation has been found C193R(1x). A silent mutation N232N(1x) was detected in association with the skipping of exon 8. The data reveal a founder effect for several of the FAH mutations. Furthermore, they indicated the molecular heterogeneity of HT1.

  15. Screening for five mutations detects 97% of cystic fibrosis (CF) chromosomes and predicts a carrier frequency of 1:29 in the Jewish Ashkenazi population

    SciTech Connect

    Abeliovich, D.; Lavon, I.P.; Lerer, I.; Cohen, T. ); Cutting, G.R. ); Springer, C.; Avital, A.

    1992-11-01

    To determine the distribution and frequency of cystic fibrosis (CF) mutations in the Israeli population, the authors have screened 96 patients for 11 relatively common mutations. Five mutations - [Delta]F508, G542X, W1282X, N1303K, and 3849 + 10kb C[yields]T-were found to account for 97% of the CF alleles in the Ashkenazi Jews. In contrast, of the 11 mutations tested, only [Delta]F508 was detected in Jewish patients of Sephardic or Oriental origin, accounting for 43% of the CF alleles. Four mutations - [Delta]F508, G542X, W1282X, and N1303K- accounted for 55% of the CF alleles in Arab patients. In a pilot screening study, a random sample of 424 Ashkenazi individuals was analyzed for three mutations - [Delta]F508, W128X, and G542X. Thirteen individuals were detected as heterozygotes (six for [Delta]F508 and seven for W1282X), predicting a heterozygote frequency of 1:29. This is similar to the frequency of carriers in the Caucasian population of northern European ancestry. On the basis of these data, the Ashkenazi populations is considered to be a candidate for CF heterozygote screening. 32 refs., 2 tabs.

  16. Phenotypic variation of a novel nonsense mutation in the P0 intracellular domain.

    PubMed

    Senderek, J; Ramaekers, V T; Zerres, K; Rudnik-Schöneborn, S; Schröder, J M; Bergmann, C

    2001-11-15

    Mutations in the gene for the peripheral myelin protein zero (P0, MPZ) cause type 1B of Charcot-Marie-Tooth sensorimotor neuropathy (CMT1B). Here we report a German family with a novel heterozygous P0 nonsense mutation (G206X) that supposedly removes four-fifths of the amino acid residues constituting the P0 intracellular domain. The 12-year-old propositus had childhood-onset CMT1B associated with bilateral pes cavus, moderate lower limb weakness, and mildly reduced sensory qualities in the distal legs. The electrophysiology was consistent with a demyelinating neuropathy. He inherited the mutation from his mother who had no complaints but slight pes cavus deformity and slow nerve conduction velocities (NCV). Conclusively, truncating mutations within the P0 intracellular domain do not necessarily cause a severe phenotype such as Dejerine-Sottas syndrome (DSS) or congenital hypomyelinating neuropathy (CHN), but can result in mild or moderate CMT1B with intrafamilial clinical variability. PMID:11701152

  17. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I.

    PubMed

    Li, Kairong; Turner, Ashley N; Chen, Min; Brosius, Stephanie N; Schoeb, Trenton R; Messiaen, Ludwine M; Bedwell, David M; Zinn, Kurt R; Anastasaki, Corina; Gutmann, David H; Korf, Bruce R; Kesterson, Robert A

    2016-07-01

    Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681*) and a missense mutation (c.2542G>C; p.Gly848Arg). The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1(Arg681*) and missense NF1(Gly848Arg) mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1(Gly848Arg) mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1(Arg681*) mutation are not viable. Mice with one Nf1(Arg681*) allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf1(4F/Arg681*); DhhCre) display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1. PMID:27482814

  18. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I

    PubMed Central

    Li, Kairong; Turner, Ashley N.; Chen, Min; Brosius, Stephanie N.; Schoeb, Trenton R.; Messiaen, Ludwine M.; Bedwell, David M.; Zinn, Kurt R.; Anastasaki, Corina; Gutmann, David H.; Korf, Bruce R.

    2016-01-01

    ABSTRACT Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681*) and a missense mutation (c.2542G>C; p.Gly848Arg). The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1Arg681* and missense NF1Gly848Arg mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1Gly848Arg mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1Arg681* mutation are not viable. Mice with one Nf1Arg681* allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf14F/Arg681*; DhhCre) display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1. PMID:27482814

  19. Thomsen or Becker myotonia? A novel autosomal recessive nonsense mutation in the CLCN1 gene associated with a mild phenotype.

    PubMed

    Gurgel-Giannetti, Juliana; Senkevics, Adriano S; Zilbersztajn-Gotlieb, Dinorah; Yamamoto, Lydia U; Muniz, Viviane P; Pavanello, Rita C M; Oliveira, Acary B; Zatz, Mayana; Vainzof, Mariz

    2012-02-01

    We describe a large Brazilian consanguineous kindred with 3 clinically affected patients with a Thomsen myotonia phenotype. They carry a novel homozygous nonsense mutation in the CLCN1 gene (K248X). None of the 6 heterozygote carriers show any sign of myotonia on clinical evaluation or electromyography. These findings confirm the autosomal recessive inheritance of the novel mutation in this family, as well as the occurrence of phenotypic variability in the autosomal recessive forms of myotonia.

  20. Haploinsufficiency caused by a nonsense mutation in NCSTN underlying hidradenitis suppurativa in a Chinese family.

    PubMed

    Yang, J-Q; Wu, X-J; Dou, T-T; Jiao, T; Chen, X-B; Min, M; Cai, S-Q; Zheng, M

    2015-12-01

    Hidradenitis suppurativa (HS) is a chronic disease of follicular occlusion. It involves the axilla, groin, perianal and perineal regions, and is characterized by recurrent draining sinuses, skin abscesses and disfiguring scars. Loss-of-function mutations in the genes encoding γ-secretase have been identified as a cause of HS. We collected skin samples from three patients with HS from a Chinese family carrying a NCSTN mutation (c.1258C>T (p.Q420X)) and three unrelated healthy controls (HCs). Expression level of nicastrin in skin tissue and cultured keratinocytes and fibroblasts of patients and HCs was determined by real-time quantitative PCR and western blotting. We found that the mRNA and protein levels of nicastrin were significantly reduced in the whole skin, epidermis, dermis, and cultured keratinocytes and fibroblasts compared with HCs. Therefore, we conclude that haploinsufficiency of the NCSTN gene caused by the nonsense mutation c.1258C>T (p.Q420X) contributes to the occurrence of HS in this family.

  1. Identification of a Nonsense Mutation in CWC15 Associated with Decreased Reproductive Efficiency in Jersey Cattle

    PubMed Central

    Sonstegard, Tad S.; Cole, John B.; VanRaden, Paul M.; Van Tassell, Curtis P.; Null, Daniel J.; Schroeder, Steven G.; Bickhart, Derek; McClure, Matthew C.

    2013-01-01

    With the recent advent of genomic tools for cattle, several recessive conditions affecting fertility have been identified and selected against, such as deficiency of uridine monophosphate synthase, complex vertebral malformation, and brachyspina. The current report refines the location of a recessive haplotype affecting fertility in Jersey cattle using crossover haplotypes, discovers the causative mutation using whole genome sequencing, and examines the gene’s role in embryo loss. In an attempt to identify unknown recessive lethal alleles in the current dairy population, a search using deep Mendelian sampling of 5,288 Jersey cattle was conducted for high-frequency haplotypes that have a deficit of homozygotes at the population level. This search led to the discovery of a putative recessive lethal in Jersey cattle on Bos taurus autosome 15. The haplotype, denoted JH1, was associated with reduced fertility, and further investigation identified one highly-influential Jersey bull as the putative source ancestor. By combining SNP analysis of whole-genome sequences aligned to the JH1 interval and subsequent SNP validation a nonsense mutation in CWC15 was identified as the likely causative mutation underlying the fertility phenotype. No homozygous recessive individuals were found in 749 genotyped animals, whereas all known carriers and carrier haplotypes possessed one copy of the mutant allele. This newly identified lethal has been responsible for a substantial number of spontaneous abortions in Jersey dairy cattle throughout the past half-century. With the mutation identified, selection against the deleterious allele in breeding schemes will aid in reducing the incidence of this defect in the population. These results also show that carrier status can be imputed with high accuracy. Whole-genome resequencing proved to be a powerful strategy to rapidly identify a previously mapped deleterious mutation in a known carrier of a recessive lethal allele. PMID:23349982

  2. A nonsense mutation in PDE6H causes autosomal-recessive incomplete achromatopsia.

    PubMed

    Kohl, Susanne; Coppieters, Frauke; Meire, Françoise; Schaich, Simone; Roosing, Susanne; Brennenstuhl, Christina; Bolz, Sylvia; van Genderen, Maria M; Riemslag, Frans C C; Lukowski, Robert; den Hollander, Anneke I; Cremers, Frans P M; De Baere, Elfride; Hoyng, Carel B; Wissinger, Bernd

    2012-09-01

    Achromatopsia (ACHM) is an autosomal-recessive retinal dystrophy characterized by color blindness, photophobia, nystagmus, and severely reduced visual acuity. Its prevalence has been estimated to about 1 in 30,000 individuals. Four genes, GNAT2, PDE6C, CNGA3, and CNGB3, have been implicated in ACHM, and all encode functional components of the phototransduction cascade in cone photoreceptors. Applying a functional-candidate-gene approach that focused on screening additional genes involved in this process in a cohort of 611 index cases with ACHM or other cone photoreceptor disorders, we detected a homozygous single base change (c.35C>G) resulting in a nonsense mutation (p.Ser12(∗)) in PDE6H, encoding the inhibitory γ subunit of the cone photoreceptor cyclic guanosine monophosphate phosphodiesterase. The c.35C>G mutation was present in three individuals from two independent families with a clinical diagnosis of incomplete ACHM and preserved short-wavelength-sensitive cone function. Moreover, we show through immunohistochemical colocalization studies in mouse retina that Pde6h is evenly present in all retinal cone photoreceptors, a fact that had been under debate in the past. These findings add PDE6H to the set of genes involved in autosomal-recessive cone disorders and demonstrate the importance of the inhibitory γ subunit in cone phototransduction. PMID:22901948

  3. A novel nonsense mutation in the NOG gene causes familial NOG-related symphalangism spectrum disorder

    PubMed Central

    Takano, Kenichi; Ogasawara, Noriko; Matsunaga, Tatsuo; Mutai, Hideki; Sakurai, Akihiro; Ishikawa, Aki; Himi, Tetsuo

    2016-01-01

    The human noggin (NOG) gene is responsible for a broad spectrum of clinical manifestations of NOG-related symphalangism spectrum disorder (NOG-SSD), which include proximal symphalangism, multiple synostoses, stapes ankylosis with broad thumbs (SABTT), tarsal–carpal coalition syndrome, and brachydactyly type B2. Some of these disorders exhibit phenotypes associated with congenital stapes ankylosis. In the present study, we describe a Japanese pedigree with dactylosymphysis and conductive hearing loss due to congenital stapes ankylosis. The range of motion in her elbow joint was also restricted. The family showed multiple clinical features and was diagnosed with SABTT. Sanger sequencing analysis of the NOG gene in the family members revealed a novel heterozygous nonsense mutation (c.397A>T; p.K133*). In the family, the prevalence of dactylosymphysis and hyperopia was 100% while that of stapes ankylosis was less than 100%. Stapes surgery using a CO2 laser led to a significant improvement of the conductive hearing loss. This novel mutation expands our understanding of NOG-SSD from clinical and genetic perspectives. PMID:27508084

  4. A novel nonsense mutation in the NOG gene causes familial NOG-related symphalangism spectrum disorder.

    PubMed

    Takano, Kenichi; Ogasawara, Noriko; Matsunaga, Tatsuo; Mutai, Hideki; Sakurai, Akihiro; Ishikawa, Aki; Himi, Tetsuo

    2016-01-01

    The human noggin (NOG) gene is responsible for a broad spectrum of clinical manifestations of NOG-related symphalangism spectrum disorder (NOG-SSD), which include proximal symphalangism, multiple synostoses, stapes ankylosis with broad thumbs (SABTT), tarsal-carpal coalition syndrome, and brachydactyly type B2. Some of these disorders exhibit phenotypes associated with congenital stapes ankylosis. In the present study, we describe a Japanese pedigree with dactylosymphysis and conductive hearing loss due to congenital stapes ankylosis. The range of motion in her elbow joint was also restricted. The family showed multiple clinical features and was diagnosed with SABTT. Sanger sequencing analysis of the NOG gene in the family members revealed a novel heterozygous nonsense mutation (c.397A>T; p.K133*). In the family, the prevalence of dactylosymphysis and hyperopia was 100% while that of stapes ankylosis was less than 100%. Stapes surgery using a CO2 laser led to a significant improvement of the conductive hearing loss. This novel mutation expands our understanding of NOG-SSD from clinical and genetic perspectives. PMID:27508084

  5. Nonsense Mutations in AAGAB Cause Punctate Palmoplantar Keratoderma Type Buschke-Fischer-Brauer

    PubMed Central

    Giehl, Kathrin A.; Eckstein, Gertrud N.; Pasternack, Sandra M.; Praetzel-Wunder, Silke; Ruzicka, Thomas; Lichtner, Peter; Seidl, Kerstin; Rogers, Mike; Graf, Elisabeth; Langbein, Lutz; Braun-Falco, Markus; Betz, Regina C.; Strom, Tim M.

    2012-01-01

    Punctate palmoplantar keratodermas (PPKPs) are rare autosomal-dominant inherited skin diseases that are characterized by multiple hyperkeratotic plaques distributed on the palms and soles. To date, two different loci in chromosomal regions 15q22-15q24 and 8q24.13-8q24.21 have been reported. Pathogenic mutations, however, have yet to be identified. In order to elucidate the genetic cause of PPKP type Buschke-Fischer-Brauer (PPKP1), we performed exome sequencing in five affected individuals from three families, and we identified in chromosomal region 15q22.33-q23 two heterozygous nonsense mutations—c.370C>T (p.Arg124∗) and c.481C>T (p.Arg161∗)—in AAGAB in all affected individuals. Using immunoblot analysis, we showed that both mutations result in premature termination of translation and truncated protein products. Analyses of mRNA of affected individuals revealed that the disease allele is either not detectable or only detectable at low levels. To assess the consequences of the mutations in skin, we performed immunofluorescence analyses. Notably, the amount of granular staining in the keratinocytes of affected individuals was lower in the cytoplasm but higher around the nucleus than it was in the keratinocytes of control individuals. AAGAB encodes the alpha-and gamma-adaptin-binding protein p34 and might play a role in membrane traffic as a chaperone. The identification of mutations, along with the results from additional studies, defines the genetic basis of PPKP1 and provides evidence that AAGAB plays an important role in skin integrity. PMID:23000146

  6. Progressive hearing loss and vestibular dysfunction caused by a homozygous nonsense mutation in CLIC5

    PubMed Central

    Seco, Celia Zazo; Oonk, Anne MM; Domínguez-Ruiz, María; Draaisma, Jos MT; Gandía, Marta; Oostrik, Jaap; Neveling, Kornelia; Kunst, Henricus PM; Hoefsloot, Lies H; del Castillo, Ignacio; Pennings, Ronald JE; Kremer, Hannie; Admiraal, Ronald JC; Schraders, Margit

    2015-01-01

    In a consanguineous Turkish family diagnosed with autosomal recessive nonsyndromic hearing impairment (arNSHI), a homozygous region of 47.4 Mb was shared by the two affected siblings on chromosome 6p21.1-q15. This region contains 247 genes including the known deafness gene MYO6. No pathogenic variants were found in MYO6, neither with sequence analysis of the coding region and splice sites nor with mRNA analysis. Subsequent candidate gene evaluation revealed CLIC5 as an excellent candidate gene. The orthologous mouse gene is mutated in the jitterbug mutant that exhibits progressive hearing impairment and vestibular dysfunction. Mutation analysis of CLIC5 revealed a homozygous nonsense mutation c.96T>A (p.(Cys32Ter)) that segregated with the hearing loss. Further analysis of CLIC5 in 213 arNSHI patients from mostly Dutch and Spanish origin did not reveal any additional pathogenic variants. CLIC5 mutations are thus not a common cause of arNSHI in these populations. The hearing loss in the present family had an onset in early childhood and progressed from mild to severe or even profound before the second decade. Impaired hearing is accompanied by vestibular areflexia and in one of the patients with mild renal dysfunction. Although we demonstrate that CLIC5 is expressed in many other human tissues, no additional symptoms were observed in these patients. In conclusion, our results show that CLIC5 is a novel arNSHI gene involved in progressive hearing impairment, vestibular and possibly mild renal dysfunction in a family of Turkish origin. PMID:24781754

  7. Novel nonsense mutation in the katA gene of a catalase-negative Staphylococcus aureus strain☆

    PubMed Central

    Lagos, Jaime; Alarcón, Pedro; Benadof, Dona; Ulloa, Soledad; Fasce, Rodrigo; Tognarelli, Javier; Aguayo, Carolina; Araya, Pamela; Parra, Bárbara; Olivares, Berta; Hormazábal, Juan Carlos; Fernández, Jorge

    2016-01-01

    We report the first description of a rare catalase-negative strain of Staphylococcus aureus in Chile. This new variant was isolated from blood and synovial tissue samples of a pediatric patient. Sequencing analysis revealed that this catalase-negative strain is related to ST10 strain, which has earlier been described in relation to S. aureus carriers. Interestingly, sequence analysis of the catalase gene katA revealed presence of a novel nonsense mutation that causes premature translational truncation of the C-terminus of the enzyme leading to a loss of 222 amino acids. Our study suggests that loss of catalase activity in this rare catalase-negative Chilean strain is due to this novel nonsense mutation in the katA gene, which truncates the enzyme to just 283 amino acids. PMID:26887242

  8. Novel nonsense mutation in the katA gene of a catalase-negative Staphylococcus aureus strain.

    PubMed

    Lagos, Jaime; Alarcón, Pedro; Benadof, Dona; Ulloa, Soledad; Fasce, Rodrigo; Tognarelli, Javier; Aguayo, Carolina; Araya, Pamela; Parra, Bárbara; Olivares, Berta; Hormazábal, Juan Carlos; Fernández, Jorge

    2016-01-01

    We report the first description of a rare catalase-negative strain of Staphylococcus aureus in Chile. This new variant was isolated from blood and synovial tissue samples of a pediatric patient. Sequencing analysis revealed that this catalase-negative strain is related to ST10 strain, which has earlier been described in relation to S. aureus carriers. Interestingly, sequence analysis of the catalase gene katA revealed presence of a novel nonsense mutation that causes premature translational truncation of the C-terminus of the enzyme leading to a loss of 222 amino acids. Our study suggests that loss of catalase activity in this rare catalase-negative Chilean strain is due to this novel nonsense mutation in the katA gene, which truncates the enzyme to just 283 amino acids.

  9. A nonsense mutation in the DNA repair factor Hebo causes mild bone marrow failure and microcephaly.

    PubMed

    Zhang, Shu; Pondarre, Corinne; Pennarun, Gaelle; Labussiere-Wallet, Helene; Vera, Gabriella; France, Benoit; Chansel, Marie; Rouvet, Isabelle; Revy, Patrick; Lopez, Bernard; Soulier, Jean; Bertrand, Pascale; Callebaut, Isabelle; de Villartay, Jean-Pierre

    2016-05-30

    Inherited bone marrow failure syndromes are human conditions in which one or several cell lineages of the hemopoietic system are affected. They are present at birth or may develop progressively. They are sometimes accompanied by other developmental anomalies. Three main molecular causes have been recognized to result in bone marrow failure syndromes: (1) defects in the Fanconi anemia (FA)/BRCA DNA repair pathway, (2) defects in telomere maintenance, and (3) abnormal ribosome biogenesis. We analyzed a patient with mild bone marrow failure and microcephaly who did not present with the typical FA phenotype. Cells from this patient showed increased sensitivity to ionizing radiations and phleomycin, attesting to a probable DNA double strand break (dsb) repair defect. Linkage analysis and whole exome sequencing revealed a homozygous nonsense mutation in the ERCC6L2 gene. We identified a new ERCC6L2 alternative transcript encoding the DNA repair factor Hebo, which is critical for complementation of the patient's DNAdsb repair defect. Sequence analysis revealed three structured regions within Hebo: a TUDOR domain, an adenosine triphosphatase domain, and a new domain, HEBO, specifically present in Hebo direct orthologues. Hebo is ubiquitously expressed, localized in the nucleus, and rapidly recruited to DNAdsb's in an NBS1-dependent manner.

  10. Detection of heterozygous nonsense mutations in genes of interest using an Escherichia coli-based stop codon assay.

    PubMed

    Moon, Young Joon; Kang, Yoonsung; Choi, Jee-Hye; Lee, Kwang-Ho

    2007-02-01

    Since nonsense mutations are closely associated with severe conditions of genetic disorders, including familial cancers, rapid and precise detection of those mutations is very important for research purposes and molecular diagnosis. Currently, screening methods such as the FASAY (functional analysis of separated alleles in yeast) and the Y-SC (stop codon assay in yeast) are used for functional detection of nonsense mutations in genes of interest. But these yeast-based approaches are time-consuming, expensive and complicated. In order to circumvent these problems, we, in the present study, devised a novel Escherichia coli-based screening method, the E-SC (E. coli stop codon assay) for the detection of heterozygous nonsense mutations in genes of interest. Our strategy was based on the fact that the plasmid replicating with a low copy number in E. coli allows an effective separation of normal and mutant alleles. Moreover, it relies on the expression vector, resulting in the formation of white and blue colonies for mutant and normal alleles through the expression of PCR-amplified fragment/lacZ fusion protein respectively. To evaluate the applicability of the E-SC method for the detection of the heterozygous truncating mutation, PCR-amplified exon 7 of the StAR [steroidogenic acute regulatory protein; causative gene of the CAH (congenital lipoid adrenal hyperplasia)] and RT (reverse transcription)-PCR-amplified full-length cDNA of MeCP2 (methyl-CpG-binding protein 2; causative gene of Rett syndrome) were used. The E-SC showed an almost 1:1 ratio of blue/white colonies in all patients examined, whereas the control samples produced blue colonies only. These results demonstrate that the E-SC system is useful for rapid and precise detection of known and unknown heterozygous truncation mutations in genes that cause genetic disorders and familial cancers.

  11. A Novel FLCN c.1489_1490delTG Mutation that Escapes the Nonsense-Mediated Decay System.

    PubMed

    Park, Yong-Jin; Lee, Seog-Ki; Kang, Seong-Ho; Jang, Sook-Jin; Moon, Dae-Soo; Park, Geon

    2016-09-01

    A novel FLCN c.1489_1490delTG (p.Val497Glyfs*22) mutation at the genomic DNA and mRNA levels was identified in a 43-year-old woman with complaining of recurrent primary spontaneous pneumothorax. The aberrant FLCN mRNA escaped the nonsense-mediated decay system (NMD) because of a premature termination code located in an NMD-incompetent region. To the best of our knowledge, this is the first case report of an FLCN mutation escaping the NMD. PMID:27650627

  12. A Nonsense Mutation in the IKBKG Gene in Mares with Incontinentia Pigmenti

    PubMed Central

    Millar, David S.; Glen, Elise; Topf, Ana; Jagannathan, Vidhya; Drögemüller, Cord; Goodship, Judith A.; Clarke, Angus J.; Leeb, Tosso

    2013-01-01

    Ectodermal dysplasias (EDs) are a large and heterogeneous group of hereditary disorders characterized by abnormalities in structures of ectodermal origin. Incontinentia pigmenti (IP) is an ED characterized by skin lesions evolving over time, as well as dental, nail, and ocular abnormalities. Due to X-linked dominant inheritance IP symptoms can only be seen in female individuals while affected males die during development in utero. We observed a family of horses, in which several mares developed signs of a skin disorder reminiscent of human IP. Cutaneous manifestations in affected horses included the development of pruritic, exudative lesions soon after birth. These developed into wart-like lesions and areas of alopecia with occasional wooly hair re-growth. Affected horses also had streaks of darker and lighter coat coloration from birth. The observation that only females were affected together with a high number of spontaneous abortions suggested an X-linked dominant mechanism of transmission. Using next generation sequencing we sequenced the whole genome of one affected mare. We analyzed the sequence data for non-synonymous variants in candidate genes and found a heterozygous nonsense variant in the X-chromosomal IKBKG gene (c.184C>T; p.Arg62*). Mutations in IKBKG were previously reported to cause IP in humans and the homologous p.Arg62* variant has already been observed in a human IP patient. The comparative data thus strongly suggest that this is also the causative variant for the observed IP in horses. To our knowledge this is the first large animal model for IP. PMID:24324710

  13. A novel nonsense mutation in CEP290 induces exon skipping and leads to a relatively mild retinal phenotype.

    PubMed

    Littink, Karin W; Pott, Jan-Willem R; Collin, Rob W J; Kroes, Hester Y; Verheij, Joke B G M; Blokland, Ellen A W; de Castro Miró, Marta; Hoyng, Carel B; Klaver, Caroline C W; Koenekoop, Robert K; Rohrschneider, Klaus; Cremers, Frans P M; van den Born, L Ingeborgh; den Hollander, Anneke I

    2010-07-01

    PURPOSE. To identify the genetic defect in a family with variable retinal phenotypes. The proband had a diagnosis of Leber congenital amaurosis (LCA), whereas her two cousins had an early-onset severe retinal dystrophy (EOSRD) with useful vision. A distant family member had retinitis pigmentosa (RP). METHODS. DNA samples of the affected family members were genotyped with 250 K genome-wide SNP microarrays. Genetic defects were localized by linkage analysis and homozygosity mapping, and candidate genes were analyzed by sequencing. Patients underwent a full ophthalmic examination. RESULTS. Compound heterozygous mutations in CEP290 were identified in the proband and her two cousins: the frequent c.2991+1655A>G founder mutation and a novel nonsense mutation in exon 7 (c.451C>T, p.Arg151X). The proband had nystagmus, hyperopia, a flat electroretinogram (ERG), and decreased visual acuity (20/250) from birth. The two cousins had minimal scotopic ERG responses at the age of 2. In one of these patients, visual acuity had reached a level of 20/32 at age 5, which is high for patients with CEP290 mutations. Analysis of the CEP290 mRNA in affected individuals revealed altered splice forms in which either exon 7 or exons 7 and 8 were skipped. In both mutant cDNA products, the open reading frame was not disrupted. Furthermore, homozygosity mapping and mutation analysis in the distant family member affected by RP revealed a homozygous mutation in MERTK, but no CEP290 mutations. This MERTK mutation was heterozygously present in the most severely affected (LCA) patient, but was absent in the two more mildly affected cousins. CONCLUSIONS. A novel nonsense mutation in CEP290 results in nonsense-associated altered splicing. That the remaining open reading frame is intact may explain the less severe phenotype observed in the two affected cousins. The additional heterozygous mutation in MERTK may clarify the more severe phenotype in the proband. This study extends the phenotypic spectrum

  14. Mutation analysis in 600 French cystic fibrosis patients.

    PubMed Central

    Chevalier-Porst, F; Bonardot, A M; Gilly, R; Chazalette, J P; Mathieu, M; Bozon, D

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene of 600 unrelated cystic fibrosis (CF) patients living in France (excluding Brittany) was screened for 105 different mutations. This analysis resulted in the identification of 86% of the CF alleles and complete genotyping of 76% of the patients. The most frequent mutations in this population after delta F508 (69% of the CF chromosomes) are G542X (3.3%), N1303K (1.8%), W1282X (1.5%), 1717-1G-->A (1.3%), 2184delA + 2183 A-->G (0.9%), and R553X (0.8%). Images PMID:7525963

  15. Nonsense-mediated mRNA decay was demonstrated in two hypofibrinogenemias caused by heterozygous nonsense mutations of FGG, Shizuoka III and Kanazawa II.

    PubMed

    Soya, Keisuke; Takezawa, Yuka; Okumura, Nobuo; Terasawa, Fumiko

    2013-10-01

    We report two novel hypofibrinogenemias, Shizuoka III and Kanazawa II, which are caused by heterozygous mutations in FGG. Shizuoka III showed c.147delT and 147_149insACA in FGG exon 3 and a subsequent frameshift mutation, resulting in mature protein γ23X (native protein: γ49X), and Kanazawa II showed c.1205G>A in FGG exon 9, resulting in γ376X (native protein: γ402X). To determine whether the truncated γ-chains, γ23X and γ376X, were synthesized and participated in the assembly of fibrinogen, mutant-type cDNA vectors were transfected into Chinese hamster ovary (CHO) cells. Significant levels of mutant fibrinogen were not detected by ELISA in the culture media and cell lysates. Immunoblot analysis of cell lysates revealed that the mutant γ-chain of γ376X was observed but intact fibrinogen was not. On the other hand, mutant γ-chain was not observed in γ23X-expressing cells. To demonstrate the involvement of the mechanisms of nonsense-mediated mRNA decay (NMD), we cloned wild- and mutant-type mini-genes containing γ23 or γ376 codon and transfected these into CHO cell lines in the absence or presence of cycloheximide as an NMD inhibitor. mRNA levels were determined using real-time quantitative RT-PCR in CHO cells. In the absence of cycloheximide, levels of mRNAs transcribed from the mutant gene were lower than from the wild-type gene whereas, in the presence of cycloheximide, levels of mRNAs transcribed from the mutant gene increased dose-dependently. Finally, these results demonstrated that mRNAs containing γ23X or γ376X are degraded by the NMD system and translation of the truncated γ-chain polypeptide decrease in patients' hepatocytes, resulting in hypofibrinogenemias.

  16. Carpenter Syndrome: Extended RAB23 Mutation Spectrum and Analysis of Nonsense-mediated mRNA Decay

    PubMed Central

    Jenkins, Dagan; Baynam, Gareth; De Catte, Luc; Elcioglu, Nursel; Gabbett, Michael T; Hudgins, Louanne; Hurst, Jane A; Jehee, Fernanda Sarquis; Oley, Christine; Wilkie, Andrew O M

    2011-01-01

    Carpenter syndrome, a rare autosomal recessive disorder characterized by a combination of craniosynostosis, polysyndactyly, obesity, and other congenital malformations, is caused by mutations in RAB23, encoding a member of the Rab-family of small GTPases. In 15 out of 16 families previously reported, the disease was caused by homozygosity for truncating mutations, and currently only a single missense mutation has been identified in a compound heterozygote. Here, we describe a further 8 independent families comprising 10 affected individuals with Carpenter syndrome, who were positive for mutations in RAB23. We report the first homozygous missense mutation and in-frame deletion, highlighting key residues for RAB23 function, as well as the first splice-site mutation. Multi-suture craniosynostosis and polysyndactyly have been present in all patients described to date, and abnormal external genitalia have been universal in boys. High birth weight was not evident in the current group of patients, but further evidence for laterality defects is reported. No genotype-phenotype correlations are apparent. We provide experimental evidence that transcripts encoding truncating mutations are subject to nonsense-mediated decay, and that this plays an important role in the pathogenesis of many RAB23 mutations. These observations refine the phenotypic spectrum of Carpenter syndrome and offer new insights into molecular pathogenesis. © 2011 Wiley-Liss, Inc. PMID:21412941

  17. Apolipoprotein A-I deficiency due to a codon 84 nonsense mutation of the apolipoprotein A-I gene

    SciTech Connect

    Matsunaga, Tomoyuki; Yanagi, Hisako; Hattori, Naoko; Yamakawa, Kimiko; Yamanouchi, Yasuko; Hamaguchi, Hideo ); Hiasa, Yoshikazu; Maeda, Toshihiro ); Tanaka, Isao; Obara, Takashi )

    1991-04-01

    The molecular genetic defect of a female patient with apolipoprotein A-I (apoA-I) deficiency and premature atherosclerosis was examined. Her parents were first cousins. Her plasma density fraction from 1.063 to 1.21 g/ml contained no apoA-I on SDS/PAGE and no measurable high density lipoprotein cholesterol. Southern blot hybridization showed no gross abnormality to be present in the patient's apoA-I gene and homozygosity for a haplotype of restriction fragment length polymorphisms in the apoA-I gene region. Sequencing after amplification by PCR revealed a codon 84 nonsense mutation (CAG {r arrow} TAG, Gln {r arrow} stop) of exon 4 and a codon 37 missense mutation (GCC{r arrow} ACC, Ala {r arrow} Thr) of exon 3 in the patient's apoA-I gene. The data from dot-blot hybridization with allele-specific oligonucleotide probes indicated that she was homozygous for the apoA-I gene with regard to the two mutations. The codon 37 missense mutation was also detected in the apoA-I gene of 6 out of 60 controls, who all had normal levels of apoA-I and high density lipoprotein cholesterol, suggesting that the missense mutation is polymorphic and not associated with apoA-I deficiency. These finding indicate that homozygosity for the apoA-I gene with codon 84 nonsense mutation causes the deficiency of apoA-I and of high density lipoprotein cholesterol in the patient.

  18. A Novel Nonsense Mutation in the MIP Gene Linked to Congenital Posterior Polar Cataracts in a Chinese Family

    PubMed Central

    Song, Zixun; Wang, Lianqing; Liu, Yaping; Xiao, Wei

    2015-01-01

    Purpose To detect the causative mutation for congenital posterior polar cataracts in a five-generation Chinese family and further explore the potential pathogenesis of this disease. Methods Coding exons, with flanking sequences of five candidate genes, were screened using direct DNA sequencing. The identified mutations were confirmed by restriction fragment length polymorphism (RFLP) analysis. A full-length wild-type or an Y219* mutant aquaporin0 (AQP0) fused with an N-terminal FLAG tag, was transfected into HEK293T cells. For co-localization studies, FLAG-WT-AQP0 and Myc-Y219*-AQP0 constructs were co-transfected. Quantitative real-time RT-PCR, western blotting and immunofluorescence studies were performed to determine protein expression levels and sub-cellular localization, respectively. Results We identified a novel nonsense mutation in MIP (c.657 C>G; p.Y219*) (major intrinsic protein gene) that segregates with congenital posterior polar cataract in a Chinese family. This mutation altered a highly conserved tyrosine to a stop codon (Y219*) within AQP0.When FLAG-WT-AQP0 and FLAG-Y219*-AQP0 expression constructs were singly transfected into HEK 293T cells, mRNA expression showed no significant difference between the wild-type and the mutant, while Y219*-AQP0 protein expression was significantly lower than that of wild-type AQP0. Wild-type AQP0 predominantly localized to the plasma membrane, while the mutated protein was abundant within the cytoplasm of HEK293T cells. However, when FLAG-WT-AQP0 andMyc-MU-AQP0were co-expressed, both proteins showed high fluorescence in the cytoplasm. Conclusions The novel nonsense mutation in the MIP gene (c.657 C>G) identified in a Chinese family may cause posterior polar cataracts. The dominant negative effect of the mutated protein on the wild-type protein interfered with the trafficking of wild-type protein to the cell membrane and both the mutant and wild-type protein were trapped in the cytoplasm. Consequently, both wild

  19. Identification of a SLC19A2 nonsense mutation in Persian families with thiamine-responsive megaloblastic anemia.

    PubMed

    Setoodeh, Aria; Haghighi, Amirreza; Saleh-Gohari, Nasrollah; Ellard, Sian; Haghighi, Alireza

    2013-05-01

    Thiamine-responsive megaloblastic anemia (TRMA) is an autosomal recessive syndrome characterized by early-onset anemia, diabetes, and hearing loss caused by mutations in the SLC19A2 gene. We studied the genetic cause and clinical features of this condition in patients from the Persian population. A clinical and molecular investigation was performed in four patients from three families and their healthy family members. All had the typical diagnostic criteria. The onset of hearing loss in three patients was at birth and one patient also had a stroke and seizure disorder. Thiamine treatment effectively corrected the anemia in all of our patients but did not prevent hearing loss. Diabetes was improved in one patient who presented at the age of 8months with anemia and diabetes after 2months of starting thiamine. The coding regions of SLC19A2 were sequenced in all patients. The identified mutation was tested in all members of the families. Molecular analyses identified a homozygous nonsense mutation c.697C>T (p.Gln233*) as the cause of the disease in all families. This mutation was previously reported in a Turkish patient with TRMA and is likely to be a founder mutation in the Persian population. PMID:23454484

  20. Prevalence of the BLM nonsense mutation, p.Q548X, in ovarian cancer patients from Central and Eastern Europe.

    PubMed

    Bogdanova, Natalia; Togo, Alexandr V; Ratajska, Magdalena; Kluźniak, Wojtek; Takhirova, Zalina; Tarp, Theresa; Prokofyeva, Darya; Bermisheva, Marina; Yanus, Grigoriy A; Gorodnova, Tatiana V; Sokolenko, Anna P; Kuźniacka, Alina; Podolak, Amira; Stukan, Maciej; Wokołorczyk, Dominika; Gronwald, Jacek; Vasilevska, Danuta; Rudaitis, Vilius; Runnebaum, Ingo B; Dürst, Matthias; Park-Simon, Tjoung-Won; Hillemanns, Peter; Antonenkova, Natalia; Khusnutdinova, Elza; Limon, Janusz; Lubinski, Jan; Cybulski, Cezary; Imyanitov, Evgeny; Dörk, Thilo

    2015-03-01

    A nonsense mutation, p.Q548X, in the BLM gene has recently been associated with an increased risk for breast cancer. In the present work, we investigated the prevalence of this Slavic founder mutation in 2,561 ovarian cancer cases from Russia, Belarus, Poland, Lithuania or Germany and compared its frequency with 6,205 ethnically matched healthy female controls. The p.Q548X allele was present in nine ovarian cancer patients of Slavic ancestry (0.5 %; including one case with concurrent BRCA1 mutation). The mutation was not significantly more frequent in cases than in controls (Mantel-Haenszel OR 1.14, 95 % CI 0.49; 2.67). Ovarian tumours in p.Q548X carriers were mainly of the serous subtype, and there was little evidence for an early age at diagnosis or pronounced family history of cancer. These findings indicate that the BLM p.Q548X mutation is not a strong risk factor for ovarian cancer. PMID:25182961

  1. Congenital lamellar ichthyosis in Tunisia is caused by a founder nonsense mutation in the TGM1 gene.

    PubMed

    Louhichi, Nacim; Hadjsalem, Ikhlass; Marrakchi, Slaheddine; Trabelsi, Fatma; Masmoudi, Abderrahmen; Turki, Hamida; Fakhfakh, Faiza

    2013-03-01

    Lamellar ichthyosis (LI, MIM# 242300) is a severe autosomal recessive genodermatosis present at birth in the form of collodion membrane covering the neonate. Mutations in the TGM1 gene encoding transglutaminase-1 are a major cause of LI. In this study molecular analysis of two LI Tunisian patients revealed a common nonsense c.788G>A mutation in TGM1 gene. The identification of a cluster of LI pedigrees carrying the c.788G>A mutation in a specific area raises the question of the origin of this mutation from a common ancestor. We carried out a haplotype-based analysis by way of genotyping 4 microsatellite markers and 8 SNPs flanking and within the TGM1 gene spanning a region of 6 Mb. Haplotype reconstruction from genotypes of all members of the affected pedigrees indicated that all carriers for the mutation c.788G>A harbored the same haplotype, indicating common ancestor. The finding of a founder effect in a rare disease is essential for the genetic diagnosis and the genetic counselling of affected LI pedigrees in Tunisia.

  2. A novel silent deletion, an insertion mutation and a nonsense mutation in the TCOF1 gene found in two Chinese cases of Treacher Collins syndrome.

    PubMed

    Wang, Yan; Yin, Xiao-Juan; Han, Tao; Peng, Wei; Wu, Hong-Lin; Liu, Xin; Feng, Zhi-Chun

    2014-12-01

    Treacher Collins syndrome (TCS) is the most common and well-known craniofacial disorder caused by mutations in the genes involved in pre-rRNA transcription, which include the TCOF1 gene. This study explored the role of TCOF1 mutations in Chinese patients with TCS. Mutational analysis of the TCOF1 gene was performed in three patients using polymerase chain reaction and direct sequencing. Among these three patients, two additional TCOF1 variations, a novel 18 bp deletion and a novel 1 bp insertion mutation, were found in patient 1, together with a novel nonsense mutation (p.Ser476X) and a previously reported 4 bp deletion (c.1872_1875delTGAG) in other patients. Pedigree analysis allowed for prediction of the character of the mutation, which was either pathological or not. The 18 bp deletion of six amino acids, Ser-Asp-Ser-Glu-Glu-Glu (798*803), which was located in the CKII phosphorylation site of treacle, seemed relatively benign for TCS. By contrast, another novel mutation of c.1072_1073insC (p.Gln358ProfsX23) was a frameshift mutation and expected to result in a premature stop codon. This study provides insights into the functional domain of treacle and illustrates the importance of clinical and family TCS screening for the interpretation of novel sequence alterations.

  3. Mutations in genes involved in nonsense mediated decay ameliorate the phenotype of sel-12 mutants with amber stop mutations in Caenorhabditis elegans

    PubMed Central

    Gontijo, Alisson M; Aubert, Sylvie; Roelens, Ingele; Lakowski, Bernard

    2009-01-01

    Background Presenilin proteins are part of a complex of proteins that can cleave many type I transmembrane proteins, including Notch Receptors and the Amyloid Precursor Protein, in the middle of the transmembrane domain. Dominant mutations in the human presenilin genes PS1 and PS2 lead to Familial Alzheimer's disease. Mutations in the Caenorhabditis elegans sel-12 presenilin gene cause a highly penetrant egg-laying defect due to reduction of signalling through the lin-12/Notch receptor. Mutations in six spr genes (for suppressor of presenilin) are known to strongly suppress sel-12. Mutations in most strong spr genes suppress sel-12 by de-repressing the transcription of the largely functionally equivalent hop-1 presenilin gene. However, how mutations in the spr-2 gene suppress sel-12 is unknown. Results We show that spr-2 mutations increase the levels of sel-12 transcripts with Premature translation Termination Codons (PTCs) in embryos and L1 larvae. mRNA transcripts from sel-12 alleles with PTCs undergo degradation by a process known as Nonsense Mediated Decay (NMD). However, spr-2 mutations do not appear to affect NMD. Mutations in the smg genes, which are required for NMD, can restore sel-12(PTC) transcript levels and ameliorate the phenotype of sel-12 mutants with amber PTCs. However, the phenotypic suppression of sel-12 by smg genes is nowhere near as strong as the effect of previously characterized spr mutations including spr-2. Consistent with this, we have identified only two mutations in smg genes among the more than 100 spr mutations recovered in genetic screens. Conclusion spr-2 mutations do not suppress sel-12 by affecting NMD of sel-12(PTC) transcripts and appear to have a novel mechanism of suppression. The fact that mutations in smg genes can ameliorate the phenotype of sel-12 alleles with amber PTCs suggests that some read-through of sel-12(amber) alleles occurs in smg backgrounds. PMID:19302704

  4. Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover.

    PubMed Central

    Weng, Y; Czaplinski, K; Peltz, S W

    1996-01-01

    To understand the relationship between translation and mRNA decay, we have been studying how premature translation termination accelerates the degradation of mRNAs. In the yeast Saccharomyces cerevisiae, the Upf1 protein (Upf1p), which contains a cysteine- and histidine-rich region and nucleoside triphosphate hydrolysis and helicase motifs, was shown to be a trans-acting factor in this decay pathway. A UPF1 gene disruption results in the stabilization of nonsense-containing mRNAs and leads to a nonsense suppression phenotype. Biochemical analysis of the wild-type Upf1p demonstrated that it has RNA-dependent ATPase, RNA helicase, and RNA binding activities. In the work described in the accompanying paper (Y. Weng, K. Czaplinski, and S. W. Peltz, Mol. Cell. Biol. 16:5477-5490, 1996) mutations in the helicase region of Upf1p that inactivated its mRNA decay function but prevented suppression of leu2-2 and tyr7-1 nonsense alleles are identified. On the basis of these results, we suggested that Upf1p is a multifunctional protein involved in modulating mRNA decay and translation termination at nonsense codons. If this is true, we predict that UPF1 mutations with the converse phenotype should be identified. In this report, we describe the identification and biochemical characterization of mutations in the amino-terminal cysteine- and histidine-rich region of Upf1p that have normal nonsense-mediated mRNA decay activities but are able to suppress leu2-2 and tyr7-1 nonsense alleles. Biochemical characterization of these mutant proteins demonstrated that they have altered RNA binding properties. Furthermore, using the two-hybrid system, we characterized the Upf1p-Upf2p interactions and demonstrated that Upf2p interacts with Upf3p. Mutations in the cysteine- and histidine-rich region of Upf1p abolish Upf1p-Upf2p interaction. On the basis of these results, the role of the Upf complex in nonsense-mediated mRNA decay and nonsense suppression is discussed. PMID:8816462

  5. A nonsense mutation in cGMP-dependent type II protein kinase (PRKG2) causes dwarfism in American Angus cattle

    PubMed Central

    Koltes, James E.; Mishra, Bishnu P.; Kumar, Dinesh; Kataria, Ranjit S.; Totir, Liviu R.; Fernando, Rohan L.; Cobbold, Rowland; Steffen, David; Coppieters, Wouter; Georges, Michel; Reecy, James M.

    2009-01-01

    Historically, dwarfism was the major genetic defect in U.S. beef cattle. Aggressive culling and sire testing were used to minimize its prevalence; however, neither of these practices can eliminate a recessive genetic defect. We assembled a 4-generation pedigree to identify the mutation underlying dwarfism in American Angus cattle. An adaptation of the Elston-Steward algorithm was used to overcome small pedigree size and missing genotypes. The dwarfism locus was fine-mapped to BTA6 between markers AFR227 and BM4311. Four candidate genes were sequenced, revealing a nonsense mutation in exon 15 of cGMP-dependant type II protein kinase (PRKG2). This C/T transition introduced a stop codon (R678X) that truncated 85 C-terminal amino acids, including a large portion of the kinase domain. Of the 75 mutations discovered in this region, only this mutation was 100% concordant with the recessive pattern of inheritance in affected and carrier individuals (log of odds score = 6.63). Previous research has shown that PRKG2 regulates SRY (sex-determining region Y) box 9 (SOX9)-mediated transcription of collagen 2 (COL2). We evaluated the ability of wild-type (WT) or R678X PRKG2 to regulate COL2 expression in cell culture. Real-time PCR results confirmed that COL2 is overexpressed in cells that overexpressed R678X PRKG2 as compared with WT PRKG2. Furthermore, COL2 and COL10 mRNA expression was increased in dwarf cattle compared with unaffected cattle. These experiments indicate that the R678X mutation is functional, resulting in a loss of PRKG2 regulation of COL2 and COL10 mRNA expression. Therefore, we present PRKG2 R678X as a causative mutation for dwarfism cattle. PMID:19887637

  6. Human alpha2-globin nonsense-mediated mRNA decay induced by a novel alpha-thalassaemia frameshift mutation at codon 22.

    PubMed

    Pereira, Francisco J C; do Céu Silva, Maria; Picanço, Isabel; Seixas, Maria T; Ferrão, Anabela; Faustino, Paula; Romão, Luísa

    2006-04-01

    We describe a novel alpha-thalassaemia determinant in a 3-year-old girl presenting a mild microcytic and hypochromic anaemia, and normal haemoglobin A2 level. Molecular studies revealed heterozygosity for a novel microdeletion (-C) at codon 22 of the alpha2-globin gene. As the frameshift mutation generates a premature translation termination codon at position 48/49, we investigated the effect of the nonsense codon on the alpha2-globin gene expression. Although it does not affect RNA splicing, the premature nonsense codon induces accelerated mRNA degradation. To our knowledge, this is the first time the nonsense-mediated mRNA decay has been reported to occur in human alpha-globin mRNA.

  7. Resistance of mRNAs with AUG-proximal nonsense mutations to nonsense-mediated decay reflects variables of mRNA structure and translational activity.

    PubMed

    Pereira, Francisco J C; Teixeira, Alexandre; Kong, Jian; Barbosa, Cristina; Silva, Ana Luísa; Marques-Ramos, Ana; Liebhaber, Stephen A; Romão, Luísa

    2015-07-27

    Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and selectively degrades mRNAs carrying premature termination codons (PTCs). The level of sensitivity of a PTC-containing mRNA to NMD is multifactorial. We have previously shown that human β-globin mRNAs carrying PTCs in close proximity to the translation initiation AUG codon escape NMD. This was called the 'AUG-proximity effect'. The present analysis of nonsense codons in the human α-globin mRNA illustrates that the determinants of the AUG-proximity effect are in fact quite complex, reflecting the ability of the ribosome to re-initiate translation 3' to the PTC and the specific sequence and secondary structure of the translated ORF. These data support a model in which the time taken to translate the short ORF, impacted by distance, sequence, and structure, not only modulates translation re-initiation, but also impacts on the exact boundary of AUG-proximity protection from NMD.

  8. A novel nonsense mutation of the KAL1 gene (p.Trp204*) in Kallmann syndrome

    PubMed Central

    El Husny, Antonette Souto; Raiol-Moraes, Milene; Fernandes-Caldato, Milena Coelho; Ribeiro-dos-Santos, Ândrea

    2014-01-01

    Objective To describe a novel KAL1 mutation in patients affected by Kallmann syndrome. Setting Endocrinology Clinic of the João de Barros Barreto University Hospital – Federal University of Pará, Brazil. Methods Clinical examination, hormone assays and sequencing of exons 5, 6 and 9 of the KAL1 gene in four Brazilian brothers with Kallmann syndrome. Results Detected a novel KAL1 mutation, c.612G.A/p.Trp204*, in four hemizygous brothers with Kallmann syndrome, and five heterozygous female family members. Conclusion The novel p.Trp204* mutation of the KAL1 gene results in the production of a truncated anosmin-1 enzyme in patients with Kallmann syndrome. This finding broadens the spectrum of pathogenic mutations for this disease. PMID:25328414

  9. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect

    SciTech Connect

    Landsberger, D.; Meiner, V.; Reshef, A.; Leitersdorf, E. ); Levy, Yishai ); Westhytzen, D.R. van der; Coetzee, G.A. )

    1992-02-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here the authors characterize and LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found either in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.

  10. A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation.

    PubMed

    Goldmann, Tobias; Overlack, Nora; Möller, Fabian; Belakhov, Valery; van Wyk, Michiel; Baasov, Timor; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-11-01

    Translational read-through-inducing drugs (TRIDs) promote read-through of nonsense mutations, placing them in the spotlight of current gene-based therapeutic research. Here, we compare for the first time the relative efficacies of new-generation aminoglycosides NB30, NB54 and the chemical compound PTC124 on retinal toxicity and read-through efficacy of a nonsense mutation in the USH1C gene, which encodes the scaffold protein harmonin. This mutation causes the human Usher syndrome, the most common form of inherited deaf-blindness. We quantify read-through efficacy of the TRIDs in cell culture and show the restoration of harmonin function. We do not observe significant differences in the read-through efficacy of the TRIDs in retinal cultures; however, we show an excellent biocompatibility in retinal cultures with read-through versus toxicity evidently superior for NB54 and PTC124. In addition, in vivo administration of NB54 and PTC124 induced recovery of the full-length harmonin a1 with the same efficacy. The high biocompatibilities combined with the sustained read-through efficacies of these drugs emphasize the potential of NB54 and PTC124 in treating nonsense mutation-based retinal disorders. PMID:23027640

  11. A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation

    PubMed Central

    Goldmann, Tobias; Overlack, Nora; Möller, Fabian; Belakhov, Valery; van Wyk, Michiel; Baasov, Timor; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-01-01

    Translational read-through-inducing drugs (TRIDs) promote read-through of nonsense mutations, placing them in the spotlight of current gene-based therapeutic research. Here, we compare for the first time the relative efficacies of new-generation aminoglycosides NB30, NB54 and the chemical compound PTC124 on retinal toxicity and read-through efficacy of a nonsense mutation in the USH1C gene, which encodes the scaffold protein harmonin. This mutation causes the human Usher syndrome, the most common form of inherited deaf-blindness. We quantify read-through efficacy of the TRIDs in cell culture and show the restoration of harmonin function. We do not observe significant differences in the read-through efficacy of the TRIDs in retinal cultures; however, we show an excellent biocompatibility in retinal cultures with read-through versus toxicity evidently superior for NB54 and PTC124. In addition, in vivo administration of NB54 and PTC124 induced recovery of the full-length harmonin a1 with the same efficacy. The high biocompatibilities combined with the sustained read-through efficacies of these drugs emphasize the potential of NB54 and PTC124 in treating nonsense mutation-based retinal disorders. PMID:23027640

  12. Evidence that the supE44 mutation of Escherichia coli is an amber suppressor allele of glnX and that it also suppresses ochre and opal nonsense mutations.

    PubMed

    Singaravelan, B; Roshini, B R; Munavar, M Hussain

    2010-11-01

    Translational readthrough of nonsense codons is seen not only in organisms possessing one or more tRNA suppressors but also in strains lacking suppressors. Amber suppressor tRNAs have been reported to suppress only amber nonsense mutations, unlike ochre suppressors, which can suppress both amber and ochre mutations, essentially due to wobble base pairing. In an Escherichia coli strain carrying the lacZU118 episome (an ochre mutation in the lacZ gene) and harboring the supE44 allele, suppression of the ochre mutation was observed after 7 days of incubation. The presence of the supE44 lesion in the relevant strains was confirmed by sequencing, and it was found to be in the duplicate copy of the glnV tRNA gene, glnX. To investigate this further, an in vivo luciferase assay developed by D. W. Schultz and M. Yarus (J. Bacteriol. 172:595-602, 1990) was employed to evaluate the efficiency of suppression of amber (UAG), ochre (UAA), and opal (UGA) mutations by supE44. We have shown here that supE44 suppresses ochre as well as opal nonsense mutations, with comparable efficiencies. The readthrough of nonsense mutations in a wild-type E. coli strain was much lower than that in a supE44 strain when measured by the luciferase assay. Increased suppression of nonsense mutations, especially ochre and opal, by supE44 was found to be growth phase dependent, as this phenomenon was only observed in stationary phase and not in logarithmic phase. These results have implications for the decoding accuracy of the translational machinery, particularly in stationary growth phase. PMID:20833812

  13. Diverse clinical phenotypes associated with a nonsense mutation in FAM161A

    PubMed Central

    Rose, A M; Sergouniotis, P; Alfano, G; Muspratt-Tucker, N; Barton, S; Moore, A T; Black, G; Bhattacharya, S S; Webster, A R

    2015-01-01

    Purpose: Mutations in the FAM161A gene have been reported in association with autosomal recessive retinitis pigmentosa (arRP) in several ethnic populations. This study aimed to assess the prevalence of FAM161A-related retinopathy in a British cohort and to characterise the phenotype associated with mutations in this gene. Methods: The FAM161A coding region and intron–exon boundaries were screened by Sanger sequencing in 120 retinitis pigmentosa (RP) patients (with likely autosomal recessive inheritance) in whom mutations in other known major RP genes have been ruled out by commercially available testing. Homozygosity mapping was performed in one consanguineous family, and high-throughput sequencing of candidate genes was performed to identify disease-associated changes. Clinical assessment of affected individuals included perimetry testing, fundus autofluorescence imaging, and optical coherence tomography. Results: Two patients of British origin with a homozygous mutation in FAM161A (c.1309A>T, p.Arg437*) were identified by Sanger sequencing. Homozygosity mapping and subsequent high-throughput sequencing analysis identified a further family of Pakistani origin with the same genotype. Clinical examination of affected members of these families revealed that this mutation was associated with a diverse clinical phenotype, ranging from mild disease with preservation of central acuity to severe visual impairment. Conclusions: Homozygosity for the c.1309A>T, p.Arg437* variant in FAM161A is a relatively common cause of arRP. The mutation occurs in diverse ethnic populations, associated with typical retinitis pigmentosa with disease onset usually in the second or third decade of life. PMID:26113502

  14. Exercise-induced downbeat nystagmus in a Korean family with a nonsense mutation in CACNA1A.

    PubMed

    Choi, Jae-Hwan; Seo, Jae-Deuk; Choi, Yu Ri; Kim, Min-Ji; Shin, Jin-Hong; Kim, Ji Soo; Choi, Kwang-Dong

    2015-08-01

    Episodic ataxia type 2 (EA2) is characterized by recurrent attacks of vertigo and ataxia lasting hours triggered by emotional stress or exercise. Although interictal horizontal gaze-evoked nystagmus and rebound nystagmus are commonly observed in patients with EA2, the nystagmus has been rarely reported during the vertigo attack. To better describe exercise-induced nystagmus in EA2, four affected members from three generations of a Korean family with EA2 received full neurological and neuro-otological evaluations. Vertigo was provoked in the proband with running for 10 min to record eye movements during the vertigo attack. We performed a polymerase chain reaction-based direct sequence analysis of all coding regions of CACNA1A in all participants. The four affected members had a history of exertional vertigo, imbalance, childhood epilepsy, headache, and paresthesia. The provocation induced severe vertigo and imbalance lasting several hours, and oculography documented pure downbeat nystagmus during the attack. Genetic analyses identified a nonsense mutation in exon 23 which has been registered in dbSNP as a pathogenic allele (c.3832C>T, p.R1278X) in all the affected members. Ictal downbeat nystagmus in the studied family indicates cerebellar dysfunction during the vertigo attack in EA2. In patients with episodic vertigo and ataxia, the observation of exercise-induced nystagmus would provide a clue for EA2. PMID:25784583

  15. A homozygous nonsense mutation in the alpha 3 chain gene of laminin 5 (LAMA3) in Herlitz junctional epidermolysis bullosa: prenatal exclusion in a fetus at risk.

    PubMed

    McGrath, J A; Kivirikko, S; Ciatti, S; Moss, C; Dunnill, G S; Eady, R A; Rodeck, C H; Christiano, A M; Uitto, J

    1995-09-01

    Mutations in the three genes (LAMA3, LAMB3, and LAMC2) that encode the three chains (alpha 3, beta 3, and gamma 2, respectively) of laminin 5, a protein involved in epidermal-dermal adhesion, have been established as the genetic basis for the inherited blistering skin disorder, Herlitz junctional epidermolysis bullosa (H-JEB). In this study, we performed mutational analysis on genomic DNA from a child with H-JEB and identified a nonsense mutation in the alpha 3 chain gene (LAMA3) consisting of a homozygous C-to-T transition resulting in a premature termination codon (CGA-->TGA) on both alleles. The parents were shown to be heterozygous carriers of the same mutation. Direct mutation analysis was used to perform DNA-based prenatal diagnosis from a chorionic villus biopsy at 10 weeks' gestation in a subsequent pregnancy. The fetus was predicted to be genotypically normal with respect to the LAMA3 mutation. PMID:8530087

  16. Short repeats in the spa gene of Staphylococcus aureus are prone to nonsense mutations: stop codons can be found in strains isolated from patients with generalized infection.

    PubMed

    Khrustalev, Vladislav Victorovich; Ghaznavi-Rad, Ehsanollah; Neela, Vasanthakumari; Shamsudin, Mariana-Nor; Amouzandeh-Nobaveh, Alireza; Barkovsky, Eugene Victorovich

    2013-11-01

    Fifteen sequences with stop codons have been obtained in the course of standard methicillin-resistant Staphylococcus aureus (MRSA) spa typing. In nine of those sequences, stop codons occurred due to nonsense G-T and A-T transversions. G-T transversions would appear to be frequent in the spa gene, mostly due to symmetric mutational AT-pressure in the whole S. aureus genome and due to replication-associated mutational pressure characteristic of lagging strands of the "chromosome". A-T transversions would appear to be frequent in the spa gene mostly due to transcription-associated mutational pressure. Relative to other S. aureus genes, short repeats in spa are enriched by nonsense sites for G-T and A-T transversions; the probability of being nonsense for A-T transversion is high in that part of spa coding region. 13 out of 15 (87%) of the sequences with stop codons were obtained from strains isolated from patients with generalized S. aureus infection. Truncation of spa at its C-terminus is predicted to result in a protein that possesses functional IgG binding domains unable to be linked to the cell wall. This is discussed in light of the known fact that extracellular spa is a strong virulence factor involved in immune evasion.

  17. Variants of the D{sub 5} dopamine receptor gene found in patients with schizophrenia: Identification of a nonsense mutation and multiple missense changes

    SciTech Connect

    Sobell, J.L.; Lind, T.J.; Sommer, S.S.

    1994-09-01

    To determine whether mutations in the D{sub 5} dopamine receptor (D{sub 5}DR) gene are associated with schizophrenia, the gene was examined in 78 unrelated schizophrenic individuals. After amplification by the polymerase chain reaction, products were examined by dideoxy fingerprinting (ddF), a highly sensitive screening method related to single strand conformational polymorphism analysis. All samples with unusual ddF patterns were sequenced to precisely identify the sequence change. In the 156 D{sub 5}DR alleles examined, nine sequence changes were identified. Four of the nine did not affect protein structure; of these, three were silent changes and one was a transition in the 3{prime} untranslated region. The remaining five sequence changes result in protein alterations: of these, one is a missense change in a non-conserved amino acid, 3 are missense changes in amino acids that are conserved in some dopamine D{sub 5} receptors and the last is a nonsense mutation. To investigate whether the nonsense mutation was associated with schizophrenia, 400 additional schizophrenic cases of western European descent and 1914 ethnically-similar controls were screened for the change. One additional schizophrenic carrier was identified and verified by direct genomic sequencing (allele frequency: .0013), but eight carriers also were found and confirmed among the non-schizophrenics (allele frequency: .0021)(p>.25). The gene was re-examined in all newly identified carriers of the nonsense mutation by direct sequencing and/or ddF in search of additional mutations. None were identified. Family studies also were conducted to investigate possible cosegregation of the mutation with other neuropsychiatric diseases, but this was not demonstrated. Thus, the mutation does not appear to be associated with an increased risk of schizophrenia nor does an initial analysis suggest cosegregation with other neuropsychiatric disorders or symptom complexes.

  18. Anti-Muellerian hormone Bruxelles: A nonsense mutation associated with the persistent Muellerian duct syndrome

    SciTech Connect

    Boussin, L.; Guerrier, D.; Legeai, L.; Josso, N.; Picard, J.Y. ); Knebelmann, B.; Kahn, A. )

    1991-05-01

    The persistent Muellerian duct syndrome (PMDS) is characterized by the persistence of Muellerian derivatives, uterus and tubes, in otherwise normally virilized males. In a previous study, the authors showed that this syndrome is heterogeneous, with lack of production of anti-Muellerian hormone (AMH) by testicular tissue accounting for only some, AMH-negative, cases of this disorder. They have characterized the point mutation responsible for an AMH-negative PMDS in three siblings: a guanine to thymine transversion at position 2096 in the fifth exon changes a GAA triplet, coding for glutamic acid, to a TAA stop codon. The mutation could also be recognized, using the polymerase chain reaction, on RNA produced in trace amounts by a lymphoblastic cell line. The translation product, although undetectable in testicular tissue, could be visualized in culture medium of cells transfected with the mutant gene.

  19. APOBEC3G Generates Nonsense Mutations in Human T-Cell Leukemia Virus Type 1 Proviral Genomes In Vivo ▿ †

    PubMed Central

    Fan, Jun; Ma, Guangyong; Nosaka, Kisato; Tanabe, Junko; Satou, Yorifumi; Koito, Atsushi; Wain-Hobson, Simon; Vartanian, Jean-Pierre; Matsuoka, Masao

    2010-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) induces cell proliferation after infection, leading to efficient transmission by cell-to-cell contact. After a long latent period, a fraction of carriers develop adult T-cell leukemia (ATL). Genetic changes in the tax gene in ATL cells were reported in about 10% of ATL cases. To determine genetic changes that may occur throughout the provirus, we determined the entire sequence of the HTLV-1 provirus in 60 ATL cases. Abortive genetic changes, including deletions, insertions, and nonsense mutations, were frequent in all viral genes except the HBZ gene, which is transcribed from the minus strand of the virus. G-to-A base substitutions were the most frequent mutations in ATL cells. The sequence context of G-to-A mutations was in accordance with the preferred target sequence of human APOBEC3G (hA3G). The target sequences of hA3G were less frequent in the plus strand of the HBZ coding region than in other coding regions of the HTLV-1 provirus. Nonsense mutations in viral genes including tax were also observed in proviruses from asymptomatic carriers, indicating that these mutations were generated during reverse transcription and prior to oncogenesis. The fact that hA3G targets the minus strand during reverse transcription explains why the HBZ gene is not susceptible to such nonsense mutations. HTLV-1-infected cells likely take advantage of hA3G to escape from the host immune system by losing expression of viral proteins. PMID:20463074

  20. Absence of heartbeat in the Xenopus tropicalis mutation muzak is caused by a nonsense mutation in cardiac myosin myh6

    PubMed Central

    Abu-Daya, Anita; Sater, Amy K.; Wells, Dan E.; Mohun, Timothy J.; Zimmerman, Lyle B.

    2009-01-01

    Mechanisms coupling heart function and cardiac morphogenesis can be accessed in lower vertebrate embryos that can survive to swimming tadpole stages on diffused oxygen. Forward genetic screens in Xenopus tropicalis have identified more than 80 mutations affecting diverse developmental processes, including cardiac morphogenesis and function. In the first positional cloning of a mutation in X. tropicalis, we show that non-contractile hearts in muzak (muz) embryos are caused by a premature stop codon in the cardiac myosin heavy chain gene myh6. The mutation deletes the coiled-coil domain responsible for polymerization into thick filaments, severely disrupting the cardiomyocyte cytoskeleton. Despite the lack of contractile activity and absence of a major structural protein, early stages of cardiac morphogenesis including looping and chamber formation are grossly normal. Muz hearts subsequently develop dilated chambers with compressed endocardium and fail to form identifiable cardiac valves and trabeculae. PMID:19769958

  1. A homozygous nonsense mutation in the alpha 3 chain gene of laminin 5 (LAMA3) in lethal (Herlitz) junctional epidermolysis bullosa.

    PubMed

    Kivirikko, S; McGrath, J A; Baudoin, C; Aberdam, D; Ciatti, S; Dunnill, M G; McMillan, J R; Eady, R A; Ortonne, J P; Meneguzzi, G

    1995-05-01

    The inherited mechanobullous disorder, junctional epidermolysis bullosa (JEB), is characterized by extensive blistering and erosions of the skin and mucous membranes. The diagnostic hallmarks of JEB include ultrastructural abnormalities in the hemidesmosomes of the cutaneous basement membrane zone, as well as an absence of staining with antibodies against the anchoring filament protein, laminin 5. Therefore, the three genes encoding alpha 3, beta 3 and gamma 2 chains of laminin 5, known as LAMA3, LAMB3 and LAMC2, are candidate genes for JEB. We have previously demonstrated mutations in the LAMB3 and LAMC2 genes in several families with JEB. We initiated mutation analysis from an affected child by PCR amplification of individual LAMA3 exons, followed by heteroduplex analysis. Nucleotide sequencing of heteroduplexes identified a homozygous nonsense mutation within domain I/II of the alpha 3 chain. These findings provide the first evidence that nonsense mutations within the LAMA3 gene are also involved in the pathogenesis of JEB, and indicate that mutations of all three genes of laminin 5 can result in the JEB phenotype. PMID:7633458

  2. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia.

    PubMed

    Duriez, Bénédicte; Duquesnoy, Philippe; Escudier, Estelle; Bridoux, Anne-Marie; Escalier, Denise; Rayet, Isabelle; Marcos, Elisabeth; Vojtek, Anne-Marie; Bercher, Jean-François; Amselem, Serge

    2007-02-27

    Thioredoxins belong to a large family of enzymatic proteins that function as general protein disulfide reductases, therefore participating in several cellular processes via redox-mediated reactions. So far, none of the 18 members of this family has been involved in human pathology. Here we identified TXNDC3, which encodes a thioredoxin-nucleoside diphosphate kinase, as a gene implicated in primary ciliary dyskinesia (PCD), a genetic condition characterized by chronic respiratory tract infections, left-right asymmetry randomization, and male infertility. We show that the disease, which segregates as a recessive trait, results from the unusual combination of the following two transallelic defects: a nonsense mutation and a common intronic variant found in 1% of control chromosomes. This variant affects the ratio of two physiological TXNDC3 transcripts: the full-length isoform and a novel isoform, TXNDC3d7, carrying an in-frame deletion of exon 7. In vivo and in vitro expression data unveiled the physiological importance of TXNDC3d7 (whose expression was reduced in the patient) and the corresponding protein that was shown to bind microtubules. PCD is known to result from defects of the axoneme, an organelle common to respiratory cilia, embryonic nodal cilia, and sperm flagella, containing dynein arms, with, to date, the implication of genes encoding dynein proteins. Our findings, which identify a another class of molecules involved in PCD, disclose the key role of TXNDC3 in ciliary function; they also point to an unusual mechanism underlying a Mendelian disorder, which is an SNP-induced modification of the ratio of two physiological isoforms generated by alternative splicing.

  3. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia

    PubMed Central

    Duriez, Bénédicte; Duquesnoy, Philippe; Escudier, Estelle; Bridoux, Anne-Marie; Escalier, Denise; Rayet, Isabelle; Marcos, Elisabeth; Vojtek, Anne-Marie; Bercher, Jean-François; Amselem, Serge

    2007-01-01

    Thioredoxins belong to a large family of enzymatic proteins that function as general protein disulfide reductases, therefore participating in several cellular processes via redox-mediated reactions. So far, none of the 18 members of this family has been involved in human pathology. Here we identified TXNDC3, which encodes a thioredoxin–nucleoside diphosphate kinase, as a gene implicated in primary ciliary dyskinesia (PCD), a genetic condition characterized by chronic respiratory tract infections, left–right asymmetry randomization, and male infertility. We show that the disease, which segregates as a recessive trait, results from the unusual combination of the following two transallelic defects: a nonsense mutation and a common intronic variant found in 1% of control chromosomes. This variant affects the ratio of two physiological TXNDC3 transcripts: the full-length isoform and a novel isoform, TXNDC3d7, carrying an in-frame deletion of exon 7. In vivo and in vitro expression data unveiled the physiological importance of TXNDC3d7 (whose expression was reduced in the patient) and the corresponding protein that was shown to bind microtubules. PCD is known to result from defects of the axoneme, an organelle common to respiratory cilia, embryonic nodal cilia, and sperm flagella, containing dynein arms, with, to date, the implication of genes encoding dynein proteins. Our findings, which identify a another class of molecules involved in PCD, disclose the key role of TXNDC3 in ciliary function; they also point to an unusual mechanism underlying a Mendelian disorder, which is an SNP-induced modification of the ratio of two physiological isoforms generated by alternative splicing. PMID:17360648

  4. Nonsense mutations of the bHLH transcription factor TWIST2 found in Setleis Syndrome patients cause dysregulation of periostin

    PubMed Central

    Franco, Hector L.; Casasnovas, Jose J.; Leon, Ruth G.; Friesel, Robert; Ge, Yongchao; Desnick, Robert J.; Cadilla, Carmen L.

    2011-01-01

    Setleis Syndrome (OMIM ID: 227260) is a rare autosomal recessive disease characterized by abnormal facial development. Recently, we have reported that two nonsense mutations (c.486C>T [Q119X] and c.324C>T [Q65X]) of the basic helix-loop-helix (bHLH) transcription factor TWIST2 cause Setleis Syndrome. Here we show that periostin, a cell adhesion protein involved in connective tissue development and maintenance, is down-regulated in Setleis Syndrome patient fibroblast cells and that periostin positively responds to manipulations in TWIST2 levels, suggesting that TWIST2 is a transactivator of periostin. Functional analysis of the TWIST2 mutant form (Q119X) revealed that it maintains the ability to localize to the nucleus, forms homo and heterodimers with the ubiquitous bHLH protein E12, and binds to dsDNA. Reporter gene assays using deletion constructs of the human periostin promoter also reveal that TWIST2 can activate this gene more specifically than Twist1, while the Q119X mutant results in no significant transactivation. Chromatin immunoprecipitation assays show that both wild-type TWIST2 and the Q119X mutant bind the periostin promoter, however only wild-type TWIST2 is associated with higher levels of histone acetylation across the 5′-regulatory region of periostin. Taken together, these data suggest that the C-terminal domain of TWIST2, which is missing in the Q119X mutant form of TWIST2, is responsible for proper transactivation of the periostin gene. Improper regulation of periostin by the mutant form of TWIST2 could help explain some of the soft tissue abnormalities seen in these patients therefore providing a genotype-phenotype relationship for Setleis Syndrome. PMID:21801849

  5. A Nonsense Mutation in TMEM95 Encoding a Nondescript Transmembrane Protein Causes Idiopathic Male Subfertility in Cattle

    PubMed Central

    Pausch, Hubert; Kölle, Sabine; Wurmser, Christine; Schwarzenbacher, Hermann; Emmerling, Reiner; Jansen, Sandra; Trottmann, Matthias; Fuerst, Christian; Götz, Kay-Uwe; Fries, Ruedi

    2014-01-01

    Genetic variants underlying reduced male reproductive performance have been identified in humans and model organisms, most of them compromising semen quality. Occasionally, male fertility is severely compromised although semen analysis remains without any apparent pathological findings (i.e., idiopathic subfertility). Artificial insemination (AI) in most cattle populations requires close examination of all ejaculates before insemination. Although anomalous ejaculates are rejected, insemination success varies considerably among AI bulls. In an attempt to identify genetic causes of such variation, we undertook a genome-wide association study (GWAS). Imputed genotypes of 652,856 SNPs were available for 7962 AI bulls of the Fleckvieh (FV) population. Male reproductive ability (MRA) was assessed based on 15.3 million artificial inseminations. The GWAS uncovered a strong association signal on bovine chromosome 19 (P = 4.08×10−59). Subsequent autozygosity mapping revealed a common 1386 kb segment of extended homozygosity in 40 bulls with exceptionally poor reproductive performance. Only 1.7% of 35,671 inseminations with semen samples of those bulls were successful. None of the bulls with normal reproductive performance was homozygous, indicating recessive inheritance. Exploiting whole-genome re-sequencing data of 43 animals revealed a candidate causal nonsense mutation (rs378652941, c.483C>A, p.Cys161X) in the transmembrane protein 95 encoding gene TMEM95 which was subsequently validated in 1990 AI bulls. Immunohistochemical investigations evidenced that TMEM95 is located at the surface of spermatozoa of fertile animals whereas it is absent in spermatozoa of subfertile animals. These findings imply that integrity of TMEM95 is required for an undisturbed fertilisation. Our results demonstrate that deficiency of TMEM95 severely compromises male reproductive performance in cattle and reveal for the first time a phenotypic effect associated with genomic variation in

  6. A non-sense MCM9 mutation in a familial case of primary ovarian insufficiency.

    PubMed

    Fauchereau, F; Shalev, S; Chervinsky, E; Beck-Fruchter, R; Legois, B; Fellous, M; Caburet, S; Veitia, R A

    2016-05-01

    Primary ovarian insufficiency (POI) results in an early loss of ovarian function, and remains idiopathic in about 80% of cases. Here, we have performed a complete genetic study of a consanguineous family with two POI cases. Linkage analysis and homozygosity mapping identified 12 homozygous regions with linkage, totalling 84 Mb. Whole-exome sequencing of the two patients and a non-affected sister allowed us to detect a homozygous causal variant in the MCM9 gene. The variant c.1483G>T [p.E495*], confirmed using Sanger sequencing, introduced a premature stop codon in coding exon 8 and is expected to lead to the loss of a functional protein. MCM9 belongs to a complex required for DNA repair by homologous recombination, and its impairment in mouse is known to induce meiotic recombination defects and oocyte degeneration. A previous study recently described two consanguineous families in which homozygous mutations of MCM9 were responsible for POI and short stature. Interestingly, the affected sisters in the family described here had a normal height. Altogether, our results provide the confirmation of the implication of MCM9 variants in POI and expand their phenotypic spectrum. PMID:26771056

  7. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC

    PubMed Central

    Rubio-Cabezas, Oscar; Puri, Vishwajeet; Murano, Incoronata; Saudek, Vladimir; Semple, Robert K; Dash, Satya; Hyden, Caroline S S; Bottomley, William; Vigouroux, Corinne; Magré, Jocelyne; Raymond-Barker, Philippa; Murgatroyd, Peter R; Chawla, Anil; Skepper, Jeremy N; Chatterjee, V Krishna; Suliman, Sara; Patch, Ann-Marie; Agarwal, Anil K; Garg, Abhimanyu; Barroso, Inês; Cinti, Saverio; Czech, Michael P; Argente, Jesús; O'Rahilly, Stephen; Savage, David B

    2009-01-01

    Lipodystrophic syndromes are characterized by adipose tissue deficiency. Although rare, they are of considerable interest as they, like obesity, typically lead to ectopic lipid accumulation, dyslipidaemia and insulin resistant diabetes. In this paper we describe a female patient with partial lipodystrophy (affecting limb, femorogluteal and subcutaneous abdominal fat), white adipocytes with multiloculated lipid droplets and insulin-resistant diabetes, who was found to be homozygous for a premature truncation mutation in the lipid droplet protein cell death-inducing Dffa-like effector C (CIDEC) (E186X). The truncation disrupts the highly conserved CIDE-C domain and the mutant protein is mistargeted and fails to increase the lipid droplet size in transfected cells. In mice, Cidec deficiency also reduces fat mass and induces the formation of white adipocytes with multilocular lipid droplets, but in contrast to our patient, Cidec null mice are protected against diet-induced obesity and insulin resistance. In addition to describing a novel autosomal recessive form of familial partial lipodystrophy, these observations also suggest that CIDEC is required for unilocular lipid droplet formation and optimal energy storage in human fat. PMID:20049731

  8. Next-generation sequencing discloses a nonsense mutation in the dystrophin gene from long preserved dried umbilical cord and low-level somatic mosaicism in the proband mother.

    PubMed

    Taniguchi-Ikeda, Mariko; Takeshima, Yasuhiro; Lee, Tomoko; Nishiyama, Masahiro; Awano, Hiroyuki; Yagi, Mariko; Unzaki, Ai; Nozu, Kandai; Nishio, Hisahide; Matsuo, Masafumi; Kurahashi, Hiroki; Toda, Tatsushi; Morioka, Ichiro; Iijima, Kazumoto

    2016-04-01

    Duchene muscular dystrophy (DMD) is a progressive muscle wasting disease, caused by mutations in the dystrophin (DMD) on the X chromosome. One-third of patients are estimated to have de novo mutations. To provide in-depth genetic counseling, the comprehensive identification of mutations is mandatory. However, many DMD patients did not undergo genetic diagnosis because detailed genetic diagnosis was not available or their mutational types were difficult to identify. Here we report the genetic testing of a sporadic DMD boy, who died >20 years previously. Dried umbilical cord preserved for 38 years was the only available source of genomic DNA. Although the genomic DNA was severely degraded, multiplex ligation-dependent probe amplification analysis was performed but no gross mutations found. Sanger sequencing was attempted but not conclusive. Next-generation sequencing (NGS) was performed by controlling the tagmentation during library preparation. A nonsense mutation in DMD (p.Arg2095*) was clearly identified in the proband. Consequently, the identical mutation was detected as an 11% mosaic mutation from his healthy mother. Finally, the proband's sister was diagnosed as a non-carrier of the mutation. Thus using NGS we have identified a pathogenic DMD mutation from degraded DNA and low-level somatic mosaicism, which would have been overlooked using Sanger sequencing. PMID:26740235

  9. Differential protein structural disturbances and suppression of assembly partners produced by nonsense GABRG2 epilepsy mutations: implications for disease phenotypic heterogeneity

    PubMed Central

    Wang, Juexin; Shen, Dingding; Xia, Geqing; Shen, Wangzhen; Macdonald, Robert L.; Xu, Dong; Kang, Jing-Qiong

    2016-01-01

    Mutations in GABAA receptor subunit genes are frequently associated with epilepsy, and nonsense mutations in GABRG2 are associated with several epilepsy syndromes including childhood absence epilepsy, generalized tonic clonic seizures and the epileptic encephalopathy, Dravet syndrome. The molecular basis for the phenotypic heterogeneity of mutations is unclear. Here we focused on three nonsense mutations in GABRG2 (GABRG2(R136*), GABRG2(Q390*) and GABRG2(W429*)) associated with epilepsies of different severities. Structural modeling and structure-based analysis indicated that the surface of the wild-type γ2 subunit was naturally hydrophobic, which is suitable to be buried in the cell membrane. Different mutant γ2 subunits had different stabilities and different interactions with their wild-type subunit binding partners because they adopted different conformations and had different surface hydrophobicities and different tendency to dimerize. We utilized flow cytometry and biochemical approaches in combination with lifted whole cell patch-clamp recordings. We demonstrated that the truncated subunits had no to minimal surface expression and unchanged or reduced surface expression of wild-type partnering subunits. The amplitudes of GABA-evoked currents from the mutant α1β2γ2(R136*), α1β2γ2(Q390*) and α1β2γ2(W429*) receptors were reduced compared to the currents from α1β2γ2 receptors but with differentially reduced levels. This thus suggests differential protein structure disturbances are correlated with disease severity. PMID:27762395

  10. Identification of a nonsense mutation in APAF1 that is likely causal for a decrease in reproductive efficiency in Holstein dairy cattle.

    PubMed

    Adams, Heather A; Sonstegard, Tad S; VanRaden, Paul M; Null, Daniel J; Van Tassell, Curt P; Larkin, Denis M; Lewin, Harris A

    2016-08-01

    The HH1 haplotype on chromosome 5 is associated with a reduced conception rate and a deficit of homozygotes at the population level in Holstein cattle. The source HH1 haplotype was traced to the bull Pawnee Farm Arlinda Chief (Chief), who was born in 1962 and has sired more than 16,000 daughters. We identified a nonsense mutation in APAF1 (apoptotic protease activating factor 1;APAF1 p.Q579X) within HH1 using whole-genome resequencing of Chief and 3 of his sons. This mutation is predicted to truncate 670 AA (53.7%) of the encoded APAF1 protein that contains a WD40 domain critical to protein-protein interactions. Initial screening revealed no homozygous individuals for the mutation in 758 animals previously genotyped, whereas all 497 HH1 carriers possessed 1 copy of the mutant allele. Subsequent commercial genotyping of 246,773 Holsteins revealed 5,299 APAF1 heterozygotes and zero homozygotes for the mutation. The causative role of this mutation is also supported by functional data in mice that have demonstrated Apaf1 to be an essential molecule in the cytochrome-c-mediated apoptotic cascade and directly implicated in developmental and neurodegenerative disorders. In addition, most Apaf1 homozygous knockouts die by day 16.5 of development. We thus propose that the APAF1 p.Q579X nonsense mutation is the functional equivalent of the Apaf1 knockout. This mutation has caused an estimated 525,000 spontaneous abortions worldwide over the past 35 years, accounting for approximately $420 million in losses. With the mutation identified, selection against the deleterious allele in breeding schemes has aided in eliminating this defect from the population, reducing carrier frequency from 8% in past decades to 2% in 2015. PMID:27289157

  11. Identification of an amber nonsense mutation in the rosy516 gene by germline transformation of an amber suppressor tRNA gene.

    PubMed Central

    Doerig, R E; Suter, B; Gray, M; Kubli, E

    1988-01-01

    Seven xanthine dehydrogenase and cross-reacting material negative Drosophila melanogaster rosy stocks were screened for amber and ochre nonsense mutations. Amber and ochre nonsense suppressors were created by site-directed mutagenesis starting from a wild-type tRNA(Tyr) gene. The suppressor tRNA genes were subcloned into a pUChsneo transformation vector providing heat-shock controlled neomycin resistance. The seven rosy stocks were germline transformed with amber and ochre tDNA(Tyr), and the G1 generation was screened for Geneticin resistance. Surviving rosy516 flies transformed with the amber suppressor showed an eye colour intermediate between the original ry516 stock and the wild-type, suggesting that ry516 is an amber nonsense mutant. This was confirmed by sequencing the relevant part of the ry516 gene; the analysis revealed a C-to-T transition in a CAG glutamine codon at nucleotide 1522 of the wild-type rosy gene. Images PMID:3142765

  12. Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation.

    PubMed

    Tarpey, Patrick S; Raymond, F Lucy; Nguyen, Lam S; Rodriguez, Jayson; Hackett, Anna; Vandeleur, Lucianne; Smith, Raffaella; Shoubridge, Cheryl; Edkins, Sarah; Stevens, Claire; O'Meara, Sarah; Tofts, Calli; Barthorpe, Syd; Buck, Gemma; Cole, Jennifer; Halliday, Kelly; Hills, Katy; Jones, David; Mironenko, Tatiana; Perry, Janet; Varian, Jennifer; West, Sofie; Widaa, Sara; Teague, John; Dicks, Ed; Butler, Adam; Menzies, Andrew; Richardson, David; Jenkinson, Andrew; Shepherd, Rebecca; Raine, Keiran; Moon, Jenny; Luo, Yin; Parnau, Josep; Bhat, Shambhu S; Gardner, Alison; Corbett, Mark; Brooks, Doug; Thomas, Paul; Parkinson-Lawrence, Emma; Porteous, Mary E; Warner, John P; Sanderson, Tracy; Pearson, Pauline; Simensen, Richard J; Skinner, Cindy; Hoganson, George; Superneau, Duane; Wooster, Richard; Bobrow, Martin; Turner, Gillian; Stevenson, Roger E; Schwartz, Charles E; Futreal, P Andrew; Srivastava, Anand K; Stratton, Michael R; Gécz, Jozef

    2007-09-01

    Nonsense-mediated mRNA decay (NMD) is of universal biological significance. It has emerged as an important global RNA, DNA and translation regulatory pathway. By systematically sequencing 737 genes (annotated in the Vertebrate Genome Annotation database) on the human X chromosome in 250 families with X-linked mental retardation, we identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype and one with the FG phenotype. We also identified a missense mutation in another family with nonsyndromic mental retardation. Three mutations lead to the introduction of a premature termination codon and subsequent NMD of mutant UPF3B mRNA. Protein blot analysis using lymphoblastoid cell lines from affected individuals showed an absence of the UPF3B protein in two families. The UPF3B protein is an important component of the NMD surveillance machinery. Our results directly implicate abnormalities of NMD in human disease and suggest at least partial redundancy of NMD pathways. PMID:17704778

  13. Distinct Effects of Allelic NFIX Mutations on Nonsense-Mediated mRNA Decay Engender Either a Sotos-like or a Marshall-Smith Syndrome

    PubMed Central

    Malan, Valérie; Rajan, Diana; Thomas, Sophie; Shaw, Adam C.; Louis dit Picard, Hélène; Layet, Valérie; Till, Marianne; van Haeringen, Arie; Mortier, Geert; Nampoothiri, Sheela; Pušeljić, Silvija; Legeai-Mallet, Laurence; Carter, Nigel P.; Vekemans, Michel; Munnich, Arnold; Hennekam, Raoul C.; Colleaux, Laurence; Cormier-Daire, Valérie

    2010-01-01

    By using a combination of array comparative genomic hybridization and a candidate gene approach, we identified nuclear factor I/X (NFIX) deletions or nonsense mutation in three sporadic cases of a Sotos-like overgrowth syndrome with advanced bone age, macrocephaly, developmental delay, scoliosis, and unusual facies. Unlike the aforementioned human syndrome, Nfix-deficient mice are unable to gain weight and die in the first 3 postnatal weeks, while they also present with a spinal deformation and decreased bone mineralization. These features prompted us to consider NFIX as a candidate gene for Marshall-Smith syndrome (MSS), a severe malformation syndrome characterized by failure to thrive, respiratory insufficiency, accelerated osseous maturation, kyphoscoliosis, osteopenia, and unusual facies. Distinct frameshift and splice NFIX mutations that escaped nonsense-mediated mRNA decay (NMD) were identified in nine MSS subjects. NFIX belongs to the Nuclear factor one (NFI) family of transcription factors, but its specific function is presently unknown. We demonstrate that NFIX is normally expressed prenatally during human brain development and skeletogenesis. These findings demonstrate that allelic NFIX mutations trigger distinct phenotypes, depending specifically on their impact on NMD. PMID:20673863

  14. Limited phenotypic variation of hypocalcified amelogenesis imperfecta in a Danish five-generation family with a novel FAM83H nonsense mutation.

    PubMed

    Haubek, Dorte; Gjørup, Hans; Jensen, Lillian G; Juncker, Inger; Nyegaard, Mette; Børglum, Anders D; Poulsen, Sven; Hertz, Jens M

    2011-11-01

    BACKGROUND.  Autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI) is a disease with severe dental manifestations. OBJECTIVES.  The aims were by means of a genome-wide linkage scan to search for the gene underlying the ADHCAI phenotype in a Danish five-generation family and to study the phenotypic variation of the enamel in affected family members. RESULTS.  Significant linkage was found to a locus at chromosome 8q24.3 comprising the gene FAM83H identified to be responsible for ADHCAI in other families. Subsequent sequencing of FAM83H in affected family members revealed a novel nonsense mutation, p.Y302X. Limited phenotypic variation was found among affected family members with loss of translucency and discoloration of the enamel. Extensive posteruptive loss of enamel was found in all teeth of affected subjects. The tip of the cusps on the premolars and molars and a zone along the gingival margin seemed resistant to posteruptive loss of enamel. We have screened FAM83H in another five unrelated Danish patients with a phenotype of ADHCAI similar to that in the five-generation family, and identified a de novo FAM83H nonsense mutation, p.Q452X in one of these patients. CONCLUSION.  We have identified a FAM83H mutation in two of six unrelated families with ADHCAI and found limited phenotypic variation of the enamel in these patients.

  15. Missense and nonsense mutations in the alternatively-spliced exon 2 of COL2A1 cause the ocular variant of Stickler syndrome.

    PubMed

    McAlinden, Audrey; Majava, Marja; Bishop, Paul N; Perveen, Rahat; Black, Graeme C M; Pierpont, Mary Ella; Ala-Kokko, Leena; Männikkö, Minna

    2008-01-01

    Stickler syndrome type I (STL1) is a phenotypically heterogeneous disorder characterized by ocular and extraocular features. It is caused by null-allele mutations in the COL2A1 gene that codes for procollagen II. COL2A1 precursor mRNA undergoes alternative splicing, resulting in two isoforms, a long form including exon 2 (type IIA isoform) and a short form excluding exon 2 (type IIB isoform). The short form is predominantly expressed by differentiated chondrocytes in adult cartilage, and the long form in chondroprogenitor cells during early development and in the vitreous of the eye, which is the only adult tissue containing procollagen IIA. Recent evidence indicates that due to the tissue-specific expression of these two isoforms, premature termination codon mutations in exon 2 cause Stickler syndrome with minimal or no extraocular manifestations. We describe here two mutations in exon 2 of COL2A1 in three patients with predominantly ocular Stickler syndrome: Cys64Stop in two patients, and a novel structural mutation, Cys57Tyr, in one patient. RT-PCR of total lymphoblast RNA from one patient with the Cys64Stop mutation revealed that only the normal allele of the IIA form was present, indicating that the mutation resulted either in complete loss of the allele by nonsense-mediated mRNA decay or by skipping of exon 2 via nonsense-mediated altered splicing, resulting in production of the type IIB isoform. The results of COL2A1 minigene expression studies suggest that both Cys64Stop and Cys57Tyr alter positive cis regulatory elements for splicing, resulting in a lower IIA:IIB ratio.

  16. A nonsense mutation in the 4-hydroxyphenylpyruvic acid dioxygenase gene (Hpd) causes skipping of the constitutive exon and hypertyrosinemia in mouse strain III.

    PubMed

    Endo, F; Awata, H; Katoh, H; Matsuda, I

    1995-01-01

    4-Hydroxyphenylpyruvic acid dioxygenase (HPD; EC 1.13.11.27) is an important enzyme in tyrosine catabolism in most organisms. Decreased activity of 4-hydroxyphenylpyruvic acid dioxygenase in the liver of mouse strain III is associated with tyrosinemia. We report a nucleotide substitution that generates a termination codon in exon 7 of the 4-hydroxyphenylpyruvic acid dioxygenase gene in III mice. This mutation is associated with partial exon skipping, and most of the mRNA lacks sequences corresponding to exon 7. The partial exon skipping apparently is the result of a nonsense mutation in the exon. Mouse strain III is a model for human tyrosinemia type 3 (McKusick 276710), and this strain together with recently established models for tyrosinemia type 1 will facilitate studies of hereditary tyrosinemias.

  17. A homozygous nonsense mutation in the {alpha}3 chain gene of laminin 5 (LAMA3) in Herlitz junctional epidermolysis bullosa: Prenatal exclusion in a fetus at risk

    SciTech Connect

    McGrath, J.A. |; Ciatti, S.; Christiano, A.M.

    1995-09-01

    Mutations in the three genes (LAMA3, LAMB3, and LAMC2) that encode the three chains ({alpha}3, {Beta}3, and {gamma}2, respectively) of laminin 5, a protein involved in epidermal-dermal adhesion, have been established as the genetic basis for the inherited blistering skin disorder, Herlitz junctional epidermolysis bullosa (H-JEB). In this study, we performed mutational analysis on genomic DNA from a child with H-JEB and identified a nonsense mutation in the {alpha}3 chain gene (LAMA3) consisting of a homozygous C-to-T transition resulting in a premature termination codon (CGA {r_arrow} TGA) on both alleles. The parents were shown to be heterozygous carriers of the same mutation. Direct mutation analysis was used to perform DNA-based prenatal diagnosis from a chorionic villus biopsy at 10 weeks` gestation in a subsequent pregnancy. The fetus was predicted to be genotypically normal with respect to the LAMA3 mutation. 15 refs., 1 fig.

  18. Evidence that the supE44 Mutation of Escherichia coli Is an Amber Suppressor Allele of glnX and that It Also Suppresses Ochre and Opal Nonsense Mutations▿

    PubMed Central

    Singaravelan, B.; Roshini, B. R.; Munavar, M. Hussain

    2010-01-01

    Translational readthrough of nonsense codons is seen not only in organisms possessing one or more tRNA suppressors but also in strains lacking suppressors. Amber suppressor tRNAs have been reported to suppress only amber nonsense mutations, unlike ochre suppressors, which can suppress both amber and ochre mutations, essentially due to wobble base pairing. In an Escherichia coli strain carrying the lacZU118 episome (an ochre mutation in the lacZ gene) and harboring the supE44 allele, suppression of the ochre mutation was observed after 7 days of incubation. The presence of the supE44 lesion in the relevant strains was confirmed by sequencing, and it was found to be in the duplicate copy of the glnV tRNA gene, glnX. To investigate this further, an in vivo luciferase assay developed by D. W. Schultz and M. Yarus (J. Bacteriol. 172:595-602, 1990) was employed to evaluate the efficiency of suppression of amber (UAG), ochre (UAA), and opal (UGA) mutations by supE44. We have shown here that supE44 suppresses ochre as well as opal nonsense mutations, with comparable efficiencies. The readthrough of nonsense mutations in a wild-type E. coli strain was much lower than that in a supE44 strain when measured by the luciferase assay. Increased suppression of nonsense mutations, especially ochre and opal, by supE44 was found to be growth phase dependent, as this phenomenon was only observed in stationary phase and not in logarithmic phase. These results have implications for the decoding accuracy of the translational machinery, particularly in stationary growth phase. PMID:20833812

  19. Missense and nonsense mutations in melanocortin 1 receptor (MC1R) gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences

    PubMed Central

    2009-01-01

    Background Agouti and Extension loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. The Extension locus encodes the melanocortin 1 receptor (MC1R) whose permanent activation, caused by functional mutations, results in black coat colour, whereas other inactivating mutations cause red coat colour in different mammals. Results The whole coding region of the MC1R gene was sequenced in goats of six different breeds showing different coat colours (Girgentana, white cream with usually small red spots in the face; Maltese, white with black cheeks and ears; Derivata di Siria, solid red; Murciano-Granadina, solid black or solid brown; Camosciata delle Alpi, brown with black stripes; Saanen, white; F1 goats and the parental animals). Five single nucleotide polymorphisms (SNPs) were identified: one nonsense mutation (p.Q225X), three missense mutations (p.A81V, p.F250V, and p.C267W), and one silent mutation. The stop codon at position 225 should cause the production of a shorter MC1R protein whose functionality may be altered. These SNPs were investigated in a larger sample of animals belonging to the six breeds. The Girgentana breed was almost fixed for the p.225X allele. However, there was not complete association between the presence of red spots in the face and the presence of this allele in homozygous condition. The same allele was identified in the Derivata di Siria breed. However, its frequency was only 33%, despite the fact that these animals are completely red. The p.267W allele was present in all Murciano-Granadina black goats, whereas it was never identified in the brown ones. Moreover, the same substitution was present in almost all Maltese goats providing evidence of association between this mutation and black coat colour. Conclusion According to the results obtained in the investigated goat breeds, MC1R mutations may determine eumelanic and pheomelanic phenotypes. However

  20. A nonsense mutation in mouse Tardbp affects TDP43 alternative splicing activity and causes limb-clasping and body tone defects.

    PubMed

    Ricketts, Thomas; McGoldrick, Philip; Fratta, Pietro; de Oliveira, Hugo M; Kent, Rosie; Phatak, Vinaya; Brandner, Sebastian; Blanco, Gonzalo; Greensmith, Linda; Acevedo-Arozena, Abraham; Fisher, Elizabeth M C

    2014-01-01

    Mutations in TARDBP, encoding Tar DNA binding protein-43 (TDP43), cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Attempts to model TDP43 dysfunction in mice have used knockouts or transgenic overexpressors, which have revealed the difficulties of manipulating TDP43, whose level is tightly controlled by auto-regulation. In a complementary approach, to create useful mouse models for the dissection of TDP43 function and pathology, we have identified a nonsense mutation in the endogenous mouse Tardbp gene through screening an N-ethyl-N-nitrosourea (ENU) mutant mouse archive. The mutation is predicted to cause a Q101X truncation in TDP43. We have characterised Tardbp(Q101X) mice to investigate this mutation in perturbing TDP43 biology at endogenous expression levels. We found the Tardbp(Q101X) mutation is homozygous embryonic lethal, highlighting the importance of TDP43 in early development. Heterozygotes (Tardbp(+/Q101X) ) have abnormal levels of mutant transcript, but we find no evidence of the truncated protein and mice have similar full-length TDP43 protein levels as wildtype littermates. Nevertheless, Tardbp(+/Q101X) mice have abnormal alternative splicing of downstream gene targets, and limb-clasp and body tone phenotypes. Thus the nonsense mutation in Tardbp causes a mild loss-of-function phenotype and behavioural assessment suggests underlying neurological abnormalities. Due to the role of TDP43 in ALS, we investigated potential interactions with another known causative gene, mutant superoxide dismutase 1 (SOD1). Tardbp(+/Q101X) mice were crossed with the SOD1(G93Adl) transgenic mouse model of ALS. Behavioural and physiological assessment did not reveal modifying effects on the progression of ALS-like symptoms in the double mutant progeny from this cross. In summary, the Tardbp(Q101X) mutant mice are a useful tool for the dissection of TDP43 protein regulation, effects on splicing, embryonic development and neuromuscular phenotypes

  1. Acute intermittent porphyria: A single-base deletion and a nonsense mutation in the human hydroxymethylbilane synthase gene, predicting truncations of the enzyme polypeptide

    SciTech Connect

    Lee, G.L.; Astrin, K.H.; Desnick, R.J.

    1995-08-28

    Acute intermittent porphyria (AIP) is an autosomal-dominant inborn error of metabolism that results from the half-normal activity of the third enzyme in the heme biosynthetic pathway, hydroxymethylbilane synthase (HMB-synthase). AIP is an ecogenetic condition, since the life-threatening acute attacks are precipitated by various factors, including drugs, alcohol, fasting, and certain hormones. Biochemical diagnosis is problematic, and the identification of mutations in the HMB-synthase gene provides accurate detection of presymptomatic heterozygotes, permitting avoidance of the acute precipitating factors. By direct solid-phase sequencing, two mutations causing AIP were identified, an adenine deletion at position 629 in exon 11(629delA), which alters the reading frame and predicts premature truncation of the enzyme protein after amino acid 255, and a nonsense mutation in exon 12 (R225X). These mutations were confirmed by either restriction enzyme analysis or family studies of symptomatic patients, permitting accurate presymptomatic diagnosis of affected relatives. 29 refs., 2 figs.

  2. Novel nonsense mutation (p.Ile411Metfs*12) in the SLC19A2 gene causing Thiamine Responsive Megaloblastic Anemia in an Indian patient.

    PubMed

    Manimaran, Paramasivam; Subramanian, Veedamali S; Karthi, Sellamuthu; Gandhimathi, Krishnan; Varalakshmi, Perumal; Ganesh, Ramasamy; Rathinavel, Andiappan; Said, Hamid M; Ashokkumar, Balasubramaniem

    2016-01-15

    Thiamine-responsive megaloblastic anemia (TRMA), an autosomal recessive disorder, is caused by mutations in SLC19A2 gene encodes a high affinity thiamine transporter (THTR-1). The occurrence of TRMA is diagnosed by megaloblastic anemia, diabetes mellitus, and sensorineural deafness. Here, we report a female TRMA patient of Indian descent born to 4th degree consanguineous parents presented with retinitis pigmentosa and vision impairment, who had a novel homozygous mutation (c.1232delT/ter422; p.Ile411Metfs*12) in 5th exon of SLC19A2 gene that causes premature termination of hTHTR-1. PROSITE analysis predicted to abrogate GPCRs family-1 signature motif in the variant by this mutation c.1232delT/ter422, suggesting uncharacteristic rhodopsin function leading to cause RP clinically. Thiamine transport activity by the clinical variant was severely inhibited than wild-type THTR-1. Confocal imaging had shown that the variant p.I411Mfs*12 is targeted to the cell membrane and showed no discrepancy in membrane expression than wild-type. Our findings are the first report, to the best of our knowledge, on this novel nonsense mutation of hTHTR-1 causing TRMA in an Indian patient through functionally impaired thiamine transporter activity. PMID:26549656

  3. Two novel exonic point mutations in HEXA identified in a juvenile Tay-Sachs patient: role of alternative splicing and nonsense-mediated mRNA decay.

    PubMed

    Levit, A; Nutman, D; Osher, E; Kamhi, E; Navon, R

    2010-06-01

    We have identified three mutations in the beta-hexoseaminidase A (HEXA) gene in a juvenile Tay-Sachs disease (TSD) patient, which exhibited a reduced level of HEXA mRNA. Two mutations are novel, c.814G>A (p.Gly272Arg) and c.1305C>T (p.=), located in exon 8 and in exon 11, respectively. The third mutation, c.1195A>G (p.Asn399Asp) in exon 11, has been previously characterized as a common polymorphism in African-Americans. Hex A activity measured in TSD Glial cells, transfected with HEXA cDNA constructs bearing these mutations, was unaltered from the activity level measured in normal HEXA cDNA. Analysis of RT-PCR products revealed three aberrant transcripts in the patient, one where exon 8 was absent, one where exon 11 was absent and a third lacking both exons 10 and 11. All three novel transcripts contain frameshifts resulting in premature termination codons (PTCs). Transfection of mini-gene constructs carrying the c.814G>A and c.1305C>T mutations proved that the two mutations result in exon skipping. mRNAs that harbor a PTC are detected and degraded by the nonsense-mediated mRNA decay (NMD) pathway to prevent synthesis of abnormal proteins. However, although NMD is functional in the patient's fibroblasts, aberrant transcripts are still present. We suggest that the level of correctly spliced transcripts as well as the efficiency in which NMD degrade the PTC-containing transcripts, apparently plays an important role in the phenotype severity of the unique patient and thus should be considered as a potential target for drug therapy. PMID:20363167

  4. Nonsense suppression in archaea

    PubMed Central

    Bhattacharya, Arpita; Köhrer, Caroline; Mandal, Debabrata; RajBhandary, Uttam L.

    2015-01-01

    Bacterial strains carrying nonsense suppressor tRNA genes played a crucial role in early work on bacterial and bacterial viral genetics. In eukaryotes as well, suppressor tRNAs have played important roles in the genetic analysis of yeast and worms. Surprisingly, little is known about genetic suppression in archaea, and there has been no characterization of suppressor tRNAs or identification of nonsense mutations in any of the archaeal genes. Here, we show, using the β-gal gene as a reporter, that amber, ochre, and opal suppressors derived from the serine and tyrosine tRNAs of the archaeon Haloferax volcanii are active in suppression of their corresponding stop codons. Using a promoter for tRNA expression regulated by tryptophan, we also show inducible and regulatable suppression of all three stop codons in H. volcanii. Additionally, transformation of a ΔpyrE2 H. volcanii strain with plasmids carrying the genes for a pyrE2 amber mutant and the serine amber suppressor tRNA yielded transformants that grow on agar plates lacking uracil. Thus, an auxotrophic amber mutation in the pyrE2 gene can be complemented by expression of the amber suppressor tRNA. These results pave the way for generating archaeal strains carrying inducible suppressor tRNA genes on the chromosome and their use in archaeal and archaeviral genetics. We also provide possible explanations for why suppressor tRNAs have not been identified in archaea. PMID:25918386

  5. Nonsense suppression in archaea.

    PubMed

    Bhattacharya, Arpita; Köhrer, Caroline; Mandal, Debabrata; RajBhandary, Uttam L

    2015-05-12

    Bacterial strains carrying nonsense suppressor tRNA genes played a crucial role in early work on bacterial and bacterial viral genetics. In eukaryotes as well, suppressor tRNAs have played important roles in the genetic analysis of yeast and worms. Surprisingly, little is known about genetic suppression in archaea, and there has been no characterization of suppressor tRNAs or identification of nonsense mutations in any of the archaeal genes. Here, we show, using the β-gal gene as a reporter, that amber, ochre, and opal suppressors derived from the serine and tyrosine tRNAs of the archaeon Haloferax volcanii are active in suppression of their corresponding stop codons. Using a promoter for tRNA expression regulated by tryptophan, we also show inducible and regulatable suppression of all three stop codons in H. volcanii. Additionally, transformation of a ΔpyrE2 H. volcanii strain with plasmids carrying the genes for a pyrE2 amber mutant and the serine amber suppressor tRNA yielded transformants that grow on agar plates lacking uracil. Thus, an auxotrophic amber mutation in the pyrE2 gene can be complemented by expression of the amber suppressor tRNA. These results pave the way for generating archaeal strains carrying inducible suppressor tRNA genes on the chromosome and their use in archaeal and archaeviral genetics. We also provide possible explanations for why suppressor tRNAs have not been identified in archaea.

  6. Nonsense suppression in archaea.

    PubMed

    Bhattacharya, Arpita; Köhrer, Caroline; Mandal, Debabrata; RajBhandary, Uttam L

    2015-05-12

    Bacterial strains carrying nonsense suppressor tRNA genes played a crucial role in early work on bacterial and bacterial viral genetics. In eukaryotes as well, suppressor tRNAs have played important roles in the genetic analysis of yeast and worms. Surprisingly, little is known about genetic suppression in archaea, and there has been no characterization of suppressor tRNAs or identification of nonsense mutations in any of the archaeal genes. Here, we show, using the β-gal gene as a reporter, that amber, ochre, and opal suppressors derived from the serine and tyrosine tRNAs of the archaeon Haloferax volcanii are active in suppression of their corresponding stop codons. Using a promoter for tRNA expression regulated by tryptophan, we also show inducible and regulatable suppression of all three stop codons in H. volcanii. Additionally, transformation of a ΔpyrE2 H. volcanii strain with plasmids carrying the genes for a pyrE2 amber mutant and the serine amber suppressor tRNA yielded transformants that grow on agar plates lacking uracil. Thus, an auxotrophic amber mutation in the pyrE2 gene can be complemented by expression of the amber suppressor tRNA. These results pave the way for generating archaeal strains carrying inducible suppressor tRNA genes on the chromosome and their use in archaeal and archaeviral genetics. We also provide possible explanations for why suppressor tRNAs have not been identified in archaea. PMID:25918386

  7. Inherited human complement C5 deficiency: Nonsense mutations in exons 1 (Gln{sup 1} to Stop) and 36 (Arg{sup 1458} to Stop) and compound heterozygosity in three African-American families

    SciTech Connect

    Wang, X.; Fleischer, D.T.; Whitehead, W.T.

    1995-05-15

    Hereditary C5 deficiency has been reported in several families of different ethnic backgrounds and from different geographic regions, but the molecular genetic defect causing C5 deficiency has not been delineated in any of them. To examine the molecular basis of C5 deficiency in the African-American population, the exons and intron/exon boundaries of the C5 structural genes from three C5-deficient (C5D) African-American families were sequenced, revealing two nonsense mutations. The nonsense mutations are located in exon 1 (C{sup 84}AG to TAG) in two of the C5D families (Rhode Island and North Carolina) and in exon 36 (C{sup 4521}GA to TGA) in the third C5D family (New York). The exon 1 and 36 mutations are contained in codons that encode the first amino acid of the C5 {beta}-chain (Gln{sup 1} to Stop) and residue 1458 in the {alpha}-chain (Arg{sup 1458} to Stop), respectively. Allele-specific PCR and sequence analyses demonstrated that the exon 1 mutation is present in only one of the C5 null genes in both the Rhode Island and North Carolina families, and the exon 36 mutation is contained in only one C5 null gene in the New York family. Neither of the nonsense mutations was found in the European or Caucasian-American C5D individuals examined. Collectively, these data indicate that: (1) C5 deficiency is caused by several different molecular genetic defects, (2) C5 deficiency in the African-American population can be explained in part by two distinct nonsense mutations in exons 1 and 36, and (3) compound heterozygosity exists in all of the reported African-American C5D families. 44 refs., 5 figs., 1 tab.

  8. Tay-Sachs disease in an Arab family due to c.78G>A HEXA nonsense mutation encoding a p.W26X early truncation enzyme peptide.

    PubMed

    Haghighi, Alireza; Masri, Amira; Kornreich, Ruth; Desnick, Robert J

    2011-12-01

    Tay-Sachs disease (TSD), a pan-ethnic, autosomal recessive, neurodegenerative, lysosomal disease, results from deficient β-hexosaminidase A activity due to β-hexosaminidase α-subunit (HEXA) mutations. Prenatal/premarital carrier screening programs in the Ashkenazi Jewish community have markedly reduced disease occurrence. We report the first Jordanian Arab TSD patient diagnosed by deficient β-hexosaminidase A activity. HEXA mutation analysis revealed homozygosity for a nonsense mutation, c.78G>A (p.W26X). Previously reported in Arab patients, this mutation is a candidate for TSD screening in Arab populations.

  9. Tay-Sachs disease in an Arab family due to c.78G>A HEXA nonsense mutation encoding a p.W26X early truncation enzyme peptide.

    PubMed

    Haghighi, Alireza; Masri, Amira; Kornreich, Ruth; Desnick, Robert J

    2011-12-01

    Tay-Sachs disease (TSD), a pan-ethnic, autosomal recessive, neurodegenerative, lysosomal disease, results from deficient β-hexosaminidase A activity due to β-hexosaminidase α-subunit (HEXA) mutations. Prenatal/premarital carrier screening programs in the Ashkenazi Jewish community have markedly reduced disease occurrence. We report the first Jordanian Arab TSD patient diagnosed by deficient β-hexosaminidase A activity. HEXA mutation analysis revealed homozygosity for a nonsense mutation, c.78G>A (p.W26X). Previously reported in Arab patients, this mutation is a candidate for TSD screening in Arab populations. PMID:21967858

  10. Nonsense codon suppression in fission yeast due to mutations of tRNASer.11 and translation release factor Sup35 (eRF3)

    PubMed Central

    Protacio, Reine U.; Storey, Aaron J.; Davidson, Mari K.; Wahls, Wayne P.

    2015-01-01

    In the fission yeast Schizosaccharomyces pombe, sup9 mutations can suppress the termination of translation at nonsense (stop) codons. We localized sup9 physically to the spctrnaser.11 locus and confirmed that one allele (sup9-UGA) alters the anticodon of a serine tRNA. We also found that another purported allele is not allelic. Instead, strains with that suppressor (renamed sup35-F592S) have a single base pair substitution (T1775C) that introduces an amino acid substitution in the Sup35 protein (Sup35-F592S). Reduced functionality of Sup35 (eRF3), the ubiquitous guanine nucleotide-responsive translation release factor of eukaryotes, increases read-through of stop codons. Tetrad dissection revealed that suppression is tightly linked to (inseparable from) the sup35-F592S mutation and that there are no additional extragenic modifiers. The Mendelian inheritance indicates that the Sup35-F592S protein does not adopt an infectious amyloid state ([PSI+] prion) to affect suppression, consistent with recent evidence that fission yeast Sup35 does not form prions. We also report that sup9-UGA and sup35-F592S exhibit different strengths of suppression for opal stop codons of ade6-M26 and ade6-M375. We discuss possible mechanisms for the variation in suppressibility exhibited by the two alleles. PMID:25519804

  11. Nonsense codon suppression in fission yeast due to mutations of tRNA(Ser.11) and translation release factor Sup35 (eRF3).

    PubMed

    Protacio, Reine U; Storey, Aaron J; Davidson, Mari K; Wahls, Wayne P

    2015-05-01

    In the fission yeast Schizosaccharomyces pombe, sup9 mutations can suppress the termination of translation at nonsense (stop) codons. We localized sup9 physically to the spctrnaser.11 locus and confirmed that one allele (sup9-UGA) alters the anticodon of a serine tRNA. We also found that another purported allele is not allelic. Instead, strains with that suppressor (renamed sup35-F592S) have a single base pair substitution (T1775C) that introduces an amino acid substitution in the Sup35 protein (Sup35-F592S). Reduced functionality of Sup35 (eRF3), the ubiquitous guanine nucleotide-responsive translation release factor of eukaryotes, increases read-through of stop codons. Tetrad dissection revealed that suppression is tightly linked to (inseparable from) the sup35-F592S mutation and that there are no additional extragenic modifiers. The Mendelian inheritance indicates that the Sup35-F592S protein does not adopt an infectious amyloid state ([PSI (+)] prion) to affect suppression, consistent with recent evidence that fission yeast Sup35 does not form prions. We also report that sup9-UGA and sup35-F592S exhibit different strengths of suppression for opal stop codons of ade6-M26 and ade6-M375. We discuss possible mechanisms for the variation in suppressibility exhibited by the two alleles. PMID:25519804

  12. Identification of a novel nonsense mutation in the FOXP3 gene in a fetus with hydrops--Expanding the phenotype of IPEX syndrome.

    PubMed

    Reichert, Sara L; McKay, Eileen M; Moldenhauer, Julie S

    2016-01-01

    IPEX Syndrome is a well-characterized, however rare, autoimmune condition primarily affecting males presenting with neonatal onset of severe diarrhea, diabetes, dermatitis, and other autoimmune symptoms. The gene responsible for this condition, FOXP3, is important in the function of T-regulatory cells which maintain tolerance to self-antigens and are implicated in many autoimmune conditions. While females who carry FOXP3 mutations are typically asymptomatic, pregnancy loss of male fetuses in families with a history of IPEX syndrome has been noted. This loss is likely unrelated to the maternal carrier status, and rather related to pathogenic fetal autoimmunity. Fetal presentation of IPEX Syndrome has been recently reported in two families. Of the two reported probands, one had onset of severe intrauterine growth restriction and the second involved monochorionic diamniotic twins affected with fetal hydrops. Loss of male fetuses was noted in both families. We present a third family who suffered the loss of two male fetuses as a result of fetal hydrops of an unknown etiology. Whole Exome Sequencing on fetal remains following the second loss identified a novel nonsense mutation in the FOXP3 gene, which was inherited from the mother and subsequently confirmed in saved cells from the first pregnancy. These two cases further expand the fetal phenotype of IPEX Syndrome. While rare, IPEX syndrome should be another potential differential when considering the onset of unexplained hydrops in a male fetus.

  13. Identification of a novel nonsense mutation in the FOXP3 gene in a fetus with hydrops--Expanding the phenotype of IPEX syndrome.

    PubMed

    Reichert, Sara L; McKay, Eileen M; Moldenhauer, Julie S

    2016-01-01

    IPEX Syndrome is a well-characterized, however rare, autoimmune condition primarily affecting males presenting with neonatal onset of severe diarrhea, diabetes, dermatitis, and other autoimmune symptoms. The gene responsible for this condition, FOXP3, is important in the function of T-regulatory cells which maintain tolerance to self-antigens and are implicated in many autoimmune conditions. While females who carry FOXP3 mutations are typically asymptomatic, pregnancy loss of male fetuses in families with a history of IPEX syndrome has been noted. This loss is likely unrelated to the maternal carrier status, and rather related to pathogenic fetal autoimmunity. Fetal presentation of IPEX Syndrome has been recently reported in two families. Of the two reported probands, one had onset of severe intrauterine growth restriction and the second involved monochorionic diamniotic twins affected with fetal hydrops. Loss of male fetuses was noted in both families. We present a third family who suffered the loss of two male fetuses as a result of fetal hydrops of an unknown etiology. Whole Exome Sequencing on fetal remains following the second loss identified a novel nonsense mutation in the FOXP3 gene, which was inherited from the mother and subsequently confirmed in saved cells from the first pregnancy. These two cases further expand the fetal phenotype of IPEX Syndrome. While rare, IPEX syndrome should be another potential differential when considering the onset of unexplained hydrops in a male fetus. PMID:26395338

  14. Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse.

    PubMed Central

    Blunt, T; Gell, D; Fox, M; Taccioli, G E; Lehmann, A R; Jackson, S P; Jeggo, P A

    1996-01-01

    DNA-dependent protein kinase (DNA-PK) consists of a heterodimeric protein (Ku) and a large catalytic subunit (DNA-PKcs). The Ku protein has double-stranded DNA end-binding activity that serves to recruit the complex to DNA ends. Despite having serine/threonine protein kinase activity, DNA-PKcs falls into the phosphatidylinositol 3-kinase superfamily. DNA-PK functions in DNA double-strand break repair and V(D)J recombination, and recent evidence has shown that mouse scid cells are defective in DNA-PKcs. In this study we have cloned the cDNA for the carboxyl-terminal region of DNA-PKcs in rodent cells and identified the existence of two differently spliced products in human cells. We show that DNA-PKcs maps to the same chromosomal region as the mouse scid gene. scid cells contain approximately wild-type levels of DNA-PKcs transcripts, whereas the V-3 cell line, which is also defective in DNA-PKcs, contains very reduced transcript levels. Sequence comparison of the carboxyl-terminal region of scid and wild-type mouse cells enabled us to identify a nonsense mutation within a highly conserved region of the gene in mouse scid cells. This represents a strong candidate for the inactivating mutation in DNA-PKcs in the scid mouse. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8816792

  15. FANCM c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor.

    PubMed

    Peterlongo, Paolo; Catucci, Irene; Colombo, Mara; Caleca, Laura; Mucaki, Eliseos; Bogliolo, Massimo; Marin, Maria; Damiola, Francesca; Bernard, Loris; Pensotti, Valeria; Volorio, Sara; Dall'Olio, Valentina; Meindl, Alfons; Bartram, Claus; Sutter, Christian; Surowy, Harald; Sornin, Valérie; Dondon, Marie-Gabrielle; Eon-Marchais, Séverine; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Sinilnikova, Olga M; Mitchell, Gillian; James, Paul A; Thompson, Ella; Marchetti, Marina; Verzeroli, Cristina; Tartari, Carmen; Capone, Gabriele Lorenzo; Putignano, Anna Laura; Genuardi, Maurizio; Medici, Veronica; Marchi, Isabella; Federico, Massimo; Tognazzo, Silvia; Matricardi, Laura; Agata, Simona; Dolcetti, Riccardo; Della Puppa, Lara; Cini, Giulia; Gismondi, Viviana; Viassolo, Valeria; Perfumo, Chiara; Mencarelli, Maria Antonietta; Baldassarri, Margherita; Peissel, Bernard; Roversi, Gaia; Silvestri, Valentina; Rizzolo, Piera; Spina, Francesca; Vivanet, Caterina; Tibiletti, Maria Grazia; Caligo, Maria Adelaide; Gambino, Gaetana; Tommasi, Stefania; Pilato, Brunella; Tondini, Carlo; Corna, Chiara; Bonanni, Bernardo; Barile, Monica; Osorio, Ana; Benitez, Javier; Balestrino, Luisa; Ottini, Laura; Manoukian, Siranoush; Pierotti, Marco A; Renieri, Alessandra; Varesco, Liliana; Couch, Fergus J; Wang, Xianshu; Devilee, Peter; Hilbers, Florentine S; van Asperen, Christi J; Viel, Alessandra; Montagna, Marco; Cortesi, Laura; Diez, Orland; Balmaña, Judith; Hauke, Jan; Schmutzler, Rita K; Papi, Laura; Pujana, Miguel Angel; Lázaro, Conxi; Falanga, Anna; Offit, Kenneth; Vijai, Joseph; Campbell, Ian; Burwinkel, Barbara; Kvist, Anders; Ehrencrona, Hans; Mazoyer, Sylvie; Pizzamiglio, Sara; Verderio, Paolo; Surralles, Jordi; Rogan, Peter K; Radice, Paolo

    2015-09-15

    Numerous genetic factors that influence breast cancer risk are known. However, approximately two-thirds of the overall familial risk remain unexplained. To determine whether some of the missing heritability is due to rare variants conferring high to moderate risk, we tested for an association between the c.5791C>T nonsense mutation (p.Arg1931*; rs144567652) in exon 22 of FANCM gene and breast cancer. An analysis of genotyping data from 8635 familial breast cancer cases and 6625 controls from different countries yielded an association between the c.5791C>T mutation and breast cancer risk [odds ratio (OR) = 3.93 (95% confidence interval (CI) = 1.28-12.11; P = 0.017)]. Moreover, we performed two meta-analyses of studies from countries with carriers in both cases and controls and of all available data. These analyses showed breast cancer associations with OR = 3.67 (95% CI = 1.04-12.87; P = 0.043) and OR = 3.33 (95% CI = 1.09-13.62; P = 0.032), respectively. Based on information theory-based prediction, we established that the mutation caused an out-of-frame deletion of exon 22, due to the creation of a binding site for the pre-mRNA processing protein hnRNP A1. Furthermore, genetic complementation analyses showed that the mutation influenced the DNA repair activity of the FANCM protein. In summary, we provide evidence for the first time showing that the common p.Arg1931* loss-of-function variant in FANCM is a risk factor for familial breast cancer.

  16. FANCM c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor

    PubMed Central

    Peterlongo, Paolo; Catucci, Irene; Colombo, Mara; Caleca, Laura; Mucaki, Eliseos; Bogliolo, Massimo; Marin, Maria; Damiola, Francesca; Bernard, Loris; Pensotti, Valeria; Volorio, Sara; Dall'Olio, Valentina; Meindl, Alfons; Bartram, Claus; Sutter, Christian; Surowy, Harald; Sornin, Valérie; Dondon, Marie-Gabrielle; Eon-Marchais, Séverine; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Sinilnikova, Olga M.; Mitchell, Gillian; James, Paul A.; Thompson, Ella; Marchetti, Marina; Verzeroli, Cristina; Tartari, Carmen; Capone, Gabriele Lorenzo; Putignano, Anna Laura; Genuardi, Maurizio; Medici, Veronica; Marchi, Isabella; Federico, Massimo; Tognazzo, Silvia; Matricardi, Laura; Agata, Simona; Dolcetti, Riccardo; Puppa, Lara Della; Cini, Giulia; Gismondi, Viviana; Viassolo, Valeria; Perfumo, Chiara; Mencarelli, Maria Antonietta; Baldassarri, Margherita; Peissel, Bernard; Roversi, Gaia; Silvestri, Valentina; Rizzolo, Piera; Spina, Francesca; Vivanet, Caterina; Tibiletti, Maria Grazia; Caligo, Maria Adelaide; Gambino, Gaetana; Tommasi, Stefania; Pilato, Brunella; Tondini, Carlo; Corna, Chiara; Bonanni, Bernardo; Barile, Monica; Osorio, Ana; Benitez, Javier; Balestrino, Luisa; Ottini, Laura; Manoukian, Siranoush; Pierotti, Marco A.; Renieri, Alessandra; Varesco, Liliana; Couch, Fergus J.; Wang, Xianshu; Devilee, Peter; Hilbers, Florentine S.; van Asperen, Christi J.; Viel, Alessandra; Montagna, Marco; Cortesi, Laura; Diez, Orland; Balmaña, Judith; Hauke, Jan; Schmutzler, Rita K.; Papi, Laura; Pujana, Miguel Angel; Lázaro, Conxi; Falanga, Anna; Offit, Kenneth; Vijai, Joseph; Campbell, Ian; Burwinkel, Barbara; Kvist, Anders; Ehrencrona, Hans; Mazoyer, Sylvie; Pizzamiglio, Sara; Verderio, Paolo; Surralles, Jordi; Rogan, Peter K.; Radice, Paolo

    2015-01-01

    Numerous genetic factors that influence breast cancer risk are known. However, approximately two-thirds of the overall familial risk remain unexplained. To determine whether some of the missing heritability is due to rare variants conferring high to moderate risk, we tested for an association between the c.5791C>T nonsense mutation (p.Arg1931*; rs144567652) in exon 22 of FANCM gene and breast cancer. An analysis of genotyping data from 8635 familial breast cancer cases and 6625 controls from different countries yielded an association between the c.5791C>T mutation and breast cancer risk [odds ratio (OR) = 3.93 (95% confidence interval (CI) = 1.28–12.11; P = 0.017)]. Moreover, we performed two meta-analyses of studies from countries with carriers in both cases and controls and of all available data. These analyses showed breast cancer associations with OR = 3.67 (95% CI = 1.04–12.87; P = 0.043) and OR = 3.33 (95% CI = 1.09–13.62; P = 0.032), respectively. Based on information theory-based prediction, we established that the mutation caused an out-of-frame deletion of exon 22, due to the creation of a binding site for the pre-mRNA processing protein hnRNP A1. Furthermore, genetic complementation analyses showed that the mutation influenced the DNA repair activity of the FANCM protein. In summary, we provide evidence for the first time showing that the common p.Arg1931* loss-of-function variant in FANCM is a risk factor for familial breast cancer. PMID:26130695

  17. FANCM c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor.

    PubMed

    Peterlongo, Paolo; Catucci, Irene; Colombo, Mara; Caleca, Laura; Mucaki, Eliseos; Bogliolo, Massimo; Marin, Maria; Damiola, Francesca; Bernard, Loris; Pensotti, Valeria; Volorio, Sara; Dall'Olio, Valentina; Meindl, Alfons; Bartram, Claus; Sutter, Christian; Surowy, Harald; Sornin, Valérie; Dondon, Marie-Gabrielle; Eon-Marchais, Séverine; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Sinilnikova, Olga M; Mitchell, Gillian; James, Paul A; Thompson, Ella; Marchetti, Marina; Verzeroli, Cristina; Tartari, Carmen; Capone, Gabriele Lorenzo; Putignano, Anna Laura; Genuardi, Maurizio; Medici, Veronica; Marchi, Isabella; Federico, Massimo; Tognazzo, Silvia; Matricardi, Laura; Agata, Simona; Dolcetti, Riccardo; Della Puppa, Lara; Cini, Giulia; Gismondi, Viviana; Viassolo, Valeria; Perfumo, Chiara; Mencarelli, Maria Antonietta; Baldassarri, Margherita; Peissel, Bernard; Roversi, Gaia; Silvestri, Valentina; Rizzolo, Piera; Spina, Francesca; Vivanet, Caterina; Tibiletti, Maria Grazia; Caligo, Maria Adelaide; Gambino, Gaetana; Tommasi, Stefania; Pilato, Brunella; Tondini, Carlo; Corna, Chiara; Bonanni, Bernardo; Barile, Monica; Osorio, Ana; Benitez, Javier; Balestrino, Luisa; Ottini, Laura; Manoukian, Siranoush; Pierotti, Marco A; Renieri, Alessandra; Varesco, Liliana; Couch, Fergus J; Wang, Xianshu; Devilee, Peter; Hilbers, Florentine S; van Asperen, Christi J; Viel, Alessandra; Montagna, Marco; Cortesi, Laura; Diez, Orland; Balmaña, Judith; Hauke, Jan; Schmutzler, Rita K; Papi, Laura; Pujana, Miguel Angel; Lázaro, Conxi; Falanga, Anna; Offit, Kenneth; Vijai, Joseph; Campbell, Ian; Burwinkel, Barbara; Kvist, Anders; Ehrencrona, Hans; Mazoyer, Sylvie; Pizzamiglio, Sara; Verderio, Paolo; Surralles, Jordi; Rogan, Peter K; Radice, Paolo

    2015-09-15

    Numerous genetic factors that influence breast cancer risk are known. However, approximately two-thirds of the overall familial risk remain unexplained. To determine whether some of the missing heritability is due to rare variants conferring high to moderate risk, we tested for an association between the c.5791C>T nonsense mutation (p.Arg1931*; rs144567652) in exon 22 of FANCM gene and breast cancer. An analysis of genotyping data from 8635 familial breast cancer cases and 6625 controls from different countries yielded an association between the c.5791C>T mutation and breast cancer risk [odds ratio (OR) = 3.93 (95% confidence interval (CI) = 1.28-12.11; P = 0.017)]. Moreover, we performed two meta-analyses of studies from countries with carriers in both cases and controls and of all available data. These analyses showed breast cancer associations with OR = 3.67 (95% CI = 1.04-12.87; P = 0.043) and OR = 3.33 (95% CI = 1.09-13.62; P = 0.032), respectively. Based on information theory-based prediction, we established that the mutation caused an out-of-frame deletion of exon 22, due to the creation of a binding site for the pre-mRNA processing protein hnRNP A1. Furthermore, genetic complementation analyses showed that the mutation influenced the DNA repair activity of the FANCM protein. In summary, we provide evidence for the first time showing that the common p.Arg1931* loss-of-function variant in FANCM is a risk factor for familial breast cancer. PMID:26130695

  18. Three novel germ-line VHL mutations in Hungarian von Hippel-Lindau patients, including a nonsense mutation in a fifteen-year-old boy with renal cell carcinoma

    PubMed Central

    2013-01-01

    Background Von Hippel-Lindau disease is an autosomal dominantly inherited highly penetrant tumor syndrome predisposing to retinal and central nervous system hemangioblastomas, renal cell carcinoma and phaeochromocytoma among other less frequent complications. Methods Molecular genetic testing of the VHL gene was performed in five unrelated families affetced with type I VHL disease, including seven patients and their available family members. Results Molecular genetic investigations detected three novel (c.163 G > T, c.232A > T and c.555C > A causing p.Glu55X, p.Asn78Tyr and p.Tyr185X protein changes, respectively) and two previously described (c.340 + 1 G > A and c.583C > T, resulting in p.Gly114AspfsX6 and p.195GlnX protein changes, respectively) germline point mutations in the VHL gene. Molecular modeling of the VHL-ElonginC-HIF-1alpha complex predicted that the p.Asn78Tyr amino acid exchange remarkably alters the 77-83 loop structure of VHL protein and destabilizes the VHL-HIF-1alpha complex suggesting that the mutation causes type I phenotype and has high risk to associate to renal cell carcinoma. The novel p.55X nonsense mutation associated to bilateral RCC and retinal angioma in a 15-year-old male patient. Conclusion We describe the earliest onset renal cell carcinoma in VHL disease reported so far in a 15-year-old boy with a nonsense VHL mutation. Individual tailoring of screening schedule based on molecular genetic status should be considered in order to diagnose serious complications as early as possible. Our observations add to the understanding of genotype-phenotype correlation in VHL disease and can be useful for genetic counseling and follow-up of VHL patients. PMID:23298237

  19. A Novel Nonsense Mutation of the AGL Gene in a Romanian Patient with Glycogen Storage Disease Type IIIa

    PubMed Central

    Zimmermann, Anca; Rossmann, Heidi; Bucerzan, Simona; Grigorescu-Sido, Paula

    2016-01-01

    Background. Glycogen storage disease type III (GSDIII) is a rare metabolic disorder with autosomal recessive inheritance, caused by deficiency of the glycogen debranching enzyme. There is a high phenotypic variability due to different mutations in the AGL gene. Methods and Results. We describe a 2.3-year-old boy from a nonconsanguineous Romanian family, who presented with severe hepatomegaly with fibrosis, mild muscle weakness, cardiomyopathy, ketotic fasting hypoglycemia, increased transaminases, creatine phosphokinase, and combined hyperlipoproteinemia. GSD type IIIa was suspected. Accordingly, genomic DNA of the index patient was analyzed by next generation sequencing of the AGL gene. For confirmation of the two mutations found, genetic analysis of the parents and grandparents was also performed. The patient was compound heterozygous for the novel mutation c.3235C>T, p.Gln1079⁎ (exon 24) and the known mutation c.1589C>G, p.Ser530⁎ (exon 12). c.3235 >T, p.Gln1079⁎ was inherited from the father, who inherited it from his mother. c.1589C>G, p.Ser530⁎ was inherited from the mother, who inherited it from her father. Conclusion. We report the first genetically confirmed case of a Romanian patient with GSDIIIa. We detected a compound heterozygous genotype with a novel mutation, in the context of a severe hepatopathy and an early onset of cardiomyopathy. PMID:26885414

  20. A homozygous nonsense mutation in the {beta}3 chain gene of laminin 5 (LAMB3) in herlitz junctional epidermolysis bullosa

    SciTech Connect

    Pulkkinen, L.; Christiano, A.M.; Uitto, J.

    1994-11-15

    Herlitz junctional epidermolysis bullosa (H-JEB) is a severe autosomal recessive disorder characterized by blister formation within the dermal-epidermal basement membrane. Based on immunofluorescence analysis recognizing laminin 5 epitopes (previously known as nicein/kalinin), the genes for this lamina lucida protein have been proposed as candidate genes in H-JEB. Amplification of mRNA by RT-PCR, followed by direct nucleotide sequencing, revealed a homozygous C-to T transition resulting in a premature termination codon (CGA{r_arrow}TGA) on both alleles. This mutation was verified at the genomic DNA level, and both parents were shown to be heterozygous carriers of the same mutation. This is the first description of a mutation in the laminin {beta}3 chain gene (LAMB3) of laminin 5 in an H-JEB patient. 15 refs., 2 figs.

  1. A novel IRF6 nonsense mutation (Y67X) in a German family with Van der Woude syndrome.

    PubMed

    Brosch, Sibylle; Baur, Manuela; Blin, Nikolaus; Reinert, Siegmar; Pfister, Markus

    2007-07-01

    Van der Woude syndrome (VWS) is the most common type of syndromic orofacial cleft, which accounts for approximately 2% of all cleft lip and palate cases. It is characterised by variable association of lower lip pits, cleft lip and cleft palate, and hypodontia. VWS arises as the result of mutations in the gene encoding interferon regulatory factor 6 (IRF6). The disorder is transmitted in an autosomal dominant manner, with high penetrance and variable expressivity. Very recently, mutations of the IRF6 gene in exons 2-9 have been found in VWS patients, suggesting that this gene plays an important role in orofacial development. We report a novel mutation of the IRF6 gene in a German family. Five out of the 12 persons affected were able to be investigated. The mutation produced a stop codon within exon 4 of the IRF6 gene. All 5 patients were heterozygous for a base substitution c.201C>A changing the tyrosine codon at amino acid position 67 into a stop codon (p.Y67X) in exon 4. The premature stop codon was responsible for a truncated protein lacking parts of the DNA- binding domain and the complete Smad-interferon regulatory factor-binding domain probably essential for interactions with the Smad transcription factors. PMID:17549393

  2. A novel nonsense CDK5RAP2 mutation in a Somali child with primary microcephaly and sensorineural hearing loss.

    PubMed

    Pagnamenta, Alistair T; Murray, Jennie E; Yoon, Grace; Sadighi Akha, Elham; Harrison, Victoria; Bicknell, Louise S; Ajilogba, Kaseem; Stewart, Helen; Kini, Usha; Taylor, Jenny C; Keays, David A; Jackson, Andrew P; Knight, Samantha J L

    2012-10-01

    Primary microcephaly is a genetically heterogeneous condition characterized by reduced head circumference (-3 SDS or more) and mild-to-moderate learning disability. Here, we describe clinical and molecular investigations of a microcephalic child with sensorineural hearing loss. Although consanguinity was unreported initially, detection of 13.7 Mb of copy neutral loss of heterozygosity (cnLOH) on chromosome 9 implicated the CDK5RAP2 gene. Targeted sequencing identified a homozygous E234X mutation, only the third mutation to be described in CDK5RAP2, the first in an individual of non-Pakistani descent. Sensorineural hearing loss is not generally considered to be consistent with autosomal recessive microcephaly and therefore it seems likely that the deafness in this individual is caused by the co-occurrence of a further gene mutation, independent of CDK5RAP2. Nevertheless, further detailed clinical descriptions of rare CDK5RAP2 patients, including hearing assessments will be needed to resolve fully the phenotypic range associated with mutations in this gene. This study also highlights the utility of SNP-array testing to guide disease gene identification where an autosomal recessive condition is plausible. PMID:22887808

  3. A Nonsense Mutation in the Acid α-Glucosidase Gene Causes Pompe Disease in Finnish and Swedish Lapphunds

    PubMed Central

    Seppälä, Eija H.; Reuser, Arnold J. J.; Lohi, Hannes

    2013-01-01

    Pompe disease is a recessively inherited and often fatal disorder caused by the deficiency of acid α-glucosidase, an enzyme encoded by the GAA gene and needed to break down glycogen in lysosomes. This glycogen storage disease type II has been reported also in Swedish Lapphund dogs. Here we describe the genetic defect in canine Pompe disease and show that three related breeds from Scandinavia carry the same mutation. The affected dogs are homozygous for the GAA c.2237G>A mutation leading to a premature stop codon at amino acid position 746. The corresponding mutation has previously been reported in humans and causes infantile Pompe disease in combination with a second fully deleterious mutation. The affected dogs from both the Finnish as well as the Swedish breed mimic infantile-onset Pompe disease genetically, but also clinico-pathologically. Therefore this canine model provides a valuable tool for preclinical studies aimed at the development of gene therapy in Pompe disease. PMID:23457621

  4. Mutations in SMG9, Encoding an Essential Component of Nonsense-Mediated Decay Machinery, Cause a Multiple Congenital Anomaly Syndrome in Humans and Mice

    PubMed Central

    Shaheen, Ranad; Anazi, Shams; Ben-Omran, Tawfeg; Seidahmed, Mohammed Zain; Caddle, L. Brianna; Palmer, Kristina; Ali, Rehab; Alshidi, Tarfa; Hagos, Samya; Goodwin, Leslie; Hashem, Mais; Wakil, Salma M.; Abouelhoda, Mohamed; Colak, Dilek; Murray, Stephen A.; Alkuraya, Fowzan S.

    2016-01-01

    Nonsense-mediated decay (NMD) is an important process that is best known for degrading transcripts that contain premature stop codons (PTCs) to mitigate their potentially harmful consequences, although its regulatory role encompasses other classes of transcripts as well. Despite the critical role of NMD at the cellular level, our knowledge about the consequences of deficiency of its components at the organismal level is largely limited to model organisms. In this study, we report two consanguineous families in which a similar pattern of congenital anomalies was found to be most likely caused by homozygous loss-of-function mutations in SMG9, encoding an essential component of the SURF complex that generates phospho-UPF1, the single most important step in NMD. By knocking out Smg9 in mice via CRISPR/Cas9, we were able to recapitulate the major features of the SMG9-related multiple congenital anomaly syndrome we observed in humans. Surprisingly, human cells devoid of SMG9 do not appear to have reduction of PTC-containing transcripts but do display global transcriptional dysregulation. We conclude that SMG9 is required for normal human and murine development, most likely through a transcriptional regulatory role, the precise nature of which remains to be determined. PMID:27018474

  5. Moderation of phenotypic severity in dystrophic and junctional forms of epidermolysis bullosa through in-frame skipping of exons containing non-sense or frameshift mutations.

    PubMed

    McGrath, J A; Ashton, G H; Mellerio, J E; Salas-Alanis, J C; Swensson, O; McMillan, J R; Eady, R A

    1999-09-01

    Non-sense mutations on both alleles of either the type VII collagen gene (COL7A1) or the genes encoding laminin 5 (LAMA3, LAMB3, or LAMC2) usually result in clinically severe forms of recessive dystrophic or junctional epidermolysis bullosa, respectively. In this study we assessed two unrelated families whose mutations in genomic DNA predicted severe recessive dystrophic epidermolysis bullosa or junctional epidermolysis bullosa phenotypes but in whom the manifestations were milder than expected. The recessive dystrophic epidermolysis bullosa patients had a homozygous single base-pair frameshift mutation in exon 19 of COL7A1 (2470insG). Clinically, there was generalized blistering but only mild scarring. Skin biopsy revealed positive type VII collagen immunoreactivity and recognizable anchoring fibrils. The junctional epidermolysis bullosa patients were compound heterozygotes for a frameshift/non-sense combination of mutations in exons 3 and 17 of LAMB3 (29insC/Q834X). These patients did not have the lethal form of junctional epidermolysis bullosa but, as adults, displayed the milder generalized atrophic benign epidermolysis bullosa variant. There was undetectable laminin 5 staining at the dermal-epidermal junction using an antibody to the beta3 chain, but faintly positive alpha3 and gamma2 chain labeling, and there was variable hypoplasia of hemidesmosomes. To explain the milder recessive dystrophic epidermolysis bullosa and junctional epidermolysis bullosa phenotypes in these families, reverse transcription-polymerase chain reaction, using RNA extracted from frozen skin, was able to provide evidence for some rescue of mutant mRNA transcripts with restoration of the open- reading frame. In the recessive dystrophic epidermolysis bullosa patients, transcripts containing in-frame skipping of exon 19 of COL7A1 in the cDNA were detected, and in the junctional epidermolysis bullosa patients transcripts with in-frame skipping of exon 17 of LAMB3 were identified. The

  6. Introduction of UAG, UAA, and UGA nonsense mutations at a specific site in the Escherichia coli chloramphenicol acetyltransferase gene: use in measurement of amber, ochre, and opal suppression in mammalian cells.

    PubMed Central

    Capone, J P; Sedivy, J M; Sharp, P A; RajBhandary, U L

    1986-01-01

    We have used oligonucleotide-directed site-specific mutagenesis to convert serine codon 27 of the Escherichia coli chloramphenicol acetyltransferase (cat) gene to UAG, UAA, and UGA nonsense codons. The mutant cat genes, under transcriptional control of the Rous sarcoma virus long terminal repeat, were then introduced into mammalian cells by DNA transfection along with UAG, UAA, and UGA suppressor tRNA genes derived from a human serine tRNA. Assay for CAT enzymatic activity in extracts from such cells allowed us to detect and quantitate nonsense suppression in monkey CV-1 cells and mouse NIH3T3 cells. Using such an assay, we provide the first direct evidence that an opal suppressor tRNA gene is functional in mammalian cells. The pattern of suppression of the three cat nonsense mutations in bacteria suggests that the serine at position 27 of CAT can be replaced by a wide variety of amino acids without loss of enzymatic activity. Thus, these mutant cat genes should be generally useful for the quantitation of suppressor activity of suppressor tRNA genes introduced into cells and possibly for the detection of naturally occurring nonsense suppressors. Images PMID:3023959

  7. G418-mediated ribosomal read-through of a nonsense mutation causing autosomal recessive proximal renal tubular acidosis

    PubMed Central

    Azimov, Rustam; Abuladze, Natalia; Sassani, Pakan; Newman, Debra; Kao, Liyo; Liu, Weixin; Orozco, Nicholas; Ruchala, Piotr; Pushkin, Alexander; Kurtz, Ira

    2008-01-01

    Autosomal recessive proximal renal tubular acidosis is caused by mutations in the SLC4A4 gene encoding the electrogenic sodium bicarbonate cotransporter NBCe1-A. The mutations that have been characterized thus far result in premature truncation, mistargeting, or decreased function of the cotransporter. Despite bicarbonate treatment to correct the metabolic acidosis, extrarenal manifestations persist, including glaucoma, cataracts, corneal opacification, and mental retardation. Currently, there are no known therapeutic approaches that can specifically target mutant NBCe1-A proteins. In the present study, we tested the hypothesis that the NBCe1-A-Q29X mutation can be rescued in vitro by treatment with aminoglycoside antibiotics, which are known for their ability to suppress premature stop codons. As a model system, we cloned the NBCe1-A-Q29X mutant into a vector lacking an aminoglycoside resistance gene and transfected the mutant cotransporter in HEK293-H cells. Cells transfected with the NBCe1-A-Q29X mutant failed to express the cotransporter because of the premature stop codon. Treatment of the cells with G418 significantly increased the expression of the full-length cotransporter, as assessed by immunoblot analysis. Furthermore, immunocytochemical studies demonstrated that G418 treatment induced cotransporter expression on the plasma membrane whereas in the absence of G418, NBCe1-A-Q29X was not expressed. In HEK293-H cells transfected with the NBCe1-A-Q29X mutant not treated with G418, NBCe1-A-mediated flux was not detectable. In contrast, in cells transfected with the NBCe1-A-Q29X mutant, G418 treatment induced Na+- and HCO3−-dependent transport that did not differ from wild-type NBCe1-A function. G418 treatment in mock-transfected cells was without effect. In conclusion, G418 induces ribosomal read-through of the NBCe1-A-Q29X mutation in HEK293-H cells. These findings represent the first evidence that in the presence of the NBCe1-A-Q29X mutation that causes

  8. A nonsense mutation in the gene encoding a zebrafish myosin VI isoform causes defects in hair-cell mechanotransduction

    PubMed Central

    Kappler, James A.; Starr, Catherine J.; Chan, Dylan K.; Kollmar, Richard; Hudspeth, A. J.

    2004-01-01

    In a three-generation screen of chemically mutagenized zebrafish, we identified a group of mutations that affect the development and function of hair cells, the mechanically sensitive cells of the inner ear and lateral-line organ. One mutant line, ru920, was discovered in a behavioral screen for defects in the acoustically evoked escape response. Despite apparently normal numbers of hair cells, mutants lack an inner-ear microphonic potential and exhibit reduced labeling of hair cells by a fluorophore that traverses transduction channels. This hair-cell-specific phenotype suggested a defect in the mechanoelectrical transduction apparatus. Positional cloning revealed that the recessive mutation introduces a premature stop codon in the ORF of myosin6b (myo6b), one of the two zebrafish orthologs of the human gene myosin VI. The ru920 line therefore provides an animal model with which to study the role of class VI myosin proteins in mechanotransduction. PMID:15317943

  9. Case Report: Compound heterozygous nonsense mutations in TRMT10A are associated with microcephaly, delayed development, and periventricular white matter hyperintensities.

    PubMed

    Narayanan, Mohan; Ramsey, Keri; Grebe, Theresa; Schrauwen, Isabelle; Szelinger, Szabolcs; Huentelman, Matthew; Craig, David; Narayanan, Vinodh

    2015-01-01

    Microcephaly is a fairly common feature observed in children with delayed development, defined as head circumference less than 2 standard deviations below the mean for age and gender. It may be the result of an acquired insult to the brain, such prenatal or perinatal brain injury (congenital infection or hypoxic ischemic encephalopathy), or be a part of a genetic syndrome. There are over 1000 conditions listed in OMIM (Online Mendelian Inheritance in Man) where microcephaly is a key finding; many of these are associated with specific somatic features and non-CNS anomalies. The term primary microcephaly is used when microcephaly and delayed development are the primary features, and they are not part of another recognized syndrome. In this case report, we present the clinical features of siblings (brother and sister) with primary microcephaly and delayed development, and subtle dysmorphic features. Both children had brain MRI studies that showed periventricular and subcortical T2/FLAIR hyperintensities, without signs of white matter volume loss, and no parenchymal calcifications by CT scan. The family was enrolled in a research study for whole exome sequencing of probands and parents. Analysis of variants determined that the children were compound heterozygotes for nonsense mutations, c.277C>T (p.Arg93*) and c.397C>T (p.Arg133*), in the TRMT10A gene. Mutations in this gene have only recently been reported in children with microcephaly and early onset diabetes mellitus. Our report adds to current knowledge of TRMT10A related neurodevelopmental disorders and demonstrates imaging findings suggestive of delayed or abnormal myelination of the white matter in this disorder. Accurate diagnosis through genomic testing, as in the children described here, allows for early detection and management of medical complications, such as diabetes mellitus. PMID:26535115

  10. Case Report: Compound heterozygous nonsense mutations in TRMT10A are associated with microcephaly, delayed development, and periventricular white matter hyperintensities

    PubMed Central

    Narayanan, Mohan; Ramsey, Keri; Grebe, Theresa; Schrauwen, Isabelle; Szelinger, Szabolcs; Huentelman, Matthew; Craig, David; Narayanan, Vinodh

    2015-01-01

    Microcephaly is a fairly common feature observed in children with delayed development, defined as head circumference less than 2 standard deviations below the mean for age and gender. It may be the result of an acquired insult to the brain, such prenatal or perinatal brain injury (congenital infection or hypoxic ischemic encephalopathy), or be a part of a genetic syndrome. There are over 1000 conditions listed in OMIM (Online Mendelian Inheritance in Man) where microcephaly is a key finding; many of these are associated with specific somatic features and non-CNS anomalies. The term primary microcephaly is used when microcephaly and delayed development are the primary features, and they are not part of another recognized syndrome. In this case report, we present the clinical features of siblings (brother and sister) with primary microcephaly and delayed development, and subtle dysmorphic features. Both children had brain MRI studies that showed periventricular and subcortical T2/FLAIR hyperintensities, without signs of white matter volume loss, and no parenchymal calcifications by CT scan. The family was enrolled in a research study for whole exome sequencing of probands and parents. Analysis of variants determined that the children were compound heterozygotes for nonsense mutations, c.277C>T (p.Arg93*) and c.397C>T (p.Arg133*), in the TRMT10A gene. Mutations in this gene have only recently been reported in children with microcephaly and early onset diabetes mellitus. Our report adds to current knowledge of TRMT10A related neurodevelopmental disorders and demonstrates imaging findings suggestive of delayed or abnormal myelination of the white matter in this disorder. Accurate diagnosis through genomic testing, as in the children described here, allows for early detection and management of medical complications, such as diabetes mellitus. PMID:26535115

  11. Identification of a nonsense mutation in the STRC gene in a Korean family with moderate hearing loss.

    PubMed

    Sagong, Borum; Baek, Jeong-In; Bok, Jinwoong; Lee, Kyu-Yup; Kim, Un-Kyung

    2016-01-01

    Hereditary hearing loss is a heterogeneous disorder that results in a common sensorineural disorder. To date, more than 150 loci and 89 genes have been reported for non-syndromic hearing loss. Next generation sequencing has recently been developed as a powerful genetic strategy for identifying pathogenic mutations in heterogeneous disorders with various causative genes. In this study, we performed targeted sequencing to identify the causative mutation in a Korean family that had moderate hearing loss. We targeted 64 genes associated with non-syndromic hearing loss and sorted the homozygous variations according to the autosomal recessive inheritance pattern of the family. Implementing a bioinformatic platform for filtering and detecting variations allowed for the identification of two variations within different genes (c.650G>A in TRIOBP and c.4057C>T in STRC). These variants were selected for further analysis. Among these, c.4057C>T (p.Q1353X) was a divergent sequence variation between the STRC gene and the STRC pseudogene. This was the critical difference that resulted in loss of the protein-coding ability of the pseudogene. Therefore, we hypothesized that the p.Q1353X variation in the STRC gene is the causative mutation for hearing loss. This result suggests that application of targeted sequencing will be valuable for the diagnosis of heterogeneous disorders.

  12. Identification of a Novel NLRP12 Nonsense Mutation (Trp408X) in the Extremely Rare Disease FCAS by Exome Sequencing

    PubMed Central

    Xia, Xiaoru; Dai, Caijun; Zhu, Xiaochun; Liao, Qiumei; Luo, Xu; Fu, Yangyang; Wang, Liangxing

    2016-01-01

    Familial cold autoinflammatory syndrome (FCAS) is an extremely rare autosomal dominant inherited disease. Although there are four genes that have been linked with FCAS, its molecular diagnosis has been challenging in a relatively large proportion of cases. In this study, we aimed to investigate the genetic defect of a recruited FCAS family using exome sequencing followed by in-depth bioinformatics analysis. As a result, a novel heterozygous stop-gain mutation (Trp408X) in NLRP12 was identified in autosomal dominant inherited FCAS with clinical features of recurrent fever and skin urticaria due to cold conditions. When combined with previous studies, all of the reported mutations were found to have occurred in a highly conserved region in the NACHT domain coding sequence in NLRP12 exon 3, suggesting that a screening strategy for FCAS should focus on this area of the gene. In conclusion, this study demonstrates the importance of exome sequencing for clinical diagnosis of genetic disorders and provides molecular insight into FCAS treatment and diagnosis. PMID:27314497

  13. Homozygosity for a novel adenosine deaminase (ADA) nonsense mutation (Q3>X) in a child with severe combined immunodeficiency (SCID)

    SciTech Connect

    Santisteban, I.; Arrendondo-Vega, F.X.; Kelly, S. |

    1994-09-01

    A Somali girl was diagnosed with ADA-deficient SCID at 7 mo; she responded well to PEG-ADA replacement and is now 3.3 yr old. ADA mRNA was undetectable (Northern) in her cultured T cells, but was present in T cells of her parents and two sibs. All PCR-amplified exon 1 genomic clones from the patient had a C>T transition at bp 7 relative to the start of translation, replacing Gln at codon 3 (AGA) with a termination codon (TGA, Q3>X). Patient cDNA (prepared by RT-PCR with a 5{prime} primer that covered codons 1-7) had a previously described polymorphism, K80>R, but was otherwise normal, indicating that no other coding mutations were present. A predicted new genomic BfaI restriction site was used to establish her homozygosity for Q3>X and to analyze genotypes of family members. We also analyzed the segregation of a variable Alu polyA-associated TAAA repeat (AluVpA) situated 5{prime} of the ADA gene. Three different AluVpA alleles were found, one of which was only present in the father and was not associated with his Q3>X allele. Because the father`s RBCs had only {approximately}15% of normal ADA activity, we analyzed his ADA cDNA. We found a G>A transition at bp 425 that substitutes Gln for Arg142, a solvent-accessible residue, and eliminates a BsmAI site in exon 5. ADA activity of the R142>Q in vitro translation product was 20-25% of wild type ADA translation product, suggesting that R142>Q is a new {open_quote}partial{close_quote} ADA deficiency mutation. As expected, Q3>X mRNA did not yield a detectable in vitro translation product. We conclude that the patient`s father is a compound heterozygote carrying the ADA Q3>X/R142>Q genotype. {open_quote}Partial{close_quote} ADA deficiency unassociated with immunodeficiency is relatively common in individuals of African descent. The present findings and previous observations suggest that {open_quote}partial{close_quote} ADA deficiency may have had an evolutionary advantage.

  14. The G428A Nonsense Mutation in FUT2 Provides Strong but Not Absolute Protection against Symptomatic GII.4 Norovirus Infection

    PubMed Central

    Buesa, Javier; Rydell, Gustaf E.; Lidón, Marta Fos; Montava, Rebeca; Mallouh, Reem Abu; Grahn, Ammi; Rodríguez-Díaz, Jesús; Bellido, Juan; Arnedo, Alberto; Larson, Göran; Svensson, Lennart

    2009-01-01

    In November 2004, 116 individuals in an elderly nursing home in El Grao de Castellón, Spain were symptomatically infected with genogroup II.4 (GII.4) norovirus. The global attack rate was 54.2%. Genotyping of 34 symptomatic individuals regarding the FUT2 gene revealed that one patient was, surprisingly, a non-secretor, hence indicating secretor-independent infection. Lewis genotyping revealed that Lewis-positive and negative individuals were susceptible to symptomatic norovirus infection indicating that Lewis status did not predict susceptibility. Saliva based ELISA assays were used to determine binding of the outbreak virus to saliva samples. Saliva from a secretor-negative individual bound the authentic outbreak GII.4 Valencia/2004/Es virus, but did not in contrast to secretor-positive saliva bind VLP of other strains including the GII.4 Dijon strain. Amino acid comparison of antigenic A and B sites located on the external loops of the P2 domain revealed distinct differences between the Valencia/2004/Es and Dijon strains. All three aa in each antigenic site as well as 10/11 recently identified evolutionary hot spots, were unique in the Valencia/2004/Es strain compared to the Dijon strain. To the best of our knowledge, this is the first example of symptomatic GII.4 norovirus infection of a Lea+b− individual homozygous for the G428A nonsense mutation in FUT2. Taken together, our study provides new insights into the host genetic susceptibility to norovirus infections and evolution of the globally dominating GII.4 viruses. PMID:19440360

  15. Recurrence of pulmonary alveolar proteinosis after bilateral lung transplantation in a patient with a nonsense mutation in CSF2RB.

    PubMed

    Takaki, Masahiro; Tanaka, Takeshi; Komohara, Yoshihiro; Tsuchihashi, Yoshiko; Mori, Daisuke; Hayashi, Kentaro; Fukuoka, Junya; Yamasaki, Naoya; Nagayasu, Takeshi; Ariyoshi, Koya; Morimoto, Konosuke; Nakata, Koh

    2016-01-01

    Hereditary pulmonary alveolar proteinosis (PAP) caused by mutations in CSF2RA or CSF2RB, which encode GM-CSF receptor α and β respectively, is a rare disease. Although some experimental therapeutic strategies have been proposed, no clinical evidence has yet been reported. We herein describe the clinical course and recurrence of hereditary PAP after lung transplantation. A 36-year-old woman developed PAP of unknown etiology. She underwent bilateral lung transplantation from living donors at the age of 42 years because of severe respiratory failure complicated by pulmonary fibrosis. However, PAP recurred after 9 months, and we found that donor-origin alveolar macrophages had been almost completely replaced with recipient-origin macrophages. We performed a genetic analysis and identified a point deletion in the CSF2RB gene that caused a GM-CSF receptor-mediated signaling defect. PAP progressed with fibrosis in both transplanted lungs, and the patient died of respiratory failure 5 years after the lung transplantation. Distinct from recent reports on pulmonary macrophage transplantation in mice, this case suggests that human alveolar macrophages might not maintain their population only by self-renewal but may depend on a supply of precursor cells from the circulation. Bone marrow transplantation should be considered for treatment of severe PAP with GM-CSF receptor gene deficiency. PMID:27595063

  16. Detection of three nonsense mutations and one missense mutation in the interleukin-2 receptor [gamma] chain gene in SCIDX1 that differently affect the mRNA processing

    SciTech Connect

    Markiewicz, S.; Fischer, A.; Saint Basile, G. de ); Subtil, A.; Dautry-Varsat, A. )

    1994-05-01

    The interleukin-2 receptor [gamma] (IL-2R[gamma]) chain gene encodes a 64-kDa protein that not only composes the high-affinity form of the IL-2 binding receptor in association with the 2R [alpha] and [beta] chains, but also participates in at least the IL-4 and IL-7 receptor complexes. Mutations in this gene have recently been shown to cause X-linked severe combined immunodeficiency (SCIDX1). This disease of the immune system results from an early block of T lymphocyte and natural killer (NK) cell differentiation, which leads to a severe cellular and humoral immune defect that is lethal unless treated by bone marrow transplantation. Analysis of the IL-2R[gamma] gene in SCIDX1 patients has revealed the presence of heterogeneous mutations principally located in the extracellular domain of the molecule. We report here three intraexonic mutations and one deletion in the IL-2R[gamma] gene in four SCIDX1 patients. These mutations appear to differentially affect RNA processing, either by decreasing IL-2R[gamma] mRNA level or by the skipping of a constitutive exon. 16 refs., 1 fig.

  17. Sense and Nonsense in HPT

    ERIC Educational Resources Information Center

    Brethower, Dale

    2004-01-01

    Sense and nonsense is abound in human performance technology (HPT). There is no single cause of the abundance of nonsense. However, there is a reason that nonsense is more abundant than sense. The reason is that any principle has a specific domain of applicability. Within that domain it is sense. Outside that domain it is nonsense. Some…

  18. The first family with Tay-Sachs disease in Cyprus: Genetic analysis reveals a nonsense (c.78G>A) and a silent (c.1305C>T) mutation and allows preimplantation genetic diagnosis.

    PubMed

    Georgiou, Theodoros; Christopoulos, George; Anastasiadou, Violetta; Hadjiloizou, Stavros; Cregeen, David; Jackson, Marie; Mavrikiou, Gavriella; Kleanthous, Marina; Drousiotou, Anthi

    2014-12-01

    Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder caused by mutations in the HEXA gene resulting in β-hexosaminidase A (HEX A) deficiency and neuronal accumulation of GM2 ganglioside. We describe the first patient with Tay-Sachs disease in the Cypriot population, a juvenile case which presented with developmental regression at the age of five. The diagnosis was confirmed by measurement of HEXA activity in plasma, peripheral leucocytes and fibroblasts. Sequencing the HEXA gene resulted in the identification of two previously described mutations: the nonsense mutation c.78G>A (p.Trp26X) and the silent mutation c.1305C>T (p.=). The silent mutation was reported once before in a juvenile TSD patient of West Indian origin with an unusually mild phenotype. The presence of this mutation in another juvenile TSD patient provides further evidence that it is a disease-causing mutation. Successful preimplantation genetic diagnosis (PGD) and prenatal follow-up were provided to the couple.

  19. The first family with Tay-Sachs disease in Cyprus: Genetic analysis reveals a nonsense (c.78G>A) and a silent (c.1305C>T) mutation and allows preimplantation genetic diagnosis.

    PubMed

    Georgiou, Theodoros; Christopoulos, George; Anastasiadou, Violetta; Hadjiloizou, Stavros; Cregeen, David; Jackson, Marie; Mavrikiou, Gavriella; Kleanthous, Marina; Drousiotou, Anthi

    2014-12-01

    Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder caused by mutations in the HEXA gene resulting in β-hexosaminidase A (HEX A) deficiency and neuronal accumulation of GM2 ganglioside. We describe the first patient with Tay-Sachs disease in the Cypriot population, a juvenile case which presented with developmental regression at the age of five. The diagnosis was confirmed by measurement of HEXA activity in plasma, peripheral leucocytes and fibroblasts. Sequencing the HEXA gene resulted in the identification of two previously described mutations: the nonsense mutation c.78G>A (p.Trp26X) and the silent mutation c.1305C>T (p.=). The silent mutation was reported once before in a juvenile TSD patient of West Indian origin with an unusually mild phenotype. The presence of this mutation in another juvenile TSD patient provides further evidence that it is a disease-causing mutation. Successful preimplantation genetic diagnosis (PGD) and prenatal follow-up were provided to the couple. PMID:25606403

  20. Edward Lear, Limericks, and Nonsense: A Little Nonsense. [Lesson Plan].

    ERIC Educational Resources Information Center

    2002

    British poet Edward Lear (1812-1888) is widely recognized as the father of the limerick form of poetry and is well known for his nonsense poems. In the first lesson for grades 3-5, which focuses on Lear's nonsense poem "The Owl and the Pussy Cat," students learn about nonsense poetry as well as the various poetic techniques and devices that poets…

  1. Immunohistochemical marker for Na+ CP type Valpha (C-20) and heterozygous nonsense SCN5A mutation W822X in a sudden cardiac death induced by mild anaphylactic reaction.

    PubMed

    Turillazzi, Emanuela; Pomara, Cristoforo; La Rocca, Giampiero; Neri, Margherita; Riezzo, Irene; Karch, Steven B; Anzalone, Rita; Lo Iacono, Melania; Fineschi, Vittorio

    2009-07-01

    A sudden death likely due to mild anaphylactic reaction in a young man is described. Autoptic, histologic, immunohistochemical, and laboratory findings were strongly consistent with the diagnosis of a mild anaphylactic reaction. Genetic molecular analysis, performed on formalin-fixed, paraffin-embedded tissues, showed a mutation described as W822X in a family with electrocardiographic pattern typical of Brugada Syndrome. It results in a nonsense mutation generating a truncated form of the channel protein. The mutation is due to a point substitution of a guanine with an adenine residue (G2466A). Immunohistochemistry and laser scanning confocal microscopy on sections from heart formalin-fixed, paraffin-embedded tissues led us to confirm the cellular localization of the Na+ CP type Valpha (C-20) at the intercalated disks of ventricular myocytes and nearly 50% reduction in Na+ channels expression in ventricular myocytes when compared with control cases. We suggest that the anaphylactic reaction that occurred in the young man could serve as a trigger mechanism, responsible for his sudden death with a SCN5A mutation associated with the Brugada syndrome.

  2. Rimas Tontas. (Nonsense Rhymes)

    ERIC Educational Resources Information Center

    Galarza, Ernesto

    Part of the series "Coleccion Mini-Libros" (Mini-Book Collection), the booklet is a compilation of 50 short nonsense verses written in Spanish. The author and The Southwest Council of La Raza offer the collection for the use of parents and teachers dedicated to stimulating interest in Spanish among the youth of our country. (EJ)

  3. [The mutation spectrum of the CFTR gene in mucoviscidosis patients from Bashkortostan].

    PubMed

    Korytina, G F; Viktorova, T V; Ivashchenko, T E; Baranov, V S; Khusnutdinova, E K

    2003-01-01

    Mutations of CFTR were studied in patients with cystic fibrosis (CF) from Bashkortostan. In total, 15 mutations were observed and 51% of all mutant alleles identified. The most diagnostically significant mutations were delF508 (33.8%), 394delTT (3.52%), CFTRdele2.3(21 kb) (1.41%), R334W (1.41%), 3849+ 10 kbC-->T (1.41%), and N1303K (1.41%). Mutations G542X, 2184insA, S1196X, and W1282X were each found in less than 1% patients. Five new mutations and two neutral substitutions were revealed. These were I488M (exon 10), 1811 + 12A-->C (intron 11), T663S (exon 13), I1226R (exon 19), 4005 + 9A-->C (intron 20), 2097A-->C (A655A, exon 13), and 3996G-->C (V1288V, exon 20). Bashkortostan was shown to differ in CFTR mutation spectrum from other regions of Russia. The results will allow direct DNA diagnostics of CF in far more families. Molecular screening of probands' relatives will contribute to identification and medical genetic counseling of heterozygous carriers, which is essential for CF prevention.

  4. Mutation analysis of the cystic fibrosis transmembrane regulator gene in native American populations of the southwest

    SciTech Connect

    Grebe, T.A. Maricopa Medical Center, Phoenix, AZ ); Doane, W.W.; Norman, R.A.; Rhodes, S.N. ); Richter, S.F. ); Clericuzio, C. ); Seltzer, W.K. ); Goldberg, B.E. ); Hernried, L.S. ); McClure, M.; Kaplan, G.

    1992-10-01

    The authors report DNA and clinical analysis of cystic fibrosis (CF) in two previously unstudied, genetically isolated populations: Pueblo and Navajo Native Americans. Direct mutation analysis of six mutations of the CFTR gene - namely, [Delta]F508, G542X, G551D, R553X, N1303K, and W1282X - was performed on PCR-amplified genomic DNA extracted from blood samples. Haplotype analyses with marker/enzyme pairs XV2c/TaqI and KM29/PstI were performed as well. Of the 12 affected individuals studied, no [Delta]F508 mutation was detected; only one G542X mutation was found. None of the other mutations was detected. All affected individuals have either an AA, AC, or CC haplotype, except for the one carrying the G542X mutation, who has the haplotye AB. Clinically, six of the affected individuals examined exhibit growth deficiency, and five (all from the Zuni Pueblo) have a severe CF phenotype. Four of the six Zunis with CF are also microcephalic, a finding not previously noted in CF patients. The DNA data have serious implications for risk assessment of CF carrier status for these people. 14 refs., 3 tabs.

  5. Ethnic heterogeneity and cystic fibrosis transmembrane regulator (CFTR) mutation frequencies in Chicago-area CF families

    SciTech Connect

    Ober, C.; Lester, L.A.; Mott, C.; Billstrand, C.; Lemke, A.; Ven, K. van der ); Marcus, S.; Kraut, J.; Booth, C. ); Lloyd-Still, J. )

    1992-12-01

    The identification of a common mutation, [Delta]F508, in the CFTR gene allowed, for the first time, the detection of cystic fibrosis (CF) carriers in the general population. Further genetic studies revealed >100 additional disease-causing mutations in this gene, few of which occur on >1% of CF chromosomes in any ethnic group. Prior to establishing counseling guidelines and carrier risk assessments, the authors sought to establish the frequencies of the CFTR mutations that are present in CF families living in the Chicago are, a region notable for its ethnic heterogeneity. Their sample included 283 unrelated CF carriers, with the following ethnic composition: 78% non-Ashkenazi Caucasians, 5% Ashkenazi, 9% African-American, 3% Mexican, 0.3% Native American, and 5% mixed ancestry. When a panel of 10 mutations ([Delta]F508, [Delta]I507, G542X, G551D, R553X, S549N, R1162X, W1282X, N1303K, and 1717-1G[r arrow]A) was used, detection rates ranged from 75% in non-Ashkenazi Caucasians to 40% in African-Americans. These data suggest that the goal of screening for 90%-95% of CF mutations may be unrealistic in this and other, similar US populations. 22 refs., 1 tab.

  6. Clinicopathological and Targeted Exome Gene Features of a Patient with Metastatic Acinic Cell Carcinoma of the Parotid Gland Harboring an ARID2 Nonsense Mutation and CDKN2A/B Deletion

    PubMed Central

    Warner, Wayne A.; Wong, Deborah J.; Palma-Diaz, Fernando; Shibuya, Terry Y.; Momand, Jamil

    2015-01-01

    We describe the presentation, treatment, clinical outcome, and targeted genome analysis of a metastatic salivary acinic cell carcinoma (AciCC). A 71-year-old male presented with a 3 cm right tail of a parotid lesion, first detected as a nodule by the patient seven months earlier. He had a right total parotidectomy with cranial nerve VII resection, right facial nerve resection and grafting, resection of the right conchal cartilage, and right modified radical neck dissection. The primary tumor revealed AciCC with two distinct areas: a well-differentiated component with glandular architecture and a dedifferentiated component with infiltrative growth pattern associated with prominent stromal response, necrosis, perineural invasion, and cellular pleomorphism. Tumor staging was pT4 N0 MX. Immunohistochemistry staining showed pankeratin (+), CD56 (−), and a Ki67 proliferation index of 15%. Upon microscopic inspection, 49 local lymph nodes resected during parotidectomy were negative for cancer cells. Targeted sequencing of the primary tumor revealed deletions of CDKN2A and CDKN2B, a nonsense mutation in ARID2, and single missense mutations of unknown significance in nine other genes. Despite postoperative localized radiation treatment, follow-up whole body PET/CT scan showed lung, soft tissue, bone, and liver metastases. The patient expired 9 months after resection of the primary tumor. PMID:26634163

  7. Carrier frequency of a nonsense mutation in the adenosine deaminase (ADA) gene implies a high incidence of ADA-deficient severe combined immunodeficiency (SCID) in Somalia and a single, common haplotype indicates common ancestry.

    PubMed

    Sanchez, Juan J; Monaghan, Gemma; Børsting, Claus; Norbury, Gail; Morling, Niels; Gaspar, H Bobby

    2007-05-01

    Inherited adenosine deaminase (ADA) deficiency is a rare metabolic disorder that causes immunodeficiency, varying from severe combined immunodeficiency (SCID) in the majority of cases to a less severe form in a small minority of patients. Five patients of Somali origin from four unrelated families, with severe ADA-SCID, were registered in the Greater London area. Patients and their parents were investigated for the nonsense mutation Q3X (ADA c7C>T), two missense mutations K80R (ADA c239A>G) and R142Q (ADA c425G>A), and a TAAA repeat located at the 3' end of an Alu element (AluVpA) positioned 1.1 kb upstream of the ADA transcription start site. All patients were homozygous for the haplotype ADA-7T/ADA-239G/ADA-425G/AluVpA7. Among 207 Somali immigrants to Denmark, the frequency of ADA c7C>T and the maximum likelihood estimate of the frequency of the haplotype ADA-7T/ADA-239G/ADA-425G/AluVpA7 were both 0.012 (carrier frequency 2.4%). Based on the analysis of AluVpA alleles, the ADA c7C/T mutation was estimated to be approximately 7,100 years old. Approximately 1 out of 5 - 10000 Somali children will be born with ADA deficiency due to an ADA c7C/T mutation, although within certain clans the frequency may be significantly higher. ADA-SCID may be a frequent immunodeficiency disorder in Somalia, but will be underdiagnosed due to the prevailing socioeconomic and nutritional deprivation.

  8. Interaction of PABPC1 with the translation initiation complex is critical to the NMD resistance of AUG-proximal nonsense mutations.

    PubMed

    Peixeiro, Isabel; Inácio, Ângela; Barbosa, Cristina; Silva, Ana Luísa; Liebhaber, Stephen A; Romão, Luísa

    2012-02-01

    Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and rapidly degrades mRNAs containing premature termination codons (PTC). The strength of the NMD response appears to reflect multiple determinants on a target mRNA. We have previously reported that mRNAs containing PTCs in close proximity to the translation initiation codon (AUG-proximal PTCs) can substantially evade NMD. Here, we explore the mechanistic basis for this NMD resistance. We demonstrate that translation termination at an AUG-proximal PTC lacks the ribosome stalling that is evident in an NMD-sensitive PTC. This difference is associated with demonstrated interactions of the cytoplasmic poly(A)-binding protein 1, PABPC1, with the cap-binding complex subunit, eIF4G and the 40S recruitment factor eIF3 as well as the ribosome release factor, eRF3. These interactions, in combination, underlie critical 3'-5' linkage of translation initiation with efficient termination at the AUG-proximal PTC and contribute to an NMD-resistant PTC definition at an early phase of translation elongation.

  9. A recurrent homozygous nonsense mutation within the LAMA3 gene as a cause of Herlitz junctional epidermolysis bullosa in patients of Pakistani ancestry: evidence for a founder effect.

    PubMed

    McGrath, J A; Kivirikko, S; Ciatti, S; Moss, C; Christiano, A M; Uitto, J

    1996-04-01

    The anchoring filament protein laminin 5 is abnormally expressed in the skin of patients with Herlitz junctional epidermolysis bullosa (H-JEB). In this study, we performed mutational analysis on genomic DNA from a H-JEB child of first-cousin Pakistani parents, and identified a homozygous C-to-T transition in the LAMA3 gene of laminin 5 resulting in a premature termination codon (CGA-TGA) on both alleles. This mutation, R650X, has been previously reported in two other seemingly unrelated H-JEB individuals of Pakistani ancestry. Although this mutation may represent a mutational hotspot within the LAMA3 gene, haplotype analysis based on a silent intragenic polymorphism (GCC/GCG, alanine 429; GenBank no. L34155), and on three flanking microsatellite polymorphism (D18S45, D18S478, and D18S480), suggests that a common ancestral allele may be present in all three cases. PMID:8618022

  10. The presence of an RHD pseudogene containing a 37 base pair duplication and a nonsense mutation in africans with the Rh D-negative blood group phenotype.

    PubMed

    Singleton, B K; Green, C A; Avent, N D; Martin, P G; Smart, E; Daka, A; Narter-Olaga, E G; Hawthorne, L M; Daniels, G

    2000-01-01

    Antigens of the Rh blood group system are encoded by 2 homologous genes, RHD and RHCE, that produce 2 red cell membrane proteins. The D-negative phenotype is considered to result, almost invariably, from homozygosity for a complete deletion of RHD. The basis of all PCR tests for predicting fetal D phenotype from DNA obtained from amniocytes or maternal plasma is detection of the presence of RHD. These tests are used in order to ascertain the risk of hemolytic disease of the newborn. We have identified an RHD pseudogene (RHD psi) in Rh D-negative Africans. RHDpsi contains a 37 base pair (bp) insert in exon 4, which may introduce a stop codon at position 210. The insert is a sequence duplication across the boundary of intron 3 and exon 4. RHDpsi contains another stop codon in exon 6. The frequency of RHDpsi in black South Africans is approximately 0.0714. Of 82 D-negative black Africans, 66% had RHDpsi, 15% had the RHD-CE-D hybrid gene associated with the VS+ V- phenotype, and only 18% completely lacked RHD. RHDpsi is present in about 24% of D-negative African Americans and 17% of D-negative South Africans of mixed race. No RHD transcript could be detected in D-negative individuals with RHDpsi, probably as a result of nonsense-mediated mRNA decay. Existing PCR-based methods for predicting D phenotype from DNA are not suitable for testing Africans or any population containing a substantial proportion of people with African ethnicity. Consequently, we have developed a new test that detects the 37 bp insert in exon 4 of RHDpsi. (Blood. 2000; 95:12-18)

  11. Cystic fibrosis in Lebanon: distribution of CFTR mutations among Arab communities.

    PubMed

    Desgeorges, M; Mégarbané, A; Guittard, C; Carles, S; Loiselet, J; Demaille, J; Claustres, M

    1997-08-01

    Cystic fibrosis (CF) is thought to be rare among the Arab populations from the Middle East and little data have been reported so far. We have studied a sample of 20 families living in Lebanon for several generations and who have at least one child with CF. These families are mainly from the Maronite, Greek Catholic, Greek Orthodox. Shiite or Sunnite groups. We found a 50% rate of consanguineous marriage, independent of the community of origin. The distribution of CF genotypes was determined through the screening of all exons of the CFTR (cystic fibrosis transmembrane conductance regulator) gene by the technique of denaturing gradient gel electrophoresis combined with asymmetric amplification DNA sequencing. A total of ten different mutations accounting for 87.5% of 32 unrelated CF alleles was identified, including two novel putative mutations (E672del and IVS21-28G-->A). Three mutations, delta F508 (37.5%), W1282X (15.6%), and N1303K (9.4%) accounted for 62.5% of CF alleles. Interestingly, in the Maronite group, 66.7% of the delta F508 chromosomes were found to be associated with allele 7 of the IVS8(T)tract, contrasting with the absolute linkage disequilibrium between European delta F508 chromosomes and allele 9. During this study, two previously undescribed polymorphisms (IVS14a + 17del5 and 2691T/C) were also identified. PMID:9254864

  12. Cystic fibrosis in Lebanon: distribution of CFTR mutations among Arab communities.

    PubMed

    Desgeorges, M; Mégarbané, A; Guittard, C; Carles, S; Loiselet, J; Demaille, J; Claustres, M

    1997-08-01

    Cystic fibrosis (CF) is thought to be rare among the Arab populations from the Middle East and little data have been reported so far. We have studied a sample of 20 families living in Lebanon for several generations and who have at least one child with CF. These families are mainly from the Maronite, Greek Catholic, Greek Orthodox. Shiite or Sunnite groups. We found a 50% rate of consanguineous marriage, independent of the community of origin. The distribution of CF genotypes was determined through the screening of all exons of the CFTR (cystic fibrosis transmembrane conductance regulator) gene by the technique of denaturing gradient gel electrophoresis combined with asymmetric amplification DNA sequencing. A total of ten different mutations accounting for 87.5% of 32 unrelated CF alleles was identified, including two novel putative mutations (E672del and IVS21-28G-->A). Three mutations, delta F508 (37.5%), W1282X (15.6%), and N1303K (9.4%) accounted for 62.5% of CF alleles. Interestingly, in the Maronite group, 66.7% of the delta F508 chromosomes were found to be associated with allele 7 of the IVS8(T)tract, contrasting with the absolute linkage disequilibrium between European delta F508 chromosomes and allele 9. During this study, two previously undescribed polymorphisms (IVS14a + 17del5 and 2691T/C) were also identified.

  13. Geographic distribution and regional origin of 272 cystic fibrosis mutations in European populations. The Biomed CF Mutation Analysis Consortium.

    PubMed

    Estivill, X; Bancells, C; Ramos, C

    1997-01-01

    The geographic distribution of 272 cystic fibrosis (CF) mutations has been studied by assessing the origin of 27,177 CF chromosomes from 29 European countries and three countries from the North of Africa. The most common mutations are delta F308 (66.8%), G542X (2.6%), N1303K (1.6%), G551D (1.5%) and W1282X (1.0%). The delta F508 mutation has the highest frequency in Denmark (87.2%) and the lowest in Algeria (26.3%). Mutation G542X is common in the Mediterranean countries, with a mean frequency of 6.1%. N1303K is found in most of the western and Mediterranean countries and has the highest frequency in Tunisia (17.2%). The wide distribution of these mutations suggests an ancient origin. G551D is common in north-west and central Europe, but is uncommon in other parts of Europe. W1282X has the highest frequency in Israel (36.2%), being also common in most Mediterranean countries and north Africa. Seventeen mutation have frequencies between 0.1 and 0.9%, 1717-1G-->A (0.83%), R553X (0.75%), R1162X (0.51%), 621 + 1G-->T (0.54%) and 2183AA-->G (0.36%), being the most common ones. Some mutations reach relatively high frequencies in some extended geographic regions, such as mutation 394delTT in northern Europe (1.1-28.8%), R117H in northwestern Europe (1.3-3.0%), R553X in central Europe (1.1-24.4%), 1717-1G-->A in Belgium and France (1.1-5.3%), and 2183AA-->G in Italy and Greece (3.2%). Other mutations are only common in small regions: T338I (Sardinia), 711 + 1G-->T (Tunisia), R1162X (Algeria and north of Italy), 1609delCA (east of Spain), 1811 + 1.6kbA-->G (southeastern Spain), R1066C (Portugal), S549R (Algeria), R334W (Crete), 621 + 1G-->T (Central Greece), 3849 + 10kbC-->T (Israel), 2789 + 5G-->A (south of Greece), 451 + 1G--A (Israel), R347P (south of Bulgaria), 1677delTA (south of Bulgaria and Turkey), G85E (south of Greece), R347H (Turkey), 3905insT (Switzerland), 1078delT (Brittany), 1898 + 1G-->A (Wales), A455E (The Netherlands), delta I507 (Brittany), 3659del

  14. Nonsense-mediated mRNA degradation of CtFAD2-1 and development of a perfect molecular marker for olol mutation in high oleic safflower (Carthamus tinctorius L.).

    PubMed

    Liu, Qing; Cao, Shijiang; Zhou, Xue-Rong; Wood, Craig; Green, Allan; Singh, Surinder

    2013-09-01

    There are two types of safflower oil, high oleic (HO) with 70-75 % oleic acid and high linoleic (HL) with about 70 % linoleic acid. The original HO trait in safflower, found in an introduction from India, is controlled by a partially recessive allele ol at a single locus (Knowles and Bill 1964). In the lipid biosynthesis pathway of developing safflower seeds, microsomal oleoyl phosphatidylcholine desaturase (FAD2) is largely responsible for the conversion of oleic acid to linoleic acid. In vitro microsomal assays indicated drastically reduced FAD2 enzyme activity in the HO genotype compared to conventional HL safflower. A previous study indicated that a single-nucleotide deletion was found in the coding region of CtFAD2-1 that causes premature termination of translation in the HO genotypes, and the expression of the mutant CtFAD2-1Δ was attenuated in the HO genotypes compared to conventional HL safflower (Guan et al. 2012). In this study, we hypothesise that down-regulation of CtFAD2-1 expression in the HO genotype may be explained by nonsense-mediated RNA decay (NMD). NMD phenomenon, indicated by gene-specific RNA degradation of defective CtFAD2-1Δ, was subsequently confirmed in Arabidopsis thaliana seed as well as in the transient expression system in Nicotiana benthamiana leaves. We have developed a perfect molecular marker corresponding to the olol mutation that can facilitate a rapid screening and early detection of genotypes carrying the olol mutation for use in marker-assisted selection for the management of the HO trait in safflower breeding programmes.

  15. Exome sequencing identifies a nonsense mutation in Fam46a associated with bone abnormalities in a new mouse model for skeletal dysplasia.

    PubMed

    Diener, Susanne; Bayer, Sieglinde; Sabrautzki, Sibylle; Wieland, Thomas; Mentrup, Birgit; Przemeck, Gerhard K H; Rathkolb, Birgit; Graf, Elisabeth; Hans, Wolfgang; Fuchs, Helmut; Horsch, Marion; Schwarzmayr, Thomas; Wolf, Eckhard; Klopocki, Eva; Jakob, Franz; Strom, Tim M; Hrabě de Angelis, Martin; Lorenz-Depiereux, Bettina

    2016-04-01

    We performed exome sequencing for mutation discovery of an ENU (N-ethyl-N-nitrosourea)-derived mouse model characterized by significant elevated plasma alkaline phosphatase (ALP) activities in female and male mutant mice, originally named BAP014 (bone screen alkaline phosphatase #14). We identified a novel loss-of-function mutation within the Fam46a (family with sequence similarity 46, member A) gene (NM_001160378.1:c.469G>T, NP_001153850.1:p.Glu157*). Heterozygous mice of this mouse line (renamed Fam46a (E157*Mhda)) had significantly high ALP activities and apparently no other differences in morphology compared to wild-type mice. In contrast, homozygous Fam46a (E157*Mhda) mice showed severe morphological and skeletal abnormalities including short stature along with limb, rib, pelvis, and skull deformities with minimal trabecular bone and reduced cortical bone thickness in long bones. ALP activities of homozygous mutants were almost two-fold higher than in heterozygous mice. Fam46a is weakly expressed in most adult and embryonic tissues with a strong expression in mineralized tissues as calvaria and femur. The FAM46A protein is computationally predicted as a new member of the superfamily of nucleotidyltransferase fold proteins, but little is known about its function. Fam46a (E157*Mhda) mice are the first mouse model for a mutation within the Fam46a gene. PMID:26803617

  16. A nonsense mutation in a novel gene is associated with retinitis pigmentosa in a family linked to the RP1 locus.

    PubMed

    Guillonneau, X; Piriev, N I; Danciger, M; Kozak, C A; Cideciyan, A V; Jacobson, S G; Farber, D B

    1999-08-01

    Retinitis pigmentosa (RP) represents a group of inherited human retinal diseases which involve degeneration of photoreceptor cells resulting in visual loss and often leading to blindness. In order to identify candidate genes for the causes of these diseases, we have been studying a pool of photoreceptor-specific cDNAs isolated by subtractive hybridization of mRNAs from normal and photoreceptorless rd mouse retinas. One of these cDNAs was of interest because it mapped to proximal mouse chromosome 1 in a region homo-logous to human 8q11-q13, the locus of autosomal dominant RP1. Therefore, using the mouse cDNA as probe, we cloned the human cDNA (hG28) and its corresponding gene and mapped it near to D8S509, which lies in the RP1 locus. This gene consists of four exons with an open reading frame of 6468 nt encoding a protein of 2156 amino acids with a predicted mass of 240 kDa. Given its chromosomal localization, we screened this gene for mutations in a large family affected with autosomal dominant RP previously linked to the RP1 locus. We found an R677X mutation that co-segregated with disease in the family and is absent from unaffected members and 100 unrelated controls. This mutation is predicted to lead to rapid degradation of hG28 mRNA or to the synthesis of a truncated protein lacking approximately 70% of its original length. Our results suggest that R677X is responsible for disease in this family and that the gene corresponding to hG28 is the RP1 gene.

  17. Leydig cell hypoplasia due to inactivation of luteinizing hormone receptor by a novel homozygous nonsense truncation mutation in the seventh transmembrane domain.

    PubMed

    Salameh, W; Choucair, M; Guo, T B; Zahed, L; Wu, S-M; Leung, M Y-K; Rennert, O M; Chan, W-Y

    2005-01-14

    Inactivating mutations in the LH receptor are the predominant cause for male pseudohermaphroditism in subjects with Leydig cell hypoplasia (LCH). The severity of the mutations, correlates with residual receptor activities. Here, we detail the clinical presentation of one subject with complete male pseudohermaphroditism and LCH. We identify within the proband and her similarly afflicted sibling a homozygous T to G transversion at nucleotide 1836 in exon 11 of the LH/CGR gene. This causes conversion of a tyrosine codon into a stop codon at codon 612 in the seventh transmembrane domain, resulting in a truncated receptor that lacks a cytoplasmic tail. In vitro, in contrast to cells expressing a normal LHR, cells transfected with the mutant cDNA exhibit neither surface binding of radiolabeled hCG nor cAMP generation. In vitro expression under the control of the LHR signal peptide of either a wild type or mutant LHR-GFP fusion protein shows no differences in receptor cellular localization. In conclusion, the in vitro studies suggest that residues in the seventh transmembrane domain and cytoplasmic tail are important for receptor binding and activation without playing a major role in receptor cellular trafficking.

  18. Leydig cell hypoplasia due to inactivation of luteinizing hormone receptor by a novel homozygous nonsense truncation mutation in the seventh transmembrane domain.

    PubMed

    Salameh, W; Choucair, M; Guo, T B; Zahed, L; Wu, S-M; Leung, M Y-K; Rennert, O M; Chan, W-Y

    2005-01-14

    Inactivating mutations in the LH receptor are the predominant cause for male pseudohermaphroditism in subjects with Leydig cell hypoplasia (LCH). The severity of the mutations, correlates with residual receptor activities. Here, we detail the clinical presentation of one subject with complete male pseudohermaphroditism and LCH. We identify within the proband and her similarly afflicted sibling a homozygous T to G transversion at nucleotide 1836 in exon 11 of the LH/CGR gene. This causes conversion of a tyrosine codon into a stop codon at codon 612 in the seventh transmembrane domain, resulting in a truncated receptor that lacks a cytoplasmic tail. In vitro, in contrast to cells expressing a normal LHR, cells transfected with the mutant cDNA exhibit neither surface binding of radiolabeled hCG nor cAMP generation. In vitro expression under the control of the LHR signal peptide of either a wild type or mutant LHR-GFP fusion protein shows no differences in receptor cellular localization. In conclusion, the in vitro studies suggest that residues in the seventh transmembrane domain and cytoplasmic tail are important for receptor binding and activation without playing a major role in receptor cellular trafficking. PMID:15607529

  19. Attenuation of nonsense-mediated mRNA decay enhances in vivo nonsense suppression.

    PubMed

    Keeling, Kim M; Wang, Dan; Dai, Yanying; Murugesan, Srinivasan; Chenna, Balachandra; Clark, Jeremy; Belakhov, Valery; Kandasamy, Jeyakumar; Velu, Sadanandan E; Baasov, Timor; Bedwell, David M

    2013-01-01

    Nonsense suppression therapy is an approach to treat genetic diseases caused by nonsense mutations. This therapeutic strategy pharmacologically suppresses translation termination at Premature Termination Codons (PTCs) in order to restore expression of functional protein. However, the process of Nonsense-Mediated mRNA Decay (NMD), which reduces the abundance of mRNAs containing PTCs, frequently limits this approach. Here, we used a mouse model of the lysosomal storage disease mucopolysaccharidosis I-Hurler (MPS I-H) that carries a PTC in the Idua locus to test whether NMD attenuation can enhance PTC suppression in vivo. Idua encodes alpha-L-iduronidase, an enzyme required for degradation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate. We found that the NMD attenuator NMDI-1 increased the abundance of the PTC-containing Idua transcript. Furthermore, co-administration of NMDI-1 with the PTC suppression drug gentamicin enhanced alpha-L-iduronidase activity compared to gentamicin alone, leading to a greater reduction of GAG storage in mouse tissues, including the brain. These results demonstrate that NMD attenuation significantly enhances suppression therapy in vivo.

  20. Attenuation of Nonsense-Mediated mRNA Decay Enhances In Vivo Nonsense Suppression

    PubMed Central

    Keeling, Kim M.; Wang, Dan; Dai, Yanying; Murugesan, Srinivasan; Chenna, Balachandra; Clark, Jeremy; Belakhov, Valery; Kandasamy, Jeyakumar; Velu, Sadanandan E.; Baasov, Timor; Bedwell, David M.

    2013-01-01

    Nonsense suppression therapy is an approach to treat genetic diseases caused by nonsense mutations. This therapeutic strategy pharmacologically suppresses translation termination at Premature Termination Codons (PTCs) in order to restore expression of functional protein. However, the process of Nonsense-Mediated mRNA Decay (NMD), which reduces the abundance of mRNAs containing PTCs, frequently limits this approach. Here, we used a mouse model of the lysosomal storage disease mucopolysaccharidosis I-Hurler (MPS I-H) that carries a PTC in the Idua locus to test whether NMD attenuation can enhance PTC suppression in vivo. Idua encodes alpha-L-iduronidase, an enzyme required for degradation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate. We found that the NMD attenuator NMDI-1 increased the abundance of the PTC-containing Idua transcript. Furthermore, co-administration of NMDI-1 with the PTC suppression drug gentamicin enhanced alpha-L-iduronidase activity compared to gentamicin alone, leading to a greater reduction of GAG storage in mouse tissues, including the brain. These results demonstrate that NMD attenuation significantly enhances suppression therapy in vivo. PMID:23593225

  1. Impact of Cystic Fibrosis Transmembrane Regulator (CFTR) gene mutations on male infertility.

    PubMed

    Elia, Jlenia; Mazzilli, Rossella; Delfino, Michele; Piane, Maria; Bozzao, Cristina; Spinosa, Vincenzo; Chessa, Luciana; Mazzilli, Fernando

    2014-09-01

    Objective. The aim of this study was to evaluate the prevalence of most common mutations and intron 8 5T (IVS8-5T) polymorphism of CFTR gene in Italian: a) azoospermic males; b) non azoospermic subjects, male partners of infertile couples enrolled in assisted reproductive technology (ART) programs. Material and methods. We studied 242 subjects attending our Andrology Unit (44 azoospermic subjects and 198 non azoospermic subjects, male partners of infertile couples enrolled in ART programs). Semen analysis, molecular analysis for CFTR gene mutations and genomic variant of IVS8-5T polymorphic tract, karyotype and chromosome Y microdeletions, hormonal profile (LH, FSH, Testosterone) and seminal biochemical markers (fructose, citric acid and L-carnitine) were carried out. Results. The prevalence of the common CFTR mutations and/or the IVS8-5T polymorphism was 12.9% (4/31 cases) in secretory azoospermia, while in obstructive azoospermia was 84.6% (11/13 cases; in these, the most frequent mutations were the F508del, R117H and W1282X). Regarding the non azoospermic subjects, the prevalence of the CFTR and/or the IVS8-5T polymorphism was 11.1% (11/99 cases) in severe dyspermia, 8.1% (6/74 cases) in moderate dyspermia and finally 4.0% (1/25 cases) in normospermic subjects. Conclusions. This study confirms the highly significant prevalence of CFTR mutations in males with bilateral absence of the vas deferens or ejaculatory ducts obstruction compared with subjects with secretory azoospermia. Moreover, the significant prevalence of mutations in severely dyspermic subjects may suggest the possible involvement of CFTR even in the spermatogenic process. This could explain the unsatisfactory recovery of sperm from testicular fine needle aspiration in patients affected by genital tract blockage. PMID:25308578

  2. Inducing nonsense suppression by targeted pseudouridylation

    PubMed Central

    Huang, Chao; Wu, Guowei; Yu, Yi-Tao

    2013-01-01

    Isomerization from uridine to pseudouridine (pseudouridylation) is largely catalyzed by a family of small ribonucleoproteins called box H/ACA RNPs, each of which contains one unique small RNA—the box H/ACA RNA. The specificity of the pseudouridylation reaction is determined by the base-pairing interactions between the guide sequence of the box H/ACA RNA and the target sequence within an RNA substrate. Thus, by creating a new box H/ACA RNA harboring an artificial guide sequence that base-pairs with the substrate sequence, one can site-specifically introduce pseudouridines into virtually any RNA (e.g., mRNA, ribosomal RNA, small nuclear RNA, telomerase RNA and so on). Pseudouridylation changes the properties of a uridine residue and is likely to alter the role of its corresponding RNA in certain cellular processes, thereby enabling basic research into the effects of RNA modifications. Here we take a TRM4 reporter gene (also known as NCL1) as an example, and we present a protocol for designing a box H/ACA RNA to site-specifically pseudouridylate TRM4 mRNA. Disease-related mutation can result in early termination of translation by creating a premature termination codon (PTC); however, pseudouridylation at the PTC can suppress this translation termination (nonsense suppression). Thus, the experimental procedures described in this protocol may provide a novel way to treat PTC-related diseases. This protocol takes 10–13 d to complete. PMID:22461068

  3. Nonsense-Mediated Decay in Genetic Disease: Friend or Foe?

    PubMed Central

    Miller, Jake N.; Pearce, David A.

    2014-01-01

    Eukaryotic cells utilize various RNA quality control mechanisms to ensure high fidelity of gene expression, thus protecting against the accumulation of nonfunctional RNA and the subsequent production of abnormal peptides. Messenger RNAs (mRNAs) are largely responsible for protein production, and mRNA quality control is particularly important for protecting the cell against the downstream effects of genetic mutations. Nonsense-mediated decay (NMD) is an evolutionarily conserved mRNA quality control system in all eukaryotes that degrades transcripts containing premature termination codons (PTCs). By degrading these aberrant transcripts, NMD acts to prevent the production of truncated proteins that could otherwise harm the cell through various insults, such as dominant negative effects or the ER stress response. Although NMD functions to protect the cell against the deleterious effects of aberrant mRNA, there is a growing body of evidence that mutation-, codon-, gene-, cell-, and tissue-specific differences in NMD efficiency can alter the underlying pathology of genetic disease. In addition, the protective role that NMD plays in genetic disease can undermine current therapeutic strategies aimed at increasing the production of full-length functional protein from genes harboring nonsense mutations. Here, we review the normal function of this RNA surveillance pathway and how it is regulated, provide current evidence for the role that it plays in modulating genetic disease phenotypes, and how NMD can be used as a therapeutic target. PMID:25485595

  4. Nonsense-mediated decay in genetic disease: friend or foe?

    PubMed

    Miller, Jake N; Pearce, David A

    2014-01-01

    Eukaryotic cells utilize various RNA quality control mechanisms to ensure high fidelity of gene expression, thus protecting against the accumulation of nonfunctional RNA and the subsequent production of abnormal peptides. Messenger RNAs (mRNAs) are largely responsible for protein production, and mRNA quality control is particularly important for protecting the cell against the downstream effects of genetic mutations. Nonsense-mediated decay (NMD) is an evolutionarily conserved mRNA quality control system in all eukaryotes that degrades transcripts containing premature termination codons (PTCs). By degrading these aberrant transcripts, NMD acts to prevent the production of truncated proteins that could otherwise harm the cell through various insults, such as dominant negative effects or the ER stress response. Although NMD functions to protect the cell against the deleterious effects of aberrant mRNA, there is a growing body of evidence that mutation-, codon-, gene-, cell-, and tissue-specific differences in NMD efficiency can alter the underlying pathology of genetic disease. In addition, the protective role that NMD plays in genetic disease can undermine current therapeutic strategies aimed at increasing the production of full-length functional protein from genes harboring nonsense mutations. Here, we review the normal function of this RNA surveillance pathway and how it is regulated, provide current evidence for the role that it plays in modulating genetic disease phenotypes, and how NMD can be used as a therapeutic target.

  5. Analysis of the UV photolesion spectrum in the glnU tRNA gene of Escherichia coli: A role in the generation of nonsense suppressor mutations by ultraviolet light

    SciTech Connect

    Garvey, N.

    1988-01-01

    UV-induced ochre suppressor mutations arise from a GC {yields} AT transition at the 5{prime} end of the anticodon-encoding sequence CAA in the glutamine tRNA gene glnU. This site is a conditional hotspot for UV mutagenesis. When post-irradiation medium prohibits protein synthesis, suppressor mutation yields are low, equivalent to that for other types of mutations. However, when incubation medium supports protein synthesis, suppressor mutations are ten times more frequent than others. This presumably reflects excision repair failure at this site under these conditions. The lesion remains in the DNA and targets a transition mutation by SOS processing during the subsequent round of replication. The specific and rapid loss of potential suppressor mutations when protein synthesis is inhibited is termed mutation frequency decline (MFD). In an effort to understand MFD, we subcloned the glnU gene onto a high copy number plasmid and measured the types and frequencies of UV photolesions at the anticodon-encoding trinucleotide and in thirty-three base pairs flanking it.

  6. Nutrition--sense and nonsense.

    PubMed

    Stare, F J

    1980-02-01

    Most physicians know far more about nutrition than they are given credit for. We know there is no such thing as a nutritionally perfect food. We know that variety in foods consumed is the key to good nutrition. We know that good nutrition is an important part of convalescence. We know that obesity in the presence of other risk factors is an added hazard. We know that fortified convenience foods contribute to good health and make life easier for those who prepare meals. We know that the woods are full of food faddists, nutritional charlatans, and peddlers of nutritional nostrums, whose scare tactics and sensationalism often sway the uninformed. Where many of us err is simply in not thinking about nutrition, in not asking our patients about what they eat, and in not counseling them on better nutrition. Thus, I urge you to think nutrition when you think about the health of your patients and yourself, to utilize the services of dietitians and nutritionists, and to speak out clearly and forcefully, but without malice, to combat nutritional and other health nonsense. PMID:7352117

  7. Expression levels of Protocadherin-alpha transcripts are decreased by nonsense-mediated mRNA decay with frameshift mutations and by high DNA methylation in their promoter regions.

    PubMed

    Kaneko, Ryosuke; Kawaguchi, Masahumi; Toyama, Tomoko; Taguchi, Yusuke; Yagi, Takeshi

    2009-02-01

    The mouse protocadherin (Pcdh) clusters, Pcdh-alpha, -beta, and -gamma, are located on chromosome 18. Many polymorphic variations are found in the Pcdh-alpha genes in wild-derived and laboratory mouse strains. In comparing the expression levels of Pcdh-alpha isoforms among several strains, we observed lower expression levels of Pcdh-alpha9 in BLG2 and BFM/2, and of Pcdh-alpha8 in C57BL/6 (B6) than in the other strains. For Pcdh-alpha8, high DNA methylation (72.7%) in the promoter region was found only in B6, whereas 36.4-44.3% methylation was seen in the other strains. On the other hand, the Pcdh-alpha9 DNA-methylation levels were similar (23.6-36.3%) among the strains regardless of the difference in expression levels. Interestingly, however, the Pcdh-alpha9 variable exon in both BLG2 and BFM/2 included a premature termination codon (PTC) generated by a nucleotide deletion or insertion. Treatment with emetine, a potent inhibitor of nonsense-mediated mRNA decay (NMD), increased the expression level of Pcdh-alpha9 from the BLG2-Pcdh-alpha locus. These data indicate that the transcription levels of mature Pcdh-alpha mRNAs are decreased by the DNA-methylation state of the Pcdh-alpha promoter regions and by the NMD pathway during RNA maturation. And we correct some previous data on Sugino, H., Toyama, T., Taguchi, Y., Esumi, S., Miyazaki, M., Yagi, T., (2004) Negative and positive effects of an IAP-LTR on nearby Pcdaalpha gene expression in the central nervous system and neuroblastoma cell lines, Gene 337 91-103.

  8. Pronounceability and the Visual Recognition of Nonsense Words

    ERIC Educational Resources Information Center

    Rubenstein, Herbert; And Others

    1975-01-01

    Evidence supports the hypothesis that visual word recognition may involve recoding into phonemic form. Less pronounceable nonsense words are recognized as nonsense faster than those more pronounceable. Differences in pronounceability may produce their effects during sequencing of neural instructions of each phoneme. (CHK)

  9. Inhibition of nonsense-mediated mRNA decay rescues the phenotype in Ullrich's disease.

    PubMed

    Usuki, Fusako; Yamashita, Akio; Higuchi, Itsuro; Ohnishi, Tetsuo; Shiraishi, Tadafumi; Osame, Mitsuhiro; Ohno, Shigeo

    2004-05-01

    Nonsense-mediated mRNA decay (NMD) is an mRNA surveillance system that eliminates aberrant mRNAs containing premature translation termination codons (PTCs). We evaluated the role of NMD in of Ullrich's disease. The patient has a frameshift mutation with a PTC in the collagen VI alpha2 gene causing the loss of collagen VI and functional defects in extracellular matrix (ECM). The pharmacological block of NMD caused upregulation of the mutant collagen VI alpha2 subunit, resulting in collagen VI assembly and partially functional ECM formation. Our results suggest that NMD inhibitors can be used as a therapeutic tool to rescue some human genetic diseases exacerbated by NMD.

  10. An UPF3-based nonsense-mediated decay in Paramecium.

    PubMed

    Contreras, Julia; Begley, Victoria; Macias, Sandra; Villalobo, Eduardo

    2014-12-01

    Nonsense-mediated decay recognises mRNAs containing premature termination codons. One of its components, UPF3, is a molecular link bridging through its binding to the exon junction complex nonsense-mediated decay and splicing. In protists UPF3 has not been identified yet. We report that Paramecium tetraurelia bears an UPF3 gene and that it has a role in nonsense-mediated decay. Interestingly, the identified UPF3 has not conserved the essential amino acids required to bind the exon junction complex. Though, our data indicates that this ciliate bears genes coding for core proteins of the exon junction complex. PMID:25463387

  11. An UPF3-based nonsense-mediated decay in Paramecium.

    PubMed

    Contreras, Julia; Begley, Victoria; Macias, Sandra; Villalobo, Eduardo

    2014-12-01

    Nonsense-mediated decay recognises mRNAs containing premature termination codons. One of its components, UPF3, is a molecular link bridging through its binding to the exon junction complex nonsense-mediated decay and splicing. In protists UPF3 has not been identified yet. We report that Paramecium tetraurelia bears an UPF3 gene and that it has a role in nonsense-mediated decay. Interestingly, the identified UPF3 has not conserved the essential amino acids required to bind the exon junction complex. Though, our data indicates that this ciliate bears genes coding for core proteins of the exon junction complex.

  12. Inactivation of NMD increases viability of sup45 nonsense mutants in Saccharomyces cerevisiae

    PubMed Central

    Chabelskaya, Svetlana; Gryzina, Valentina; Moskalenko, Svetlana; Le Goff, Catherine; Zhouravleva, Galina

    2007-01-01

    Background The nonsense-mediated mRNA decay (NMD) pathway promotes the rapid degradation of mRNAs containing premature termination codons (PTCs). In yeast Saccharomyces cerevisiae, the activity of the NMD pathway depends on the recognition of the PTC by the translational machinery. Translation termination factors eRF1 (Sup45) and eRF3 (Sup35) participate not only in the last step of protein synthesis but also in mRNA degradation and translation initiation via interaction with such proteins as Pab1, Upf1, Upf2 and Upf3. Results In this work we have used previously isolated sup45 mutants of S. cerevisiae to characterize degradation of aberrant mRNA in conditions when translation termination is impaired. We have sequenced his7-1, lys9-A21 and trp1-289 alleles which are frequently used for analysis of nonsense suppression. We have established that sup45 nonsense and missense mutations lead to accumulation of his7-1 mRNA and CYH2 pre-mRNA. Remarkably, deletion of the UPF1 gene suppresses some sup45 phenotypes. In particular, sup45-n upf1Δ double mutants were less temperature sensitive, and more resistant to paromomycin than sup45 single mutants. In addition, deletion of either UPF2 or UPF3 restored viability of sup45-n double mutants. Conclusion This is the first demonstration that sup45 mutations do not only change translation fidelity but also acts by causing a change in mRNA stability. PMID:17705828

  13. 5-azacytidine inhibits nonsense-mediated decay in a MYC-dependent fashion

    PubMed Central

    Bhuvanagiri, Madhuri; Lewis, Joe; Putzker, Kerstin; Becker, Jonas P; Leicht, Stefan; Krijgsveld, Jeroen; Batra, Richa; Turnwald, Brad; Jovanovic, Bogdan; Hauer, Christian; Sieber, Jana; Hentze, Matthias W; Kulozik, Andreas E

    2014-01-01

    Nonsense-mediated RNA decay (NMD) is an RNA-based quality control mechanism that eliminates transcripts bearing premature translation termination codons (PTC). Approximately, one-third of all inherited disorders and some forms of cancer are caused by nonsense or frame shift mutations that introduce PTCs, and NMD can modulate the clinical phenotype of these diseases. 5-azacytidine is an analogue of the naturally occurring pyrimidine nucleoside cytidine, which is approved for the treatment of myelodysplastic syndrome and myeloid leukemia. Here, we reveal that 5-azacytidine inhibits NMD in a dose-dependent fashion specifically upregulating the expression of both PTC-containing mutant and cellular NMD targets. Moreover, this activity of 5-azacytidine depends on the induction of MYC expression, thus providing a link between the effect of this drug and one of the key cellular pathways that are known to affect NMD activity. Furthermore, the effective concentration of 5-azacytidine in cells corresponds to drug levels used in patients, qualifying 5-azacytidine as a candidate drug that could potentially be repurposed for the treatment of Mendelian and acquired genetic diseases that are caused by PTC mutations. PMID:25319547

  14. The application of nonsense-mediated mRNA decay inhibition to the identification of breast cancer susceptibility genes

    PubMed Central

    2012-01-01

    Background Identification of novel, highly penetrant, breast cancer susceptibility genes will require the application of additional strategies beyond that of traditional linkage and candidate gene approaches. Approximately one-third of inherited genetic diseases, including breast cancer susceptibility, are caused by frameshift or nonsense mutations that truncate the protein product [1]. Transcripts harbouring premature termination codons are selectively and rapidly degraded by the nonsense-mediated mRNA decay (NMD) pathway. Blocking the NMD pathway in any given cell will stabilise these mutant transcripts, which can then be detected using gene expression microarrays. This technique, known as gene identification by nonsense-mediated mRNA decay inhibition (GINI), has proved successful in identifying sporadic nonsense mutations involved in many different cancer types. However, the approach has not yet been applied to identify germline mutations involved in breast cancer. We therefore attempted to use GINI on lymphoblastoid cell lines (LCLs) from multiple-case, non- BRCA1/2 breast cancer families in order to identify additional high-risk breast cancer susceptibility genes. Methods We applied GINI to a total of 24 LCLs, established from breast-cancer affected and unaffected women from three multiple-case non-BRCA1/2 breast cancer families. We then used Illumina gene expression microarrays to identify transcripts stabilised by the NMD inhibition. Results The expression profiling identified a total of eight candidate genes from these three families. One gene, PPARGC1A, was a candidate in two separate families. We performed semi-quantitative real-time reverse transcriptase PCR of all candidate genes but only PPARGC1A showed successful validation by being stabilised in individuals with breast cancer but not in many unaffected members of the same family. Sanger sequencing of all coding and splice site regions of PPARGC1A did not reveal any protein truncating mutations

  15. Messenger RNA transcripts of the hepatocyte nuclear factor-1alpha gene containing premature termination codons are subject to nonsense-mediated decay.

    PubMed

    Harries, Lorna W; Hattersley, Andrew T; Ellard, Sian

    2004-02-01

    Mutations in the hepatocyte nuclear factor-1alpha (HNF-1a) gene cause maturity-onset diabetes of the young (MODY). Approximately 30% of these mutations generate mRNA transcripts harboring premature termination codons (PTCs). Degradation of such transcripts by the nonsense-mediated decay (NMD) pathway has been reported for many genes. To determine whether PTC mutant transcripts of the HNF-1alpha gene elicit NMD, we have developed a novel quantitative RT-PCR assay. We performed quantification of ectopically expressed mutant transcripts relative to normal transcripts in lymphoblastoid cell lines using a coding single nucleotide polymorphism (cSNP) as a marker. The nonsense mutations R171X, I414G415ATCG-->CCA, and P291fsinsC showed reduced mutant mRNA expression to 40% (P = 0.009), <0.01% (P mutations G207D and R229P did not show NMD although R229P exhibited moderate RNA instability. This study provides the first evidence that HNF-1alpha PTC mutations may be subject to NMD. Mutations that result in significant reduction of protein levels due to NMD will not have dominant-negative activity in vivo. Haploinsufficiency is therefore likely to be the most important mutational mechanism of HNF-1alpha mutations causing MODY. PMID:14747304

  16. The nonsense-mediated RNA decay pathway is disrupted in inflammatory myofibroblastic tumors.

    PubMed

    Lu, JingWei; Plank, Terra-Dawn; Su, Fang; Shi, XiuJuan; Liu, Chen; Ji, Yuan; Li, ShuaiJun; Huynh, Andrew; Shi, Chao; Zhu, Bo; Yang, Guang; Wu, YanMing; Wilkinson, Miles F; Lu, YanJun

    2016-08-01

    Inflammatory myofibroblastic tumors (IMTs) are characterized by myofibroblast proliferation and an inflammatory cell infiltrate. Little is known about the molecular pathways that precipitate IMT formation. Here, we report the identification of somatic mutations in UPF1, a gene that encodes an essential component of the nonsense-mediated RNA decay (NMD) pathway, in 13 of 15 pulmonary IMT samples. The majority of mutations occurred in a specific region of UPF1 and triggered UPF1 alternative splicing. Several mRNA targets of the NMD pathway were upregulated in IMT samples, indicating that the UPF1 mutations led to reduced NMD magnitude. These upregulated NMD targets included NIK mRNA, which encodes a potent activator of NF-κB. In human lung cells, UPF1 depletion increased expression of chemokine-encoding genes in a NIK-dependent manner. Elevated chemokines and IgE class switching events were observed in IMT samples, consistent with NIK upregulation in these tumors. Together, these results support a model in which UPF1 mutations downregulate NMD, leading to NIK-dependent NF-κB induction, which contributes to the immune infiltration that is characteristic of IMTs. The molecular link between the NMD pathway and IMTs has implications for the diagnosis and treatment of these tumors.

  17. MicroRNA-mediated repression of nonsense mRNAs

    PubMed Central

    Zhao, Ya; Lin, Jimin; Xu, Beiying; Hu, Sida; Zhang, Xue; Wu, Ligang

    2014-01-01

    Numerous studies have established important roles for microRNAs (miRNAs) in regulating gene expression. Here, we report that miRNAs also serve as a surveillance system to repress the expression of nonsense mRNAs that may produce harmful truncated proteins. Upon recognition of the premature termination codon by the translating ribosome, the downstream portion of the coding region of an mRNA is redefined as part of the 3′ untranslated region; as a result, the miRNA-responsive elements embedded in this region can be detected by miRNAs, triggering accelerated mRNA deadenylation and translational inhibition. We demonstrate that naturally occurring cancer-causing APC (adenomatous polyposis coli) nonsense mutants which escape nonsense-mediated mRNA decay (NMD) are repressed by miRNA-mediated surveillance. In addition, we show that miRNA-mediated surveillance and exon–exon junction complex-mediated NMD are not mutually exclusive and act additively to enhance the repressive activity. Therefore, we have uncovered a new role for miRNAs in repressing nonsense mutant mRNAs. DOI: http://dx.doi.org/10.7554/eLife.03032.001 PMID:25107276

  18. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae.

    PubMed

    Zadorsky, S P; Sopova, Y V; Andreichuk, D Y; Startsev, V A; Medvedeva, V P; Inge-Vechtomov, S G

    2015-06-01

    The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts.

  19. Occurrence of a 2-bp (AT) deletion allele and a nonsense (G-to-T) mutant allele at the E2 (DBT) locus of six patients with maple syrup urine disease: Multiple-exon skipping as a secondary effect of the mutations

    SciTech Connect

    Fisher, C.W.; Fisher, C.R.; Chuang, J.L.; Lau, K.S.; Chuang, D.T.; Cox, R.P. )

    1993-02-01

    The authors have identified two novel mutant alleles in the transacylase (E2) gene of the human branched-chain [alpha]-keto acid dehydrogenase (BCKAD) complex in 6 of 38 patients with maple syrup urine disease (MSUD). One mutation, a 2-bp (AT) deletion in exon 2 of the E2 gene, causes a frameshift downstream of residue ([minus]26) in the mitochondrial targeting presequence. The second mutation, a G-to-T transversion in exon 6 of the E2 gene, produces a premature stop codon at Glu-163 (E163*). Transfection of constructs harboring the E163* mutation into an E2-deficient MSUD cell line produced a truncated E2 subunit. However, this mutant E2 chain is unable to assemble into a 24-mer cubic structure and is degraded in the cell. The 2-bp (AT) deletion and the E163* mutant alleles occur in either the homozygous or compound-heterozygous state in the 6 of 38 unrelated MSUD patients studied. Moreover, an array of precise single- and multiple-exon deletions were observed in many amplified E2 mutant cDNAs. The latter results appear to represent secondary effects on RNA processing that are associated with the MSUD mutations at the E2 locus. 30 refs., 8 figs.

  20. Alternative Splicing, Internal Promoter, Nonsense-Mediated Decay, or All Three

    PubMed Central

    2016-01-01

    Background— Truncating mutations in the giant sarcomeric gene Titin are the most common type of genetic alteration in dilated cardiomyopathy. Detailed studies have amassed a wealth of information about truncating variant position in cases and controls. Nonetheless, considerable confusion exists as to how to interpret the pathogenicity of these variants, hindering our ability to make useful recommendations to patients. Methods and Results— Building on our recent discovery of a conserved internal promoter within the Titin gene, we sought to develop an integrative statistical model to explain the observed pattern of Titin truncation variants in patients with dilated cardiomyopathy and population controls. We amassed Titin truncation mutation information from 1714 human dilated cardiomyopathy cases and >69 000 controls and found 3 factors explaining the distribution of Titin mutations: (1) alternative splicing, (2) whether the internal promoter Cronos isoform was disrupted, and (3) whether the distal C terminus was targeted (in keeping with the observation that truncation variants in this region escape nonsense-mediated decay and continue to be incorporated in the sarcomere). A model using these 3 factors had strong predictive performance with an area under the receiver operating characteristic curve of 0.81. Accordingly, individuals with either the most severe form of dilated cardiomyopathy or whose mutations demonstrated clear family segregation experienced the highest risk profile across all 3 components. Conclusions— We conclude that quantitative models derived from large-scale human genetic and phenotypic data can be applied to help overcome the ever-growing challenges of genetic data interpretation. Results of our approach can be found at http://cvri.ucsf.edu/~deo/TTNtruncationvariant.html. PMID:27625338

  1. In vitro nonsense suppression in [psi+] and [psi-] cell-free lysates of Saccharomyces cerevisiae.

    PubMed Central

    Tuite, M F; Cox, B S; McLaughlin, C S

    1983-01-01

    An homologous in vitro assay for yeast nonsense suppressors was used to examine the effect of the cytoplasmically inherited genetic determinant [psi] on the efficiency of in vitro nonsense suppression. The efficiency of all three types of yeast tRNA-mediated nonsense suppressor (ochre, amber, and UGA) is much greater in cell-free lysates prepared from a sup+ [psi+] strain than in lysates prepared from an isogeneic sup+ [psi-] strain. Lysates prepared from a [psi-] strain, into which the [psi+] determinant was reintroduced by kar1-mediated cytoduction, support efficient suppression. Evidence is also presented that [psi-] lysates contain an inhibitor of in vitro nonsense suppression. Images PMID:6344070

  2. Mutations in ANTXR1 Cause GAPO Syndrome

    PubMed Central

    Stránecký, Viktor; Hoischen, Alexander; Hartmannová, Hana; Zaki, Maha S.; Chaudhary, Amit; Zudaire, Enrique; Nosková, Lenka; Barešová, Veronika; Přistoupilová, Anna; Hodaňová, Kateřina; Sovová, Jana; Hůlková, Helena; Piherová, Lenka; Hehir-Kwa, Jayne Y.; de Silva, Deepthi; Senanayake, Manouri P.; Farrag, Sameh; Zeman, Jiří; Martásek, Pavel; Baxová, Alice; Afifi, Hanan H.; St. Croix, Brad; Brunner, Han G.; Temtamy, Samia; Kmoch, Stanislav

    2013-01-01

    The genetic cause of GAPO syndrome, a condition characterized by growth retardation, alopecia, pseudoanodontia, and progressive visual impairment, has not previously been identified. We studied four ethnically unrelated affected individuals and identified homozygous nonsense mutations (c.262C>T [p.Arg88*] and c.505C>T [p.Arg169*]) or splicing mutations (c.1435–12A>G [p.Gly479Phefs*119]) in ANTXR1, which encodes anthrax toxin receptor 1. The nonsense mutations predictably trigger nonsense-mediated mRNA decay, resulting in the loss of ANTXR1. The transcript with the splicing mutation theoretically encodes a truncated ANTXR1 containing a neopeptide composed of 118 unique amino acids in its C terminus. GAPO syndrome’s major phenotypic features, which include dental abnormalities and the accumulation of extracellular matrix, recapitulate those found in Antxr1-mutant mice and point toward an underlying defect in extracellular-matrix regulation. Thus, we propose that mutations affecting ANTXR1 function are responsible for this disease’s characteristic generalized defect in extracellular-matrix homeostasis. PMID:23602711

  3. Mutational screening of the RB1 gene in Italian patients with retinoblastoma reveals 11 novel mutations.

    PubMed

    Sampieri, Katia; Hadjistilianou, Theodora; Mari, Francesca; Speciale, Caterina; Mencarelli, Maria Antonietta; Cetta, Francesco; Manoukian, Siranoush; Peissel, Bernard; Giachino, Daniela; Pasini, Barbara; Acquaviva, Antonio; Caporossi, Aldo; Frezzotti, Renato; Renieri, Alessandra; Bruttini, Mirella

    2006-01-01

    Retinoblastoma (RB, OMIM#180200) is the most common intraocular tumour in infancy and early childhood. Constituent mutations in the RB1 gene predispose individuals to RB development. We performed a mutational screening of the RB1 gene in Italian patients affected by RB referred to the Medical Genetics of the University of Siena. In 35 unrelated patients, we identified germline RB1 mutations in 6 out of 9 familial cases (66%) and in 7 out of 26 with no family history of RB (27%). Using the single-strand conformational polymorphism (SSCP) technique, 11 novel mutations were detected, including 3 nonsense, 5 frameshift and 4 splice-site mutations. Only two of these mutations (1 splice site and 1 missense) were previously reported. The mutation spectrum reflects the published literature, encompassing predominately nonsense or frameshift and splicing mutations. RB1 germline mutation was detected in 37% of our cases. Gross rearrangements outside the investigated region, altered DNA methylation, or mutations in non-coding regions, may be the cause of disease in the remainder of the patients. Some cases, e.g. a case of incomplete penetrance, or variable expressivity ranging from retinoma to multiple tumours, are discussed in detail. In addition, a case of pre-conception genetic counselling resolved by rescue of banked cordonal blood of the affected deceased child is described.

  4. Mucopolysaccharidosis IVA mutations in Chinese patients: 16 novel mutations.

    PubMed

    Wang, Zheng; Zhang, Weimin; Wang, Yun; Meng, Yan; Su, Liang; Shi, Huiping; Huang, Shangzhi

    2010-08-01

    Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is a lysosomal storage disease caused by deficiency of N-acetylgalactosamine-6-sulfatase (GALNS) and transmitted as an autosomal recessive trait. This is the first systematic mutation screen in Chinese MPS IVA patients. Mutation detections in 24 unrelated Chinese MPS IVA patients were performed by PCR and direct sequencing of exons or the mRNA of GALNS. A total of 42 mutant alleles were identified, belonging to 27 different mutations. Out of the 27 mutations, 16 were novel, including 2 splicing mutations (c.567-1G>T and c.634-1G>A), 2 nonsense mutations (p.W325X and p.Q422X) and 12 missense mutations (p.T88I, p.H142R, p.P163H, p.G168L, p.H236D, p.N289S, p.T312A, p.G316V, p.A324E, p.L366P, p.Q422K and p.F452L). p.G340D was found to be a common mutation in the Chinese MPS IVA patients, accounting for 16.7% of the total number of mutant alleles. The results show that the mutations in Chinese MPS IVA patients are also family specific but have a different mutation spectrum as compared to those of other populations.

  5. Hyperphosphorylation amplifies UPF1 activity to resolve stalls in nonsense-mediated mRNA decay

    PubMed Central

    Durand, Sébastien; Franks, Tobias M.; Lykke-Andersen, Jens

    2016-01-01

    Many gene expression factors contain repetitive phosphorylation sites for single kinases, but the functional significance is poorly understood. Here we present evidence for hyperphosphorylation as a mechanism allowing UPF1, the central factor in nonsense-mediated decay (NMD), to increasingly attract downstream machinery with time of residence on target mRNAs. Indeed, slowing NMD by inhibiting late-acting factors triggers UPF1 hyperphosphorylation, which in turn enhances affinity for factors linking UPF1 to decay machinery. Mutational analyses reveal multiple phosphorylation sites contributing to different extents to UPF1 activity with no single site being essential. Moreover, the ability of UPF1 to undergo hyperphosphorylation becomes increasingly important for NMD when downstream factors are depleted. This hyperphosphorylation-dependent feedback mechanism may serve as a molecular clock ensuring timely degradation of target mRNAs while preventing degradation of non-targets, which, given the prevalence of repetitive phosphorylation among central gene regulatory factors, may represent an important general principle in gene expression. PMID:27511142

  6. A nonsense nucleotide substitution in the oculocutaneous albinism II gene underlies the original pink-eyed dilution allele (Oca2(p)) in mice.

    PubMed

    Shoji, Haruka; Kiniwa, Yukiko; Okuyama, Ryuhei; Yang, Mu; Higuchi, Keiichi; Mori, Masayuki

    2015-01-01

    The original pink-eyed dilution (p) on chromosome 7 is a very old spontaneous mutation in mice. The oculocutaneous albinism II (Oca2) gene has previously been identified as the p gene. Oca2 transcripts have been shown to be absent in the skin of SJL/J mice with the original p mutant allele (Oca2(p)); however, the molecular genetic lesion underlying the original Oca2(p) allele has never been reported. The NCT mouse (commonly known as Nakano cataract mouse) has a pink-eyed dilution phenotype, which prompted us to undertake a molecular genetic analysis of the Oca2 gene of this strain. Our genetic linkage analysis suggests that the locus for the pink-eyed dilution phenotype of NCT is tightly linked to the Oca2 locus. PCR cloning and nucleotide sequence analysis indicates that the NCT mouse has a nonsense nucleotide substitution at exon 7 of the Oca2 gene. Examination of three mouse strains (NZW/NSlc, SJL/J, and 129X1/SvJJmsSlc) with the original Oca2(p) allele revealed the presence of a nonsense nucleotide substitution identical to that in the NCT strain. RT-PCR analysis revealed that the Oca2 transcripts were absent in the skin of NCT mice, suggesting intervention of the nonsense-mediated mRNA decay pathway. Collectively, the data in this study indicate that the nonsense nucleotide substitution in the Oca2 gene underlies the Oca2(p) allele. Our data also indicate that the NCT mouse can be used not only as a cataract model, but also as a model for human type II oculocutaneous albinism.

  7. A nonsense nucleotide substitution in the oculocutaneous albinism II gene underlies the original pink-eyed dilution allele (Oca2(p)) in mice.

    PubMed

    Shoji, Haruka; Kiniwa, Yukiko; Okuyama, Ryuhei; Yang, Mu; Higuchi, Keiichi; Mori, Masayuki

    2015-01-01

    The original pink-eyed dilution (p) on chromosome 7 is a very old spontaneous mutation in mice. The oculocutaneous albinism II (Oca2) gene has previously been identified as the p gene. Oca2 transcripts have been shown to be absent in the skin of SJL/J mice with the original p mutant allele (Oca2(p)); however, the molecular genetic lesion underlying the original Oca2(p) allele has never been reported. The NCT mouse (commonly known as Nakano cataract mouse) has a pink-eyed dilution phenotype, which prompted us to undertake a molecular genetic analysis of the Oca2 gene of this strain. Our genetic linkage analysis suggests that the locus for the pink-eyed dilution phenotype of NCT is tightly linked to the Oca2 locus. PCR cloning and nucleotide sequence analysis indicates that the NCT mouse has a nonsense nucleotide substitution at exon 7 of the Oca2 gene. Examination of three mouse strains (NZW/NSlc, SJL/J, and 129X1/SvJJmsSlc) with the original Oca2(p) allele revealed the presence of a nonsense nucleotide substitution identical to that in the NCT strain. RT-PCR analysis revealed that the Oca2 transcripts were absent in the skin of NCT mice, suggesting intervention of the nonsense-mediated mRNA decay pathway. Collectively, the data in this study indicate that the nonsense nucleotide substitution in the Oca2 gene underlies the Oca2(p) allele. Our data also indicate that the NCT mouse can be used not only as a cataract model, but also as a model for human type II oculocutaneous albinism. PMID:25736709

  8. A deleterious RNF43 germline mutation in a severely affected serrated polyposis kindred.

    PubMed

    Taupin, Douglas; Lam, Wesley; Rangiah, David; McCallum, Larissa; Whittle, Belinda; Zhang, Yafei; Andrews, Daniel; Field, Matthew; Goodnow, Christopher C; Cook, Matthew C

    2015-01-01

    We report a germline nonsense mutation within the extracellular domain of the RING finger ubiquitin ligase RNF43, segregating with a severe form of serrated polyposis within a kindred. The finding provides evidence that inherited RNF43 mutations define a familial cancer syndrome.

  9. Mechanism and regulation of the nonsense-mediated decay pathway

    PubMed Central

    Hug, Nele; Longman, Dasa; Cáceres, Javier F.

    2016-01-01

    The Nonsense-mediated mRNA decay (NMD) pathway selectively degrades mRNAs harboring premature termination codons (PTCs) but also regulates the abundance of a large number of cellular RNAs. The central role of NMD in the control of gene expression requires the existence of buffering mechanisms that tightly regulate the magnitude of this pathway. Here, we will focus on the mechanism of NMD with an emphasis on the role of RNA helicases in the transition from NMD complexes that recognize a PTC to those that promote mRNA decay. We will also review recent strategies aimed at uncovering novel trans-acting factors and their functional role in the NMD pathway. Finally, we will describe recent progress in the study of the physiological role of the NMD response. PMID:26773057

  10. Recessive axonal Charcot-Marie-Tooth disease due to compound heterozygous mitofusin 2 mutations

    PubMed Central

    Polke, J.M.; Laurá, M.; Pareyson, D.; Taroni, F.; Milani, M.; Bergamin, G.; Gibbons, V.S.; Houlden, H.; Chamley, S.C.; Blake, J.; DeVile, C.; Sandford, R.; Sweeney, M.G.; Davis, M.B.

    2011-01-01

    Objective: Mutations in mitofusin 2 (MFN2) are the most common cause of axonal Charcot-Marie-Tooth disease (CMT2). Over 50 mutations have been reported, mainly causing autosomal dominant disease, though families with homozygous or compound heterozygous mutations have been described. We present 3 families with early-onset CMT2 associated with compound heterozygous MFN2 mutations. Transcriptional analysis was performed to investigate the effects of the mutations. Methods: Patients were examined clinically and electrophysiologically; parents were also examined where available. Genetic investigations included MFN2 DNA sequencing and dosage analysis by multiplex ligation-dependent probe amplification. MFN2 mRNA transcripts from blood lymphocytes were analyzed in 2 families. Results: Compound heterozygosity for MFN2 mutations was associated with early-onset CMT2 of varying severity between pedigrees. Parents, where examined, were unaffected and were heterozygous for the expected mutations. Four novel mutations were detected (one missense, one nonsense, an intragenic deletion of exons 7 + 8, and a 3–base pair deletion), as well as 2 previously reported missense mutations. Transcriptional analysis demonstrated aberrant splicing of the exonic deletion and indicated nonsense-mediated decay of mutant alleles with premature truncating mutations. Conclusions: Our findings confirm that MFN2 mutations can cause early-onset CMT2 with apparent recessive inheritance. Novel genetic findings include an intragenic MFN2 deletion and nonsense-mediated decay. Carrier parents were asymptomatic, suggesting that MFN2 null alleles can be nonpathogenic unless coinherited with another mutation. PMID:21715711

  11. Mutations affecting enzymatic activity in liver arginase

    SciTech Connect

    Vockley, J.G.; Tabor, D.E.; Goodman, B.K.

    1994-09-01

    The hydrolysis of arginine to ornithine and urea is catalyzed by arginase in the last step of the urea cycle. We examined a group of arginase deficient patients by PCR-SSCP analysis to characterize the molecular basis of this disorder. A heterogeneous population of nonsense mutations, microdeletions, and missense mutations has been identified in our cohort. Microdeletions which introduce premature stop codons downstream of the deletion and nonsense mutations result in no arginase activity. These mutations occur randomly along the gene. The majority of missense mutations identified appear to occur in regions of high cross-species homology. To test the effect of these missense mutations on arginase activity, site-directed mutagenesis was used to re-create the patient mutations for in vivo expression studies in a prokaryotic fusion-protein expression system. Of 4 different missense mutations identified in 6 individuals, only one was located outside of a conserved region. The three substitution mutations within the conserved regions had a significant effect on enzymatic activity (0-3.1 nmole/30min, normal is 1300-1400 nmoles/30min, as determined by in vitro arginase assay), while the fourth mutation, a T to S substitution, did not. In addition, site-directed mutagenesis was utilized to create mutations not in residues postulated to play a significant role in the enzymatic function or active site formation in manganese-binding proteins such as arginase. We have determined that the substitution of glycine for a histidine residue, located in a very highly conserved region of exon 3, and the substitution of a histidine and an aspartic acid residue within a similarly conserved region in exon 4, totally abolishes enzymatic activity. Mutations substituting glycine for an additional histidine and aspartic acid residue in exon 4 and two aspartic acid residues in exon 7 have also been created. We are currently in the process of characterizing these mutations.

  12. Germ-line mutations in the neurofibromatosis 2 gene: Correlations with disease severity and retinal abnormalities

    SciTech Connect

    Parry, D.M.; Kaiser-Kupfer, M.; Eldridge, R.

    1996-09-01

    Neurofibromatosis 2 (NF2) features bilateral vestibular schwannomas, other benign neural tumors, and cataracts. Patients in some families develop many tumors at an early age and have rapid clinical progression, whereas in other families, patients may not have symptoms until much later and vestibular schwannomas may be the only tumors. The NF2 gene has been cloned from chromosome 22q; most identified germ-line mutations result in a truncated protein and severe NF2. To look for additional mutations and clinical correlations, we used SSCP analysis to screen DNA from 32 unrelated patients. We identified 20 different mutations in 21 patients (66%): 10 nonsense mutations, 2 frameshifts, 7 splice-site mutations, and 1 large in-frame deletion. Clinical information on 47 patients from the 21 families included ages at onset and at diagnosis, numbers of meningiomas, spinal and skin tumors, and presence of cataracts and retinal abnormalities. We compared clinical findings in patients with nonsense or frameshift mutations to those with splice-site mutations. When each patient was considered as an independent random event, the two groups differed (P {le} .05) for nearly every variable. Patients with nonsense or frameshift mutations were younger at onset and at diagnosis and had a higher frequency and mean number of tumors, supporting the correlation between nonsense and frameshift mutations and severe NF2. When each family was considered as an independent random event, statistically significant differences between the two groups were observed only for mean ages at onset and at diagnosis. A larger data set is needed to resolve these discrepancies. We observed retinal hamartomas and/or epiretinal membranes in nine patients from five families with four different nonsense mutations. This finding, which may represent a new genotype-phenotype correlation, merits further study. 58 refs., 2 tabs.

  13. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells.

    PubMed Central

    Maquat, L E

    1995-01-01

    It appears that no organism is immune to the effects of nonsense codons on mRNA abundance. The study of how nonsense codons alter RNA metabolism is still at an early stage, and our current understanding derives more from incidental vignettes than from experimental undertakings that address molecular mechanisms. Challenges for the future include identifying the gene products and RNA sequences that function in nonsense mediated RNA loss, resolving the cause and consequences of there apparently being more than one cellular site and mechanism for nonsense-mediated RNA loss, and understanding how these sites and mechanisms are related to both constitutive and specialized pathways of pre-mRNA processing and mRNA decay. PMID:7489507

  14. Splicing and 3' end formation in the definition of nonsense-mediated decay-competent human beta-globin mRNPs.

    PubMed

    Neu-Yilik, G; Gehring, N H; Thermann, R; Frede, U; Hentze, M W; Kulozik, A E

    2001-02-01

    Premature translation termination codons are common causes of genetic disorders. mRNAs with such mutations are degraded by a surveillance mechanism termed nonsense-mediated decay (NMD), which represents a phylogenetically widely conserved post-transcriptional mechanism for the quality control of gene expression. How NMD-competent mRNPs are formed and specified remains a central question. Here, we have used human beta-globin mRNA as a model system to address the role of splicing and polyadenylation for human NMD. We show that (i) splicing is an indispensable component of the human beta-globin NMD pathway, which cannot be compensated for by exonic beta-globin 'failsafe' sequences; (ii) the spatial requirements of human beta-globin NMD, as signified by the maximal distance of the nonsense mutation to the final exon-exon junction, are less constrained than in yeast; and (iii) non-polyadenylated mRNAs with a histone 3' end are NMD competent. Thus, the formation of NMD-competent mRNP particles critically depends on splicing but does not require the presence of a poly(A) tail.

  15. Intracellular Calcium Regulates Nonsense-Mediated mRNA Decay

    PubMed Central

    Nickless, Andrew; Jackson, Erin; Marasa, Jayne; Nugent, Patrick; Mercer, Robert W.; Piwnica-Worms, David; You, Zhongsheng

    2014-01-01

    The nonsense-mediated mRNA decay (NMD) pathway selectively eliminates aberrant transcripts containing premature translation termination codons (PTCs) and regulates the levels of a number of physiological mRNAs. NMD modulates the clinical outcome of a variety of human diseases, including cancer and many genetic disorders, and may represent an important target for therapeutic intervention. Here we have developed a novel multicolored, bioluminescence-based reporter system that can specifically and effectively assay NMD in live human cells. Using this reporter system, we conducted a robust high-throughput small-molecule screen in human cells and, unpredictably, identified a group of cardiac glycosides including ouabain and digoxin as potent inhibitors of NMD. Cardiac glycoside-mediated effects on NMD are dependent on binding and inhibiting the Na+/K+-ATPase on the plasma membrane and subsequent elevation of intracellular calcium levels. Induction of calcium release from endoplasmic reticulum also leads to inhibition of NMD. Thus, this study reveals intracellular calcium as a key regulator of NMD and has important implications for exploiting NMD in the treatment of disease. PMID:25064126

  16. Fitness for duty: a no-nonsense approach

    SciTech Connect

    Dew, S.M.; Hill, A.O.

    1987-01-01

    In formulating the fitness-for-duty program at Houston Lighting and Power (HL and P), the project and plant staffs followed program guidelines developed by the Edison Electric Institute and considered the performance criteria for the fitness-for-duty programs developed by the Institute of Nuclear Power Operations. The staff visited utilities involved in fitness-for-duty implementation to review the problems and successes experienced by those utilities. On November 1, 1985, the nuclear group vice-president instituted the South Texas Project Fitness-for-Duty Policy to become effective on January 1, 1986. It was important to implement the program at that time, as the project moved to the final stages of construction and preparation for plant operations. The South Texas Project has made a firm commitment to the industry with our fitness-for-duty program. The no-nonsense approach to illegal drug and alcohol use enables to assure a high level of employee health, productivity, and safety in a drug- and alcohol-free environment. The cost of the fitness-for-duty program is minimal when compared to the increase in productivity and the heightened confidence in workers by the US Nuclear Regulatory Commission since implementation of this program.

  17. Nonsense-mediated decay regulates key components of homologous recombination

    PubMed Central

    Janke, Ryan; Kong, Jeremy; Braberg, Hannes; Cantin, Greg; Yates, John R.; Krogan, Nevan J.; Heyer, Wolf-Dietrich

    2016-01-01

    Cells frequently experience DNA damage that requires repair by homologous recombination (HR). Proteins involved in HR are carefully coordinated to ensure proper and efficient repair without interfering with normal cellular processes. In Saccharomyces cerevisiae, Rad55 functions in the early steps of HR and is regulated in response to DNA damage through phosphorylation by the Mec1 and Rad53 kinases of the DNA damage response. To further identify regulatory processes that target HR, we performed a high-throughput genetic interaction screen with RAD55 phosphorylation site mutants. Genes involved in the mRNA quality control process, nonsense-mediated decay (NMD), were found to genetically interact with rad55 phospho-site mutants. Further characterization revealed that RAD55 transcript and protein levels are regulated by NMD. Regulation of HR by NMD extends to multiple targets beyond RAD55, including RAD51, RAD54 and RAD57. Finally, we demonstrate that loss of NMD results in an increase in recombination rates and resistance to the DNA damaging agent methyl methanesulfonate, suggesting this pathway negatively regulates HR under normal growth conditions. PMID:27001511

  18. Beyond the fringe: when science moves from innovative to nonsense.

    PubMed

    Silver, Simon

    2014-01-01

    Microbiology has experienced examples of highly productive researchers who have gone beyond just interpreting their experimental results with hypotheses and published nonsense that was readily recognized as such by readers. Although the most discussed cases of this pathology come from physics, studies of single-celled microorganisms, virology, and immunology have provided many examples. Five cases are described here along with some generalizations. These are the Lamarckian inheritance of acquired characteristics reported by distinguished and experienced researchers, vectorless DNA transfer and incorporation of bacterial DNA into chromosomes of plants years before vector construction of genetically modified plants was invented, water with memory of immunoglobulin IgE, a new electromagnetic radiation method for identifying bacterial and viral pathogens by the discoverer of human immunodeficiency virus, and the claim of isolation of a new bacterial isolate with arsenic replacing phosphorus in DNA. These examples represent very dissimilar areas, and the only common factor is hubris on the part of experienced researchers. Secondarily, failure of peer review sometimes happens, and journal editors do not step in, sometimes even when alerted before publication. These failures of the publishing process teach us that unnecessary mistakes occur and should warn us all to watch our own enthusiasms.

  19. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    SciTech Connect

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R.; Moxley, R.T.

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  20. Identification of a nonsense mutation in CWC15 associated with decreased reproductive efficiency in Jersey cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the recent advent of genomic tools for cattle, several recessive conditions affecting fertility have been identified and selected against, such as deficiency of uridine monophosphate synthase, complex vertebral malformation, and brachyspina. The current report refines the location of a recessiv...

  1. A nonsense mutation in the tyrosinase gene causes albinism in water buffalo

    PubMed Central

    2012-01-01

    Background Oculocutaneous albinism (OCA) is an autosomal recessive hereditary pigmentation disorder affecting humans and several other animal species. Oculocutaneous albinism was studied in a herd of Murrah buffalo to determine the clinical presentation and genetic basis of albinism in this species. Results Clinical examinations and pedigree analysis were performed in an affected herd, and wild-type and OCA tyrosinase mRNA sequences were obtained. The main clinical findings were photophobia and a lack of pigmentation of the hair, skin, horns, hooves, mucosa, and iris. The results of segregation analysis suggest that this disease is acquired through recessive inheritance. In the OCA buffalo, a single-base substitution was detected at nucleotide 1,431 (G to A), which leads to the conversion of tryptophan into a stop codon at residue 477. Conclusion This premature stop codon produces an inactive protein, which is responsible for the OCA buffalo phenotype. These findings will be useful for future studies of albinism in buffalo and as a possible model to study diseases caused by a premature stop codon. PMID:22817390

  2. Phase 3 Study of Ataluren in Patients With Nonsense Mutation Duchenne Muscular Dystrophy

    ClinicalTrials.gov

    2016-08-02

    Muscular Dystrophy, Duchenne; Muscular Dystrophies; Muscular Disorders, Atrophic; Muscular Diseases; Musculoskeletal Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  3. Phase 3 Extension Study of Ataluren (PTC124) in Patients With Nonsense Mutation Dystrophinopathy

    ClinicalTrials.gov

    2014-10-15

    Muscular Dystrophy, Duchenne; Muscular Dystrophies; Muscular Disorders, Atrophic; Muscular Diseases; Musculoskeletal Diseases; Neuromuscular Diseases; Nervous System Diseases; Genetic Diseases, X-Linked; Genetic Diseases, Inborn

  4. "After birth" abortion: a biomedical and conceptual nonsense.

    PubMed

    Benagiano, Giuseppe; Landeweerd, Laurens; Brosens, Ivo

    2013-07-01

    Recently, two authors suggested that killing a healthy newborn might be morally permissible, subsuming it under the heading of 'after birth abortion'. Their proposed new definition implies that infanticide should be permitted whenever II trimester abortion for social reasons is. The suggestion stirred public outcry; nonetheless it needs to be analyzed since some 20% of countries allow II trimester abortion for social reasons and 5% do this on demand. A proper delimitation of the definition of "abortion" is thus very important to ensure careful application; for this reason we have attempted a critical analysis of their arguments. In the area of pregnancy termination different moral standards are apparently applied in different countries, but many reasons exist why the equation between II trimester abortion for social reasons and the killing of healthy neonates is to be morally rejected in all cases. The "inversed reification" of the concept of infanticide as a more abstract, euphemistic 'after birth abortion' blurs the fundamental difference between a non-viable fetus and a viable neonate. The best-known and most widely utilized (although illegal) "social reason" for "late abortion" and "infanticide" is a pregnancy with a female fetus or neonate. If infanticide for neonates were to be considered morally permissible, specifically it is this practice that would be applied. And this should be rejected on two levels: conceptual, through a critique of the exclusive use of one specific notion of personhood, and pragmatic through refusal of gender-discriminatory forms of infanticide (the killing of female neonates). In conclusion, having investigated the new concept we have concluded that the term "after birth abortion" is biologically and conceptually nonsensical.

  5. "After birth" abortion: a biomedical and conceptual nonsense.

    PubMed

    Benagiano, Giuseppe; Landeweerd, Laurens; Brosens, Ivo

    2013-07-01

    Recently, two authors suggested that killing a healthy newborn might be morally permissible, subsuming it under the heading of 'after birth abortion'. Their proposed new definition implies that infanticide should be permitted whenever II trimester abortion for social reasons is. The suggestion stirred public outcry; nonetheless it needs to be analyzed since some 20% of countries allow II trimester abortion for social reasons and 5% do this on demand. A proper delimitation of the definition of "abortion" is thus very important to ensure careful application; for this reason we have attempted a critical analysis of their arguments. In the area of pregnancy termination different moral standards are apparently applied in different countries, but many reasons exist why the equation between II trimester abortion for social reasons and the killing of healthy neonates is to be morally rejected in all cases. The "inversed reification" of the concept of infanticide as a more abstract, euphemistic 'after birth abortion' blurs the fundamental difference between a non-viable fetus and a viable neonate. The best-known and most widely utilized (although illegal) "social reason" for "late abortion" and "infanticide" is a pregnancy with a female fetus or neonate. If infanticide for neonates were to be considered morally permissible, specifically it is this practice that would be applied. And this should be rejected on two levels: conceptual, through a critique of the exclusive use of one specific notion of personhood, and pragmatic through refusal of gender-discriminatory forms of infanticide (the killing of female neonates). In conclusion, having investigated the new concept we have concluded that the term "after birth abortion" is biologically and conceptually nonsensical. PMID:23495749

  6. A model of protein translation including codon bias, nonsense errors, and ribosome recycling.

    PubMed

    Gilchrist, Michael A; Wagner, Andreas

    2006-04-21

    We present and analyse a model of protein translation at the scale of an individual messenger RNA (mRNA) transcript. The model we develop is unique in that it incorporates the phenomena of ribosome recycling and nonsense errors. The model conceptualizes translation as a probabilistic wave of ribosome occupancy traveling down a heterogeneous medium, the mRNA transcript. Our results show that the heterogeneity of the codon translation rates along the mRNA results in short-scale spikes and dips in the wave. Nonsense errors attenuate this wave on a longer scale while ribosome recycling reinforces it. We find that the combination of nonsense errors and codon usage bias can have a large effect on the probability that a ribosome will completely translate a transcript. We also elucidate how these forces interact with ribosome recycling to determine the overall translation rate of an mRNA transcript. We derive a simple cost function for nonsense errors using our model and apply this function to the yeast (Saccharomyces cervisiae) genome. Using this function we are able to detect position dependent selection on codon bias which correlates with gene expression levels as predicted a priori. These results indirectly validate our underlying model assumptions and confirm that nonsense errors can play an important role in shaping codon usage bias. PMID:16171830

  7. Novel mutations in PDE6B causing human retinitis pigmentosa

    PubMed Central

    Cheng, Lu-Lu; Han, Ru-Yi; Yang, Fa-Yu; Yu, Xin-Ping; Xu, Jin-Ling; Min, Qing-Jie; Tian, Jie; Ge, Xiang-Lian; Zheng, Si-Si; Lin, Ye-Wen; Zheng, Yi-Han; Qu, Jia; Gu, Feng

    2016-01-01

    AIM To identify the genetic defects of a Chinese patient with sporadic retinitis pigmentosa (RP). METHODS Ophthalmologic examinations were performed on the sporadic RP patient, 144 genes associated with retinal diseases were scanned with capture next generation sequencing (CNGS) approach. Two heterozygous mutations in PDE6B were confirmed in the pedigree by Sanger sequencing subsequently. The carrier frequency of PDE6B mutations of reported PDE6B mutations based on the available two public exome databases (1000 Genomes Project and ESP6500 Genomes Project) and one in-house exome database was investigated. RESULTS We identified compound heterozygosity of two novel nonsense mutations c.1133G>A (p.W378X) and c.2395C>T (p.R799X) in PDE6B, one reported causative gene for RP. Neither of the two mutations in our study was presented in three exome databases. Two mutations (p.R74C and p.T604I) in PDE6B have relatively high frequencies in the ESP6500 and in-house databases, respectively, while no common dominant mutation in each of the database or across all databases. CONCLUSION We demonstrates that compound heterozygosity of two novel nonsense mutations in PDE6B could lead to RP. These results collectively point to enormous potential of next-generation sequencing in determining the genetic etiology of RP and how various mutations in PDE6B contribute to the genetic heterogeneity of RP. PMID:27588261

  8. Spectrum of mutations in mut methylmalonic acidemia and identification of a common Hispanic mutation and haplotype.

    PubMed

    Worgan, Lisa C; Niles, Kirsten; Tirone, Jamie C; Hofmann, Adam; Verner, Andrei; Sammak, Alya'a; Kucic, Terrence; Lepage, Pierre; Rosenblatt, David S

    2006-01-01

    Cobalamin nonresponsive methylmalonic acidemia (MMA, mut complementation class) results from mutations in the nuclear gene MUT, which codes for the mitochondrial enzyme methylmalonyl CoA mutase (MCM). To better elucidate the spectrum of mutations that cause MMA, the MUT gene was sequenced in 160 patients with mut MMA. Sequence analysis identified mutations in 96% of disease alleles. Mutations were found in all coding exons, but predominantly in exons 2, 3, 6, and 11. A total of 116 different mutations, 68 of which were novel, were identified. Of the 116 different mutations, 53% were missense mutations, 22% were deletions, duplications or insertions, 16% were nonsense mutations, and 9% were splice-site mutations. Sixty-one of the mutations have only been identified in one family. A novel mutation in exon 2, c.322C>T (p.R108C), was identified in 16 of 27 Hispanic patients. SNP genotyping data demonstrated that Hispanic patients with this mutation share a common haplotype. Three other mutations were seen exclusively in Hispanic patients: c.280G>A (p.G94R), c.1022dupA, and c.970G>A (p.A324T). Seven mutations were seen almost exclusively in black patients, including the previously reported c.2150G>T (p.G717V) mutation, which was identified in 12 of 29 black patients. Two mutations were seen only in Asian patients. Some frequently identified mutations were not population-specific and were identified in patients of various ethnic backgrounds. Some of these mutations were found in mutation clusters in exons 2, 3, 6, and 11, suggesting a recurrent mutation.

  9. Inhibition of SMG-8, a subunit of SMG-1 kinase, ameliorates nonsense-mediated mRNA decay-exacerbated mutant phenotypes without cytotoxicity.

    PubMed

    Usuki, Fusako; Yamashita, Akio; Shiraishi, Tadafumi; Shiga, Atsushi; Onodera, Osamu; Higuchi, Itsuro; Ohno, Shigeo

    2013-09-10

    Nonsense-mediated mRNA decay (NMD) is an mRNA surveillance mechanism that eliminates aberrant mRNAs containing premature termination codons (PTCs). NMD inhibits the production of aberrant proteins that still retain, at least in part, wild-type function as well as dominant-negative peptides. Therefore, the selective inhibition of NMD has the potential to ameliorate NMD-exacerbated mutant phenotypes. However, we do not have sufficient knowledge of how to effectively suppress NMD with minimum cytotoxic effects. In this study, we aimed to identify NMD-related factors that can be targeted to efficiently inhibit NMD without causing significant cytotoxicity to restore the levels of truncated but partially functional proteins. We evaluated the knockdown of 15 NMD components in Ullrich congenital muscular dystrophy fibroblasts, which have a homozygous frameshift mutation causing a PTC in the collagen type VI α 2 gene. Of the 15 NMD factors tested, knockdown of SMG-8 produced the best effect for restoring defective mRNA and protein levels without affecting cell growth, cell-cycle progression, or endoplasmic reticulum stress. The efficacy of SMG-8 knockdown to improve the mutant phenotype was confirmed using another cell line, from a cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy patient who carries a PTC-containing mutation in HtrA serine peptidase 1. Our results suggest that SMG-8 is an appropriate target for inhibiting NMD to improve NMD-exacerbated mutant phenotypes. NMD inhibition by knockdown of SMG-8 may also be useful to induce synergy in combining the use of read-through drugs for patients with nonsense mutation-associated diseases.

  10. Exon skipping through the creation of a putative exonic splicing silencer as a consequence of the cystic fibrosis mutation R553X.

    PubMed

    Aznarez, Isabel; Zielenski, Julian; Rommens, Johanna M; Blencowe, Benjamin J; Tsui, Lap-Chee

    2007-05-01

    Nonsense mutations that occur more than 50 bases upstream of terminal spliced junctions are generally thought to lead to degradation of the corresponding transcripts by the process of nonsense-mediated mRNA decay. It has also been proposed that some nonsense mutations may affect splicing by the process of nonsense-associated altered splicing (NAS), or by the disruption of a splicing regulatory element. In this study, the effect of the R553X mutation on the splicing of exon 11 of the cystic fibrosis transmembrane conductance regulator gene was investigated. Evidence that R553X causes exon 11 to skip through the creation of a putative exonic splicing silencer (ESS) was provided. The putative ESS appears to be active when located immediately upstream of a 5' splice site. These findings argue against the possibility that R553X-associated exon 11 skipping is caused by NAS. The study further suggests that aminoglycoside antibiotic treatment would not be effective for patients with the R553X mutation, owing to the skipping of exon 11, and further emphasises the need for detailed mechanistic characterisation of the consequences of nonsense disease mutations. PMID:17475917

  11. A nonsense polymorphism (R392X) in TLR5 protects from obesity but predisposes to diabetes.

    PubMed

    Al-Daghri, Nasser M; Clerici, Mario; Al-Attas, Omar; Forni, Diego; Alokail, Majed S; Alkharfy, Khalid M; Sabico, Shaun; Mohammed, Abdul Khader; Cagliani, Rachele; Sironi, Manuela

    2013-04-01

    The TLR5 gene encodes an innate immunity receptor. Mice lacking Tlr5 (T5KO) develop insulin resistance and increased adiposity. Owing to the segregation of a dominant nonsense polymorphism (R392X, rs5744168), a portion of humans lack TLR5 function. We investigated whether the nonsense polymorphism influences obesity and susceptibility to type 2 diabetes (T2D). R392X was genotyped in two cohorts from Saudi Arabia, a region where obesity and type 2 diabetes (T2D) are highly prevalent. The nonsense allele was found to protect from obesity (p(combined) = 0.0062; odds ratio, 0.51) and to associate with lower body mass index (BMI) (p(combined) = 0.0061); this allele also correlated with a reduced production of proinflammatory cytokines. A significant interaction was noted between rs5744168 and sex in affecting BMI (p(interaction) = 0.006), and stratification by gender revealed that the association is driven by females (p(combined) = 0.0016 and 0.0006 for obesity and BMI, respectively). The nonsense polymorphism also associated with BMI in nonobese women. After correction for BMI, the 392X allele was found to represent a risk factor for T2D with a sex-specific effect (p(interaction) = 0.023) mediated by females (p = 0.021; odds ratio, 2.60). Fasting plasma glucose levels in nondiabetic individuals were also higher in women carrying the nonsense allele (p = 0.012). Thus, in contrast to T5KO mice, loss of human TLR5 function protects from weight gain, but in analogy to the animal model, the nonsense allele predisposes to T2D. These effects are apparently sex-specific. Data in this study reinforce the hypothesis that metabolic diseases, including T2D, are associated with immune dysregulation.

  12. Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway

    PubMed Central

    Ge, Zhiyun; Quek, Bao Lin; Beemon, Karen L; Hogg, J Robert

    2016-01-01

    The nonsense-mediated mRNA decay (NMD) pathway degrades mRNAs containing long 3'UTRs to perform dual roles in mRNA quality control and gene expression regulation. However, expansion of vertebrate 3'UTR functions has required a physical expansion of 3'UTR lengths, complicating the process of detecting nonsense mutations. We show that the polypyrimidine tract binding protein 1 (PTBP1) shields specific retroviral and cellular transcripts from NMD. When bound near a stop codon, PTBP1 blocks the NMD protein UPF1 from binding 3'UTRs. PTBP1 can thus mark specific stop codons as genuine, preserving both the ability of NMD to accurately detect aberrant mRNAs and the capacity of long 3'UTRs to regulate gene expression. Illustrating the wide scope of this mechanism, we use RNA-seq and transcriptome-wide analysis of PTBP1 binding sites to show that many human mRNAs are protected by PTBP1 and that PTBP1 enrichment near stop codons correlates with 3'UTR length and resistance to NMD. DOI: http://dx.doi.org/10.7554/eLife.11155.001 PMID:26744779

  13. Mutations in GNAL cause primary torsion dystonia

    PubMed Central

    Fuchs, Tania; Saunders-Pullman, Rachel; Masuho, Ikuo; Luciano, Marta San; Raymond, Deborah; Factor, Stewart; Lang, Anthony E.; Liang, Tsao-Wei; Trosch, Richard M.; White, Sierra; Ainehsazan, Edmond; Herve, Denis; Sharma, Nutan; Ehrlich, Michelle E.; Martemyanov, Kirill A.; Bressman, Susan B.; Ozelius, Laurie J.

    2012-01-01

    Dystonia is a movement disorder characterized by repetitive twisting muscle contractions and postures1,2. Its molecular pathophysiology is poorly understood, in part due to limited knowledge of the genetic basis of the disorder. Only three genes for primary torsion dystonia (PTD), TOR1A (DYT1)3, THAP1 (DYT6)4, and CIZ15 have been identified. Using exome sequencing in two PTD families we identified a novel causative gene, GNAL, with a nonsense p.S293X mutation resulting in premature stop codon in one family and a missense p.V137M mutation in the other. Screening of GNAL in 39 PTD families, revealed six additional novel mutations in this gene. Impaired function of several of the mutations was shown by bioluminescence resonance energy transfer (BRET) assays. PMID:23222958

  14. From Genotype to Phenotype: Nonsense Variants in SLC13A1 Are Associated with Decreased Serum Sulfate and Increased Serum Aminotransferases.

    PubMed

    Tise, Christina G; Perry, James A; Anforth, Leslie E; Pavlovich, Mary A; Backman, Joshua D; Ryan, Kathleen A; Lewis, Joshua P; O'Connell, Jeffrey R; Yerges-Armstrong, Laura M; Shuldiner, Alan R

    2016-01-01

    Using genomic applications to glean insights into human biology, we systematically searched for nonsense single nucleotide variants (SNVs) that are rare in the general population but enriched in the Old Order Amish (Amish) due to founder effect. We identified two nonlinked, nonsense SNVs (R12X and W48X) in SLC13A1 (allele frequencies 0.29% and 0.74% in the Amish; enriched 1.2-fold and 3.7-fold, compared to the outbred Caucasian population, respectively). SLC13A1 encodes the apical sodium-sulfate cotransporter (NaS1) responsible for sulfate (re)absorption in the kidneys and intestine. SLC13A1 R12X and W48X were independently associated with a 27.6% (P = 2.7 × 10(-8)) and 27.3% (P = 6.9 × 10(-14)) decrease in serum sulfate, respectively (P = 8.8 × 10(-20) for carriers of either SLC13A1 nonsense SNV). We further performed the first exome- and genome-wide association study (ExWAS/GWAS) of serum sulfate and identified a missense variant (L348P) in SLC26A1, which encodes the basolateral sulfate-anion transporter (Sat1), that was associated with decreased serum sulfate (P = 4.4 × 10(-12)). Consistent with sulfate's role in xenobiotic detoxification and protection against acetaminophen-induced hepatotoxicity, SLC13A1 nonsense SNV carriers had higher aminotransferase levels compared to noncarriers. Furthermore, SLC26A1 L348P was associated with lower whole-body bone mineral density (BMD) and higher serum calcium, consistent with the osteochondrodysplasia exhibited by dogs and sheep with naturally occurring, homozygous, loss-of-function mutations in Slc13a1 This study demonstrates the power and translational potential of systematic identification and characterization of rare, loss-of-function variants and warrants additional studies to better understand the importance of sulfate in human physiology, disease, and drug toxicity. PMID:27412988

  15. From Genotype to Phenotype: Nonsense Variants in SLC13A1 Are Associated with Decreased Serum Sulfate and Increased Serum Aminotransferases

    PubMed Central

    Tise, Christina G.; Perry, James A.; Anforth, Leslie E.; Pavlovich, Mary A.; Backman, Joshua D.; Ryan, Kathleen A.; Lewis, Joshua P.; O’Connell, Jeffrey R.; Yerges-Armstrong, Laura M.; Shuldiner, Alan R.

    2016-01-01

    Using genomic applications to glean insights into human biology, we systematically searched for nonsense single nucleotide variants (SNVs) that are rare in the general population but enriched in the Old Order Amish (Amish) due to founder effect. We identified two nonlinked, nonsense SNVs (R12X and W48X) in SLC13A1 (allele frequencies 0.29% and 0.74% in the Amish; enriched 1.2-fold and 3.7-fold, compared to the outbred Caucasian population, respectively). SLC13A1 encodes the apical sodium-sulfate cotransporter (NaS1) responsible for sulfate (re)absorption in the kidneys and intestine. SLC13A1 R12X and W48X were independently associated with a 27.6% (P = 2.7 × 10−8) and 27.3% (P = 6.9 × 10−14) decrease in serum sulfate, respectively (P = 8.8 × 10-20 for carriers of either SLC13A1 nonsense SNV). We further performed the first exome- and genome-wide association study (ExWAS/GWAS) of serum sulfate and identified a missense variant (L348P) in SLC26A1, which encodes the basolateral sulfate-anion transporter (Sat1), that was associated with decreased serum sulfate (P = 4.4 × 10−12). Consistent with sulfate’s role in xenobiotic detoxification and protection against acetaminophen-induced hepatotoxicity, SLC13A1 nonsense SNV carriers had higher aminotransferase levels compared to noncarriers. Furthermore, SLC26A1 L348P was associated with lower whole-body bone mineral density (BMD) and higher serum calcium, consistent with the osteochondrodysplasia exhibited by dogs and sheep with naturally occurring, homozygous, loss-of-function mutations in Slc13a1. This study demonstrates the power and translational potential of systematic identification and characterization of rare, loss-of-function variants and warrants additional studies to better understand the importance of sulfate in human physiology, disease, and drug toxicity. PMID:27412988

  16. Teaching Children to Fluently Decode Nonsense Words in Lists: Generalized Effects to Oral Reading Fluency of Connected Text

    ERIC Educational Resources Information Center

    Werder, Candace Susan

    2012-01-01

    The present study examined the generalized effects of training children to fluently blend nonsense words containing target vowel teams on their reading of untrained real words in lists and passages. Eight second-grade students participated. Nonsense words containing each of 3 target vowel teams ("aw," "oi," and "au")…

  17. Truncating mutations in APP cause a distinct neurological phenotype.

    PubMed

    Klein, Steven; Goldman, Alexander; Lee, Hane; Ghahremani, Shahnaz; Bhakta, Viraj; Nelson, Stanley F; Martinez-Agosto, Julian A

    2016-09-01

    Dominant missense mutations in the amyloid β (Aβ) precursor protein (APP) gene have been implicated in early onset Alzheimer disease. These mutations alter protein structure to favor the pathologic production of Aβ. We report that homozygous nonsense mutations in APP are associated with decreased somatic growth, microcephaly, hypotonia, developmental delay, thinning of the corpus callosum, and seizures. We compare the phenotype of this case to those reported in mouse models and demonstrate multiple similarities, strengthening the role of amyloid precursor protein in normal brain function and development. Ann Neurol 2016;80:456-460. PMID:27422356

  18. Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay.

    PubMed

    Bruno, Ivone G; Karam, Rachid; Huang, Lulu; Bhardwaj, Anjana; Lou, Chih H; Shum, Eleen Y; Song, Hye-Won; Corbett, Mark A; Gifford, Wesley D; Gecz, Jozef; Pfaff, Samuel L; Wilkinson, Miles F

    2011-05-20

    Nonsense-mediated decay (NMD) degrades both normal and aberrant transcripts harboring stop codons in particular contexts. Mutations that perturb NMD cause neurological disorders in humans, suggesting that NMD has roles in the brain. Here, we identify a brain-specific microRNA-miR-128-that represses NMD and thereby controls batteries of transcripts in neural cells. miR-128 represses NMD by targeting the RNA helicase UPF1 and the exon-junction complex core component MLN51. The ability of miR-128 to regulate NMD is a conserved response occurring in frogs, chickens, and mammals. miR-128 levels are dramatically increased in differentiating neuronal cells and during brain development, leading to repressed NMD and upregulation of mRNAs normally targeted for decay by NMD; overrepresented are those encoding proteins controlling neuron development and function. Together, these results suggest the existence of a conserved RNA circuit linking the microRNA and NMD pathways that induces cell type-specific transcripts during development.

  19. Method for quantitative analysis of nonsense-mediated mRNA decay at the single cell level

    PubMed Central

    Pereverzev, Anton P.; Gurskaya, Nadya G.; Ermakova, Galina V.; Kudryavtseva, Elena I.; Markina, Nadezhda M.; Kotlobay, Alexey A.; Lukyanov, Sergey A.; Zaraisky, Andrey G.; Lukyanov, Konstantin A.

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) is a ubiquitous mechanism of degradation of transcripts with a premature termination codon. NMD eliminates aberrant mRNA species derived from sources of genetic variation such as gene mutations, alternative splicing and DNA rearrangements in immune cells. In addition, recent data suggest that NMD is an important mechanism of global gene expression regulation. Here, we describe new reporters to quantify NMD activity at the single cell level using fluorescent proteins of two colors: green TagGFP2 and far-red Katushka. TagGFP2 was encoded by mRNA targeted to either the splicing-dependent or the long 3'UTR-dependent NMD pathway. Katushka was used as an expression level control. Comparison of the fluorescence intensities of cells expressing these reporters and cells expressing TagGFP2 and Katushka from corresponding control NMD-independent vectors allowed for the assessment of NMD activity at the single cell level using fluorescence microscopy and flow cytometry. The proposed reporter system was successfully tested in several mammalian cell lines and in transgenic Xenopus embryos. PMID:25578556

  20. Temperature-sensitive eIF5A mutant accumulates transcripts targeted to the nonsense-mediated decay pathway.

    PubMed

    Schrader, Rainer; Young, Craig; Kozian, Detlef; Hoffmann, Reinhard; Lottspeich, Friedrich

    2006-11-17

    The highly conserved protein eIF5A found in Archaea and all eukaryotes uniquely contains the posttranslationally formed amino acid hypusine. Despite being essential the functions of this protein and its modification remain unclear. To gain more insight into these functions temperature-sensitive mutants of the human EIF5A1 were characterized in the yeast Saccharomyces cerevisiae. Expression of the point mutated form V81G in a DeltaeIF5A strain of yeast led to a strongly temperature-sensitive phenotype and to a significantly reduced protein level at restrictive temperature. The mutant showed accumulation of a subset of mRNAs that was also observed in nonsense-mediated decay (NMD)-deficient yeast strains. After short incubation at restrictive temperature the mutant exhibited increased half-lives of the intron containing CYH2 pre-mRNA and mature transcripts of NMD-dependent genes. Reduced telomere silencing and shortening was detected in the V81G mutant further supporting similarities to NMD-deficient strains. Our data suggest that eIF5A mediates important cellular processes like cell viability and senescence through its effects on the stability of certain mRNAs.

  1. Number Sense and Number Nonsense: Understanding the Challenges of Learning Math

    ERIC Educational Resources Information Center

    Krasa, Nancy; Shunkwiler, Sara

    2009-01-01

    How do children learn math--and why do some children struggle with it? The answers are in "Number Sense and Number Nonsense," a straightforward, reader-friendly book for education professionals and an invaluable multidisciplinary resource for researchers. More than a first-ever research synthesis, this highly accessible book brings math…

  2. Male Readership Differences in Liquor Magazine Ads Employing Nonsensical and Sexual Humor.

    ERIC Educational Resources Information Center

    Reid, Leonard N.; And Others

    A study examined the attention getting value of nonsensical and sexual humor used in liquor advertisements to determine if one was more effective than the other in attracting male magazine readers. Thirty-two Starch-scored liquor ads taken from 1976 and 1977 issues of "Time,""Newsweek," and "Sports Illustrated" were analyzed by three male readers.…

  3. Repair-Resistant Mutation in Neurospora

    PubMed Central

    Stadler, David; Macleod, Helen; Loo, Melanie

    1987-01-01

    Chronic UV treatment produces severalfold fewer mutations in Neurospora conidia than does the same total dose of acute UV. Experiments were designed to determine the conditions required for chronic UV mutagenesis. Measurement of the coincidence frequency for two independent mutations revealed the existence of a subset of cells which are mutable by chronic UV. Analysis of forward mutation at the mtr locus showed that the genetic alterations produced by chronic UV were virtually all point mutants, even though the assay system could detect alterations or deletions extending into neighboring genes. A significant fraction of the mutants produced by acute UV were multigenic deletions. The size of the dose-rate effect (acute UV mutation frequency divided by chronic UV mutation frequency) was compared for several different mutation assay systems. Forward mutations (recessive lethals and mtr) gave values ranging from four to nine. For events which were restricted to specific molecular sites (specific reversions and nonsense suppressor mutations), there was a wider range of dose-rate ratios. This suggests that chronic UV mutation may be restricted to certain molecular sequences or configurations. PMID:3609724

  4. Novel CFTR Mutations in Two Iranian Families with Severe Cystic Fibrosis

    PubMed Central

    Mohseni, Marzieh; Razzaghmanesh, Mohammad; Mehr, Elham Parsi; Zare, Hanieh; Beheshtian, Maryam; Najmabadi, Hossein

    2016-01-01

    Background: Cystic fibrosis (CF) is a common autosomal recessive disorder that affects many body systems and is produced by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF is also the most frequently inherited disorder in the West. The aim of this study was to detect the mutations in the CFTR gene in two Iranian families with CF. Methods: After DNA extraction using the salting out method, a mutation panel consisting of 35 common mutations was tested by PCR, followed by reverse hybridization Strip Assay. To confirm the mutations, we have also performed Sanger sequencing for all 27 exons, intronic flanking regions, and 5’ and 3’ UTRs of the CFTR gene. Results: Carrier testing in a spouse revealed a novel nonsense mutation in the CFTR gene (c.2777 T>A (p.L926X)) in exon 17 for husband and a previously described heterozygous splice site pathogenic mutation (c.1393-1G>A) in his wife. The other novel compound heterozygous missense mutation (c.3119 T>A (p.L1040H)), which was previously reported as nonsense c.3484C>T (p.R1162X) mutation, was found in exon 19 in patient screening. Conclusion: Two novel CFTR mutations in exons 17 and 19 are responsible for CF with severe phenotypes in two Iranian families. These two mutations supplement the mutation spectrum of CFTR and may contribute to a better understanding of CFTR protein function. PMID:27017198

  5. PHF6 mutations in adult acute myeloid leukemia.

    PubMed

    Van Vlierberghe, P; Patel, J; Abdel-Wahab, O; Lobry, C; Hedvat, C V; Balbin, M; Nicolas, C; Payer, A R; Fernandez, H F; Tallman, M S; Paietta, E; Melnick, A; Vandenberghe, P; Speleman, F; Aifantis, I; Cools, J; Levine, R; Ferrando, A

    2011-01-01

    Loss of function mutations and deletions encompassing the plant homeodomain finger 6 (PHF6) gene are present in about 20% of T-cell acute lymphoblastic leukemias (ALLs). Here, we report the identification of recurrent mutations in PHF6 in 10/353 adult acute myeloid leukemias (AMLs). Genetic lesions in PHF6 found in AMLs are frameshift and nonsense mutations distributed through the gene or point mutations involving the second plant homeodomain (PHD)-like domain of the protein. As in the case of T-ALL, where PHF6 alterations are found almost exclusively in males, mutations in PHF6 were seven times more prevalent in males than in females with AML. Overall, these results identify PHF6 as a tumor suppressor gene mutated in AML and extend the role of this X-linked tumor suppressor gene in the pathogenesis of hematologic tumors.

  6. Nonsense-Mediated mRNA Decay Impacts MSI-Driven Carcinogenesis and Anti-Tumor Immunity in Colorectal Cancers

    PubMed Central

    El-Bchiri, Jamila; Guilloux, Agathe; Dartigues, Peggy; Loire, Etienne; Mercier, Dominique; Buhard, Olivier; Sobhani, Iradj; de la Grange, Pierre; Auboeuf, Didier; Praz, Françoise; Fléjou, Jean-François; Duval, Alex

    2008-01-01

    Nonsense-mediated mRNA Decay (NMD) degrades mutant mRNAs containing premature termination codon (PTC-mRNAs). Here we evaluate the consequence of NMD activity in colorectal cancers (CRCs) showing microsatellite instability (MSI) whose progression is associated with the accumulation of PTC-mRNAs encoding immunogenic proteins due to frameshift mutations in coding repeat sequences. Inhibition of UPF1, one of the major NMD factors, was achieved by siRNA in the HCT116 MSI CRC cell line and the resulting changes in gene expression were studied using expression microarrays. The impact of NMD activity was also investigated in primary MSI CRCs by quantifying the expression of several mRNAs relative to their mutational status and to endogenous UPF1 and UPF2 expression. Host immunity developed against MSI cancer cells was appreciated by quantifying the number of CD3ε-positive tumor-infiltrating lymphocytes (TILs). UPF1 silencing led to the up-regulation of 1251 genes in HCT116, among which a proportion of them (i.e. 38%) significantly higher than expected by chance contained a coding microsatellite (P<2×10−16). In MSI primary CRCs, UPF1 was significantly over-expressed compared to normal adjacent mucosa (P<0.002). Our data provided evidence for differential decay of PTC-mRNAs compared to wild-type that was positively correlated to UPF1 endogenous expression level (P = 0.02). A negative effect of UPF1 and UPF2 expression on the host's anti-tumor response was observed (P<0.01). Overall, our results show that NMD deeply influences MSI-driven tumorigenesis at the molecular level and indicate a functional negative impact of this system on anti-tumor immunity whose intensity has been recurrently shown to be an independent factor of favorable outcome in CRCs. PMID:18612427

  7. TET2 mutations were predictive of inferior prognosis in the presence of ASXL1 mutations in patients with chronic myelomonocytic leukemia

    PubMed Central

    Cui, Yajuan; Tong, Hongyan; Du, Xin; Li, Bing; Gale, Robert Peter; Qin, Tiejun; Liu, Jinqin; Xu, Zefeng; Zhang, Yue; Huang, Gang; Jin, Jie; Fang, Liwei; Zhang, Hongli; Pan, Lijuan; Hu, Naibo; Qu, Shiqiang

    2016-01-01

    Background Somatic mutations involving epigenetic regulators, histone modification and chromatin regulation, splicing components, transcription factors and signaling regulator genes are common in chronic myelomonocytic leukemia (CMML) patients. It has been consensus that ASXL1 mutations have adversely impact on overall survival (OS), while the effect of TET2 mutations remains controversial and undefined. Methods ASXL1 and TET2 mutations were analyzed in 141 patients with CMML using Sanger sequencing, with the aim to identify the interplay of ASXL1 and TET2 mutations in the prognosis of CMML. Results Sixty-five (46.1%) of the CMML patients harbored ASXL1 mutations (frameshift and nonsense), and 46 (32.6%) had TET2 mutations (frame shift, nonsense and missense). In a separate multivariable analysis that included the Mayo Prognostic Model as a single variable along with ASXL1wt/TET2wt, the respective hazard ratios of ASXL1mut/TET2mut, ASXL1mut/TET2wt and ASXL1wt/TET2mut were 4.7 (95% CI, 2.2–10.3; P<0.001), 2.2 (95% CI, 1.1–4.2; P=0.025) and 1.3 (95% CI, 0.6–2.5; P=0.521). Conclusions Our study showed that ASXL1 mutations predict inferior OS, and additional TET2 mutations were associated with poor survival in the presence of ASXL1 mutations of CMML patients. PMID:27777939

  8. Novel IRF6 mutations in Honduran Van der Woude syndrome patients.

    PubMed

    Birkeland, Andrew C; Larrabee, Yuna; Kent, David T; Flores, Carlos; Su, Gloria H; Lee, Joseph H; Haddad, Joseph

    2011-01-01

    Van der Woude syndrome (VWS) is an autosomal dominant inherited disease characterized by lower lip pits, cleft lip and/or cleft palate. Missense, nonsense and frameshift mutations in IRF6 have been revealed to be responsible for VWS in European, Asian, North American and Brazilian populations. However, the mutations responsible for VWS have not been studied in Central American populations. Here, we investigated the role of IRF6 in patients with VWS in a previously unstudied Honduran population. IRF6 mutations were identified in four out of five VWS families examined, which strongly suggests that mutations in IRF6 are responsible for VWS in this population. We reported three novel mutations and one previously described mutation. In the first family, a mother and daughter both exhibited a p.N88I mutation in the DNA-binding region of IRF6 that was not present in unaffected family members. In the second, we found a unique p.K101QfsX15 mutation in the affected patient, leading to a frameshift and early stop codon. In the third, we identified a p.Q208X mutation occurring in exon 6. In the fourth, we found a nonsense mutation in exon 9 (p.R412X), previously described in Brazilian and Northern European populations. In the fifth, we did not identify any unique exonic missense, nonsense or frameshift mutations. This study reports the first cases of IRF6 mutations in VWS patients in a Central American population, further confirming that the causal link between IRF6 and VWS is consistent across multiple populations. PMID:21468557

  9. Mutations in elongation factor EF-1 alpha affect the frequency of frameshifting and amino acid misincorporation in Saccharomyces cerevisiae.

    PubMed

    Sandbaken, M G; Culbertson, M R

    1988-12-01

    A mutational analysis of the eukaryotic elongation factor EF-1 alpha indicates that this protein functions to limit the frequency of errors during genetic code translation. We found that both amino acid misincorporation and reading frame errors are controlled by EF-1 alpha. In order to examine the function of this protein, the TEF2 gene, which encodes EF-1 alpha in Saccharomyces cerevisiae, was mutagenized in vitro with hydroxylamine. Sixteen independent TEF2 alleles were isolated by their ability to suppress frameshift mutations. DNA sequence analysis identified eight different sites in the EF-1 alpha protein that elevate the frequency of mistranslation when mutated. These sites are located in two different regions of the protein. Amino acid substitutions located in or near the GTP-binding and hydrolysis domain of the protein cause suppression of frameshift and nonsense mutations. These mutations may effect mistranslation by altering the binding or hydrolysis of GTP. Amino acid substitutions located adjacent to a putative aminoacyl-tRNA binding region also suppress frameshift and nonsense mutations. These mutations may alter the binding of aminoacyl-tRNA by EF-1 alpha. The identification of frameshift and nonsense suppressor mutations in EF-1 alpha indicates a role for this protein in limiting amino acid misincorporation and reading frame errors. We suggest that these types of errors are controlled by a common mechanism or closely related mechanisms. PMID:3066688

  10. Diverse mutations in patients with Menkes disease often lead to exon skipping

    SciTech Connect

    Das, S.; Levinson, Levinson, B.; Whitney, S.; Vulpe, C.; Packman, S.; Gitschier, J.

    1994-11-01

    Fibroblast cultures from 12 unrelated patients with classical Menkes disease were analyzed for mutations in the MNK gene, by reverse transcription-PCR (RT-PCR) and chemical cleavage mismatch detection. Mutations were observed in 10 patients, and in each case a different mutation was present. All of the mutations would be predicted to have adverse effects on protein expression. Mutations that resulted in splicing abnormalities, detected by RT-PCR alone, were observed in six patients and included two splice-site changes, a nonsense mutation, a missense mutation, a small duplication, and a small deletion. Chemical cleavage analysis of the remaining six patients revealed the presence of one missense mutation. A valine/leucine polymorphism was also observed. These findings, combined with the prior observation of deletions in 15%-20% of Menkes patients, suggest that Southern blot hybridization and RT-PCR will identify mutations in the majority of patients. 26 refs., 3 figs., 2 tabs.

  11. Oculofaciocardiodental syndrome: novel BCOR mutations and expression in dental cells.

    PubMed

    Surapornsawasd, Thunyaporn; Ogawa, Takuya; Tsuji, Michiko; Moriyama, Keiji

    2014-06-01

    Oculofaciocardiodental (OFCD) syndrome is a rare X-linked dominant condition. Mutations in BCOR have been described as causal in OFCD syndrome. Almost all BCOR mutations result in premature termination codons (PTCs); therefore, nonsense-mediated mRNA decay (NMD) might have an important role in pathogenesis. The purpose of this study was to identify BCOR mutations in two OFCD patients, if it present, and to clarify the pathogenesis of radiculomegaly using one OFCD patient's pulp and periodontal ligament (PDL) cells. In our genetic analysis, two novel BCOR mutations were found. We also examined the transcript levels and the effects of NMD using cultured pulp and PDL cells from one affected patient. BCOR expression was normal in pulp but reduced in PDL cells, which is consistent with the higher rates of NMD in PDL cells. The mutant PDL cells had unstable mutant transcripts and proliferated faster than did wild-type cells, but mutant pulp cells appeared normal by these measures. In summary, the nonsense and frameshift mutations, which introduce PTCs, were found to contribute to OFCD syndrome in our two patients. Furthermore, in PDL cells, the mutation resulting in a PTC corresponded to greater NMD, unstable mutant transcripts and increased cell proliferation, which may contribute to hyperactive root formation. PMID:24694763

  12. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication.

    PubMed

    Shinbrot, Eve; Henninger, Erin E; Weinhold, Nils; Covington, Kyle R; Göksenin, A Yasemin; Schultz, Nikolaus; Chao, Hsu; Doddapaneni, HarshaVardhan; Muzny, Donna M; Gibbs, Richard A; Sander, Chris; Pursell, Zachary F; Wheeler, David A

    2014-11-01

    Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C→A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication.

  13. Same. beta. -globin gene mutation is present on nine different. beta. -thalassemia chromosomes in a Sardinian population

    SciTech Connect

    Pirastu, M.; Galanello, R.; Doherty, M.A.; Tuveri, T.; Cao, A.; Kan, Y.W.

    1987-05-01

    The predominant ..beta..-thalassemia in Sardinia is the ..beta../sup 0/ type in which no ..beta..-globin chains are synthesized in the homozygous state. The authors determined the ..beta..-thalassemia mutations in this population by the oligonucleotide-probe method and defined the chromosome haplotypes on which the mutation resides. The same ..beta../sup 39(CAG..-->..TAG)/ nonsense mutation was found on nine different chromosome haplotypes. Although this mutation may have arisen more than once, the multiple haplotypes could also be generated by crossing over and gene conversion events. These findings underscore the frequency of mutational events in the ..beta..-globin gene region.

  14. Germline mutation screening and predictive testing in families with von Hippel-Lindau disease

    SciTech Connect

    Brauch, H.; Glavac, D.; Pausch, F.

    1994-09-01

    von Hippel-Lindau (VHL) disease is an autosomal inheritable disease that predisposes gene carriers to develop tumors in the eyes, central nervous system, kidney, adrenal gland, pancreas and epididymis. VHL type 1 is without phenochromocytoma (P); VHL type 2 is with P. Screening for germline mutations and preclinical diagnosis in families with VHL disease has become feasible since the VHL gene was isolated. We applied Southern blotting and hybridization with g7cDNA to detect rearrangements, PCR-SSCP and sequencing to detect missense, nonsense and splice mutations, and primer-specified restriction map modification to detect a P-specific missense mutation. In 48 apparently unrelated VHL families mainly from Germany, we identified 20/48 (42%) VHL mutations: 7 (14.5%) rearrangements, 9/48 (19%) missense mutations affecting nt505, 1/48 (2%) splice site mutation, 2/48 (4%) other missense mutations, and 1/48 (2%) nonsense mutation. The predominance of the nt505 mutation in 9 German families with VHL type 2 suggests that this genotype expresses the VHL/P disease pattern. Predictive testing for VHL gene carriers in families with specific mutations identified 7 asymptomatic gene carriers. VHL manifestations have been confirmed by clinical examination in two individuals. Early molecular diagnosis may result in a successful management of VHL disease and prolong survival of VHL patients.

  15. OGG1 Mutations and Risk of Female Breast Cancer: Meta-Analysis and Experimental Data

    PubMed Central

    Ali, Kashif; Mahjabeen, Ishrat; Sabir, Maimoona; Mehmood, Humera; Kayani, Mahmood Akhtar

    2015-01-01

    In first part of this study association between OGG1 polymorphisms and breast cancer susceptibility was explored by meta-analysis. Second part of the study involved 925 subjects, used for mutational analysis of OGG1 gene using PCR-SSCP and sequencing. Fifteen mutations were observed, which included five intronic mutations, four splice site mutations, two 3′UTR mutations, three missense mutations, and a nonsense mutation. Significantly (p < 0.001) increased (~29 fold) breast cancer risk was associated with a splice site variant g.9800972T>G and 3′UTR variant g.9798848G>A. Among intronic mutations, highest (~15 fold) increase in breast cancer risk was associated with g.9793680G>A (p < 0.009). Similarly ~14-fold increased risk was associated with Val159Gly (p < 0.01), ~17-fold with Gly221Arg (p < 0.005), and ~18-fold with Ser326Cys (p < 0.004) in breast cancer patients compared with controls, whereas analysis of nonsense mutation showed that ~13-fold (p < 0.01) increased breast cancer risk was associated with Trp375STOP in patients compared to controls. In conclusion, a significant association was observed between OGG1 germ line mutations and breast cancer risk. These findings provide evidence that OGG1 may prove to be a good candidate of better diagnosis, treatment, and prevention of breast cancer. PMID:26089588

  16. Mutation discovery for Mendelian traits in non-laboratory animals: a review of achievements up to 2012.

    PubMed

    Nicholas, Frank W; Hobbs, Matthew

    2014-04-01

    Within two years of the re-discovery of Mendelism, Bateson and Saunders had described six traits in non-laboratory animals (five in chickens and one in cattle) that show single-locus (Mendelian) inheritance. In the ensuing decades, much progress was made in documenting an ever-increasing number of such traits. In 1987 came the first discovery of a causal mutation for a Mendelian trait in non-laboratory animals: a non-sense mutation in the thyroglobulin gene (TG), causing familial goitre in cattle. In the years that followed, the rate of discovery of causal mutations increased, aided mightily by the creation of genome-wide microsatellite maps in the 1990s and even more mightily by genome assemblies and single-nucleotide polymorphism (SNP) chips in the 2000s. With sequencing costs decreasing rapidly, by 2012 causal mutations were being discovered in non-laboratory animals at a rate of more than one per week. By the end of 2012, the total number of Mendelian traits in non-laboratory animals with known causal mutations had reached 499, which was half the number of published single-locus (Mendelian) traits in those species. The distribution of types of mutations documented in non-laboratory animals is fairly similar to that in humans, with almost half being missense or non-sense mutations. The ratio of missense to non-sense mutations in non-laboratory animals to the end of 2012 was 193:78. The fraction of non-sense mutations (78/271 = 0.29) was not very different from the fraction of non-stop codons that are just one base substitution away from a stop codon (21/61 = 0.34).

  17. Mutation discovery for Mendelian traits in non-laboratory animals: a review of achievements up to 2012

    PubMed Central

    Nicholas, Frank W; Hobbs, Matthew

    2014-01-01

    Within two years of the re-discovery of Mendelism, Bateson and Saunders had described six traits in non-laboratory animals (five in chickens and one in cattle) that show single-locus (Mendelian) inheritance. In the ensuing decades, much progress was made in documenting an ever-increasing number of such traits. In 1987 came the first discovery of a causal mutation for a Mendelian trait in non-laboratory animals: a non-sense mutation in the thyroglobulin gene (TG), causing familial goitre in cattle. In the years that followed, the rate of discovery of causal mutations increased, aided mightily by the creation of genome-wide microsatellite maps in the 1990s and even more mightily by genome assemblies and single-nucleotide polymorphism (SNP) chips in the 2000s. With sequencing costs decreasing rapidly, by 2012 causal mutations were being discovered in non-laboratory animals at a rate of more than one per week. By the end of 2012, the total number of Mendelian traits in non-laboratory animals with known causal mutations had reached 499, which was half the number of published single-locus (Mendelian) traits in those species. The distribution of types of mutations documented in non-laboratory animals is fairly similar to that in humans, with almost half being missense or non-sense mutations. The ratio of missense to non-sense mutations in non-laboratory animals to the end of 2012 was 193:78. The fraction of non-sense mutations (78/271 = 0.29) was not very different from the fraction of non-stop codons that are just one base substitution away from a stop codon (21/61 = 0.34). PMID:24372556

  18. Spectrum of small mutations in the dystrophin coding region

    SciTech Connect

    Prior, T.W.; Bartolo, C.; Pearl, D.K.

    1995-07-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5` and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened {approximately} 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3` of exon 55. The extent of protein truncation caused by the 3` mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications. 71 refs., 2 figs., 2 tabs.

  19. Reversion of argE3 to Arg(+) in Escherichia coli AB1157 -an informative bacterial system for mutation detection.

    PubMed

    Sikora, Anna; Grzesiuk, Elżbieta

    2010-01-01

    This review concerns reversion of the argE3 (ochre) nonsense mutation to prototrophy in E. coli AB1157 strain as an informative system for mutation detection. Strain AB1157 bears the argE3 (ochre), hisG4 (ochre) and thr-1 (amber) mutations, and the supE44 amber suppressor on its chromosome. The Arg(+) phenotype can be restored by (i) any base substitution at the argE3 site that changes the nonsense UAA codon to any sense nucleotide triplet or to UAG recognized by the supE44 amber suppressor, or (ii) suppressor mutations enabling the reading of the UAA nonsense codon. The argE3 → Arg(+) reversion-based system enables (i) determination of the spontaneous or induced mutation level; (ii) determination of base substitutions (suppressor analysis); (iii) examination of transcription-coupled repair (TCR) since targets for DNA damage are situated on the transcribed or coding strand of DNA; (iv) detection of mutations resulting from single stranded DNA damage. This review focuses on studies carried out since the early 1990s till now with the application of the AB1157-based mutation detection system. Recently, the system has been used to obtain new data on the processes of methyl methanesulfonate-induced mutagenesis and DNA repair in E. coli alkB⁻ mutants. PMID:20978633

  20. RUNX2 mutations in cleidocranial dysplasia.

    PubMed

    Lee, K-E; Seymen, F; Ko, J; Yildirim, M; Tuna, E B; Gencay, K; Kim, J-W

    2013-01-01

    The runt-related transcription factor 2 gene (RUNX2), which is also known as CBFA1, is a master regulatory gene in bone formation. Mutations in RUNX2 have been identified in cleidocranial dysplasia (CCD) patients. CCD is a rare autosomal dominant skeletal dysplasia that is characterized by delayed closure of cranial sutures, aplastic or hypoplastic clavicle formation, short stature, and dental anomalies, including malocclusion, supernumerary teeth, and delayed eruption of permanent teeth. In this study, we recruited three de novo CCD families and performed mutational analysis of the RUNX2 gene as a candidate gene approach. The mutational study revealed three disease-causing mutations: a missense mutation (c.674G>A, p.Arg225Gln), a frameshift mutation (c.1119delC, p.Arg374Glyfs*), and a nonsense mutation (c.1171C>T, p.Arg391*). Clinical examination revealed a unique dental phenotype (no typical supernumerary teeth, but duplication of anterior teeth) in one patient. We believe that this finding will broaden the understanding of the mechanism of supernumerary teeth formation and CCD-related phenotypes. PMID:24222232

  1. Two novel RUNX1 mutations in a patient with congenital thrombocytopenia that evolved into a high grade myelodysplastic syndrome

    PubMed Central

    Schmit, Jessica M.; Turner, Daniel J.; Hromas, Robert A.; Wingard, John R.; Brown, Randy A.; Li, Ying; Li, Marilyn M.; Slayton, William B.; Cogle, Christopher R.

    2015-01-01

    Here we report two new RUNX1 mutations in one patient with congenital thrombocytopenia that transformed into a high grade myelodysplastic syndrome with myelomonocytic features. The first mutation was a nucleotide base substitution from guanine to adenine within exon 8, resulting in a nonsense mutation in the DNA-binding inhibitory domain of the Runx1 protein. This nonsense mutation is suspected a de novo germline mutation since both parents are negative for the mutation. The second mutation identified was an in-frame six nucleotide base pair insertion in exon 5 of the RUNX1 gene, which is predicted to result in an insertion in the DNA-binding runt homology domain (RHD). This mutation is believed to be a somatic mutation as it was mosaic before allogeneic hematopoietic cell transplantation and disappeared after transplant. As no other genetic mutation was found using genetic screening, it is speculated that the combined effect of these two RUNX1 mutations may have exerted a stronger dominant negative effect than either RUNX1 mutation alone, thus leading to a myeloid malignancy. PMID:25893166

  2. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    PubMed

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients.

  3. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein.

    PubMed Central

    Weng, Y; Czaplinski, K; Peltz, S W

    1996-01-01

    mRNA degradation is an important control point in the regulation of gene expression and has been linked to the process of translation. One clear example of this linkage is the nonsense-mediated mRNA decay pathway, in which nonsense mutations in a gene can reduce the abundance of the mRNA transcribed from that gene. For the yeast Saccharomyces cerevisiae, the Upf1 protein (Upf1p), which contains a cysteine- and histidine-rich region and nucleoside triphosphate hydrolysis and helicase motifs, was shown to be a trans-acting factor in this decay pathway. Biochemical analysis of the wild-type Upf1p demonstrates that it has RNA-dependent ATPase, RNA helicase, and RNA binding activities. A UPF1 gene disruption results in stabilization of nonsense-containing mRNAs, leading to the production of enough functional product to overcome an auxotrophy resulting from a nonsense mutation. A genetic and biochemical study of the UPF1 gene was undertaken in order to understand the mechanism of Upf1p function in the nonsense-mediated mRNA decay pathway. Our analysis suggests that Upf1p is a multifunctional protein with separable activities that can affect mRNA turnover and nonsense suppression. Mutations in the conserved helicase motifs of Upf1p that inactivate its mRNA decay function while not allowing suppression of leu2-2 and tyr7-1 nonsense alleles have been identified. In particular, one mutation located in the ATP binding and hydrolysis motif of Upf1p that changed the aspartic and glutamic acid residues to alanine residues (DE572AA) lacked ATPase and helicase activities, and the mutant formed a Upf1p:RNA complex in the absence of ATP; surprisingly, however, the Upf1p:RNA complex dissociated as a consequence of ATP binding. This result suggests that ATP binding, independent of its hydrolysis, can modulate Upf1p:RNA complex formation for this mutant protein. The role of the RNA binding activity of Upf1p in modulating nonsense suppression is discussed. PMID:8816461

  4. Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer.

    PubMed

    Shlien, Adam; Raine, Keiran; Fuligni, Fabio; Arnold, Roland; Nik-Zainal, Serena; Dronov, Serge; Mamanova, Lira; Rosic, Andrej; Ju, Young Seok; Cooke, Susanna L; Ramakrishna, Manasa; Papaemmanuil, Elli; Davies, Helen R; Tarpey, Patrick S; Van Loo, Peter; Wedge, David C; Jones, David R; Martin, Sancha; Marshall, John; Anderson, Elizabeth; Hardy, Claire; Barbashina, Violetta; Aparicio, Samuel A J R; Sauer, Torill; Garred, Øystein; Vincent-Salomon, Anne; Mariani, Odette; Boyault, Sandrine; Fatima, Aquila; Langerød, Anita; Borg, Åke; Thomas, Gilles; Richardson, Andrea L; Børresen-Dale, Anne-Lise; Polyak, Kornelia; Stratton, Michael R; Campbell, Peter J

    2016-08-16

    Disordered transcriptomes of cancer encompass direct effects of somatic mutation on transcription, coordinated secondary pathway alterations, and increased transcriptional noise. To catalog the rules governing how somatic mutation exerts direct transcriptional effects, we developed an exhaustive pipeline for analyzing RNA sequencing data, which we integrated with whole genomes from 23 breast cancers. Using X-inactivation analyses, we found that cancer cells are more transcriptionally active than intermixed stromal cells. This is especially true in estrogen receptor (ER)-negative tumors. Overall, 59% of substitutions were expressed. Nonsense mutations showed lower expression levels than expected, with patterns characteristic of nonsense-mediated decay. 14% of 4,234 rearrangements caused transcriptional abnormalities, including exon skips, exon reusage, fusions, and premature polyadenylation. We found productive, stable transcription from sense-to-antisense gene fusions and gene-to-intergenic rearrangements, suggesting that these mutation classes drive more transcriptional disruption than previously suspected. Systematic integration of transcriptome with genome data reveals the rules by which transcriptional machinery interprets somatic mutation.

  5. Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer.

    PubMed

    Shlien, Adam; Raine, Keiran; Fuligni, Fabio; Arnold, Roland; Nik-Zainal, Serena; Dronov, Serge; Mamanova, Lira; Rosic, Andrej; Ju, Young Seok; Cooke, Susanna L; Ramakrishna, Manasa; Papaemmanuil, Elli; Davies, Helen R; Tarpey, Patrick S; Van Loo, Peter; Wedge, David C; Jones, David R; Martin, Sancha; Marshall, John; Anderson, Elizabeth; Hardy, Claire; Barbashina, Violetta; Aparicio, Samuel A J R; Sauer, Torill; Garred, Øystein; Vincent-Salomon, Anne; Mariani, Odette; Boyault, Sandrine; Fatima, Aquila; Langerød, Anita; Borg, Åke; Thomas, Gilles; Richardson, Andrea L; Børresen-Dale, Anne-Lise; Polyak, Kornelia; Stratton, Michael R; Campbell, Peter J

    2016-08-16

    Disordered transcriptomes of cancer encompass direct effects of somatic mutation on transcription, coordinated secondary pathway alterations, and increased transcriptional noise. To catalog the rules governing how somatic mutation exerts direct transcriptional effects, we developed an exhaustive pipeline for analyzing RNA sequencing data, which we integrated with whole genomes from 23 breast cancers. Using X-inactivation analyses, we found that cancer cells are more transcriptionally active than intermixed stromal cells. This is especially true in estrogen receptor (ER)-negative tumors. Overall, 59% of substitutions were expressed. Nonsense mutations showed lower expression levels than expected, with patterns characteristic of nonsense-mediated decay. 14% of 4,234 rearrangements caused transcriptional abnormalities, including exon skips, exon reusage, fusions, and premature polyadenylation. We found productive, stable transcription from sense-to-antisense gene fusions and gene-to-intergenic rearrangements, suggesting that these mutation classes drive more transcriptional disruption than previously suspected. Systematic integration of transcriptome with genome data reveals the rules by which transcriptional machinery interprets somatic mutation. PMID:27498871

  6. Laminin 5 genes and Herlitz junctional epidermolysis bullosa: novel mutations and polymorphisms in the LAMB3 and LAMC2 genes. Mutations in brief no. 190. Online.

    PubMed

    Kon, A; Pulkkinen, L; Hara, M; Tamai, K; Tagami, H; Hashimoto, I; Uitto, J

    1998-01-01

    Herlitz junctional epidermolysis bullosa (H-JEB; OMIM #226700) is a lethal, autosomal recessive blistering disorder characterized by fragility of the skin and other specialized epithelia. Previously, mutations in the laminin 5 genes (LAMA3, LAMB3, and LAMC2) have been disclosed, most of them in LAMB3. In this study, we have examined the genetic basis of H-JEB in three families utilizing heteroduplex analysis and automated nucleotide sequencing. In one family, the proband was compound heterozygote for previously unpublished LAMB3 mutations, 1482delC and W95X. In two other families, the probands were found to be homozygous for novel nonsense mutations C553X and K822X in the LAMC2 gene. These mutations result in premature termination codons and predict truncation of the corresponding polypeptides. Also, during the search of laminin 5 mutations, 18 LAMB3 and LAMC2 polymorphisms were discovered, 9 of them being previously undescribed. Delineation of novel homozygous nonsense mutations in the LAMB3 and LAMC2 genes, with previous demonstrations of LAMA3 mutations, re-emphasizes the concept that stop codon mutations in both alleles of any of the three laminin 5 genes result in the severe H-JEB phenotype. PMID:10660342

  7. DAX1 mutations map to putative structural domains in a deduced three-dimensional model.

    PubMed Central

    Zhang, Y H; Guo, W; Wagner, R L; Huang, B L; McCabe, L; Vilain, E; Burris, T P; Anyane-Yeboa, K; Burghes, A H; Chitayat, D; Chudley, A E; Genel, M; Gertner, J M; Klingensmith, G J; Levine, S N; Nakamoto, J; New, M I; Pagon, R A; Pappas, J G; Quigley, C A; Rosenthal, I M; Baxter, J D; Fletterick, R J; McCabe, E R

    1998-01-01

    The DAX1 protein is an orphan nuclear hormone receptor based on sequence similarity in the putative ligand-binding domain (LBD). DAX1 mutations result in X-linked adrenal hypoplasia congenita (AHC). Our objective was to identify DAX1 mutations in a series of families, to determine the types of mutations resulting in AHC and to locate single-amino-acid changes in a DAX1 structural model. The 14 new mutations identified among our 17 families with AHC brought the total number of families with AHC to 48 and the number of reported mutations to 42; 1 family showed gonadal mosaicism. These mutations included 23 frameshift, 12 nonsense, and six missense mutations and one single-codon deletion. We mapped the seven single-amino-acid changes to a homology model constructed by use of the three-dimensional crystal structures of the thyroid-hormone receptor and retinoid X receptor alpha. All single-amino-acid changes mapped to the C-terminal half of the DAX1 protein, in the conserved hydrophobic core of the putative LBD, and none affected residues expected to interact directly with a ligand. We conclude that most genetic alterations in DAX1 are frameshift or nonsense mutations and speculate that the codon deletion and missense mutations give insight into the structure and function of DAX1. PMID:9529340

  8. Late-onset Charcot-Marie-Tooth disease 4F caused by periaxin gene mutation.

    PubMed

    Tokunaga, Shoko; Hashiguchi, Akihiro; Yoshimura, Akiko; Maeda, Kengo; Suzuki, Takashi; Haruki, Hiroyo; Nakamura, Tomonori; Okamoto, Yuji; Takashima, Hiroshi

    2012-11-01

    We identified the main features of Charcot-Marie-Tooth (CMT) disease, type 4F, caused by a periaxin gene (PRX) mutation in Japanese patients. Periaxin is known as one of the key myelination molecules, forming tight junction between myelin loop and axon. We collected 427 DNA samples from individuals with CMT or CMT-related neuropathy, negative for PMP22 duplication. We investigated PRX mutations using a purpose-built resequencing array screen during the period 2006-2012. We detected two types of PRX mutations in three patients; one patient showed a novel homozygous p.D651N mutation and the other two showed homozygous p.R1070X mutation. All PRX mutations reported so far have been of nonsense or frameshift type. In this study, we found homozygous missense mutation p.D651N. Aspartate 651 is located in a repeat domain; its position might indicate an important function. PRX mutations usually lead to early-onset, autosomal-recessive demyelinating CMT neuropathy 4F (CMT4F) or Dejerine-Sottas disease; their clinical phenotypes are severe. In our three patients, the onset of the disease was at the age of 27 years or later, and their clinical phenotypes were milder compared with those reported in previous studies. We showed a variation of clinical phenotypes for CMT4F caused by a novel, nonsense PRX mutation. PMID:22847150

  9. Mutated tumor alleles are expressed according to their DNA frequency.

    PubMed

    Castle, John C; Loewer, Martin; Boegel, Sebastian; Tadmor, Arbel D; Boisguerin, Valesca; de Graaf, Jos; Paret, Claudia; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2014-04-22

    The transcription of tumor mutations from DNA into RNA has implications for biology, epigenetics and clinical practice. It is not clear if mutations are in general transcribed and, if so, at what proportion to the wild-type allele. Here, we examined the correlation between DNA mutation allele frequency and RNA mutation allele frequency. We sequenced the exome and transcriptome of tumor cell lines with large copy number variations, identified heterozygous single nucleotide mutations and absolute DNA copy number, and determined the corresponding DNA and RNA mutation allele fraction. We found that 99% of the DNA mutations in expressed genes are expressed as RNA. Moreover, we found a high correlation between the DNA and RNA mutation allele frequency. Exceptions are mutations that cause premature termination codons and therefore activate nonsense-mediated decay. Beyond this, we did not find evidence of any wide-scale mechanism, such as allele-specific epigenetic silencing, preferentially promoting mutated or wild-type alleles. In conclusion, our data strongly suggest that genes are equally transcribed from all alleles, mutated and wild-type, and thus transcribed in proportion to their DNA allele frequency.

  10. Mutation Update and Review of Severe Methylenetetrahydrofolate Reductase Deficiency.

    PubMed

    Froese, D Sean; Huemer, Martina; Suormala, Terttu; Burda, Patricie; Coelho, David; Guéant, Jean-Louis; Landolt, Markus A; Kožich, Viktor; Fowler, Brian; Baumgartner, Matthias R

    2016-05-01

    Severe 5,10-methylenetetrahydrofolate reductase (MTHFR) deficiency is caused by mutations in the MTHFR gene and results in hyperhomocysteinemia and varying severity of disease, ranging from neonatal lethal to adult onset. Including those described here, 109 MTHFR mutations have been reported in 171 families, consisting of 70 missense mutations, 17 that primarily affect splicing, 11 nonsense mutations, seven small deletions, two no-stop mutations, one small duplication, and one large duplication. Only 36% of mutations recur in unrelated families, indicating that most are "private." The most common mutation is c.1530A>G (numbered from NM_005957.4, p.Lys510 = ) causing a splicing defect, found in 13 families; the most common missense mutation is c.1129C>T (p.Arg377Cys) identified in 10 families. To increase disease understanding, we report enzymatic activity, detected mutations, and clinical onset information (early, <1 year; or late, >1 year) for all published patients available, demonstrating that patients with early onset have less residual enzyme activity than those presenting later. We also review animal models, diagnostic approaches, clinical presentations, and treatment options. This is the first large review of mutations in MTHFR, highlighting the wide spectrum of disease-causing mutations. PMID:26872964

  11. Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability.

    PubMed

    Twigg, Stephen R F; Forecki, Jennifer; Goos, Jacqueline A C; Richardson, Ivy C A; Hoogeboom, A Jeannette M; van den Ouweland, Ans M W; Swagemakers, Sigrid M A; Lequin, Maarten H; Van Antwerp, Daniel; McGowan, Simon J; Westbury, Isabelle; Miller, Kerry A; Wall, Steven A; van der Spek, Peter J; Mathijssen, Irene M J; Pauws, Erwin; Merzdorf, Christa S; Wilkie, Andrew O M

    2015-09-01

    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5-12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded. PMID:26340333

  12. Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability

    PubMed Central

    Twigg, Stephen R.F.; Forecki, Jennifer; Goos, Jacqueline A.C.; Richardson, Ivy C.A.; Hoogeboom, A. Jeannette M.; van den Ouweland, Ans M.W.; Swagemakers, Sigrid M.A.; Lequin, Maarten H.; Van Antwerp, Daniel; McGowan, Simon J.; Westbury, Isabelle; Miller, Kerry A.; Wall, Steven A.; van der Spek, Peter J.; Mathijssen, Irene M.J.; Pauws, Erwin; Merzdorf, Christa S.; Wilkie, Andrew O.M.

    2015-01-01

    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5–12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded. PMID:26340333

  13. [Mutational Analysis of Hemophilia B in Russia: Molecular-Genetic Study].

    PubMed

    Surin, V L; Demidova, E Yu; Selivanova, D S; Luchinina, Yu A; Salomashkina, V V; Pshenichnikova, O S; Likhacheva, E A

    2016-04-01

    Hemophilia B is a hereditary X-linked coagulation disorder. This pathology is caused by various defects in the factor IX gene, which is, being about 34 kb long and consisting of eight exons, localized in the Xq27 locus of the. X-chromosome long arm. Mutations were revealed in 56 unrelated patients with hemophilia B in this study by using direct sequencing of factor IX gene functionally important fragments. Forty-six mutations were found with prevailing missense mutations (n = 30). The rest of the mutations were nonsense (n = 4) and splicing (n = 4) mutations, large deletions (n = 3), microdeletions (n = 2), microinsertions (n = 2), and promoter mutations (n = 1). Eleven of 46 mutations were previously unknown for human populations.

  14. Periaxin mutations cause recessive Dejerine-Sottas neuropathy.

    PubMed

    Boerkoel, C F; Takashima, H; Stankiewicz, P; Garcia, C A; Leber, S M; Rhee-Morris, L; Lupski, J R

    2001-02-01

    The periaxin gene (PRX) encodes two PDZ-domain proteins, L- and S-periaxin, that are required for maintenance of peripheral nerve myelin. Prx(-/-) mice develop a severe demyelinating peripheral neuropathy, despite apparently normal initial formation of myelin sheaths. We hypothesized that mutations in PRX could cause human peripheral myelinopathies. In accordance with this, we identified three unrelated Dejerine-Sottas neuropathy patients with recessive PRX mutations-two with compound heterozygous nonsense and frameshift mutations, and one with a homozygous frameshift mutation. We mapped PRX to 19q13.13-13.2, a region recently associated with a severe autosomal recessive demyelinating neuropathy in a Lebanese family (Delague et al. 2000) and syntenic to the location of Prx on murine chromosome 7 (Gillespie et al. 1997). PMID:11133365

  15. Identification of two HEXA mutations causing infantile-onset Tay-Sachs disease in the Persian population.

    PubMed

    Haghighi, Alireza; Rezazadeh, Jamileh; Shadmehri, Azam Ahmadi; Haghighi, Amirreza; Kornreich, Ruth; Desnick, Robert J

    2011-09-01

    The β-hexosaminidase A (HEXA) mutations in the first reported cases of infantile Tay-Sachs disease in the Persian population were identified in two unrelated consanguineous families. The clinical diagnoses of the affected infants were confirmed by their markedly deficient levels of HEXA activity in plasma or peripheral leukocytes. The specific causative mutation in each family was determined by sequencing the HEXA alleles in both sets of related parents. Two mutations were identified: c.1A>G (p.MIV), which obliterated the initiating methionine in codon 1, and c.1177C>T (p.R393X), which predicted a termination codon or nonsense mutation.

  16. Identification of two HEXA mutations causing infantile-onset Tay-Sachs disease in the Persian population.

    PubMed

    Haghighi, Alireza; Rezazadeh, Jamileh; Shadmehri, Azam Ahmadi; Haghighi, Amirreza; Kornreich, Ruth; Desnick, Robert J

    2011-09-01

    The β-hexosaminidase A (HEXA) mutations in the first reported cases of infantile Tay-Sachs disease in the Persian population were identified in two unrelated consanguineous families. The clinical diagnoses of the affected infants were confirmed by their markedly deficient levels of HEXA activity in plasma or peripheral leukocytes. The specific causative mutation in each family was determined by sequencing the HEXA alleles in both sets of related parents. Two mutations were identified: c.1A>G (p.MIV), which obliterated the initiating methionine in codon 1, and c.1177C>T (p.R393X), which predicted a termination codon or nonsense mutation. PMID:21796138

  17. Clinical and Genetic Characterization of Manifesting Carriers of DMD Mutations

    PubMed Central

    Soltanzadeh, Payam; Friez, Michael J.; Dunn, Diane; von Niederhausern, Andrew; Gurvich, Olga L.; Swoboda, Kathryn J.; Sampson, Jacinda B.; Pestronk, Alan; Connolly, Anne M.; Florence, Julaine M.; Finkel, Richard S.; Bönnemann, Carsten G.; Medne, Livija; Mendell, Jerry R.; Mathews, Katherine D.; Wong, Brenda L.; Sussman, Michael D.; Zonana, Jonathan; Kovak, Karen; Gospe, Sidney M.; Gappmaier, Eduard; Taylor, Laura E.; Howard, Michael T.; Weiss, Robert B.; Flanigan, Kevin M.

    2010-01-01

    Manifesting carriers of DMD gene mutations may present diagnostic challenges, particularly in the absence of a family history of dystrophinopathy. We review the clinical and genetic features in fifteen manifesting carriers identified among 860 subjects within the United Dystrophinopathy Project, a large clinical dystrophinopathy cohort whose members undergo comprehensive DMD mutation analysis. We defined manifesting carriers as females with significant weakness, excluding those with only myalgias/cramps. DNA extracted from peripheral blood was used to study X chromosome inactivation patterns. Among these manifesting carriers, age at symptom onset ranged from 2 to 47 years. Seven had no family history and eight had male relatives with Duchene muscular dystrophy (DMD). Clinical severity among the manifesting carriers varied from a DMD-like progression to a very mild Becker muscular dystrophy-like phenotype. Eight had exonic deletions or duplications and six had point mutations. One patient had two mutations (an exonic deletion and a splice site mutation), consistent with a heterozygous compound state. The X chromosome inactivation pattern was skewed toward nonrandom in four out of seven informative deletions or duplications but was random in all cases with nonsense mutations. We present the results of DMD mutation analysis in this manifesting carrier cohort, including the first example of a presumably compound heterozygous DMD mutation. Our results demonstrate that improved molecular diagnostic methods facilitate the identification of DMD mutations in manifesting carriers, and confirm the heterogeneity of mutational mechanisms as well as the wide spectrum of phenotypes. PMID:20630757

  18. The molecular landscape of ASPM mutations in primary microcephaly

    PubMed Central

    Nicholas, A K; Swanson, E A; Cox, J J; Karbani, G; Malik, S; Springell, K; Hampshire, D; Ahmed, M; Bond, J; Di Benedetto, D; Fichera, M; Romano, C; Dobyns, W B; Woods, C G

    2009-01-01

    Background: Autosomal recessive primary microcephaly (MCPH) is a model disease to study human neurogenesis. In affected individuals the brain grows at a reduced rate during fetal life resulting in a small but structurally normal brain and mental retardation. The condition is genetically heterogeneous with mutations in ASPM being most commonly reported. Methods and results: We have examined this further by studying three cohorts of microcephalic children to extend both the phenotype and the mutation spectrum. Firstly, in 99 consecutively ascertained consanguineous families with a strict diagnosis of MCPH, 41 (41%) were homozygous at the MCPH5 locus and all but two families had mutations. Thus, 39% of consanguineous MCPH families had homozygous ASPM mutations. Secondly, in 27 non-consanguineous, predominantly Caucasian families with a strict diagnosis of MCPH, 11 (40%) had ASPM mutations. Thirdly, in 45 families with a less restricted phenotype including microcephaly and mental retardation, but regardless of other neurological features, only 3 (7%) had an ASPM mutation. This report contains 27 novel mutations and almost doubles the number of MCPH associated ASPM mutations known to 57. All but one of the mutations lead to the use of a premature termination codon, 23 were nonsense mutations, 28 deletions or insertions, 5 splicing, and 1 was a translocation. Seventeen of the 57 mutations were recurrent. There were no definitive missense mutations found nor was there any mutation/phenotype correlation. ASPM mutations were found in all ethnic groups studied. Conclusion: This study confirms that mutations in ASPM are the most common cause of MCPH, that ASPM mutations are restricted to individuals with an MCPH phenotype, and that ASPM testing in primary microcephaly is clinically useful. PMID:19028728

  19. Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression.

    PubMed

    Auld, Douglas S; Thorne, Natasha; Maguire, William F; Inglese, James

    2009-03-01

    High-throughput screening (HTS) assays used in drug discovery frequently use reporter enzymes such as firefly luciferase (FLuc) as indicators of target activity. An important caveat to consider, however, is that compounds can directly affect the reporter, leading to nonspecific but highly reproducible assay signal modulation. In rare cases, this activity appears counterintuitive; for example, some FLuc inhibitors, acting through posttranslational Fluc reporter stabilization, appear to activate gene expression. Previous efforts to characterize molecules that influence luciferase activity identified a subset of 3,5-diaryl-oxadiazole-containing compounds as FLuc inhibitors. Here, we evaluate a number of compounds with this structural motif for activity against FLuc. One such compound is PTC124 {3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid}, a molecule originally identified in a cell-based FLuc assay as having nonsense codon suppression activity [Welch EM, et al., Nature (2007) 447:87-91]. We find that the potency of FLuc inhibition for the tested compounds strictly correlates with their activity in a FLuc reporter cell-based nonsense codon assay, with PTC124 emerging as the most potent FLuc inhibitor (IC(50) = 7 +/- 1 nM). However, these compounds, including PTC124, fail to show nonsense codon suppression activity when Renilla reniformis luciferase (RLuc) is used as a reporter and are inactive against the RLuc enzyme. This suggests that the initial discovery of PTC124 may have been biased by its direct effect on the FLuc reporter, implicating firefly luciferase as a molecular target of PTC124. Our results demonstrate the value of understanding potential interactions between reporter enzymes and chemical compounds and emphasize the importance of implementing the appropriate control assays before interpreting HTS results.

  20. WISP3 mutational analysis in Indian patients diagnosed with progressive pseudorheumatoid dysplasia and report of a novel mutation at p.Y198*

    PubMed Central

    Santhanam, M.; Rajagopal, K.; Sugumar, L. K.; Balaji, V.

    2016-01-01

    Objectives To determine the pattern of mutations of the WISP3 gene in clinically identified progressive pseudorheumatoid dysplasia (PPD) in an Indian population. Patients and Methods A total of 15 patients with clinical features of PPD were enrolled in this study. Genomic DNA was isolated and polymerase chain reaction performed to amplify the WISP3 gene. Screening for mutations was done by conformation-sensitive gel electrophoresis, beginning with the fifth exon and subsequently proceeding to the remaining exons. Sanger sequencing was performed for both forward and reverse strands to confirm the mutations. Results In all, two of the 15 patients had compound heterozygous mutations: one a nonsense mutation c.156C>A (p.C52*) in exon 2, and the other a missense mutation c.677G>T (p.G226V) in exon 4. All others were homozygous, with three bearing a nonsense mutation c.156C>A (p.C52*) in exon 2, three a missense mutation c.233G>A (p.C78Y) in exon 2, five a missense mutation c.1010G>A (p.C337Y) in exon 5, one a nonsense mutation c.348C>A (p.Y116*) in exon 3, and one with a novel deletion mutation c.593_597delATAGA (p.Y198*) in exon 4. Conclusion We identified a novel mutation c.593_597delATAGA (p.Y198*) in the fourth exon of the WISP3 gene. We also confirmed c.1010G>A as one of the common mutations in an Indian population with progressive pseudorheumatoid dysplasia. Cite this article: V. Madhuri, M. Santhanam, K. Rajagopal, L. K. Sugumar, V. Balaji. WISP3 mutational analysis in Indian patients diagnosed with progressive pseudorheumatoid dysplasia and report of a novel mutation at p.Y198* Bone Joint Res 2016;5:301–306. DOI: 10.1302/2046-3758.57.2000520. PMID:27436824

  1. Comprehensive mutation profiling of mucinous gastric carcinoma.

    PubMed

    Rokutan, Hirofumi; Hosoda, Fumie; Hama, Natsuko; Nakamura, Hiromi; Totoki, Yasushi; Furukawa, Eisaku; Arakawa, Erika; Ohashi, Shoko; Urushidate, Tomoko; Satoh, Hironori; Shimizu, Hiroko; Igarashi, Keiko; Yachida, Shinichi; Katai, Hitoshi; Taniguchi, Hirokazu; Fukayama, Masashi; Shibata, Tatsuhiro

    2016-10-01

    Mucinous gastric carcinoma (MGC) is a unique subtype of gastric cancer with a poor survival outcome. Comprehensive molecular profiles and putative therapeutic targets of MGC remain undetermined. We subjected 16 tumour-normal tissue pairs to whole-exome sequencing (WES) and an expanded set of 52 tumour-normal tissue pairs to subsequent targeted sequencing. The latter focused on 114 genes identified by WES. Twenty-two histologically differentiated MGCs (D-MGCs) and 46 undifferentiated MGCs (U-MGCs) were analysed. Chromatin modifier genes, including ARID1A (21%), MLL2 (19%), MLL3 (15%), and KDM6A (7%), were frequently mutated (47%) in MGC. We also identified mutations in potential therapeutic target genes, including MTOR (9%), BRCA2 (9%), BRCA1 (7%), and ERBB3 (6%). RHOA mutation was detected only in 4% of U-MGCs and in no D-MGCs. MYH9 was recurrently (13%) mutated in MGC, with all these being of the U-MGC subtype (p = 0.023). Three U-MGCs harboured MYH9 nonsense mutations. MYH9 knockdown enhanced cell migration and induced intracytoplasmic mucin and cellular elongation. BCOR mutation was associated with improved survival. In U-MGCs, the MLH1 expression status and combined mutation status (TP53/BCL11B or TP53/MLL2) were prognostic factors. A comparative analysis of driver genes revealed that the mutation profile of D-MGC was similar to that of intestinal-type gastric cancer, whereas U-MGC was a distinct entity, harbouring a different mutational profile to intestinal- and diffuse-type gastric cancers. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27313181

  2. BRCC3 mutations in myeloid neoplasms

    PubMed Central

    Huang, Dayong; Nagata, Yasunobu; Grossmann, Vera; Radivoyevitch, Tomas; Okuno, Yusuke; Nagae, Genta; Hosono, Naoko; Schnittger, Susanne; Sanada, Masashi; Przychodzen, Bartlomiej; Kon, Ayana; Polprasert, Chantana; Shen, Wenyi; Clemente, Michael J.; Phillips, James G.; Alpermann, Tamara; Yoshida, Kenichi; Nadarajah, Niroshan; Sekeres, Mikkael A.; Oakley, Kevin; Nguyen, Nhu; Shiraishi, Yuichi; Shiozawa, Yusuke; Chiba, Kenichi; Tanaka, Hiroko; Koeffler, H. Phillip; Klein, Hans-Ulrich; Dugas, Martin; Aburatani, Hiroyuki; Miyano, Satoru; Haferlach, Claudia; Kern, Wolfgang; Haferlach, Torsten; Du, Yang; Ogawa, Seishi; Makishima, Hideki

    2015-01-01

    Next generation sequencing technologies have provided insights into the molecular heterogeneity of various myeloid neoplasms, revealing previously unknown somatic genetic events. In our cohort of 1444 cases analyzed by next generation sequencing, somatic mutations in the gene BRCA1-BRCA2-containing complex 3 (BRCC3) were identified in 28 cases (1.9%). BRCC3 is a member of the JAMM/MPN+ family of zinc metalloproteases capable of cleaving Lys-63 linked polyubiquitin chains, and is implicated in DNA repair. The mutations were located throughout its coding region. The average variant allelic frequency of BRCC3 mutations was 30.1%, and by a serial sample analysis at two different time points a BRCC3 mutation was already identified in the initial stage of a myelodysplastic syndrome. BRCC3 mutations commonly occurred in nonsense (n=12), frameshift (n=4), and splice site (n=5) configurations. Due to the marginal male dominance (odds ratio; 2.00, 0.84–4.73) of BRCC3 mutations, the majority of mutations (n=23; 82%) were hemizygous. Phenotypically, BRCC3 mutations were frequently observed in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms and associated with -Y abnormality (odds ratio; 3.70, 1.25–11.0). Clinically, BRCC3 mutations were also related to higher age (P=0.01), although prognosis was not affected. Knockdown of Brcc3 gene expression in murine bone marrow lineage negative, Sca1 positive, c-kit positive cells resulted in 2-fold more colony formation and modest differentiation defect. Thus, BRCC3 likely plays a role as tumor-associated gene in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. PMID:26001790

  3. BRCC3 mutations in myeloid neoplasms.

    PubMed

    Huang, Dayong; Nagata, Yasunobu; Grossmann, Vera; Radivoyevitch, Tomas; Okuno, Yusuke; Nagae, Genta; Hosono, Naoko; Schnittger, Susanne; Sanada, Masashi; Przychodzen, Bartlomiej; Kon, Ayana; Polprasert, Chantana; Shen, Wenyi; Clemente, Michael J; Phillips, James G; Alpermann, Tamara; Yoshida, Kenichi; Nadarajah, Niroshan; Sekeres, Mikkael A; Oakley, Kevin; Nguyen, Nhu; Shiraishi, Yuichi; Shiozawa, Yusuke; Chiba, Kenichi; Tanaka, Hiroko; Koeffler, H Phillip; Klein, Hans-Ulrich; Dugas, Martin; Aburatani, Hiroyuki; Miyano, Satoru; Haferlach, Claudia; Kern, Wolfgang; Haferlach, Torsten; Du, Yang; Ogawa, Seishi; Makishima, Hideki

    2015-08-01

    Next generation sequencing technologies have provided insights into the molecular heterogeneity of various myeloid neoplasms, revealing previously unknown somatic genetic events. In our cohort of 1444 cases analyzed by next generation sequencing, somatic mutations in the gene BRCA1-BRCA2-containing complex 3 (BRCC3) were identified in 28 cases (1.9%). BRCC3 is a member of the JAMM/MPN+ family of zinc metalloproteases capable of cleaving Lys-63 linked polyubiquitin chains, and is implicated in DNA repair. The mutations were located throughout its coding region. The average variant allelic frequency of BRCC3 mutations was 30.1%, and by a serial sample analysis at two different time points a BRCC3 mutation was already identified in the initial stage of a myelodysplastic syndrome. BRCC3 mutations commonly occurred in nonsense (n=12), frameshift (n=4), and splice site (n=5) configurations. Due to the marginal male dominance (odds ratio; 2.00, 0.84-4.73) of BRCC3 mutations, the majority of mutations (n=23; 82%) were hemizygous. Phenotypically, BRCC3 mutations were frequently observed in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms and associated with -Y abnormality (odds ratio; 3.70, 1.25-11.0). Clinically, BRCC3 mutations were also related to higher age (P=0.01), although prognosis was not affected. Knockdown of Brcc3 gene expression in murine bone marrow lineage negative, Sca1 positive, c-kit positive cells resulted in 2-fold more colony formation and modest differentiation defect. Thus, BRCC3 likely plays a role as tumor-associated gene in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. PMID:26001790

  4. Identification of one novel mutation in the EVC2 gene in a Chinese family with Ellis-van Creveld syndrome.

    PubMed

    Zhang, Zeng; Bao, Kun; He, Jin-Wei; Fu, Wen-Zhen; Zhang, Chang-Qing; Zhang, Zhen-Lin

    2012-12-15

    Ellis-van Creveld syndrome (EvC) is a rare autosomal recessive skeletal dysplasia characterized by short limbs, short ribs, postaxial polydactyly, and dysplastic nails and teeth. It is caused by biallelic mutations in the EVC or EVC2 gene. Here, we identified a novel nonsense mutation p.W828X (c.2484G>A) in exon 14 and a recurrent nonsense mutation p. R399X (c.1195C>T) in exon 10 of EVC2 gene in a Chinese boy with EvC. Identification of a novel genotype in EvC will provide clues to the phenotype-genotype relations and may assist not only in the clinical diagnosis of EvC but also in the interpretation of genetic information used for prenatal diagnosis and genetic counseling.

  5. Do mutator mutations fuel tumorigenesis?

    PubMed

    Fox, Edward J; Prindle, Marc J; Loeb, Lawrence A

    2013-12-01

    The mutator phenotype hypothesis proposes that the mutation rate of normal cells is insufficient to account for the large number of mutations found in human cancers. Consequently, human tumors exhibit an elevated mutation rate that increases the likelihood of a tumor acquiring advantageous mutations. The hypothesis predicts that tumors are composed of cells harboring hundreds of thousands of mutations, as opposed to a small number of specific driver mutations, and that malignant cells within a tumor therefore constitute a highly heterogeneous population. As a result, drugs targeting specific mutated driver genes or even pathways of mutated driver genes will have only limited anticancer potential. In addition, because the tumor is composed of such a diverse cell population, tumor cells harboring drug-resistant mutations will exist prior to the administration of any chemotherapeutic agent. We present recent evidence in support of the mutator phenotype hypothesis, major arguments against this concept, and discuss the clinical consequences of tumor evolution fueled by an elevated mutation rate. We also consider the therapeutic possibility of altering the rate of mutation accumulation. Most significantly, we contend that there is a need to fundamentally reconsider current approaches to personalized cancer therapy. We propose that targeting cellular pathways that alter the rate of mutation accumulation in tumors will ultimately prove more effective than attempting to identify and target mutant driver genes or driver pathways.

  6. Nonsensical Scenes

    ERIC Educational Resources Information Center

    Lott, Debra

    2012-01-01

    The Dadaists were an unconventional group of artists who used their art to rebel against civilization in the early twentieth century. They experimented with a variety of media and often used machines as themes in their artwork. Dadaist artist Kurt Schwitters incorporated city refuse into his collages, including bus tickets, newspapers, cartons,…

  7. Regulation of nonsense-mediated mRNA decay: Implications for physiology and disease

    PubMed Central

    Karam, Rachid; Wengrod, Jordan; Gardner, Lawrence B; Wilkinson, Miles F

    2013-01-01

    Nonsense-mediated mRNA decay (NMD) is an mRNA quality control mechanism that destabilizes aberrant mRNAs harboring premature termination (nonsense) codons (PTCs). Recent studies have shown that NMD also targets mRNAs transcribed from a large subset of wild-type genes. This raises the possibility that NMD itself is under regulatory control. Indeed, several recent studies have shown that NMD activity is modulated in specific cell types and that key components of the NMD pathway are regulated by several pathways, including microRNA circuits and NMD itself. Cellular stress also modulates the magnitude of NMD by mechanisms that are beginning to be understood. Here, we review the evidence that NMD is regulated and discuss the physiological role for this regulation. We propose that the efficiency of NMD is altered in some cellular contexts to regulate normal biological events. In disease states—such as in cancer—NMD is disturbed by intrinsic and extrinsic factors, resulting in altered levels of crucial NMD-targeted mRNAs that lead to downstream pathological consequences. PMID:23500037

  8. Mutational Analysis of the Chlamydia muridarum Plasticity Zone

    PubMed Central

    Rajaram, Krithika; Giebel, Amanda M.; Toh, Evelyn; Hu, Shuai; Newman, Jasmine H.; Morrison, Sandra G.; Kari, Laszlo; Morrison, Richard P.

    2015-01-01

    Pathogenically diverse Chlamydia spp. can have surprisingly similar genomes. Chlamydia trachomatis isolates that cause trachoma, sexually transmitted genital tract infections (chlamydia), and invasive lymphogranuloma venereum (LGV) and the murine strain Chlamydia muridarum share 99% of their gene content. A region of high genomic diversity between Chlamydia spp. termed the plasticity zone (PZ) may encode niche-specific virulence determinants that dictate pathogenic diversity. We hypothesized that PZ genes might mediate the greater virulence and gamma interferon (IFN-γ) resistance of C. muridarum compared to C. trachomatis in the murine genital tract. To test this hypothesis, we isolated and characterized a series of C. muridarum PZ nonsense mutants. Strains with nonsense mutations in chlamydial cytotoxins, guaBA-add, and a phospholipase D homolog developed normally in cell culture. Two of the cytotoxin mutants were less cytotoxic than the wild type, suggesting that the cytotoxins may be functional. However, none of the PZ nonsense mutants exhibited increased IFN-γ sensitivity in cell culture or were profoundly attenuated in a murine genital tract infection model. Our results suggest that C. muridarum PZ genes are transcribed—and some may produce functional proteins—but are dispensable for infection of the murine genital tract. PMID:25939505

  9. Two novel mutations involved in hereditary tyrosinemia type I

    SciTech Connect

    St-Louis, M.; Poudrier, J.; Phaneuf, D.

    1994-09-01

    The deficiency of fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolic pathway is the cause of hereditary tyrosinemia type I (HT1), an autosomal recessive disease. The disease has been reported worldwide. The incidence is much higher in two clusters: the Saguenay- Lac St-Jean region (Quebec, Canada) and in Scandinavia. Seven mutations have been reported in the last two years. Here we describe two new missense mutations identified by direct sequencing of PCR products in two HT1 patients, a Norwegian (patient No. 1) and a French-Canadian (patient No. 2). The first mutation consists of a G to A transition at position 337 of the FAH gene which predicts a change from glycine to serine (G337S). The second mutation is an A to G transition at position 381 which predicts a change from arginine to glycine (R381G). Patient No. 1 seems heterozygous for the G337S mutation and for a splice mutation (IVS12+5G{r_arrow}A) which was previously described. Patient No. 2 was also found heterozygous for the R381G mutation and for a rare nonsense mutation (E357X) already reported. In vitro transcription and translation were performed on mutant cDNA to demonstrate the responsibility of these two mutations in causing the decreased amount of FAH detected by Western blot analysis.

  10. Disease-associated mutations in IRF6 and RIPK4 dysregulate their signalling functions.

    PubMed

    Kwa, Mei Qi; Huynh, Jennifer; Reynolds, Eric C; Hamilton, John A; Scholz, Glen M

    2015-07-01

    IRF6 and RIPK4 are critical regulators of keratinocyte differentiation and their mutation cause the developmental syndromes Van der Woude syndrome (VWS) and Bartsocas-Papas syndrome (BPS), respectively. RIPK4 promotes keratinocyte differentiation, in part, by inducing IRF6 transactivator function through the phosphorylation of its C-terminal domain at Ser413 and Ser424. Although more than 200 IRF6 mutations have been identified in VWS, a p.Arg412X nonsense mutation is particularly prevalent. A RIPK4 p.Ser376X nonsense mutation in BPS was also recently identified. Here, we demonstrated for the first time that the truncation of IRF6 at Arg412 causes its rapid proteasome-dependent degradation. The truncation of IRF6 also prevented the induction of its transactivator function by RIPK4. Similarly, the p.Ser376X mutation in RIPK4 impaired its induction of IRF6 transactivator function. The mutation also inhibited the stabilisation of β-catenin by RIPK4, and thus may additionally impair Wnt signalling. Collectively, our findings provide important mechanistic insight into how the p.Arg412X and p.Ser376X mutations may cause VWS and BPS, respectively. PMID:25784454

  11. Identification of EMS-Induced Mutations in Drosophila melanogaster by Whole-Genome Sequencing

    PubMed Central

    Blumenstiel, Justin P.; Noll, Aaron C.; Griffiths, Jennifer A.; Perera, Anoja G.; Walton, Kendra N.; Gilliland, William D.; Hawley, R. Scott; Staehling-Hampton, Karen

    2009-01-01

    Next-generation methods for rapid whole-genome sequencing enable the identification of single-base-pair mutations in Drosophila by comparing a chromosome bearing a new mutation to the unmutagenized sequence. To validate this approach, we sought to identify the molecular lesion responsible for a recessive EMS-induced mutation affecting egg shell morphology by using Illumina next-generation sequencing. After obtaining sufficient sequence from larvae that were homozygous for either wild-type or mutant chromosomes, we obtained high-quality reads for base pairs composing ∼70% of the third chromosome of both DNA samples. We verified 103 single-base-pair changes between the two chromosomes. Nine changes were nonsynonymous mutations and two were nonsense mutations. One nonsense mutation was in a gene, encore, whose mutations produce an egg shell phenotype also observed in progeny of homozygous mutant mothers. Complementation analysis revealed that the chromosome carried a new functional allele of encore, demonstrating that one round of next-generation sequencing can identify the causative lesion for a phenotype of interest. This new method of whole-genome sequencing represents great promise for mutant mapping in flies, potentially replacing conventional methods. PMID:19307605

  12. Diversity of [beta]-globin mutations in Israeli ethnic groups reflects recent historic events

    SciTech Connect

    Filon, D.; Oron, V.; Krichevski, S.; Shaag, A.; Goldfarb, A.; Aker, M.; Rachmilewitz, E.A.; Rund, D.; Oppenheim, A. )

    1994-05-01

    The authors characterized nearly 500 [beta]-thalassemia genes from the Israeli population representing a variety of ethnic subgroups. They found 28 different mutations in the [beta]-globin gene, including three mutations ([beta][sup S], [beta][sup C], and [beta][sup O-Arab]) causing hemoglobinopathies. Marked genetic heterogeneity was observed in both the Arab (20 mutations) and Jewish (17 mutations) populations. On the other hand, two ethnic isolates - Druze and Samaritans - had a single mutation each. Fifteen of the [beta]-thalassemia alleles are Mediterranean in type, 5 originated in Kurdistan, 2 are of Indian origin, and 2 sporadic alleles came from Europe. Only one mutant allele-nonsense codon 37-appears to be indigenous to Israel. While human habitation in Israel dates back to early prehistory, the present-day spectrum of [beta]-globin mutations can be largely explained by migration events that occurred in the past millennium. 26 refs., 2 figs., 3 tabs.

  13. Founding BRCA1 mutations in hereditary breast and ovarian cancer in southern Sweden

    SciTech Connect

    Johannsson, O.; Hakansson, S.; Johannson, U.

    1996-03-01

    Nine different germ-line mutations in the BRCA1 breast and ovarian cancer susceptibility gene were identified in 15 of 47 kindreds from southern Sweden, by use of SSCP and heteroduplex analysis of all exons and flanking intron region and by a protein-truncation test for exon 11, followed by direct sequencing. All but one of the mutations are predicted to give rise to premature translation termination and include seven frameshift insertions or deletions, a nonsense mutation, and a splice acceptor site mutation. The remaining mutation is a missense mutation (Cys61Gly) in the zinc-binding motif. Four novel Swedish founding mutations were identified: the nucleotide 2595 deletion A was found in five families, the C 1806 T nonsense mutation in three families, the 3166 insertion TGAGA in three families, and the nucleotide 1201 deletion 11 in two families. Analysis of the intragenic polymorphism D17S855 supports common origins of the mutations. Eleven of the 15 kindreds manifesting BRCA1 mutations were breast-ovarian cancer families, several of them with a predominant ovarian cancer phenotype. The set of 32 families in which no BRCA1 alterations were detected included 1 breast-ovarian cancer kindred manifesting clear linkage to the BRCA1 region and loss of the wild-type chromosome in associated tumors. Other tumor types found in BRCA1 mutation/haplotype carriers included prostatic, pancreas, skin, and lung cancer, a malignant melanoma, an oligodendroglioma, and a carcinosarcoma. In all, 12 of 16 kindreds manifesting BRCA1 mutation or linkage contained ovarian cancer, as compared with only 6 of the remaining 31 families (P < .001). The present study confirms the involvement of BRCA1 in disease predisposition for a subset of hereditary breast cancer families often characterized by ovarian cancers. 28 refs., 3 figs., 4 tabs.

  14. Schizosaccharomyces pombe encodes a mutated AP endonuclease 1.

    PubMed

    Laerdahl, Jon K; Korvald, Hanne; Nilsen, Line; Dahl-Michelsen, Kristin; Rognes, Torbjørn; Bjørås, Magnar; Alseth, Ingrun

    2011-03-01

    Mutagenic and cytotoxic apurinic/apyrimidinic (AP) sites are among the most frequent lesions in DNA. Repair of AP sites is initiated by AP endonucleases and most organisms possess two or more of these enzymes. Saccharomyces cerevisiae has AP endonuclease 1 (Apn1) as the major enzymatic activity with AP endonuclease 2 (Apn2) being an important backup. Schizosaccharomyces pombe also encodes two potential AP endonucleases, and Apn2 has been found to be the main repair activity, while Apn1 has no, or only a limited role in AP site repair. Here we have identified a new 5' exon (exon 1) in the apn1 gene and show that the inactivity of S. pombe Apn1 is due to a nonsense mutation in the fifth codon of this new exon. Reversion of this mutation restored the AP endonuclease activity of S. pombe Apn1. Interestingly, the apn1 nonsense mutation was only found in laboratory strains derived from L972 h(-) and not in unrelated isolates of S. pombe. Since all S. pombe laboratory strains originate from L972 h(-), it appears that all experiments involving S. pombe have been conducted in an apn1(-) mutant strain with a corresponding DNA repair deficiency. These observations have implications both for future research in S. pombe and for the interpretation of previously conducted epistatis analysis.

  15. Mutations of DEPDC5 cause autosomal dominant focal epilepsies

    PubMed Central

    Ishida, Saeko; Picard, Fabienne; Rudolf, Gabrielle; Noé, Eric; Achaz, Guillaume; Thomas, Pierre; Genton, Pierre; Mundwiller, Emeline; Wolff, Markus; Marescaux, Christian; Miles, Richard; Baulac, Michel; Hirsch, Edouard; Leguern, Eric; Baulac, Stéphanie

    2016-01-01

    The main familial focal epilepsies of childhood are autosomal dominant nocturnal frontal lobe epilepsy, familial temporal lobe epilepsy and familial focal epilepsy with variable foci. A frameshift mutation in the DEPDC5 (DEP domain containing protein 5) gene was identified in a family with focal epilepsy with variable foci, by linkage analysis and exome sequencing. Subsequent pyrosequencing of DEPDC5 in a cohort of 15 additional families with focal epilepsies revealed four nonsense and one missense mutations. Our findings provided evidence for frequent (37%) loss-of-function mutations in DEPDC5 associated with a broad spectrum of focal epilepsies. The implication of a DEP domain (Dishevelled, Egl-10 and Pleckstrin domain)-containing protein that may be involved in membrane trafficking and/or G-protein signaling, opens new avenues for research. PMID:23542701

  16. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus

    SciTech Connect

    Rittig, S.; Siggaard, C.; Pedersen, E.B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation was unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. 63 refs., 5 figs., 6 tabs.

  17. Identification of Printed Nonsense Words for an Individual with Autism: A Comparison of Constant Time Delay and Stimulus Fading

    ERIC Educational Resources Information Center

    Redhair, Emily

    2011-01-01

    This study compared a stimulus fading (SF) procedure with a constant time delay (CTD) procedure for identification of consonant-vowel-consonant (CVC) nonsense words for a participant with autism. An alternating treatments design was utilized through a computer-based format. Receptive identification of target words was evaluated using a computer…

  18. Identification of Printed Nonsense Words for an Individual with Autism: A Comparison of Constant Time Delay and Stimulus Fading

    ERIC Educational Resources Information Center

    Redhair, Emily I.; McCoy, Kathleen M.; Zucker, Stanley H.; Mathur, Sarup R.; Caterino, Linda

    2013-01-01

    This study compared a stimulus fading (SF) procedure with a constant time delay (CTD) procedure for identification of consonant-vowel-consonant (CVC) nonsense words for a participant with autism. An alternating treatments design was utilized through a computer-based format. Receptive identification of target words was evaluated using a computer…

  19. Effects of Temporal Sequencing and Auditory Discrimination on Children's Memory Patterns for Tones, Numbers, and Nonsense Words

    ERIC Educational Resources Information Center

    Gromko, Joyce Eastlund; Hansen, Dee; Tortora, Anne Halloran; Higgins, Daniel; Boccia, Eric

    2009-01-01

    The purpose of this study was to determine whether children's recall of tones, numbers, and words was supported by a common temporal sequencing mechanism; whether children's patterns of memory for tones, numbers, and nonsense words were the same despite differences in symbol systems; and whether children's recall of tones, numbers, and nonsense…

  20. Novel pathogenic mutations and skin biopsy analysis in Knobloch syndrome

    PubMed Central

    Suzuki, Oscar; Kague, Erika; Bagatini, Kelly; Tu, Hongmin; Heljasvaara, Ritva; Carvalhaes, Lorenza; Gava, Elisandra; de Oliveira, Gisele; Godoi, Paulo; Oliva, Glaucius; Kitten, Gregory; Pihlajaniemi, Taina; Passos-Bueno, Maria-Rita

    2009-01-01

    Purpose To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Methods Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c.3277C>T, a nonsense mutation, and c.3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. Results We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. Conclusions COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change. PMID:19390655

  1. Novel ATM mutations with ataxia-telangiectasia.

    PubMed

    Liu, Xiao-Li; Wang, Tian; Huang, Xiao-Jun; Zhou, Hai-Yan; Luan, Xing-Hua; Shen, Jun-Yi; Chen, Sheng-Di; Cao, Li

    2016-01-12

    Ataxia telangiectasia is an autosomal recessive multisystem disorder characterized by progressive cerebellar ataxia with onset in childhood, oculocutaneous telangiectasia, increased serum alpha-fetoprotein, immunodeficiency, chromosomal instability, and radiation hypersensitivity. Ataxia-telangiectasia mutated gene (ATM) is one of the known genes to be associated with ataxia telangiectasia. We reported the clinical and genetic findings of three early-onset Chinese patients who demonstrated ataxia, oculomotor apraxia, choreoathetosis, myoclonus and telangiectasia of eyes. Sequence analysis of ATM revealed two known nonsense mutations c.8287C>T and c.9139C>T in the siblings. Though the siblings carried the same mutations, they showed different clinical features involving strephenopodia, exotropia, torsion dystonia, myoclonus and extrapyramidal impairments. The other patient was compound heterozygotes for ATM: c.8911C>T and c.7141_7151delAATGGAAAAAT, both of which were not reported previously and not found in 200 control chromosomes. This study widens the spectrum of mutations and phenotypes in ataxia telangiectasia.

  2. Novel ATM mutations with ataxia-telangiectasia.

    PubMed

    Liu, Xiao-Li; Wang, Tian; Huang, Xiao-Jun; Zhou, Hai-Yan; Luan, Xing-Hua; Shen, Jun-Yi; Chen, Sheng-Di; Cao, Li

    2016-01-12

    Ataxia telangiectasia is an autosomal recessive multisystem disorder characterized by progressive cerebellar ataxia with onset in childhood, oculocutaneous telangiectasia, increased serum alpha-fetoprotein, immunodeficiency, chromosomal instability, and radiation hypersensitivity. Ataxia-telangiectasia mutated gene (ATM) is one of the known genes to be associated with ataxia telangiectasia. We reported the clinical and genetic findings of three early-onset Chinese patients who demonstrated ataxia, oculomotor apraxia, choreoathetosis, myoclonus and telangiectasia of eyes. Sequence analysis of ATM revealed two known nonsense mutations c.8287C>T and c.9139C>T in the siblings. Though the siblings carried the same mutations, they showed different clinical features involving strephenopodia, exotropia, torsion dystonia, myoclonus and extrapyramidal impairments. The other patient was compound heterozygotes for ATM: c.8911C>T and c.7141_7151delAATGGAAAAAT, both of which were not reported previously and not found in 200 control chromosomes. This study widens the spectrum of mutations and phenotypes in ataxia telangiectasia. PMID:26628246

  3. Translational Polarity of a Mutation in the Initiator Aug Codon of the λ cI Gene

    PubMed Central

    Gussin, Gary N.; Brown, Susan; Matz, Karen

    1987-01-01

    A PRM-cI-lacZ fusion inserted into the b2 region of bacteriophage λ was used to isolate mutations affecting expression of both the λ cI gene and the lacZ gene. One such mutation, a change in the cI initiator codon from AUG to AUA, reduces immunity of a λ prophage to superinfection, and causes a 60-70% reduction in β-galactosidase synthesis, even when repressor is supplied in trans. The effect of the mutation on lacZ gene expression is eliminated in a rho- bacterial strain, and the mutation has no effect on transcription initiated at PRM in vitro. Therefore, the effects of the mutation are due to premature ρ-dependent termination of transcription in the absence of translation of the cI gene, as if the mutation were a nonsense polar mutation. PMID:2959588

  4. NPHS2 mutations in steroid-resistant nephrotic syndrome: a mutation update and the associated phenotypic spectrum.

    PubMed

    Bouchireb, Karim; Boyer, Olivia; Gribouval, Olivier; Nevo, Fabien; Huynh-Cong, Evelyne; Morinière, Vincent; Campait, Raphaëlle; Ars, Elisabet; Brackman, Damien; Dantal, Jacques; Eckart, Philippe; Gigante, Maddalena; Lipska, Beata S; Liutkus, Aurélia; Megarbane, André; Mohsin, Nabil; Ozaltin, Fatih; Saleem, Moin A; Schaefer, Franz; Soulami, Kenza; Torra, Roser; Garcelon, Nicolas; Mollet, Géraldine; Dahan, Karin; Antignac, Corinne

    2014-02-01

    Mutations in the NPHS2 gene encoding podocin are implicated in an autosomal-recessive form of nonsyndromic steroid-resistant nephrotic syndrome in both pediatric and adult patients. Patients with homozygous or compound heterozygous mutations commonly present with steroid-resistant nephrotic syndrome before the age of 6 years and rapidly progress to end-stage kidney disease with a very low prevalence of recurrence after renal transplantation. Here, we reviewed all the NPHS2 mutations published between October 1999 and September 2013, and also all novel mutations identified in our personal cohort and in international genetic laboratories. We identified 25 novel pathogenic mutations in addition to the 101 already described. The mutations are distributed along the entire coding region and lead to all kinds of alterations including 53 missense, 17 nonsense, 11 small insertions, 26 small deletions, 16 splicing, two indel mutations, and one mutation in the stop codon. In addition, 43 variants were classified as variants of unknown significance, as these missense changes were exclusively described in the heterozygous state and/or considered benign by prediction software. Genotype-phenotype analyses established correlations between specific variants and age at onset, ethnicity, or clinical evolution. We created a Web database using the Leiden Open Variation Database (www.lovd.nl/NPHS2) software that will allow the inclusion of future reports.

  5. Nonsense-mediated mRNA decay: novel mechanistic insights and biological impact.

    PubMed

    Karousis, Evangelos D; Nasif, Sofia; Mühlemann, Oliver

    2016-09-01

    Nonsense-mediated mRNA decay (NMD) was originally coined to define a quality control mechanism that targets mRNAs with truncated open reading frames due to the presence of a premature termination codon. Meanwhile, it became clear that NMD has a much broader impact on gene expression and additional biological functions beyond quality control are continuously being discovered. We review here the current views regarding the molecular mechanisms of NMD, according to which NMD ensues on mRNAs that fail to terminate translation properly, and point out the gaps in our understanding. We further summarize the recent literature on an ever-rising spectrum of biological processes in which NMD appears to be involved, including homeostatic control of gene expression, development and differentiation, as well as viral defense. WIREs RNA 2016, 7:661-682. doi: 10.1002/wrna.1357 For further resources related to this article, please visit the WIREs website. PMID:27173476

  6. Perception of emotional nonsense sentences in China, Egypt, Estonia, Finland, Russia, Sweden, and the USA.

    PubMed

    Waaramaa, Teija

    2015-10-01

    The present study focused on the identification of emotions in cross-cultural conditions on different continents and among subjects with divergent language backgrounds. The aim was to investigate whether the perception of the basic emotions from nonsense vocal samples was universal, dependent on voice quality, musicality, and/or gender. Listening tests for 350 participants were conducted on location in a variety of cultures: China, Egypt, Estonia, Finland, Russia, Sweden, and the USA. The results suggested that the voice quality parameters played a role in the identification of emotions without the linguistic content. Cultural background may affect the interpretation of the emotions more than the presumed universality. Musical interest tended to facilitate emotion identification. No gender differences were found.

  7. Perception of emotional nonsense sentences in China, Egypt, Estonia, Finland, Russia, Sweden, and the USA.

    PubMed

    Waaramaa, Teija

    2015-10-01

    The present study focused on the identification of emotions in cross-cultural conditions on different continents and among subjects with divergent language backgrounds. The aim was to investigate whether the perception of the basic emotions from nonsense vocal samples was universal, dependent on voice quality, musicality, and/or gender. Listening tests for 350 participants were conducted on location in a variety of cultures: China, Egypt, Estonia, Finland, Russia, Sweden, and the USA. The results suggested that the voice quality parameters played a role in the identification of emotions without the linguistic content. Cultural background may affect the interpretation of the emotions more than the presumed universality. Musical interest tended to facilitate emotion identification. No gender differences were found. PMID:24861103

  8. Effects of noise on identification and serial recall of nonsense syllables in older and younger adults.

    PubMed

    Surprenant, Aimee M

    2007-03-01

    The present experiment investigated the hypothesis that age-related declines in cognitive functioning are partly due to a decrease in peripheral sensory functioning. In particular, it was suggested that some of the decline in serial recall for verbal material might be due to even small amounts of degradation due to noise or hearing loss. Older and younger individuals identified and recalled nonsense syllables in order at a number of different speech-to-noise ratios. Performance on the identification task was significantly correlated with performance on a subsequent serial recall task. However, this was restricted to the case in which the stimuli were presented in a substantial amount of noise. These data show that even small changes in sensory processing can lead to real and measurable declines in cognitive functioning as measured by a serial recall task. PMID:17364376

  9. Organizing Principles of Mammalian Nonsense-Mediated mRNA Decay

    PubMed Central

    Popp, Maximilian Wei-Lin; Maquat, Lynne E.

    2014-01-01

    Cells use messenger RNAs (mRNAs) to ensure the accurate dissemination of genetic information encoded by DNA. Given that mRNAs largely direct the synthesis of a critical effector of cellular phenotype, i.e., proteins, tight regulation of both the quality and quantity of mRNA is a prerequisite for effective cellular homeostasis. Here, we review nonsense-mediated mRNA decay (NMD), which is the best-characterized posttranscriptional quality control mechanism that cells have evolved in their cytoplasm to ensure transcriptome fidelity. We use protein quality control as a conceptual framework to organize what is known about NMD, highlighting overarching similarities between these two polymer quality control pathways, where the protein quality control and NMD pathways intersect, and how protein quality control can suggest new avenues for research into mRNA quality control. PMID:24274751

  10. Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics

    PubMed Central

    Popp, Maximilian W.; Maquat, Lynne E.

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) limits the production of aberrant mRNAs containing a premature termination codon and also controls the levels of endogenous transcripts. Here we show that when human cells are treated with clinically used chemotherapeutic compounds, NMD activity declines partly as a result of the proteolytic production of a dominant-interfering form of the key NMD factor UPF1. Production of cleaved UPF1 functions to upregulate genes involved in the response to apoptotic stresses. The biological consequence is the promotion of cell death. Combined exposure of cells to a small molecule inhibitor of NMD, NMDI-1, and the chemotherapeutic doxorubicin leads to enhanced cell death, while inhibiting UPF1 cleavage protects cells from doxorubicin challenge. We propose a model to explain why the expression levels of genes producing mRNAs of diverse structure that encode proteins of diverse function are under the purview of NMD. PMID:25808464

  11. Novel mutations in five Japanese patients with 3-methylcrotonyl-CoA carboxylase deficiency.

    PubMed

    Uematsu, Mitsugu; Sakamoto, Osamu; Sugawara, Noriko; Kumagai, Naonori; Morimoto, Tetsuji; Yamaguchi, Seiji; Hasegawa, Yuki; Kobayashi, Hironori; Ihara, Kenji; Yoshino, Makoto; Watanabe, Yoriko; Inokuchi, Takahiro; Yokoyama, Takato; Kiwaki, Kohji; Nakamura, Kimitoshi; Endo, Fumio; Tsuchiya, Shigeru; Ohura, Toshihiro

    2007-01-01

    Isolated 3-methylcrotonyl-CoA carboxylase (MCC) deficiency appears to be the most frequent organic aciduria detected in tandem mass spectrometry (MS/MS) screening programs in the United States, Australia, and Europe. A pilot study of newborn screening using MS/MS has recently been commenced in Japan. Our group detected two asymptomatic MCC deficiency patients by the pilot screening and collected data on another three MCC deficiency patients to study the molecular bases of the MCC deficiency in Japan. Molecular analyses revealed novel mutations in one of the causative genes, MCCA or MCCB, in all five of the patients: nonsense and frameshift mutations in MCCA (c.1750C > T/c.901_902delAA) in patient 1, nonsense and frameshift mutations in MCCB (c.1054_1055delGG/c.592C > T) in patient 2, frameshift and missense mutations in MCCB (c.1625_1626insGG/c.653_654CA > TT) in patient 3, a homozygous missense mutation in MCCA (c.1380T > G/ 1380T > G) in patient 4, and compound heterozygous missense mutations in MCCB (c.569A > G/ c.838G > T) in patient 5. No obvious clinical symptoms were observed in patients 1, 2, and 3. Patient 4 had severe neurological impairment and patient 5 developed Reye-like syndrome. The increasing use of MS/MS newborn screening in Japan will further clarify the clinical and genetic heterogeneity among patients with MCC deficiency in the Japanese population.

  12. Nonsense and sense suppression abilities of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNA(Pyl) pairs in the Escherichia coli BL21(DE3) cell strain.

    PubMed

    Odoi, Keturah A; Huang, Ying; Rezenom, Yohannes H; Liu, Wenshe R

    2013-01-01

    Systematic studies of nonsense and sense suppression of the original and three derivative Methanosarcina mazei PylRS-tRNA(Pyl) pairs and cross recognition between nonsense codons and various tRNA(Pyl) anticodons in the Escherichia coli BL21(DE3) cell strain are reported. tRNA(CUA)(Pyl) is orthogonal in E. coli and able to induce strong amber suppression when it is co-expressed with pyrrolysyl-tRNA synthetase (PylRS) and charged with a PylRS substrate, N(ε)-tert-butoxycarbonyl-L-lysine (BocK). Similar to tRNA(CUA)(Pyl), tRNA(UUA)(Pyl) is also orthogonal in E. coli and can be coupled with PylRS to genetically incorporate BocK at an ochre mutation site. Although tRNA(UUA)(Pyl) is expected to recognize a UAG codon based on the wobble hypothesis, the PylRS-tRNA(UUA)(Pyl) pair does not give rise to amber suppression that surpasses the basal amber suppression level in E. coli. E. coli itself displays a relatively high opal suppression level and tryptophan (Trp) is incorporated at an opal mutation site. Although the PylRS-tRNA(UCA)(Pyl) pair can be used to encode BocK at an opal codon, the pair fails to suppress the incorporation of Trp at the same site. tRNA(CCU)(Pyl) fails to deliver BocK at an AGG codon when co-expressed with PylRS in E. coli. PMID:23520461

  13. Mutations in COL6A3 Cause Severe and Mild Phenotypes of Ullrich Congenital Muscular Dystrophy

    PubMed Central

    Demir, Ercan; Sabatelli, Patrizia; Allamand, Valérie; Ferreiro, Ana; Moghadaszadeh, Behzad; Makrelouf, Mohamed; Topaloglu, Haluk; Echenne, Bernard; Merlini, Luciano; Guicheney, Pascale

    2002-01-01

    Ullrich congenital muscular dystrophy (UCMD) is an autosomal recessive disorder characterized by generalized muscular weakness, contractures of multiple joints, and distal hyperextensibility. Homozygous and compound heterozygous mutations of COL6A2 on chromosome 21q22 have recently been shown to cause UCMD. We performed a genomewide screening with microsatellite markers in a consanguineous family with three sibs affected with UCMD. Linkage of the disease to chromosome 2q37 was found in this family and in two others. We analyzed COL6A3, which encodes the α3 chain of collagen VI, and identified one homozygous mutation per family. In family I, the three sibs carried an A→G transition in the splice-donor site of intron 29 (6930+5A→G), leading to the skipping of exon 29, a partial reduction of collagen VI in muscle biopsy, and an intermediate phenotype. In family II, the patient had an unusual mild phenotype, despite a nonsense mutation, R465X, in exon 5. Analysis of the patient’s COL6A3 transcripts showed the presence of various mRNA species—one of which lacked several exons, including the exon containing the nonsense mutation. The deleted splice variant encodes collagen molecules that have a shorter N-terminal domain but that may assemble with other chains and retain a functional role. This could explain the mild phenotype of the patient who was still ambulant at age 18 years and who showed an unusual combination of hyperlaxity and finger contractures. In family III, the patient had a nonsense mutation, R2342X, causing absence of collagen VI in muscle and fibroblasts, and a severe phenotype, as has been described in patients with UCMD. Mutations in COL6A3 are described in UCMD for the first time and illustrate the wide spectrum of phenotypes which can be caused by collagen VI deficiency. PMID:11992252

  14. High prevalence of germline STK11 mutations in Hungarian Peutz-Jeghers Syndrome patients

    PubMed Central

    2010-01-01

    Background Peutz-Jeghers syndrome (PJS) is a rare autosomal dominantly inherited disease characterized by gastrointestinal hamartomatous polyposis and mucocutaneous pigmentation. The genetic predisposition for PJS has been shown to be associated with germline mutations in the STK11/LKB1 tumor suppressor gene. The aim of the present study was to characterize Hungarian PJS patients with respect to germline mutation in STK11/LKB1 and their association to disease phenotype. Methods Mutation screening of 21 patients from 13 PJS families were performed using direct DNA sequencing and multiplex ligation-dependent probe amplification (MLPA). Comparative semi-quantitative sequencing was applied to investigate the mRNA-level effects of nonsense and splice-affecting mutations. Results Thirteen different pathogenic mutations in STK11, including a high frequency of large genomic deletions (38%, 5/13), were identified in the 13 unrelated families studied. One of these deletions also affects two neighboring genes (SBNO2 and GPX4), located upstream of STK11, with a possible modifier effect. The majority of the point mutations (88%, 7/8) can be considered novel. Quantification of the STK11 transcript at the mRNA-level revealed that the expression of alleles carrying a nonsense or frameshift mutation was reduced to 30-70% of that of the wild type allele. Mutations affecting splice-sites around exon 2 displayed an mRNA processing pattern indicative of co-regulated splicing of exons 2 and 3. Conclusions A combination of sensitive techniques may assure a high (100%) STK11 mutation detection frequency in PJS families. Characterization of mutations at mRNA level may give a deeper insight into the molecular consequences of the pathogenic mutations than predictions made solely at the genomic level. PMID:21118512

  15. Detection of induced mutations in CaFAD2 genes by next-generation sequencing leading to the production of improved oil composition in Crambe abyssinica.

    PubMed

    Cheng, Jihua; Salentijn, Elma M J; Huang, Bangquan; Denneboom, Christel; Qi, Weicong; Dechesne, Annemarie C; Krens, Frans A; Visser, Richard G F; van Loo, Eibertus N

    2015-05-01

    Crambe abyssinica is a hexaploid oil crop for industrial applications. An increase of erucic acid (C22:1) and reduction of polyunsaturated fatty acid (PUFA) contents in crambe oil is a valuable improvement. An increase in oleic acid (C18:1), a reduction in PUFA and possibly an increase in C22:1 can be obtained by down-regulating the expression of fatty acid desaturase2 genes (CaFAD2), which code for the enzyme that converts C18:1 into C18:2. We conducted EMS-mutagenesis in crambe, followed by Illumina sequencing, to screen mutations in three expressed CaFAD2 genes. Two novel analysis strategies were used to detect mutation sites. In the first strategy, mutation detection targeted specific sequence motifs. In the second strategy, every nucleotide position in a CaFAD2 fragment was tested for the presence of mutations. Seventeen novel mutations were detected in 1100 one-dimensional pools (11 000 individuals) in three expressed CaFAD2 genes, including non-sense mutations and mis-sense mutations in CaFAD2-C1, -C2 and -C3. The homozygous non-sense mutants for CaFAD2-C3 resulted in a 25% higher content of C18:1 and 25% lower content of PUFA compared to the wild type. The mis-sense mutations only led to small changes in oil composition. Concluding, targeted mutation detection using NGS in a polyploid was successfully applied and it was found that a non-sense mutation in even a single CaFAD2 gene can lead to changes in crambe oil composition. Stacking the mutations in different CaFAD2 may gain additional changes in C18:1 and PUFA contents.

  16. Mutational analysis of the Drosophila DNA repair and recombination gene mei-9.

    PubMed Central

    Yildiz, Ozlem; Kearney, Hutton; Kramer, Benjamin C; Sekelsky, Jeff J

    2004-01-01

    Drosophila mei-9 is essential for several DNA repair and recombination pathways, including nucleotide excision repair (NER), interstrand crosslink repair, and meiotic recombination. To better understand the role of MEI-9 in these processes, we characterized 10 unique mutant alleles of mei-9. These include a P-element insertion that disrupts repair functions but not the meiotic function; three nonsense mutations, one of which has nearly wild-type levels of protein; three missense mutations, one of which disrupts the meiotic function but not repair functions; two small in-frame deletions; and one frameshift. PMID:15166153

  17. Periaxin mutation causes early-onset but slow-progressive Charcot-Marie-Tooth disease.

    PubMed

    Kijima, Kazuki; Numakura, Chikahiko; Shirahata, Emi; Sawaishi, Yukio; Shimohata, Mitsuteru; Igarashi, Shuichi; Tanaka, Tomohiro; Hayasaka, Kiyoshi

    2004-01-01

    Periaxin (PRX) plays a significant role in the myelination of the peripheral nerve. To date, seven non-sense or frameshift PRX mutations have been reported in six pedigrees with Dejerine-Sottas neuropathy or severe Charcot-Marie-Tooth neuropathy (CMT). We detected a PRX mutation in three patients in the screening of 66 Japanese demyelinating CMT patients who were negative for the gene mutation causing dominant or X-linked demyelinating CMT. Three unrelated patients were homozygous for a novel R1070X mutation and presented early-onset but slowly progressive distal motor and sensory neuropathies. Mutations lacking the carboxyl-terminal acidic domain may show loss-of-function effects and cause severe demyelinating CMT. PMID:15197604

  18. Mutations in the SLC3A1 transporter gene in cystinuria

    SciTech Connect

    Pras, E.; Raben, N.; Aksentijevich, I.

    1995-06-01

    Cystinuria is an autosomal recessive disease characterized by the development of kidney stones. Guided by the identification of the SLC3A1 amino acid-transport gene on chromosome 2, we recently established genetic linkage of cystinuria to chromosome 2p in 17 families, without evidence for locus heterogeneity. Other authors have independently identified missense mutations in SLC3A1 in cystinuria patients. In this report we describe four additional cystinuria-associated mutations in this gene: a frameshift, a deletion, a transversion inducing a critical amino acid change, and a nonsense mutation. The latter stop codon was found in all of eight Ashkenazi Jewish carrier chromosomes examined. This report brings the number of disease-associated mutations in this gene to 10. We also assess the frequency of these mutations in our 17 cystinuria families. 24 refs., 4 figs., 1 tab.

  19. Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences.

    PubMed Central

    Teraoka, S N; Telatar, M; Becker-Catania, S; Liang, T; Onengüt, S; Tolun, A; Chessa, L; Sanal, O; Bernatowska, E; Gatti, R A; Concannon, P

    1999-01-01

    Mutations resulting in defective splicing constitute a significant proportion (30/62 [48%]) of a new series of mutations in the ATM gene in patients with ataxia-telangiectasia (AT) that were detected by the protein-truncation assay followed by sequence analysis of genomic DNA. Fewer than half of the splicing mutations involved the canonical AG splice-acceptor site or GT splice-donor site. A higher percentage of mutations occurred at less stringently conserved sites, including silent mutations of the last nucleotide of exons, mutations in nucleotides other than the conserved AG and GT in the consensus splice sites, and creation of splice-acceptor or splice-donor sites in either introns or exons. These splicing mutations led to a variety of consequences, including exon skipping and, to a lesser degree, intron retention, activation of cryptic splice sites, or creation of new splice sites. In addition, 5 of 12 nonsense mutations and 1 missense mutation were associated with deletion in the cDNA of the exons in which the mutations occurred. No ATM protein was detected by western blotting in any AT cell line in which splicing mutations were identified. Several cases of exon skipping in both normal controls and patients for whom no underlying defect could be found in genomic DNA were also observed, suggesting caution in the interpretation of exon deletions observed in ATM cDNA when there is no accompanying identification of genomic mutations. PMID:10330348

  20. Novel GABRG2 mutations cause familial febrile seizures

    PubMed Central

    Boillot, Morgane; Morin-Brureau, Mélanie; Picard, Fabienne; Weckhuysen, Sarah; Lambrecq, Virginie; Minetti, Carlo; Striano, Pasquale; Zara, Federico; Iacomino, Michele; Ishida, Saeko; An-Gourfinkel, Isabelle; Daniau, Mailys; Hardies, Katia; Baulac, Michel; Dulac, Olivier; Leguern, Eric; Nabbout, Rima

    2015-01-01

    Objective: To identify the genetic cause in a large family with febrile seizures (FS) and temporal lobe epilepsy (TLE) and subsequently search for additional mutations in a cohort of 107 families with FS, with or without epilepsy. Methods: The cohort consisted of 1 large family with FS and TLE, 64 smaller French families recruited through a national French campaign, and 43 Italian families. Molecular analyses consisted of whole-exome sequencing and mutational screening. Results: Exome sequencing revealed a p.Glu402fs*3 mutation in the γ2 subunit of the GABAA receptor gene (GABRG2) in the large family with FS and TLE. Three additional nonsense and frameshift GABRG2 mutations (p.Arg136*, p.Val462fs*33, and p.Pro59fs*12), 1 missense mutation (p.Met199Val), and 1 exonic deletion were subsequently identified in 5 families of the follow-up cohort. Conclusions: We report GABRG2 mutations in 5.6% (6/108) of families with FS, with or without associated epilepsy. This study provides evidence that GABRG2 mutations are linked to the FS phenotype, rather than epilepsy, and that loss-of-function of GABAA receptor γ2 subunit is the probable underlying pathogenic mechanism. PMID:27066572

  1. Spectrum of AGL mutations in Chinese patients with glycogen storage disease type III: identification of 31 novel mutations.

    PubMed

    Lu, Chaoxia; Qiu, Zhengqing; Sun, Miao; Wang, Wei; Wei, Min; Zhang, Xue

    2016-07-01

    Glycogen storage disease type III (GSD III), a rare autosomal recessive disease characterized by hepatomegaly, fasting hypoglycemia, growth retardation, progressive myopathy and cardiomyopathy, is caused by deficiency of the glycogen debranching enzyme (AGL). Direct sequencing of human AGL cDNA and genomic DNA has enabled analysis of the underlying genetic defects responsible for GSD III. To date, the frequent mutations in different areas and populations have been described in Italy, Japan, Faroe Islands and Mediterranean area, whereas little has been performed in Chinese population. Here we report a sequencing-based mutation analysis in 43 Chinese patients with GSD III from 41 families. We identified 51 different mutations, including 15 splice-site (29.4%), 11 small deletions (21.6%), 12 nonsense (23.5%), 7 missense (13.7%), 5 duplication (9.8%) and 1 complex deletion/insertion (2.0%), 31 of which are novel mutations. The most common mutation is c.1735+1G>T (11.5%). The association of AGL missense and small in-frame deletion mutations with normal creatine kinase level was observed. Our study extends the spectrum of AGL mutations and suggests a genotype-phenotype correlation in GSD III.

  2. Spectrum of AGL mutations in Chinese patients with glycogen storage disease type III: identification of 31 novel mutations.

    PubMed

    Lu, Chaoxia; Qiu, Zhengqing; Sun, Miao; Wang, Wei; Wei, Min; Zhang, Xue

    2016-07-01

    Glycogen storage disease type III (GSD III), a rare autosomal recessive disease characterized by hepatomegaly, fasting hypoglycemia, growth retardation, progressive myopathy and cardiomyopathy, is caused by deficiency of the glycogen debranching enzyme (AGL). Direct sequencing of human AGL cDNA and genomic DNA has enabled analysis of the underlying genetic defects responsible for GSD III. To date, the frequent mutations in different areas and populations have been described in Italy, Japan, Faroe Islands and Mediterranean area, whereas little has been performed in Chinese population. Here we report a sequencing-based mutation analysis in 43 Chinese patients with GSD III from 41 families. We identified 51 different mutations, including 15 splice-site (29.4%), 11 small deletions (21.6%), 12 nonsense (23.5%), 7 missense (13.7%), 5 duplication (9.8%) and 1 complex deletion/insertion (2.0%), 31 of which are novel mutations. The most common mutation is c.1735+1G>T (11.5%). The association of AGL missense and small in-frame deletion mutations with normal creatine kinase level was observed. Our study extends the spectrum of AGL mutations and suggests a genotype-phenotype correlation in GSD III. PMID:26984562

  3. The incidence of PAX6 mutation in patients with simple aniridia: an evaluation of mutation detection in 12 cases.

    PubMed Central

    Axton, R; Hanson, I; Danes, S; Sellar, G; van Heyningen, V; Prosser, J

    1997-01-01

    Twelve aniridia patients, five with a family history and seven presumed to be sporadic, were exhaustively screened in order to test what proportion of people with aniridia, uncomplicated by associated anomalies, carry mutations in the human PAX6 gene. Mutations were detected in 90% of the cases. Three mutation detection techniques were used to determine if one method was superior for this gene. The protein truncation test (PTT) was used on RT-PCR products, SSCP on genomic PCR amplifications, and chemical cleavage of mismatch on both RT-PCR and genomic amplifications. For RT-PCR products, only the translated portion of the gene was screened. On genomic products exons 1 to 13 (including 740 bp of the 3' untranslated sequence and all intron/exon boundaries) were screened, as was a neuroretina specific enhancer in intron 4. Ten of the possible 12 mutations in the five familial cases and five of the sporadic patients were found, all of which conformed to a functional outcome of haploinsufficiency. Five were splice site mutations (one in the donor site of intron 4, two in the donor site of intron 6, one in each of the acceptor sites of introns 8 and 9) and five were nonsense mutations in exons 8, 9, 10, 11, and 12. SSCP analysis of individually amplified exons, with which nine of the 10 mutations were seen, was the most useful detection method for PAX6. Images PMID:9138149

  4. Severe phenotypes in two Tunisian families with novel XPA mutations: evidence for a correlation between mutation location and disease severity.

    PubMed

    Messaoud, O; Rekaya, M Ben; Ouragini, H; Benfadhel, S; Azaiez, H; Kefi, R; Gouider-Khouja, N; Mokhtar, I; Amouri, A; Boubaker, M S; Zghal, M; Abdelhak, S

    2012-03-01

    Xeroderma pigmentosum (XP) is a rare disorder characterized by a high skin sun-sensitivity predisposing to skin cancers at an early age. Among Tunisian XP patients with an intermediate skin phenotype, 92% presented neurological abnormalities related to XPA gene deficiency. Clinical variability of the XP-A phenotype is associated with a mutational heterogeneity. In the present study, two Tunisian families with severe dermatological and neurological XP phenotypes were investigated in order to determine clinical characteristics and genetic basis. Two Tunisian families with four XP affected children were examined in the Dermatology Department. Clinical features showed severe presentation of the disease. Coding regions of the XPA gene were analysed by direct sequencing. Results showed the presence of a novel mutation, p.E111X, in three patients belonging to the same family and presenting a very severe phenotype i.e. development of skin lesions and neurological signs before 1 year age. For the other patient, we identified a nonsense mutation, p.R207X, already identified in a Palestinian XP-A patient. Identification of novel causing mutations in Tunisian XP-A patients shows the genetic and mutational heterogeneity of the disease in Tunisia. Despite a relatively homogenous mutational spectrum, mutational heterogeneity for rare cases is observed because of the high rate of consanguinity.

  5. SLC1A4 mutations cause a novel disorder of intellectual disability, progressive microcephaly, spasticity and thin corpus callosum.

    PubMed

    Heimer, G; Marek-Yagel, D; Eyal, E; Barel, O; Oz Levi, D; Hoffmann, C; Ruzzo, E K; Ganelin-Cohen, E; Lancet, D; Pras, E; Rechavi, G; Nissenkorn, A; Anikster, Y; Goldstein, D B; Ben Zeev, B

    2015-10-01

    Two unrelated patients, presenting with significant global developmental delay, severe progressive microcephaly, seizures, spasticity and thin corpus callosum (CC) underwent trio whole-exome sequencing. No candidate variant was found in any known genes related to the phenotype. However, crossing the data of the patients illustrated that they both manifested pathogenic variants in the SLC1A4 gene which codes the ASCT1 transporter of serine and other neutral amino acids. The Ashkenazi patient is homozygous for a deleterious missense c.766G>A, p.(E256K) mutation whereas the Ashkenazi-Iraqi patient is compound heterozygous for this mutation and a nonsense c.945delTT, p.(Leu315Hisfs*42) mutation. Structural prediction demonstrates truncation of significant portion of the protein by the nonsense mutation and speculates functional disruption by the missense mutation. Both mutations are extremely rare in general population databases, however, the missense mutation was found in heterozygous mode in 1:100 Jewish Ashkenazi controls suggesting a higher carrier rate among Ashkenazi Jews. We conclude that SLC1A4 is the disease causing gene of a novel neurologic disorder manifesting with significant intellectual disability, severe postnatal microcephaly, spasticity and thin CC. The role of SLC1A4 in the serine transport from astrocytes to neurons suggests a possible pathomechanism for this disease and implies a potential therapeutic approach.

  6. De Novo Mutations in CHAMP1 Cause Intellectual Disability with Severe Speech Impairment

    PubMed Central

    Hempel, Maja; Cremer, Kirsten; Ockeloen, Charlotte W.; Lichtenbelt, Klaske D.; Herkert, Johanna C.; Denecke, Jonas; Haack, Tobias B.; Zink, Alexander M.; Becker, Jessica; Wohlleber, Eva; Johannsen, Jessika; Alhaddad, Bader; Pfundt, Rolph; Fuchs, Sigrid; Wieczorek, Dagmar; Strom, Tim M.; van Gassen, Koen L.I.; Kleefstra, Tjitske; Kubisch, Christian; Engels, Hartmut; Lessel, Davor

    2015-01-01

    CHAMP1 encodes a protein with a function in kinetochore-microtubule attachment and in the regulation of chromosome segregation, both of which are known to be important for neurodevelopment. By trio whole-exome sequencing, we have identified de novo deleterious mutations in CHAMP1 in five unrelated individuals affected by intellectual disability with severe speech impairment, motor developmental delay, muscular hypotonia, and similar dysmorphic features including short philtrum and a tented upper and everted lover lip. In addition to two frameshift and one nonsense mutations, we found an identical nonsense mutation, c.1192C>T (p.Arg398∗), in two affected individuals. All mutations, if resulting in a stable protein, are predicted to lead to the loss of the functionally important zinc-finger domains in the C terminus of the protein, which regulate CHAMP1 localization to chromosomes and the mitotic spindle, thereby providing a mechanistic understanding for their pathogenicity. We thus establish deleterious de novo mutations in CHAMP1 as a cause of intellectual disability. PMID:26340335

  7. Molecular analysis of mucopolysaccharidosis IVA: Common mutations and racial difference

    SciTech Connect

    Tomatsu, S.; Hori, T.; Nakashima, Y.

    1994-09-01

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency in N-acetylgalactosamine -6-sulfate sulfatase (GALNS). Studies on the molecular basis of MPS IVA have been facilitated following cloning of the full-length cDNA and genomic DNA. In this study we detected mutations from 20 Caucasian and 19 Japanese MPS IVA patients using SSCP system and compared mutations of Caucasian origin with those of Japanese origin. The results showed the presence of 16 various mutations (3 small, deletions, 2 nonsense and 11 missense mutations) for Caucasian patients and 15 (1 deletion, 1 large alteration and 13 missense mutations) for Japanese. Moreover, two common mutations existed; one is double gene deletion characteristic for Japanese (6 alleles; 15%) and the other is a point mutation (1113F A{yields}T transition) characteristic for Caucasian (9 alleles; 22.5%). And the clear genotype/phenotype relationship among 1342delCA, IVS1(-2), P151S, Q148X, R386C, I113F, Q473X, W220G, P151L, A291T, R90W, and P77R, for a severe type, G96B N204K and V138A for a milder type, was observed. Only R386 mutation was seen in both of the populations. Further, the precise DNA analysis for double gene deletion of a common double gene deletion has been performed by defining the breakpoints and the results showed that one deletion was caused by homologous recombination due to Alu repetitive sequences and the other was due to nonhomologous recombination of short direct repeat. Haplotype analysis for six alleles with double deletion were different, indicating the different origin of this mutation or the frequent recombination events before a mutational event. Thus the mutations in GALNS gene are very heterogeneous and the racial difference is characteristic.

  8. Mutations in the Hepatocyte Nuclear Factor-1β Gene Are Associated with Familial Hypoplastic Glomerulocystic Kidney Disease

    PubMed Central

    Bingham, Coralie; Bulman, Michael P.; Ellard, Sian; Allen, Lisa I. S.; Lipkin, Graham W.; Hoff, William G. van't; Woolf, Adrian S.; Rizzoni, Gianfranco; Novelli, Giuseppe; Nicholls, Anthony J.; Hattersley, Andrew T.

    2001-01-01

    Familial glomerulocystic kidney disease (GCKD) is a dominantly inherited condition characterized by glomerular cysts and variable renal size and function; the molecular genetic etiology is unknown. Mutations in the gene encoding hepatocyte nuclear factor (HNF)–1β have been associated with early-onset diabetes and nondiabetic renal disease—particularly renal cystic disease. We investigated a possible role for the HNF-1β gene in four unrelated GCKD families and identified mutations in two families: a nonsense mutation in exon 1 (E101X) and a frameshift mutation in exon 2 (P159fsdelT). The family members with HNF-1β gene mutations had hypoplastic GCKD and early-onset diabetes or impaired glucose tolerance. We conclude that there is genetic heterogeneity in familial GCKD and that the hypoplastic subtype is a part of the clinical spectrum of the renal cysts and diabetes syndrome that is associated with HNF-1β mutations. PMID:11085914

  9. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    PubMed Central

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  10. CCR4 frameshift mutation identifies a distinct group of adult T cell leukaemia/lymphoma with poor prognosis.

    PubMed

    Yoshida, Noriaki; Miyoshi, Hiroaki; Kato, Takeharu; Sakata-Yanagimoto, Mamiko; Niino, Daisuke; Taniguchi, Hiroaki; Moriuchi, Yukiyoshi; Miyahara, Masaharu; Kurita, Daisuke; Sasaki, Yuya; Shimono, Joji; Kawamoto, Keisuke; Utsunomiya, Atae; Imaizumi, Yoshitaka; Seto, Masao; Ohshima, Koichi

    2016-04-01

    Adult T cell leukaemia/lymphoma (ATLL) is an intractable T cell neoplasm caused by human T cell leukaemia virus type 1. Next-generation sequencing-based comprehensive mutation studies have revealed recurrent somatic CCR4 mutations in ATLL, although clinicopathological findings associated with CCR4 mutations remain to be delineated. In the current study, 184 cases of peripheral T cell lymphoma, including 113 cases of ATLL, were subjected to CCR4 mutation analysis. This sequence analysis identified mutations in 27% (30/113) of cases of ATLL and 9% (4/44) of cases of peripheral T cell lymphoma not otherwise specified. Identified mutations included nonsense (NS) and frameshift (FS) mutations. No significant differences in clinicopathological findings were observed between ATLL cases stratified by presence of CCR4 mutation. All ATLL cases with CCR4 mutations exhibited cell-surface CCR4 positivity. Semi-quantitative CCR4 protein analysis of immunohistochemical sections revealed higher CCR4 expression in cases with NS mutations of CCR4 than in cases with wild-type (WT) CCR4. Furthermore, among ATLL cases, FS mutation was significantly associated with a poor prognosis, compared with NS mutation and WT CCR4. These results suggest that CCR4 mutation is an important determinant of the clinical course in ATLL cases, and that NS and FS mutations of CCR4 behave differently with respect to ATLL pathophysiology.

  11. CCR4 frameshift mutation identifies a distinct group of adult T cell leukaemia/lymphoma with poor prognosis.

    PubMed

    Yoshida, Noriaki; Miyoshi, Hiroaki; Kato, Takeharu; Sakata-Yanagimoto, Mamiko; Niino, Daisuke; Taniguchi, Hiroaki; Moriuchi, Yukiyoshi; Miyahara, Masaharu; Kurita, Daisuke; Sasaki, Yuya; Shimono, Joji; Kawamoto, Keisuke; Utsunomiya, Atae; Imaizumi, Yoshitaka; Seto, Masao; Ohshima, Koichi

    2016-04-01

    Adult T cell leukaemia/lymphoma (ATLL) is an intractable T cell neoplasm caused by human T cell leukaemia virus type 1. Next-generation sequencing-based comprehensive mutation studies have revealed recurrent somatic CCR4 mutations in ATLL, although clinicopathological findings associated with CCR4 mutations remain to be delineated. In the current study, 184 cases of peripheral T cell lymphoma, including 113 cases of ATLL, were subjected to CCR4 mutation analysis. This sequence analysis identified mutations in 27% (30/113) of cases of ATLL and 9% (4/44) of cases of peripheral T cell lymphoma not otherwise specified. Identified mutations included nonsense (NS) and frameshift (FS) mutations. No significant differences in clinicopathological findings were observed between ATLL cases stratified by presence of CCR4 mutation. All ATLL cases with CCR4 mutations exhibited cell-surface CCR4 positivity. Semi-quantitative CCR4 protein analysis of immunohistochemical sections revealed higher CCR4 expression in cases with NS mutations of CCR4 than in cases with wild-type (WT) CCR4. Furthermore, among ATLL cases, FS mutation was significantly associated with a poor prognosis, compared with NS mutation and WT CCR4. These results suggest that CCR4 mutation is an important determinant of the clinical course in ATLL cases, and that NS and FS mutations of CCR4 behave differently with respect to ATLL pathophysiology. PMID:26847489

  12. Novel FLG null mutations in Korean patients with atopic dermatitis and comparison of the mutational spectra in Asian populations.

    PubMed

    Park, Joonhong; Jekarl, Dong Wook; Kim, Yonggoo; Kim, Jiyeon; Kim, Myungshin; Park, Young Min

    2015-09-01

    Filaggrin is essential for the development of the skin barrier. Mutations in the gene encoding filaggrin have been identified as major predisposing factors for atopic disorders. Molecular analysis of the FLG gene in this study showed nine null and one unclassified mutation in 13 of 81 Korean patients with atopic dermatitis (AD): five novel null mutations (i.e. p.S1405*, c.5671_5672delinsTA, p.W1947*, p.G2025* and p.E3070*); four reported null mutations (i.e. c.3321delA, p.S1515*, p.S3296* and p.K4022*); and one unclassified mutation (i.e. c.306delAAAGCACAG). These variants are nonsense, premature termination codon or in-frame deletion expected to cause loss-of-function of FLG. Genotype-phenotype correlation is not obvious in Korean AD patients with FLG null mutations. According to a review of the mutational spectra of the FLG gene in the Asian populations, FLG null mutations appeared to be unique in each population but some mutations such as p.R501*, c.3321delA, p.S1515*, p.S3296* and p.K4022* were commonly found in at least two of the selected Asian populations including Korean, Japanese, Chinese, Singaporean Chinese or Taiwanese. Further investigations on a larger group of Korean AD would be necessary to elucidate its clinical pathogenesis and mutational spectrum related to specific FLG null mutations for AD.

  13. Missense mutation (E150K) of rhodopsin in autosomal recessive retinitis pigmentosa

    SciTech Connect

    Orth, U.; Oehlmann, R.; Gal, A.

    1994-09-01

    Missense or nonsense mutations of the rhodopsin gene have been implied in the pathogenesis of at least 3 different traits; autosomal dominant retinitis pigmentosa (adRP), congenital stationary night blindness (CSNB), and autosomal recessive retinitis pigmentosa (arRP). For the latter, a single patient has been reported with a nonsense mutation at codon 249 on both alleles. Heterozygous carriers of missense mutations of rhodopsin develop either adRP or CSNB depending on the particular amino acid substitution. Four of the 9 siblings from a consanguineous marriage in southern India were reported the have arRP. Mutational screening and sequencing of the rhodopsin gene revealed a G-to-A transition of the first nucleotide at codon 150 in exon II, which alters glutamate to lysine. The E150K mutation was present in the 4 patients in homozygous form, whereas the parents and 2 of the siblings were heterozygotes. Two-point analysis produced a Zmax=3.46 at theta=0.00. Two unaffected siblings who are heterozygotes for the E150K mutation underwent a thorough ophthalmological and psychophysical examination. No clinical abnormalities were found although these individuals were over forty, whereas the onset of RP in their affected siblings was in the second decade. Collectively, both the genetic and clinical findings strongly suggest that the E150K mutation of rhodopsin is recessive in this family. Glu150 forms part of the CD cytoplasmic loop of rhodopsin, which has been implicated in the binding and activation of transducin. We speculate that E150K leads to RP because the mutant protein may be incapable of activating transducin. It is tempting to speculate that, in addition to mutations in the genes for rhodopsin and the {beta}-subunit of PDE, mutations in the genes for transducin may also result in arRP.

  14. Germ-line p53 mutations in 15 families with Li-Fraumeni syndrome

    SciTech Connect

    Frebourg, T.; Barbier, N.; Yan, Yu-xin; Friend, S.H. |; Garber, J.E.; Dreyfus, M.; Li, F.P.; Fraumeni, J. Jr.

    1995-03-01

    Germ-line mutations of the tumor-suppressor gene p53 have been observed in some families with the Li-Fraumeni syndrome (LFS), a familial cancer syndrome in which affected relatives develop a diverse set of early-onset malignancies including breast carcinoma, sarcomas, and brain tumors. The analysis of the p53 gene in LFS families has been limited, in most studies to date, to the region between exon 5 and exon 9. In order to determine the frequency and distribution of germ-line p53 mutations in LFS, we sequenced the 10 coding exons of the p53 gene in lymphocytes and fibroblast cell lines derived from 14 families with the syndrome. Germ-line mutations were observed in eight families. Six mutations were missense mutations located between exons 5 and 8. One mutation was a nonsense mutation in exon 6, and one mutation was a splicing mutation in intron 4, generating aberrant shorter p53 RNA(s). In three families, a mutation of the p53 gene was observed in the fibroblast cell line derived from the proband. However, the mutation was not found in affected relatives in two families and in the blood from the one individual, indicating that the mutation probably occurred during cell culture in vitro. In four families, no mutation was observed. This study indicates that germ-line p53 mutations in LFS are mostly located between exons 5 and 8 and that {approximately}50% of patients with LFS have no germ-line mutations in the coding region of the p53 gene. The observation of p53 mutations occurring during primary cultures of human fibroblasts shows that analysis for germ-line p53 mutations must be performed on cells that have not been grown in vitro. 49 refs., 1 fig., 4 tabs.

  15. Mutational inactivation of PTPRD in glioblastoma multiforme and malignant melanoma.

    PubMed

    Solomon, David A; Kim, Jung-Sik; Cronin, Julia C; Sibenaller, Zita; Ryken, Timothy; Rosenberg, Steven A; Ressom, Habtom; Jean, Walter; Bigner, Darell; Yan, Hai; Samuels, Yardena; Waldman, Todd

    2008-12-15

    An additional tumor suppressor gene on chromosome 9p telomeric to the CDKN2A/B locus has long been postulated to exist. Using Affymetrix 250K single nucleotide polymorphism arrays to screen for copy number changes in glioblastoma multiforme (GBM), we detected a high frequency of deletions of the PTPRD gene, which encodes a receptor protein tyrosine phosphatase at chromosome 9p23-24.1. Missense and nonsense mutations of PTPRD were identified in a subset of the samples lacking deletions, including an inherited mutation with somatic loss of the wild-type allele. We then sequenced the gene in melanoma and identified 10 somatic mutations in 7 of 57 tumors (12%). Reconstitution of PTPRD expression in GBM and melanoma cells harboring deletions or mutations led to growth suppression and apoptosis that was alleviated by both the somatic and constitutional mutations. These data implicate PTPRD in the pathogenesis of tumors of neuroectodermal origin and, when taken together with other recent reports of PTPRD mutations in adenocarcinoma of the colon and lung, suggest that PTPRD may be one of a select group of tumor suppressor genes that are inactivated in a wide range of common human tumor types.

  16. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis

    PubMed Central

    Kalyna, Maria; Simpson, Craig G.; Syed, Naeem H.; Lewandowska, Dominika; Marquez, Yamile; Kusenda, Branislav; Marshall, Jacqueline; Fuller, John; Cardle, Linda; McNicol, Jim; Dinh, Huy Q.; Barta, Andrea; Brown, John W. S.

    2012-01-01

    Alternative splicing (AS) coupled to nonsense-mediated decay (NMD) is a post-transcriptional mechanism for regulating gene expression. We have used a high-resolution AS RT–PCR panel to identify endogenous AS isoforms which increase in abundance when NMD is impaired in the Arabidopsis NMD factor mutants, upf1-5 and upf3-1. Of 270 AS genes (950 transcripts) on the panel, 102 transcripts from 97 genes (32%) were identified as NMD targets. Extrapolating from these data around 13% of intron-containing genes in the Arabidopsis genome are potentially regulated by AS/NMD. This cohort of naturally occurring NMD-sensitive AS transcripts also allowed the analysis of the signals for NMD in plants. We show the importance of AS in introns in 5′ or 3′UTRs in modulating NMD-sensitivity of mRNA transcripts. In particular, we identified upstream open reading frames overlapping the main start codon as a new trigger for NMD in plants and determined that NMD is induced if 3′-UTRs were >350 nt. Unexpectedly, although many intron retention transcripts possess NMD features, they are not sensitive to NMD. Finally, we have shown that AS/NMD regulates the abundance of transcripts of many genes important for plant development and adaptation including transcription factors, RNA processing factors and stress response genes. PMID:22127866

  17. Studies on nonsense mediated decay reveal novel therapeutic options for genetic diseases.

    PubMed

    Bashyam, Murali D

    2009-01-01

    Scientific breakthroughs have often led to commercially viable patents mainly in the field of engineering. Commercialization in the field of medicine has been restricted mostly to machinery and engineering on the one hand and therapeutic drugs for common chronic ailments such as cough, cold, headache, etc, on the other. Sequencing of the human genome has attracted the attention of pharmaceutical companies and now biotechnology has become a goldmine for commercialization of products and processes. Recent advances in our understanding of basic biological processes have resulted in the opening of new avenues for treatment of human genetic diseases, especially single gene disorders. A significant proportion of human genetic disorders have been shown to be caused due to degradation of transcripts for specific genes through a process called nonsense mediated decay (NMD). The modulation of NMD provides a viable therapeutic option for treatment of several genetic disorders and therefore has been a good prospect for patenting and commercialization. In this review the molecular basis for NMD and attempts to treat genetic diseases which result from NMD are discussed.

  18. Quality control of transcription start site selection by nonsense-mediated-mRNA decay

    PubMed Central

    Malabat, Christophe; Feuerbach, Frank; Ma, Laurence; Saveanu, Cosmin; Jacquier, Alain

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA quality-control pathway targeting transcripts such as messenger RNAs harboring premature stop-codons or short upstream open reading frame (uORFs). Our transcription start sites (TSSs) analysis of Saccharomyces cerevisiae cells deficient for RNA degradation pathways revealed that about half of the pervasive transcripts are degraded by NMD, which provides a fail-safe mechanism to remove spurious transcripts that escaped degradation in the nucleus. Moreover, we found that the low specificity of RNA polymerase II TSSs selection generates, for 47% of the expressed genes, NMD-sensitive transcript isoforms carrying uORFs or starting downstream of the ATG START codon. Despite the low abundance of this last category of isoforms, their presence seems to constrain genomic sequences, as suggested by the significant bias against in-frame ATGs specifically found at the beginning of the corresponding genes and reflected by a depletion of methionines in the N-terminus of the encoded proteins. DOI: http://dx.doi.org/10.7554/eLife.06722.001 PMID:25905671

  19. Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: mutations in UGT76G1, a key gene of steviol glycosides synthesis.

    PubMed

    Yang, Yong-Heng; Huang, Su-Zhen; Han, Yu-Lin; Yuan, Hai-Yan; Gu, Chun-Sun; Zhao, Yan-Hai

    2014-07-01

    Steviol glycosides, extracted from the leaves of Stevia rebaudiana (Bert) Bertoni, are calorie-free sugar substitute of natural origin with intensely sweet (Boileau et al., 2012). Stevioside and rebaudioside A are the two main kinds of the diterpenic glycosides. We analyzed the concentration of stevioside and rebaudioside A in Stevia leaves of about 500 samples (hybrid progenies) and discovered a mutation plant "Z05" with very low levels of rebaudioside A. Because UGT76G1, a uridinediphosphate-dependent glycosyltransferases, is responsible for the conversion from stevioside to rebaudioside A (Richman et al., 2005), so mutation identification was done by sequencing the candidate gene, UGT76G1. In this study molecular analysis of two strains revealed a heterozygotic nonsense mutation of c.389T > G (p.L121X) in UGT76G1. Meanwhile, we found some amino acid substitutions significant change the protein structure. And the difference of enzyme activity between two strains proved the lack of functionality of UGT76G1 of the mutation "Z05". So the nonsense mutation and amino acid substitution mutation resulted in the low levels of rebaudioside A.

  20. NFKB2 mutation in common variable immunodeficiency and isolated adrenocorticotropic hormone deficiency

    PubMed Central

    Shi, Chuan; Wang, Fen; Tong, Anli; Zhang, Xiao-Qian; Song, Hong-Mei; Liu, Zheng-Yin; Lyu, Wei; Liu, Yue-Hua; Xia, Wei-Bo

    2016-01-01

    Abstract Background Common variable immunodeficiency (CVID) with central adrenal insufficiency is a recently defined clinical syndrome caused by mutations in the nuclear factor kappa-B subunit 2 (NFKB2) gene. We present the first case of NFKB2 mutation in Asian population. Methods and Results An 18-year-old Chinese female with adrenocorticotropic hormone (ACTH) deficiency was admitted due to adrenal crisis and pneumonia. She had a history of recurrent respiratory infections since childhood and ectodermal abnormalities were noted during physical examination. Immunologic tests revealed panhypogammaglobulinemia and deficient natural killer (NK)-cell function. DNA sequencing of NFKB2 identified a heterozygous nonsense mutation (c.2563 A>T, p.855: Lys>∗) in the patient but not her parents. Conclusion Clinicians should be alert to comorbidities of adrenal insufficiency and ectodermal dysplasia in CVID patients as these might suggest a rare hereditary syndrome caused by NFKB2 mutation. PMID:27749582

  1. Novel SOST gene mutation in a sclerosteosis patient from Morocco: a case report.

    PubMed

    Belkhribchia, Mohamed Reda; Collet, Corinne; Laplanche, Jean-Louis; Hassani, Redouane

    2014-03-01

    Sclerosteosis (OMIM 269500) is a rare autosomal recessive condition characterized by increased bone density associated with syndactyly. It is linked to a genetic defect in the SOST gene coding for sclerostin. So far, seven different loss-of-function mutations in SOST have been reported in patients with sclerosteosis. Recently, two mutations in LRP4 gene underlying sclerosteosis were identified, reflecting the genetic heterogeneity of this disease. We report here a 30-years-old Moroccan man presented with typical clinical and radiological features of sclerosteosis who carries a novel homozygous mutation in the SOST gene, characterized as a nonsense mutation (c.79C > T; p.Gln27∗) in exon 1 of the SOST gene. This is to our knowledge the first case of sclerosteosis reported from Morocco and North Africa.

  2. The stop mutation R553X in the CFTR gene results in exon skipping

    SciTech Connect

    Hull, J.; Shackleton, S.; Harris, A. )

    1994-01-15

    Stop or nonsense mutations are known to disrupt gene function in a number of different ways. The authors have studied the effects of the stop mutation R553X in exon 11 of the CFTR gene by analyzing mRNA extracted from nasal epithelial cells harvested from patients with cystic fibrosis. Four patients who were compound heterozygotes for the R553X mutation were studied. Ten non-CF control subjects were also studied. In all four patients, full-length CFTR mRNA was identified, but only a very small proportion of this was derived from the R553X allele. A smaller transcript, lacking exon 11, was also seen in the R553X patients but not in the controls. Most of this transcript was derived from the R553X allele. These results suggest that the R553X mutation results in skipping of the exon in which it is located. 14 refs., 3 figs.

  3. Novel mutations in the COL2A1 gene in Japanese patients with Stickler syndrome.

    PubMed

    Kondo, Hiroyuki; Matsushita, Itsuka; Nagata, Tatsuo; Hayashi, Takaaki; Kakinoki, Masashi; Uchio, Eiichi; Kondo, Mineo; Ohji, Masahito; Kusaka, Shunji

    2016-01-01

    Stickler syndrome is an inherited connective tissue disorder that affects the eyes, cartilage and articular tissues. The phenotypes of Stickler syndrome include congenital high myopia, retinal detachment, premature joint degeneration, hearing impairment and craniofacial anomalies, such as cleft palate and midline facial hypoplasia. The disease is genetically heterogeneous, and the majority of the cases are caused by mutations in the COL2A1 gene. We examined 40 Japanese patients with Stickler syndrome from 23 families to determine whether they had mutations in the COL2A1 gene. This analysis was conducted by examining each patient's genomic DNA by Sanger sequencing. Five nonsense, 4 splicing and 8 deletion mutations in the COL2A1 gene were identified, accounting for 21 of the 23 families. Different mutations of the COL2A1 gene were associated with similar phenotypes but with different degrees of expressivity. PMID:27408751

  4. Novel mutations in the COL2A1 gene in Japanese patients with Stickler syndrome

    PubMed Central

    Kondo, Hiroyuki; Matsushita, Itsuka; Nagata, Tatsuo; Hayashi, Takaaki; Kakinoki, Masashi; Uchio, Eiichi; Kondo, Mineo; Ohji, Masahito; Kusaka, Shunji

    2016-01-01

    Stickler syndrome is an inherited connective tissue disorder that affects the eyes, cartilage and articular tissues. The phenotypes of Stickler syndrome include congenital high myopia, retinal detachment, premature joint degeneration, hearing impairment and craniofacial anomalies, such as cleft palate and midline facial hypoplasia. The disease is genetically heterogeneous, and the majority of the cases are caused by mutations in the COL2A1 gene. We examined 40 Japanese patients with Stickler syndrome from 23 families to determine whether they had mutations in the COL2A1 gene. This analysis was conducted by examining each patient’s genomic DNA by Sanger sequencing. Five nonsense, 4 splicing and 8 deletion mutations in the COL2A1 gene were identified, accounting for 21 of the 23 families. Different mutations of the COL2A1 gene were associated with similar phenotypes but with different degrees of expressivity. PMID:27408751

  5. Mutations in the 4-hydroxyphenylpyruvate dioxygenase gene (HPD) in patients with tyrosinemia type III.

    PubMed

    Rüetschi, U; Cerone, R; Pérez-Cerda, C; Schiaffino, M C; Standing, S; Ugarte, M; Holme, E

    2000-06-01

    Tyrosinemia type III (OMIM 276710) is an autosomal recessive disorder caused by the deficiency of 4-hydroxyphenylpyruvate dioxygenase (HPD), the second enzyme in the tyrosine catabolic pathway. The enzyme deficiency results in an accumulation and increased excretion of tyrosine and phenolic metabolites. Only a few cases with the disorder have been described, and the clinical spectrum of the disorder is unknown. Reported patients have presented with mental retardation or neurological symptoms or have been picked up by neonatal screening. We have identified four presumed pathogenic mutations (two missense and two nonsense mutations) in the HPD gene in three unrelated families encompassing four homozygous individuals and one compound heterozygous individual with tyrosinemia type III. Furthermore, a number of polymorphic mutations have been identified in the HPD gene. No correlation of the severity of the mutation and enzyme deficiency and mental function has been found; neither do the recorded tyrosine levels correlate with the clinical phenotype.

  6. Nemaline myopathy caused byTNNT1 mutations in a Dutch pedigree.

    PubMed

    van der Pol, W Ludo; Leijenaar, Jolien F; Spliet, Wim G M; Lavrijsen, Selma W; Jansen, Nicolaas J G; Braun, Kees P J; Mulder, Marcel; Timmers-Raaijmakers, Brigitte; Ratsma, Kimberly; Dooijes, Dennis; van Haelst, Mieke M

    2014-03-01

    Nemaline myopathy (NM) is genetically heterogeneous disorder characterized by early onset muscular weakness and sarcoplasmatic or intranuclear inclusions of rod-shaped Z-disk material in muscle fibers. Thus far, mutations in seven genes have been identified as cause of NM. Only one singleTNNT1 nonsense mutation has been previously described that causes autosomal recessive NM in the old order Amish with a very specific clinical phenotype including rapidly progressive contractures. Here, we report a patient who is compound heterozygous for a c.309+1G>A mutation and an exon 14 deletion in theTNNT1 gene. This report confirms the specific clinical phenotype ofTNNT1 NM and documents two newTNNT1 mutations outside the old order Amish. PMID:24689076

  7. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment.

    PubMed

    Dibbens, Leanne M; Tarpey, Patrick S; Hynes, Kim; Bayly, Marta A; Scheffer, Ingrid E; Smith, Raffaella; Bomar, Jamee; Sutton, Edwina; Vandeleur, Lucianne; Shoubridge, Cheryl; Edkins, Sarah; Turner, Samantha J; Stevens, Claire; O'Meara, Sarah; Tofts, Calli; Barthorpe, Syd; Buck, Gemma; Cole, Jennifer; Halliday, Kelly; Jones, David; Lee, Rebecca; Madison, Mark; Mironenko, Tatiana; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Teague, John; Dicks, Ed; Butler, Adam; Menzies, Andrew; Jenkinson, Andrew; Shepherd, Rebecca; Gusella, James F; Afawi, Zaid; Mazarib, Aziz; Neufeld, Miriam Y; Kivity, Sara; Lev, Dorit; Lerman-Sagie, Tally; Korczyn, Amos D; Derry, Christopher P; Sutherland, Grant R; Friend, Kathryn; Shaw, Marie; Corbett, Mark; Kim, Hyung-Goo; Geschwind, Daniel H; Thomas, Paul; Haan, Eric; Ryan, Stephen; McKee, Shane; Berkovic, Samuel F; Futreal, P Andrew; Stratton, Michael R; Mulley, John C; Gécz, Jozef

    2008-06-01

    Epilepsy and mental retardation limited to females (EFMR) is a disorder with an X-linked mode of inheritance and an unusual expression pattern. Disorders arising from mutations on the X chromosome are typically characterized by affected males and unaffected carrier females. In contrast, EFMR spares transmitting males and affects only carrier females. Aided by systematic resequencing of 737 X chromosome genes, we identified different protocadherin 19 (PCDH19) gene mutations in seven families with EFMR. Five mutations resulted in the introduction of a premature termination codon. Study of two of these demonstrated nonsense-mediated decay of PCDH19 mRNA. The two missense mutations were predicted to affect adhesiveness of PCDH19 through impaired calcium binding. PCDH19 is expressed in developing brains of human and mouse and is the first member of the cadherin superfamily to be directly implicated in epilepsy or mental retardation.

  8. Identification of novel Bruton's tyrosine kinase mutations in 10 unrelated subjects with X linked agammaglobulinaemia.

    PubMed Central

    Brooimans, R A; van den Berg, A J; Rijkers, G T; Sanders, L A; van Amstel, J K; Tilanus, M G; Grubben, M J; Zegers, B J

    1997-01-01

    Mutations of the Bruton's tyrosine kinase (Btk) gene cause X linked agammaglobulinaemia (XLA). This inherited immunodeficiency disease causes an arrest in B cell differentiation of pre-B cells to mature B cells. In this study we report the characterisation of mutations in the Btk gene in 10 unrelated XLA families. The screening approach we used was based on reverse transcriptase PCR and direct cycle sequencing of the amplified products followed by analysis of the observed mutations at the level of genomic DNA. The single strand confirmation polymorphism (SSCP) technique was used for assessment of the carriers in some of these families. Various mutations throughout the coding gene were observed, including missense and nonsense mutations, a deletion, and several splicing defects. None of the mutations except one has been previously described. There were three point mutations resulting in a single amino acid substitution. One of these missense mutations was observed in a conserved region of the PH domain, the other two were found in the src homology domain 2 that is involved in phosphotyrosyl peptide binding. Two mutations were single base pair substitutions resulting in premature stop codons. In four patients abnormal Btk transcripts were found that were the result of aberrant splicing. One small deletion was observed causing a frameshift and a secondary premature termination signal. Characterisation of the mutations responsible for XLA allowed us to diagnose the disease conclusively and identify the phenotypically normal female carriers. Images PMID:9192269

  9. Dysferlin Gene Mutation Spectrum in a Large Cohort of Chinese Patients with Dysferlinopathy

    PubMed Central

    Jin, Su-Qin; Yu, Meng; Zhang, Wei; Lyu, He; Yuan, Yun; Wang, Zhao-Xia

    2016-01-01

    Background: Dysferlinopathy is caused by mutations in the dysferlin (DYSF) gene. Here, we described the genetic features of a large cohort of Chinese patients with this disease. Methods: Eighty-nine index patients were included in the study. DYSF gene analysis was performed by Sanger sequencing in 41 patients and targeted next generation sequencing (NGS) in 48 patients. Multiplex ligation-dependent probe amplification (MLPA) was performed to detect exon duplication/deletion in patients with only one pathogenic mutation. Results: Among the 89 index patients, 79 patients were demonstrated to carry two disease-causing (73 cases) or possibly disease-causing mutations (6 cases), including 26 patients with homozygous mutations. We identified 105 different mutations, including 59 novel ones. Notably, in 13 patients in whom only one pathogenic mutation was initially found by Sanger sequencing or NGS, 3 were further identified to carry exon deletions by MLPA. The mutations identified in this study appeared to cluster in the N-terminal region. Mutation types included missense mutations (30.06%), nonsense mutations (17.18%), frameshift mutations (30.67%), in-frame deletions (2.45%), intronic mutations (17.79%), and exonic rearrangement (1.84%). No genotype-phenotype correlation was identified. Conclusions: DYSF mutations in Chinese patients clustered in the N-terminal region of the gene. Exonic rearrangements were found in 23% of patients with only one pathogenic mutation identified by Sanger sequencing or NGS. The novel mutations found in this study greatly expanded the mutational spectrum of dysferlinopathy. PMID:27647186

  10. Rediscovery by Whole Genome Sequencing: Classical Mutations and Genome Polymorphisms in Neurospora crassa

    SciTech Connect

    McCluskey, Kevin; Wiest, Aric E.; Grigoriev, Igor V.; Lipzen, Anna; Martin, Joel; Schackwitz, Wendy; Baker, Scott E.

    2011-06-02

    Classical forward genetics has been foundational to modern biology, and has been the paradigm for characterizing the role of genes in shaping phenotypes for decades. In recent years, reverse genetics has been used to identify the functions of genes, via the intentional introduction of variation and subsequent evaluation in physiological, molecular, and even population contexts. These approaches are complementary and whole genome analysis serves as a bridge between the two. We report in this article the whole genome sequencing of eighteen classical mutant strains of Neurospora crassa and the putative identification of the mutations associated with corresponding mutant phenotypes. Although some strains carry multiple unique nonsynonymous, nonsense, or frameshift mutations, the combined power of limiting the scope of the search based on genetic markers and of using a comparative analysis among the eighteen genomes provides strong support for the association between mutation and phenotype. For ten of the mutants, the mutant phenotype is recapitulated in classical or gene deletion mutants in Neurospora or other filamentous fungi. From thirteen to 137 nonsense mutations are present in each strain and indel sizes are shown to be highly skewed in gene coding sequence. Significant additional genetic variation was found in the eighteen mutant strains, and this variability defines multiple alleles of many genes. These alleles may be useful in further genetic and molecular analysis of known and yet-to-be-discovered functions and they invite new interpretations of molecular and genetic interactions in classical mutant strains.

  11. Mutations in the gene for X-linked adrenoleukodystrophy in patients with different clinical phenotypes

    SciTech Connect

    Braun, A.; Ambach, H.; Kammerer, S.; Rolinski, B.; Roscher, A.; Rabl, W.; Stoeckler, S.; Gaertner, J.; Zierz, S.

    1995-04-01

    Recently, the gene for the most common peroxisomal disorder, X-linked adrenoleukodystrophy (X-ALD), has been described encoding a peroxisomal membrane transporter protein. We analyzed the entire protein-coding sequence of this gene by reverse-transcription PCR, SSCP, and DNA sequencing in five patients with different clinical expressions were cerebral childhood ALD, adrenomyecloneuropathy (AMN), and {open_quotes}Addison disease only{close_quotes} (AD) phenotype. In the three patients exhibiting the classical picture of severe childhood ALD we identified in the 5{prime} portion of the X-ALD gene a 38-bp deletion that causes a frameshift mutation, a 3-bp deletion leading to a deletion of an amino acid in the ATP-binding domain of the ALD protein, and a missense mutation. In the patient with the clinical phenotype of AMN, a nonsense mutation in codon 212, along with a second site mutation at codon 178, was observed. Analysis of the patient with the ADO phenotype revealed a further missense mutation at a highly conserved position in the ALDP/PMP70 comparison. The disruptive nature of two mutations (i.e., the frameshift and the nonsense mutation) in patients with biochemically proved childhood ALD and AMN further strongly supports the hypothesis that alterations in this gene play a crucial role in the pathogenesis of X-ALD. Since the current biochemical techniques for X-ALD carrier detection in affected families lack sufficient reliability, our procedure described for systematic mutation scanning is also capable of improving genetic counseling and prenatal diagnosis. 19 refs., 6 figs., 3 tabs.

  12. Predominance of the recurrent mutation R635X in the LAMB3 gene in European patients with Herlitz junctional epidermolysis bullosa has implications for mutation detection strategy.

    PubMed

    Pulkkinen, L; Meneguzzi, G; McGrath, J A; Xu, Y; Blanchet-Bardon, C; Ortonne, J P; Christiano, A M; Uitto, J

    1997-08-01

    Junctional forms of epidermolysis bullosa (JEB) are characterized by tissue separation at the level of the lamina lucida. We have recently disclosed specific mutations in the LAMA3, LAMB3, and LAMC2 genes encoding the subunit polypeptides of the anchoring filament protein laminin 5 in 66 families with different variants of JEB. Examination of the JEB mutation database revealed recurrence of a particular C-->T substitution at nucleotide position 1903 (exon 14) of LAMB3, resulting in the mutation R635X. The inheritance of this nonsense mutation was noted on different genetic backgrounds, suggesting that R635X is a hotspot mutation. In this study, we have performed mutation evaluation in a European cohort of 14 families with the lethal, Herlitz type of JEB (H-JEB). The families were first screened for the presence of the R635X mutation by restriction enzyme digestion of the PCR product corresponding to exon 14. Four of the probands were found to be homozygous and six were heterozygous for R635X. The remaining alleles were subjected to mutation screening by PCR amplification of individual exons of LAMB3 and LAMC2, followed by heteroduplex analysis and nucleotide sequencing. In three families (six alleles), mutations in LAMC2 were disclosed. In the remaining eight alleles, additional pathogenetic LAMB3 mutations were found. None of the patients had LAMA3 mutation. Thus, LAMB3 mutations accounted for 22 of 28 JEB alleles (79%), and a total of 14 of 22 LAMB3 alleles (64%) harbored the R635X mutation, signifying its prevalence as a predominant genetic lesion underlying H-JEB in this European cohort of patients. This recurrent mutation will facilitate screening of additional JEB patients for the purpose of prenatal testing of fetuses at risk for recurrence. PMID:9242513

  13. Missense and silent mutations in COL2A1 result in Stickler syndrome but via different molecular mechanisms.

    PubMed

    Richards, Allan J; Laidlaw, Maureen; Meredith, Sarah P; Shankar, Pallavi; Poulson, Arabella V; Scott, John D; Snead, Martin P

    2007-06-01

    Stickler syndrome due to mutations in COL2A1 is usually the result of premature termination codons and nonsense mediated decay resulting in haploinsufficiency of type II collagen. Here we present two missense mutations and one apparently silent mutation that each result in Stickler syndrome, but via different molecular mechanisms. One alters the translation initiating ATG codon. The second mutation is a unique glycine substitution in the minor collagen helix of the procollagen. To our knowledge a glycine substitution has not previously been reported in this region of fibrillar procollagens. The third mutation appears to be a silent change altering a GGC codon to GGT both for glycine, but use of a splicing reporter assay demonstrates that it results in missplicing and a shift in the reading frame.

  14. Nonsense-Mediated mRNA Decay Immunity Can Help Identify Human Polycistronic Transcripts

    PubMed Central

    Shahaf, Guy; Shweiki, Dorit

    2014-01-01

    Eukaryotic polycistronic transcription units are rare and only a few examples are known, mostly being the outcome of serendipitous discovery. We claim that nonsense-mediated mRNA decay (NMD) immune structure is a common characteristic of polycistronic transcripts, and that this immunity is an emergent property derived from all functional CDSs. The human RefSeq transcriptome was computationally screened for transcripts capable of eliciting NMD, and which contain an additional ORF(s) potentially capable of rescuing the transcript from NMD. Transcripts were further analyzed implementing domain-based strategies in order to estimate the potential of the candidate ORF to encode a functional protein. Consequently, we predict the existence of forty nine novel polycistronic transcripts. Experimental verification was carried out utilizing two different types of analyses. First, five Gene Expression Omnibus (GEO) datasets from published NMD-inhibition studies were used, aiming to explore whether a given mRNA is indeed insensitive to NMD. All known bicistronic transcripts and eleven out of the twelve predicted genes that were analyzed, displayed NMD insensitivity using various NMD inhibitors. For three genes, a mixed expression pattern was observed presenting both NMD sensitivity and insensitivity in different cell types. Second, we used published global translation initiation sequencing data from HEK293 cells to verify the existence of translation initiation sites in our predicted polycistronic genes. In five of our genes, the predicted rescuing uORFs are indeed identified as translation initiation sites, and in two additional genes, one of two predicted rescuing uORF is verified. These results validate our computational analysis and reinforce the possibility that NMD-immune architecture is a parameter by which polycistronic genes can be identified. Moreover, we present evidence for NMD-mediated regulation controlling the production of one or more proteins encoded in the

  15. A Nonsense Variant in COL6A1 in Landseer Dogs with Muscular Dystrophy

    PubMed Central

    Steffen, Frank; Bilzer, Thomas; Brands, Jan; Golini, Lorenzo; Jagannathan, Vidhya; Wiedmer, Michaela; Drögemüller, Michaela; Drögemüller, Cord; Leeb, Tosso

    2015-01-01

    A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age, and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal-recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the Illumina sequencing technology, we obtained a whole-genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared with the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single, private nonsynonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than 1000 control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. On the basis of the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy. PMID:26438297

  16. A Nonsense Variant in COL6A1 in Landseer Dogs with Muscular Dystrophy.

    PubMed

    Steffen, Frank; Bilzer, Thomas; Brands, Jan; Golini, Lorenzo; Jagannathan, Vidhya; Wiedmer, Michaela; Drögemüller, Michaela; Drögemüller, Cord; Leeb, Tosso

    2015-12-01

    A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age, and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal-recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the Illumina sequencing technology, we obtained a whole-genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared with the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single, private nonsynonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than 1000 control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. On the basis of the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy. PMID:26438297

  17. A Nonsense Variant in COL6A1 in Landseer Dogs with Muscular Dystrophy.

    PubMed

    Steffen, Frank; Bilzer, Thomas; Brands, Jan; Golini, Lorenzo; Jagannathan, Vidhya; Wiedmer, Michaela; Drögemüller, Michaela; Drögemüller, Cord; Leeb, Tosso

    2015-10-04

    A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age, and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal-recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the Illumina sequencing technology, we obtained a whole-genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared with the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single, private nonsynonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than 1000 control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. On the basis of the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy.

  18. Phenylalanine hydroxylase gene mutations in the United States: Report from the maternal PKU collaborative study

    SciTech Connect

    Guldberg, P.; Henriksen, K.F.; Guettler, F.

    1996-07-01

    The major cause of hyperphenylalaninemia is mutations in the gene encoding phenylalanine hydroxylase (PAH). The known mutations have been identified primarily in European patients. The purpose of this study was to determine the spectrum of mutations responsible for PAH deficiency in the United States. One hundred forty-nine patients enrolled in the Maternal PKU Collaborative Study were subjects for clinical and molecular investigations. PAH gene mutations associated with phenylketonuria (PKU) or mild hyperphenylalaninemia (MHP) were identified on 279 of 294 independent mutant chromosomes, a diagnostic efficiency of 95%. The spectrum is composed of 71 different mutations, including 47 missense mutations, 11 splice mutations, 5 nonsense mutations, and 8 microdeletions. Sixteen previously unreported mutations were identified. Among the novel mutations, five were found in patients with MHP, and the remainder were found in patients with PKU. The most common mutations were R408W, IVS12nt1g{r_arrow}a, and Y414C, accounting for 18.7%, 7.8% and 5.4% of the mutant chromosomes, respectively. Thirteen mutations had relative frequencies of 1%-5%, and 55 mutations each had frequencies {le}1%. The mutational spectrum corresponded to that observed for the European ancestry of the U.S. population. To evaluate the extent of allelic variation at the PAH locus within the United States in comparison with other populations, we used allele frequencies to calculate the homozygosity for 11 populations where >90% ascertainment has been obtained. The United States was shown to contain one of the most heterogeneous populations, with homozygosity values similar to Sicily and ethnically mixed sample populations in Europe. The extent of allelic heterogeneity must be a major determining factor in the choice of mutation-detection methodology for molecular diagnosis in PAH deficiency. 47 refs., 1 fig., 5 tabs.

  19. p16 Mutations in hereditary melanomas

    SciTech Connect

    Hussussian, C.J.; Struewing, J.P.; Goldstein, A.M.

    1994-09-01

    The p16 gene (CDK4 inhibitor) is located in chromosome 9p21, a region that shows linkage to hereditary melanoma and is deleted in many different tumors. p16 was analyzed in 19 families with hereditary melanoma by amplifying the entire coding region in 5 short segments and screening by SSCP under several conditions that should resolve >95% of polymorphisms. A total of 10 variants were detected in 15 families. The mutations detected included 7 missense, 1 silent, 1 nonsense, and one that destroyed a consensus splice donor site. One of the missense mutations was present in 5/21 spouses in these families, giving an estimated allele frequency of 0.12. Therefore the {triangle}436 [G{yields}A] variant is a common polymorphism and is not involved in the development of melanoma. However, there was strong evidence for the involvement of the other p16 mutations in five 9p21 linked families. In these families, a total of 17/19 individuals with melanoma inherited the mutant allele, while only 2/26 unaffected family members (1 with dysplastic nevi) and 0/13 spouses had the mutant alleles. In two additional 9p21 linked families, one segregated a silent mutation in 3/4 of the affected individuals, and the second only contained the common {triangle}436 [G{yields}A] mutation. In the two families with strong evidence of linkage to chromosome 1p36 and exclusion of linkage to 9p21, no SSCP variants were detected at p16 among 11 melanoma cases, except for a single affected individual who inherited the variant from an unaffected parent. These data confirm the existence of genetic heterogeneity in families with hereditary melanoma. Most (5/7) of the families with strong linkage to 9p21 had p16 missense mutations that segregated with the disease, while 2 families with strong linkage to chromosome 1p36 did not have any detectable p16 mutations that segregated with the disease. Further functional analyses of these mutations will clarify which are causally related to hereditary melanoma.

  20. R31C GNRH1 Mutation and Congenital Hypogonadotropic Hypogonadism

    PubMed Central

    Maione, Luigi; Albarel, Frederique; Bouchard, Philippe; Gallant, Megan; Flanagan, Colleen A.; Bobe, Regis; Cohen-Tannoudji, Joelle; Pivonello, Rosario; Colao, Annamaria; Brue, Thierry; Millar, Robert P.; Lombes, Marc; Young, Jacques; Guiochon-Mantel, Anne; Bouligand, Jerome

    2013-01-01

    Normosmic congenital hypogonadotropic hypogonadism (nCHH) is a rare reproductive disease leading to lack of puberty and infertility. Loss-of-function mutations of GNRH1 gene are a very rare cause of autosomal recessive nCHH. R31C GNRH1 is the only missense mutation that affects the conserved GnRH decapeptide sequence. This mutation was identified in a CpG islet in nine nCHH subjects from four unrelated families, giving evidence for a putative “hot spot”. Interestingly, all the nCHH patients carry this mutation in heterozygosis that strikingly contrasts with the recessive inheritance associated with frame shift and non-sense mutations. Therefore, after exclusion of a second genetic event, a comprehensive functional characterization of the mutant R31C GnRH was undertaken. Using different cellular models, we clearly demonstrate a dramatic reduction of the mutant decapeptide capacity to bind GnRH-receptor, to activate MAPK pathway and to trigger inositol phosphate accumulation and intracellular calcium mobilization. In addition it is less able than wild type to induce lh-beta transcription and LH secretion in gonadotrope cells. Finally, the absence of a negative dominance in vitro offers a unique opportunity to discuss the complex in vivo patho-physiology of this form of nCHH. PMID:23936060

  1. A novel mutation of the HNF1B gene associated with hypoplastic glomerulocystic kidney disease and neonatal renal failure: a case report and mutation update.

    PubMed

    Alvelos, Maria Inês; Rodrigues, Magda; Lobo, Luísa; Medeira, Ana; Sousa, Ana Berta; Simão, Carla; Lemos, Manuel Carlos

    2015-02-01

    Hepatocyte nuclear factor 1 beta (HNF1B) plays an important role in embryonic development, namely in the kidney, pancreas, liver, genital tract, and gut. Heterozygous germline mutations of HNF1B are associated with the renal cysts and diabetes syndrome (RCAD). Affected individuals may present a variety of renal developmental abnormalities and/or maturity-onset diabetes of the young (MODY). A Portuguese 19-month-old male infant was evaluated due to hypoplastic glomerulocystic kidney disease and renal dysfunction diagnosed in the neonatal period that progressed to stage 5 chronic renal disease during the first year of life. His mother was diagnosed with a solitary hypoplastic microcystic left kidney at age 20, with stage 2 chronic renal disease established at age 35, and presented bicornuate uterus, pancreatic atrophy, and gestational diabetes. DNA sequence analysis of HNF1B revealed a novel germline frameshift insertion (c.110_111insC or c.110dupC) in both the child and the mother. A review of the literature revealed a total of 106 different HNF1B mutations, in 236 mutation-positive families, comprising gross deletions (34%), missense mutations (31%), frameshift deletions or insertions (15%), nonsense mutations (11%), and splice-site mutations (8%). The study of this family with an unusual presentation of hypoplastic glomerulocystic kidney disease with neonatal renal dysfunction identified a previously unreported mutation of the HNF1B gene, thereby expanding the spectrum of known mutations associated with renal developmental disorders. PMID:25700310

  2. CDH23 Mutation and Phenotype Heterogeneity: A Profile of 107 Diverse Families with Usher Syndrome and Nonsyndromic Deafness

    PubMed Central

    Astuto, L. M.; Bork, J. M.; Weston, M. D.; Askew, J. W.; Fields, R. R.; Orten, D. J.; Ohliger, S. J.; Riazuddin, S.; Morell, R. J.; Khan, S.; Riazuddin, S.; Kremer, H.; van Hauwe, P.; Moller, C. G.; Cremers, C. W. R. J.; Ayuso, C.; Heckenlively, J. R.; Rohrschneider, K.; Spandau, U.; Greenberg, J.; Ramesar, R.; Reardon, W.; Bitoun, P.; Millan, J.; Legge, R.; Friedman, T. B.; Kimberling, W. J.

    2002-01-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP–like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia. PMID:12075507

  3. Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome.

    PubMed

    Hannibal, Mark C; Buckingham, Kati J; Ng, Sarah B; Ming, Jeffrey E; Beck, Anita E; McMillin, Margaret J; Gildersleeve, Heidi I; Bigham, Abigail W; Tabor, Holly K; Mefford, Heather C; Cook, Joseph; Yoshiura, Koh-ichiro; Matsumoto, Tadashi; Matsumoto, Naomichi; Miyake, Noriko; Tonoki, Hidefumi; Naritomi, Kenji; Kaname, Tadashi; Nagai, Toshiro; Ohashi, Hirofumi; Kurosawa, Kenji; Hou, Jia-Woei; Ohta, Tohru; Liang, Deshung; Sudo, Akira; Morris, Colleen A; Banka, Siddharth; Black, Graeme C; Clayton-Smith, Jill; Nickerson, Deborah A; Zackai, Elaine H; Shaikh, Tamim H; Donnai, Dian; Niikawa, Norio; Shendure, Jay; Bamshad, Michael J

    2011-07-01

    Kabuki syndrome is a rare, multiple malformation disorder characterized by a distinctive facial appearance, cardiac anomalies, skeletal abnormalities, and mild to moderate intellectual disability. Simplex cases make up the vast majority of the reported cases with Kabuki syndrome, but parent-to-child transmission in more than a half-dozen instances indicates that it is an autosomal dominant disorder. We recently reported that Kabuki syndrome is caused by mutations in MLL2, a gene that encodes a Trithorax-group histone methyltransferase, a protein important in the epigenetic control of active chromatin states. Here, we report on the screening of 110 families with Kabuki syndrome. MLL2 mutations were found in 81/110 (74%) of families. In simplex cases for which DNA was available from both parents, 25 mutations were confirmed to be de novo, while a transmitted MLL2 mutation was found in two of three familial cases. The majority of variants found to cause Kabuki syndrome were novel nonsense or frameshift mutations that are predicted to result in haploinsufficiency. The clinical characteristics of MLL2 mutation-positive cases did not differ significantly from MLL2 mutation-negative cases with the exception that renal anomalies were more common in MLL2 mutation-positive cases. These results are important for understanding the phenotypic consequences of MLL2 mutations for individuals and their families as well as for providing a basis for the identification of additional genes for Kabuki syndrome.

  4. Patched homologue 1 mutations in four Japanese families with basal cell nevus syndrome

    PubMed Central

    Matsuzawa, N; Nagao, T; Shimozato, K; Niikawa, N; Yoshiura, K‐i

    2006-01-01

    Aim To search for patched homologue 1 (PTCH1) mutations in four families with basal cell nevus syndrome (BCNS). Methods Mutation analysis of PTCH1 in unrelated Japanese families affected with BCNS was carried out by direct sequencing. Results Six novel PTCH1 mutations, 833G→A in exon 6, 1415C→A and 1451G→T in exon 10, 2798delC in exon 17, 2918–2925dupAGTTCCCT in exon 18 and 3956C→A in exon 23, were identified. Conclusions Among the six PTCH1 mutations, two frameshift mutations (2798delC and 2918–2925dupAGTTCCCT) and one nonsense mutation (833G→A) are predicted to lead to premature termination of PTCH1 protein translation. Three simultaneous mutations, 1415C→A (A472D) and 1451G→T (G484V) in exon 10, and 3956G→A (R1319H) in exon 23, were found on one allele in only affected members in one family and none of them were found among 90 unrelated healthy Japanese. The three mutations on one chromosome may have resulted from errors in the recombinational repair process and this is the first report on the PTCH1 mutations due to such a mechanism. PMID:17021131

  5. RAB23 Mutations in Carpenter Syndrome Imply an Unexpected Role for Hedgehog Signaling in Cranial-Suture Development and Obesity

    PubMed Central

    Jenkins, Dagan ; Seelow, Dominik ; Jehee, Fernanda S. ; Perlyn, Chad A. ; Alonso, Luís G. ; Bueno, Daniela F. ; Donnai, Dian ; Josifiova, Dragana ; Mathijssen, Irene M. J. ; Morton, Jenny E. V. ; Ørstavik, Karen Helene ; Sweeney, Elizabeth ; Wall, Steven A. ; Marsh, Jeffrey L. ; Nürnberg, Peter ; Passos-Bueno, Maria Rita ; Wilkie, Andrew O. M. 

    2007-01-01

    Carpenter syndrome is a pleiotropic disorder with autosomal recessive inheritance, the cardinal features of which include craniosynostosis, polysyndactyly, obesity, and cardiac defects. Using homozygosity mapping, we found linkage to chromosome 6p12.1-q12 and, in 15 independent families, identified five different mutations (four truncating and one missense) in RAB23, which encodes a member of the RAB guanosine triphosphatase (GTPase) family of vesicle transport proteins and acts as a negative regulator of hedgehog (HH) signaling. In 10 patients, the disease was caused by homozygosity for the same nonsense mutation, L145X, that resides on a common haplotype, indicative of a founder effect in patients of northern European descent. Surprisingly, nonsense mutations of Rab23 in open brain mice cause recessive embryonic lethality with neural-tube defects, suggesting a species difference in the requirement for RAB23 during early development. The discovery of RAB23 mutations in patients with Carpenter syndrome implicates HH signaling in cranial-suture biogenesis—an unexpected finding, given that craniosynostosis is not usually associated with mutations of other HH-pathway components—and provides a new molecular target for studies of obesity. PMID:17503333

  6. The CFTR frameshift mutation 3905insT and its effect at transcript and protein level.

    PubMed

    Sanz, Javier; von Känel, Thomas; Schneider, Mircea; Steiner, Bernhard; Schaller, André; Gallati, Sabina

    2010-02-01

    Cystic fibrosis (CF) is one of the most common genetic diseases in the Caucasian population and is characterized by chronic obstructive pulmonary disease, exocrine pancreatic insufficiency, and elevation of sodium and chloride concentrations in the sweat and infertility in men. The disease is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes a protein that functions as chloride channel at the apical membrane of different epithelia. Owing to the high genotypic and phenotypic disease heterogeneity, effects and consequences of the majority of the CFTR mutations have not yet been studied. Recently, the frameshift mutation 3905insT was identified as the second most frequent mutation in the Swiss population and found to be associated with a severe phenotype. The frameshift mutation produces a premature termination codon (PTC) in exon 20, and transcripts bearing this PTC are potential targets for degradation through nonsense-mediated mRNA decay (NMD) and/or for exon skipping through nonsense-associated alternative splicing (NAS). Using RT-PCR analysis in lymphocytes and different tissue types from patients carrying the mutation, we showed that the PTC introduced by the mutation does neither elicit a degradation of the mRNA through NMD nor an alternative splicing through NAS. Moreover, immunocytochemical analysis in nasal epithelial cells revealed a significantly reduced amount of CFTR at the apical membrane providing a possible molecular explanation for the more severe phenotype observed in F508del/3905insT compound heterozygotes compared with F508del homozygotes. However, further experiments are needed to elucidate the fate of the 3905insT CFTR in the cell after its biosynthesis.

  7. Mutational Spectrum in the Δ7-Sterol Reductase Gene and Genotype-Phenotype Correlation in 84 Patients with Smith-Lemli-Opitz Syndrome

    PubMed Central

    Witsch-Baumgartner, M.; Fitzky, B. U.; Ogorelkova, M.; Kraft, H. G.; Moebius, F. F.; Glossmann, H.; Seedorf, U.; Gillessen-Kaesbach, G.; Hoffmann, G. F.; Clayton, P.; Kelley, R. I.; Utermann, G.

    2000-01-01

    Summary Smith-Lemli-Opitz syndrome (SLOS), an autosomal recessive malformation syndrome, ranges in clinical severity from mild dysmorphism and moderate mental retardation to severe congenital malformation and intrauterine lethality. Mutations in the gene for Δ7-sterol reductase (DHCR7), which catalyzes the final step in cholesterol biosynthesis in the endoplasmic reticulum (ER), cause SLOS. We have determined, in 84 patients with clinically and biochemically characterized SLOS (detection rate 96%), the mutational spectrum in the DHCR7 gene. Forty different SLOS mutations, some frequent, were identified. On the basis of mutation type and expression studies in the HEK293-derived cell line tsA-201, we grouped mutations into four classes: nonsense and splice-site mutations resulting in putative null alleles, missense mutations in the transmembrane domains (TM), mutations in the 4th cytoplasmic loop (4L), and mutations in the C-terminal ER domain (CT). All but one of the tested missense mutations reduced protein stability. Concentrations of the cholesterol precursor 7-dehydrocholesterol and clinical severity scores correlated with mutation classes. The mildest clinical phenotypes were associated with TM and CT mutations, and the most severe types were associated with 0 and 4L mutations. Most homozygotes for null alleles had severe SLOS; one patient had a moderate phenotype. Homozygosity for 0 mutations in DHCR7 appears compatible with life, suggesting that cholesterol may be synthesized in the absence of this enzyme or that exogenous sources of cholesterol can be used. PMID:10677299

  8. Mutational spectrum in the Delta7-sterol reductase gene and genotype-phenotype correlation in 84 patients with Smith-Lemli-Opitz syndrome.

    PubMed

    Witsch-Baumgartner, M; Fitzky, B U; Ogorelkova, M; Kraft, H G; Moebius, F F; Glossmann, H; Seedorf, U; Gillessen-Kaesbach, G; Hoffmann, G F; Clayton, P; Kelley, R I; Utermann, G

    2000-02-01

    Smith-Lemli-Opitz syndrome (SLOS), an autosomal recessive malformation syndrome, ranges in clinical severity from mild dysmorphism and moderate mental retardation to severe congenital malformation and intrauterine lethality. Mutations in the gene for Delta7-sterol reductase (DHCR7), which catalyzes the final step in cholesterol biosynthesis in the endoplasmic reticulum (ER), cause SLOS. We have determined, in 84 patients with clinically and biochemically characterized SLOS (detection rate 96%), the mutational spectrum in the DHCR7 gene. Forty different SLOS mutations, some frequent, were identified. On the basis of mutation type and expression studies in the HEK293-derived cell line tsA-201, we grouped mutations into four classes: nonsense and splice-site mutations resulting in putative null alleles, missense mutations in the transmembrane domains (TM), mutations in the 4th cytoplasmic loop (4L), and mutations in the C-terminal ER domain (CT). All but one of the tested missense mutations reduced protein stability. Concentrations of the cholesterol precursor 7-dehydrocholesterol and clinical severity scores correlated with mutation classes. The mildest clinical phenotypes were associated with TM and CT mutations, and the most severe types were associated with 0 and 4L mutations. Most homozygotes for null alleles had severe SLOS; one patient had a moderate phenotype. Homozygosity for 0 mutations in DHCR7 appears compatible with life, suggesting that cholesterol may be synthesized in the absence of this enzyme or that exogenous sources of cholesterol can be used. PMID:10677299

  9. Foxp2 mutations impair auditory-motor association learning.

    PubMed

    Kurt, Simone; Fisher, Simon E; Ehret, Günter

    2012-01-01

    Heterozygous mutations of the human FOXP2 transcription factor gene cause the best-described examples of monogenic speech and language disorders. Acquisition of proficient spoken language involves auditory-guided vocal learning, a specialized form of sensory-motor association learning. The impact of etiological Foxp2 mutations on learning of auditory-motor associations in mammals has not been determined yet. Here, we directly assess this type of learning using a newly developed conditioned avoidance paradigm in a shuttle-box for mice. We show striking deficits in mice heterozygous for either of two different Foxp2 mutations previously implicated in human speech disorders. Both mutations cause delays in acquiring new motor skills. The magnitude of impairments in association learning, however, depends on the nature of the mutation. Mice with a missense mutation in the DNA-binding domain are able to learn, but at a much slower rate than wild type animals, while mice carrying an early nonsense mutation learn very little. These results are consistent with expression of Foxp2 in distributed circuits of the cortex, striatum and cerebellum that are known to play key roles in acquisition of motor skills and sensory-motor association learning, and suggest differing in vivo effects for distinct variants of the Foxp2 protein. Given the importance of such networks for the acquisition of human spoken language, and the fact that similar mutations in human FOXP2 cause problems with speech development, this work opens up a new perspective on the use of mouse models for understanding pathways underlying speech and language disorders.

  10. Spectrum of CHD7 Mutations in 110 Individuals with CHARGE Syndrome and Genotype-Phenotype Correlation

    PubMed Central

    Lalani, Seema R.; Safiullah, Arsalan M.; Fernbach, Susan D.; Harutyunyan, Karine G.; Thaller, Christina; Peterson, Leif E.; McPherson, John D.; Gibbs, Richard A.; White, Lisa D.; Hefner, Margaret; Davenport, Sandra L. H.; Graham, John M.; Bacino, Carlos A.; Glass, Nancy L.; Towbin, Jeffrey A.; Craigen, William J.; Neish, Steven R.; Lin, Angela E.; Belmont, John W.

    2006-01-01

    CHARGE syndrome is a well-established multiple-malformation syndrome with distinctive consensus diagnostic criteria. Characteristic associated anomalies include ocular coloboma, choanal atresia, cranial nerve defects, distinctive external and inner ear abnormalities, hearing loss, cardiovascular malformations, urogenital anomalies, and growth retardation. Recently, mutations of the chromodomain helicase DNA-binding protein gene CHD7 were reported to be a major cause of CHARGE syndrome. We sequenced the CHD7 gene in 110 individuals who had received the clinical diagnosis of CHARGE syndrome, and we detected mutations in 64 (58%). Mutations were distributed throughout the coding exons and conserved splice sites of CHD7. Of the 64 mutations, 47 (73%) predicted premature truncation of the protein. These included nonsense and frameshift mutations, which most likely lead to haploinsufficiency. Phenotypically, the mutation-positive group was more likely to exhibit cardiovascular malformations (54 of 59 in the mutation-positive group vs. 30 of 42 in the mutation-negative group; P=.014), coloboma of the eye (55 of 62 in the mutation-positive group vs. 30 of 43 in the mutation-negative group; P=.022), and facial asymmetry, often caused by seventh cranial nerve abnormalities (36 of 56 in the mutation-positive group vs. 13 of 39 in the mutation-negative group; P=.004). Mouse embryo whole-mount and section in situ hybridization showed the expression of Chd7 in the outflow tract of the heart, optic vesicle, facio-acoustic preganglion complex, brain, olfactory pit, and mandibular component of the first branchial arch. Microarray gene-expression analysis showed a signature pattern of gene-expression differences that distinguished the individuals with CHARGE syndrome with CHD7 mutation from the controls. We conclude that cardiovascular malformations, coloboma, and facial asymmetry are common findings in CHARGE syndrome caused by CHD7 mutation. PMID:16400610

  11. Concurrent Mutations in ATM and Genes Associated with Common γ Chain Signaling in Peripheral T Cell Lymphoma.

    PubMed

    Simpson, Haley M; Khan, Rashid Z; Song, Chang; Sharma, Deva; Sadashivaiah, Kavitha; Furusawa, Aki; Liu, Xinyue; Nagaraj, Sushma; Sengamalay, Naomi; Sadzewicz, Lisa; Tallon, Luke J; Chen, Qing C; Livak, Ferenc; Rapoport, Aaron P; Kimball, Amy; Banerjee, Arnob

    2015-01-01

    Peripheral T cell lymphoma (PTCL) is a heterogeneous malignancy with poor response to current therapeutic strategies and incompletely characterized genetics. We conducted whole exome sequencing of matched PTCL and non-malignant samples from 12 patients, spanning 8 subtypes, to identify potential oncogenic mutations in PTCL. Analysis of the mutations identified using computational algorithms, CHASM, PolyPhen2, PROVEAN, and MutationAssessor to predict the impact of these mutations on protein function and PTCL tumorigenesis, revealed 104 somatic mutations that were selected as high impact by all four algorithms. Our analysis identified recurrent somatic missense or nonsense mutations in 70 genes, 9 of which contained mutations predicted significant by all 4 algorithms: ATM, RUNX1T1, WDR17, NTRK3, TP53, TRMT12, CACNA2D1, INTS8, and KCNH8. We observed somatic mutations in ATM (ataxia telangiectasia-mutated) in 5 out of the 12 samples and mutations in the common gamma chain (γc) signaling pathway (JAK3, IL2RG, STAT5B) in 3 samples, all of which also harbored mutations in ATM. Our findings contribute insights into the genetics of PTCL and suggest a relationship between γc signaling and ATM in T cell malignancy. PMID:26536348

  12. Concurrent Mutations in ATM and Genes Associated with Common γ Chain Signaling in Peripheral T Cell Lymphoma

    PubMed Central

    Simpson, Haley M.; Khan, Rashid Z.; Song, Chang; Sharma, Deva; Sadashivaiah, Kavitha; Furusawa, Aki; Liu, Xinyue; Nagaraj, Sushma; Sengamalay, Naomi; Sadzewicz, Lisa; Tallon, Luke J.; Chen, Qing C.; Livak, Ferenc; Rapoport, Aaron P.; Kimball, Amy; Banerjee, Arnob

    2015-01-01

    Peripheral T cell lymphoma (PTCL) is a heterogeneous malignancy with poor response to current therapeutic strategies and incompletely characterized genetics. We conducted whole exome sequencing of matched PTCL and non-malignant samples from 12 patients, spanning 8 subtypes, to identify potential oncogenic mutations in PTCL. Analysis of the mutations identified using computational algorithms, CHASM, PolyPhen2, PROVEAN, and MutationAssessor to predict the impact of these mutations on protein function and PTCL tumorigenesis, revealed 104 somatic mutations that were selected as high impact by all four algorithms. Our analysis identified recurrent somatic missense or nonsense mutations in 70 genes, 9 of which contained mutations predicted significant by all 4 algorithms: ATM, RUNX1T1, WDR17, NTRK3, TP53, TRMT12, CACNA2D1, INTS8, and KCNH8. We observed somatic mutations in ATM (ataxia telangiectasia-mutated) in 5 out of the 12 samples and mutations in the common gamma chain (γc) signaling pathway (JAK3, IL2RG, STAT5B) in 3 samples, all of which also harbored mutations in ATM. Our findings contribute insights into the genetics of PTCL and suggest a relationship between γc signaling and ATM in T cell malignancy. PMID:26536348

  13. Normosmic Congenital Hypogonadotropic Hypogonadism Due to TAC3/TACR3 Mutations: Characterization of Neuroendocrine Phenotypes and Novel Mutations

    PubMed Central

    Voican, Adela; Amazit, Larbi; Trabado, Séverine; Fagart, Jérôme; Meduri, Geri; Brailly-Tabard, Sylvie; Chanson, Philippe; Lecomte, Pierre; Guiochon-Mantel, Anne; Young, Jacques

    2011-01-01

    Context TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH) (OMIM #146110). In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway. Objective To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations. Results From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%). We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants) found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn) probably caused by the misfolding of the mutated NK3R protein. We found a statistically significant (p<0.0001) higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio. Conclusion The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations. PMID:22031817

  14. Genetic analysis in Factor XI deficient patients from central China: identification of one novel and seven recurrent mutations.

    PubMed

    Liu, Hui; Wang, Hua-Fang; Tang, Liang; Yang, Yan; Wang, Qing-Yun; Zeng, Wei; Wu, Ying-Ying; Cheng, Zhi-Peng; Hu, Bei; Guo, Tao; Hu, Yu

    2015-04-25

    Factor XI (FXI) deficiency is a rare bleeding disorder with a range of manifestations from asymptomatic to trauma related bleeding. To identify mutations in FXI-deficient patients and characterize the phenotype-genotype relationship, we studied six patients and their 18 family members in central China. Five patients were identified by presurgical or routine laboratory screening but had no bleeding symptoms. Only one patient exhibited excessive injury- and surgical-related bleeding. Eight mutations were detected, including five nonsense mutations (p.Tyr369*, p.Arg72*, p.Gln281*, p.Trp519*, and p.Trp246*), two missense mutations (p.Thr40Ile and p.Ala430Thr), and a 4-bp deletion in a splice site (c.1136-4delGTTG); one mutation was novel (p.Thr40Ile). In vitro, the p.Thr40Ile mutant protein exhibited impaired secretion and function. Five of the patients were homozygous or compound heterozygous, but only one nonsense mutation was found in Patient 2. In these patients, bleeding tendency was not correlated with FXI levels or with a single heterozygous mutation. Thrombin generation tests could not distinguish the bleeder from non-bleeders. In conclusion, we reported 8 mutations in the FXI gene (F11) leading to FXI deficiency. Moreover, the functional consequences of a novel mutation leading to FXI deficiency have been elucidated. More cases are needed to find any signature of founder effect in the Chinese population and its potential relationship with other Asian population. PMID:25681615

  15. The million mutation project: A new approach to genetics in Caenorhabditis elegans

    PubMed Central

    Thompson, Owen; Edgley, Mark; Strasbourger, Pnina; Flibotte, Stephane; Ewing, Brent; Adair, Ryan; Au, Vinci; Chaudhry, Iasha; Fernando, Lisa; Hutter, Harald; Kieffer, Armelle; Lau, Joanne; Lee, Norris; Miller, Angela; Raymant, Greta; Shen, Bin; Shendure, Jay; Taylor, Jon; Turner, Emily H.; Hillier, LaDeana W.; Moerman, Donald G.; Waterston, Robert H.

    2013-01-01

    We have created a library of 2007 mutagenized Caenorhabditis elegans strains, each sequenced to a target depth of 15-fold coverage, to provide the research community with mutant alleles for each of the worm's more than 20,000 genes. The library contains over 800,000 unique single nucleotide variants (SNVs) with an average of eight nonsynonymous changes per gene and more than 16,000 insertion/deletion (indel) and copy number changes, providing an unprecedented genetic resource for this multicellular organism. To supplement this collection, we also sequenced 40 wild isolates, identifying more than 630,000 unique SNVs and 220,000 indels. Comparison of the two sets demonstrates that the mutant collection has a much richer array of both nonsense and missense mutations than the wild isolate set. We also find a wide range of rDNA and telomere repeat copy number in both sets. Scanning the mutant collection for molecular phenotypes reveals a nonsense suppressor as well as strains with higher levels of indels that harbor mutations in DNA repair genes and strains with abundant males associated with him mutations. All the strains are available through the Caenorhabditis Genetics Center and all the sequence changes have been deposited in WormBase and are available through an interactive website. PMID:23800452

  16. Arg924X homozygous mutation in insulin receptor gene in a Tunisian patient with Donohue syndrome.

    PubMed

    Azzabi, Ons; Jilani, Houweyda; Rejeb, Imen; Siala, Nadia; Elaribi, Yasmina; Hizem, Syrine; Selmi, Ines; Halioui, Sonia; Lascols, Olivier; Jemaa, Lamia Ben; Maherzi, Ahmed

    2016-06-01

    Donohue syndrome (DS) is a rare and lethal autosomal recessive disease caused by mutations in the insulin receptor (INSR) gene, manifesting marked insulin resistance, severe growth retardation, hypertrichosis, and characteristic dysmorphic features. We describe a new case of Donohue syndrome born at 37 weeks' gestation of unrelated parents and presented with intra-uterine growth retardation, nipple hypertrophy, macropenis, distended abdomen, hirsutism and dysmorphic features. The clinical course showed failure to thrive, and episodes of alternating hypoglycemia and hyperglycemia. Laboratory tests revealed direct hyperbilirubinemia. The diagnosis of Donohue syndrome was established based on the above clinical characteristics and determination of the INSR mutation. He was found to have homozygous nonsense mutation c. 2270 C>T (Arg924X) at exon 14 of the INSR gene. He later developed enterocolitis and died at 3 months old. Prenatal diagnosis was performed for the family via chorionic villous biopsy. We try to explain gastrointestinal dysfunction seen in our patient. PMID:26974131

  17. A novel KMT2D mutation resulting in Kabuki syndrome: A case report

    PubMed Central

    Lu, Jun; Mo, Guiling; Ling, Yaojun; Ji, Lijuan

    2016-01-01

    Kabuki syndrome (KS) is a rare genetic syndrome characterized by multiple congenital anomalies and varying degrees of mental retardation. Patients with KS often present with facial, skeletal, visceral and dermatoglyphic abnormalities, cardiac anomalies and immunological defects. Mutation of the lysine methyltransferase 2D (KMT2D) gene (formerly known as MLL2) is the primary cause of KS. The present study reported the case of a 4-year-old Chinese girl who presented with atypical KS, including atypical facial features, unclear speech and suspected mental retardation. A diagnosis of KS was confirmed by genetic testing, which revealed a nonsense mutation in exon 16 of KMT2D (c.4485C>A, Tyr1495Ter). To the best of our knowledge, this is a novel mutation that has not been reported previously. The present case underscores the importance of genetic testing in KS diagnosis. PMID:27573763

  18. A novel KMT2D mutation resulting in Kabuki syndrome: A case report.

    PubMed

    Lu, Jun; Mo, Guiling; Ling, Yaojun; Ji, Lijuan

    2016-10-01

    Kabuki syndrome (KS) is a rare genetic syndrome characterized by multiple congenital anomalies and varying degrees of mental retardation. Patients with KS often present with facial, skeletal, visceral and dermatoglyphic abnormalities, cardiac anomalies and immunological defects. Mutation of the lysine methyltransferase 2D (KMT2D) gene (formerly known as MLL2) is the primary cause of KS. The present study reported the case of a 4‑year‑old Chinese girl who presented with atypical KS, including atypical facial features, unclear speech and suspected mental retardation. A diagnosis of KS was confirmed by genetic testing, which revealed a nonsense mutation in exon 16 of KMT2D (c.4485C>A, Tyr1495Ter). To the best of our knowledge, this is a novel mutation that has not been reported previously. The present case underscores the importance of genetic testing in KS diagnosis. PMID:27573763

  19. De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum.

    PubMed

    Kuechler, Alma; Willemsen, Marjolein H; Albrecht, Beate; Bacino, Carlos A; Bartholomew, Dennis W; van Bokhoven, Hans; van den Boogaard, Marie Jose H; Bramswig, Nuria; Büttner, Christian; Cremer, Kirsten; Czeschik, Johanna Christina; Engels, Hartmut; van Gassen, Koen; Graf, Elisabeth; van Haelst, Mieke; He, Weimin; Hogue, Jacob S; Kempers, Marlies; Koolen, David; Monroe, Glen; de Munnik, Sonja; Pastore, Matthew; Reis, André; Reuter, Miriam S; Tegay, David H; Veltman, Joris; Visser, Gepke; van Hasselt, Peter; Smeets, Eric E J; Vissers, Lisenka; Wieland, Thomas; Wissink, Willemijn; Yntema, Helger; Zink, Alexander Michael; Strom, Tim M; Lüdecke, Hermann-Josef; Kleefstra, Tjitske; Wieczorek, Dagmar

    2015-01-01

    Recently, de novo heterozygous loss-of-function mutations in beta-catenin (CTNNB1) were described for the first time in four individuals with intellectual disability (ID), microcephaly, limited speech and (progressive) spasticity, and functional consequences of CTNNB1 deficiency were characterized in a mouse model. Beta-catenin is a key downstream component of the canonical Wnt signaling pathway. Somatic gain-of-function mutations have already been found in various tumor types, whereas germline loss-of-function mutations in animal models have been shown to influence neuronal development and maturation. We report on 16 additional individuals from 15 families in whom we newly identified de novo loss-of-function CTNNB1 mutations (six nonsense, five frameshift, one missense, two splice mutation, and one whole gene deletion). All patients have ID, motor delay and speech impairment (both mostly severe) and abnormal muscle tone (truncal hypotonia and distal hypertonia/spasticity). The craniofacial phenotype comprised microcephaly (typically -2 to -4 SD) in 12 of 16 and some overlapping facial features in all individuals (broad nasal tip, small alae nasi, long and/or flat philtrum, thin upper lip vermillion). With this detailed phenotypic characterization of 16 additional individuals, we expand and further establish the clinical and mutational spectrum of inactivating CTNNB1 mutations and thereby clinically delineate this new CTNNB1 haploinsufficiency syndrome.

  20. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes.

    PubMed

    Roth, Stephen M; Walsh, Sean; Liu, Dongmei; Metter, E Jeffrey; Ferrucci, Luigi; Hurley, Ben F

    2008-03-01

    Previous reports have shown a lower proportion of the ACTN3 X/X genotype (R577X nonsense polymorphism) in sprint-related athletes compared to the general population, possibly attributed to impairment of muscle function related to alpha-actinin-3 deficiency. In the present study, we examined the frequency of the X/X genotype in both Black and White elite-level bodybuilders and strength athletes in comparison to the general population. A reference population of 668 Whites (363 men and 305 women) and 208 Blacks (98 men and 110 women) was genotyped for the ACTN3 R577X polymorphism. Strength athletes (52 white and 23 black; 4 women) consisting predominantly of world class and locally competitive bodybuilders, and elite powerlifters were recruited and similarly genotyped. Significantly lower X/X genotype frequencies were observed in the athletes (6.7%) vs controls (16.3%; P=0.005). The X/X genotype was significantly lower in White athletes (9.7%) vs controls (19.9%; P=0.018). No black athletes (0%) were observed with the X/X genotype, though this finding only approached statistical significance vs controls (4.8%; P=0.10). The results indicate that the ACTN3 R577X nonsense allele (X) is under-represented in elite strength athletes, consistent with previous reports indicating that alpha-actinin-3 deficiency appears to impair muscle performance.

  1. Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1

    PubMed Central

    Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu

    2016-01-01

    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome.

  2. Genetic heterogeneity of pseudoxanthoma elasticum: the Chinese signature profile of ABCC6 and ENPP1 mutations.

    PubMed

    Jin, Liang; Jiang, Qiujie; Wu, Zhengsheng; Shao, Changxia; Zhou, Yong; Yang, Luting; Uitto, Jouni; Wang, Gang

    2015-05-01

    Pseudoxanthoma elasticum (PXE), an autosomal recessive disorder characterized by ectopic mineralization, is caused by mutations in the ABCC6 gene. We examined clinically 29 Chinese PXE patients from unrelated families, so far the largest cohort of Asian PXE patients. In a subset of 22 patients, we sequenced ABCC6 and another candidate gene, ENPP1, and conducted pathogenicity analyses for each variant. We identified a total of 17 distinct mutations in ABCC6, 15 of them being, to our knowledge, previously unreported, including 5 frameshift and 10 missense variants. In addition, a missense mutation in combination with a recurrent nonsense mutation in ENPP1 was discovered in a pediatric PXE case. No cases with p.R1141X or del23-29 mutations, common in Caucasian patient populations, were identified. The 10 missense mutations in ABCC6 were expressed in the mouse liver via hydrodynamic tail-vein injections. One mutant protein showed cytoplasmic accumulation indicating abnormal subcellular trafficking, while the other nine mutants showed correct plasma membrane location. These nine mutations were further investigated for their pathogenicity using a recently developed zebrafish mRNA rescue assay. Minimal rescue of the morpholino-induced phenotype was achieved with eight of the nine mutant human ABCC6 mRNAs tested, implying pathogenicity. This study demonstrates that the Chinese PXE population harbors unique ABCC6 mutations. These genetic data have implications for allele-specific therapy currently being developed for PXE. PMID:25615550

  3. Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability

    PubMed Central

    Hamdan, Fadi F.; Gauthier, Julie; Araki, Yoichi; Lin, Da-Ting; Yoshizawa, Yuhki; Higashi, Kyohei; Park, A-Reum; Spiegelman, Dan; Dobrzeniecka, Sylvia; Piton, Amélie; Tomitori, Hideyuki; Daoud, Hussein; Massicotte, Christine; Henrion, Edouard; Diallo, Ousmane; Shekarabi, Masoud; Marineau, Claude; Shevell, Michael; Maranda, Bruno; Mitchell, Grant; Nadeau, Amélie; D'Anjou, Guy; Vanasse, Michel; Srour, Myriam; Lafrenière, Ronald G.; Drapeau, Pierre; Lacaille, Jean Claude; Kim, Eunjoon; Lee, Jae-Ran; Igarashi, Kazuei; Huganir, Richard L.; Rouleau, Guy A.; Michaud, Jacques L.

    2011-01-01

    Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder. PMID:21376300

  4. Unique and recurrent mutations in the filaggrin gene in Singaporean Chinese patients with ichthyosis vulgaris.

    PubMed

    Chen, Huijia; Ho, Jean C C; Sandilands, Aileen; Chan, Yuin Chew; Giam, Yoke Chin; Evans, Alan T; Lane, E Birgitte; McLean, W H Irwin

    2008-07-01

    Filaggrin is an abundant protein of the outer epidermis that is essential for terminal differentiation of keratinocytes and formation of an effective barrier against water loss and pathogen/allergen/irritant invasion. Recent investigations in Europe and Japan have revealed null mutations in the filaggrin gene (FLG) as the underlying cause of ichthyosis vulgaris (IV), a common skin disorder characterised by dry skin, palmar hyperlinearity and keratosis pilaris. Following the development of a strategy for the comprehensive analysis of FLG, we have identified five unique mutations and one recurrent mutation in Singaporean Chinese IV patients. Mutation 441delA is located in the profilaggrin S100 domain, whereas two additional frameshift mutations, 1249insG and 7945delA, occur in the first partial filaggrin repeat ("repeat 0") and in filaggrin repeat 7, respectively. Both nonsense mutations Q2147X and E2422X are found in filaggrin repeat 6, whereas R4307X was found on one of the longer size variant alleles of FLG, within duplicated repeat 10.2. Mutation E2422X, previously found in a single Dutch patient, was found in one Singaporean IV patient and at a low frequency in Asian population controls. Our study confirms the presence of population-specific as well as recurrent FLG mutations in Singapore.

  5. Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1

    PubMed Central

    Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu

    2016-01-01

    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome. PMID:27672653

  6. Mutational analysis of the androgen receptor gene in two Chinese families with complete androgen insensitivity syndrome

    PubMed Central

    WANG, SONG; XU, HAIKUN; AN, WEI; ZHU, DECHUN; LI, DEJUN

    2016-01-01

    Androgens are essential for normal male sex differentiation and are responsible for the normal development of male secondary sexual characteristics at puberty. The physiological effects of androgens are mediated by the androgen receptor (AR). Mutations in the AR gene are the most common cause of androgen insensitivity syndrome. The present study undertook a genetic analysis of the AR gene in two unrelated families affected by complete androgen insensitivity syndrome (CAIS) in China. In family 1, a previously reported nonsense mutation (G-to-A; p.W751X) was identified in exon 5 of the AR gene. In addition, a novel missense mutation was detected in exon 6 of the AR gene from family 2; this mutation resulted in a predicted amino acid change from phenylalanine to serine at codon 804 (T-to-C; p.F804S) in the ligand-binding domain (LBD) of AR. Computer simulation of the structural changes generated by the p.F804S substitution revealed marked conformational alterations in the hydrophobic core responsible for the stability and function of the AR-LBD. In conclusion, the present study identified two mutations from two unrelated Chinese families affected by CAIS. The novel mutation (p.F804S) may provide insights into the molecular mechanism underlying CAIS. Furthermore, it expands on the number of mutational hot spots in the international AR mutation database, which may be useful in the future for prenatal diagnosis and genetic counseling. PMID:27284311

  7. GPR143 Gene Mutations in Five Chinese Families with X-linked Congenital Nystagmus.

    PubMed

    Han, Ruifang; Wang, Xiaojuan; Wang, Dongjie; Wang, Liming; Yuan, Zhongfang; Ying, Ming; Li, Ningdong

    2015-01-01

    The ocular albinism type I (OA1) is clinically characterized by impaired visual acuity, nystagmus, iris hypopigmentation with translucency, albinotic fundus, and macular hypoplasia together with normally pigmented skin and hair. However, it is easily misdiagnosed as congenital idiopathic nystagmus in some Chinese patients with OA1 caused by the G-protein coupled receptor 143 (GPR143) gene mutations. Mutations in the FERM domain-containing 7 (FRMD7) gene are responsible for the X-linked congenital idiopathic nystagmus. In this study, five Chinese families initially diagnosed as X-linked congenital nystagmus were recruited and patients underwent ophthalmological examinations. After direct sequencing of the FRMD7 and GPR143 genes, five mutations in GPR143 gene were detected in each of the five families, including a novel nonsense mutation of c.333G>A (p.W111X), two novel splicing mutations of c.360+1G>C and c.659-1G>A, a novel small deletion mutation of c.43_50dupGACGCAGC (p.L20PfsX25), and a previously reported missense mutation of c.703G>A (p.E235K). Optical coherence tomography (OCT) examination showed foveal hypoplasia in all the affected patients with nystagmus. Our study further expands the GPR143 mutation spectrum and contributes to the study of GPR143 molecular pathogenesis. Molecular diagnosis and optical coherence tomography (OCT) are two useful tools for differential diagnosis. PMID:26160353

  8. GPR143 Gene Mutations in Five Chinese Families with X-linked Congenital Nystagmus

    PubMed Central

    Han, Ruifang; Wang, Xiaojuan; Wang, Dongjie; Wang, Liming; Yuan, Zhongfang; Ying, Ming; Li, Ningdong

    2015-01-01

    The ocular albinism type I (OA1) is clinically characterized by impaired visual acuity, nystagmus, iris hypopigmentation with translucency, albinotic fundus, and macular hypoplasia together with normally pigmented skin and hair. However, it is easily misdiagnosed as congenital idiopathic nystagmus in some Chinese patients with OA1 caused by the G-protein coupled receptor 143 (GPR143) gene mutations. Mutations in the FERM domain–containing 7 (FRMD7) gene are responsible for the X-linked congenital idiopathic nystagmus. In this study, five Chinese families initially diagnosed as X-linked congenital nystagmus were recruited and patients underwent ophthalmological examinations. After direct sequencing of the FRMD7 and GPR143 genes, five mutations in GPR143 gene were detected in each of the five families, including a novel nonsense mutation of c.333G>A (p.W111X), two novel splicing mutations of c.360+1G>C and c.659-1G>A, a novel small deletion mutation of c.43_50dupGACGCAGC (p.L20PfsX25), and a previously reported missense mutation of c.703G>A (p.E235K). Optical coherence tomography (OCT) examination showed foveal hypoplasia in all the affected patients with nystagmus. Our study further expands the GPR143 mutation spectrum and contributes to the study of GPR143 molecular pathogenesis. Molecular diagnosis and optical coherence tomography (OCT) are two useful tools for differential diagnosis. PMID:26160353

  9. Germline mutation analysis of MLH1 and MSH2 in Malaysian Lynch syndrome patients

    PubMed Central

    Zahary, Mohd Nizam; Kaur, Gurjeet; Abu Hassan, Muhammad Radzi; Singh, Harjinder; Naik, Venkatesh R; Ankathil, Ravindran

    2012-01-01

    AIM: To investigate the protein expression profile of mismatch repair (MMR) genes in suspected cases of Lynch syndrome and to characterize the associated germline mutations. METHODS: Immunohistochemical analysis of tumor samples was performed to determine the protein expression profile of MMR protein. Germline mutation screening was carried out on peripheral blood samples. The entire exon regions of MLH1 and MSH2 genes were amplified by polymerase chain reaction, screened by denaturing high performance liquid chromatography (dHPLC) and analyzed by DNA sequencing to characterize the germline mutations. RESULTS: Three out of 34 tissue samples (8.8%) and four out of 34 tissue samples (11.8%) showed loss of nuclear staining by immunohistochemistry, indicating the absence of MLH1 and MSH2 protein expression in carcinoma cells, respectively. dHPLC analysis followed by DNA sequencing showed these samples to have germline mutations of MSH2 gene. However, no deleterious mutations were identified in any of the 19 exons or coding regions of MLH1 gene, but we were able to identify MLH1 promoter polymorphism, -93G > A (rs1800734), in 21 out of 34 patients (61.8%). We identified one novel mutation, transversion mutation c.2005G > C, which resulted in a missense mutation (Gly669Arg), a transversion mutation in exon 1, c.142G > T, which resulted in a nonsense mutation (Glu48Stop) and splice-site mutation, c.2006-6T > C, which was adjacent to exon 13 of MSH2 gene. CONCLUSION: Germline mutations were identified in four Malaysian Lynch syndrome patients. Immunohistochemical analysis of tumor tissue proved to be a good pre-screening test before proceeding to germline mutation analysis of DNA MMR genes. PMID:22371642

  10. SOX2 mutation causes anophthalmia, hearing loss, and brain anomalies.

    PubMed

    Hagstrom, Stephanie A; Pauer, Gayle J T; Reid, Janet; Simpson, Ellen; Crowe, Sue; Maumenee, Irene H; Traboulsi, Elias I

    2005-10-01

    The SOX2 transcription factor is expressed early in the embryonic stem cells of the blastocyst and later in the neural stem cells. It is a member of the SOX family of proteins that carry a DNA-binding high-mobility group domain and additional domains that regulate embryonic development and cell fate determinations. We surveyed 93 patients with severe eye malformations for mutations in SOX2. Here, we report a novel nonsense mutation in one female patient with bilateral clinical anophthalmia, absence of all optic pathways, and other neurological abnormalities. The mutation, Q155X, creates a premature termination codon early in the transcriptional activation domain and is likely to be a null allele. Our data show that mutations in SOX2 can cause not only anophthalmia, but also aplasia of the optic nerve, chiasm and optic tract, as well as modest bilateral sensorineural hearing loss, and global developmental delay, underscoring the importance of SOX2 in early human eye and brain development.

  11. Mutation in FAM134B causing severe hereditary sensory neuropathy

    PubMed Central

    Murphy, Sinead M; Davidson, Gabrielle L; Brandner, Sebastian; Houlden, Henry; Reilly, Mary M

    2013-01-01

    The hereditary sensory and autonomic neuropathies (HSAN) are rare inherited neuropathies presenting with sensory loss and complications, including ulcers, infections, osteomyelitis and amputations. Usually, sensory symptoms predominate although motor involvement can occur. Autonomic features may be minimal (then hereditary sensory neuropathy, HSN, is preferred). HSAN has been classified into five subtypes depending on clinical presentation.1 Hereditary sensory and autonomic neuropathy II (HSANII or HSNII) is an early onset, autosomal recessive sensory neuropathy with ulcero-mutilating complications due to mutations in the HSN2 isoform of the WNK1 gene.2 Recently, a similar phenotype was described in a Saudi-Arabian family, and a homozygous nonsense mutation found in a new gene, FAM134B (family with sequence similarity 134, member B), encoding a newly identified Golgi protein. The index case in this family was initially thought to have leprosy. Three additional families (out of 75 patients) with similar phenotypes were found to have homozygous loss of function mutations in FAM134B.3 Here, we report the clinical and pathological findings in a further patient with HSNII due to a homozygous mutation in FAM134B. PMID:21115472

  12. Exome Sequencing of Uterine Leiomyosarcomas Identifies Frequent Mutations in TP53, ATRX, and MED12

    PubMed Central

    Mäkinen, Netta; Aavikko, Mervi; Heikkinen, Tuomas; Taipale, Minna; Taipale, Jussi; Koivisto-Korander, Riitta; Bützow, Ralf; Vahteristo, Pia

    2016-01-01

    Uterine leiomyosarcomas (ULMSs) are aggressive smooth muscle tumors associated with poor clinical outcome. Despite previous cytogenetic and molecular studies, their molecular background has remained elusive. To examine somatic variation in ULMS, we performed exome sequencing on 19 tumors. Altogether, 43 genes were mutated in at least two ULMSs. Most frequently mutated genes included tumor protein P53 (TP53; 6/19; 33%), alpha thalassemia/mental retardation syndrome X-linked (ATRX; 5/19; 26%), and mediator complex subunit 12 (MED12; 4/19; 21%). Unlike ATRX mutations, both TP53 and MED12 alterations have repeatedly been associated with ULMSs. All the observed ATRX alterations were either nonsense or frameshift mutations. ATRX protein levels were reliably analyzed by immunohistochemistry in altogether 44 ULMSs, and the majority of tumors (23/44; 52%) showed clearly reduced expression. Loss of ATRX expression has been associated with alternative lengthening of telomeres (ALT), and thus the telomere length was analyzed with telomere-specific fluorescence in situ hybridization. The ALT phenotype was confirmed in all ULMSs showing diminished ATRX expression. Exome data also revealed one nonsense mutation in death-domain associated protein (DAXX), another gene previously associated with ALT, and the tumor showed ALT positivity. In conclusion, exome sequencing revealed that TP53, ATRX, and MED12 are frequently mutated in ULMSs. ALT phenotype was commonly seen in tumors, indicating that ATR inhibitors, which were recently suggested as possible new drugs for ATRX-deficient tumors, could provide a potential novel therapeutic option for ULMS. PMID:26891131

  13. Exome Sequencing of Uterine Leiomyosarcomas Identifies Frequent Mutations in TP53, ATRX, and MED12.

    PubMed

    Mäkinen, Netta; Aavikko, Mervi; Heikkinen, Tuomas; Taipale, Minna; Taipale, Jussi; Koivisto-Korander, Riitta; Bützow, Ralf; Vahteristo, Pia

    2016-02-01

    Uterine leiomyosarcomas (ULMSs) are aggressive smooth muscle tumors associated with poor clinical outcome. Despite previous cytogenetic and molecular studies, their molecular background has remained elusive. To examine somatic variation in ULMS, we performed exome sequencing on 19 tumors. Altogether, 43 genes were mutated in at least two ULMSs. Most frequently mutated genes included tumor protein P53 (TP53; 6/19; 33%), alpha thalassemia/mental retardation syndrome X-linked (ATRX; 5/19; 26%), and mediator complex subunit 12 (MED12; 4/19; 21%). Unlike ATRX mutations, both TP53 and MED12 alterations have repeatedly been associated with ULMSs. All the observed ATRX alterations were either nonsense or frameshift mutations. ATRX protein levels were reliably analyzed by immunohistochemistry in altogether 44 ULMSs, and the majority of tumors (23/44; 52%) showed clearly reduced expression. Loss of ATRX expression has been associated with alternative lengthening of telomeres (ALT), and thus the telomere length was analyzed with telomere-specific fluorescence in situ hybridization. The ALT phenotype was confirmed in all ULMSs showing diminished ATRX expression. Exome data also revealed one nonsense mutation in death-domain associated protein (DAXX), another gene previously associated with ALT, and the tumor showed ALT positivity. In conclusion, exome sequencing revealed that TP53, ATRX, and MED12 are frequently mutated in ULMSs. ALT phenotype was commonly seen in tumors, indicating that ATR inhibitors, which were recently suggested as possible new drugs for ATRX-deficient tumors, could provide a potential novel therapeutic option for ULMS. PMID:26891131

  14. Novel KIF7 Mutation in a Tunisian Boy with Acrocallosal Syndrome: Case Report and Review of the Literature

    PubMed Central

    Ibisler, Aysegül; Hehr, Ute; Barth, Andre; Koch, Margarete; Epplen, Jörg T.; Hoffjan, Sabine

    2015-01-01

    Acrocallosal syndrome (ACLS) is a rare autosomal recessive disorder characterized by agenesis of the corpus callosum, facial dysmorphism, postaxial polydactyly of the hands as well as preaxial polydactyly of the feet, and developmental delay. Mutations in the KIF7 gene, encoding a molecule within the Sonic hedgehog (SHH) pathway, have been identified as causative for ACLS but also for the fatal hydrolethalus syndrome and some cases of Joubert syndrome. We report here on a Tunisian boy who shows the clinical characteristics of ACLS and was found to have a novel homozygous KIF7 nonsense mutation. Further, we summarize the current knowledge about the clinical spectrum associated with KIF7 mutations as well as genetic and/or phenotypic overlap with ciliopathies and other mutations in the SHH pathway. PMID:26648833

  15. Identification of a Novel p.Q1772X ANK1 Mutation in a Korean Family with Hereditary Spherocytosis

    PubMed Central

    Jang, Hoon; Kim, So Won; Lee, Min Goo; Koh, Hong; Lee, Ji Hyun

    2015-01-01

    Hereditary spherocytosis (HS), a common form of inherited hemolytic anemia, is a heterogeneous group of disorders with regard to clinical severity, protein defects, and mode of inheritance. Causal mutations in at least five genes have been reported so far. Because multiple genes have been associated with HS, clinical genetic testing that relies on direct sequencing will be a challenge. In this study, we used whole exome sequencing to identify a novel nonsense mutation in ANK1 (p.Q1772X, NM_020476) that resulted in a truncated protein in a Korean patient with HS. Sanger sequencing confirmed the two affected individuals in the patient’s family were heterozygous for the mutation. This is the first report of a Korean family that carries an ANK1 mutation responsible for HS. Our results demonstrate that next generation sequencing is a powerful approach for rapidly determining the genetic etiology of HS. PMID:26107955

  16. Mutations in NSUN2 Cause Autosomal- Recessive Intellectual Disability

    PubMed Central

    Abbasi-Moheb, Lia; Mertel, Sara; Gonsior, Melanie; Nouri-Vahid, Leyla; Kahrizi, Kimia; Cirak, Sebahattin; Wieczorek, Dagmar; Motazacker, M. Mahdi; Esmaeeli-Nieh, Sahar; Cremer, Kirsten; Weißmann, Robert; Tzschach, Andreas; Garshasbi, Masoud; Abedini, Seyedeh S.; Najmabadi, Hossein; Ropers, H. Hilger; Sigrist, Stephan J.; Kuss, Andreas W.

    2012-01-01

    With a prevalence between 1 and 3%, hereditary forms of intellectual disability (ID) are among the most important problems in health care. Particularly, autosomal-recessive forms of the disorder have a very heterogeneous molecular basis, and genes with an increased number of disease-causing mutations are not common. Here, we report on three different mutations (two nonsense mutations, c.679C>T [p.Gln227∗] and c.1114C>T [p.Gln372∗], as well as one splicing mutation, g.6622224A>C [p.Ile179Argfs∗192]) that cause a loss of the tRNA-methyltransferase-encoding NSUN2 main transcript in homozygotes. We identified the mutations by sequencing exons and exon-intron boundaries within the genomic region where the linkage intervals of three independent consanguineous families of Iranian and Kurdish origin overlapped with the previously described MRT5 locus. In order to gain further evidence concerning the effect of a loss of NSUN2 on memory and learning, we constructed a Drosophila model by deleting the NSUN2 ortholog, CG6133, and investigated the mutants by using molecular and behavioral approaches. When the Drosophila melanogaster NSUN2 ortholog was deleted, severe short-term-memory (STM) deficits were observed; STM could be rescued by re-expression of the wild-type protein in the nervous system. The humans homozygous for NSUN2 mutations showed an overlapping phenotype consisting of moderate to severe ID and facial dysmorphism (which includes a long face, characteristic eyebrows, a long nose, and a small chin), suggesting that mutations in this gene might even induce a syndromic form of ID. Moreover, our observations from the Drosophila model point toward an evolutionarily conserved role of RNA methylation in normal cognitive development. PMID:22541559

  17. Novel mutations in PXDN cause microphthalmia and anterior segment dysgenesis.

    PubMed

    Choi, Alex; Lao, Richard; Ling-Fung Tang, Paul; Wan, Eunice; Mayer, Wasima; Bardakjian, Tanya; Shaw, Gary M; Kwok, Pui-Yan; Schneider, Adele; Slavotinek, Anne

    2015-03-01

    We used exome sequencing to study a non-consanguineous family with two children who had anterior segment dysgenesis, sclerocornea, microphthalmia, hypotonia and developmental delays. Sanger sequencing verified two Peroxidasin (PXDN) mutations in both sibs--a maternally inherited, nonsense mutation, c.1021C>T predicting p.(Arg341*), and a paternally inherited, 23-basepair deletion causing a frameshift and premature protein truncation, c.2375_2397del23, predicting p.(Leu792Hisfs*67). We re-examined exome data from 20 other patients with structural eye defects and identified two additional PXDN mutations in a sporadic male with bilateral microphthalmia, cataracts and anterior segment dysgenesis--a maternally inherited, frameshift mutation, c.1192delT, predicting p.(Tyr398Thrfs*40) and a paternally inherited, missense substitution that was predicted to be deleterious, c.947 A>C, predicting p.(Gln316Pro). Mutations in PXDN were previously reported in three families with congenital cataracts, microcornea, sclerocornea and developmental glaucoma. The gene is expressed in corneal epithelium and is secreted into the extracellular matrix. Defective peroxidasin has been shown to impair sulfilimine bond formation in collagen IV, a constituent of the basement membrane, implying that the eye defects result because of loss of basement membrane integrity in the developing eye. Our finding of a broader phenotype than previously appreciated for PXDN mutations is typical for exome-sequencing studies, which have proven to be highly effective for mutation detection in patients with atypical presentations. We conclude that PXDN sequencing should be considered in microphthalmia with anterior segment dysgenesis.

  18. The effect of the 'Gait keeper' mutation in the DMRT3 gene on gaiting ability in Icelandic horses.

    PubMed

    Kristjansson, T; Bjornsdottir, S; Sigurdsson, A; Andersson, L S; Lindgren, G; Helyar, S J; Klonowski, A M; Arnason, T

    2014-12-01

    A nonsense mutation in DMRT3 ('Gait keeper' mutation) has a predominant effect on gaiting ability in horses, being permissive for the ability to perform lateral gaits and having a favourable effect on speed capacity in trot. The DMRT3 mutant allele (A) has been found in high frequency in gaited breeds and breeds bred for harness racing, while other horse breeds were homozygous for the wild-type allele (C). The aim of this study was to evaluate further the effect of the DMRT3 nonsense mutation on the gait quality and speed capacity in the multigaited Icelandic horse and demonstrate how the frequencies of the A- and C- alleles have changed in the Icelandic horse population in recent decades. It was confirmed that homozygosity for the DMRT3 nonsense mutation relates to the ability to pace. It further had a favourable effect on scores in breeding field tests for the lateral gait tölt, demonstrated by better beat quality, speed capacity and suppleness. Horses with the CA genotype had on the other hand significantly higher scores for walk, trot, canter and gallop, and they performed better beat and suspension in trot and gallop. These results indicate that the AA genotype reinforces the coordination of ipsilateral legs, with the subsequent negative effect on the synchronized movement of diagonal legs compared with the CA genotype. The frequency of the A-allele has increased in recent decades with a corresponding decrease in the frequency of the C-allele. The estimated frequency of the A-allele in the Icelandic horse population in 2012 was 0.94. Selective breeding for lateral gaits in the Icelandic horse population has apparently altered the frequency of DMRT3 genotypes with a predicted loss of the C-allele in relatively few years. The results have practical implications for breeding and training of Icelandic horses and other gaited horse breeds.

  19. Ten novel ORF15 mutations confirm mutational hot spot in the RPGR gene in European patients with X-linked retinitis pigmentosa.

    PubMed

    Pusch, Carsten M; Broghammer, Martina; Jurklies, Bernhard; Besch, Dorothea; Jacobi, Felix K

    2002-11-01

    RGPR was the first gene found to be mutated in XLRP, the subtype of RP displaying the most severe form of retinal degeneration with partial or complete blindness in the third or fourth decade of life. Despite the RP3 locus on Xp21.1 accounting for 60-90% of XLRP, only 10-20% of identified RPGR mutations were reported in earlier analyses. This discrepancy appeared to be resolved when Vervoort et al. identified a mutational hot spot in a new purine-rich 3' exon (ORF15) that accounted for 60% of their XLRP patients [Vervoort et al., 2000]. In our mutation screening of 37 unrelated European XLRP patients we identified two recently described deletions and 10 novel mutations in exon ORF15 of RPGR, 4 of which were nonsense and 6 frameshift mutations. The latter included one duplication and 5 deletion mutations, all of which lead to a downstream premature termination. No mutations were detected in the additionally screened new exon ORF14. The data reported here, together with previous findings, document a significant clustering of mutations as well as polymorphisms in ORF15 of RPGR. In our unselected XLRP patient population, ORF15 mutations constitute 32% of cases, a finding that contradicts the results of Vervoort and coworkers [Vervoort et al., 2000] but is in agreement with a more recent study on North American XLRP patients [Breuer et al., 2002]. The observed prevalence is sufficient to justify an initial mutation screening of ORF15 in the genetically heterogeneous group of XLRP.

  20. Protein Structure-Function Relationship at Work: Learning from Myopathy Mutations of the Slow Skeletal Muscle Isoform of Troponin T

    PubMed Central

    Mondal, Anupom; Jin, J.-P.

    2016-01-01

    Troponin T (TnT) is the sarcomeric thin filament anchoring subunit of the troponin complex in striated muscles. A nonsense mutation in exon 11 of the slow skeletal muscle isoform of TnT (ssTnT) gene (TNNT1) was found in the Amish populations in Pennsylvania and Ohio. This single nucleotide substitution causes a truncation of the ssTnT protein at Glu180 and the loss of the C-terminal tropomyosin (Tm)-binding site 2. As a consequence, it abolishes the myofilament integration of ssTnT and the loss of function causes an autosomal recessive nemaline myopathy (NM). More TNNT1 mutations have recently been reported in non-Amish ethnic groups with similar recessive NM phenotypes. A nonsense mutation in exon 9 truncates ssTnT at Ser108, deleting Tm-binding site 2 and a part of the middle region Tm-binding site 1. Two splicing site mutations result in truncation of ssTnT at Leu203 or deletion of the exon 14-encoded C-terminal end segment. Another splicing mutation causes an internal deletion of the 39 amino acids encoded by exon 8, partially damaging Tm-binding site 1. The three splicing mutations of TNNT1 all preserve the high affinity Tm-binding site 2 but still present recessive NM phenotypes. The molecular mechanisms for these mutations to cause myopathy provide interesting models to study and understand the structure-function relationship of TnT. This focused review summarizes the current knowledge of TnT isoform regulation, structure-function relationship of TnT and how various ssTnT mutations cause recessive NM, in order to promote in depth studies for further understanding the pathogenesis and pathophysiology of TNNT1 myopathies toward the development of effective treatments. PMID:27790152

  1. A splice site mutation in HERC1 leads to syndromic intellectual disability with macrocephaly and facial dysmorphism: Further delineation of the phenotypic spectrum.

    PubMed

    Aggarwal, Shagun; Bhowmik, Aneek Das; Ramprasad, Vedam L; Murugan, Sakthivel; Dalal, Ashwin

    2016-07-01

    We report on a sib pair of Indian origin presenting with intellectual disability, dysmorphism, and macrocephaly. Exome sequencing revealed a homozygous splice site HERC1 mutation in both probands. Functional analysis revealed use of an alternate splice site resulting in formation of a downstream stop codon and nonsense mediated decay. In the light of recent reports of HERC1 mutations in two families with a similar phenotypic presentation, this report reiterates the pathogenic nature and clinical consequences of HERC1 disruption. © 2016 Wiley Periodicals, Inc. PMID:27108999

  2. Novel Nonsense Variants c.58C>T (p.Q20X) and c.256G>T (p.E85X) in the CHEK2 Gene Identified dentified in Breast Cancer Patients from Balochistan.

    PubMed

    Baloch, Abdul Hameed; Khosa, Ahmad Nawaz; Bangulzai, Nasrullah; Shuja, Jamila; Naseeb, Hafiz Khush; Jan, Mohammad; Marghazani, Illahi Bakhsh; Kakar, Masood-Ul-Haq; Baloch, Dost Mohammad; Cheema, Abdul Majeed; Ahmad, Jamil

    2016-01-01

    Breast cancer is the most commonly occurring and leading cause of cancer deaths among women globally. Hereditary cases account 5-10% of all the cases and CHEK2 is considered as a moderate penetrance breast cancer risk gene. CHEK2 plays a crucial role in response to DNA damage to promote cell cycle arrest and repair DNA damage or induce apoptosis. Our objective in the current study was to analyze mutations in the CHEK2 gene related to breast cancer in Balochistan. A total of 271 individuals including breast cancer patients and normal subjects were enrolled. All 14 exons of CHEK2 were amplified and sequenced. The majority of the patients (>95%) had invasive ductal carcinomas (IDCs), 52.1% were diagnosed with tumor grade III and 56.1% and 27.5% were diagnosed with advance stages III and IV. Two novel nonsense variants i.e. c.58C>T (P.Q20X) and c.256G>T (p.E85X) at exon 1 and 2 in two breast cancer patients were identified in the current study. Both the variants identified were novel and have not been reported elsewhere.

  3. Novel Nonsense Variants c.58C>T (p.Q20X) and c.256G>T (p.E85X) in the CHEK2 Gene Identified in Breast Cancer Patients from Balochistan.

    PubMed

    Baloch, Abdul Hameed; Khosa, Ahmad Nawaz; Bangulzai, Nasrullah; Shuja, Jamila; Naseeb, Hafiz Khush; Jan, Mohammad; Marghazani, Illahi Bakhsh; Kakar, MasoodulHaq; Baloch, Dost Mohammad; Cheema, Abdul Majeed; Ahmad, Jamil

    2016-01-01

    Breast cancer is very common and the leading cause of cancer deaths among women globally. Hereditary cases account for 510% of the total burden and CHEK2, which plays crucial role in response to DNA damage to promote cell cycle arrest and repair or induce apoptosis, is considered as a moderate penetrance breast cancer risk gene. Our objective in the current study was to analyze mutations in related to breast cancer. A total of 271 individuals including breast cancer patients and normal subjects were enrolled and all 14 exons of CHEK2 were amplified and sequenced. The majority of the patients (>95%) were affected with invasive ductal carcinoma (IDC), 52.1% were diagnosed with grade III tumors and 56.2% and 27.5% with advanced stages III and IV. Two novel nonsense variants i.e. c.58C>T (P.Q20X) and c.256G>T (p.E85X) at exon 1 and 2 in two breast cancer patients were identified, both novel and not reported elsewhere.

  4. Novel Nonsense Variants c.58C>T (p.Q20X) and c.256G>T (p.E85X) in the CHEK2 Gene Identified in Breast Cancer Patients from Balochistan.

    PubMed

    Baloch, Abdul Hameed; Khosa, Ahmad Nawaz; Bangulzai, Nasrullah; Shuja, Jamila; Naseeb, Hafiz Khush; Jan, Mohammad; Marghazani, Illahi Bakhsh; Kakar, MasoodulHaq; Baloch, Dost Mohammad; Cheema, Abdul Majeed; Ahmad, Jamil

    2016-01-01

    Breast cancer is very common and the leading cause of cancer deaths among women globally. Hereditary cases account for 510% of the total burden and CHEK2, which plays crucial role in response to DNA damage to promote cell cycle arrest and repair or induce apoptosis, is considered as a moderate penetrance breast cancer risk gene. Our objective in the current study was to analyze mutations in related to breast cancer. A total of 271 individuals including breast cancer patients and normal subjects were enrolled and all 14 exons of CHEK2 were amplified and sequenced. The majority of the patients (>95%) were affected with invasive ductal carcinoma (IDC), 52.1% were diagnosed with grade III tumors and 56.2% and 27.5% with advanced stages III and IV. Two novel nonsense variants i.e. c.58C>T (P.Q20X) and c.256G>T (p.E85X) at exon 1 and 2 in two breast cancer patients were identified, both novel and not reported elsewhere. PMID:27510020

  5. New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system

    PubMed Central

    Anantharaman, Vivek; Aravind, L

    2003-01-01

    Background Several prokaryotic plasmids maintain themselves in their hosts by means of diverse post-segregational cell killing systems. Recent findings suggest that chromosomally encoded copies of toxins and antitoxins of post-segregational cell killing systems - such as the RelE system - might function as regulatory switches under stress conditions. The RelE toxin cleaves ribosome-associated transcripts, whereas another post-segregational cell killing toxin, ParE, functions as a gyrase inhibitor. Results Using sequence profile analysis we were able unify the RelE- and ParE-type toxins with several families of small, uncharacterized proteins from diverse bacteria and archaea into a single superfamily. Gene neighborhood analysis showed that the majority of these proteins were encoded by genes in characteristic neighborhoods, in which genes encoding toxins always co-occurred with genes encoding transcription factors that are also antitoxins. The transcription factors accompanying the RelE/ParE superfamily may belong to unrelated or distantly related superfamilies, however. We used this conserved neighborhood template to transitively search genomes and identify novel post-segregational cell killing-related systems. One of these novel systems, observed in several prokaryotes, contained a predicted toxin with a PilT-N terminal (PIN) domain, which is also found in proteins of the eukaryotic nonsense-mediated RNA decay system. These searches also identified novel transcription factors (antitoxins) in post-segregational cell killing systems. Furthermore, the toxin Doc defines a potential metalloenzyme superfamily, with novel representatives in bacteria, archaea and eukaryotes, that probably acts on nucleic acids. Conclusions The tightly maintained gene neighborhoods of post-segregational cell killing-related systems appear to have evolved by in situ displacement of genes for toxins or antitoxins by functionally equivalent but evolutionarily unrelated genes. We predict that

  6. Mutation in LEMD3 (Man1) Associated with Osteopoikilosis and Late-Onset Generalized Morphea: A New Buschke-Ollendorf Syndrome Variant.

    PubMed

    Korman, Benjamin; Wei, Jun; Laumann, Anne; Ferguson, Polly; Varga, John

    2016-01-01

    Introduction. Buschke-Ollendorf syndrome (BOS) is an uncommon syndrome characterized by osteopoikilosis and other bone abnormalities, accompanied by skin lesions, most frequently connective tissue nevi. BOS is caused by mutations in the LEMD3 gene, which encodes the inner nuclear membrane protein Man1. We describe a unique case of osteopoikilosis associated with late-onset localized scleroderma and familial LEMD3 mutations. Case Report. A 72-year-old woman presented with adult-onset diffuse morphea and bullous skin lesions. Evaluation revealed multiple hyperostotic lesions (osteopoikilosis) suggestive of BOS. DNA sequencing identified a previously undescribed nonsense mutation (Trp621X) in the LEMD3 gene encoding Man1. Two additional family members were found to have osteopoikilosis and carry the same LEMD3 mutation. Conclusions and Relevance. We report a unique familial LEMD3 mutation in an individual with osteopoikilosis and late-onset morphea. We propose that this constellation represents a novel syndromic variant of BOS. PMID:27382493

  7. Mutation in LEMD3 (Man1) Associated with Osteopoikilosis and Late-Onset Generalized Morphea: A New Buschke-Ollendorf Syndrome Variant

    PubMed Central

    Korman, Benjamin; Wei, Jun; Laumann, Anne; Ferguson, Polly; Varga, John

    2016-01-01

    Introduction. Buschke-Ollendorf syndrome (BOS) is an uncommon syndrome characterized by osteopoikilosis and other bone abnormalities, accompanied by skin lesions, most frequently connective tissue nevi. BOS is caused by mutations in the LEMD3 gene, which encodes the inner nuclear membrane protein Man1. We describe a unique case of osteopoikilosis associated with late-onset localized scleroderma and familial LEMD3 mutations. Case Report. A 72-year-old woman presented with adult-onset diffuse morphea and bullous skin lesions. Evaluation revealed multiple hyperostotic lesions (osteopoikilosis) suggestive of BOS. DNA sequencing identified a previously undescribed nonsense mutation (Trp621X) in the LEMD3 gene encoding Man1. Two additional family members were found to have osteopoikilosis and carry the same LEMD3 mutation. Conclusions and Relevance. We report a unique familial LEMD3 mutation in an individual with osteopoikilosis and late-onset morphea. We propose that this constellation represents a novel syndromic variant of BOS. PMID:27382493

  8. First molecular analysis of F8 gene in algeria: identification of two novel mutations.

    PubMed

    Abdi, Meriem; Zemani-Fodil, Faouzia; Fodil, Mostefa; Aberkane, Meriem Samia; Touhami, Hadj; Saidi-Mehtar, Nadhira; Costa, Catherine; Boudjema, Abdallah

    2014-10-01

    The aim of this study was to detect the genetic alterations in the Factor 8 gene in 26 patients from Western Algeria. We detected the presence of "intron 22 inversion" with long-range polymerase chain reaction (PCR). Negative patients for this inversion were analyzed for "intron 1 inversion" using multiplex PCR. Patients who were negative for both inversions were analyzed using a direct sequencing. Deleterious effects of novel mutations on protein were assayed with bioinformatics tools. Causing mutations were identified in 85.71% of the families, including 11 "intron 22 inversion," 1 "intron 1 inversion," and 6 different point mutations (2 nonsense, 1 splice site, and 3 missense mutations). Among these mutations, c.2189G > A (p.Cys711Tyr) and c.5219+1G>T are novel. This is the first study that reports spectrum of mutations in the Factor 8 gene in the Western Algerian population. Knowledge of these mutations is important for genetic counseling and medical care of affected families.

  9. Mucopolysaccharidosis IVA: Four new exonic mutations in patients with N-acetylgalactosamine-6-sulfate sulfatase deficiency

    SciTech Connect

    Tomatsu, Shunji; Fukuda, Seiji; Yamagishi, Atsushi

    1996-05-01

    We report four new mutations in Japanese patients with mucopolysaccharidosis IVA (MPSIVA) who were heterozygous for a common double gene deletion. A nonsense mutation of CAG to TAG at codon 148 in exon 4 was identified, resulting in a change of Q to a stop codon and three missense mutations: V (GTC) to A (GCC) at codon 138 in exon 4, P (CCC) to S (TCC) at codon 151 in exon 5, and P (CCC) to L (CTC) at codon 151 in exon 5. Introduction of these mutations into the normal GALNS cDNA and transient expression in cultured fibroblasts resulted in a significant decrease in the enzyme activity. V138A and Q148X mutations result in changes of restriction site, which were analyzed by restriction-enzyme assay. P151S and P151L mutations that did not alter the restriction site were detected by direct sequencing or allele specific oligohybridization. Detection of the double gene deletion was initially done using Southern blots and was confirmed by PCR. Haplotypes were determined using seven polymorphisms to the GALNS locus in families with the double gene deletion. Haplotype analysis showed that the common double gene deletion occurred on a single haplotype, except for some variation in a VNTR-like polymorphism. This finding is consistent with a common founder for all individuals with this mutation. 48 refs., 5 figs., 1 tab.

  10. The spectrum of RB1 germ-line mutations in hereditary retinoblastoma

    SciTech Connect

    Lohmann, D.R.; Brandt, B.; Passarge, E.

    1996-05-01

    We have searched for germ-line RB1 mutations in 119 patients with hereditary retinoblastoma. Previous investigations by Southern blot hybridization and PCR fragment-length analysis had revealed mutations in 48 patients. Here we report on the analysis of the remaining 71 patients. By applying heteroduplex analysis, nonisotopic SSCP, and direct sequencing, we detected germ-line mutations resulting in premature termination codons or disruption of splice signals in 51 (72%) of the 71 patients. Four patients also showed rare sequence variants. No region of the RB1 gene was preferentially involved in single base substitutions. Recurrent transitions were observed at most of the 14 CGA codons within the RB1. No mutation was observed in exons 25-27, although this region contains two CGA codons. This suggests that mutations within the 3{prime}-terminal region of the RB1 gene may not be oncogenic. When these data were combined with the results of our previous investigations, mutations were identified in a total of 99 (83%) of 119 patients. The spectrum comprises 15% large deletions, 26% small length alterations, and 42% base substitutions. No correlation between the location of frameshift or nonsense mutations and phenotypic features, including age at diagnosis, the number of tumor foci, and manifestation of monocular tumors was observed. 42 refs., 3 figs., 1 tab.

  11. Specific filaggrin mutations cause ichthyosis vulgaris and are significantly associated with atopic dermatitis in Japan.

    PubMed

    Nomura, Toshifumi; Akiyama, Masashi; Sandilands, Aileen; Nemoto-Hasebe, Ikue; Sakai, Kaori; Nagasaki, Akari; Ota, Mitsuhito; Hata, Hiroo; Evans, Alan T; Palmer, Colin N A; Shimizu, Hiroshi; McLean, W H Irwin

    2008-06-01

    Mutations in the gene encoding filaggrin (FLG) have been identified as the cause of ichthyosis vulgaris (IV) and shown to be major predisposing factors for atopic dermatitis (AD). However, these studies have been mainly carried out in European populations. In early 2007, we identified two Oriental-specific FLG mutations in four Japanese families with IV and reported that filaggrin mutations were also significant predisposing factors for AD in Japan. However, the frequency of FLG mutations observed in our Japanese AD cohort (5.6%), was much lower than that seen in Europeans (up to 48%). Here, we studied a further seven Japanese families with IV and identified two additional nonsense mutations in FLG, S2889X, and S3296X. We found that more than 20% of patients in our Japanese AD case series carry FLG mutations, and there is significant statistical association between the four mutations and AD (chi(2) P=8.4 x 10(-6); heterozygote odds ratio 7.57, 95% CI 2.84-23.03). These data emphasize that skin-barrier impairment due to reduced filaggrin expression plays an important role in the pathogenesis of AD and sheds further light on the genetic architecture of atopy in Japan.

  12. Identification of novel PKD1 and PKD2 mutations in a Chinese population with autosomal dominant polycystic kidney disease

    PubMed Central

    Liu, Bei; Chen, Song-Chang; Yang, Yan-Mei; Yan, Kai; Qian, Ye-Qing; Zhang, Jun-Yu; Hu, Yu-Ting; Dong, Min-Yue; Jin, Fan; Huang, He-Feng; Xu, Chen-Ming

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequently inherited renal diseases caused by mutations in PKD1 and PKD2. We performed mutational analyses of PKD genes in 49 unrelated patients using direct PCR-sequencing and multiplex ligation-dependent probe amplification (MLPA) for PKD1 and PKD2. RT-PCR analysis was also performed in a family with a novel PKD2 splicing mutation. Disease-causing mutations were identified in 44 (89.8%) of the patients: 42 (95.5%) of the patients showed mutations in PKD1, and 2 (4.5%) showed mutations in PKD2. Ten nonsense, 17 frameshift, 4 splicing and one in-frame mutation were found in 32 of the patients. Large rearrangements were found in 3 patients, and missense mutations were found in 9 patients. Approximately 61.4% (27/44) of the mutations are first reported with a known mutation rate of 38.6%. RNA analysis of a novel PKD2 mutation (c.595_595 + 14delGGTAAGAGCGCGCGA) suggested monoallelic expression of the wild-type allele. Furthermore, patients with PKD1-truncating mutations reached end-stage renal disease (ESRD) earlier than patients with non-truncating mutations (47 ± 3.522 years vs. 59 ± 11.687 years, P = 0.016). The mutation screening of PKD genes in Chinese ADPKD patients will enrich our mutation database and significantly contribute to improve genetic counselling for ADPKD patients. PMID:26632257

  13. A frequent tyrosinase gene mutation associated with type I-A (tyroinase-negative) oculocutaneous albinism in Puerto Rico

    SciTech Connect

    Oetting, W.S.; Witkop, C.J. Jr.; Brown, S.A.; Fryer, J.P.; Bloom, K.E.; King, R.A. ); Colomer, R. )

    1993-01-01

    The authors have determined the mutations in the tyrosinase gene from 12 unrelated Puerto Rican individuals who have type I-A (tyrosinase-negative) oculocutaneous albinism (OCA). All but one individual are of Hispanic descent. Nine individuals were homozygous for a missense mutation (G47D) in exon I at codon 47. Two individuals were heterozygous for the G47D mutation, with one having a missense mutation at codon 373 (T373K) in the homologous allele and the other having an undetermined mutation in the homologous allele. One individual with negroid features was homozygous for a nonsense mutation (W236X). The population migration between Puerto Rico and the Canary Islands is well recognized. Analysis of three individuals with OCA from the Canary Islands showed that one was a compound heterozygote for the G47D mutation and for a novel missense mutation (L216M), one was homozygous for a missense mutation (P81L), and one was heterozygous for the missense mutation P81L. The G47D and P81L missense mutations have been previously described in extended families in the United States. Haplotypes were determined using four polymorphisms linked to the tyrosinase locus. Haplotype analysis showed that the G47D mutation occurred on a single haplotype, consistent with a common founder for all individuals having this mutation. Two different haplotypes were found associated with the P81L mutation, suggesting that this may be either a recurring mutation for the tyrosinase gene or a recombination between haplotypes. 28 refs., 1 fig., 3 tabs.

  14. Nonsense-Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story

    PubMed Central

    He, Feng; Jacobson, Allan

    2016-01-01

    Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance mechanism that monitors cytoplasmic mRNA translation and targets mRNAs undergoing premature translation termination for rapid degradation. From yeasts to humans, activation of NMD requires the function of the three conserved Upf factors: Upf1, Upf2, and Upf3. Here, we summarize the progress in our understanding of the molecular mechanisms of NMD in several model systems and discuss recent experiments that address the roles of Upf1, the principal regulator of NMD, in the initial targeting and final degradation of NMD-susceptible mRNAs. We propose a unified model for NMD in which the Upf factors provide several functions during premature termination, including the stimulation of release factor activity and the dissociation and recycling of ribosomal subunits. In this model, the ultimate degradation of the mRNA is the last step in a complex premature termination process. PMID:26436458

  15. GALNS mutations in Indian patients with mucopolysaccharidosis IVA.

    PubMed

    Bidchol, Abdul Mueed; Dalal, Ashwin; Shah, Hitesh; S, Suryanarayana; Nampoothiri, Sheela; Kabra, Madhulika; Gupta, Neerja; Danda, Sumita; Gowrishankar, Kalpana; Phadke, Shubha R; Kapoor, Seema; Kamate, Mahesh; Verma, I C; Puri, Ratna Dua; Sankar, V H; Devi, A Radha Rama; Patil, S J; Ranganath, Prajnya; Jain, S Jamal Md Nurul; Agarwal, Meenal; Singh, Ankur; Mishra, Pallavi; Tamhankar, Parag M; Gopinath, Puthiya Mundyat; Nagarajaram, H A; Satyamoorthy, Kapaettu; Girisha, Katta Mohan

    2014-11-01

    Mucopolysaccharidosis IV A (Morquio syndrome A, MPS IVA) is a lysosomal storage disease caused by the deficiency of N-acetylgalactosamine-6-sulfatase (GALNS). The mutation spectrum in this condition is yet to be determined in Indians. We aimed to analyze the mutations in the GALNS gene in Asian Indians with MPS IVA. All the exons and the adjacent intronic regions of the gene were amplified and sequenced in sixty-eight unrelated Indian families. We identified 136 mutant alleles comprising of 40 different mutations. We report twenty-two novel mutations that comprise of seventeen missense (p.Asn32Thr, p.Leu36Arg, p.Pro52Leu, p.Pro77Ser, p.Cys79Arg, p.His142Pro, p.Tyr191Asp, p.Asn204Thr, p.Gly188Ser, p.Phe216Ser, p.Trp230Cys, p.Ala291Ser, p.Gly317Arg, p.His329Pro, p.Arg386Ser, p.Glu450Gly, p.Cys501Ser), three splice-site variants (c.120+1G>C, c.1003-3C>G, c.1139+1G>A), one nonsense mutation (p.Gln414*) and one frameshift mutation (p.Pro420Leufs*440). Eighteen mutations have been reported earlier. Among these p.Ser287Leu (8.82%), p.Phe216Ser (7.35%), p.Asn32Thr (6.61%) and p.Ala291Ser (5.88%) were the most frequent mutations in Indian patients but were rare in the mutational profiles reported in other populations. These results indicate that the Indian patients may have a distinct mutation spectrum compared to those of other populations. Mutant alleles in exon 1, 7 and 8 accounted for 44.8% of the mutations, and sequencing of these exons initially may be a cost-effective approach in Asian Indian patients. This is the largest study on molecular analysis of patients with MPS IVA reported in the literature, and the first report from India.

  16. Novel GAA mutations in patients with Pompe disease.

    PubMed

    Turaça, Lauro Thiago; de Faria, Douglas Oliveira Soares; Kyosen, Sandra Obikawa; Teixeira, Valber Dias; Motta, Fabiana Louise; Pessoa, Juliana Gilbert; Rodrigues E Silva, Marina; de Almeida, Sandro Soares; D'Almeida, Vânia; Munoz Rojas, Maria Verônica; Martins, Ana Maria; Pesquero, João Bosco

    2015-04-25

    Pompe disease is an autosomal recessive disorder linked to GAA gene that leads to a multi-system intralysosomal accumulation of glycogen. Mutation identification in the GAA gene can be very important for early diagnosis, correlation between genotype-phenotype and therapeutic intervention. For this purpose, peripheral blood from 57 individuals susceptible to Pompe disease was collected and all exons of GAA gene were amplified; the sequences and the mutations were analyzed in silico to predict possible impact on the structure and function of the human protein. In this study, 46 individuals presented 33 alterations in the GAA gene sequence, among which five (c.547-67C>G, c.547-39T>G, p.R437H, p.L641V and p.L705P) have not been previously described in the literature. The alterations in the coding region included 15 missense mutations, three nonsense mutations and one deletion. One insertion and other 13 single base changes were found in the non-coding region. The mutation p.G611D was found in homozygosis in a one-year-old child, who presented low levels of GAA activity, hypotonia and hypertrophic cardiomyopathy. Two patients presented the new mutation p.L705P in association with c.-32-13T>G. They had low levels of GAA activity and developed late onset Pompe disease. In our study, we observed alterations in the GAA gene originating from Asians, African-Americans and Caucasians, highlighting the high heterogeneity of the Brazilian population. Considering that Pompe disease studies are not very common in Brazil, this study will help to better understand the potential pathogenic role of each change in the GAA gene. Furthermore, a precise and early molecular analysis improves genetic counseling besides allowing for a more efficient treatment in potential candidates.

  17. The nature of the traK4 mutation in the F sex factor of Escherichia coli.

    PubMed Central

    Penfold, S S; Usher, K; Frost, L S

    1994-01-01

    The sequence of traK gene of the F sex factor of Escherichia coli is presented; the traK gene product is predicted to be a protein of 25,627 Da with a signal sequence of 21 amino acids to give a mature protein of 23,307 Da. The traK4 mutation is an extremely polar mutation in the F plasmid that affects F pilus synthesis and plasmid transfer. traK genes carrying the traK4 mutation and a nonpolar mutation traK105 were cloned, sequenced, and identified as an amber nonsense and a frameshift mutation, respectively. The traK4 mutation occurred within one predicted rho-dependent transcription termination element (TTE) and immediately upstream of another, while the traK105 mutation occurred after the two potential TTEs within the traK gene. S1 nuclease protection analysis and Northern (RNA) blot analysis were used to confirm that the traK4 mutation, but not the traK105 mutation, caused premature termination of transcription. Computer analysis of the F transfer region suggested the presence of TTE motifs at regular intervals throughout the 33.4-kb sequence. Images PMID:8144458

  18. A novel CYP27B1 mutation causes a feline vitamin D-dependent rickets type IA.

    PubMed

    Grahn, Robert A; Ellis, Melanie R; Grahn, Jennifer C; Lyons, Leslie A

    2012-08-01

    A 12-week-old domestic cat presented at a local veterinary clinic with hypocalcemia and skeletal abnormalities suggestive of rickets. Osteomalacia (rickets) is a disease caused by impaired bone mineralization leading to an increased prevalence of fractures and deformity. Described in a variety of species, rickets is most commonly caused by vitamin D or calcium deficiencies owing to both environmental and or genetic abnormalities. Vitamin D-dependent rickets type 1A (VDDR-1A) is a result of the enzymatic pathway defect caused by mutations in the 25-hydroxyvitamin D(3)-1-alpha-hydroxylase gene [cytochrome P27 B1 (CYP27B1)]. Calcitriol, the active form of vitamin D(3), regulates calcium homeostasis, which requires sufficient dietary calcium availability and correct hormonal function for proper bone growth and maintenance. Patient calcitriol concentrations were low while calcidiol levels were normal suggestive of VDDR-1A. The entire DNA coding sequencing of CYP27B1 was evaluated. The affected cat was wild type for previously identified VDDR-1A causative mutations. However, six novel mutations were identified, one of which was a nonsense mutation at G637T in exon 4. The exon 4 G637T nonsense mutation results in a premature protein truncation, changing a glutamic acid to a stop codon, E213X, likely causing the clinical presentation of rickets. The previously documented genetic mutation resulting in feline VDDR-1A rickets, as well as the case presented in this research, result from novel exon 4 CYP27B1 mutations, thus exon 4 should be the initial focus of future sequencing efforts.

  19. Biallelic Mutations in GNB3 Cause a Unique Form of Autosomal-Recessive Congenital Stationary Night Blindness.

    PubMed

    Vincent, Ajoy; Audo, Isabelle; Tavares, Erika; Maynes, Jason T; Tumber, Anupreet; Wright, Thomas; Li, Shuning; Michiels, Christelle; Condroyer, Christel; MacDonald, Heather; Verdet, Robert; Sahel, José-Alain; Hamel, Christian P; Zeitz, Christina; Héon, Elise

    2016-05-01

    Congenital stationary night blindness (CSNB) is a heterogeneous group of non-progressive inherited retinal disorders with characteristic electroretinogram (ERG) abnormalities. Riggs and Schubert-Bornschein are subtypes of CSNB and demonstrate distinct ERG features. Riggs CSNB demonstrates selective rod photoreceptor dysfunction and occurs due to mutations in genes encoding proteins involved in rod phototransduction cascade; night blindness is the only symptom and eye examination is otherwise normal. Schubert-Bornschein CSNB is a consequence of impaired signal transmission between the photoreceptors and bipolar cells. Schubert-Bornschein CSNB is subdivided into complete CSNB with an ON bipolar signaling defect and incomplete CSNB with both ON and OFF pathway involvement. Both subtypes are associated with variable degrees of night blindness or photophobia, reduced visual acuity, high myopia, and nystagmus. Whole-exome sequencing of a family screened negative for mutations in genes associated with CSNB identified biallelic mutations in the guanine nucleotide-binding protein subunit beta-3 gene (GNB3). Two siblings were compound heterozygous for a deletion (c.170_172delAGA [p.Lys57del]) and a nonsense mutation (c.1017G>A [p.Trp339(∗)]). The maternal aunt was homozygous for the nonsense mutation (c.1017G>A [p.Trp339(∗)]). Mutational analysis of GNB3 in a cohort of 58 subjects with CSNB identified a sporadic case individual with a homozygous GNB3 mutation (c.200C>T [p.Ser67Phe]). GNB3 encodes the β subunit of G protein heterotrimer (Gαβγ) and is known to modulate ON bipolar cell signaling and cone transducin function in mice. Affected human subjects showed an unusual CSNB phenotype with variable degrees of ON bipolar dysfunction and reduced cone sensitivity. This unique retinal disorder with dual anomaly in visual processing expands our knowledge about retinal signaling. PMID:27063057

  20. Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing

    PubMed Central

    Walsh, Tom; Lee, Ming K.; Casadei, Silvia; Thornton, Anne M.; Stray, Sunday M.; Pennil, Christopher; Nord, Alex S.; Mandell, Jessica B.; Swisher, Elizabeth M.; King, Mary-Claire

    2010-01-01

    Inherited loss-of-function mutations in the tumor suppressor genes BRCA1, BRCA2, and multiple other genes predispose to high risks of breast and/or ovarian cancer. Cancer-associated inherited mutations in these genes are collectively quite common, but individually rare or even private. Genetic testing for BRCA1 and BRCA2 mutations has become an integral part of clinical practice, but testing is generally limited to these two genes and to women with severe family histories of breast or ovarian cancer. To determine whether massively parallel, “next-generation” sequencing would enable accurate, thorough, and cost-effective identification of inherited mutations for breast and ovarian cancer, we developed a genomic assay to capture, sequence, and detect all mutations in 21 genes, including BRCA1 and BRCA2, with inherited mutations that predispose to breast or ovarian cancer. Constitutional genomic DNA from subjects with known inherited mutations, ranging in size from 1 to >100,000 bp, was hybridized to custom oligonucleotides and then sequenced using a genome analyzer. Analysis was carried out blind to the mutation in each sample. Average coverage was >1200 reads per base pair. After filtering sequences for quality and number of reads, all single-nucleotide substitutions, small insertion and deletion mutations, and large genomic duplications and deletions were detected. There were zero false-positive calls of nonsense mutations, frameshift mutations, or genomic rearrangements for any gene in any of the test samples. This approach enables widespread genetic testing and personalized risk assessment for breast and ovarian cancer. PMID:20616022

  1. A mutation spectrum that includes GNAS, KRAS and TP53 may be shared by mucinous neoplasms of the appendix.

    PubMed

    Hara, Kieko; Saito, Tsuyoshi; Hayashi, Takuo; Yimit, Alkam; Takahashi, Michiko; Mitani, Keiko; Takahashi, Makoto; Yao, Takashi

    2015-09-01

    Appendiceal mucinous tumors (AMTs) are classified as low-grade appendiceal mucinous neoplasms (LAMNs) or mucinous adenocarcinomas (MACs), although their carcinogenesis is not well understood. As somatic activating mutations of GNAS are considered to be characteristic of LAMNs while TP53 mutations have been shown to be specific to MACs, MACs are unlikely to result from transformation of LAMNs. However, emerging evidence also shows the presence of GNAS mutations in MACs. We examined 16 AMTs (11 LAMNs and 5 MACs) for genetic alterations of GNAS, KRAS, BRAF, TP53, CTNNB1, and TERT promoter in order to elucidate the possibility of a shared genetic background in the two tumor types. Extensive histological examination revealed the presence of a low-grade component in all cases of MAC. GNAS mutations were detected in two LAMNs and in one MAC, although the GNAS mutation in this MAC was a nonsense mutation (Q227X) expected not to be activating mutation. TP53 mutations were detected in three LAMNs; they were frequently detected in MACs. KRAS mutations were detected in three LAMNs and three MACs, and CTNNB1 mutations were detected in two LAMNs. KRAS mutation and activating mutation of GNAS occurred exclusively in AMTs. BRAF and TERT mutations were not detected. Overexpression of p53 was observed in only two MACs, and p53 immunostaining clearly discriminated the high-grade lesion from a low-grade component in one. These findings suggest that p53 overexpression plays an important role in the carcinogenesis of AMTs and that, in addition to mutations of GNAS, KRAS and TP53 alterations might be shared by AMTs, thus providing evidence for the possible progression of LAMNs to MAC.

  2. Congenital insensitivity to pain with anhidrosis: novel mutations in the TRKA (NTRK1) gene encoding a high-affinity receptor for nerve growth factor.

    PubMed Central

    Mardy, S; Miura, Y; Endo, F; Matsuda, I; Sztriha, L; Frossard, P; Moosa, A; Ismail, E A; Macaya, A; Andria, G; Toscano, E; Gibson, W; Graham, G E; Indo, Y

    1999-01-01

    Congenital insensitivity to pain with anhidrosis (CIPA) is characterized by recurrent episodes of unexplained fever, anhidrosis (inability to sweat), absence of reaction to noxious stimuli, self-mutilating behavior, and mental retardation. Human TRKA encodes a high-affinity tyrosine kinase receptor for nerve growth factor (NGF), a member of the neurotrophin family that induces neurite outgrowth and promotes survival of embryonic sensory and sympathetic neurons. We have recently demonstrated that TRKA is responsible for CIPA by identifying three mutations in a region encoding the intracellular tyrosine kinase domain of TRKA in one Ecuadorian and three Japanese families. We have developed a comprehensive strategy to screen for TRKA mutations, on the basis of the gene's structure and organization. Here we report 11 novel mutations, in seven affected families. These are six missense mutations, two frameshift mutations, one nonsense mutation, and two splice-site mutations. Mendelian inheritance of the mutations is confirmed in six families for which parent samples are available. Two mutations are linked, on the same chromosome, to Arg85Ser and to His598Tyr;Gly607Val, hence, they probably represent double and triple mutations. The mutations are distributed in an extracellular domain, involved in NGF binding, as well as the intracellular signal-transduction domain. These data suggest that TRKA defects cause CIPA in various ethnic groups. PMID:10330344

  3. Late-onset spastic paraplegia: Aberrant SPG11 transcripts generated by a novel splice site donor mutation.

    PubMed

    Kawarai, Toshitaka; Miyamoto, Ryosuke; Mori, Atsuko; Oki, Ryosuke; Tsukamoto-Miyashiro, Ai; Matsui, Naoko; Miyazaki, Yoshimichi; Orlacchio, Antonio; Izumi, Yuishin; Nishida, Yoshihiko; Kaji, Ryuji

    2015-12-15

    We identified a novel homozygous mutation in the splice site donor (SSD) of intron 30 (c.5866+1G>A) in consanguineous Japanese SPG11 siblings showing late-onset spastic paraplegia using the whole-exome sequencing. Phenotypic variability was observed, including age-at-onset, dysarthria and pes cavus. Coding DNA sequencing revealed that the mutation affected the recognition of the constitutive SSD of intron 30, splicing upstream onto a nearby cryptic SSD in exon 30. The use of constitutive splice sites of intron 29 was confirmed by sequencing. The mutant transcripts are mostly subject to degradation by the nonsense-mediated mRNA decay system. SPG11 transcripts, escaping from the nonsense-mediated mRNA decay pathway, would generate a truncated protein (p.Tyr1900Phefs5X) containing the first 1899 amino acids and followed by 4 aberrant amino acids. This study showed a successful clinical application of whole-exome sequencing in spastic paraplegia and demonstrated a further evidence of allelic heterogeneity in SPG11. The confirmation of aberrant transcript by splice site mutation is a prerequisite for a more precise molecular diagnosis.

  4. Mutations in NGLY1 Cause an Inherited Disorder of the Endoplasmic Reticulum-Associated Degradation (ERAD) Pathway

    PubMed Central

    Enns, Gregory M.; Shashi, Vandana; Bainbridge, Matthew; Gambello, Michael J.; Zahir, Farah R.; Bast, Thomas; Crimian, Rebecca; Schoch, Kelly; Platt, Julia; Cox, Rachel; Bernstein, Jonathan; Scavina, Mena; Walter, Rhonda S.; Bibb, Audrey; Jones, Melanie; Hegde, Madhuri; Graham, Brett H.; Need, Anna C.; Oviedo, Angelica; Schaaf, Christian P.; Boyle, Sean; Butte, Atul J.; Chen, Rong; Clark, Michael J.; Haraksingh, Rajini; Cowan, Tina M.; He, Ping; Langlois, Sylvie; Zoghbi, Huda Y.; Snyder, Michael; Gibbs, Richard; Freeze, Hudson H.; Goldstein, David B.

    2014-01-01

    Purpose The endoplasmic reticulum-associated degradation (ERAD) pathway is responsible for the translocation of misfolded proteins across the ER membrane into the cytosol for subsequent degradation by the proteasome. In order to understand the spectrum of clinical and molecular findings in a complex neurological syndrome, we studied a series of eight patients with inherited deficiency of N-glycanase 1 (NGLY1), a novel disorder of cytosolic ERAD dysfunction. Methods Whole-genome, whole-exome or standard Sanger sequencing techniques were employed. Retrospective chart reviews were performed in order to obtain clinical data. Results All patients had global developmental delay, a movement disorder, and hypotonia. Other common findings included hypo- or alacrima (7/8), elevated liver transaminases (6/7), microcephaly (6/8), diminished reflexes (6/8), hepatocyte cytoplasmic storage material or vacuolization (5/6), and seizures (4/8). The nonsense mutation c.1201A>T (p.R401X) was the most common deleterious allele. Conclusions NGLY1 deficiency is a novel autosomal recessive disorder of the ERAD pathway associated with neurological dysfunction, abnormal tear production, and liver disease. The majority of patients detected to date carry a specific nonsense mutation that appears to be associated with severe disease. The phenotypic spectrum is likely to enlarge as cases with a more broad range of mutations are detected. PMID:24651605

  5. Homozygosity for a novel truncating mutation confirms TBX15 deficiency as the cause of Cousin syndrome.

    PubMed

    Dikoglu, Esra; Simsek-Kiper, Pelin Ozlem; Utine, Gulen Eda; Campos-Xavier, Belinda; Boduroglu, Koray; Bonafé, Luisa; Superti-Furga, Andrea; Unger, Sheila

    2013-12-01

    Cousin syndrome, also called pelviscapular dysplasia (OMIM 260660), is characterized by short stature, craniofacial dysmorphism, and multiple skeletal anomalies. Following its description in two sibs in 1982, no new cases have been observed until the observation of two unrelated cases in 2008 who were homozygous for frameshift mutations in TBX15. We investigated an adult individual with short stature, a complex craniofacial dysmorphism, malformed and rotated ears, short neck, elbow contractures, hypoacusis, and hypoplasia of scapula and pelvis on radiographs. We identified homozygosity for a novel nonsense mutation (c.841C>T) in TBX15 predicted to cause a premature stop (p.Arg281*) with truncation of the protein. This observation confirms that Cousin syndrome is a consistent and clinically recognizable phenotype caused by loss of function of TBX15.

  6. Germline Mutations in FAN1 Cause Hereditary Colorectal Cancer by Impairing DNA Repair.

    PubMed

    Seguí, Nuria; Mina, Leonardo B; Lázaro, Conxi; Sanz-Pamplona, Rebeca; Pons, Tirso; Navarro, Matilde; Bellido, Fernando; López-Doriga, Adriana; Valdés-Mas, Rafael; Pineda, Marta; Guinó, Elisabet; Vidal, August; Soto, José Luís; Caldés, Trinidad; Durán, Mercedes; Urioste, Miguel; Rueda, Daniel; Brunet, Joan; Balbín, Milagros; Blay, Pilar; Iglesias, Silvia; Garré, Pilar; Lastra, Enrique; Sánchez-Heras, Ana Beatriz; Valencia, Alfonso; Moreno, Victor; Pujana, Miguel Ángel; Villanueva, Alberto; Blanco, Ignacio; Capellá, Gabriel; Surrallés, Jordi; Puente, Xose S; Valle, Laura

    2015-09-01

    Identification of genes associated with hereditary cancers facilitates management of patients with family histories of cancer. We performed exome sequencing of DNA from 3 individuals from a family with colorectal cancer who met the Amsterdam criteria for risk of hereditary nonpolyposis colorectal cancer. These individuals had mismatch repair-proficient tumors and each carried nonsense variant in the FANCD2/FANCI-associated nuclease 1 gene (FAN1), which encodes a nuclease involved in DNA inter-strand cross-link repair. We sequenced FAN1 in 176 additional families with histories of colorectal cancer and performed in vitro functional analyses of the mutant forms of FAN1 identified. We detected FAN1 mutations in approximately 3% of families who met the Amsterdam criteria and had mismatch repair-proficient cancers with no previously associated mutations. These findings link colorectal cancer predisposition to the Fanconi anemia DNA repair pathway, supporting the connection between genome integrity and cancer risk.

  7. De novo MEIS2 mutation causes syndromic developmental delay with persistent gastro-esophageal reflux.

    PubMed

    Fujita, Atsushi; Isidor, Bertrand; Piloquet, Hugues; Corre, Pierre; Okamoto, Nobuhiko; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Miyake, Noriko; Matsumoto, Naomichi

    2016-09-01

    MEIS2 aberrations are considered to be the cause of intellectual disability, cleft palate and cardiac septal defect, as MEIS2 copy number variation is often observed with these phenotypes. To our knowledge, only one nucleotide-level change-specifically, an in-frame MEIS2 deletion-has so far been reported. Here, we report a female patient with a de novo nonsense mutation (c.611C>G, p.Ser204*) in MEIS2. She showed severe intellectual disability, moderate motor/verbal developmental delay, cleft palate, cardiac septal defect, hypermetropia, severe feeding difficulties with gastro-esophageal reflux and constipation. By reviewing this patient and previous patients with MEIS2 point mutations, we found that feeding difficulty with gastro-esophageal reflux appears to be one of the core clinical features of MEIS2 haploinsufficiency, in addition to intellectual disability, cleft palate and cardiac septal defect.

  8. Identification of eight mutations and three sequence variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene

    SciTech Connect

    Ghanem, N.; Costes, B.; Girodon, E.; Martin, J.; Fanen, P.; Goossens, M. )

    1994-05-15

    To determine cystic fibrosis (CF) defects in a sample of 224 non-[Delta]F508 CF chromosomes, the authors used denaturing gradient gel multiplex analysis of CF transmembrane conductance regulator gene segments, a strategy based on blind exhaustive analysis rather than a search for known mutations. This process allowed detection of 11 novel variations comprising two nonsense mutations (Q890X and W1204X), a splice defect (405 + 4 A [yields] G), a frameshift (3293delA), four presumed missense mutations (S912L, H949Y, L1065P, Q1071P), and three sequence polymorphisms (R31C or 223 C/T, 3471 T/C, and T1220I or 3791 C/T). The authors describe these variations, together with the associated phenotype when defects on both CF chromosomes were identified. 8 refs., 1 fig., 1 tab.

  9. Mutation in Human Desmoplakin Domain Binding to Plakoglobin Causes a Dominant Form of Arrhythmogenic Right Ventricular Cardiomyopathy

    PubMed Central

    Rampazzo, Alessandra; Nava, Andrea; Malacrida, Sandro; Beffagna, Giorgia; Bauce, Barbara; Rossi, Valeria; Zimbello, Rosanna; Simionati, Barbara; Basso, Cristina; Thiene, Gaetano; Towbin, Jeffrey A.; Danieli, Gian A.

    2002-01-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVD/C) is a genetically heterogeneous disease characterized by progressive degeneration of the right ventricular myocardium and increased risk of sudden death. Here, we report on a genome scan in one Italian family in which the disease appeared unlinked to any of the six different ARVD loci reported so far; we identify a mutation (S299R) in exon 7 of desmoplakin (DSP), which modifies a putative phosphorylation site in the N-terminal domain binding plakoglobin. It is interesting that a nonsense DSP mutation was reported elsewhere in the literature, inherited as a recessive trait and causing a biventricular dilative cardiomyopathy associated with palmoplantar keratoderma and woolly hairs. Therefore, different DSP mutations might produce different clinical phenotypes, with different modes of inheritance. PMID:12373648

  10. Hypoparathyroidism in a 3-year-old Korean boy with Sotos syndrome and a novel mutation in NSD1.

    PubMed

    Wejaphikul, Karn; Cho, Sung Yoon; Huh, Rimm; Kwun, Younghee; Lee, Jieun; Ki, Chang-Seok; Jin, Dong-Kyu

    2015-01-01

    Sotos syndrome is a common genetic overgrowth syndrome caused by a mutation of the NSD1 gene, which is located at chromosome 5q35 and normally encodes a histone methyltransferase protein. The general characteristics of this syndrome include a characteristic facial appearance, developmental delay, and overgrowth, resulting in macrocephaly and tall stature. We describe rhabdomyolysis and hypocalcemia due to hypoparathyroidism in a 3-year-old Korean boy with Sotos syndrome. He was diagnosed with Sotos syndrome based on the typical phenotype and has a heterozygous nonsense mutation (c.4710C>A [p.Cys1570*]) of the NSD1 gene, which causes a premature stop codon and a truncating protein mutation. Hypoparathyroidism has never been described in Sotos syndrome. This report may therefore expand the phenotypic spectrum of this syndrome.

  11. Novel patched 1 mutations in patients with nevoid basal cell carcinoma syndrome--case report.

    PubMed

    Škodrić-Trifunović, Vesna; Stjepanović, Mihailo; Savić, Živorad; Ilić, Miroslav; Kavečan, Ivana; Jovanović Privrodski, Jadranka; Spasovski, Vesna; Stojiljković, Maja; Pavlović, Sonja

    2015-02-01

    Nevoid basal cell carcinoma syndrome (Gorlin syndrome) is a rare autosomal dominant disorder characterized by numerous basal cell carcinomas, keratocystic odontogenic tumors of the jaws, and diverse developmental defects. This disorder is associated with mutations in tumor suppressor gene Patched 1 (PTCH1). We present two patients with Gorlin syndrome, one sporadic and one familial. Clinical examination, radiological and CT imaging, and mutation screening of PTCH1 gene were performed. Family members, as well as eleven healthy controls were included in the study. Both patients fulfilled the specific criteria for diagnosis of Gorlin syndrome. Molecular analysis of the first patient showed a novel frameshift mutation in exon 6 of PTCH1gene (c.903delT). Additionally, a somatic frameshift mutation in exon 21 (c.3524delT) along with germline mutation in exon 6 was detected in tumor-derived tissue sample of this patient. Analysis of the second patient, as well as two affected family members, revealed a novel nonsense germline mutation in exon 8 (c.1148 C>A). PMID:25727044

  12. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations.

    PubMed

    Schubert, Desirée; Bode, Claudia; Kenefeck, Rupert; Hou, Tie Zheng; Wing, James B; Kennedy, Alan; Bulashevska, Alla; Petersen, Britt-Sabina; Schäffer, Alejandro A; Grüning, Björn A; Unger, Susanne; Frede, Natalie; Baumann, Ulrich; Witte, Torsten; Schmidt, Reinhold E; Dueckers, Gregor; Niehues, Tim; Seneviratne, Suranjith; Kanariou, Maria; Speckmann, Carsten; Ehl, Stephan; Rensing-Ehl, Anne; Warnatz, Klaus; Rakhmanov, Mirzokhid; Thimme, Robert; Hasselblatt, Peter; Emmerich, Florian; Cathomen, Toni; Backofen, Rolf; Fisch, Paul; Seidl, Maximilian; May, Annette; Schmitt-Graeff, Annette; Ikemizu, Shinji; Salzer, Ulrich; Franke, Andre; Sakaguchi, Shimon; Walker, Lucy S K; Sansom, David M; Grimbacher, Bodo

    2014-12-01

    The protein cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of immune responses, and its loss causes fatal autoimmunity in mice. We studied a large family in which five individuals presented with a complex, autosomal dominant immune dysregulation syndrome characterized by hypogammaglobulinemia, recurrent infections and multiple autoimmune clinical features. We identified a heterozygous nonsense mutation in exon 1 of CTLA4. Screening of 71 unrelated patients with comparable clinical phenotypes identified five additional families (nine individuals) with previously undescribed splice site and missense mutations in CTLA4. Clinical penetrance was incomplete (eight adults of a total of 19 genetically proven CTLA4 mutation carriers were considered unaffected). However, CTLA-4 protein expression was decreased in regulatory T cells (Treg cells) in both patients and carriers with CTLA4 mutations. Whereas Treg cells were generally present at elevated numbers in these individuals, their suppressive function, CTLA-4 ligand binding and transendocytosis of CD80 were impaired. Mutations in CTLA4 were also associated with decreased circulating B cell numbers. Taken together, mutations in CTLA4 resulting in CTLA-4 haploinsufficiency or impaired ligand binding result in disrupted T and B cell homeostasis and a complex immune dysregulation syndrome.

  13. DEPDC5 mutations are not a frequent cause of familial temporal lobe epilepsy.

    PubMed

    Striano, Pasquale; Serioli, Elena; Santulli, Lia; Manna, Ida; Labate, Angelo; Dazzo, Emanuela; Pasini, Elena; Gambardella, Antonio; Michelucci, Roberto; Striano, Salvatore; Nobile, Carlo

    2015-10-01

    Mutations in the DEPDC5 (DEP domain-containing protein 5) gene are a major cause of familial focal epilepsy with variable foci (FFEVF) and are predicted to account for 12-37% of families with inherited focal epilepsies. To assess the clinical impact of DEPDC5 mutations in familial temporal lobe epilepsy, we screened a collection of Italian families with either autosomal dominant lateral temporal epilepsy (ADLTE) or familial mesial temporal lobe epilepsy (FMTLE). The probands of 28 families classified as ADLTE and 17 families as FMTLE were screened for DEPDC5 mutations by whole exome or targeted massive parallel sequencing. Putative mutations were validated by Sanger sequencing. We identified a DEPDC5 nonsense mutation (c.918C>G; p.Tyr306*) in a family with two affected members, clinically classified as FMTLE. The proband had temporal lobe seizures with prominent psychic symptoms (déjà vu, derealization, and forced thoughts); her mother had temporal lobe seizures, mainly featuring visceral epigastric auras and anxiety. In total, we found a single DEPDC5 mutation in one of (2.2%) 45 families with genetic temporal lobe epilepsy, a proportion much lower than that reported in other inherited focal epilepsies. PMID:26216793

  14. Osteoporosis-Pseudoglioma in a Mauritanian Child due to a Novel Mutation in LRP5

    PubMed Central

    Biha, Noura; Ghaber, S. M.; Hacen, M. M.; Collet, Corinne

    2016-01-01

    Osteoporosis-pseudoglioma (OPPG) syndrome is a very rare autosomal recessive disorder, caused by mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene. It manifests by severe juvenile osteoporosis with congenital or infancy-onset visual loss. We describe a case of OPPG due to novel mutation in LRP5 gene, occurring in a female Mauritanian child. This 10-year-old female child was born blind, and after then multiple fragility fractures appeared. PCR amplification and sequencing revealed a novel homozygous nonsense mutation in exon 10 of the LRP5 gene (c.2270G>A; pTrP757⁎); this mutation leads to the production of a truncated protein containing 757 amino acids instead of 1615, located in the third β-propeller domain of the LRP5 protein. Both parents were heterozygous for the mutation. This is the first case of the OPPG described in black Africans, which broadens the spectrum of LRP5 gene mutations in OPPG. PMID:26904320

  15. Expanded Genetic Codes Create New Mutational Routes to Rifampicin Resistance in Escherichia coli.

    PubMed

    Hammerling, Michael J; Gollihar, Jimmy; Mortensen, Catherine; Alnahhas, Razan N; Ellington, Andrew D; Barrick, Jeffrey E

    2016-08-01

    Until recently, evolutionary questions surrounding the nature of the genetic code have been mostly limited to the realm of conjecture, modeling, and simulation due to the difficulty of altering this fundamental property of living organisms. Concerted genome and protein engineering efforts now make it possible to experimentally study the impact of alternative genetic codes on the evolution of biological systems. We explored how Escherichia coli strains that incorporate a 21st nonstandard amino acid (nsAA) at the recoded amber (TAG) stop codon evolve resistance to the antibiotic rifampicin. Resistance to rifampicin arises from chromosomal mutations in the β subunit of RNA polymerase (RpoB). We found that a variety of mutations that lead to substitutions of nsAAs in the essential RpoB protein confer robust rifampicin resistance. We interpret these results in a framework in which an expanded code can increase evolvability in two distinct ways: by adding a new letter with unique chemical properties to the protein alphabet and by altering the mutational connectivity of amber-adjacent codons by converting a lethal nonsense mutation into a missense mutation. Finally, we consider the implications of these results for the evolution of alternative genetic codes. In our experiments, reliance on a mutation to a reassigned codon for a vital trait is not required for the long-term maintenance of an expanded genetic code and may even destabilize incorporation of an nsAA, a result that is consistent with the codon capture model of genetic code evolution. PMID:27189550

  16. Novel Patched 1 mutations in patients with nevoid basal cell carcinoma syndrome – case report

    PubMed Central

    Škodrić-Trifunović, Vesna; Stjepanović, Mihailo; Savić, Živorad; Ilić, Miroslav; Kavečan, Ivana; Jovanović Privrodski, Jadranka; Spasovski, Vesna; Stojiljković, Maja; Pavlović, Sonja

    2015-01-01

    Nevoid basal cell carcinoma syndrome (Gorlin syndrome) is a rare autosomal dominant disorder characterized by numerous basal cell carcinomas, keratocystic odontogenic tumors of the jaws, and diverse developmental defects. This disorder is associated with mutations in tumor suppressor gene Patched 1 (PTCH1). We present two patients with Gorlin syndrome, one sporadic and one familial. Clinical examination, radiological, and CT imaging, and mutation screening of PTCH1 gene were performed. Family members, as well as eleven healthy controls were included in the study. Both patients fulfilled the specific criteria for diagnosis of Gorlin syndrome. Molecular analysis of the first patient showed a novel frameshift mutation in exon 6 of PTCH1gene (c.903delT). Additionally, a somatic frameshift mutation in exon 21 (c.3524delT) along with germline mutation in exon 6 was detected in tumor-derived tissue sample of this patient. Analysis of the second patient, as well as two affected family members, revealed a novel nonsense germline mutation in exon 8 (c.1148 C>A). PMID:25727044

  17. Truncating and missense mutations in IGHMBP2 cause Charcot-Marie Tooth disease type 2.

    PubMed

    Cottenie, Ellen; Kochanski, Andrzej; Jordanova, Albena; Bansagi, Boglarka; Zimon, Magdalena; Horga, Alejandro; Jaunmuktane, Zane; Saveri, Paola; Rasic, Vedrana Milic; Baets, Jonathan; Bartsakoulia, Marina; Ploski, Rafal; Teterycz, Pawel; Nikolic, Milos; Quinlivan, Ros; Laura, Matilde; Sweeney, Mary G; Taroni, Franco; Lunn, Michael P; Moroni, Isabella; Gonzalez, Michael; Hanna, Michael G; Bettencourt, Conceicao; Chabrol, Elodie; Franke, Andre; von Au, Katja; Schilhabel, Markus; Kabzińska, Dagmara; Hausmanowa-Petrusewicz, Irena; Brandner, Sebastian; Lim, Siew Choo; Song, Haiwei; Choi, Byung-Ok; Horvath, Rita; Chung, Ki-Wha; Zuchner, Stephan; Pareyson, Davide; Harms, Matthew; Reilly, Mary M; Houlden, Henry

    2014-11-01

    Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-μ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels.

  18. Truncating and Missense Mutations in IGHMBP2 Cause Charcot-Marie Tooth Disease Type 2

    PubMed Central

    Cottenie, Ellen; Kochanski, Andrzej; Jordanova, Albena; Bansagi, Boglarka; Zimon, Magdalena; Horga, Alejandro; Jaunmuktane, Zane; Saveri, Paola; Rasic, Vedrana Milic; Baets, Jonathan; Bartsakoulia, Marina; Ploski, Rafal; Teterycz, Pawel; Nikolic, Milos; Quinlivan, Ros; Laura, Matilde; Sweeney, Mary G.; Taroni, Franco; Lunn, Michael P.; Moroni, Isabella; Gonzalez, Michael; Hanna, Michael G.; Bettencourt, Conceicao; Chabrol, Elodie; Franke, Andre; von Au, Katja; Schilhabel, Markus; Kabzińska, Dagmara; Hausmanowa-Petrusewicz, Irena; Brandner, Sebastian; Lim, Siew Choo; Song, Haiwei; Choi, Byung-Ok; Horvath, Rita; Chung, Ki-Wha; Zuchner, Stephan; Pareyson, Davide; Harms, Matthew; Reilly, Mary M.; Houlden, Henry

    2014-01-01

    Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-μ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5′ region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels. PMID:25439726

  19. Whole-exome sequencing revealed two novel mutations in Usher syndrome.

    PubMed

    Koparir, Asuman; Karatas, Omer Faruk; Atayoglu, Ali Timucin; Yuksel, Bayram; Sagiroglu, Mahmut Samil; Seven, Mehmet; Ulucan, Hakan; Yuksel, Adnan; Ozen, Mustafa

    2015-06-01

    Usher syndrome is a clinically and genetically heterogeneous autosomal recessive inherited disorder accompanied by hearing loss and retinitis pigmentosa (RP). Since the associated genes are various and quite large, we utilized whole-exome sequencing (WES) as a diagnostic tool to identify the molecular basis of Usher syndrome. DNA from a 12-year-old male diagnosed with Usher syndrome was analyzed by WES. Mutations detected were confirmed by Sanger sequencing. The pathogenicity of these mutations was determined by in silico analysis. A maternally inherited deleterious frameshift mutation, c.14439_14454del in exon 66 and a paternally inherited non-sense c.10830G>A stop-gain SNV in exon 55 of USH2A were found as two novel compound heterozygous mutations. Both of these mutations disrupt the C terminal of USH2A protein. As a result, WES revealed two novel compound heterozygous mutations in a Turkish USH2A patient. This approach gave us an opportunity to have an appropriate diagnosis and provide genetic counseling to the family within a reasonable time.

  20. How the leopard hides its spots: ASIP mutations and melanism in wild cats.

    PubMed

    Schneider, Alexsandra; David, Victor A; Johnson, Warren E; O'Brien, Stephen J; Barsh, Gregory S; Menotti-Raymond, Marilyn; Eizirik, Eduardo

    2012-01-01

    The occurrence of melanism (darkening of the background coloration) is documented in 13 felid species, in some cases reaching high frequencies at the population level. Recent analyses have indicated that it arose multiple times in the Felidae, with three different species exhibiting unique mutations associated with this trait. The causative mutations in the remaining species have so far not been identified, precluding a broader assessment of the evolutionary dynamics of melanism in the Felidae. Among these, the leopard (Panthera pardus) is a particularly important target for research, given the iconic status of the 'black panther' and the extremely high frequency of melanism observed in some Asian populations. Another felid species from the same region, the Asian golden cat (Pardofelis temminckii), also exhibits frequent records of melanism in some areas. We have sequenced the coding region of the Agouti Signaling Protein (ASIP) gene in multiple leopard and Asian golden cat individuals, and identified distinct mutations strongly associated with melanism in each of them. The single nucleotide polymorphism (SNP) detected among the P. pardus individuals was caused by a nonsense mutation predicted to completely ablate ASIP function. A different SNP was identified in P. temminckii, causing a predicted amino acid change that should also induce loss of function. Our results reveal two additional cases of species-specific mutations implicated in melanism in the Felidae, and indicate that ASIP mutations may play an important role in naturally-occurring coloration polymorphism.

  1. Screening for germline mutations in the neurofibromatosis type 2 (NF2) gene in NF2 patients

    SciTech Connect

    Andermann, A.A.; Ruttledge, M.H.; Rangaratnam, A.

    1994-09-01

    Neurofibromatosis type 2 (NF2) is an autosomal dominant disease with over 95% penetrance which predisposes gene carriers to develop multiple tumors of the central nervous system. The NF2 gene is a putative tumor suppressor gene which was previously mapped to the long arm of chromosome 22, and has recently been identified, using positional cloning techniques. The gene encodes a protein, schwannomin (SCH), which is highly homologous to the band 4.1 protein family. In an attempt to identify and characterize mutations which lead to the manifestation of the disease, we have used single strand conformation analysis (SSCA) to screen for germline mutations in all 17 exons of the NF2 gene in 59 unrelated NF2 patients, representing both familial and new mutations. A total of 27 migration abnormalities was found in 26 patients. Using direct sequencing analysis, the majority of these variants were found to result in nonsense, splice-site or frameshift mutations. Mutations identified in familial NF2 patients segregate in the family, and may prove to be useful tools for a simple and direct SSCA-based technique of presymptomatic or prenatal diagnosis in relatives of patients with NF2. This may be of particular importance in children of patients who have new mutations in the NF2 gene, where linkage analysis may not be feasible.

  2. Mutations in the translated region of the lactase gene (LCT) underlie congenital lactase deficiency.

    PubMed

    Kuokkanen, Mikko; Kokkonen, Jorma; Enattah, Nabil Sabri; Ylisaukko-Oja, Tero; Komu, Hanna; Varilo, Teppo; Peltonen, Leena; Savilahti, Erkki; Jarvela, Irma

    2006-02-01

    Congenital lactase deficiency (CLD) is a severe gastrointestinal disorder characterized by watery diarrhea in infants fed with breast milk or other lactose-containing formulas. We initially assigned the CLD locus by linkage and linkage disequilibrium on 2q21 in 19 Finnish families. Here we report the molecular background of CLD via characterization of five distinct mutations in the coding region of the lactase (LCT) gene. Twenty-seven patients out of 32 (84%) were homozygous for a nonsense mutation, c.4170T-->A (Y1390X), designated "Fin(major)." Four rare mutations--two that result in a predicted frameshift and early truncation at S1666fsX1722 and S218fsX224 and two point mutations that result in substitutions Q268H and G1363S of the 1,927-aa polypeptide--confirmed the lactase mutations as causative for CLD. These findings facilitate genetic testing in clinical practice and enable genetic counseling for this severe disease. Further, our data demonstrate that, in contrast to common adult-type hypolactasia (lactose intolerance) caused by a variant of the regulatory element, the severe infancy form represents the outcome of mutations affecting the structure of the protein inactivating the enzyme.

  3. Whole Exome Sequencing Identifies Mutations in Usher Syndrome Genes in Profoundly Deaf Tunisian Patients

    PubMed Central

    Riahi, Zied; Bonnet, Crystel; Zainine, Rim; Lahbib, Saida; Bouyacoub, Yosra; Bechraoui, Rym; Marrakchi, Jihène; Hardelin, Jean-Pierre; Louha, Malek; Largueche, Leila; Ben Yahia, Salim; Kheirallah, Moncef; Elmatri, Leila; Besbes, Ghazi; Abdelhak, Sonia; Petit, Christine

    2015-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss. PMID:25798947

  4. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism.

    PubMed

    Sartorato, Paola; Lapeyraque, Anne-Laure; Armanini, Decio; Kuhnle, Ursula; Khaldi, Yasmina; Salomon, Rémi; Abadie, Véronique; Di Battista, Eliana; Naselli, Arturo; Racine, Alain; Bosio, Maurizio; Caprio, Massimiliano; Poulet-Young, Véronique; Chabrolle, Jean-Pierre; Niaudet, Patrick; De Gennes, Christiane; Lecornec, Marie-Hélène; Poisson, Elodie; Fusco, Anna Maria; Loli, Paola; Lombès, Marc; Zennaro, Maria-Christina

    2003-06-01

    We have analyzed the human mineralocorticoid receptor (hMR) gene in 14 families with autosomal dominant or sporadic pseudohypoaldosteronism (PHA1), a rare form of mineralocorticoid resistance characterized by neonatal renal salt wasting and failure to thrive. Six heterozygous mutations were detected. Two frameshift mutations in exon 2 (insT1354, del8bp537) and one nonsense mutation in exon 4 (C2157A, Cys645stop) generate truncated proteins due to premature stop codons. Three missense mutations (G633R, Q776R, L979P) differently affect hMR function. The DNA binding domain mutant R633 exhibits reduced maximal transactivation, although its binding characteristics and ED(50) of transactivation are comparable with wild-type hMR. Ligand binding domain mutants R776 and P979 present reduced or absent aldosterone binding, respectively, which is associated with reduced or absent ligand-dependent transactivation capacity. Finally, P979 possesses a transdominant negative effect on wild-type hMR activity, whereas mutations G633R and Q776R probably result in haploinsufficiency in PHA1 patients. We conclude that hMR mutations are a common feature of autosomal dominant PHA1, being found in 70% of our familial cases. Their absence in some families underscores the importance of an extensive investigation of the hMR gene and the role of precise diagnostic procedures to allow for identification of other genes potentially involved in the disease. PMID:12788847

  5. Alterations of the IKBKG locus and diseases: an update and a report of 13 novel mutations.

    PubMed

    Fusco, Francesca; Pescatore, Alessandra; Bal, Elodie; Ghoul, Aida; Paciolla, Mariateresa; Lioi, Maria Brigida; D'Urso, Michele; Rabia, Smail Hadj; Bodemer, Christine; Bonnefont, Jean Paul; Munnich, Arnold; Miano, Maria Giuseppina; Smahi, Asma; Ursini, Matilde Valeria

    2008-05-01

    Mutations in the inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma (IKBKG), also called nuclear factor-kappaB (NF-kB) essential modulator (NEMO), gene are the most common single cause of incontinentia pigmenti (IP) in females and anhydrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males. The IKBKG gene, located in the Xq28 chromosomal region, encodes for the regulatory subunit of the inhibitor of kappaB (IkB) kinase (IKK) complex required for the activation of the NF-kB pathway. Therefore, the remarkably heterogeneous and often severe clinical presentation reported in IP is due to the pleiotropic role of this signaling transcription pathway. A recurrent exon 4_10 genomic rearrangement in the IKBKG gene accounts for 60 to 80% of IP-causing mutations. Besides the IKBKG rearrangement found in IP females (which is lethal in males), a total of 69 different small mutations (missense, frameshift, nonsense, and splice-site mutations) have been reported, including 13 novel ones in this work. The updated distribution of all the IP- and EDA-ID-causing mutations along the IKBKG gene highlights a secondary hotspot mutation in exon 10, which contains only 11% of the protein. Furthermore, familial inheritance analysis revealed an unexpectedly high incidence of sporadic cases (>65%). The sum of the observations can aid both in determining the molecular basis of IP and EDA-ID allelic diseases, and in genetic counseling in affected families. PMID:18350553

  6. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism.

    PubMed

    Sartorato, Paola; Lapeyraque, Anne-Laure; Armanini, Decio; Kuhnle, Ursula; Khaldi, Yasmina; Salomon, Rémi; Abadie, Véronique; Di Battista, Eliana; Naselli, Arturo; Racine, Alain; Bosio, Maurizio; Caprio, Massimiliano; Poulet-Young, Véronique; Chabrolle, Jean-Pierre; Niaudet, Patrick; De Gennes, Christiane; Lecornec, Marie-Hélène; Poisson, Elodie; Fusco, Anna Maria; Loli, Paola; Lombès, Marc; Zennaro, Maria-Christina

    2003-06-01

    We have analyzed the human mineralocorticoid receptor (hMR) gene in 14 families with autosomal dominant or sporadic pseudohypoaldosteronism (PHA1), a rare form of mineralocorticoid resistance characterized by neonatal renal salt wasting and failure to thrive. Six heterozygous mutations were detected. Two frameshift mutations in exon 2 (insT1354, del8bp537) and one nonsense mutation in exon 4 (C2157A, Cys645stop) generate truncated proteins due to premature stop codons. Three missense mutations (G633R, Q776R, L979P) differently affect hMR function. The DNA binding domain mutant R633 exhibits reduced maximal transactivation, although its binding characteristics and ED(50) of transactivation are comparable with wild-type hMR. Ligand binding domain mutants R776 and P979 present reduced or absent aldosterone binding, respectively, which is associated with reduced or absent ligand-dependent transactivation capacity. Finally, P979 possesses a transdominant negative effect on wild-type hMR activity, whereas mutations G633R and Q776R probably result in haploinsufficiency in PHA1 patients. We conclude that hMR mutations are a common feature of autosomal dominant PHA1, being found in 70% of our familial cases. Their absence in some families underscores the importance of an extensive investigation of the hMR gene and the role of precise diagnostic procedures to allow for identification of other genes potentially involved in the disease.

  7. How the Leopard Hides Its Spots: ASIP Mutations and Melanism in Wild Cats

    PubMed Central

    Schneider, Alexsandra; David, Victor A.; Johnson, Warren E.; O'Brien, Stephen J.; Barsh, Gregory S.; Menotti-Raymond, Marilyn; Eizirik, Eduardo

    2012-01-01

    The occurrence of melanism (darkening of the background coloration) is documented in 13 felid species, in some cases reaching high frequencies at the population level. Recent analyses have indicated that it arose multiple times in the Felidae, with three different species exhibiting unique mutations associated with this trait. The causative mutations in the remaining species have so far not been identified, precluding a broader assessment of the evolutionary dynamics of melanism in the Felidae. Among these, the leopard (Panthera pardus) is a particularly important target for research, given the iconic status of the ‘black panther’ and the extremely high frequency of melanism observed in some Asian populations. Another felid species from the same region, the Asian golden cat (Pardofelis temminckii), also exhibits frequent records of melanism in some areas. We have sequenced the coding region of the Agouti Signaling Protein (ASIP) gene in multiple leopard and Asian golden cat individuals, and identified distinct mutations strongly associated with melanism in each of them. The single nucleotide polymorphism (SNP) detected among the P. pardus individuals was caused by a nonsense mutation predicted to completely ablate ASIP function. A different SNP was identified in P. temminckii, causing a predicted amino acid change that should also induce loss of function. Our results reveal two additional cases of species-specific mutations implicated in melanism in the Felidae, and indicate that ASIP mutations may play an important role in naturally-occurring coloration polymorphism. PMID:23251368

  8. Classification and Tie2 mutations in spinal and soft tissue vascular anomalies.

    PubMed

    Zhou, Mei; Jiang, Renbing; Zhao, Gang; Wang, Lisha; Wang, Hua; Li, Wenting; Li, Yiqun; Du, Xiang; Bai, Jingping

    2015-10-15

    Vascular anomalies included hemangiomas and vascular malformations (VMs). VMs are mediated by mutations in the endothelial cell-specific receptor tyrosine kinase Tie2 (TEK),which is essential for angiogenesis and vascular stabilization. We identified five types of Tie2 mutations in 80 patients with soft tissue or spinal VMs by PCR including the previously detected missense mutations 2690A>G (Y897C), 2740C>T (L914F), 2743C>T (R915C), and two nonsense mutations 2763G>A, 2688C>T, we identified Tie2 mutation in primary spinal VMs for the first time. Tie2 mutations were found to be absent in 33 patients with hemangiomas and DNA samples of VMs. In addition, we showed that Tie2 mRNA expression in spinal VMs was similar to soft tissue VMs, but obviously lower than infant hemangiomas (P<0.01). This study provides new insights into spinal VMs, the association of Tie2 and vascular anomalies needs to be further discussed.

  9. Synonymous mutations in oncogenesis and apoptosis versus survival unveiled by network modeling

    PubMed Central

    Li, Xiang; Chen, Yuan; Qi, Hong; Liu, Liyu; Shuai, Jianwei

    2016-01-01

    Synonymous mutations, which do not alter the encoded amino acid, have been routinely assumed to be ‘neutral’ and would have no effect on phenotype or fitness. Yet increasing observations have emerged to overturn this conventional concept. However, convicted elucidation of how synonymous mutations exert biological consequences in oncogenesis is still lacking. By performing systematic analysis of the TNF-α signaling network model, we identify the critical dose which separates the cell survival and apoptosis regions and define the sensitive parameters with single-parameter sensitivity analysis. Combining with the cancer-related mutation spectra obtained from 9 cancers, our results hint that, similar as missense and nonsense mutations, synonymous mutations are also strongly correlated with the parameter sensitivity of the critical dose, providing possible causal mechanism of the mutations in cancer development. Based on such a correlation, we furthermore dissect that members of caspases family proteases (caspase3, 6, 8) could jointly inhibit NFκB activation, providing efficient pro-apoptotic behavior. Thus, we argue that apoptosis module could suppress survival module through negative feedback of caspases family on NFκB. PMID:27129147

  10. Neuropathy- and Myopathy-Associated Mutations in Human Small Heat Shock Proteins: Characteristics and Evolutionary History of the Mutation Sites

    PubMed Central

    Benndorf, Rainer; Martin, Jody L.; Kosakovsky Pond, Sergei L.; Wertheim, Joel O.

    2014-01-01

    Mutations in four of the ten human small heat shock proteins (sHSP) are associated with various forms of motor neuropathies and myopathies. In HspB1, HspB3, and HspB8 all known mutations cause motor neuropathies, whereas in HspB5 they cause myopathies. Several features are common to the majority of these mutations: (i) they are missense mutations, (ii) most associated disease phenotypes exhibit a dominant inheritance pattern and late disease onset, (iii) in the primary protein sequences, the sites of most mutations are located in the conserved α-crystallin domain and the variable C-terminal extensions, and (iv) most human mutation sites are highly conserved among the vertebrate orthologs and have been historically exposed to significant purifying selection. In contrast, a minor fraction of these mutations deviate from these rules: they are (i) frame shifting, nonsense, or elongation mutations, (ii) associated with recessive or early onset disease phenotypes, (iii) positioned in the N-terminal domain of the proteins, and (iv) less conserved among the vertebrates and were historically not subject to a strong selective pressure. In several vertebrate sHSPs (including primate sHSPs), homologous sites differ from the human sequence and occasionally even encode the same amino acid residues that cause the disease in humans. Apparently, a number of these mutations sites are not crucial for the protein function in single species or entire taxa, and single species even seem to have adopted mechanisms that compensate for potentially adverse effects of 'mutant-like' sHSPs. The disease-associated dominant sHSP missense mutations have a number of cellular consequences that are consistent with gain-of-function mechanisms of genetic dominance: dominant-negative effects, the formation of cytotoxic amyloid protein oligomers and precipitates, disruption of cytoskeletal networks, and increased downstream enzymatic activities. Future therapeutic concepts should aim for reducing these

  11. Update of the spectrum of GJB2 gene mutations in 152 Moroccan families with autosomal recessive nonsyndromic hearing loss.

    PubMed

    Bakhchane, Amina; Bousfiha, Amale; Charoute, Hicham; Salime, Sara; Detsouli, Mustapha; Snoussi, Khalid; Nadifi, Sellama; Kabine, Mostafa; Rouba, Hassan; Dehbi, Hind; Roky, Rachida; Charif, Majida; Barakat, Abdelhamid

    2016-06-01

    Deafness is one of the most common genetic diseases in humans and is subject to important genetic heterogeneity. The most common cause of non syndromic hearing loss (NSHL) is mutations in the GJB2 gene. This study aims to update and evaluate the spectrum of GJB2 allele variants in 152 Moroccan multiplex families with non syndromic hearing loss. Seven different mutations were detected: c.35delG, p.V37I, p.E47X, p.G200R, p.Del120E, p.R75Q, the last three mutations were described for the first time in Moroccan deaf patients, in addition to a novel nonsense mutation, the c.385G>T which is not referenced in any database. Sixty six families (43.42%) have mutations in the coding region of GJB2, while the homozygous c.35delG mutation still to date the most represented 51/152 (33.55%). The analysis of the geographical distribution of mutations located in GJB2 gene showed more allelic heterogeneity in the north and center compared to the south of Morocco. Our results showed that the GJB2 gene is a major contributor to non syndromic hearing loss in Morocco. Thus, this report of the GJB2 mutations spectrum all over Morocco has an important implication for establishing a suitable molecular diagnosis. PMID:27169813

  12. Targeted massive parallel sequencing: the effective detection of novel causative mutations associated with hearing loss in small families

    PubMed Central

    2012-01-01

    Background Hereditary hearing loss is one of the most common heterogeneous disorders, and genetic variants that can cause hearing loss have been identified in over sixty genes. Most of these hearing loss genes have been detected using classical genetic methods, typically starting with linkage analysis in large families with hereditary hearing loss. However, these classical strategies are not well suited for mutation analysis in smaller families who have insufficient genetic information. Methods Eighty known hearing loss genes were selected and simultaneously sequenced by targeted next-generation sequencing (NGS) in 8 Korean families with autosomal dominant non-syndromic sensorineural hearing loss. Results Five mutations in known hearing loss genes, including 1 nonsense and 4 missense mutations, were identified in 5 different genes (ACTG1, MYO1F, DIAPH1, POU4F3 and EYA4), and the genotypes for these mutations were consistent with the autosomal dominant inheritance pattern of hearing loss in each family. No mutational hot-spots were revealed in these Korean families. Conclusion Targeted NGS allowed for the detection of pathogenic mutations in affected individuals who were not candidates for classical genetic studies. This report is the first documenting the effective use of an NGS technique to detect pathogenic mutations that underlie hearing loss in an East Asian population. Using this NGS technique to establish a database of common mutations in Korean patients with hearing loss and further data accumulation will contribute to the early diagnosis and fundamental therapies for hereditary hearing loss. PMID:22938506

  13. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation.

    PubMed

    Kato, Mitsuhiro; Das, Soma; Petras, Kristin; Kitamura, Kunio; Morohashi, Ken-ichirou; Abuelo, Diane N; Barr, Mason; Bonneau, Dominique; Brady, Angela F; Carpenter, Nancy J; Cipero, Karen L; Frisone, Francesco; Fukuda, Takayuki; Guerrini, Renzo; Iida, Eri; Itoh, Masayuki; Lewanda, Amy Feldman; Nanba, Yukiko; Oka, Akira; Proud, Virginia K; Saugier-Veber, Pascale; Schelley, Susan L; Selicorni, Angelo; Shaner, Rachel; Silengo, Margherita; Stewart, Fiona; Sugiyama, Noriyuki; Toyama, Jun; Toutain, Annick; Vargas, Ana Lía; Yanazawa, Masako; Zackai, Elaine H; Dobyns, William B

    2004-02-01

    We recently identified mutations of ARX in nine genotypic males with X-linked lissencephaly with abnormal genitalia (XLAG), and in several female relatives with isolated agenesis of the corpus callosum (ACC). We now report 13 novel and two recurrent mutations of ARX, and one nucleotide change of uncertain significance in 20 genotypic males from 16 families. Most had XLAG, but two had hydranencephaly and abnormal genitalia, and three males from one family had Proud syndrome or ACC with abnormal genitalia. We obtained detailed clinical information on all 29 affected males, including the nine previously reported subjects. Premature termination mutations consisting of large deletions, frameshifts, nonsense mutations, and splice site mutations in exons 1 to 4 caused XLAG or hydranencephaly with abnormal genitalia. Nonconservative missense mutations within the homeobox caused less severe XLAG, while conservative substitution in the homeodomain caused Proud syndrome. A nonconservative missense mutation near the C-terminal aristaless domain caused unusually severe XLAG with microcephaly and mild cerebellar hypoplasia. In addition, several less severe phenotypes without malformations have been reported, including mental retardation with cryptogenic infantile spasms (West syndrome), other seizure types, dystonia or autism, and nonsyndromic mental retardation. The ARX mutations associated with these phenotypes have included polyalanine expansions or duplications, missense mutations, and one deletion of exon 5. Together, the group of phenotypes associated with ARX mutations demonstrates remarkable pleiotropy, but also comprises a nearly continuous series of developmental disorders that begins with hydranencephaly, lissencephaly, and agenesis of the corpus callosum, and ends with a series of overlapping syndromes with apparently normal brain structure.

  14. DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations.

    PubMed

    Juan-Mateu, Jonas; Gonzalez-Quereda, Lidia; Rodriguez, Maria Jose; Baena, Manel; Verdura, Edgard; Nascimento, Andres; Ortez, Carlos; Baiget, Montserrat; Gallano, Pia

    2015-01-01

    Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD) require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5%) were exonic deletions, 64 (11.1%) were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%). Small mutations were identified in 105 cases (18.2%), most being nonsense/frameshift types (75.2%). Mutations in splice sites, however, were relatively frequent (20%). In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD), with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure.

  15. DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations

    PubMed Central

    Rodriguez, Maria Jose; Baena, Manel; Verdura, Edgard; Nascimento, Andres; Ortez, Carlos; Baiget, Montserrat; Gallano, Pia

    2015-01-01

    Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD) require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5%) were exonic deletions, 64 (11.1%) were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%). Small mutations were identified in 105 cases (18.2%), most being nonsense/frameshift types (75.2%). Mutations in splice sites, however, were relatively frequent (20%). In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD), with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure. PMID:26284620

  16. Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene.

    PubMed

    Myerowitz, R

    1997-01-01

    Tay-Sachs disease is an autosomal recessive disorder affecting the central nervous system. The disorder results from mutations in the gene encoding the alpha-subunit of beta-hexosaminidase A, a lysosomal enzyme composed of alpha and beta polypeptides. Seventy-eight mutations in the Hex A gene have been described and include 65 single base substitutions, one large and 10 small deletions, and two small insertions. Because these mutations cripple the catalytic activity of beta-hexosaminidase to varying degrees, Tay-Sachs disease displays clinical heterogeneity. Forty-five of the single base substitutions cause missense mutations; 39 of these are disease causing, three are benign but cause a change in phenotype, and three are neutral polymorphisms. Six nonsense mutations and 14 splice site lesions result from single base substitutions, and all but one of the splice site lesions cause a severe form of Tay-Sachs disease. Eight frameshift mutations arise from six deletion- and two insertion-type lesions. One of these insertions, consisting of four bases within exon 11, is found in 80% of the carriers of Tay-Sachs disease from the Ashkenazi Jewish population, an ethnic group that has a 10-fold higher gene frequency for a severe form of the disorder than the general population. A very large deletion, 7.5 kilobases, including all of exon 1 and portions of DNA upstream and downstream from that exon, is the major mutation found in Tay-Sachs disease carriers from the French Canadian population, a geographic isolate displaying an elevated carrier frequency. Most of the other mutations are confined to single pedigrees. Identification of these mutations has permitted more accurate carrier information, prenatal diagnosis, and disease prognosis. In conjunction with a precise tertiary structure of the enzyme, these mutations could be used to gain insight into the structure-function relationships of the lysosomal enzyme.

  17. Missense mutations cluster within the carboxyl-terminal region of DAX-1 and impair transcriptional repression.

    PubMed

    Achermann, J C; Ito, M; Silverman, B L; Habiby, R L; Pang, S; Rosler, A; Jameson, J L

    2001-07-01

    DAX-1 is an orphan nuclear receptor that plays a key role in the development and function of the adrenal gland and hypothalamic-pituitary gonadal axis. Mutations in the gene encoding DAX-1 result in X-linked adrenal hypoplasia congenita (AHC). Affected boys typically present with primary adrenal failure in infancy or childhood and hypogonadotropic hypogonadism at the time of puberty. The majority of DAX1 mutations described to date are nonsense or frameshift mutations that result in premature truncation of the DAX-1 protein and loss of DAX-1 repressor function. Relatively few missense mutations in DAX1 have been reported. Here, we describe missense mutations in three additional families with X-linked AHC. When combined with previous reports, the DAX1 missense mutations appear to cluster within restricted regions of the putative ligand-binding domain of DAX-1 and affect amino acids that are evolutionarily conserved, suggesting that these regions correspond to critical functional domains. Transcription assays, using a variety of artificial and native target genes, were performed to assess the effects of these mutations on the function of DAX-1. All DAX-1 missense mutant constructs showed marked loss of repressor function, with the exception of I439S, a mutation previously shown to be associated with delayed-onset adrenal failure and incomplete hypogonadotropic hypogonadism. These data indicate that most DAX1 missense mutations associated with classic AHC exhibit marked loss of function. The locations of these mutations thereby identify important functional domains in the carboxyl-terminus of the protein.

  18. Characterization of GATA3 mutations in the hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome.

    PubMed

    Nesbit, M Andrew; Bowl, Michael R; Harding, Brian; Ali, Asif; Ayala, Alejandro; Crowe, Carol; Dobbie, Angus; Hampson, Geeta; Holdaway, Ian; Levine, Michael A; McWilliams, Robert; Rigden, Susan; Sampson, Julian; Williams, Andrew J; Thakker, Rajesh V

    2004-05-21

    The hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome is an autosomal dominant disorder caused by mutations of the dual zinc finger transcription factor, GATA3. The C-terminal zinc finger (ZnF2) binds DNA, whereas the N-terminal finger (ZnF1) stabilizes this DNA binding and interacts with other zinc finger proteins, such as the Friends of GATA (FOG). We have investigated seven HDR probands and their families for GATA3 abnormalities and have identified two nonsense mutations (Glu-228 --> Stop and Arg-367 --> Stop); two intragenic deletions that result in frameshifts from codons 201 and 355 with premature terminations at codons 205 and 370, respectively; one acceptor splice site mutation that leads to a frameshift from codon 351 and a premature termination at codon 367; and two missense mutations (Cys-318 --> Arg and Asn-320 --> Lys). The functional effects of these mutations, together with a previously reported GATA3 ZnF1 mutation and seven other engineered ZnF1 mutations, were assessed by electrophoretic mobility shift, dissociation, yeast two-hybrid and glutathione S-transferase pull-down assays. Mutations involving GATA3 ZnF2 or adjacent basic amino acids resulted in a loss of DNA binding, but those of ZnF1 either lead to a loss of interaction with specific FOG2 ZnFs or altered DNA-binding affinity. These findings are consistent with the proposed three-dimensional model of ZnF1, which has separate DNA and protein binding surfaces. Thus, our results, which expand the spectrum of HDR-associated GATA3 mutations and report the first acceptor splice site mutation, help to elucidate the molecular mechanisms that alter the function of this zinc finger transcription factor and its role in causing this developmental anomaly. PMID:14985365

  19. Dspp mutations disrupt mineralization homeostasis during odontoblast differentiation

    PubMed Central

    Jia, Jie; Bian, Zhuan; Song, Yaling

    2015-01-01

    The main pathological feature in isolated hereditary dentin disorders is the abnormality of dentin mineralization. Dentin sialophosphoprotein (DSPP) gene is the only identified causative gene for the disorders. The present study aims to explore the molecular association between Dspp mutations and the disrupted mineralization homeostasis during odontoblast differentiation. We generated lentivirus constructs with the mouse full-length wild type Dspp cDNA and 3 Dspp mutants and transfected them into mouse odontoblast-lineage cells (OLCs) which were then performed 21-day mineralization inducing differentiation. The formation of mineralized nodules was obviously fewer in mutants. Digital Gene Expression (DGE) showed that Dspp mutation affected the OLC differentiation in a degree. Further examination validated that Dspp (LV-Dspp) overexpressing OLCs possessed the ability to strictly orchestrate framework for mineralization inductors like Bmp2, Col1 and Runx2, and proliferative markers for mineralization like Alp and Ocn, as well as mineral homeostasis feedback regulators Mgp and Htra1. However, the missense mutation in Dspp signal peptide region (LV-M2) and the nonsense mutation (LV-M5) broke this orchestration. The results suggested that the mutant Dspp disrupt the dynamic homeostasis of mineralization during OLC differentiation. We are the first to use full-length mouse Dspp gene expression system to explore the mineralization mechanism by which inductors and inhibitors adjust each other during odontoblast differentiation. Our findings shed new light on association between Dspp and the dynamic homeostasis of mineralization inductors and inhibitors, and indicate the disruption of mineralization homeostasis might be a crucial reason for Dspp mutations resulting in dentin disorders. PMID:26807185

  20. Spectrum of SMPD1 mutations in Asian-Indian patients with acid sphingomyelinase (ASM)-deficient Niemann-Pick disease.

    PubMed

    Ranganath, Prajnya; Matta, Divya; Bhavani, Gandham SriLakshmi; Wangnekar, Savita; Jain, Jamal Mohammed Nurul; Verma, Ishwar C; Kabra, Madhulika; Puri, Ratna Dua; Danda, Sumita; Gupta, Neerja; Girisha, Katta M; Sankar, Vaikom H; Patil, Siddaramappa J; Ramadevi, Akella Radha; Bhat, Meenakshi; Gowrishankar, Kalpana; Mandal, Kausik; Aggarwal, Shagun; Tamhankar, Parag Mohan; Tilak, Preetha; Phadke, Shubha R; Dalal, Ashwin

    2016-10-01

    Acid sphingomyelinase (ASM)-deficient Niemann-Pick disease is an autosomal recessive lysosomal storage disorder caused by biallelic mutations in the SMPD1 gene. To date, around 185 mutations have been reported in patients with ASM-deficient NPD world-wide, but the mutation spectrum of this disease in India has not yet been reported. The aim of this study was to ascertain the mutation profile in Indian patients with ASM-deficient NPD. We sequenced SMPD1 in 60 unrelated families affected with ASM-deficient NPD. A total of 45 distinct pathogenic sequence variants were found, of which 14 were known and 31 were novel. The variants included 30 missense, 4 nonsense, and 9 frameshift (7 single base deletions and 2 single base insertions) mutations, 1 indel, and 1 intronic duplication. The pathogenicity of the novel mutations was inferred with the help of the mutation prediction software MutationTaster, SIFT, Polyphen-2, PROVEAN, and HANSA. The effects of the identified sequence variants on the protein structure were studied using the structure modeled with the help of the SWISS-MODEL workspace program. The p. (Arg542*) (c.1624C>T) mutation was the most commonly identified mutation, found in 22% (26 out of 120) of the alleles tested, but haplotype analysis for this mutation did not identify a founder effect for the Indian population. To the best of our knowledge, this is the largest study on mutation analysis of patients with ASM-deficient Niemann-Pick disease reported in literature and also the first study on the SMPD1 gene mutation spectrum in India. © 2016 Wiley Periodicals, Inc. PMID:27338287

  1. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    SciTech Connect

    Al-Saaidi, Rasha; Rasmussen, Torsten B.; Palmfeldt, Johan; Nissen, Peter H.; Beqqali, Abdelaziz; Hansen, Jakob; Pinto, Yigal M.; Boesen, Thomas; Mogensen, Jens; Bross, Peter

    2013-11-15

    Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representative LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that

  2. Canine Chondrodysplasia Caused by a Truncating Mutation in Collagen-Binding Integrin Alpha Subunit 10

    PubMed Central

    Kyöstilä, Kaisa; Lappalainen, Anu K.; Lohi, Hannes

    2013-01-01

    The skeletal dysplasias are disorders of the bone and cartilage tissues. Similarly to humans, several dog breeds have been reported to suffer from different types of genetic skeletal disorders. We have studied the molecular genetic background of an autosomal recessive chondrodysplasia that affects the Norwegian Elkhound and Karelian Bear Dog breeds. The affected dogs suffer from disproportionate short stature dwarfism of varying severity. Through a genome-wide approach, we mapped the chondrodysplasia locus to a 2-Mb region on canine chromosome 17 in nine affected and nine healthy Elkhounds (praw = 7.42×10−6, pgenome-wide = 0.013). The associated locus contained a promising candidate gene, cartilage specific integrin alpha 10 (ITGA10), and mutation screening of its 30 exons revealed a nonsense mutation in exon 16 (c.2083C>T; p.Arg695*) that segregated fully with the disease in both breeds (p = 2.5×10−23). A 24% mutation carrier frequency was indicated in NEs and an 8% frequency in KBDs. The ITGA10 gene product, integrin receptor α10-subunit combines into a collagen-binding α10β1 integrin receptor, which is expressed in cartilage chondrocytes and mediates chondrocyte-matrix interactions during endochondral ossification. As a consequence of the nonsense mutation, the α10-protein was not detected in the affected cartilage tissue. The canine phenotype highlights the importance of the α10β1 integrin in bone growth, and the large animal model could be utilized to further delineate its specific functions. Finally, this study revealed a candidate gene for human chondrodysplasias and enabled the development of a genetic test for breeding purposes to eradicate the disease from the two dog breeds. PMID:24086591

  3. Homozygous SALL1 Mutation Causes a Novel Multiple Congenital Anomaly—Mental Retardation Syndrome

    PubMed Central

    Vodopiutz, Julia; Zoller, Heinz; Fenwick, Aimée L.; Arnhold, Richard; Schmid, Max; Prayer, Daniela; Müller, Thomas; Repa, Andreas; Pollak, Arnold; Aufricht, Christoph; Wilkie, Andrew O.M.; Janecke, Andreas R.

    2013-01-01

    Objective To delineate a novel autosomal recessive multiple congenital anomaly-mental retardation (MCA-MR) syndrome in 2 female siblings of a consanguineous pedigree and to identify the disease-causing mutation. Study design Both siblings were clinically characterized and homozygosity mapping and sequencing of candidate genes were applied. The contribution of nonsense-mediated messenger RNA (mRNA) decay to the expression of mutant mRNA in fibroblasts of a healthy carrier and a control was studied by pyrosequencing. Results We identified the first homozygous SALL1 mutation, c.3160C > T (p.R1054*), in 2 female siblings presenting with multiple congenital anomalies, central nervous system defects, cortical blindness, and absence of psychomotor development (ie, a novel recognizable, autosomal recessive MCA-MR). The mutant SALL1 transcript partially undergoes nonsense-mediated mRNA decay and is present at 43% of the normal transcript level in the fibroblasts of a healthy carrier. Conclusion Previously heterozygous SALL1 mutations and deletions have been associated with dominantly inherited anal-renal-radial-ear developmental anomalies. We identified an allelic recessive SALL1-related MCA-MR. Our findings imply that quantity and quality of SALL1 transcript are important for SALL1 function and determine phenotype, and mode of inheritance, of allelic SALL1-related disorders. This novel MCA-MR emphasizes SALL1 function as critical for normal central nervous system development and warrants a detailed neurologic investigation in all individuals with SALL1 mutations. PMID:23069192

  4. A mutation in the neurofibromatosis type 2 tumor-suppressor gene, giving rise to widely different clinical phenotypes in two unrelated individuals

    SciTech Connect

    Bourn, D.; Carter, S.A.; Goodship, J.; Strachan, T. ); Evans, G.R.; Coakham, H.

    1994-07-01

    The authors have sought mutations in the recently identified neurofibromatosis type 2 (NF2) tumor-suppressor gene in a large panel of NF2 patients, using PCR-based SSCP and heteroduplex analysis, followed by cloning and sequencing of appropriate PCR products. Two unrelated NF2 patients were found to have identical nonsense mutations caused by a C-to-T transition in a CpG dinucleotide that is a potential mutational hot spot in the NF2 tumor-suppressor gene. Unexpectedly, the two individuals had widely different clinical phenotypes, representing the severe Wishart and mild Gardner clinical subtypes. Analysis of DNA samples from different tissues of the mildly affected patient suggests that he is a somatic mosaic for the mutation. 26 refs., 3 figs.

  5. Novel inherited mutations and variable expressivity of BRCA1 alleles, including the founder mutation 185delAG in Ashkenazi Jewish families

    SciTech Connect

    Friedman, L.S.; Szabo, C.I.; Ostermeyer, E.A.

    1995-12-01

    Thirty-seven families with four or more cases of breast cancer or breast and ovarian cancer were analyzed for mutations in BRCA1. Twelve different germ-line mutations, four novel and eight previously observed, were detected in 16 families. Five families of Ashkenazi Jewish descent carried the 185delAG mutation and shared the same haplotype at eight polymorphic markers spanning {approximately}850 kb at BRCA1. Expressivity of 185delAG in these families varied, from early-onset bilateral breast cancer and ovarian cancer to late-onset breast cancer without ovarian cancer. Mutation 4184delTCAA occurred independently in two families. In one family, penetrance was complete, with females developing early-onset breast cancer or ovarian cancer and the male carrier developing prostatic cancer, whereas, in the other family, penetrance was incomplete and only breast cancer occurred, diagnosed at ages 38-81 years. Two novel nonsense mutations led to the loss of mutant BRCA1 transcript in families with 10 and 6 cases of early-onset breast cancer and ovarian cancer. A 665-nt segment of the BRCA1 3{prime}-UTR and 1.3 kb of genomic sequence including the putative promoter region were invariant by single-strand conformation analysis in 13 families without coding-sequence mutations. Overall in our series, BRCA1 mutations have been detected in 26 families: 16 with positive BRCA1 lod scores, 7 with negative lod scores (reflecting multiple sporadic breast cancers), and 3 not tested for linkage. Three other families have positive lod scores for linkage to BRCA2, but 13 families without detected BRCA1 mutations have negative lod scores for both BRCA1 and BRCA2. 57 refs., 5 figs., 3 tabs.

  6. Expanding the mutation spectrum in 130 probands with ARPKD: identification of 62 novel PKHD1 mutations by sanger sequencing and MLPA analysis.

    PubMed

    Melchionda, Salvatore; Palladino, Teresa; Castellana, Stefano; Giordano, Mario; Benetti, Elisa; De Bonis, Patrizia; Zelante, Leopoldo; Bisceglia, Luigi

    2016-09-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a rare severe genetic disorder arising in the perinatal period, although a late-onset presentation of the disease has been described. Pulmonary hypoplasia is the major cause of morbidity and mortality in the newborn period. ARPKD is caused by mutations in the PKHD1 (polycystic kidney and hepatic disease 1) gene that is among the largest human genes. To achieve a molecular diagnosis of the disease, a large series of Italian affected subjects were recruited. Exhaustive mutation analysis of PKHD1 gene was carried out by Sanger sequencing and multiple ligation probe amplification (MLPA) technique in 110 individuals. A total of 173 mutations resulting in a detection rate of 78.6% were identified. Additional 20 unrelated patients, in whom it was not possible to analyze the whole coding sequence, have been included in this study. Taking into account the total number (n=130) of this cohort of patients, 107 different types of mutations have been detected in 193 mutated alleles. Out of 107 mutations, 62 were novel: 11 nonsense, 6 frameshift, 7 splice site mutations, 2 in-frame deletions and 2 multiexon deletion detected by MLPA. Thirty-four were missense variants. In conclusion, our report expands the spectrum of PKHD1 mutations and confirms the heterogeneity of this disorder. The population under study represents the largest Italian ARPKD cohort reported to date. The estimated costs and the time invested for molecular screening of genes with large size and allelic heterogeneity such as PKHD1 demand the use of next-generation sequencing (NGS) technologies for a faster and cheaper screening of the affected subjects. PMID:27225849

  7. Expanding the mutation spectrum in 130 probands with ARPKD: identification of 62 novel PKHD1 mutations by sanger sequencing and MLPA analysis.

    PubMed

    Melchionda, Salvatore; Palladino, Teresa; Castellana, Stefano; Giordano, Mario; Benetti, Elisa; De Bonis, Patrizia; Zelante, Leopoldo; Bisceglia, Luigi

    2016-09-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a rare severe genetic disorder arising in the perinatal period, although a late-onset presentation of the disease has been described. Pulmonary hypoplasia is the major cause of morbidity and mortality in the newborn period. ARPKD is caused by mutations in the PKHD1 (polycystic kidney and hepatic disease 1) gene that is among the largest human genes. To achieve a molecular diagnosis of the disease, a large series of Italian affected subjects were recruited. Exhaustive mutation analysis of PKHD1 gene was carried out by Sanger sequencing and multiple ligation probe amplification (MLPA) technique in 110 individuals. A total of 173 mutations resulting in a detection rate of 78.6% were identified. Additional 20 unrelated patients, in whom it was not possible to analyze the whole coding sequence, have been included in this study. Taking into account the total number (n=130) of this cohort of patients, 107 different types of mutations have been detected in 193 mutated alleles. Out of 107 mutations, 62 were novel: 11 nonsense, 6 frameshift, 7 splice site mutations, 2 in-frame deletions and 2 multiexon deletion detected by MLPA. Thirty-four were missense variants. In conclusion, our report expands the spectrum of PKHD1 mutations and confirms the heterogeneity of this disorder. The population under study represents the largest Italian ARPKD cohort reported to date. The estimated costs and the time invested for molecular screening of genes with large size and allelic heterogeneity such as PKHD1 demand the use of next-generation sequencing (NGS) technologies for a faster and cheaper screening of the affected subjects.

  8. A brachytic dwarfism trait (dw) in peach trees is caused by a nonsense mutation within the gibberellic acid receptor PpeGID1c.

    PubMed

    Hollender, Courtney A; Hadiarto, Toto; Srinivasan, Chinnathambi; Scorza, Ralph; Dardick, Chris

    2016-04-01

    Little is known about the genetic factors controlling tree size and shape. Here, we studied the genetic basis for a recessive brachytic dwarfism trait (dw) in peach (Prunus persica) that has little or no effect on fruit development. A sequencing-based mapping strategy positioned dw on the distal end of chromosome 6. Further sequence analysis and fine mapping identified a candidate gene for dw as a non-functional allele of the gibberellic acid receptor GID1c. Expression of the two GID1-like genes found in peach, PpeGID1c and PpeGID1b, was analyzed. GID1c was predominantly expressed in actively growing vegetative tissues, whereas GID1b was more highly expressed in reproductive tissues. Silencing of GID1c in plum via transgenic expression of a hairpin construct led to a dwarf phenotype similar to that of dw/dw peaches. In general, the degree of GID1c silencing corresponded to the degree of dwarfing. The results suggest that PpeGID1c serves a primary role in vegetative growth and elongation, whereas GID1b probably functions to regulate gibberellic acid perception in reproductive organs. Modification of GID1c expression could provide a rational approach to control tree size without impairing fruit development. PMID:26639453

  9. Mapping of the Proteinase B Structural Gene PRB1, in SACCHAROMYCES CEREVISIAE and Identification of Nonsense Alleles within the Locus

    PubMed Central

    Zubenko, George S.; Mitchell, Aaron P.; Jones, Elizabeth W.

    1980-01-01

    We report the mapping of the structural gene for proteinase B, PRB1. It is located 1.1 cM proximal to CAN1 on the left arm of chromosome V of Saccharomyces cerevisiae. We have identified 34 amber and 12 ochre mutations among the 126 prb1 mutations in our collection. PMID:7009321

  10. Molecular characterization of Portuguese patients with mucopolysaccharidosis type II shows evidence that the IDS gene is prone to splicing mutations.

    PubMed

    Alves, S; Mangas, M; Prata, M J; Ribeiro, G; Lopes, L; Ribeiro, H; Pinto-Basto, J; Lima, M Reis; Lacerda, L

    2006-12-01

    Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal storage disease caused by a defect in the iduronate-2-sulfatase gene (IDS). Alternative splicing of the IDS gene can occur and the underlying regulatory mechanism may be rather complex. Nevertheless, little information is available on the role of variations at the IDS locus in the splicing process. Here we report that splice mutations at the IDS locus are an important source of MPS II pathogenicity, accounting for almost 56% of Portuguese cases. Among 16 unrelated Portuguese MPS II patients, 15 different mutations were identified: six intronic splice mutations (c.104-2AG, c.241-2A>G, c.241-1G>A, c.418+1G>A, c.880-8AG and c.1181-1G>C); two exonic splice mutations (c.1006G>lC and c.1122C>T); five missense mutations (D269V, D69V, D148N, R88C and P86L); one nonsense mutation (Q465Ter); one total IDS gene deletion; and one rearrangement involving a IDS gene inversion. Furthermore, nine of the 15 detected mutations affected the usual splicing pattern at the locus. Some of them are responsible for dramatic changes in the splicing mechanism. For example, the substitution mutation, c.418+1G>A, revealed the presence of an exonic sequence inside intron 3. Our study provides evidence that the IDS locus is prone to splicing mutations and that such susceptibility is particularly high in exon 3 and neighbouring regions. Consequently, mutation screening of the IDS gene cannot be restricted to gDNA examination. Unless cDNA analysis is also conducted, misclassifications as silent or missense mutations can be produced and even uncharacteristic splice-site mutations can be misinterpreted as classic splicing defects that may generate severe, unconventional splicing alterations.

  11. Two classes of intrahepatic cholangiocarcinoma defined by relative abundance of mutations and copy number alterations

    PubMed Central

    Kim, Young-Ho; Hong, Eun-Kyung; Kong, Sun-Young; Han, Sung-Sik; Kim, Seoung-Hoon; Rhee, Je-Keun; Hwang, Soo-Kyung; Park, Sang-Jae; Kim, Tae-Min

    2016-01-01

    Intrahepatic cholangiocarcinoma (ICC) is a biliary tree-origin epithelial malignancy in liver with unfavorable clinical outcomes. Systematic genome analyses may advance our understanding of ICC pathogenesis also improving current diagnostic and therapeutic modalities. In this study, we analyzed 17 ICC tumor-vs-matched normal pairs using either whole-exome (n = 7), transcriptome sequencing (n = 7) or both platforms (n = 3). For somatic mutations, we identified recurrent mutations of previously reported genes such as KRAS, TP53, APC as well as epigenetic regulators and those of TGFβ signaling pathway. According to the abundance of somatic mutations and DNA copy number alterations (CNA), ten ICC exome cases were distinguished into two classes as those primarily driven by either somatic mutations (M class) or CNAs (C class). Compared to M class ICCs (92–147 somatic mutations; n = 5) with a relative deficit of CNAs, C class ICCs (54–84 mutations; n = 5) harbor recurrent focal CNAs including deletions involving CDKN2A, ROBO1, ROBO2, RUNX3, and SMAD4. We also show that transcriptome sequencing can be used for expression-based ICC categorization but the somatic mutation calling from the transcriptome can be heavily influenced by the gene expression level and potentially, by posttranscriptional modification such as nonsense mediated decay. Along with a substantial level of mutational heterogeneity of ICC genomes, our study reveals previously unrecognized two ICC classes defined by relative abundance of somatic mutations over CNAs or vice versa, which should be considered in the selection of genotyping platforms and sensitive screening of targets for ICC therapeutics. PMID:27009864

  12. Smoothened (SMO) receptor mutations dictate resistance to vismodegib in basal cell carcinoma.

    PubMed

    Pricl, Sabrina; Cortelazzi, Barbara; Dal Col, Valentina; Marson, Domenico; Laurini, Erik; Fermeglia, Maurizio; Licitra, Lisa; Pilotti, Silvana; Bossi, Paolo; Perrone, Federica

    2015-02-01

    Basal cell carcinomas (BCCs) and a subset of medulloblastomas are characterized by loss-of-function mutations in the tumor suppressor gene, PTCH1. PTCH1 normally functions by repressing the activity of the Smoothened (SMO) receptor. Inactivating PTCH1 mutations result in constitutive Hedgehog pathway activity through uncontrolled SMO signaling. Targeting this pathway with vismodegib, a novel SMO inhibitor, results in impressive tumor regression in patients harboring genetic defects in this pathway. However, a secondary mutation in SMO has been reported in medulloblastoma patients following relapse on vismodegib to date. This mutation preserves pathway activity, but appears to confer resistance by interfering with drug binding. Here we report for the first time on the molecular mechanisms of resistance to vismodegib in two BCC cases. The first case, showing progression after 2 months of continuous vismodegib (primary resistance), exhibited the new SMO G497W mutation. The second case, showing a complete clinical response after 5 months of treatment and a subsequent progression after 11 months on vismodegib (secondary resistance), exhibited a PTCH1 nonsense mutation in both the pre- and the post-treatment specimens, and the SMO D473Y mutation in the post-treatment specimens only. In silico analysis demonstrated that SMO(G497W) undergoes a conformational rearrangement resulting in a partial obstruction of the protein drug entry site, whereas the SMO D473Y mutation induces a direct effect on the binding site geometry leading to a total disruption of a stabilizing hydrogen bond network. Thus, the G497W and D473Y SMO mutations may represent two different mechanisms leading to primary and secondary resistance to vismodegib, respectively. PMID:25306392

  13. Guanine Holes Are Prominent Targets for Mutation in Cancer and Inherited Disease

    PubMed Central

    Bacolla, Albino; Temiz, Nuri A.; Yi, Ming; Ivanic, Joseph; Cer, Regina Z.; Donohue, Duncan E.; Ball, Edward V.; Mudunuri, Uma S.; Wang, Guliang; Jain, Aklank; Volfovsky, Natalia; Luke, Brian T.; Stephens, Robert M.; Cooper, David N.; Collins, Jack R.; Vasquez, Karen M.

    2013-01-01

    Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G•C bp in the context of all 64 5′-NGNN-3′ motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials). Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease. PMID:24086153

  14. Clinical, Biochemical, and Molecular Characterization of Novel Mutations in ABCA1 in Families with Tangier Disease.

    PubMed

    Brunham, Liam R; Kang, Martin H; Van Karnebeek, Clara; Sadananda, Singh N; Collins, Jennifer A; Zhang, Lin-Hua; Sayson, Bryan; Miao, Fudan; Stockler, Sylvia; Frohlich, Jiri; Cassiman, David; Rabkin, Simon W; Hayden, Michael R

    2015-01-01

    Tangier disease is a rare, autosomal recessive disorder caused by mutations in the ABCA1 gene and is characterized by near absence of plasma high-density lipoprotein cholesterol, accumulation of cholesterol in multiple tissues, peripheral neuropathy, and accelerated atherosclerosis. Here we report three new kindreds with Tangier disease harboring both known and novel mutations in ABCA1. One patient was identified to be homozygous for a nonsense mutation, p.Gln1038*. In a remarkably large Tangier disease pedigree with four affected siblings, we identified compound heterozygosity for previously reported missense variants, p.Arg937Val and p.Thr940Met, and show that both of these mutations result in significantly impaired cholesterol efflux in transfected cells. In a third pedigree, the proband was identified to be compound heterozygous for two novel mutations, a frameshift (p.Ile1200Hisfs*4) and an intronic variant (c.4176-11T>G), that lead to the creation of a cryptic splice site acceptor and premature truncation, p.Ser1392Argfs*6. We demonstrate that this mutation arose de novo, the first demonstration of a pathogenic de novo mutation in ABCA1 associated with Tangier disease. We also report results of glucose tolerance testing in a Tangier disease kindred for the first time, showing a gene-dose relationship between ABCA1 activity and glucose tolerance and suggesting that Tangier disease patients may have substantially impaired islet function. Our findings provide insight into the diverse phenotypic manifestations of this rare disorder, expand the list of pathogenic mutations in ABCA1, and increase our understanding of how specific mutations in this gene lead to abnormal cellular and physiological phenotypes.

  15. Erythrocytic Pyruvate Kinase Mutations Causing Hemolytic Anemia, Osteosclerosis, and Secondary Hemochromatosis in Dogs

    PubMed Central

    Gultekin, G. Inal; Raj, K.; Foureman, P.; Lehman, S.; Manhart, K.; Abdulmalik, O.; Giger, U.

    2013-01-01

    Background Erythrocytic pyruvate kinase (PK) deficiency, first documented in Basenjis, is the most common inherited erythroenzymopathy in dogs. Objectives To report 3 new breed-specific PK-LR gene mutations and a retrospective survey of PK mutations in a small and selected group of Beagles and West Highland White Terriers (WHWT). Animals Labrador Retrievers (2 siblings, 5 unrelated), Pugs (2 siblings, 1 unrelated), Beagles (39 anemic, 29 other), WHWTs (22 anemic, 226 nonanemic), Cairn Terrier (n = 1). Methods Exons of the PK-LR gene were sequenced from genomic DNA of young dogs (<2 years) with persistent highly regenerative hemolytic anemia. Results A nonsense mutation (c.799C>T) resulting in a premature stop codon was identified in anemic Labrador Retriever siblings that had osteosclerosis, high serum ferritin concentrations, and severe hepatic secondary hemochromatosis. Anemic Pug and Beagle revealed 2 different missense mutations (c.848T>C, c.994G>A, respectively) resulting in intolerable amino acid changes to protein structure and enzyme function. Breed-specific mutation tests were developed. Among the biased group of 248 WHWTs, 9% and 35% were homozygous (affected) and heterozygous, respectively, for the previously described mutation (mutant allele frequency 0.26). A PK-deficient Cairn Terrier had the same insertion mutation as the affected WHWTs. Of the selected group of 68 Beagles, 35% were PK-deficient and 3% were carriers (0.37). Conclusions and Clinical Importance Erythrocytic PK deficiency is caused by different mutations in different dog breeds and causes chronic severe hemolytic anemia, hemosiderosis, and secondary hemochromatosis because of chronic hemolysis and, an as yet unexplained osteosclerosis. The newly developed breed-specific mutation assays simplify the diagnosis of PK deficiency. PMID:22805166

  16. Functional Consequences and Structural Interpretation of Mutations of Human Choline Acetyltransferase

    PubMed Central

    Shen, Xin-Ming; Crawford, Thomas O.; Brengman, Joan; Acsadi, Gyula; Iannaconne, Susan; Karaca, Emin; Khoury, Chaouky; Mah, Jean K.; Edvardson, Shimon; Bajzer, Zeljko; Rodgers, David; Engel, Andrew G.

    2011-01-01

    Choline acetyltransferase (ChAT; EC 2.3.1.6) catalyzes synthesis of acetylcholine from acetyl-CoA and choline in cholinergic neurons. Mutations in CHAT (MIM # 118490) cause potentially lethal congenital myasthenic syndromes associated with episodic apnea (ChAT-CMS) (MIM # 254210). Here we analyze the functional consequences of 12 missense and 1 nonsense mutations of CHAT in 11 patients. Nine of the mutations are novel. We examine expression of the recombinant missense mutants in Bosc 23 cells, determine their kinetic properties and thermal stability, and interpret the functional effects of 11 mutations in the context of the atomic structural model of human ChAT. Five mutations (p.Trp421Ser, p.Ser498Pro, p.Thr553Asn, p.Ala557Thr, p.Ser572Trp) reduce enzyme expression to <50% of wild-type. Mutations with severe kinetic effects are located in the active-site tunnel (p.Met202Arg, p.Thr553Asn and p.Ala557Thr) or adjacent to the substrate binding site (p.Ser572Trp), or exert their effect allosterically (p.Trp421Ser and p.Ile689Ser). Two mutations with milder kinetic effects (p.Val136Met, p.Ala235Thr) are also predicted to act allosterically. One mutation (p.Thr608Asn) below the nucleotide binding site of CoA enhances dissociation of AcCoA from the enzyme-substrate complex. Two mutations introducing a proline residue into an α-helix (p.Ser498Pro and p.Ser704Pro) impair the thermal stability of ChAT. PMID:21786365

  17. Novel ENAM and LAMB3 Mutations in Chinese Families with Hypoplastic Amelogenesis Imperfecta

    PubMed Central

    Wang, Xin; Zhao, Yuming; Yang, Yuan; Qin, Man

    2015-01-01

    Amelogenesis imperfecta is a group of inherited diseases affecting the quality and quantity of dental enamel. To date, mutations in more than ten genes have been associated with non-syndromic amelogenesis imperfecta (AI). Among these, ENAM and LAMB3 mutations are known to be parts of the etiology of hypoplastic AI in human cases. When both alleles of LAMB3 are defective, it could cause junctional epidermolysis bullosa (JEB), while with only one mutant allele in the C-terminus of LAMB3, it could result in severe hypoplastic AI without skin fragility. We enrolled three Chinese families with hypoplastic autosomal-dominant AI. Despite the diagnosis falling into the same type, the characteristics of their enamel hypoplasia were different. Screening of ENAM and LAMB3 genes was performed by direct sequencing of genomic DNA from blood samples. Disease-causing