Coulomb-repulsion-assisted double ionization from doubly excited states of argon
NASA Astrophysics Data System (ADS)
Liao, Qing; Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Adhikari, Pradip; Li, Wen
2017-08-01
We report a combined experimental and theoretical study to elucidate nonsequential double-ionization dynamics of argon atoms at laser intensities near and below the recollision-induced ionization threshold. Three-dimensional momentum measurements of two electrons arising from strong-field nonsequential double ionization are achieved with a custom-built electron-electron-ion coincidence apparatus, showing laser intensity-dependent Coulomb repulsion effect between the two outgoing electrons. Furthermore, a previously predicted feature of double ionization from doubly excited states is confirmed in the distributions of sum of two-electron momenta. A classical ensemble simulation suggests that Coulomb-repulsion-assisted double ionization from doubly excited states is at play at low laser intensity. This mechanism can explain the dependence of Coulomb repulsion effect on the laser intensity, as well as the transition from side-by-side to back-to-back dominant emission along the laser polarization direction.
Ben, Shuai; Wang, Tian; Xu, Tongtong; Guo, Jing; Liu, Xueshen
2016-04-04
The carrier-envelop-phase (CEP) dependence of nonsequential double ionization (NSDI) of atomic Ar with few-cycle elliptically polarized laser pulse is investigated using 2D classical ensemble method. We distinguish two particular recollision channels in NSDI, which are recollision-impact ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). We separate the RII and RESI channels according to the delay time between recollision and final double ionization. By tracing the history of the trajectories, we find the electron correlation spectra as well as the competition between the two channels are sensitively dependent on the laser field CEP. Finally, control can be achieved between the two channels by varying the CEP.
Origin of double-line structure in nonsequential double ionization by few-cycle laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Cheng, E-mail: huangcheng@swu.edu.cn; Zhong, Mingmin; Wu, Zhengmao
2016-07-28
We investigate nonsequential double ionization (NSDI) of molecules by few-cycle laser pulses at the laser intensity of 1.2–1.5 × 10{sup 14} W/cm{sup 2} using the classical ensemble model. The same double-line structure as the lower intensity (1.0 × 10{sup 14} W/cm{sup 2}) is also observed in the correlated electron momentum spectra for 1.2–1.4 × 10{sup 14} W/cm{sup 2}. However, in contrast to the lower intensity where NSDI proceeds only through the recollision-induced double excitation with subsequent ionization (RDESI) mechanism, here, the recollision-induced excitation with subsequent ionization (RESI) mechanism has a more significant contribution to NSDI. This indicates that RDESI ismore » not necessary for the formation of the double-line structure and RESI can give rise to the same type of structure independently. Furthermore, we explore the ultrafast dynamics underlying the formation of the double-line structure in RESI.« less
Nonsequential double ionization with mid-infrared laser fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ying -Bin; Wang, Xu; Yu, Ben -Hai
Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Here, some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the finalmore » energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.« less
Nonsequential double ionization with mid-infrared laser fields
Li, Ying -Bin; Wang, Xu; Yu, Ben -Hai; ...
2016-11-18
Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Here, some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the finalmore » energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.« less
NASA Astrophysics Data System (ADS)
Winney, Alexander H.; Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Li, Wen
2016-03-01
We report state-resolved electron-momentum correlation measurement of strong-field nonsequential double ionization in benzene. With a novel coincidence detection apparatus, highly efficient triple coincidence (electron-electron dication) and quadruple coincidence (electron-electron-cation-cation) are used to resolve the final ionic states and to characterize three-dimensional (3D) electron-momentum correlation. The primary states associated with dissociative and nondissociative dications are assigned. A 3D momentum anticorrelation is observed for the electrons in coincidence with dissociative benzene dication states whereas such a correlation is absent for nondissociative dication states.
NASA Astrophysics Data System (ADS)
Chen, Zhangjin; Li, Xiaojin; Zatsarinny, Oleg; Bartschat, Klaus; Lin, C. D.
2018-01-01
We present numerical simulations of the ratio between double and single ionization of He and Ne by intense laser pulses at wavelengths of 390 and 400 nm, respectively. The yields of doubly charged ions due to nonsequential double ionization (NSDI) are obtained by employing the quantitative rescattering (QRS) model. In this model, the NSDI ionization probability is expressed as a product of the returning electron wave packet (RWP) and the total scattering cross sections for laser-free electron impact excitation and electron impact ionization of the parent ion. According to the QRS theory, the same RWP is also responsible for the emission of high-energy above-threshold ionization photoelectrons. To obtain absolute double-ionization yields, the RWP is generated by solving the time-dependent Schrödinger equation (TDSE) within a one-electron model. The same TDSE results can also be taken to obtain single-ionization yields. By using the TDSE results to calibrate single ionization and the RWP obtained from the strong-field approximation, we further simplify the calculation such that the nonuniform laser intensity distribution in the focused laser beam can be accounted for. In addition, laser-free electron impact excitation and ionization cross sections are calculated using the state-of-the-art many-electron R -matrix theory. The simulation results for double-to-single-ionization ratios are found to compare well with experimental data and support the validity of the nonsequential double-ionization mechanism for the covered intensity region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Nora G.; Herrwerth, O.; Wirth, A.
2011-01-15
Single-shot carrier-envelope-phase (CEP) tagging is combined with a reaction mircoscope (REMI) to investigate CEP-dependent processes in atoms. Excellent experimental stability and data acquisition longevity are achieved. Using this approach, we study the CEP effects for nonsequential double ionization of argon in 4-fs laser fields at 750 nm and an intensity of 1.6x10{sup 14} W/cm{sup 2}. The Ar{sup 2+} ionization yield shows a pronounced CEP dependence which compares well with recent theoretical predictions employing quantitative rescattering theory [S. Micheau et al., Phys. Rev. A 79, 013417 (2009)]. Furthermore, we find strong CEP influences on the Ar{sup 2+} momentum spectra along themore » laser polarization axis.« less
NASA Astrophysics Data System (ADS)
Xu, Tong-Tong; Ben, Shuai; Guo, Pei-Ying; Song, Kai-Li; Zhang, Jun; Liu, Xue-Shen
2017-07-01
We use the classical ensemble method to investigate the nonsequential double ionization (NSDI) process of Mg atoms in circularly polarized laser fields at a lower laser intensity. We illustrate the temporal correlation of the ‘side-by-side’ and the ‘back-to-back emission’. It indicates that the two electrons are more likely to be emitted at the same time for the ‘side-by-side emission’. We demonstrate the electronic trajectories from recollision-induced ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). The distribution of the angle between the two ionized directions of the two electrons and the ion momentum distribution show that the anticorrelation distribution is dominant in the RESI mechanism and correlation distribution is dominant in the RII mechanism. The momentum distributions of Mg atoms for the slow and the fast electrons present a similar structure to the experimental observation of Ar atoms by Liu et al 2014 (Phys. Rev. Lett. 112 013003).
Kang, H; Henrichs, K; Kunitski, M; Wang, Y; Hao, X; Fehre, K; Czasch, A; Eckart, S; Schmidt, L Ph H; Schöffler, M; Jahnke, T; Liu, X; Dörner, R
2018-06-01
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses
NASA Astrophysics Data System (ADS)
Kang, H.; Henrichs, K.; Kunitski, M.; Wang, Y.; Hao, X.; Fehre, K.; Czasch, A.; Eckart, S.; Schmidt, L. Ph. H.; Schöffler, M.; Jahnke, T.; Liu, X.; Dörner, R.
2018-06-01
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
NASA Astrophysics Data System (ADS)
Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen
2017-07-01
Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the "knee" structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.
NASA Astrophysics Data System (ADS)
Chen, Zhangjin; Li, Xiaojin; Sun, Xiaoli; Hao, Xiaolei; Chen, Jing
2017-12-01
We use the semiclassical model to study the intensity dependence of nonsequential double ionization (NSDI) of Ar in short strong laser pulses. The contributions to NSDI through sequential ionization of doubly excited states (SIDE) are identified by tracking the energy trajectories of the two outgoing electrons. The correlated electron momentum distributions are calculated from which the longitudinal momentum distributions of the fast and the slow electrons for the side-by-side and the back-to-back emissions are obtained. The simulated momentum distributions of the fast and the slow electrons for NSDI of Ar by linearly polarized fields with a wavelength of 795 nm at an intensity of 7 × 1013 W cm-2 are in good agreement with the experimental measurements of Liu et al (2014 Phys. Rev. Lett. 112 013003). We demonstrate that the process of double ionization through SIDE dominates NSDI only when the laser intensities are below the recollision threshold; nevertheless, for higher intensities the SIDE process still takes place although the contribution to the NSDI yields decreases rapidly as the intensity increases. It has been found that for SIDE at different intensities, both the correlated electron momentum spectra and the momentum distributions of the fast and the slow electrons remain the same.
Controlling nonsequential double ionization of Ne with parallel-polarized two-color laser pulses.
Luo, Siqiang; Ma, Xiaomeng; Xie, Hui; Li, Min; Zhou, Yueming; Cao, Wei; Lu, Peixiang
2018-05-14
We measure the recoil-ion momentum distributions from nonsequential double ionization of Ne by two-color laser pulses consisting of a strong 800-nm field and a weak 400-nm field with parallel polarizations. The ion momentum spectra show pronounced asymmetries in the emission direction, which depend sensitively on the relative phase of the two-color components. Moreover, the peak of the doubly charged ion momentum distribution shifts gradually with the relative phase. The shifted range is much larger than the maximal vector potential of the 400-nm laser field. Those features are well recaptured by a semiclassical model. Through analyzing the correlated electron dynamics, we found that the energy sharing between the two electrons is extremely unequal at the instant of recollison. We further show that the shift of the ion momentum corresponds to the change of the recollision time in the two-color laser field. By tuning the relative phase of the two-color components, the recollision time is controlled with attosecond precision.
Quantum interference in laser-induced nonsequential double ionization
NASA Astrophysics Data System (ADS)
Quan, Wei; Hao, XiaoLei; Wang, YanLan; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Xiao, ZhiLei; Sun, RenPing; Lai, XuanYang; Hu, ShiLin; Liu, MingQing; Shu, Zheng; Wang, XiaoDong; Li, WeiDong; Becker, Wilhelm; Liu, XiaoJun; Chen, Jing
2017-09-01
Quantum interference plays an important role in various intense-laser-driven atomic phenomena, e.g., above-threshold ionization and high-order-harmonic generation, and provides a useful tool in ultrafast imaging of atomic and molecular structure and dynamics. However, it has eluded observation in nonsequential double ionization (NSDI), which serves as an ideal prototype to study electron-electron correlation. Thus far, NSDI usually could be well understood from a semiclassical perspective, where all quantum aspects have been ignored after the first electron has tunneled. Here we perform coincidence measurements for NSDI of xenon subject to laser pulses at 2400 nm. It is found that the intensity dependence of the asymmetry parameter between the yields in the second and fourth quadrants and those in the first and third quadrants of the electron-momentum-correlation distributions exhibits a peculiar fast oscillatory structure, which is beyond the scope of the semiclassical picture. Our theoretical analysis indicates that this oscillation can be attributed to interference between the contributions of different excited states in the recollision-excitation-with-subsequent-ionization channel. Our work demonstrates the significant role of quantum interference in NSDI and may create an additional pathway towards manipulation and imaging of the ultrafast atomic and molecular dynamics in intense laser fields.
Attosecond Spectroscopy Probing Electron Correlation Dynamics
NASA Astrophysics Data System (ADS)
Winney, Alexander H.
Electrons are the driving force behind every chemical reaction. The exchange, ionization, or even relaxation of electrons is behind every bond broken or formed. According to the Bohr model of the atom, it takes an electron 150 as to orbit a proton[6]. With this as a unit time scale for an electron, it is clear that a pulse duration of several femtoseconds will not be sufficient to understanding electron dynamics. Our work demonstrates both technical and scientific achievements that push the boundaries of attosecond dynamics. TDSE studies show that amplification the yield of high harmonic generation (HHG) may be possible with transverse confinement of the electron. XUV-pump-XUV-probe shows that the yield of APT train can be sufficient for 2-photon double ionization studies. A zero dead-time detection system allows for the measurement of state-resolved double ionization for the first time. Exploiting attosecond angular streaking[7] probes sequential and non-sequential double ionization via electron-electron correlations with attosecond time resolution. Finally, using recoil frame momentum correlation, the fast dissociation of CH 3I reveals important orbital ionization dynamics of non-dissociative & dissociative, single & double ionization.
Transition of recollision trajectories from linear to elliptical polarization
Li, Yingbin; Yu, Benhai; Tang, Qingbin; ...
2016-03-15
Using a classical ensemble method, we revisit the topic of recollision and nonsequential double ionization with elliptically polarized laser fields. We focus on how the recollision mechanism transitions from short trajectories with linear polarization to long trajectories with elliptical polarization. Furthermore, we propose how this transition can be observed by measuring the carrier-envelop-phase dependence of the correlated electron momentum spectra using currently available few-cycle laser pulses.
Scaling Laws of the Two-Electron Sum-Energy Spectrum in Strong-Field Double Ionization.
Ye, Difa; Li, Min; Fu, Libin; Liu, Jie; Gong, Qihuang; Liu, Yunquan; Ullrich, J
2015-09-18
The sum-energy spectrum of two correlated electrons emitted in nonsequential strong-field double ionization (SFDI) of Ar was studied for intensities of 0.3 to 2×10^{14} W/cm^{2}. We find the mean sum energy, the maximum of the distributions as well as the high-energy tail of the scaled (to the ponderomotive energy) spectra increase with decreasing intensity below the recollision threshold (BRT). At higher intensities the spectra collapse into a single distribution. This behavior can be well explained within a semiclassical model providing clear evidence of the importance of multiple recollisions in the BRT regime. Here, ultrafast thermalization between both electrons is found occurring within three optical cycles only and leaving its clear footprint in the sum-energy spectra.
Sequential Double lonization: The Timing of Release
NASA Astrophysics Data System (ADS)
Pfeiffer, A.
2011-05-01
The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. In collaboration with C. Cirelli and M. Smolarski, Physics Department, ETH Zurich, 8093 Zurich, Switzerland; R. Doerner, Institut fiir Kernphysik, Johann Wolfgang Goethe Universitat, 60438 Frankfurt am Main, Germany; and U. Keller, ETH Zurich.
Correlated multielectron dynamics in mid-infrared laser pulse interactions with neon atoms.
Tang, Qingbin; Huang, Cheng; Zhou, Yueming; Lu, Peixiang
2013-09-09
The multielectron dynamics in nonsequential triple ionization (NSTI) of neon atoms driven by mid-infrared (MIR) laser pulses is investigated with the three-dimensional classical ensemble model. In consistent with the experimental result, our numerical result shows that in the MIR regime, the triply charged ion longitudinal momentum spectrum exhibits a pronounced double-hump structure at low laser intensity. Back analysis reveals that as the intensity increases, the responsible triple ionization channels transform from direct (e, 3e) channel to the various mixed channels. This transformation of the NSTI channels leads to the results that the shape of ion momentum spectra becomes narrow and the distinct maxima shift towards low momenta with the increase of the laser intensity. By tracing the triply ionized trajectories, the various ionization channels at different laser intensities are clearly identified and these results provide an insight into the complex dynamics of the correlated three electrons in NSTI.
Sequential double photodetachment of He- in elliptically polarized laser fields
NASA Astrophysics Data System (ADS)
Génévriez, Matthieu; Dunseath, Kevin M.; Terao-Dunseath, Mariko; Urbain, Xavier
2018-02-01
Four-photon double detachment of the helium negative ion is investigated experimentally and theoretically for photon energies where the transient helium atom is in the 1 s 2 s 3S or 1 s 2 p P3o states, which subsequently ionize by absorption of three photons. Ionization is enhanced by intermediate resonances, giving rise to series of peaks in the He+ spectrum, which we study in detail. The He+ yield is measured in the wavelength ranges from 530 to 560 nm and from 685 to 730 nm and for various polarizations of the laser light. Double detachment is treated theoretically as a sequential process, within the framework of R -matrix theory for the first step and effective Hamiltonian theory for the second step. Experimental conditions are accurately modeled, and the measured and simulated yields are in good qualitative and, in some cases, quantitative agreement. Resonances in the double detachment spectra can be attributed to well-defined Rydberg states of the transient atom. The double detachment yield exhibits a strong dependence on the laser polarization which can be related to the magnetic quantum number of the intermediate atomic state. We also investigate the possibility of nonsequential double detachment with a two-color experiment but observe no evidence for it.
NASA Astrophysics Data System (ADS)
Hansen, Kenneth K.; Madsen, Lars Bojer
2016-05-01
Nonsequential double-recombination (NSDR) high-order-harmonic generation (HHG) is studied in a molecular model system. We observe a unique molecular two-electron effect with a characteristic cutoff in the HHG spectrum at higher energies than what was previously seen for NSDR HHG in atoms. The effect is corroborated with a classical model where it is found that the effect is sensitive to the molecular potential and originates from same-period emission and recombination (SPEAR) of two electrons. The effect persists for intermediate nuclear distances of R ≳8.0 a.u.
Optical field ionization of atoms and ions using ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Fittinghoff, D. N.
1993-12-01
This dissertation research is an investigation of the strong optical field ionization of atoms and ions by 120-fs, 614-run laser pulses and 130-fs, 800-nm laser pulses. The experiments have shown ionization that is enhanced above the predictions of sequential tunneling models for He(+2), Ne(+2), and Ar(+2). The ion yields for He(+1), Ne(sup +1) and Ar(sup +1) agree well with the theoretical predictions of optical tunneling models. Investigation of the polarization dependence of the ionization indicates that the enhancements are consistent with a nonsequential ionization mechanism in which the linearly polarized field drives the electron wavefunction back toward the ion core and causes double ionization through inelastic e-2e scattering. These investigations have initiated a number of other studies by other groups and are of current scientific interest in the fields of high-irradiance laser-matter interactions and production of high-density plasmas. This work involved the following: (1) Understanding the characteristic nature of the ion yields produced by tunneling ionization through investigation of analytic solutions for tunneling at optical frequencies. (2) Extensive characterization of the pulses produced by 614-nm and 800-ran ultrashort pulse lasers. Absolute calibration of the irradiance scale produced shows the practicality of the inverse problem--measuring peak laser irradiance using ion yields. (3) Measuring the ion yields for three noble gases using linear, circular and elliptical polarizations of laser pulses at 614-nm and 800-nm. The measurements are some of the first measurements for pulse widths as low as 120-fs.
NASA Astrophysics Data System (ADS)
Ma, Pan; Wang, Chuncheng; Luo, Sizuo; Yu, Xitao; Li, Xiaokai; Wang, Zhenzhen; Hu, Wenhui; Yu, Jiaqi; Yang, Yizhang; Tian, Xu; Cui, Zhonghua; Ding, Dajun
2018-05-01
We studied the relative yields and dissociation dynamics for two- and three-body Coulomb explosion (CE) channels from highly charged carbonyl sulfide molecules in intense laser fields using the CE imaging technique. The electron recollision contributions are evaluated by comparing the relative yields for the multiple ionization process in linearly polarized and circularly polarized (LP and CP) laser fields. The nonsequential multiple ionization is only confirmed for the charge states of 2 to 4 because the energy for further ionization from the inner orbital is much larger than the maximum recollision energy, 3.2U p . The novel deviations of kinetic energy releases distributions between LP and CP pulses are observed for the charge states higher than 4. It can be attributed to the stronger molecular bending in highly charged states before three-body CE with CP light, in which the bending wave packet is initialed by the triple or quartic ionization and spread along their potential curves. Compared to LP light, CP light ionizes a larger fraction of bending molecules in the polarization plane.
[Reflex epilepsy evoked by decision making: report of a case (author's transl)].
Mutani, R; Ganga, A; Agnetti, V
1980-01-01
A 17-year-old girl with a story of Gran Mal attacks occurring during lessons of mathematics or solving mathematical problems, was investigated with prolonged EEG recordings. During the sessions, relax periods were alternated with arithmetical or mathematical testing, with card or checkers games and solution of puzzles and crossword problems, and with different neuropsychological tests. EGG recordings were characterized by the appearance, on a normal background, of bilaterally synchronous and symmetrical spike-and-wave and polispike-and-wave discharges, associated with loss of consciousness. During relax their mean frequency was one/54 min., it doubled during execution of tests involved with nonsequential decision making, and was eight times as high (one/7 min.) during tests involving sequential decision making. Some tension, challenge and complexity of the performance were also important as precipitating factors. Their lack deprived sequential tests of their efficacy, while on the contrary their presence sometimes gave nonsequential tests full efficacy.
Electron Dynamics in Finite Quantum Systems
NASA Astrophysics Data System (ADS)
McDonald, Christopher R.
The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to investigate a wide variety of problems that cannot be currently treated by any other method. Finally, the time it takes for an electron to tunnel from a bound state is investigated; a definition of the tunnel time is established and the Keldysh time is connected to the wavefunction dynamics.
NASA Astrophysics Data System (ADS)
Iravani, Hossein; Sabzyan, Hassan; Vafaee, Mohsen; Buzari, Behnaz
2018-04-01
Contributions of the pre-ionized H2 (PI-H2) and ionized {{{H}}}2+ subsystems of the two-electron H2 system to its high-order harmonic generation in eight-cycle sin2-like ultrafast intense laser pulses are calculated and analyzed based on the solution of the time-dependent Schrödinger equation for the one-dimensional two-electronic H2 system with fixed nuclei. The laser pulses have λ = 390 and 532 nm wavelengths and I = 1 × 1014, 5 × 1014, 1 × 1015 and 5 × 1015 W cm‑2 intensities. It is found that at the two lower intensities, the PI-H2 subsystem dominantly produces the HHG spectra. However, at the two higher intensities, both PI-H2 and ionized {{{H}}}2+ subsystems contribute comparably to the HHG spectra. In the {{{H}}}2+ subsystem, the symmetry of the populations of {{{H}}}2+(I) and {{{H}}}2+(II) regions (left and right regions of {{{H}}}2+ subsystem) is broken by increasing the laser intensity. Complex patterns and even harmonics also appear at these two higher intensities. For instance, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, the even harmonics are appeared near cutoff region. Interestingly, at 5 × 1015 W cm‑2 intensity and λ = 390 nm wavelength, the even harmonics replaced by the odd harmonics with red shift. At λ = 390 and 532 nm wavelengths and I = 1 × 1015 intensity, the two-electron cutoffs corresponding to nonsequential double-recombination with maximum return kinetic energy of 4.70Up are detected. The HHG spectra of the whole H2 system obtained with and without nuclear dynamics treated classically are approximately similar. However, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, if we take into account nuclear dynamics, the even harmonics which are appeared near cutoff region, replaced by the odd harmonics with blue shift.
2017-01-01
Objective Anticipation of opponent actions, through the use of advanced (i.e., pre-event) kinematic information, can be trained using video-based temporal occlusion. Typically, this involves isolated opponent skills/shots presented as trials in a random order. However, two different areas of research concerning representative task design and contextual (non-kinematic) information, suggest this structure of practice restricts expert performance. The aim of this study was to examine the effect of a sequential structure of practice during video-based training of anticipatory behavior in tennis, as well as the transfer of these skills to the performance environment. Methods In a pre-practice-retention-transfer design, participants viewed life-sized video of tennis rallies across practice in either a sequential order (sequential group), in which participants were exposed to opponent skills/shots in the order they occur in the sport, or a non-sequential (non-sequential group) random order. Results In the video-based retention test, the sequential group was significantly more accurate in their anticipatory judgments when the retention condition replicated the sequential structure compared to the non-sequential group. In the non-sequential retention condition, the non-sequential group was more accurate than the sequential group. In the field-based transfer test, overall decision time was significantly faster in the sequential group compared to the non-sequential group. Conclusion Findings highlight the benefits of a sequential structure of practice for the transfer of anticipatory behavior in tennis. We discuss the role of contextual information, and the importance of representative task design, for the testing and training of perceptual-cognitive skills in sport. PMID:28355263
ERIC Educational Resources Information Center
Prince George's County Board of Education, Upper Marlboro, MD.
Guidelines for nonsequential, one-semester courses in French and Spanish for travelers, offered at the secondary level of instruction, are presented in this study. The courses are intended for those who wish a brief introduction to the language focusing primarily on selected phrases and expressions often used by travelers. The categories of…
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry; Chu, Shih-I.
2012-06-01
We present a self-interaction-free (SIC) time-dependent density-functional theory (TDDFT) for the treatment of double ionization processes of many-electron systems. The method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed 3D calculations of double ionization of He and Be atoms by strong near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. We found that proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the spin particle numbers (SPN) only. The results for the intensity-dependent probabilities of single and double ionization are presented and reproduce the famous ``knee'' structure.
Iterative non-sequential protein structural alignment.
Salem, Saeed; Zaki, Mohammed J; Bystroff, Christopher
2009-06-01
Structural similarity between proteins gives us insights into their evolutionary relationships when there is low sequence similarity. In this paper, we present a novel approach called SNAP for non-sequential pair-wise structural alignment. Starting from an initial alignment, our approach iterates over a two-step process consisting of a superposition step and an alignment step, until convergence. We propose a novel greedy algorithm to construct both sequential and non-sequential alignments. The quality of SNAP alignments were assessed by comparing against the manually curated reference alignments in the challenging SISY and RIPC datasets. Moreover, when applied to a dataset of 4410 protein pairs selected from the CATH database, SNAP produced longer alignments with lower rmsd than several state-of-the-art alignment methods. Classification of folds using SNAP alignments was both highly sensitive and highly selective. The SNAP software along with the datasets are available online at http://www.cs.rpi.edu/~zaki/software/SNAP.
NASA Astrophysics Data System (ADS)
Grum-Grzhimailo, A. N.; Gryzlova, E. V.; Kuzmina, E. I.; Chetverkina, A. S.; Strakhova, S. I.
2015-04-01
Two nonlinear atomic photoprocesses are theoretically considered with the emphasis on the photoelectron angular distributions and their modifications due to violation of the dipole approximation: sequential two-photon double ionization and two-color above threshold ionization. These reactions are now accessible with X-ray free electron lasers. Both processes are exemplified by the ionization of krypton: from the 4p shell in the sequential two-photon double ionization and from the 2s shell in the two-color above-threshold ionization, which are compared to the Ar(3p) and Ne(1s) ionization, respectively. Noticeable nondipole effects are predicted.
Double ionization in R -matrix theory using a two-electron outer region
NASA Astrophysics Data System (ADS)
Wragg, Jack; Parker, J. S.; van der Hart, H. W.
2015-08-01
We have developed a two-electron outer region for use within R -matrix theory to describe double ionization processes. The capability of this method is demonstrated for single-photon double ionization of He in the photon energy region between 80 and 180 eV. The cross sections are in agreement with established data. The extended R -matrix with time dependence method also provides information on higher-order processes, as demonstrated by the identification of signatures for sequential double ionization processes involving an intermediate He+ state with n =2 .
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2013-05-01
We present a self-interaction-free time-dependent density-functional theory (TDDFT) for the treatment of double-ionization processes of many-electron systems. The method is based on the extension of the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed three-dimensional (3D) calculations of double ionization of He and Be atoms by intense near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double-ionization process. We found that a proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the total particle number (TPN). The results for the intensity-dependent rates of double ionization of He and Be atoms are presented.
Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Tribedi, L. C.
2007-09-01
Se have investigated single and double ionization of C60 molecule in collisions with 2.33 MeV/u Siq+ (q=6-14) and 3.125 MeV/u Oq+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, A.; Tribedi, L. C.
2007-06-01
We have investigated the single and multiple ionizations of the C60 molecule in collisions with fast Siq+ projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.
Visualizing and Steering Dissociative Frustrated Double Ionization of Hydrogen Molecules
NASA Astrophysics Data System (ADS)
Zhang, Wenbin; Yu, Zuqing; Gong, Xiaochun; Wang, Junping; Lu, Peifen; Li, Hui; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; Li, Hanxiao; Sun, Fenghao; Qiang, Junjie; Zeng, Heping; He, Feng; Wu, Jian
2017-12-01
We experimentally visualize the dissociative frustrated double ionization of hydrogen molecules by using few-cycle laser pulses in a pump-probe scheme, in which process the tunneling ionized electron is recaptured by one of the outgoing nuclei of the breaking molecule. Three internuclear distances are recognized to enhance the dissociative frustrated double ionization of molecules at different instants after the first ionization step. The recapture of the electron can be further steered to one of the outgoing nuclei as desired by using phase-controlled two-color laser pulses. Both the experimental measurements and numerical simulations suggest that the Rydberg atom is favored to emit to the direction of the maximum of the asymmetric optical field. Our results on the one hand intuitively visualize the dissociative frustrated double ionization of molecules, and on the other hand open the possibility to selectively excite the heavy fragment ejected from a molecule.
Single and double multiphoton ionization of Li and Be atoms by strong laser fields
NASA Astrophysics Data System (ADS)
Telnov, Dmitry; Heslar, John; Chu, Shih-I.
2011-05-01
The time-dependent density functional theory with self-interaction correction and proper asymptotic long-range potential is extended for nonperturbative treatment of multiphoton single and double ionization of Li and Be atoms by strong 800 nm laser fields. We make use of the time-dependent Krieger-Li-Iafrate (TDKLI) exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. However, we have found that the discontinuity of the TDKLI potential is not sufficient to reproduce the characteristic feature of double ionization. This may happen because the discontinuity of the TDKLI potential is related to the spin particle numbers only and not to the total particle number. Introducing a discontinuity with respect to the total particle number to the exchange-correlation potential, we were able to obtain the knee structure in the intensity dependence of the double ionization probability of Be. This work was partially supported by DOE and NSF and by NSC-Taiwan.
Increased upstream ionization due to formation of a double layer.
Thakur, S Chakraborty; Harvey, Z; Biloiu, I A; Hansen, A; Hardin, R A; Przybysz, W S; Scime, E E
2009-01-23
We report observations that confirm a theoretical prediction that formation of a current-free double layer in a plasma expanding into a chamber of larger diameter is accompanied by an increase in ionization upstream of the double layer. The theoretical model argues that the increased ionization is needed to balance the difference in diffusive losses upstream and downstream of the expansion region. In our expanding helicon source experiments, we find that the upstream plasma density increases sharply at the same antenna frequency at which the double layer appears.
NASA Astrophysics Data System (ADS)
Demand, D.; Blume, T.; Weiler, M.
2017-12-01
Preferential flow in macropores significantly affects the distributions of water and solutes in soil and many studies showed its relevance worldwide. Although some models include this process as a second pore domain, little is known about the spatial patterns and temporal dynamics. For example, while flow in the matrix is usually modeled and parameterized based on soil texture, an influence of texture on non-capillary flow for a given land-use class is poorly understood. To investigate the temporal and spatial dynamics on preferential flow we used a four-year soil moisture dataset from the mesoscale Attert catchment (288 km²) in Luxembourg. This dataset contains time series from 126 soil profiles in different textures and two land-use classes (forest, grassland). The soil moisture probes were installed in 10, 30 and 50 cm depth and measured in a 5-minute temporal resolution. Events were defined by a soil moisture increase higher than the instrument noise after a precipitation sum of more than 1 mm. Precipitation was measured next to the profiles so that each location could be associated to its unique precipitation characteristics. For every event and profile the soil moisture reaction was classified in sequential (ordered by depth) and non-sequential response. A non-sequential soil moisture reaction was used as an indicator of preferential flow. For sequential flow, the velocity was determined by the first reaction between two vertically adjacent sensors. The sensor reaction and wetting front velocity was analyzed in the context of precipitation characteristics and initial soil water content. Grassland sites showed a lower proportion of non-sequential flow than forest sites. For forest, non-sequential response is dependent on texture, rainfall intensity and initial water content. This is less distinct for the grassland sites. Furthermore, sequential reactions show higher flow velocities at sites, which also have high percentage of non-sequential response. In contrast, grassland sites show a more homogenous wetting front independent of soil texture. Compared against common modelling approaches of soil water flow, measured velocities show clear evidence of preferential flow, especially for forest soils. The analysis also shows that vegetation can alter the soil properties above the textural properties alone.
Multiple ionization of C 60 in collisions with 2.33 MeV/u O-ions and giant plasmon excitation
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, Ajay; Tribedi, L. C.
2007-03-01
Single and multiple ionization of C60 in collisions with fast (v = 9.7 a.u.) Oq+ ions have been studied. Relative cross sections for production of C 601+ to C 604+ have been measured. The intensity ratios of double-to-single ionization agree very well with a model based on giant dipole plasmon resonance (GDPR). Almost linear increasing trend of the yields of single and double ionizations with projectile charge state is well reproduced by the single and double plasmon excitation mechanisms. The observed charge state independence of triple and quadruple ionization is in sharp contrast to the GDPR model.
Double-frequency microwave ionization of Na
NASA Astrophysics Data System (ADS)
Ruff, G. A.; Dietrick, K. M.; Gallagher, T. F.
1990-11-01
We report the ionization of Na atoms by the simultaneous application of microwave fields of two different frequencies. We conclude that the salient features of double-frequency ionization can be readily understood. Both the hydrogenlike ||m||=2 states and the nonhydrogenic ||m||=0 and 1 states ionize when the sum of the field amplitudes, the peak field, reaches the field required for ionization by a single microwave frequency, E=1/9n4 and E=1/3n5, respectively.
Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...
2016-09-14
We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.; Stelbovics, Andris T.
2010-02-01
The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.
NASA Astrophysics Data System (ADS)
Kobayashi, Yuki; Reduzzi, Maurizio; Chang, Kristina F.; Timmers, Henry; Neumark, Daniel M.; Leone, Stephen R.
2018-06-01
Experiments are presented on real-time probing of coherent electron dynamics in xenon initiated by strong-field double ionization. Attosecond transient absorption measurements allow for characterization of electronic coherences as well as relative ionization timings in multiple electronic states of Xe+ and Xe2 + . A high degree of coherence g =0.4 is observed between
Observation of two-center interference effects for electron impact ionization of N2
NASA Astrophysics Data System (ADS)
Chaluvadi, Hari; Nur Ozer, Zehra; Dogan, Mevlut; Ning, Chuangang; Colgan, James; Madison, Don
2015-08-01
In 1966, Cohen and Fano (1966 Phys. Rev. 150 30) suggested that one should be able to observe the equivalent of Young’s double slit interference if the double slits were replaced by a diatomic molecule. This suggestion inspired many experimental and theoretical studies searching for double slit interference effects both for photon and particle ionization of diatomic molecules. These effects turned out to be so small for particle ionization that this work proceeded slowly and evidence for interference effects were only found by looking at cross section ratios. Most of the early particle work concentrated on double differential cross sections for heavy particle scattering and the first evidence for two-center interference for electron-impact triple differential cross section (TDCS) did not appear until 2006 for ionization of H2. Subsequent work has now firmly established that two-center interference effects can be seen in the TDCS for electron-impact ionization of H2. However, in spite of several experimental and theoretical studies, similar effects have not been found for electron-impact ionization of N2. Here we report the first evidence for two-center interference for electron-impact ionization of N2.
Nuclear-Recoil Differential Cross Sections for the Two Photon Double Ionization of Helium
NASA Astrophysics Data System (ADS)
Abdel Naby, Shahin; Ciappina, M. F.; Lee, T. G.; Pindzola, M. S.; Colgan, J.
2013-05-01
In support of the reaction microscope measurements at the free-electron laser facility at Hamburg (FLASH), we use the time-dependent close-coupling method (TDCC) to calculate fully differential nuclear-recoil cross sections for the two-photon double ionization of He at photon energy of 44 eV. The total cross section for the double ionization is in good agreement with previous calculations. The nuclear-recoil distribution is in good agreement with the experimental measurements. In contrast to the single-photon double ionization, maximum nuclear recoil triple differential cross section is obtained at small nuclear momenta. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin
2018-04-01
Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our theoretical formalism is accurate and effective in treating the atomic multielectron processes.
Brown, Peter; Pullan, Wayne; Yang, Yuedong; Zhou, Yaoqi
2016-02-01
The three dimensional tertiary structure of a protein at near atomic level resolution provides insight alluding to its function and evolution. As protein structure decides its functionality, similarity in structure usually implies similarity in function. As such, structure alignment techniques are often useful in the classifications of protein function. Given the rapidly growing rate of new, experimentally determined structures being made available from repositories such as the Protein Data Bank, fast and accurate computational structure comparison tools are required. This paper presents SPalignNS, a non-sequential protein structure alignment tool using a novel asymmetrical greedy search technique. The performance of SPalignNS was evaluated against existing sequential and non-sequential structure alignment methods by performing trials with commonly used datasets. These benchmark datasets used to gauge alignment accuracy include (i) 9538 pairwise alignments implied by the HOMSTRAD database of homologous proteins; (ii) a subset of 64 difficult alignments from set (i) that have low structure similarity; (iii) 199 pairwise alignments of proteins with similar structure but different topology; and (iv) a subset of 20 pairwise alignments from the RIPC set. SPalignNS is shown to achieve greater alignment accuracy (lower or comparable root-mean squared distance with increased structure overlap coverage) for all datasets, and the highest agreement with reference alignments from the challenging dataset (iv) above, when compared with both sequentially constrained alignments and other non-sequential alignments. SPalignNS was implemented in C++. The source code, binary executable, and a web server version is freely available at: http://sparks-lab.org yaoqi.zhou@griffith.edu.au. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Nonsequential two-photon absorption from the K shell in solid zirconium
Ghimire, Shambhu; Fuchs, Matthias; Hastings, Jerry; ...
2016-10-21
Here, we report the observation of nonsequential two-photon absorption from the K shell of solid Zr (atomic number Z=40) using intense x-ray pulses from the Spring-8 Angstrom Compact Free-Electron Laser (SACLA). We determine the generalized nonlinear two-photon absorption cross section at the two-photon threshold in the range of 3.9–57 ×10 –60 cm 4s bounded by the estimated uncertainty in the absolute intensity. The lower limit is consistent with the prediction of 3.1 ×10 –60 cm 4s from the nonresonant Z –6 scaling for hydrogenic ions in the nonrelativistic, dipole limit.
Coluccelli, Nicola
2010-08-01
Modeling a real laser diode stack based on Zemax ray tracing software that operates in a nonsequential mode is reported. The implementation of the model is presented together with the geometric and optical parameters to be adjusted to calibrate the model and to match the simulated intensity irradiance profiles with the experimental profiles. The calibration of the model is based on a near-field and a far-field measurement. The validation of the model has been accomplished by comparing the simulated and experimental transverse irradiance profiles at different positions along the caustic formed by a lens. Spot sizes and waist location are predicted with a maximum error below 6%.
NASA Astrophysics Data System (ADS)
Telnov, Dmitry A.; Heslar, John T.; Chu, Shih-I.
2011-11-01
In the framework of the time-dependent density functional theory, we have performed 3D calculations of multiphoton ionization of Li and Be atoms by strong near-infrared laser fields. The results for the intensity-dependent probabilities of single and double ionization are presented. We make use of the time-dependent Krieger-Li-Iafrate exchange-correlation potential with self-interaction correction (TD-KLI-SIC). Such a potential possesses an integer discontinuity which improves description of the ionization process. However, we have found that the discontinuity of the TD-KLI-SIC potential is not sufficient to reproduce characteristic feature of double ionization.
NASA Astrophysics Data System (ADS)
King, Simon J.; Price, Stephen D.
2011-02-01
Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl4, in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl4. For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl4. Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl2+ fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl42+. The lowest energy dicationic precursor state, leading to SiCl3+ + Cl+ formation, lies 27.4 ± 0.3 eV above the ground state of SiCl4 and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).
King, Simon J; Price, Stephen D
2011-02-21
Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl(4), in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl(4). For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl(4). Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl(2) (+) fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl(4) (2+). The lowest energy dicationic precursor state, leading to SiCl(3) (+) + Cl(+) formation, lies 27.4 ± 0.3 eV above the ground state of SiCl(4) and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).
Finite element modeling of borehole heat exchanger systems. Part 1. Fundamentals
NASA Astrophysics Data System (ADS)
Diersch, H.-J. G.; Bauer, D.; Heidemann, W.; Rühaak, W.; Schätzl, P.
2011-08-01
Single borehole heat exchanger (BHE) and arrays of BHE are modeled by using the finite element method. The first part of the paper derives the fundamental equations for BHE systems and their finite element representations, where the thermal exchange between the borehole components is modeled via thermal transfer relations. For this purpose improved relationships for thermal resistances and capacities of BHE are introduced. Pipe-to-grout thermal transfer possesses multiple grout points for double U-shape and single U-shape BHE to attain a more accurate modeling. The numerical solution of the final 3D problems is performed via a widely non-sequential (essentially non-iterative) coupling strategy for the BHE and porous medium discretization. Four types of vertical BHE are supported: double U-shape (2U) pipe, single U-shape (1U) pipe, coaxial pipe with annular (CXA) and centred (CXC) inlet. Two computational strategies are used: (1) The analytical BHE method based on Eskilson and Claesson's (1988) solution, (2) numerical BHE method based on Al-Khoury et al.'s (2005) solution. The second part of the paper focusses on BHE meshing aspects, the validation of BHE solutions and practical applications for borehole thermal energy store systems.
Double ionization of nitrogen molecules in orthogonal two-color femtosecond laser fields
NASA Astrophysics Data System (ADS)
Song, Qiying; Li, Hui; Wang, Junping; Lu, Peifen; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian
2018-04-01
Double ionization of nitrogen molecules in orthogonally polarized two-color femtosecond laser fields is investigated by varying the relative intensity between the fundamental wave (FW) and its second harmonic (SH) components. The yield ratios of the double ionization channels, i.e., the non-dissociative {{{{N}}}2}2+ and Coulomb exploded (N+, N+), to the singly charged N2 + channel exhibit distinct dependences on the relative strength between the FW and SH fields. As the intensity ratio of SH to FW increases, the yield ratio of (N+, N+)/N2 + gradually increases, while the ratio of {{{{N}}}2}2+/N2 + first descends and then increases constituting a valley shape which is similar to the behavior of Ar2+/Ar+ observed in the same experimental condition. Based on the classical trajectory simulations, we found that the different characteristics of the two doubly ionized channels stem from two mechanisms, i.e., the {{{{N}}}2}2+ is mostly accessed by the (e, 2e) impact ionization while the recollision-induced excitation with subsequent ionization plays an important role in producing the (N+, N+) channel.
Enhanced one-photon double ionization of atoms and molecules in an environment of different species.
Stumpf, V; Kryzhevoi, N V; Gokhberg, K; Cederbaum, L S
2014-05-16
The correlated nature of electronic states in atoms and molecules is manifested in the simultaneous emission of two electrons after absorption of a single photon close to the respective threshold. Numerous observations in atoms and small molecules demonstrate that the double ionization efficiency close to threshold is rather small. In this Letter we show that this efficiency can be dramatically enhanced in the environment. To be specific, we concentrate on the case where the species in question has one or several He atoms as neighbors. The enhancement is achieved by an indirect process, where a He atom of the environment absorbs a photon and the resulting He(+) cation is neutralized fast by a process known as electron transfer mediated decay, producing thereby doubly ionized species. The enhancement of the double ionization is demonstrated in detail for the example of the Mg · He cluster. We show that the double ionization cross section of Mg becomes 3 orders of magnitude larger than the respective cross section of the isolated Mg atom. The impact of more neighbors is discussed and the extension to other species and environments is addressed.
Efficient solar-pumped Nd:YAG laser by a double-stage light-guide/V-groove cavity
NASA Astrophysics Data System (ADS)
Almeida, Joana; Liang, Dawei
2011-05-01
Since the first reported Nd:YAG solar laser, researchers have been exploiting parabolic mirrors and heliostats for enhancing laser output performance. We are now investigating the production of an efficient solar-pumped laser for the reduction of magnesium from magnesium oxide, which could be an alternative solution to fossil fuel. Therefore both high conversion efficiency and excellent beam quality are imperative. By using a single fused silica light guide of rectangular cross section, highly concentrated solar radiation at the focal spot of a stationary parabolic mirror is efficiently transferred to a water-flooded V-groove pump cavity. It allows for the double-pass absorption of pump light along a 4mm diameter, 30mm length, 1.1at% Nd:YAG rod. Optimum pumping parameters and solar laser output power are found through ZEMAXTM non-sequential ray-tracing and LASCADTM laser cavity analysis. 11.0 W of multimode laser output power with excellent beam profile is numerically calculated, corresponding to 6.1W/m2 collection efficiency. To validate the proposed pumping scheme, an experimental setup of the double-stage light-guide/V-groove cavity was built. 78% of highly concentrated solar radiation was efficiently transmitted by the fused silica light guide. The proposed pumping scheme can be an effective solution for enhancing solar laser performances when compared to other side-pump configurations.
Electron-Impact Ionization and Dissociative Ionization of Biomolecules
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.
2006-01-01
It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.
Sadeque, Farig; Xu, Dongfang; Bethard, Steven
2017-01-01
The 2017 CLEF eRisk pilot task focuses on automatically detecting depression as early as possible from a users’ posts to Reddit. In this paper we present the techniques employed for the University of Arizona team’s participation in this early risk detection shared task. We leveraged external information beyond the small training set, including a preexisting depression lexicon and concepts from the Unified Medical Language System as features. For prediction, we used both sequential (recurrent neural network) and non-sequential (support vector machine) models. Our models perform decently on the test data, and the recurrent neural models perform better than the non-sequential support vector machines while using the same feature sets. PMID:29075167
NASA Astrophysics Data System (ADS)
Singh, Prithvi; Purohit, Ghanshyam; Dorn, Alexander; Ren, Xueguang; Patidar, Vinod
2016-01-01
Fully differential cross sectional (FDCS) results are reported for the electron-impact double ionization of helium atoms at 5 and 27 eV excess energy. The present attempt to calculate the FDCS in the second Born approximation and treating the postcollision interaction is helpful to analyze the measurements of Ren et al (2008 Phys. Rev. Lett. 101 093201) and Durr et al (2007 Phys. Rev. Lett. 98 193201). The second-order processes and postcollision interaction have been found to be significant in describing the trends of the FDCS. More theoretical effort is required to describe the collision dynamics of electron-impact double ionization of helium atoms at near threshold.
NASA Astrophysics Data System (ADS)
Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Liao, Qing; Adhikari, Pradip; Basnayake, Gihan; Schlegel, H. Bernhard; Li, Wen
2017-09-01
With a novel three-dimensional electron-electron coincidence imaging technique and two-electron angular streaking method, we show that the emission time delay between two electrons can be measured from tens of attoseconds to more than 1 fs. Surprisingly, in benzene, the double ionization rate decays as the time delay between the first and second electron emission increases during the first 500 as. This is further supported by the decay of the Coulomb repulsion in the direction perpendicular to the laser polarization. This result reveals that laser-induced electron correlation plays a major role in strong field double ionization of benzene driven by a nearly circularly polarized field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, N.; Takahashi, M.; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577
The double processes of He in electron-impact ionization, single ionization with simultaneous excitation and double ionization, have been studied at large momentum transfer using an energy- and momentum-dispersive binary (e,2e) spectrometer. The experiment has been performed at an impact energy of 2080 eV in the symmetric noncoplanar geometry. In this way we have achieved a large momentum transfer of 9 a.u., a value that has never been realized so far for the study on double ionization. The measured (e,2e) and (e,3-1e) cross sections for transitions to the n=2 excited state of He{sup +} and to doubly ionized He{sup 2+} aremore » presented as normalized intensities relative to that to the n=1 ground state of He{sup +}. The results are compared with first-order plane-wave impulse approximation (PWIA) calculations using various He ground-state wave functions. It is shown that shapes of the momentum-dependent (e,2e) and (e,3-1e) cross sections are well reproduced by the PWIA calculations only when highly correlated wave functions are employed. However, noticeable discrepancies between experiment and theory remain in magnitude for both the double processes, suggesting the importance of higher-order effects under the experimental conditions examined as well as of acquiring more complete knowledge of electron correlation in the target.« less
Neutron-Impact Ionization of H and He
NASA Astrophysics Data System (ADS)
Lee, T.-G.; Ciappina, M. F.; Robicheaux, F.; Pindzola, M. S.
2014-05-01
Perturbative distorted-wave and non-perturbative close-coupling methods are used to study neutron-impact ionization of H and He. For single ionization of H, we find excellent agreement between the distorted-wave and close-coupling results at all incident energies. For double ionization of He, we find poor agreement between the distorted-wave and close-coupling results, except at the highest incident energies. We present the ratio of double to single ionization for He as a guide to experimental checks of theory at low energies and experimental confirmation of the rapid rise of the ratio at high energies. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California, NICS in Knoxville, Tennessee, and OLCF in Oak Ridge, Tennessee.
Ionizing radiation, ion transports, and radioresistance of cancer cells
Huber, Stephan M.; Butz, Lena; Stegen, Benjamin; Klumpp, Dominik; Braun, Norbert; Ruth, Peter; Eckert, Franziska
2013-01-01
The standard treatment of many tumor entities comprises fractionated radiation therapy which applies ionizing radiation to the tumor-bearing target volume. Ionizing radiation causes double-strand breaks in the DNA backbone that result in cell death if the number of DNA double-strand breaks exceeds the DNA repair capacity of the tumor cell. Ionizing radiation reportedly does not only act on the DNA in the nucleus but also on the plasma membrane. In particular, ionizing radiation-induced modifications of ion channels and transporters have been reported. Importantly, these altered transports seem to contribute to the survival of the irradiated tumor cells. The present review article summarizes our current knowledge on the underlying mechanisms and introduces strategies to radiosensitize tumor cells by targeting plasma membrane ion transports. PMID:23966948
Upstream ionization instability associated with a current-free double layer.
Aanesland, A; Charles, C; Lieberman, M A; Boswell, R W
2006-08-18
A low frequency instability has been observed using various electrostatic probes in a low-pressure expanding helicon plasma. The instability is associated with the presence of a current-free double layer (DL). The frequency of the instability increases linearly with the potential drop of the DL, and simultaneous measurements show their coexistence. A theory for an upstream ionization instability has been developed, which shows that electrons accelerated through the DL increase the ionization upstream and are responsible for the observed instability. The theory is in good agreement with the experimental results.
Mass-manufacturable polymer microfluidic device for dual fiber optical trapping.
De Coster, Diane; Ottevaere, Heidi; Vervaeke, Michael; Van Erps, Jürgen; Callewaert, Manly; Wuytens, Pieter; Simpson, Stephen H; Hanna, Simon; De Malsche, Wim; Thienpont, Hugo
2015-11-30
We present a microfluidic chip in Polymethyl methacrylate (PMMA) for optical trapping of particles in an 80µm wide microchannel using two counterpropagating single-mode beams. The trapping fibers are separated from the sample fluid by 70µm thick polymer walls. We calculate the optical forces that act on particles flowing in the microchannel using wave optics in combination with non-sequential ray-tracing and further mathematical processing. Our results are compared with a theoretical model and the Mie theory. We use a novel fabrication process that consists of a premilling step and ultraprecision diamond tooling for the manufacturing of the molds and double-sided hot embossing for replication, resulting in a robust microfluidic chip for optical trapping. In a proof-of-concept demonstration, we show the trapping capabilities of the hot embossed chip by trapping spherical beads with a diameter of 6µm, 8µm and 10µm and use the power spectrum analysis of the trapped particle displacements to characterize the trap strength.
Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation
NASA Astrophysics Data System (ADS)
Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.
2014-10-01
Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.
NASA Astrophysics Data System (ADS)
Chauhan, Manvendra Singh; Chauhan, R. K.
2018-04-01
This paper demonstrates a Junction-less Double Gate n-p-n Impact ionization MOS transistor (JLDG n-IMOS) on a very light doped p-type silicon body. Device structure proposed in the paper is based on charge plasma concept. There is no metallurgical junctions in the proposed device and does not need any impurity doping to create the drain and source regions. Due to doping-less nature, the fabrication process is simple for JLDG n-IMOS. The double gate engineering in proposed device leads to reduction in avalanche breakdown via impact ionization, generating large number of carriers in drain-body junction, resulting high ION current, small IOFF current and great improvement in ION/IOFF ratio. The simulation and examination of the proposed device have been performed on ATLAS device simulatorsoftware.
NASA Astrophysics Data System (ADS)
Müller, A.; Borovik, A.; Huber, K.; Schippers, S.; Fursa, D. V.; Bray, I.
2018-02-01
Fine details of the cross section for electron-impact ionization of metastable two-electron Li+(1 s 2 s S31) ions are scrutinized by both experiment and theory. Beyond direct knockoff ionization, indirect ionization mechanisms proceeding via formation of intermediate double-K-vacancy (hollow) states either in a Li+ ion or in a neutral lithium atom and subsequent emission of one or two electrons, respectively, can contribute to the net production of Li2 + ions. The partial cross sections for such contributions are less than 4% of the total single-ionization cross section. The characteristic steps, resonances, and interference phenomena in the indirect ionization contribution are measured with an experimental energy spread of less than 0.9 eV and with a statistical relative uncertainty of the order of 1.7%, requiring a level of statistical uncertainty in the total single-ionization cross section of better than 0.05%. The measurements are accompanied by convergent-close-coupling calculations performed on a fine energy grid. Theory and experiment are in remarkable agreement concerning the fine details of the ionization cross section. Comparison with previous R-matrix results is less favorable.
Perturbative calculation of two-photon double electron ionization of helium
NASA Astrophysics Data System (ADS)
Ivanov, I. A.; Kheifets, A. S.
2008-05-01
We report the total integrated cross-section (TICS) of two-photon double ionization of helium in the photon energy range from 40 to 54 eV. We compute the TICS in the lowest order perturbation theory (LOPT) using the length and Kramers-Henneberger gauges of the electromagnetic interaction. Our findings indicate that the LOPT gives results for the TICS in agreement with our earlier non-perturbative calculations.
NASA Astrophysics Data System (ADS)
Belkić, Dževad; Mančev, Ivan; Milojevićb, Nenad
2013-09-01
The total cross sections for the various processes for Li3+-He collisions at intermediate-to-high impact energies are compared with the corresponding theories. The possible reasons for the discrepancies among various theoretical predictions are thoroughly discussed. Special attention has been paid to single and double electron capture, simultaneous transfer and ionization, as well as to single and double ionization.
NASA Astrophysics Data System (ADS)
Shao, Yun; Yuan, Zongqiang; Ye, Difa; Fu, Libin; Liu, Ming-Ming; Sun, Xufei; Wu, Chengyin; Liu, Jie; Gong, Qihuang; Liu, Yunquan
2017-12-01
We measure the wavelength-dependent correlated-electron momentum (CEM) spectra of strong-field double ionization of Xe atoms, and observe a significant change from a roughly nonstructured (uncorrelated) pattern at 795 nm to an elongated distribution with V-shaped structure (correlated) at higher wavelengths of 1320 and 1810 nm, pointing to the transition of the ionization dynamics imprinted in the momentum distributions. These observations are well reproduced by a semiclassical model using Green-Sellin-Zachor potential to take into account the screening effect. We show that the momentum distribution of Xe2+ undergoes a bifurcation structure emerging from single-hump to double-hump structure as the laser wavelength increases, which is dramatically different from that of He2+, indicating the complex multi-electron effect. By back analyzing the double ionization trajectories in the phase space (the initial transverse momentum and the laser phase at the tunneling exit) of the first tunneled electrons, we provide deep insight into the physical origin for electron correlation dynamics. We find that a random distribution in phase-space is responsible for a less distinct structured CEM spectrum at shorter wavelength. While increasing the laser wavelength, a topology-invariant pattern in phase-space appears, leading to the clearly visible V-shaped structures.
Three holes bound to a double acceptor - Be(+) in germanium
NASA Technical Reports Server (NTRS)
Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.
1983-01-01
A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.
Rise and fall of political complexity in island South-East Asia and the Pacific.
Currie, Thomas E; Greenhill, Simon J; Gray, Russell D; Hasegawa, Toshikazu; Mace, Ruth
2010-10-14
There is disagreement about whether human political evolution has proceeded through a sequence of incremental increases in complexity, or whether larger, non-sequential increases have occurred. The extent to which societies have decreased in complexity is also unclear. These debates have continued largely in the absence of rigorous, quantitative tests. We evaluated six competing models of political evolution in Austronesian-speaking societies using phylogenetic methods. Here we show that in the best-fitting model political complexity rises and falls in a sequence of small steps. This is closely followed by another model in which increases are sequential but decreases can be either sequential or in bigger drops. The results indicate that large, non-sequential jumps in political complexity have not occurred during the evolutionary history of these societies. This suggests that, despite the numerous contingent pathways of human history, there are regularities in cultural evolution that can be detected using computational phylogenetic methods.
Hu, S. X.
2018-01-18
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X.
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less
de Oliveira, Saulo H P; Law, Eleanor C; Shi, Jiye; Deane, Charlotte M
2018-04-01
Most current de novo structure prediction methods randomly sample protein conformations and thus require large amounts of computational resource. Here, we consider a sequential sampling strategy, building on ideas from recent experimental work which shows that many proteins fold cotranslationally. We have investigated whether a pseudo-greedy search approach, which begins sequentially from one of the termini, can improve the performance and accuracy of de novo protein structure prediction. We observed that our sequential approach converges when fewer than 20 000 decoys have been produced, fewer than commonly expected. Using our software, SAINT2, we also compared the run time and quality of models produced in a sequential fashion against a standard, non-sequential approach. Sequential prediction produces an individual decoy 1.5-2.5 times faster than non-sequential prediction. When considering the quality of the best model, sequential prediction led to a better model being produced for 31 out of 41 soluble protein validation cases and for 18 out of 24 transmembrane protein cases. Correct models (TM-Score > 0.5) were produced for 29 of these cases by the sequential mode and for only 22 by the non-sequential mode. Our comparison reveals that a sequential search strategy can be used to drastically reduce computational time of de novo protein structure prediction and improve accuracy. Data are available for download from: http://opig.stats.ox.ac.uk/resources. SAINT2 is available for download from: https://github.com/sauloho/SAINT2. saulo.deoliveira@dtc.ox.ac.uk. Supplementary data are available at Bioinformatics online.
Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR
NASA Astrophysics Data System (ADS)
Sroka, Adam; Chan, Susan; Warburton, Ryan; Gariepy, Genevieve; Henderson, Robert; Leach, Jonathan; Faccio, Daniele; Lee, Stephen T.
2016-05-01
The ability to detect motion and to track a moving object that is hidden around a corner or behind a wall provides a crucial advantage when physically going around the obstacle is impossible or dangerous. One recently demonstrated approach to achieving this goal makes use of non-line-of-sight picosecond pulse laser ranging. This approach has recently become interesting due to the availability of single-photon avalanche diode (SPAD) receivers with picosecond time resolution. We present a time-resolved non-sequential ray-tracing model and its application to indirect line-of-sight detection of moving targets. The model makes use of the Zemax optical design programme's capabilities in stray light analysis where it traces large numbers of rays through multiple random scattering events in a 3D non-sequential environment. Our model then reconstructs the generated multi-segment ray paths and adds temporal analysis. Validation of this model against experimental results is shown. We then exercise the model to explore the limits placed on system design by available laser sources and detectors. In particular we detail the requirements on the laser's pulse energy, duration and repetition rate, and on the receiver's temporal response and sensitivity. These are discussed in terms of the resulting implications for achievable range, resolution and measurement time while retaining eye-safety with this technique. Finally, the model is used to examine potential extensions to the experimental system that may allow for increased localisation of the position of the detected moving object, such as the inclusion of multiple detectors and/or multiple emitters.
Huycke, Mark M.; Naguib, M. Tarek; Stroemmel, Mathias M.; Blick, Kenneth; Monti, Katherine; Martin-Munley, Sarah; Kaufman, Chris
2000-01-01
Foscarnet (trisodium phosphonoformate hexahydrate) is an antiviral agent used to treat cytomegalovirus disease in immunocompromised patients. One common side effect is acute ionized hypocalcemia and hypomagnesemia following intravenous administration. Foscarnet-induced ionized hypomagnesemia might contribute to ionized hypocalcemia by impairing excretion of preformed parathyroid hormone (PTH) or by producing target organ resistance. Prevention of ionized hypomagnesemia following foscarnet administration could blunt the development of ionized hypocalcemia. To determine whether intravenous magnesium ameliorates the decline in ionized calcium and/or magnesium following foscarnet infusions, MgSO4 at doses of 1, 2, and 3 g was administered in a double-blind, placebo-controlled, randomized, crossover trial to 12 patients with AIDS and cytomegalovirus disease. Overall, increasing doses of MgSO4 reduced or eliminated foscarnet-induced acute ionized hypomagnesemia. Supplementation, however, had no discernible effect on foscarnet-induced ionized hypocalcemia despite significant increases in serum PTH levels. No dose-related, clinically significant adverse events were found, suggesting that intravenous supplementation with up to 3 g of MgSO4 was safe in this chronically ill population. Since parenteral MgSO4 did not alter foscarnet-induced ionized hypocalcemia or symptoms associated with foscarnet, routine intravenous supplementation for patients with normal serum magnesium levels is not recommended during treatment with foscarnet. PMID:10898688
ERIC Educational Resources Information Center
Byrom, Elizabeth
1990-01-01
Hypermedia allows students to follow associative links among elements of nonsequential information, by combining information from multiple sources into one microcomputer-controlled system. Hypermedia products help teachers create lessons integrating text, motion film, color graphics, speech, and music, by linking such electronic devices as…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, M.; Novotny, O.; Savin, D. W.
2013-04-10
We report measurements of electron impact ionization for Fe{sup 13+}, Fe{sup 16+}, and Fe{sup 17+} over collision energies from below threshold to above 3000 eV. The ions were recirculated using an ion storage ring. Data were collected after a sufficiently long time that essentially all the ions had relaxed radiatively to their ground state. For single ionization of Fe{sup 13+}, we find that previous single pass experiments are more than 40% larger than our results. Compared to our work, the theoretical cross section recommended by Arnaud and Raymond is more than 30% larger, while that of Dere is about 20%more » greater. Much of the discrepancy with Dere is due to the theory overestimating the contribution of excitation-autoionization via n = 2 excitations. Double ionization of Fe{sup 13+} is dominated by direct ionization of an inner shell electron accompanied by autoionization of a second electron. Our results for single ionization of Fe{sup 16+} and Fe{sup 17+} agree with theoretical calculations to within the experimental uncertainties.« less
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Gulyas, L.; Tribedi, L. C.
2010-10-01
We have measured absolute cross sections for single, double, triple, and quadruple ionization of C60 in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR model predictions was found for all projectile charge states.
NASA Astrophysics Data System (ADS)
López, S. D.; Otranto, S.; Garibotti, C. R.
2015-01-01
In this work, a theoretical study of the double ionization of He by ion impact at the fully differential level is presented. Emphasis is made in the role played by the projectile in the double emission process depending on its charge and the amount of momentum transferred to the target. A Born-CDW model including a second-order term in the projectile charge is introduced and evaluated within an on-shell treatment. We find that emission geometries for which the second-order term dominates lead to asymmetric structures around the momentum transfer direction, a typical characteristic of higher order transitions.
Signature of charge migration in modulations of double ionization
NASA Astrophysics Data System (ADS)
Mauger, François; Abanador, Paul M.; Bruner, Adam; Sissay, Adonay; Gaarde, Mette B.; Lopata, Kenneth; Schafer, Kenneth J.
2018-04-01
We present a theoretical investigation of charge migration following strong-field ionization in a multielectron system. We study a model homonuclear molecule with two electrons, each restricted to one dimension (1 +1 D ), interacting with a strong, static electric field. We show that in this system charge migration results from the interplay between multiple ionization channels that overlap in space, creating a coherent electron-hole wave packet in the cation. We also find that, in our case, charge migration following the first ionization manifests as a modulation of the subsequent double-ionization signal. We derive a parametrized semiclassical model from the full multielectron system and we discuss the importance of the choice of cation electronic-structure basis for the efficacy of the semiclassical representation. We use the ab initio solution of the full 1 +1 D system as a reference for the qualitative and quantitative results of the parametrized semiclassical model. We discuss the extension of our model to long-wavelength time-dependent fields with full-dimension, many-electron targets.
Simulation of double stage hall thruster with double-peaked magnetic field
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Li, Peng; Sun, Hezhi; Wei, Liqiu; Xu, Yu; Peng, Wuji; Su, Hongbo; Li, Hong; Yu, Daren
2017-07-01
This study adopts double permanent magnetic rings and four permanent magnetic rings to form two symmetrical magnetic peaks and two asymmetrical magnetic peaks in the channel of a Hall thruster, and uses a 2D-3V PIC-MCC model to analyze the influence of magnetic strength on the discharge characteristic and performance of Hall thrusters with an intermediate electrode and double-peaked magnetic field. As opposed to the two symmetrical magnetic peaks formed by double permanent magnetic rings, increasing the magnetic peak value deep within the channel can cause propellant ionization to occur; with the increase in the magnetic peak deep in the channel, the propellant utilization, thrust, and anode efficiency of the thruster are significantly improved. Double-peaked magnetic field can realize separate control of ionization and acceleration in a Hall thruster, and provide technical means for further improving thruster performance. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.
Re-Examining Group Development in Adventure Therapy Groups.
ERIC Educational Resources Information Center
DeGraaf, Don; Ashby, Jeff
1998-01-01
Small-group development is an important aspect of adventure therapy. Supplementing knowledge of sequential stages of group development with knowledge concerning within-stage nonsequential development yields a richer understanding of groups. Integrating elements of the individual counseling relationship (working alliance, transference, and real…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
2016-01-15
The influence of renormalization shielding on the Wannier threshold law for the double-electron escapes by the electron-impact ionization is investigated in partially ionized dense plasmas. The renormalized electron charge and Wannier exponent are obtained by considering the equation of motion in the Wannier-ridge including the renormalization shielding effect. It is found that the renormalization shielding effect reduces the magnitude of effective electron charge, especially, within the Bohr radius in partially ionized dense plasmas. The maximum position of the renormalized electron charge approaches to the center of the target atom with an increase of the renormalization parameter. In addition, the Wanniermore » exponent increases with an increase of the renormalization parameter. The variations of the renormalized electron charge and Wannier exponent due to the renormalization shielding effect are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelkar, A. H.; Kadhane, U.; Misra, D.
2010-10-15
We have measured absolute cross sections for single, double, triple, and quadruple ionization of C{sub 60} in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR modelmore » predictions was found for all projectile charge states.« less
Orphan therapies: making best use of postmarket data.
Maro, Judith C; Brown, Jeffrey S; Dal Pan, Gerald J; Li, Lingling
2014-08-01
Postmarket surveillance of the comparative safety and efficacy of orphan therapeutics is challenging, particularly when multiple therapeutics are licensed for the same orphan indication. To make best use of product-specific registry data collected to fulfill regulatory requirements, we propose the creation of a distributed electronic health data network among registries. Such a network could support sequential statistical analyses designed to detect early warnings of excess risks. We use a simulated example to explore the circumstances under which a distributed network may prove advantageous. We perform sample size calculations for sequential and non-sequential statistical studies aimed at comparing the incidence of hepatotoxicity following initiation of two newly licensed therapies for homozygous familial hypercholesterolemia. We calculate the sample size savings ratio, or the proportion of sample size saved if one conducted a sequential study as compared to a non-sequential study. Then, using models to describe the adoption and utilization of these therapies, we simulate when these sample sizes are attainable in calendar years. We then calculate the analytic calendar time savings ratio, analogous to the sample size savings ratio. We repeat these analyses for numerous scenarios. Sequential analyses detect effect sizes earlier or at the same time as non-sequential analyses. The most substantial potential savings occur when the market share is more imbalanced (i.e., 90% for therapy A) and the effect size is closest to the null hypothesis. However, due to low exposure prevalence, these savings are difficult to realize within the 30-year time frame of this simulation for scenarios in which the outcome of interest occurs at or more frequently than one event/100 person-years. We illustrate a process to assess whether sequential statistical analyses of registry data performed via distributed networks may prove a worthwhile infrastructure investment for pharmacovigilance.
NASA Astrophysics Data System (ADS)
Hollstein, Maximilian; Santra, Robin; Pfannkuche, Daniela
2017-05-01
We theoretically investigate charge migration following prompt double ionization. Thereby, we extend the concept of correlation-driven charge migration, which was introduced by Cederbaum and coworkers for single ionization [Chem. Phys. Lett. 307, 205 (1999), 10.1016/S0009-2614(99)00508-4], to doubly ionized molecules. This allows us to demonstrate that compared to singly ionized molecules, in multiply ionized molecules, electron dynamics originating from electronic relaxation and correlation are particularly prominent. In addition, we also discuss how these correlation-driven electron dynamics might be evidenced and traced experimentally using attosecond transient absorption spectroscopy. For this purpose, we determine the time-resolved absorption cross section and find that the correlated electron dynamics discussed are reflected in it with exceptionally great detail. Strikingly, we find that features in the cross section can be traced back to electron hole populations and time-dependent partial charges and hence, can be interpreted with surprising ease. By taking advantage of element-specific core-to-valence transitions even atomic spatial resolution can be achieved. Thus, with the theoretical considerations presented, not only do we predict particularly diverse and correlated electron dynamics in molecules to follow prompt multiple ionization but we also identify a promising route towards their experimental investigation.
Hypertext: Link to the Future.
ERIC Educational Resources Information Center
Marmion, Dan
1990-01-01
Describes the origins of hypertext and reviews the history of the concept of nonsequential access to information that led to hypertext. Technological developments that have been combined with hypertext are discussed, including workstations, video and laser disk technology, and microcomputers; and library applications of hypertext and hypermedia…
Intuitive Knowing and Embodied Consciousness
ERIC Educational Resources Information Center
Lawrence, Randee Lipson
2012-01-01
Intuitive knowing is one of the most complex and misunderstood ways of knowing. It is difficult to put into words and verbalize. Intuition is spontaneous, heart-centered, free, adventurous, imaginative, playful, nonsequential, and nonlinear. People access intuitive knowledge through dreams, symbols, artwork, dance, yoga, meditation, contemplation,…
Statistical Discourse Analysis: A Method for Modelling Online Discussion Processes
ERIC Educational Resources Information Center
Chiu, Ming Ming; Fujita, Nobuko
2014-01-01
Online forums (synchronous and asynchronous) offer exciting data opportunities to analyze how people influence one another through their interactions. However, researchers must address several analytic difficulties involving the data (missing values, nested structure [messages within topics], non-sequential messages), outcome variables (discrete…
Nonsequential Computation and Laws of Nature.
1986-05-01
computing engines arose as a byproduct of the Manhattan Project in World War II. Broadly speaking, their purpose was to compute numerical solutions to...nature, and to representing algorithms in structures of space and time. After the Manhattan Project had been fulfilled, computer designers quickly pro
Oster, L; Horowitz, Y S; Biderman, S; Haddad, J
2003-12-01
We demonstrate the viability of the concept of using existing molecular nanostructures in thermoluminescent solid-state materials as solid-state nanodosimeters. The concept is based on mimicking radiobiology (specifically the ionization density dependence of double strand breaks in DNA) by using the similar ionization density dependence of simultaneous electron-hole capture in spatially correlated trapping and luminescent centres pairs in the thermoluminescence of LiF:Mg,Ti. This simultaneous electron-hole capture has been shown to lead to ionization density dependence in the relative intensity of peak 5a to peak 5 similar to the ratio of double-strand breaks to single-strand breaks for low energy He ions.
Schalk, Oliver; Josefsson, Ida; Geng, Ting; Richter, Robert; Sa'adeh, Hanan; Thomas, Richard D; Mucke, Melanie
2018-02-28
In this article, we study the photoinduced dissociation pathways of a metallocarbonyl, Os 3 (CO) 12 , in particular the consecutive loss of CO groups. To do so, we performed photoelectron-photoion coincidence (PEPICO) measurements in the single ionization binding energy region from 7 to 35 eV using 45-eV photons. Zero-energy ion appearance energies for the dissociation steps were extracted by modeling the PEPICO data using the statistical adiabatic channel model. Upon ionization to the excited ionic states above 13 eV binding energy, non-statistical behavior was observed and assigned to prompt CO loss. Double ionization was found to be dominated by the knockout process with an onset of 20.9 ± 0.4 eV. The oscillator strength is significantly larger for energies above 26.6 ± 0.4 eV, corresponding to one electron being ejected from the Os 3 center and one from the CO ligands. The cross section for double ionization was found to increase linearly up to 35 eV ionization energy, at which 40% of the generated ions are doubly charged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Z.; Shakeshaft, R.
1994-05-01
We have calculated the energy and angular distributions for double ionization of He(1[ital s][sup 2]) and He(1[ital s]2[ital s] [sup 3][ital S]) by one photon, over a range of photon energies up to a few keV. The calculations were based on using a fairly accurate initial-state wave function, determined so as to exactly satisfy the Kato cusp conditions, and a final-state wave function which is a product of three Coulomb wave functions modified by a short-range correction term. There are at least three different mechanisms for double ionization, and each one leaves a mark on the angular distribution. When themore » energies of the two electrons are equal, the contribution of each mechanism to the angular asymmetry parameter can be estimated on theoretical grounds; we compare these estimates with the calculated results to give a further indication of the roles of the various mechanisms. Concerning the shapes of the energy and angular distributions, we find significant differences between double ionization of singlet and triplet helium; in particular, the probability for one high-energy photon to eject two equal-energy electrons from triplet helium nearly vanishes owing to the Pauli exclusion principle and to interference effects resulting from antisymmetrization. In two appendixes we present some details of the integration involved in the calculations.« less
What's New in Software? Hot New Tool: The Hypertext.
ERIC Educational Resources Information Center
Hedley, Carolyn N.
1989-01-01
This article surveys recent developments in hypertext software, a highly interactive nonsequential reading/writing/database approach to research and teaching that allows paths to be created through related materials including text, graphics, video, and animation sources. Described are uses, advantages, and problems of hypertext. (PB)
Ionization Cross Sections and Dissociation Channels of DNA Bases by Electron Collisions
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.
2004-01-01
Free secondary electrons are the most abundant secondary species in ionizing radiation. Their role in DNA damage, both direct and indirect, is an active area of research. While indirect damage by free radicals, particularly by the hydroxyl radical generated by electron collision with water. is relatively well studied, damage by direct electron collision with DNA is less well understood. Only recently Boudaiffa et al. demonstrated that electrons at energies well below ionization thresholds can induce substantial yields of single- and double-strand breaks in DNA by a resonant, dissociative attachment process. This study attracted renewed interest in electron collisions with DNA, especially in the low energy region. At higher energies ionization becomes important. While Monte Carlo track simulations of radiation damage always include ionization, the probability of dissociative ionization, i.e., simultaneous ionization and dissociation, is ignored. Just like dissociative attachment, dissociative ionization may be an important contributor to double-strand breaks since the radicals and ions produced by dissociative ionization, located in the vicinity of the DNA coil, can readily interact with other parts of the DNA. Using the improved binary-encounter dipole (iBED) formulation, we calculated the ionization cross sections of the four DNA bases, adenine, cytosine, guanine, and thymine, by electrons at energies from threshold to 1 KeV. The present calculation gives cross sections approximately 20% lower than the results by Bemhardt and Paretzke using the Deutsch-Mark and Binary-Encounter-Bethe (BEB) formalisms. The difference is most likely due to the lack of a shielding term in the dipole potential used in the Deutsch-Mark and BEB formalisms. The dissociation channels of ionization for the bases are currently being studied.
NASA Astrophysics Data System (ADS)
Ospina-Londoño, D. A.; Fulla, M. R.; Marín, J. H.
2013-03-01
In this work it is considered a versatile model to study two different ionization processes starting from a D20 homonuclear hydrogenic molecule confined in double concentric quantum donuts. Very narrow quantum donut circular cross sections are considered to separate the radial and angular variables in the D20 Hamiltonian by using the well-known adiabatic approximation D20 total energy as a function of the inter donor spacing and the outer donut center line radius is calculated. The salient features of an artificial D20 hydrogenic molecule such as the dissociation energy and the equilibrium length are strongly dependent on the quantum donut geometrical parameters. By increasing systematically the quantum donut outer center line radius, it is possible to understand a first ionization process: D20→D2++e-. A second ionization process D20→D-+D+ can be carried out by fixing the first donor position and gradually moving away the second one. The results obtained in this study are in good agreement with those previously obtained in the limiting cases of very large inter donor separation. The model proposed here is computationally economical and provides a realistic description of both ionization processes and the few-particle system confined in double concentric quantum donuts.
Dissociative-ionization cross sections for 12-keV-electron impact on CO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Pragya; Singh, Raj; Yadav, Namita
The dissociative ionization of a CO{sub 2} molecule is studied at an electron energy of 12 keV using the multiple ion coincidence imaging technique. The absolute partial ionization cross sections and the precursor-specific absolute partial ionization cross sections of resulting fragment ions are obtained and reported. It is found that {approx}75% of single ionization, 22% of double ionization, and {approx}2% of triple ionization of the parent molecule contribute to the total fragment ion yield; quadruple ionization of CO{sub 2} is found to make a negligibly small contribution. Furthermore, the absolute partial ionization cross sections for ion-pair and ion-triple formation aremore » measured for nine dissociative ionization channels of up to a quadruply ionized CO{sub 2} molecule. In addition, the branching ratios for single-ion, ion-pair, and ion-triple formation are also determined.« less
Double gate impact ionization MOS transistor: Proposal and investigation
NASA Astrophysics Data System (ADS)
Yang, Zhaonian; Zhang, Yue; Yang, Yuan; Yu, Ningmei
2017-02-01
In this paper, a double gate impact ionization MOS (DG-IMOS) transistor with improved performance is proposed and investigated by TCAD simulation. In the proposed design, a second gate is introduced in a conventional impact ionization MOS (IMOS) transistor that lengthens the equivalent channel length and suppresses the band-to-band tunneling. The OFF-state leakage current is reduced by over four orders of magnitude. At the ON-state, the second gate is negatively biased in order to enhance the electric field in the intrinsic region. As a result, the operating voltage does not increase with the increase in the channel length. The simulation result verifies that the proposed DG-IMOS achieves a better switching characteristic than the conventional is achieved. Lastly, the application of the DG-IMOS is discussed theoretically.
Li, Ping; Bu, Yuxiang
2004-11-22
The behavior of double proton transfer occurring in a representative glycinamide-formic acid complex has been investigated at the B3LYP/6-311 + + G( * *) level of theory. Thermodynamic and, especially, kinetic parameters, such as tautomeric energy, equilibrium constant, and barrier heights have been discussed, respectively. The relevant quantities involved in the double proton transfer process, such as geometrical changes, interaction energies, and intrinsic reaction coordinate calculations have also been studied. Computational results show that the participation of a formic acid molecule favors the proceeding of the proton transfer for glycinamide compared with that without mediate-assisted case. The double proton transfer process proceeds with a concerted mechanism rather than a stepwise one since no ion-pair complexes have been located during the proton transfer process. The calculated barrier heights are 11.48 and 0.85 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 2.95 and 2.61 kcal/mol to 8.53 and -1.76 kcal/mol if further inclusion of zero-point vibrational energy corrections, where the negative barrier height implies that the reverse reaction should proceed with barrierless spontaneously, analogous to that occurring between glycinamide and formamide. Furthermore, solvent effects on the thermodynamic and kinetic processes have also been predicted qualitatively employing the isodensity surface polarized continuum model within the framework of the self-consistent reaction field theory. Additionally, the oxidation process for the double H-bonded glycinamide-formic acid complex has also been investigated. Contrary to that neutral form possessing a pair of two parallel intermolecular H bonds, only a single H bond with a comparable strength has been found in its ionized form. The vertical and adiabatic ionization potentials for the neutral complex have been determined to be about 9.40 and 8.69 eV, respectively, where ionization is mainly localized on the glycinamide fragment. Like that ionized glycinamide-formamide complex, the proton transfer in the ionized complex is characterized by a single-well potential, implying that the proton initially attached to amide N4 in the glycinamide fragment cannot be transferred to carbonyl O13 in the formic acid fragment at the geometry of the optimized complex. Copyright 2004 American Institute of Physics.
Computer Applications and Technology 105.
ERIC Educational Resources Information Center
Manitoba Dept. of Education and Training, Winnipeg.
Designed to promote Manitoba students' familiarity with computer technology and their ability to interact with that technology, the Computer Applications and Technology 105 course is a one-credit course presented in 15 topical, non-sequential units that require 110-120 hours of instruction time. It has been developed with the assumption that each…
Energy Conservation Activity Guide, Grades 9-12. Bulletin 1602.
ERIC Educational Resources Information Center
Fraser, Mollie; And Others
As an interdisciplinary, non-sequential teaching guide, this publication was developed to increase awareness and understanding of the energy situation and to encourage individuals to become energy conservationists. Sections provide background information for the teacher followed by a variety of student activities using different subject areas for…
Upside-Down Brilliance: The Visual-Spatial Learner.
ERIC Educational Resources Information Center
Silverman, Linda Kreger
This book describes the unique characteristics of visual-spatial learners and teaching techniques designed for this population. Following a quiz to identify visual-spatial learners, chapters address: (1) how visual-spatial learners think and the plight of being non-sequential; (2) the power of the right hemisphere, eye movement patterns, and…
Feed, Need, Greed: Food Resources & Population. A High School Curriculum.
ERIC Educational Resources Information Center
Science for the People, Cambridge, MA. Boston Chapter.
Four units, teacher's notes, and a comprehensive glossary provide background information and activities aimed at raising the awareness of high school students and teachers regarding the nature of the food system and its relationship to nutrition, population, and resources. These non-sequential units analyze the economic and political factors…
NASA Astrophysics Data System (ADS)
Li, Xiaokai; Wang, Chuncheng; Yuan, Zongqiang; Ye, Difa; Ma, Pan; Hu, Wenhui; Luo, Sizuo; Fu, Libin; Ding, Dajun
2017-09-01
By combining kinematically complete measurements and a semiclassical Monte Carlo simulation we study the correlated-electron dynamics in the strong-field double ionization of Kr. Interestingly, we find that, as we step into the sequential-ionization regime, there are still signatures of correlation in the two-electron joint momentum spectrum and, more intriguingly, the scaling law of the high-energy tail is completely different from early predictions on the low-Z atom (He). These experimental observations are well reproduced by our generalized semiclassical model adapting a Green-Sellin-Zachor potential. It is revealed that the competition between the screening effect of inner-shell electrons and the Coulomb focusing of nuclei leads to a non-inverse-square central force, which twists the returned electron trajectory at the vicinity of the parent core and thus significantly increases the probability of hard recollisions between two electrons. Our results might have promising applications ranging from accurately retrieving atomic structures to simulating celestial phenomena in the laboratory.
Electron-electron correlation in two-photon double ionization of He-like ions
NASA Astrophysics Data System (ADS)
Hu, S. X.
2018-01-01
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding and strong-field-induced multielectron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photoinduced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions (L i+,B e2 + , and C4 +) exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra as the ionic charge increases, which is opposite to the intuition that the absolute increase of correlation in the ground state should lead to more equal energy sharing in photoionization. These findings indicate that the final-state electron-electron correlation ultimately determines the energy sharing of the two ionized electrons in TPDI.
NASA Astrophysics Data System (ADS)
Migliorato, Piero; Delwar Hossain Chowdhury, Md; Gwang Um, Jae; Seok, Manju; Jang, Jin
2012-09-01
The analysis of current-voltage (I-V) and capacitance-voltage (C-V) characteristics for amorphous indium gallium zinc oxide Thin film transistors as a function of active layer thickness shows that negative bias under illumination stress (NBIS) is quantitatively explained by creation of a bulk double donor, with a shallow singly ionized state ɛ(0/+) > EC-0.073 eV and a deep doubly ionized state ɛ(++/+) < EC-0.3 eV. The gap density of states, extracted from the capacitance-voltage curves, shows a broad peak between EC-E = 0.3 eV and 1.0 eV, which increases in height with NBIS stress time and corresponds to the broadened transition energy between singly and doubly ionized states. We propose that the center responsible is an oxygen vacancy and that the presence of a stable singly ionized state, necessary to explain our experimental results, could be due to the defect environment provided by the amorphous network.
Physical processes associated with current collection by plasma contactors
NASA Technical Reports Server (NTRS)
Katz, Ira; Davis, Victoria A.
1990-01-01
Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.
Double ionization of neon in elliptically polarized femtosecond laser fields
NASA Astrophysics Data System (ADS)
Kang, HuiPeng; Henrichs, Kevin; Wang, YanLan; Hao, XiaoLei; Eckart, Sebastian; Kunitski, Maksim; Schöffler, Markus; Jahnke, Till; Liu, XiaoJun; Dörner, Reinhard
2018-06-01
We present a joint experimental and theoretical investigation of the correlated electron momentum spectra from strong-field double ionization of neon induced by elliptically polarized laser pulses. A significant asymmetry of the electron momentum distributions along the major polarization axis is reported. This asymmetry depends sensitively on the laser ellipticity. Using a three-dimensional semiclassical model, we attribute this asymmetry pattern to the ellipticity-dependent probability distributions of recollision time. Our work demonstrates that, by simply varying the ellipticity, the correlated electron emission can be two-dimensionally controlled and the recolliding electron trajectories can be steered on a subcycle time scale.
Diode-laser-based RIMS measurements of strontium-90
NASA Astrophysics Data System (ADS)
Bushaw, B. A.; Cannon, B. D.
1998-12-01
Double- and triple-resonance excitation schemes for the ionization of strontium are presented. Use of single-mode diode lasers for the resonance excitations provides a high degree of optical isotopic selectivity: with double-resonance, selectivity of >104 for 90Sr against the stable Sr isotopes has been demonstrated. Measurement of lineshapes and stable isotope shifts in the triple-resonance process indicate that optical selectivity should increase to ˜109. When combined with mass spectrometer selectivity this is sufficient for measurement of 90Sr at background environmental levels. Additionally, autoionizing resonances have been investigated for improving ionization efficiency with lower power lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balz, J.G.; Bernheim, R.A.; Gold, L.P.
1987-01-01
Multiphoton ionization spectra of /sup 7/Li/sub 2/, /sup 6/Li/sub 2/, and /sup 7/Li/sup 6/Li vapors have been measured in the 570--650 nm region using a single, low resolution, multimode cw dye laser. A number of wavelengths provide selective multiphoton ionization of one isotopic species demonstrating the possibility of efficient laser-driven isotopic separation in lithium in this wavelength region.
Political and Economic Behavior of Man: A Course of Study.
ERIC Educational Resources Information Center
Cooperative Curriculum Service Center, Centerville, MD.
This curriculum guide is designed to assist teachers in using such innovative techniques in the new social studies as concept teaching and inquiry with below average students. It is divided into two non-sequential semesters. Each of eleven units emphasize a single concept, in economics: 1) consumption, consumer purchasing, credit, deception,…
Rethinking Joseph Janangelo's "Joseph Cornell and the Artistry of Composing Persuasive Hypertexts"
ERIC Educational Resources Information Center
College Composition and Communication, 2007
2007-01-01
This article presents several excerpts from an article written by Joseph Janangelo titled "Joseph Cornell and the Artistry of Composing Persuasive Hypertexts." In his article, Janangelo suggested that Cornell's work and ideas about composing model intelligent ways to composing persuasive nonsequential text. Janangelo also wondered if the use of…
sTeam--Providing Primary Media Functions for Web-Based Computer-Supported Cooperative Learning.
ERIC Educational Resources Information Center
Hampel, Thorsten
The World Wide Web has developed as the de facto standard for computer based learning. However, as a server-centered approach, it confines readers and learners to passive nonsequential reading. Authoring and Web-publishing systems aim at supporting the authors' design process. Consequently, learners' activities are confined to selecting and…
Optical design of system for a lightship
NASA Astrophysics Data System (ADS)
Chirkov, M. A.; Tsyganok, E. A.
2017-06-01
This article presents the result of the optical design of illuminating optical system for lightship using the freeform surface. It shows an algorithm of optical design of side-emitting lens for point source using Freeform Z function in Zemax non-sequential mode; optimization of calculation results and testing of optical system with real diode
Unlocking Hospitality Managers Career Transitions through Applying Schein's Career Anchors Theory
ERIC Educational Resources Information Center
McGuire, David; Polla, Giovana; Heidl, Britta
2017-01-01
Purpose: This paper seeks to unlock the career transitions of hospitality managers through applying Schein's career anchors theory. It seeks to understand how Schein's Career Anchors help explain the career transitions of managers in the Scottish hospitality industry. Design/methodology/approach: The paper adopts a non-sequential multi-method…
DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.
2005-01-01
Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.
Parallel seed-based approach to multiple protein structure similarities detection
Chapuis, Guillaume; Le Boudic-Jamin, Mathilde; Andonov, Rumen; ...
2015-01-01
Finding similarities between protein structures is a crucial task in molecular biology. Most of the existing tools require proteins to be aligned in order-preserving way and only find single alignments even when multiple similar regions exist. We propose a new seed-based approach that discovers multiple pairs of similar regions. Its computational complexity is polynomial and it comes with a quality guarantee—the returned alignments have both root mean squared deviations (coordinate-based as well as internal-distances based) lower than a given threshold, if such exist. We do not require the alignments to be order preserving (i.e., we consider nonsequential alignments), which makesmore » our algorithm suitable for detecting similar domains when comparing multidomain proteins as well as to detect structural repetitions within a single protein. Because the search space for nonsequential alignments is much larger than for sequential ones, the computational burden is addressed by extensive use of parallel computing techniques: a coarse-grain level parallelism making use of available CPU cores for computation and a fine-grain level parallelism exploiting bit-level concurrency as well as vector instructions.« less
Gear tooth stress measurements of two helicopter planetary stages
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.
1992-01-01
Two versions of the planetary reduction stages from U.S. Army OH-58 helicopter main rotor transmissions were tested at NASA Lewis. One sequential and one nonsequential planetary were tested. Sun gear and ring gear teeth strains were measured, and stresses were calculated from the strains. The alternating stress at the fillet of both the loaded and unloaded sides of the teeth and at the root of the sun gear teeth are reported. Typical stress variations as the gear tooth moves through mesh are illustrated. At the tooth root location of the thin rimmed sun gear, a significant stress was produced by a phenomenon other than the passing of a planet gear. The load variation among the planets was studied. Each planet produced its own distinctive load distribution on the ring and sun gears. The load variation was less for a three planet, nonsequential design as compared to that of a four planet, sequential design. The reported results enhance the data base for gear stress levels and provide data for the validation of analytical methods.
Electron-Atom Ionization Calculations using Propagating Exterior Complex Scaling
NASA Astrophysics Data System (ADS)
Bartlett, Philip
2007-10-01
The exterior complex scaling method (Science 286 (1999) 2474), pioneered by Rescigno, McCurdy and coworkers, provided highly accurate ab initio solutions for electron-hydrogen collisions by directly solving the time-independent Schr"odinger equation in coordinate space. An extension of this method, propagating exterior complex scaling (PECS), was developed by Bartlett and Stelbovics (J. Phys. B 37 (2004) L69, J. Phys. B 39 (2006) R379) and has been demonstrated to provide computationally efficient and accurate calculations of ionization and scattering cross sections over a large range of energies below, above and near the ionization threshold. An overview of the PECS method for three-body collisions and the computational advantages of its propagation and iterative coupling techniques will be presented along with results of: (1) near-threshold ionization of electron-hydrogen collisions and the Wannier threshold laws, (2) scattering cross section resonances below the ionization threshold, and (3) total and differential cross sections for electron collisions with excited targets and hydrogenic ions from low through to high energies. Recently, the PECS method has been extended to solve four-body collisions using time-independent methods in coordinate space and has initially been applied to the s-wave model for electron-helium collisions. A description of the extensions made to the PECS method to facilitate these significantly more computationally demanding calculations will be given, and results will be presented for elastic, single-excitation, double-excitation, single-ionization and double-ionization collisions.
Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation
NASA Technical Reports Server (NTRS)
Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)
2000-01-01
Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.
König, Anke; Zöller, Nadja; Kippenberger, Stefan; Bernd, August; Kaufmann, Roland; Layer, Paul G; Heselich, Anja
2018-01-01
Ionizing and near-infrared radiation are both part of the therapeutic spectrum in cancer treatment. During cancer therapy ionizing radiation is typically used for non-invasive reduction of malignant tissue, while near-infrared photobiomodulation is utilized in palliative medical approaches, e.g. for pain reduction or impairment of wound healing. Furthermore, near-infrared is part of the solar wavelength spectrum. A combined exposure of these two irradiation qualities - either intentionally during medical treatment or unintentionally due to solar exposure - is therefore presumable for cancer patients. Several studies in different model organisms and cell cultures show a strong impact of near-infrared pretreatment on ionizing radiation-induced stress response. To investigate the risks of non-thermal near-infrared (NIR) pretreatment in patients, a human in vitro full thickness skin models (FTSM) was evaluated for radiation research. FTSM were pretreated with therapy-relevant doses of NIR followed by X-radiation, and then examined for DNA-double-strand break (DSB) repair, cell proliferation and apoptosis. Double-treated FTSM revealed a clear influence of NIR on X-radiation-induced stress responses in cells in their typical tissue environment. Furthermore, over a 24h time period, double-treated FTSM presented a significant persistence of DSBs, as compared to samples exclusively irradiated by X-rays. In addition, NIR pretreatment inhibited apoptosis induction of integrated fibroblasts, and counteracted the radiation-induced proliferation inhibition of basal keratinocytes. Our work suggests that cancer patients treated with X-rays should be prevented from uncontrolled NIR irradiation. On the other hand, controlled double-treatment could provide an alternative therapy approach, exposing the patient to less radiation. Copyright © 2017. Published by Elsevier B.V.
Hugoniot measurements of double-shocked precompressed dense xenon plasmas
NASA Astrophysics Data System (ADS)
Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.
2012-12-01
The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.
Zhu, Zhixiang; Wang, Jian; Qiu, Keqing; Liu, Chengyuan; Qi, Fei; Pan, Yang
2014-04-01
A novel vacuum ultraviolet (VUV) light source assembly (VUVLSA) for enhancing the ionization efficiency of photoionization mass spectrometer has been described. The VUVLSA composes of a Krypton lamp and a pair of disk electrodes with circular center cavities. The two interior surfaces that face the photoionization region were aluminum-coated. VUV light can be reflected back and forth in the photoionization region between the electrodes, thus the photoionization efficiency can be greatly enhanced. The performances of two different shaped electrodes, the coated double flat electrodes (DFE), and double conical electrodes, were studied. We showed that the signal amplification of coated DFE is around 4 times higher than that of uncoated electrodes without VUV light reflection. The relationship between the pressure of ionization chamber and mass signal enhancement has also been studied.
Renner, J.; Gehman, V. M.; Goldschmidt, A.; ...
2015-03-24
Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at themore » 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.« less
Barium Tagging from nEXO Using Resonance Ionization Spectroscopy
NASA Astrophysics Data System (ADS)
Twelker, K.; Kravitz, S.
nEXO is a 5-ton liquid enriched-xenon time projection chamber (TPC) to search for neutrinoless double-beta decay, designed to have the sensitivity to completely probe the inverted mass hierarchy of Majorana neutrinos. The detector will accommodate-as a background reduction technique-a system to recover and identify the barium decay product. This upgrade will allow a background-free measurement of neutrinoless double-beta decay and increase the half-life sensitivity of the experiment by at least one order of magnitude. Ongoing research and development includes a system to test barium extraction from liquid xenon using surface adsorption and Resonance Ionization Spectroscopy (RIS).
Languages for Children at Tarrant County Junior College: A Ten-Year Report.
ERIC Educational Resources Information Center
Harper, Jane
In response to requests of adult students for foreign language instruction for their kindergarten and elementary school aged children, and after researching the availability of such instruction in the area, Tarrant County Junior College developed a series of nonsequential courses of 12 lessons each on common topics such as parts of the body, the…
ERIC Educational Resources Information Center
Kralina, Linda M.
2009-01-01
Extracurricular activities (ECA) are informal settings offering free-choice experiences that are generally voluntary, open-ended, non-sequential, self-directed, hands-on, and evaluation-free. This mixed methods study investigates participation in a high school science ECA by collecting the memories of former student members for their perceptions…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Aryya; Vaval, Nayana, E-mail: np.vaval@ncl.res.in; Pal, Sourav
2015-07-14
Auger decay is an efficient ultrafast relaxation process of core-shell or inner-shell excited atom or molecule. Generally, it occurs in femto-second or even atto-second time domain. Direct measurement of lifetimes of Auger process of single ionized and double ionized inner-shell state of an atom or molecule is an extremely difficult task. In this paper, we have applied the highly correlated complex absorbing potential-equation-of-motion coupled cluster (CAP-EOMCC) approach which is a combination of CAP and EOMCC approach to calculate the lifetime of the states arising from 2p inner-shell ionization of an Ar atom and 3d inner-shell ionization of Kr atom. Wemore » have also calculated the lifetime of Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}D, Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}S, and Ar{sup 2+}(2p{sup −1}3s{sup −1}) {sup 1}P double ionized states. The predicted results are compared with the other theoretical results as well as experimental results available in the literature.« less
Low-energy electron-impact single ionization of helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colgan, J.; Pindzola, M. S.; Childers, G.
2006-04-15
A study is made of low-energy electron-impact single ionization of ground-state helium. The time-dependent close-coupling method is used to calculate total integral, single differential, double differential, and triple differential ionization cross sections for impact electron energies ranging from 32 to 45 eV. For all quantities, the calculated cross sections are found to be in very good agreement with experiment, and for the triple differential cross sections, good agreement is also found with calculations made using the convergent close-coupling technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, M.; Ng, C.Y.
1999-11-01
We have obtained rotationally resolved pulsed field ionization[endash]photoelectron (PFI-PE) spectra of CO in the energy range of 13.98[endash]21.92 eV, covering the ionization transitions CO[sup +](X hthinsp;[sup 2][Sigma][sup +],v[sup +]=0[endash]42,N[sup +])[l arrow]CO(X hthinsp;[sup 1][Sigma][sup +],v[sup [double prime
Partial cross sections of helium satellites at medium photon energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehlitz, R.; Sellin, I.A.; Hemmers, O.
1997-04-01
Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He{sup +}nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energymore » at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al.« less
NASA Astrophysics Data System (ADS)
Tremblin, P.; Schneider, N.; Minier, V.; Didelon, P.; Hill, T.; Anderson, L. D.; Motte, F.; Zavagno, A.; André, Ph.; Arzoumanian, D.; Audit, E.; Benedettini, M.; Bontemps, S.; Csengeri, T.; Di Francesco, J.; Giannini, T.; Hennemann, M.; Nguyen Luong, Q.; Marston, A. P.; Peretto, N.; Rivera-Ingraham, A.; Russeil, D.; Rygl, K. L. J.; Spinoglio, L.; White, G. J.
2014-04-01
Aims: Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF). Methods: We used Herschel column density maps of several regions observed within the HOBYS key program in a systematic way: M 16, the Rosette and Vela C molecular clouds, and the RCW 120 H ii region. We computed the PDFs in concentric disks around the main ionizing sources, determined their properties, and discuss the effect of ionization pressure on the distribution of the column density. Results: We fitted the column density PDFs of all clouds with two lognormal distributions, since they present a "double-peak" or an enlarged shape in the PDF. Our interpretation is that the lowest part of the column density distribution describes the turbulent molecular gas, while the second peak corresponds to a compression zone induced by the expansion of the ionized gas into the turbulent molecular cloud. Such a double peak is not visible for all clouds associated with ionization fronts, but it depends on the relative importance of ionization pressure and turbulent ram pressure. A power-law tail is present for higher column densities, which are generally ascribed to the effect of gravity. The condensations at the edge of the ionized gas have a steep compressed radial profile, sometimes recognizable in the flattening of the power-law tail. This could lead to an unambiguous criterion that is able to disentangle triggered star formation from pre-existing star formation. Conclusions: In the context of the gravo-turbulent scenario for the origin of the CMF/IMF, the double-peaked or enlarged shape of the PDF may affect the formation of objects at both the low-mass and the high-mass ends of the CMF/IMF. In particular, a broader PDF is required by the gravo-turbulent scenario to fit the IMF properly with a reasonable initial Mach number for the molecular cloud. Since other physical processes (e.g., the equation of state and the variations among the core properties) have already been said to broaden the PDF, the relative importance of the different effects remains an open question. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Inhibition of APOBEC3G activity impedes double-stranded DNA repair.
Prabhu, Ponnandy; Shandilya, Shivender M D; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A; Kotler, Moshe
2016-01-01
The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to ionizing radiation. In the current study, we show that additional peptides derived from Vif, A3G, and APOBEC3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, whereas replacing a single residue in the LYYF motif completely abrogates inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break repair after irradiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit double-strand break repair halts their propagation. These results suggest that A3G may be a potential therapeutic target that is amenable to peptide and peptidomimetic inhibition. © 2015 FEBS.
Sequential, progressive, equal-power, reflective beam-splitter arrays
NASA Astrophysics Data System (ADS)
Manhart, Paul K.
2017-11-01
The equations to calculate equal-power reflectivity of a sequential series of beam splitters is presented. Non-sequential optical design examples are offered for uniform illumination using diode lasers. Objects created using Boolean operators and Swept Surfaces can create objects capable of reflecting light into predefined elevation and azimuth angles. Analysis of the illumination patterns for the array are also presented.
A Markov-Based Recommendation Model for Exploring the Transfer of Learning on the Web
ERIC Educational Resources Information Center
Huang, Yueh-Min; Huang, Tien-Chi; Wang, Kun-Te; Hwang, Wu-Yuin
2009-01-01
The ability to apply existing knowledge in new situations and settings is clearly a vital skill that all students need to develop. Nowhere is this truer than in the rapidly developing world of Web-based learning, which is characterized by non-sequential courses and the absence of an effective cross-subject guidance system. As a result, questions…
Laser resonance ionization spectroscopy of antimony
NASA Astrophysics Data System (ADS)
Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.
2017-02-01
The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oghbaie, Shabnam; Gisselbrecht, Mathieu; Laksman, Joakim
Dissociative double-photoionization of butadiene in the 25-45 eV energy range has been studied with tunable synchrotron radiation using full three-dimensional ion momentum imaging. Using ab initio calculations, the electronic states of the molecular dication below 33 eV are identified. The results of the measurement and calculation show that double ionization from π orbitals selectively triggers twisting about the terminal or central C–C bonds. We show that this conformational rearrangement depends upon the dication electronic state, which effectively acts as a gateway for the dissociation reaction pathway. For photon energies above 33 eV, three-body dissociation channels where neutral H-atom evaporation precedesmore » C–C charge-separation in the dication species appear in the correlation map. The fragment angular distributions support a model where the dication species is initially aligned with the molecular backbone parallel to the polarization vector of the light, indicating a high probability for double-ionization to the “gateway states” for molecules with this orientation.« less
Ulivi, Paola; Chiadini, Elisa; Dazzi, Claudio; Dubini, Alessandra; Costantini, Matteo; Medri, Laura; Puccetti, Maurizio; Capelli, Laura; Calistri, Daniele; Verlicchi, Alberto; Gamboni, Alessandro; Papi, Maximilian; Mariotti, Marita; De Luigi, Nicoletta; Scarpi, Emanuela; Bravaccini, Sara; Turolla, Gian Michele; Amadori, Dino; Crinò, Lucio; Delmonte, Angelo
2016-09-01
Epidermal growth factor receptor (EGFR) and v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations, and echinoderm microtubule-associated protein-like 4 (EML4) anaplastic lymphoma kinase (ALK) translocation are generally considered to be mutually exclusive. However, concomitant mutations are found in a small number of patients and the effect of these on response to targeted therapy is still unknown. We considered 380 non-small-cell lung cancer (NSCLC) patients who underwent nonsequential testing for EGFR and EML4-ALK translocation. KRAS mutation analysis was also performed on 282 patients. We found 1.6%, 1.1%, and 2.5% of patients who showed a double mutation comprising EGFR and EML4-ALK, EGFR and KRAS, and EML4-ALK and KRAS, respectively. Twenty-eight patients with EGFR mutation underwent first-line therapy with a tyrosine kinase receptor; a clinical benefit was observed in 81.8% of patients with EGFR mutations only and in 67% of those who also showed an EML4-ALK translocation. Twelve patients with an EML4-ALK translocation received crizotinib and 7 of these had disease progression within 3 months (2 had a concomitant KRAS mutation and 1 had a concomitant EGFR mutation). Two patients showed stable disease, 1 of whom also had a KRAS mutation. Two patients obtained a partial response and 1 had a complete response; all harbored an EML4-ALK translocation only. The median overall survival of patients who carried an EML4-ALK translocation alone or concomitant with a KRAS mutation was 57.1 (range, 10.7-not reached) and 10.7 (range, 4.6-not reached) months, respectively. Concomitant EGFR, EML4-ALK, or KRAS mutations can occur in NSCLC. Concomitant KRAS mutation and EML4-ALK translocation represents the most common double alteration and confers a poor prognosis. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Bo; Govind, Niranjan; Aprà, Edoardo
In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent ofmore » nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Igor V. Litvinyuk, and Itzik Ben-Itzhak
Our principal goal was the experimental demonstration of Laser-Induced Electron Diffraction (LIED). Key steps along the development of this experimental technique have been accomplished and reported in the publications listed in this brief report. We started with measuring 3D electron momenta spectra in aligned nitrogen and oxygen molecules. Chakra Maharjan (Ph.D. student of Lew Cocke) was a lead researcher on this project. Although Chakra succeeded in obtaining those spectra, we were scooped by the publication of identical results in Science by the NRC Ottawa group. Our results were never published as a refereed article, but became a part of Chakra'smore » Ph.D. dissertation. That Science paper was the first experimental demonstration of Laser-Induced Electron Diffraction (LIED). Chakra also worked on wavelength dependence of 3D ATI spectra of atoms and molecules using tunable OPA pulses. Another Ph.D. student, Maia Magrakvelidze (her GRA was funded by the grant), started working on COLTRIMS experiments using OPA pulses (1800 nm wavelength). After some initial experiments it became apparent that COLTRIMS did not yield sufficient count rates of electrons in the high-energy part of the spectrum to see diffraction signatures with acceptable statistics (unfavorable scaling of the electron yield with laser wavelength was partly to blame). Nevertheless, Maia managed to use COLTRIMS and OPA to measure the angular dependence of the tunneling ionization rate in D{sub 2} molecules. Following the initial trial experiments, the decision was made to switch from COLTRIMS to VMI in order to increase the count rates by a factor of {approx}100, which may have given us a chance to see LIED. Research Associate Dr. Sankar De (his salary was funded by the grant), in collaboration with Matthias Kling's group (then at MPQ Garching), proceeded to design a special multi-electrode VMI spectrometer for capturing high-energy ATI electrons and to install it in place of COLTRIMS inside our experimental chamber. That apparatus was later used for the first demonstration of field-free orientation in CO using two-color laser pulses as well as for a series of other experiments, such as pump-probe studies of molecular dynamics with few-cycle laser pulses, control of electron localization in dissociating hydrogen molecules using two-color laser pulses, and ATI spectra of Xe ionized by two-color laser pulses. In parallel, Dipanwita Ray (Ph.D. student of Lew Cocke) worked on measuring angle-resolved ATI spectra of noble gases using a stereo-ATI phasemeter as a TOF electron spectrometer. She observed the angular diffraction structures in 3D ATI spectra of Ar, Kr and Xe, which were interpreted in terms of the Quantitative Rescattering theory newly developed by C.D. Lin. We also attempted to use a much more powerful OPA (five times more energy per pulse than the one we had at JRML) available at the Advanced Laser Light Source (ALLS) in Montreal to observe LIED. Two visits to ALLS by the PI, Igor Litvinyuk, and one visit by the PI's Ph.D. student (Irina Bocharova) were funded by the grant. Though we failed to observe LIED (the repetition rate of the ALLS OPA was too low at only 100 Hz), this international collaboration resulted in several publications on other related subjects, such as the wavelength dependence of laser Coulomb explosion of hydrogen, the wavelength dependence of non-sequential double ionization of neon and argon, the demonstration of charge-resonance enhanced ionization in CO{sub 2}, and the study of non-elastic scattering processes in H{sub 2}. Theoretical efforts to account for the hydrogen Coulomb explosion experiment resulted in another paper by Maia Magrakvelidze as lead author. Although for various reasons we failed to achieve our main goal of observing LIED, we salute the recent success in this endeavor by Lou DiMauro's group (with theoretical support from our KSU colleague C.D. Lin) published in Nature, which validates our approach.« less
ERIC Educational Resources Information Center
Washington Office of the State Superintendent of Public Instruction, Olympia.
This curriculum guide is the first step in a total home and family life curriculum revision in the state of Washington aimed at helping students solve problems and study issues that have an impact on home and family life. The guide contains two model, nonsequential, comprehensive courses that may be adopted or adapted by school districts. The…
Autoionizing resonances in electron-impact ionization of O5+ ions
NASA Astrophysics Data System (ADS)
Müller, A.; Teng, H.; Hofmann, G.; Phaneuf, R. A.; Salzborn, E.
2000-12-01
We report on a detailed experimental and theoretical study of electron-impact ionization of O5+ ions. A high-resolution scan measurement of the K-shell excitation threshold region has been performed with statistical uncertainties as low as 0.03%. At this level of precision a wealth of features in the cross section arising from indirect ionization processes becomes visible, and even interference of direct ionization with resonant-excitation/auto-double-ionization (READI) is clearly observed. The experimental results are compared with R-matrix calculations that include both direct and indirect processes in a unified way. Radiative damping of autoionizing Li-like states is found to be about 10-15 %. The calculations almost perfectly reproduce most of the experimental resonance features found in the present measurement including READI. They also agree with the direct-ionization converged close-coupling results of I. Bray [J. Phys. B 28, L247 (1995)] and the absolute total ionization cross section measurement of K. Rinn et al. [Phys. Rev. A 36, 595 (1987)].
Theoretical study of geometry relaxation following core excitation: H2O, NH3, and CH4
NASA Astrophysics Data System (ADS)
Takahashi, Osamu; Kunitake, Naoto; Takaki, Saya
2015-10-01
Single core-hole (SCH) and double core-hole excited state molecular dynamics (MD) calculations for neutral and cationic H2O, NH3, and CH4 have been performed to examine geometry relaxation after core excitation. We observed faster X-H (X = C, N, O) bond elongation for the core-ionized state produced from the valence cationic molecule and the double-core-ionized state produced from the ground and valence cationic molecules than for the first resonant SCH state. Using the results of SCH MD simulations of the ground and valence cationic molecules, Auger decay spectra calculations were performed. We found that fast bond scission leads to peak broadening of the spectra.
Two-photon double ionization of helium in the region of photon energies 42-50eV
NASA Astrophysics Data System (ADS)
Ivanov, I. A.; Kheifets, A. S.
2007-03-01
We report the total integrated cross section (TICS) of two-photon double ionization of helium in the photon energy range from 42to50eV . Our computational procedure relies on a numerical solution of the time-dependent Schrödinger equation on a square-integrable basis and subsequent projection of this solution on a set of final field-free states describing correlation in the two-electron continuum. Our results suggest that the TICS grows monotonically as a function of photon energy in the region of 42-50eV , possibly reaching a maximum in the vicinity of 50eV . We also present fully resolved triple-differential cross sections for selected photon energies.
NASA Astrophysics Data System (ADS)
Yavuz, Murat; Ozer, Zehra Nur; Ulu, Melike; Champion, Christophe; Dogan, Mevlut
2016-04-01
Experimental and theoretical double differential cross sections (DDCSs) for electron-induced ionization of methane (CH4) are here reported for primary energies ranging from 50 eV to 350 eV and ejection angles between 25° and 130°. Experimental DDCSs are compared with theoretical predictions performed within the first Born approximation Coulomb wave. In this model, the initial molecular state is described by using single center wave functions, the incident (scattered) electron being described by a plane wave, while a Coulomb wave function is used for modeling the secondary ejected electron. A fairly good agreement may be observed between theory and experiment with nevertheless an expected systematic overestimation of the theory at low-ejection energies (<50 eV).
Spectroscopic imaging of self-organization in high power impulse magnetron sputtering plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Joakim; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore; Ni, Pavel
Excitation and ionization conditions in traveling ionization zones of high power impulse magnetron sputtering plasmas were investigated using fast camera imaging through interference filters. The images, taken in end-on and side-on views using light of selected gas and target atom and ion spectral lines, suggest that ionization zones are regions of enhanced densities of electrons, and excited atoms and ions. Excited atoms and ions of the target material (Al) are strongly concentrated near the target surface. Images from the highest excitation energies exhibit the most localized regions, suggesting localized Ohmic heating consistent with double layer formation.
Spectroscopic imaging of self-organization in high power impulse magnetron sputtering plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore; Andersson, Joakim; Ni, Pavel
Excitation and ionization conditions in traveling ionization zones of high power impulse magnetron sputtering plasmas were investigated using fast camera imaging through interference filters. The images, taken in end-on and side on views using light of selected gas and target atom and ion spectral lines, suggest that ionization zones are regions of enhanced densities of electrons, and excited atoms and ions. Excited atoms and ions of the target material (Al) are strongly concentrated near the target surface. Images from the highest excitation energies exhibit the most localized regions, suggesting localized Ohmic heating consistent with double layer formation.
Harańczyk, M.; Amsler, C.; Badertscher, A.; ...
2010-08-24
The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R & D program, including a 3 l prototype developed to test the charge readout system.
Optical architecture design for detection of absorbers embedded in visceral fat.
Francis, Robert; Florence, James; MacFarlane, Duncan
2014-05-01
Optically absorbing ducts embedded in scattering adipose tissue can be injured during laparoscopic surgery. Non-sequential simulations and theoretical analysis compare optical system configurations for detecting these absorbers. For absorbers in deep scattering volumes, trans-illumination is preferred instead of diffuse reflectance. For improved contrast, a scanning source with a large area detector is preferred instead of a large area source with a pixelated detector.
Optical architecture design for detection of absorbers embedded in visceral fat
Francis, Robert; Florence, James; MacFarlane, Duncan
2014-01-01
Optically absorbing ducts embedded in scattering adipose tissue can be injured during laparoscopic surgery. Non-sequential simulations and theoretical analysis compare optical system configurations for detecting these absorbers. For absorbers in deep scattering volumes, trans-illumination is preferred instead of diffuse reflectance. For improved contrast, a scanning source with a large area detector is preferred instead of a large area source with a pixelated detector. PMID:24877008
Predicting vertically-nonsequential wetting patterns with a source-responsive model
Nimmo, John R.; Mitchell, Lara
2013-01-01
Water infiltrating into soil of natural structure often causes wetting patterns that do not develop in an orderly sequence. Because traditional unsaturated flow models represent a water advance that proceeds sequentially, they fail to predict irregular development of water distribution. In the source-responsive model, a diffuse domain (D) represents flow within soil matrix material following traditional formulations, and a source-responsive domain (S), characterized in terms of the capacity for preferential flow and its degree of activation, represents preferential flow as it responds to changing water-source conditions. In this paper we assume water undergoing rapid source-responsive transport at any particular time is of negligibly small volume; it becomes sensible at the time and depth where domain transfer occurs. A first-order transfer term represents abstraction from the S to the D domain which renders the water sensible. In tests with lab and field data, for some cases the model shows good quantitative agreement, and in all cases it captures the characteristic patterns of wetting that proceed nonsequentially in the vertical direction. In these tests we determined the values of the essential characterizing functions by inverse modeling. These functions relate directly to observable soil characteristics, rendering them amenable to evaluation and improvement through hydropedologic development.
Ngoko Djiokap, J M; Manakov, N L; Meremianin, A V; Hu, S X; Madsen, L B; Starace, Anthony F
2014-11-28
Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝I^{3/2}) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing one to probe and control S- and D-wave channels of the two-electron continuum. We show that the back-to-back in-plane geometry with unequal energy sharing is an ideal one for observing this dichroic effect that occurs only for an elliptically polarized, few-cycle attosecond pulse.
NASA Astrophysics Data System (ADS)
Strom, Richard A.; Zimmerly, Andrew T.; Andrianarijaona, Vola M.
2014-05-01
It is known that ionizing radiation generates low-energy secondary electrons, which may interact with the surrounding area, including biomolecules, such as triggering DNA single strand and double strand breaks as demonstrated by Sanche and coworkers (Radiat. Res. 157, 227(2002)). The bio-effects of low-energy electrons are currently a topic of high interest. Most of the studies are dedicated to dissociative electron attachments; however, the area is still mostly unexplored and still not well understood. We are computationally investigating the effect of ionizing radiation on DNA, such as its ionization to DNA+. More specifically, we are exploring the possibility of the dissociative recombination of the temporary DNA+ with one of the low-energy secondary electrons, produced by the ionizing radiation, to be another process of DNA strand breaks. Our preliminary results, which are performed with the binaries of ORCA, will be presented. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.
NASA Technical Reports Server (NTRS)
Dateo, Christopher; Huo, Winifred M.; Fletcher, Graham D.
2004-01-01
It has been suggested that the genotoxic effects of ionizing radiation in living cells are not caused by the highly energetic incident radiation, but rather are induced by less energetic secondary species generated, the most abundant of which are free electrons.' The secondary electrons will further react to cause DNA damage via indirect and direct mechanisms. Detailed knowledge of these mechanisms is ultimately important for the development of global models of cellular radiation damage. We are studying one possible mechanism for the formation cf DNA strand breaks involving dissociative ionization of the DNA sugar-phosphate backbone induced by secondary electron co!lisions. We will present ionization cross sections at electron collision energies between threshold and 10 KeV using the improved binary encounter dipole (iBED) formulation' Preliminary results of the possible dissociative ionization pathways will be presented. It is speculated that radical fragments produced from the dissociative ionization can further react, providing a possible mechanism for double strand breaks and base damage.
Cross sections for ionization of tetrahydrofuran by protons at energies between 300 and 3000 keV
NASA Astrophysics Data System (ADS)
Wang, Mingjie; Rudek, Benedikt; Bennett, Daniel; de Vera, Pablo; Bug, Marion; Buhr, Ticia; Baek, Woon Yong; Hilgers, Gerhard; Rabus, Hans
2016-05-01
Double-differential cross sections for ionization of tetrahydrofuran by protons with energies from 300 to 3000 keV were measured at the Physikalisch-Technische Bundesanstalt ion accelerator facility. The electrons emitted at angles between 15∘ and 150∘ relative to the ion-beam direction were detected with an electrostatic hemispherical electron spectrometer. Single-differential and total ionization cross sections have been derived by integration. The experimental results are compared to the semiempirical Hansen-Kocbach-Stolterfoht model as well as to the recently reported method based on the dielectric formalism. The comparison to the latter showed good agreement with experimental data in a broad range of emission angles and energies of secondary electrons. The scaling property of ionization cross sections for tetrahydrofuran was also investigated. Compared to molecules of different size, the ionization cross sections of tetrahydrofuran were found to scale with the number of valence electrons at large impact parameters.
Stinson, Craig A; Xia, Yu
2016-06-21
Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).
Electrofluidic gating of a chemically reactive surface.
Jiang, Zhijun; Stein, Derek
2010-06-01
We consider the influence of an electric field applied normal to the electric double layer at a chemically reactive surface. Our goal is to elucidate how surface chemistry affects the potential for field-effect control over micro- and nanofluidic systems, which we call electrofluidic gating. The charging of a metal-oxide-electrolyte (MOE) capacitor is first modeled analytically. We apply the Poisson-Boltzmann description of the double layer and impose chemical equilibrium between the ionizable surface groups and the solution at the solid-liquid interface. The chemically reactive surface is predicted to behave as a buffer, regulating the charge in the double layer by either protonating or deprotonating in response to the applied field. We present the dependence of the charge density and the electrochemical potential of the double layer on the applied field, the density, and the dissociation constants of ionizable surface groups and the ionic strength and the pH of the electrolyte. We simulate the responses of SiO(2) and Al(2)O(3), two widely used oxide insulators with different surface chemistries. We also consider the limits to electrofluidic gating imposed by the nonlinear behavior of the double layer and the dielectric strength of oxide materials, which were measured for SiO(2) and Al(2)O(3) films in MOE configurations. Our results clarify the response of chemically reactive surfaces to applied fields, which is crucial to understanding electrofluidic effects in real devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMark, B.R.; Klein, P.D.
1981-01-01
The ammonia chemical ionization mass spectra of 28 methyl ester acetate derivatives of bile acids and related compounds have been determined by gas-liquid chromatography-mass spectrometry. Advantages of ammonia ionization over the previously studied isobutane ionization include a 130 to 270% enhancement in the sensitivity of base peak monitoring, and direct determination of molecular weight from the base peak (M + NH/sub 4//sup +/) in the mass spectrum of any of the derivatives. Minor ions in the ammonia spectra also allow selective detection of 3-keto compounds and can indicate unsaturation or double bond conjugation in the molecule. The significance of thesemore » studies for the detection and quantitation of bile acids is discussed. 2 tables.« less
National Ignition Facility main laser stray light analysis and control
DOE Office of Scientific and Technical Information (OSTI.GOV)
English, R E; Miller, J L; Peterson, G
1998-06-26
Stray light analysis has been carried out for the main laser section of the National Ignition Facility main laser section using a comprehensive non-sequential ray trace model supplemented with additional ray trace and diffraction propagation modeling. This paper describes the analysis and control methodology, gives examples of ghost paths and required tilted lenses, baffles, absorbers, and beam dumps, and discusses analysis of stray light "pencil beams" in the system.
NASA Astrophysics Data System (ADS)
Key, Michael H.; Blyth, W. J.; Cairns, Gerald F.; Damerell, A. R.; Dangor, A. E.; Danson, Colin N.; Evans, J. M.; Hirst, Graeme J.; Holden, M.; Hooker, Chris J.; Houliston, J. R.; Krishnan, J.; Lewis, Ciaran L. S.; Lister, J. M. D.; MacPhee, Andrew G.; Najmudin, Z.; Neely, David; Norreys, Peter A.; Offenberger, Allen A.; Osvay, Karoly; Pert, Geoffrey J.; Preston, S. G.; Ramsden, Stuart A.; Ross, Ian N.; Sibbett, Wilson; Tallents, Gregory J.; Smith, C.; Wark, Justin S.; Zhang, Jie
1994-02-01
An injector-amplifier architecture for XUV lasers has been developed and demonstrated using the Ge XXIII collisional laser. Results are described for injection into single and double plasma amplifiers. Prismatic lens-like and higher order aberrations in the amplifier are considered. Limitations on ultimate brightness are discussed and also scaling to operation at shorter wavelengths. A preliminary study has been made of UV multiphoton ionization using 300 fs pulses at high intensity.
The Lamont--Doherty Geological Observatory Isolab 54 isotope ratio mass spectrometer
NASA Astrophysics Data System (ADS)
England, J. G.; Zindler, A.; Reisberg, L. C.; Rubenstone, J. L.; Salters, V.; Marcantonio, F.; Bourdon, B.; Brueckner, H.; Turner, P. J.; Weaver, S.; Read, P.
1992-12-01
The Lamont--Doherty Geological Observatory (LDGO) Isolab 54 is a double focussing isotope ratio mass spectrometer that allows the measurement of thermal ions produced on a hot filament, (thermal-ionization mass spectrometry (TIMS)), secondary ions produced by sputtering a sample using a primary ion beam, (secondary ion mass spectrometry (SIMS)), and sputtered neutrals resonantly ionized using laser radiation, (sputter-induced resonance ionization mass spectrometry (SIRIMS)). Sputtering is carried out using an Ar primary beam generated in a duoplasmatron and focussed onto the sample using a two-lens column. Resonance ionization is accomplished using a frequency-doubled dye laser pumped by an excimer laser. The Isolab's forward geometry analyzer, consisting of an electrostatic followed by a magnetic sector, allows the simultaneous collection of different isotopes of the same element. This instrument is the first to have a multicollector that contains an ion-counting system based on a microchannel plate as well as traditional Faraday cups. A second electrostatic sector after the multicollector is equipped with an ion-counting Daly detector to allow high abundance sensitivity for measurements of large dynamics range. Selectable source, collector, [alpha] and energy slits on the instrument allow analyses to be made over a range of mass resolving powers and analyzer acceptances. Recent applications of the instrument have included the analyses of U by TIMS, Hf, Th and Re by SIMS and Re and Os by SIRIMS.
NASA Astrophysics Data System (ADS)
Oderinde, Oluwaseyi Michael; du Plessis, FCP
2017-12-01
The purpose of this study was to develop a new component module (CM) namely IQM to accurately model the integral quality monitoring (IQM) system® to be used in the BEAMnrc Monte Carlo (MC) code. The IQM is essentially a double wedge ionization chamber with the central electrode plate bisecting the wedge. The IQM CM allows the user to characterize the double wedge of this ionization chamber and BEAMnrc can then accurately calculate the dose in this CM including its enclosed air regions. This has been verified against measured data. The newly created CM was added into the standard BEAMnrc CMs, and it will be made available through the NRCC website. The BEAMnrc graphical user interface (GUI) and particle ray-tracing techniques were used to validate the IQM geometry. In subsequent MC simulations, the dose scored in the IQM was verified against measured data over a range of square fields ranging from 1 × 1-30 × 30 cm2. The IQM system is designed for the present day need for a device that could verify beam output in real-time during treatment. This CM is authentic, and it can serve as a basis for researchers that have an interest in real-time beam delivery checking using wedge-shaped ionization chamber based instruments like the IQM.
VUV and soft x-ray ionization of a plant volatile: Vanillin (C{sub 8}H{sub 8}O{sub 3})
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betancourt, A. Moreno; Moura, C. E. V. de; Rocha, A. B.
2016-03-21
Plant volatiles are emitted by plants in response to several forms of stress, including interaction with energetic photons. In the present work, we discuss the interaction of extreme UV and soft X-ray photons with a plant volatile, vanillin. The single and double (multiple) ionization of the vanillin molecule have been studied for the first time using time-of-flight mass spectrometry and VUV and soft X-ray photons (synchrotron radiation, at 12.0 eV, 21.2 eV, 130 eV, 310 eV, 531 eV, and 550 eV). At 12.0 and 21.2 eV, only singly charged species are observed and the parent ion, C{sub 8}H{sub 8}O{sub 3}{supmore » +}, is the dominant species. Energy differences for some selected fragments were calculated theoretically in this energy region. At 130 eV, direct double and triple ionization of the valence electrons may occur. The fragmentation increases and CHO{sup +} becomes one of the main cations in the mass spectrum. The molecular ion is still the dominant species, but other fragments, such as C{sub 6}H{sub 5}O{sup +}, begin to present similar intensities. At 310 eV, C 1s electrons may be ionized and Auger processes give rise to dissociative doubly ionized cations. Ionization around the O 1s edge has been studied both at the 531 eV resonance and above the ionization edge. Resonant and normal Auger processes play a significant role in each case and a large fragmentation of the molecule is observed at both photon energies, with intense fragments such as CHO{sup +} and CH{sub 3}{sup +} being clearly observed. A near edge X-ray absorption fine structure spectrum of the vanillin molecule was obtained around the O 1s ionization threshold. In addition, the fragmentation of vanillin has also been studied using a fast beam of electrons (800 eV), for the sake of comparison.« less
Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins
NASA Astrophysics Data System (ADS)
Gaspar, Miguel; Shenk, Thomas
2006-02-01
The DNA damage checkpoint pathway responds to DNA damage and induces a cell cycle arrest to allow time for DNA repair. Several viruses are known to activate or modulate this cellular response. Here we show that the ataxia-telangiectasia mutated checkpoint pathway, which responds to double-strand breaks in DNA, is activated in response to human cytomegalovirus DNA replication. However, this activation does not propagate through the pathway; it is blocked at the level of the effector kinase, checkpoint kinase 2 (Chk2). Late after infection, several checkpoint proteins, including ataxia-telangiectasia mutated and Chk2, are mislocalized to a cytoplasmic virus assembly zone, where they are colocalized with virion structural proteins. This colocalization was confirmed by immunoprecipitation of virion proteins with an antibody that recognizes Chk2. Virus replication was resistant to ionizing radiation, which causes double-strand breaks in DNA. We propose that human CMV DNA replication activates the checkpoint response to DNA double-strand breaks, and the virus responds by altering the localization of checkpoint proteins to the cytoplasm and thereby inhibiting the signaling pathway. ionizing radiation | ataxia-telangiectasia mutated pathway
NASA Astrophysics Data System (ADS)
Vilà, A.; Zhu, J.; Scrinzi, A.; Emmanouilidou, A.
2018-03-01
We study frustrated double ionization (FDI) in a strongly-driven heteronuclear molecule HeH+ and compare with H2. We compute the probability distribution of the sum of the final kinetic energies of the nuclei for strongly-driven HeH+. We find that this distribution has more than one peak for strongly-driven HeH+, a feature we do not find to be present for strongly-driven H2. Moreover, we compute the probability distribution of the principal quantum number n of FDI. We find that this distribution has several peaks for strongly-driven HeH+, while the respective distribution has one main peak and a ‘shoulder’ at lower principal quantum numbers n for strongly-driven H2. Surprisingly, we find this feature to be a clear signature of the intertwined electron-nuclear motion.
Ponta, Michaela; Frentiu, Maria; Frentiu, Tiberiu
2012-06-01
A medium power, low Ar consumption capacitively coupled plasma torch (275 W, 0.4 L min-1) with molybdenum tubular electrode and single or two ring electrodes in non-local thermodynamic equilibrium (LTE) was characterized with respect to its ability to achieve element ionization. Ionization degrees of Ca, Mg, Mn and Cd were determined from ionic-to-atomic emission ratio and ionization equilibrium according to Saha's equation. The ionization degrees resulted from the Saha equation were higher by 9-32% than those obtained from spectral lines intensity in LTE regime and closer to reality. A linear decrease of ionization with increase of ionization energy of elements was observed. Plasma torch with two ring electrodes provided higher ionization degrees (85 ± 7% Ca, 79 ± 7% Mn, 80 ± 7% Mg and 73 ± 8% Cd) than those in single ring arrangement (70 ± 6% Ca, 57 ± 7% Mn, 57 ± 8% Mg and 42 ± 9% Cd). The Ca ionization decreased linearly by up to 79 ± 4% and 53 ± 6% in plasma with two ring electrodes and single ring respectively in the presence of up to 400 µg mL-1 Na as interferent. The studied plasma was effective in element ionization and could be a potential ion source in mass spectrometry.
Shock-wave structure in a partially ionized gas
NASA Technical Reports Server (NTRS)
Lu, C. S.; Huang, A. B.
1974-01-01
The structure of a steady plane shock in a partially ionized gas has been investigated using the Boltzmann equation with a kinetic model as the governing equation and the discrete ordinate method as a tool. The effects of the electric field induced by the charge separation on the shock structure have also been studied. Although the three species of an ionized gas travel with approximately the same macroscopic velocity, the individual distribution functions are found to be very different. In a strong shock the atom distribution function may have double peaks, while the ion distribution function has only one peak. Electrons are heated up much earlier than ions and atoms in a partially ionized gas. Because the interactions of electrons with atoms and with ions are different, the ion temperature can be different from the atom temperature.
NASA Astrophysics Data System (ADS)
Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.
2018-03-01
In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.
Domain-general sequence learning deficit in specific language impairment.
Lukács, Agnes; Kemény, Ferenc
2014-05-01
Grammar-specific accounts of specific language impairment (SLI) have been challenged by recent claims that language problems are a consequence of impairments in domain-general mechanisms of learning that also play a key role in the process of language acquisition. Our studies were designed to test the generality and nature of this learning deficit by focusing on both sequential and nonsequential, and on verbal and nonverbal, domains. Twenty-nine children with SLI were compared with age-matched typically developing (TD) control children using (a) a serial reaction time task (SRT), testing the learning of motor sequences; (b) an artificial grammar learning (AGL) task, testing the extraction of regularities from auditory sequences; and (c) a weather prediction task (WP), testing probabilistic category learning in a nonsequential task. For the 2 sequence learning tasks, a significantly smaller proportion of children showed evidence of learning in the SLI than in the TD group (χ2 tests, p < .001 for the SRT task, p < .05 for the AGL task), whereas the proportion of learners on the WP task was the same in the 2 groups. The level of learning for SLI learners was comparable with that of TD children on all tasks (with great individual variation). Taken together, these findings suggest that domain-general processes of implicit sequence learning tend to be impaired in SLI. Further research is needed to clarify the relationship of deficits in implicit learning and language.
Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling.
Wang, Zhifan; Hu, Shu; Wang, Fan; Guo, Jingwei
2015-04-14
In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.
Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhifan; Hu, Shu; Guo, Jingwei
2015-04-14
In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis setmore » without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.« less
Classical trajectory studies on the dynamics of one-photon double photionization of H2O
NASA Astrophysics Data System (ADS)
Streeter, Zachary; Yip, Frank; Reedy, Dylan P.; Landers, Allen; McCurdy, C. William
2017-04-01
Recent momentum imaging experiments at the Advanced Light Source have opened the possibility of measuring the complete triple differential cross section (TDCS) for one-photon double ionization of H2O in the molecular frame. The measurements depend on the complete breakup process, H2O + hν -> 2e-+ H+ + H+ +O. At the 57 eV photon energy of the experiment this process could proceed via any of the nine energetically accessible electronic states of H2O++. To discover which ionization channels contribute to the observed TDCS for the electrons measured in coincidence with different kinetic energy releases, we have carried out classical trajectory studies for breakup of the water dication on all nine potential surfaces, sampling from a Wigner phase space distribution for the vibrational ground state of H2O. The final momentum distributions of the protons and branching ratios between two- and three-body breakup are then analyzed and the results are compared with experiment to identify which ionization channels contribute to the TDCS observed in coincidence measurements of the ejected electrons. Office of Basic Energy Sciences, U.S. DOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Alfred; Bernhardt, Dietrich; Borovik, Alexander
Single, double, and triple photoionization of Ne + ions by single photons have been investigated at the synchrotron radiation source PETRA III in Hamburg, Germany. Absolute cross-sections were measured by employing the photon-ion merged-beams technique. Photon energies were between about 840 and 930 eV, covering the range from the lowest-energy resonances associated with the excitation of one single K-shell electron up to double excitations involving one K- and one L-shell electron, well beyond the K-shell ionization threshold. Also, photoionization of neutral Ne was investigated just below the K edge. The chosen photon energy bandwidths were between 32 and 500 meV,more » facilitating the determination of natural line widths. The uncertainty of the energy scale is estimated to be 0.2 eV. For comparison with existing theoretical calculations, astrophysically relevant photoabsorption cross-sections were inferred by summing the measured partial ionization channels. Discussion of the observed resonances in the different final ionization channels reveals the presence of complex Auger-decay mechanisms. The ejection of three electrons from the lowest K-shell-excited Ne + (1s2s 2p 6 2S 1/2) level, for example, requires cooperative interaction of at least four electrons.« less
Neumayer, Gernot; Helfricht, Angela; Shim, Su Yeon; Le, Hoa Thi; Lundin, Cecilia; Belzil, Camille; Chansard, Mathieu; Yu, Yaping; Lees-Miller, Susan P.; Gruss, Oliver J.; van Attikum, Haico; Helleday, Thomas; Nguyen, Minh Dang
2012-01-01
The microtubule-associated protein targeting protein for Xenopus kinesin-like protein 2 (TPX2) plays a key role in spindle assembly and is required for mitosis in human cells. In interphase, TPX2 is actively imported into the nucleus to prevent its premature activity in microtubule organization. To date, no function has been assigned to nuclear TPX2. We now report that TPX2 plays a role in the cellular response to DNA double strand breaks induced by ionizing radiation. Loss of TPX2 leads to inordinately strong and transient accumulation of ionizing radiation-dependent Ser-139-phosphorylated Histone 2AX (γ-H2AX) at G0 and G1 phases of the cell cycle. This is accompanied by the formation of increased numbers of high intensity γ-H2AX ionizing radiation-induced foci. Conversely, cells overexpressing TPX2 have reduced levels of γ-H2AX after ionizing radiation. Consistent with a role for TPX2 in the DNA damage response, we found that the protein accumulates at DNA double strand breaks and associates with the mediator of DNA damage checkpoint 1 (MDC1) and the ataxia telangiectasia mutated (ATM) kinase, both key regulators of γ-H2AX amplification. Pharmacologic inhibition or depletion of ATM or MDC1, but not of DNA-dependent protein kinase (DNA-PK), antagonizes the γ-H2AX phenotype caused by TPX2 depletion. Importantly, the regulation of γ-H2AX signals by TPX2 is not associated with apoptosis or the mitotic functions of TPX2. In sum, our study identifies a novel and the first nuclear function for TPX2 in the cellular responses to DNA damage. PMID:23045526
Near-K -edge single, double, and triple photoionization of C+ ions
NASA Astrophysics Data System (ADS)
Müller, A.; Borovik, A.; Buhr, T.; Hellhund, J.; Holste, K.; Kilcoyne, A. L. D.; Klumpp, S.; Martins, M.; Ricz, S.; Viefhaus, J.; Schippers, S.
2018-01-01
Single, double, and triple ionization of the C+ ion by a single photon have been investigated in the energy range 286 to 326 eV around the K -shell single-ionization threshold at an unprecedented level of detail. At energy resolutions as low as 12 meV, corresponding to a resolving power of 24 000, natural linewidths of the most prominent resonances could be determined. From the measurement of absolute cross sections, oscillator strengths, Einstein coefficients, multielectron Auger decay rates, and other transition parameters of the main K -shell excitation and decay processes are derived. The cross sections are compared to results of previous theoretical calculations. Mixed levels of agreement are found despite the relatively simple atomic structure of the C+ ion with only five electrons. This paper is a followup to a previous Letter [A. Müller et al., Phys. Rev. Lett. 114, 013002 (2015), 10.1103/PhysRevLett.114.013002].
Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair.
Sterpone, Silvia; Cozzi, Renata
2010-07-25
It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.
Monte Carlo event generators in atomic collisions: A new tool to tackle the few-body dynamics
NASA Astrophysics Data System (ADS)
Ciappina, M. F.; Kirchner, T.; Schulz, M.
2010-04-01
We present a set of routines to produce theoretical event files, for both single and double ionization of atoms by ion impact, based on a Monte Carlo event generator (MCEG) scheme. Such event files are the theoretical counterpart of the data obtained from a kinematically complete experiment; i.e. they contain the momentum components of all collision fragments for a large number of ionization events. Among the advantages of working with theoretical event files is the possibility to incorporate the conditions present in a real experiment, such as the uncertainties in the measured quantities. Additionally, by manipulating them it is possible to generate any type of cross sections, specially those that are usually too complicated to compute with conventional methods due to a lack of symmetry. Consequently, the numerical effort of such calculations is dramatically reduced. We show examples for both single and double ionization, with special emphasis on a new data analysis tool, called four-body Dalitz plots, developed very recently. Program summaryProgram title: MCEG Catalogue identifier: AEFV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2695 No. of bytes in distributed program, including test data, etc.: 18 501 Distribution format: tar.gz Programming language: FORTRAN 77 with parallelization directives using scripting Computer: Single machines using Linux and Linux servers/clusters (with cores with any clock speed, cache memory and bits in a word) Operating system: Linux (any version and flavor) and FORTRAN 77 compilers Has the code been vectorised or parallelized?: Yes RAM: 64-128 kBytes (the codes are very cpu intensive) Classification: 2.6 Nature of problem: The code deals with single and double ionization of atoms by ion impact. Conventional theoretical approaches aim at a direct calculation of the corresponding cross sections. This has the important shortcoming that it is difficult to account for the experimental conditions when comparing results to measured data. In contrast, the present code generates theoretical event files of the same type as are obtained in a real experiment. From these event files any type of cross sections can be easily extracted. The theoretical schemes are based on distorted wave formalisms for both processes of interest. Solution method: The codes employ a Monte Carlo Event Generator based on theoretical formalisms to generate event files for both single and double ionization. One of the main advantages of having access to theoretical event files is the possibility of adding the conditions present in real experiments (parameter uncertainties, environmental conditions, etc.) and to incorporate additional physics in the resulting event files (e.g. elastic scattering or other interactions absent in the underlying calculations). Additional comments: The computational time can be dramatically reduced if a large number of processors is used. Since the codes has no communication between processes it is possible to achieve an efficiency of a 100% (this number certainly will be penalized by the queuing waiting time). Running time: Times vary according to the process, single or double ionization, to be simulated, the number of processors and the type of theoretical model. The typical running time is between several hours and up to a few weeks.
Application of hollow anodes in a Hall thruster with double-peak magnetic fields
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Sun, Hezhi; Li, Peng; Wei, Liqiu; Su, Hongbo; Peng, Wuji; Li, Hong; Yu, Daren
2017-08-01
A low-power Hall thruster was designed with two permanent magnet rings. Unlike conventional Hall thrusters, this one has a symmetrical double-peak magnetic field with a larger gradient. Moreover, the highest magnetic field strength appears in the plume region; hence, the distance from the zero-magnetic region to the channel outlet is shorter than that of other Hall thrusters. This paper presents the law and mechanism of the effect of a U-shaped hollow anode with the front end in the zero-magnetic region and anodes at the first magnetic peak and zero-magnetic point (corresponding to the front and rear end faces of the U-shaped anode, respectively) on the discharge characteristics of the thruster. The study shows that the overall performance of the hollow anode under the same operating conditions is the highest. For the anode at the magnetic peak, although the ionization rate is the highest, most of the ions generated by ionization collide with the walls, causing greater energy loss and minimizing its performance. For the anode at the zero-magnetic point, although its maximum ionization rate is higher than that of the hollow anode, and the power deposition on the walls is slightly smaller, its propellant utilization and voltage utilization are lower than those of the hollow anode; furthermore, its overall performance is poorer than that of the hollow anode because of the short channel and shorter ionization region.
Raman-Scattering Line Profiles of the Symbiotic Star AG Peg
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Hyung, Siek
2017-06-01
The high dispersion Hα and Hβ line profiles of the Symbiotic star AG Peg consist of top double Gaussian and bottom components. We investigated the formation of the broad wings with Raman scattering mechanism. Adopting the same physical parameters from the photo-ionization study of Kim and Hyung (2008) for the white dwarf and the ionized gas shell, Monte Carlo simulations were carried out for a rotating accretion disk geometry of non-symmetrical latitude angles from -7° < θ < +7° to -16° < θ < +16°. The smaller latitude angle of the disk corresponds to the approaching side of the disk responsible for weak blue Gaussian profile, while the wider latitude angle corresponds to the other side of the disk responsible for the strong red Gaussian profile. We confirmed that the shell has the high gas density ˜ 109.85 cm-3 in the ionized zone of AG Peg derived in the previous photo-ionization model study. The simulation with various HI shell column densities (characterized by a thickness ΔD × gas number density nH) shows that the HI gas shell with a column density Hhi ≈ 3 - 5 × 1019 cm-2 fits the observed line profiles well. The estimated rotation speed of the accretion disk shell is in the range of 44 - 55 kms-1. We conclude that the kinematically incoherent structure involving the outflowing gas from the giant star caused an asymmetry of the disk and double Gaussian profiles found in AG Peg.
Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation
NASA Technical Reports Server (NTRS)
Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan
2002-01-01
Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Misra, D.; Tribedi, L. C.
2007-09-01
We study the various inelastic processes such ionization, fragmentation and evaporation of C60 molecule in collisions with fast heavy ions. We have used 2.33 MeV/u C, O and F projectile ion beams. Various ionization and fragmentation products were detected using time-of-flight mass spectrometer. The multiply charged C60r+ ions were detected for maximum r = 4. The projectile charge state (qp) dependence of the single and double ionization cross sections is well reproduced by a model based on the giant dipole plasmon resonance (GDPR). The qp-dependence of the fragmentation yields, was found to be linear. Variation of relative yields of the evaporation products of C602+ (i.e. C582+, C562+ etc) and C603+ (i.e. C583+, C563+ etc) with qp has also been investigated for various projectiles.
NASA Astrophysics Data System (ADS)
Sun, Anbang; Teunissen, Jannis; Ebert, Ute
2014-11-01
We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and \\text{O}2- ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from \\text{O}2- and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations.
Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; ...
2016-03-18
The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibilitymore » of the performance improvements with TMA, in this paper we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light with Xe and TMA mixture can be well characterized by ~3% fluorescence transfer from Xe to TMA, with further suppression due to TMA self-quenching. No evidence of the scintillation light produced by recombination of TMA ions was found. This strong suppression of scintillation light makes dark matter searches quite challenging, while the possibility of improved neutrinoless double beta decay searches remains open. Finally, this work has been carried out within the context of the NEXT collaboration.« less
The accuracy of seminumerical reionization models in comparison with radiative transfer simulations
NASA Astrophysics Data System (ADS)
Hutter, Anne
2018-06-01
We have developed a modular seminumerical code that computes the time and spatially dependent ionization of neutral hydrogen (H I), neutral (He I), and single-ionized helium (He II) in the intergalactic medium (IGM). The model accounts for recombinations and provides different descriptions for the photoionization rate that are used to calculate the residual H I fraction in ionized regions. We compare different seminumerical reionization schemes to a radiative transfer (RT) simulation. We use the RT simulation as a benchmark, and find that the seminumerical approaches produce similar H II and He II morphologies and power spectra of the H I 21 cm signal throughout reionization. As we do not track partial ionization of He II, the extent of the double-ionized helium (He III) regions is consistently smaller. In contrast to previous comparison projects, the ionizing emissivity in our seminumerical scheme is not adjusted to reproduce the redshift evolution of the RT simulation, but directly derived from the RT simulation spectra. Among schemes that identify the ionized regions by the ratio of the number of ionization and absorption events on different spatial smoothing scales, we find those that mark the entire sphere as ionized when the ionization criterion is fulfilled to result in significantly accelerated reionization compared to the RT simulation. Conversely, those that flag only the central cell as ionized yield very similar but slightly delayed redshift evolution of reionization, with up to 20 per cent ionizing photons lost. Despite the overall agreement with the RT simulation, our results suggest that constraining ionizing emissivity-sensitive parameters from seminumerical galaxy formation-reionization models are subject to photon nonconservation.
The accuracy of semi-numerical reionization models in comparison with radiative transfer simulations
NASA Astrophysics Data System (ADS)
Hutter, Anne
2018-03-01
We have developed a modular semi-numerical code that computes the time and spatially dependent ionization of neutral hydrogen (H I), neutral (He I) and singly ionized helium (He II) in the intergalactic medium (IGM). The model accounts for recombinations and provides different descriptions for the photoionization rate that are used to calculate the residual H I fraction in ionized regions. We compare different semi-numerical reionization schemes to a radiative transfer (RT) simulation. We use the RT simulation as a benchmark, and find that the semi-numerical approaches produce similar H II and He II morphologies and power spectra of the H I 21cm signal throughout reionization. As we do not track partial ionization of He II, the extent of the double ionized helium (He III) regions is consistently smaller. In contrast to previous comparison projects, the ionizing emissivity in our semi-numerical scheme is not adjusted to reproduce the redshift evolution of the RT simulation, but directly derived from the RT simulation spectra. Among schemes that identify the ionized regions by the ratio of the number of ionization and absorption events on different spatial smoothing scales, we find those that mark the entire sphere as ionized when the ionization criterion is fulfilled to result in significantly accelerated reionization compared to the RT simulation. Conversely, those that flag only the central cell as ionized yield very similar but slightly delayed redshift evolution of reionization, with up to 20% ionizing photons lost. Despite the overall agreement with the RT simulation, our results suggests that constraining ionizing emissivity sensitive parameters from semi-numerical galaxy formation-reionization models are subject to photon nonconservation.
Dissociative and double photoionization cross sections of NO from threshold to 120 A
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Masuoka, T.; Pareek, P. N.
1985-01-01
The partial photoionization cross sections for producing the NO(+) parent ion and the O(+), N(+), and NO(2+) fragmentations from neutral NO are presented from 120 to 614 A. The results indicate predissociation of the 3 pi (21.72 eV) and B-prime 1Sigma(+) (22.73 eV) electronic states of NO(+). The photoionization threshold for double ionization was found to be 39.4 + or - 0.12 eV.
Double Electron Processes in Collisions of Partially Stripped Ions Cq+(q = 1-4) with Helium
NASA Astrophysics Data System (ADS)
Ding, Bao-Wei; Chen, Xi-Meng; Yu, De-Yang; Fu, Hong-Bin; Liu, Zhao-Yuan; Sun, Guang-Zhi; Liu, Yu-Wen; Lu, Yan-Xia; Xie, Jiang-Shan; Du, Juan; Gao, Zhi-Min; Chen, Lin; Cui, Ying; Shao, Jian-Xiong; He, Zi-Feng; Cai, Xiao-Hong
2007-01-01
The multi-electron processes are investigated for 17.9-120 keV/u C1+, 30-323 keV/u C2+, 120-438 keV/u C3+, 287-480 keV/u C4+ incident on a helium target. The cross-section ratios of double electron (DE) process to the total of the single electron (SE) and the double electron process (i.e. SE+DE), the direct double electron (DDI) to the direct single ionization (DSI) as well as the contributions of DDI to DE and of TI to DE are measured using coincidence techniques. The energy and charge state dependences of the measured cross-section ratios are studied and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baalrud, S. D.; Lafleur, T.; Boswell, R. W.
Current-free double layers of the type reported in plasmas in the presence of an expanding magnetic field [C. Charles and R. W. Boswell, Appl. Phys. Lett. 82, 1356 (2003)] are modeled theoretically and with particle-in-cell/Monte Carlo simulations. Emphasis is placed on determining what mechanisms affect the electron velocity distribution function (EVDF) and how the EVDF influences the double layer. A theoretical model is developed based on depletion of electrons in certain velocity intervals due to wall losses and repletion of these intervals due to ionization and elastic electron scattering. This model is used to predict the range of neutral pressuresmore » over which a double layer can form and the electrostatic potential drop of the double layer. These predictions are shown to compare well with simulation results.« less
NASA Astrophysics Data System (ADS)
Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim
2017-10-01
Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Lawrence, Peter; Brenna, J Thomas
2006-02-15
Covalent adduct chemical ionization (CACI) using a product of acetonitrile self-reaction, (1-methyleneimino)-1-ethenylium (MIE; CH2=C=N+=CH2), has been investigated as a method for localizing double bonds in a series of 16 non-methylene-interrupted fatty acid methyl esters (NMI-FAME) of polyenes with three and more double bonds. As with polyunsaturated homoallylic (methylene-interrupted) FAME and conjugated dienes, MIE (m/z 54) reacts across double bonds to yield molecular ions 54 mass units above the parent analyte. [M + 54]+ ions of several 20- and 22-carbon FAME that include one double bond in the C2-C3 position separated by two to five methylene units from a three, four, or five C homoallylic system dissociated according to rules for the homoallylic system, with an additional fragment corresponding to cleavage between the lone double bond and the carboxyl group and defining the position of the lone double bond. Triene FAME with both methylene and ethylene interruption yielded characteristic fragments distinguishable from homoallylic trienes. Fragmentation of fully conjugated trienes in the MS-1 spectra yields ratios of [M + 54]+/[M + 54 - 32]+ (loss of methanol) near unity, which distinguishes them from homoallylic FAME having a ratio of 8 or more; collisionally activated dissociation of [M + 54]+ yields a series of ions, including some rearrangement products, indicative of double bond position. Unlike conjugated dienes, fully conjugated triene diagnostic ion signal ratios did not follow any pattern based on double bond geometry. Partially conjugated trienes behave similarly to monoenes and conjugated dienes, yielding [M + 54]+/[M + 54 - 32]+ of 2-3 and, permitting them to be assigned as partially conjugated FAME using the MS-1 spectrum. They yield unique MS/MS spectra with weaker but assignable fragment ions, along with a diagnostic fragment that locates the lone double bond and permits 6,10,12-octatrienoate to be distinguished from 6,8,12-octatrienoate. The presence of a triple bond did not affect fragment formation in a methylene-interrupted yne-ene but did change fragments in a conjugated yne-ene. These data extend the principle of double bond localization by acetonitrile CACI-MS/MS to double bond structure in complex FAME found in nature.
Ghostly Remnant of an Explosive Past
2007-03-07
This enhanced image from the far-ultraviolet detector on NASA Galaxy Evolution shows a ghostly shell of ionized gas around Z Camelopardalis, a binary, or double-star system featuring a collapsed, dead star known as a white dwarf, and a companion star.
Investigation of ionized metal flux in enhanced high power impulse magnetron sputtering discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stranak, Vitezslav, E-mail: stranak@prf.jcu.cz; Hubicka, Zdenek; Cada, Martin
2014-04-21
The metal ionized flux fraction and production of double charged metal ions Me{sup 2+} of different materials (Al, Cu, Fe, Ti) by High Power Impulse Magnetron Sputtering (HiPIMS) operated with and without a pre-ionization assistance is compared in the paper. The Electron Cyclotron Wave Resonance (ECWR) discharge was employed as the pre-ionization agent providing a seed of charge in the idle time of HiPIMS pulses. A modified grid-free biased quartz crystal microbalance was used to estimate the metal ionized flux fraction ξ. The energy-resolved mass spectrometry served as a complementary method to distinguish particular ion contributions to the total ionizedmore » flux onto the substrate. The ratio between densities of doubly Me{sup 2+} and singly Me{sup +} charged metal ions was determined. It is shown that ECWR assistance enhances Me{sup 2+} production with respect of absorbed rf-power. The ECWR discharge also increases the metal ionized flux fraction of about 30% especially in the region of lower pressures. Further, the suppression of the gas rarefaction effect due to enhanced secondary electron emission of Me{sup 2+} was observed.« less
The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures
NASA Astrophysics Data System (ADS)
Köhn, C.; Chanrion, O.; Neubert, T.
2017-01-01
Streamers are ionization filaments of electric gas discharges. Negative polarity streamers propagate primarily through electron impact ionization, whereas positive streamers in air develop through ionization of oxygen by UV photons emitted by excited nitrogen; however, experiments show that positive streamers may develop even for low oxygen concentrations. Here we explore if bremsstrahlung ionization facilitates positive streamer propagation. To discriminate between effects of UV and bremsstrahlung ionization, we simulate the formation of a double headed streamer at three different oxygen concentrations: no oxygen, 1 ppm O2 and 20% O2, as in air. At these oxygen levels, UV-relative to bremsstrahlung ionization is zero, small, and large. The simulations are conducted with a particle-in-cell code in a cylindrically symmetric configuration at ambient electric field magnitudes three times the conventional breakdown field. We find that bremsstrahlung induced ionization in air, contrary to expectations, reduces the propagation velocity of both positive and negative streamers by about 15%. At low oxygen levels, positive streamers stall; however, bremsstrahlung creates branching sub-streamers emerging from the streamer front that allow propagation of the streamer. Negative streamers propagate more readily forming branching sub-streamers. These results are in agreement with experiments. At both polarities, ionization patches are created ahead of the streamer front. Electrons with the highest energies are in the sub-streamer tips and the patches.
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Kaku, Masanori; Katto, Masahito; Kubodera, Shoichi
2007-10-01
We have demonstrated suppression of suprathermal ions from a colloidal microjet target plasma containing tin-dioxide (SnO2) nanoparticles irradiated by double laser pulses. We observed a significant decrease of the tin and oxygen ion signals in the charged-state-separated energy spectra when double laser pulses were irradiated. The peak energy of the singly ionized tin ions decreased from 9to3keV when a preplasma was produced. The decrease in the ion energy, considered as debris suppression, is attributed to the interaction between an expanding low-density preplasma and a main laser pulse.
Hertzog, Jasmine; Carré, Vincent; Le Brech, Yann; Mackay, Colin Logan; Dufour, Anthony; Mašek, Ondřej; Aubriet, Frédéric
2017-05-29
The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C x H y O z with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. Copyright © 2017 Elsevier B.V. All rights reserved.
Kuś, Tomasz; Krylov, Anna I
2011-08-28
The charge-stabilization method is applied to double ionization potential equation-of-motion (EOM-DIP) calculations to stabilize unstable dianion reference functions. The auto-ionizing character of the dianionic reference states spoils the numeric performance of EOM-DIP limiting applications of this method. We demonstrate that reliable excitation energies can be computed by EOM-DIP using a stabilized resonance wave function instead of the lowest energy solution corresponding to the neutral + free electron(s) state of the system. The details of charge-stabilization procedure are discussed and illustrated by examples. The choice of optimal stabilizing Coulomb potential, which is strong enough to stabilize the dianion reference, yet, minimally perturbs the target states of the neutral, is the crux of the approach. Two algorithms of choosing optimal parameters of the stabilization potential are presented. One is based on the orbital energies, and another--on the basis set dependence of the total Hartree-Fock energy of the reference. Our benchmark calculations of the singlet-triplet energy gaps in several diradicals show a remarkable improvement of the EOM-DIP accuracy in problematic cases. Overall, the excitation energies in diradicals computed using the stabilized EOM-DIP are within 0.2 eV from the reference EOM spin-flip values. © 2011 American Institute of Physics
Müller, Alfred; Bernhardt, Dietrich; Borovik, Alexander; ...
2017-02-17
Single, double, and triple photoionization of Ne + ions by single photons have been investigated at the synchrotron radiation source PETRA III in Hamburg, Germany. Absolute cross-sections were measured by employing the photon-ion merged-beams technique. Photon energies were between about 840 and 930 eV, covering the range from the lowest-energy resonances associated with the excitation of one single K-shell electron up to double excitations involving one K- and one L-shell electron, well beyond the K-shell ionization threshold. Also, photoionization of neutral Ne was investigated just below the K edge. The chosen photon energy bandwidths were between 32 and 500 meV,more » facilitating the determination of natural line widths. The uncertainty of the energy scale is estimated to be 0.2 eV. For comparison with existing theoretical calculations, astrophysically relevant photoabsorption cross-sections were inferred by summing the measured partial ionization channels. Discussion of the observed resonances in the different final ionization channels reveals the presence of complex Auger-decay mechanisms. The ejection of three electrons from the lowest K-shell-excited Ne + (1s2s 2p 6 2S 1/2) level, for example, requires cooperative interaction of at least four electrons.« less
Dissociative and double photoionization cross sections of NO from threshold to 120 A
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Masuoka, T.; Pareek, P. N.
1985-01-01
The partial photoionization cross sections for producing the NO(+) parent ion and the O(+), N(+), and NO2(+) fragment ions from neutral NO are presented from 120 to 614 A. The results indicate predissociation of the c(sup3) pi (21.72 eV) and B prime (sup 1) sigma (+) (22.73 eV) electronic states of NO(+). The photoionization threshold for double ionization was found to be 39.4 + or 0.12 eV.
Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan
2013-01-01
Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.
Rezaee, Mohammad; Sanche, Léon; Hunting, Darel J
2013-03-01
The synergistic interaction of cisplatin with ionizing radiation is the clinical rationale for the treatment of several cancers including head and neck, cervical and lung cancer. The underlying molecular mechanism of the synergy has not yet been identified, although both DNA damage and repair processes are likely involved. Here, we investigate the indirect effect of γ rays on strand break formation in a supercoiled plasmid DNA (pGEM-3Zf-) covalently modified by cisplatin. The yields of single- and double-strand breaks were determined by irradiation of DNA and cisplatin/DNA samples with (60)Co γ rays under four different scavenging conditions to examine the involvement of hydrated electrons and hydroxyl radicals in inducing the DNA damage. At 5 mM tris in an N2 atmosphere, the presence of an average of two cisplatins per plasmid increased the yields of single- and double-strand breaks by factors of 1.9 and 2.2, respectively, relative to the irradiated unmodified DNA samples. Given that each plasmid of 3,200 base pairs contained an average of two cisplatins, this represents an increase in radiosensitivity of 3,200-fold on a per base pair basis. When hydrated electrons were scavenged by saturating the samples with N2O, these enhancement factors decreased to 1.5 and 1.2, respectively, for single- and double-strand breaks. When hydroxyl radicals were scavenged using 200 mM tris, the respective enhancement factors were 1.2 and 1.6 for single- and double-strand breaks, respectively. Furthermore, no enhancement in DNA damage by cisplatin was observed after scavenging both hydroxyl radicals and hydrated electrons. These findings show that hydrated electrons can induce both single- and double-strand breaks in the platinated DNA, but not in unmodified DNA. In addition, cisplatin modification is clearly an extremely efficient means of increasing the formation of both single- and double-strand breaks by the hydrated electrons and hydroxyl radicals created by ionizing radiation.
Venkatesh, Priyanka; Panyutin, Irina V; Remeeva, Evgenia; Neumann, Ronald D; Panyutin, Igor G
2016-01-02
Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC.
NASA Astrophysics Data System (ADS)
Serov, Vladislav V.; Kheifets, A. S.
2014-12-01
We analyze a transfer ionization (TI) reaction in the fast proton-helium collision H++He →H0+He2 ++ e- by solving a time-dependent Schrödinger equation (TDSE) under the classical projectile motion approximation in one-dimensional kinematics. In addition, we construct various time-independent analogs of our model using lowest-order perturbation theory in the form of the Born series. By comparing various aspects of the TDSE and the Born series calculations, we conclude that the recent discrepancies of experimental and theoretical data may be attributed to deficiency of the Born models used by other authors. We demonstrate that the correct Born series for TI should include the momentum-space overlap between the double-ionization amplitude and the wave function of the transferred electron.
Density functional study of double ionization energies
NASA Astrophysics Data System (ADS)
Chong, D. P.
2008-02-01
In this paper, double ionization energies (DIEs) of gas-phase atoms and molecules are calculated by energy difference method with density functional theory. To determine the best functional for double ionization energies, we first study 24 main group atoms in the second, third, and fourth periods. An approximation is used in which the electron density is first obtained from a density functional computation with the exchange-correlation potential Vxc known as statistical average of orbital potentials, after which the energy is computed from that density with 59 different exchange-correlation energy functionals Exc. For the 24 atoms, the two best Exc functional providing DIEs with average absolute deviation (AAD) of only 0.25eV are the Perdew-Burke-Ernzerhof functional modified by Hammer et al. [Phys. Rev. B 59, 6413 (1999)] and one known as the Krieger-Chen-Iafrate-Savin functional modified by Krieger et al. (unpublished). Surprisingly, none of the 20 available hybrid functionals is among the top 15 functionals for the DIEs of the 24 atoms. A similar procedure is then applied to molecules, with opposite results: Only hybrid functionals are among the top 15 functionals for a selection of 29molecules. The best Exc functional for the 29molecules is found to be the Becke 1997 functional modified by Wilson et al. [J. Chem. Phys. 115, 9233 (2001)]. With that functional, the AAD from experiment for DIEs of 29molecules is just under 0.5eV. If the two suspected values for C2H2 and Fe(CO)5 are excluded, the AAD improves to 0.32eV. Many other hybrid functionals perform almost as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa; Grupe, Dirk
2015-02-10
Recent studies have suggested that the short-timescale (≲ 7 days) variability of the broad (∼10,000 km s{sup –1}) double-peaked Hα profile of the LINER nucleus of NGC 1097 could be driven by a variable X-ray emission from a central radiatively inefficient accretion flow. To test this scenario, we have monitored the NGC 1097 nucleus in X-ray and UV continuum with Swift and the Hα flux and profile in the optical spectrum using SOAR and Gemini-South from 2012 August to 2013 February. During the monitoring campaign, the Hα flux remained at a very low level—three times lower than the maximum flux observed in previousmore » campaigns and showing only limited (∼20%) variability. The X-ray variations were small, only ∼13% throughout the campaign, while the UV did not show significant variations. We concluded that the timescale of the Hα profile variation is close to the sampling interval of the optical observations, which results in only a marginal correlation between the X-ray and Hα fluxes. We have caught the active galaxy nucleus in NGC 1097 in a very low activity state, in which the ionizing source was very weak and capable of ionizing just the innermost part of the gas in the disk. Nonetheless, the data presented here still support the picture in which the gas that emits the broad double-peaked Balmer lines is illuminated/ionized by a source of high-energy photons which is located interior to the inner radius of the line-emitting part of the disk.« less
Single and Double Photoionization of Mg
NASA Astrophysics Data System (ADS)
Abdel-Naby, Shahin; Pindzola, M. S.; Colgan, J.
2014-05-01
Single and double photoionization cross sections for Mg are calculated using a time-dependent close-coupling method. The correlation between the two 3 s subshell electrons of Mg is obtained by relaxation of the close-coupled equations in imaginary time. An implicit method is used to propagate the close-coupled equations in real time to obtain single and double ionization cross sections for Mg. Energy and angle triple differential cross sections for double photoionization at equal energy sharing of E1 =E2 = 16 . 4 eV are compared with Elettra experiments and previous theoretical calculations. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California, NICS in Knoxville, Tennessee, and OLCF in Oak Ridge, Tennessee.
Mucke, M; Zhaunerchyk, V; Frasinski, L J; ...
2015-07-01
Few-photon ionization and relaxation processes in acetylene (C 2H 2) and ethane (C 2H 6) were investigated at the linac coherent light source x-ray free electron laser (FEL) at SLAC, Stanford using a highly efficient multi-particle correlation spectroscopy technique based on a magnetic bottle. The analysis method of covariance mapping has been applied and enhanced, allowing us to identify electron pairs associated with double core hole (DCH) production and competing multiple ionization processes including Auger decay sequences. The experimental technique and the analysis procedure are discussed in the light of earlier investigations of DCH studies carried out at the samemore » FEL and at third generation synchrotron radiation sources. In particular, we demonstrate the capability of the covariance mapping technique to disentangle the formation of molecular DCH states which is barely feasible with conventional electron spectroscopy methods.« less
Delta-doped hybrid advanced detector for low energy particle detection
NASA Technical Reports Server (NTRS)
Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)
2000-01-01
A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.
Delta-doped hybrid advanced detector for low energy particle detection
NASA Technical Reports Server (NTRS)
Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)
2002-01-01
A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.
Long-term biological effects induced by ionizing radiation--implications for dose mediated risk.
Miron, S D; Astărăstoae, V
2014-01-01
Ionizing radiations are considered to be risk agents that are responsible for the effects on interaction with living matter. The occurring biological effects are due to various factors such as: dose, type of radiation, exposure time, type of biological tissue, health condition and the age of the person exposed. The mechanisms involved in the direct modifications of nuclear DNA and mitochondrial DNA are reviewed. Classical target theory of energy deposition in the nucleus that causes DNA damages, in particular DNA double-strand breaks and that explanation of the biological consequences of ionizing radiation exposure is a paradigm in radiobiology. Recent experimental evidences have demonstrated the existence of a molecular mechanism that explains the non-targeted effects of ionizing radiation exposure. Among these novel data, genomic instability and a variety of bystander effects are discussed here. Those bystander effects of ionizing radiation are fulfilled by cellular communication systems that give rise to non-targeted effects in the neighboring non irradiated cells. This paper provides also a commentary on the synergistic effects induced by the co-exposures to ionizing radiation and various physical agents such as electromagnetic fields and the co-exposures to ionizing radiation and chemical environmental contaminants such as metals. The biological effects of multiple stressors on genomic instability and bystander effects are also discussed. Moreover, a brief presentation of the methods used to characterize cyto- and genotoxic damages is offered.
Double photoionization of Be-like (Be-F5+) ions
NASA Astrophysics Data System (ADS)
Abdel Naby, Shahin; Pindzola, Michael; Colgan, James
2015-04-01
The time-dependent close-coupling method is used to study the single photon double ionization of Be-like (Be - F5+) ions. Energy and angle differential cross sections are calculated to fully investigate the correlated motion of the two photoelectrons. Symmetric and antisymmetric amplitudes are presented along the isoelectronic sequence for different energy sharing of the emitted electrons. Our total double photoionization cross sections are in good agreement with available theoretical results and experimental measurements along the Be-like ions. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.
Thurman, E.M.; Ferrer, I.
2002-01-01
The formation of metal ion adducts in liquid chromatography/mass spectrometry positive-ion electrospray analysis of pharmaceuticals and pesticides was investigated. The evidence of surface-catalyzed ionization in the electrospray analysis was also studied. Both positive and negative ion mass spectrometry were used for the analysis of the products. It was found that the sodium adducts formed in the analysis included single, double, and triple sodium adducts. Adduction was found to occur by attachment of the metal ion to carboxyl, carbonyl and aromatic pi electrons of the molecule.
NASA Technical Reports Server (NTRS)
Temkin, A.; Bhatia, A. K.
1988-01-01
A very sensitive test of the electron-atom ionization threshold law is suggested: for spin-aligned heavy negative ions it consists of measuring the polarization asymmetry A(PA) coming from double detachment by left- versus right-circularly polarized light. The respective yields are worked out for the Te(-) (5p)5 2P(3/2) ion. The Coulomb-dipole theory predicts A(PA) to be the ratio of two oscillating functions in sharp contrast to any power law (specifically that of Wannier, 1953) for which the ratio is expected to be a smooth function of energy.
Problems in mechanistic theoretical models for cell transformation by ionizing radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, A.; Holley, W.R.
1991-10-01
A mechanistic model based on yields of double strand breaks has been developed to determine the dose response curves for cell transformation frequencies. At its present stage the model is applicable to immortal cell lines and to various qualities (X-rays, Neon and Iron) of ionizing radiation. Presently, we have considered four types of processes which can lead to activation phenomena: (1) point mutation events on a regulatory segment of selected oncogenes, (2) inactivation of suppressor genes, through point mutation, (3) deletion of a suppressor gene by a single track, and (4) deletion of a suppressor gene by two tracks.
(e,2e) and (Î3,2e) Processes: Open and Closed Questions
NASA Astrophysics Data System (ADS)
An important breakthrough has been achieved recently in the description of (e,2e) and (Î3,2e) processes with the development of new ab-initio theories: the external complex scaling theory (ECS), the time dependent close coupling theory (TDCC), and the hyperspherical R-matrix theory with semiclassical outgoing waves (HRM-SOW). The principles of these various theories are summarized, their relations are considered, and their achievements are discussed with respect to the available experimental data regarding electron impact ionization of H and photo double ionization of He. Possible directions for future work are outlined.
Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion
NASA Astrophysics Data System (ADS)
Li, Zheng; Vendrell, Oriol; Santra, Robin
2015-10-01
We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K -shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.
Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion.
Li, Zheng; Vendrell, Oriol; Santra, Robin
2015-10-02
We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.
NASA Astrophysics Data System (ADS)
Bueno, M.; Schulte, R.; Meylan, S.; Villagrasa, C.
2015-11-01
The aim of this study was to evaluate the influence of the geometrical detail of the DNA on nanodosimetric parameters of track structure induced by protons and alpha particles of different energies (LET values ranging from 1 to 162.5~\\text{keV}~μ {{\\text{m}}-1} ) as calculated by Geant4-DNA Monte Carlo simulations. The first geometry considered consisted of a well-structured placement of a realistic description of the DNA double helix wrapped around cylindrical histones (GeomHist) forming a 18 kbp-long chromatin fiber. In the second geometry considered, the DNA was modeled as a total of 1800 ten bp-long homogeneous cylinders (2.3 nm diameter and 3.4 nm height) placed in random positions and orientations (GeomCyl). As for GeomHist, GeomCyl contained a DNA material equivalent to 18 kbp. Geant4-DNA track structure simulations were performed and ionizations were counted in the scoring volumes. For GeomCyl, clusters were defined as the number of ionizations (ν) scored in each 10 bp-long cylinder. For GeomHist, clusters of ionizations scored in the sugar-phosphate groups of the double-helix were revealed by the DBSCAN clustering algorithm according to a proximity criteria among ionizations separated by less than 10 bp. The topology of the ionization clusters formed using GeomHist and GeomCyl geometries were compared in terms of biologically relevant nanodosimetric quantities. The discontinuous modeling of the DNA for GeomCyl led to smaller cluster sizes than for GeomHist. The continuous modeling of the DNA molecule for GeomHist allowed the merging of ionization points by the DBSCAN algorithm giving rise to larger clusters, which were not detectable within the GeomCyl geometry. Mean cluster size (m1) was found to be of the order of 10% higher for GeomHist compared to GeomCyl for LET <15~\\text{keV}~μ {{\\text{m}}-1} . For higher LETs, the difference increased with LET similarly for protons and alpha particles. Both geometries showed the same relationship between m1 and the cumulative relative frequency of clusters with ν ≥slant 3 (f3) within statistical variations, independently of particle type. In order to obtain ionization cluster size distributions relevant for biological DNA lesions, the complex DNA geometry and a scoring method without fixed boundaries should be preferred to the simple cylindrical geometry with a fixed scoring volume.
Double Photoionization of excited Lithium and Beryllium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.
2010-05-20
We present total, energy-sharing and triple differential cross sections for one-photon, double ionization of lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic orbital/ numerical grid method based on the finite-element discrete-variable representation and exterior complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for ground-state and excited helium, serve to highlight important selection rules and show some interesting effects that relate to differences between inter- and intra-shell electron correlation.
Dissociative and double photoionization of CO from threshold to 90 A
NASA Technical Reports Server (NTRS)
Masuoka, T.; Samson, J. A. R.
1981-01-01
Partial cross sections for molecular photoionization (CO(+)), dissociative photoionization (C(+) and O(+)), and dissociative double photoionization (C(2+)) in CO have been measured from their thresholds to 90 A using techniques of mass spectrometry. The results are compared with data reported previously. Several peaks observed in the cross section curves for dissociated fragments are tentatively assigned by comparing with those in the photoelectron spectra reported for CO. It is concluded that the shoulder in the total absorption cross section curve between 400 and 90 A results solely from the dissociative ionization processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devereux, Nick, E-mail: devereux@erau.edu
Dual epoch spectroscopy of the lenticular galaxy, NGC 4203, obtained with the Hubble Space Telescope has revealed that the double-peaked component of the broad H{alpha} emission line is time variable, increasing by a factor of 2.2 in brightness between 1999 and 2010. Modeling the gas distribution responsible for the double-peaked profiles indicates that a ring is a more appropriate description than a disk and most likely represents the contrail of a red supergiant star that is being tidally disrupted at a distance of {approx}1500 AU from the central black hole. There is also a bright core of broad H{alpha} linemore » emission that is not time variable and identified with a large-scale inflow from an outer radius of {approx}1 pc. If the gas number density is {>=}10{sup 6} cm{sup -3}, as suggested by the absence of similarly broad [O I] and [O III] emission lines, then the steady state inflow rate is {approx} 2 Multiplication-Sign 10{sup -2} M{sub Sun} yr{sup -1}, which exceeds the inflow requirement to explain the X-ray luminosity in terms of radiatively inefficient accretion by a factor of {approx}6. The central active galactic nucleus (AGN) is unable to sustain ionization of the broad-line region; the discrepancy is particularly acute in 2010 when the broad H{alpha} emission line is dominated by the contrail of the infalling supergiant star. However, ram pressure shock ionization produced by the interaction of the infalling supergiant with the ambient interstellar medium may help alleviate the ionizing deficit by generating a mechanical source of ionization supplementing the photoionization provided by the AGN.« less
Repeated Nrf2 stimulation using sulforaphane protects fibroblasts from ionizing radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, Sherin T.; Bergström, Petra; Hammarsten, Ola, E-mail: ola.hammarsten@clinchem.gu.se
2014-05-01
Most of the cytotoxicity induced by ionizing radiation is mediated by radical-induced DNA double-strand breaks. Cellular protection from free radicals can be stimulated several fold by sulforaphane-mediated activation of the transcription factor Nrf2 that regulates more than 50 genes involved in the detoxification of reactive substances and radicals. Here, we report that repeated sulforaphane treatment increases radioresistance in primary human skin fibroblasts. Cells were either treated with sulforaphane for four hours once or with four-hour treatments repeatedly for three consecutive days prior to radiation exposure. Fibroblasts exposed to repeated-sulforaphane treatment showed a more pronounced dose-dependent induction of Nrf2-regulated mRNA andmore » reduced amount of radiation-induced free radicals compared with cells treated once with sulforaphane. In addition, radiation- induced DNA double-strand breaks measured by gamma-H2AX foci were attenuated following repeated sulforaphane treatment. As a result, cellular protection from ionizing radiation measured by the 5-ethynyl-2′-deoxyuridine (EdU) assay was increased, specifically in cells exposed to repeated sulforaphane treatment. Sulforaphane treatment was unable to protect Nrf2 knockout mouse embryonic fibroblasts, indicating that the sulforaphane-induced radioprotection was Nrf2-dependent. Moreover, radioprotection by repeated sulforaphane treatment was dose-dependent with an optimal effect at 10 uM, whereas both lower and higher concentrations resulted in lower levels of radioprotection. Our data indicate that the Nrf2 system can be trained to provide further protection from radical damage. - Highlights: • Repeated treatment with sulforaphane protects fibroblasts from ionizing radiation • Repeated sulforaphane treatment attenuates radiation induced ROS and DNA damage • Sulforaphane mediated protection is Nrf2 dependent.« less
Le, Wei; Qi, Lixin; Li, Jiaxuan; Wu, DengIong; Xu, Jun; Zhang, Jinfu
2016-01-01
The present study aims to examine the effect of low-dose ionizing irradiation on DNA double strand breaks (DSB) in mouse spermatogonial stem cells (SSCs) and reveal the underlying pathways for the DNA repair for DSB in SSCs. Eighteen one-month-old mice were divided into 6 groups and sacrificed separately at 45 minutes, 2 hours, 24 hours, 48 hours, and 72 hours after 0.1Gy X-ray irradiation (mice without receiving ionizing irradiation served as control). After perfusion fixation, testes were removed, sectioned, and followed by staining of γH2AX, 53BP1, Caspase 3, and promyelocytic leukemia zinc-finger (PLZF) for analysis among the different groups. The staining was observed by immunofluorescence visualized by confocal laser scanning. After low-dose irradiation, only 53BP1, but not Caspase3 or γH2AX was upregulated in PLZF positive SSCs within 45 minutes. The expression level of 53BP1 gradually decreased 24 hours after irradiation. Moreover, low-dose irradiation had no effect on the cell number and apoptotic status of SSCs. However other spermatogenic cells highly expressed γH2AX shortly after irradiation which was dramatically reduced following the events of DNA repair. It appears that low-dose ionizing irradiation may cause the DNA DSB of mouse spermatogenic cells. 53BP1, but not γH2AX, is involved in the DNA repair for DSB in SSCs. Our data indicates that 53BP1 plays an important role in the pathophysiological repair of DNA DSB in SSCs. This may open a new avenue to understanding the mechanisms of DNA repair of SSCs and male infertility.
NASA Astrophysics Data System (ADS)
Mann, J. L.; Kelly, W. R.
2006-05-01
A new analytical technique for the determination of δ34S will be described. The technique is based on the production of singularly charged arsenic sulfide molecular ions (AsS+) by thermal ionization using silica gel as an emitter and combines multiple-collector thermal ionization mass spectrometry (MC-TIMS) with a 33S/36S double spike to correct instrumental fractionation. Because the double spike is added to the sample before chemical processing, both the isotopic composition and sulfur concentration are measured simultaneously. The accuracy and precision of the double spike technique is comparable to or better than modern gas source mass spectrometry, but requires about a factor of 10 less sample. Δ33S effects can be determined directly in an unspiked sample without any assumptions about the value of k (mass dependent fractionation factor) which is currently required by gas source mass spectrometry. Three international sulfur standards (IAEA-S-1, IAEA-S-2, and IAEA-S-3) were measured to evaluate the precision and accuracy of the new technique and to evaluate the consensus values for these standards. Two different double spike preparations were used. The δ34S values (reported relative to Vienna Canyon Diablo Troilite (VCDT), (δ34S (‰) = 34S/32S)sample/(34S/32S)VCDT - 1) x 1000]), 34S/32SVCDT = 0.0441626) determined were -0.32‰ ± 0.04‰ (1σ, n=4) and -0.31‰ ± 0.13‰ (1σ, n=8) for IAEA-S-1, 22.65‰ ± 0.04‰ (1σ, n=7) and 22.60‰ ± 0.06‰ (1σ, n=5) for IAEA- S-2, and -32.47‰ ± 0.07‰ (1σ, n=8) for IAEA-S-3. The amount of natural sample used for these analyses ranged from 0.40 μmoles to 2.35 μmoles. Each standard showed less than 0.5‰ variability (IAEA-S-1 < 0.4‰, IAEA-S-2 < 0.2‰, and IAEA-S-3 < 0.2‰). Our values for S-1 and S-2 are in excellent agreement with the consensus values and the values reported by other laboratories using both SF6 and SO2. Our value for S-3 differs statistically from the Institute for Reference Materials and Measurement (IRMM) value and is slightly lower than the currently accepted consensus value (-32.3). Because the technique is based on thermal ionization of AsS+, and As is mononuclidic, corrections for interferences or for scale contraction/expansion are not required. The availability of MC-TIMS instruments in laboratories around the world makes this technique immediately available to a much larger scientific community who require highly accurate and precise measurements of sulfur.
Wang, Yan; Xu, Chang; Du, Li Qing; Cao, Jia; Liu, Jian Xiang; Su, Xu; Zhao, Hui; Fan, Fei-Yue; Wang, Bing; Katsube, Takanori; Fan, Sai Jun; Liu, Qiang
2013-01-01
Dose- and time-response curves were combined to assess the potential of the comet assay in radiation biodosimetry. The neutral comet assay was used to detect DNA double-strand breaks in lymphocytes caused by γ-ray irradiation. A clear dose-response relationship with DNA double-strand breaks using the comet assay was found at different times after irradiation (p < 0.001). A time-response relationship was also found within 72 h after irradiation (p < 0.001). The curves for DNA double-strand breaks and DNA repair in vitro of human lymphocytes presented a nice model, and a smooth, three-dimensional plane model was obtained when the two curves were combined. PMID:24240807
Jette, Nicholas; Lees-Miller, Susan P.
2015-01-01
The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082
Double differential cross sections of ethane molecule
NASA Astrophysics Data System (ADS)
Kumar, Rajeev
2018-05-01
Partial and total double differential cross sections corresponding to various cations C2H6+, C2H4+, C2H5+, C2H3+, C2H2+, CH3+, H+, CH2+, C2H+, H2+, CH+, H3+, C2+ and C+ produced during the direct and dissociative electron ionization of Ethane (C2H6) molecule have been calculated at fixed impinging electron energies 200 and 500eV by using modified Jain-Khare semi empirical approach. The calculation for double differential cross sections is made as a function of energy loss suffered by primary electron and angle of incident. To the best of my knowledge no other data is available for the comparison.
Investigation of critical parameters controlling the efficiency of associative ionization
NASA Astrophysics Data System (ADS)
Le Padellec, A.; Launoy, T.; Dochain, A.; Urbain, X.
2017-05-01
This paper compiles our merged-beam experimental findings for the associative ionization (AI) process from charged reactants, with the aim of guiding future investigations with e.g. the double electrostatic ion storage ring DESIREE in Stockholm. A reinvestigation of the isotopic effect in H-(D-) + He+ collisions is presented, along with a review of {{{H}}}3+ and NO+ production by AI involving ion pairs or excited neutrals, and put in perspective with the mutual neutralization and radiative association reactions. Critical parameters are identified and evaluated for their systematic role in controlling the magnitude of the cross section: isotopic substitution, exothermicity, electronic state density, and spin statistics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.
The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in 76Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidatemore » events have been found in 285 days of data taking. As a result, new direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e/1000.« less
NASA Astrophysics Data System (ADS)
Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Barton, C. J.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Hehn, L.; Henning, R.; Hoppe, E. W.; Howe, M. A.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Myslik, J.; O'Shaughnessy, C.; Othman, G.; Pettus, W.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Ruof, N. W.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Varner, R. L.; Vasilyev, S.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.; Majorana Collaboration
2018-05-01
The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in 76Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidate events have been found in 285 days of data taking. New direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e /1000 .
Effects of stellar evolution and ionizing radiation on the environments of massive stars
NASA Astrophysics Data System (ADS)
Mackey, J.; Langer, N.; Mohamed, S.; Gvaramadze, V. V.; Neilson, H. R.; Meyer, D. M.-A.
2014-09-01
We discuss two important effects for the astrospheres of runaway stars: the propagation of ionizing photons far beyond the astropause, and the rapid evolution of massive stars (and their winds) near the end of their lives. Hot stars emit ionizing photons with associated photoheating that has a significant dynamical effect on their surroundings. 3-D simulations show that H ii regions around runaway O stars drive expanding conical shells and leave underdense wakes in the medium they pass through. For late O stars this feedback to the interstellar medium is more important than that from stellar winds. Late in life, O stars evolve to cool red supergiants more rapidly than their environment can react, producing transient circumstellar structures such as double bow shocks. This provides an explanation for the bow shock and linear bar-shaped structure observed around Betelgeuse.
Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.; ...
2018-05-25
The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in 76Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidatemore » events have been found in 285 days of data taking. As a result, new direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e/1000.« less
Optical and mechanical tolerances in hybrid concentrated thermal-PV solar trough.
Diaz, Liliana Ruiz; Cocilovo, Byron; Miles, Alexander; Pan, Wei; Blanche, Pierre-Alexandre; Norwood, Robert A
2018-05-14
Hybrid thermal-PV solar trough collectors combine concentrated photovoltaics and concentrated solar power technology to harvest and store solar energy. In this work, the optical and mechanical requirements for optimal efficiency are analyzed using non-sequential ray tracing techniques. The results are used to generate opto-mechanical tolerances that can be compared to those of traditional solar collectors. We also explore ideas on how to relieve tracking tolerances for single-axis solar collectors. The objective is to establish a basis for tolerances required for the fabrication and manufacturing of hybrid solar trough collectors.
Thermal and ghost reflection modeling for a 180-deg. field-of-view long-wave infrared lens
NASA Astrophysics Data System (ADS)
Shi, Weimin; Couture, Michael E.
2001-03-01
Optics 1, Inc. has successfully designed and developed a 180 degree(s) field of view long wave infrared lens for USAF/AFRL under SBIR phase I and II funded projects in support of the multi-national Programmable Integrated Ordinance Suite (PIOS) program. In this paper, a procedure is presented on how to evaluate image degradation caused by asymmetric aerodynamic dome heating. In addition, a thermal gradient model is proposed to evaluate degradation caused by axial temperature gradient throughout the entire PIOS lens. Finally, a ghost reflection analysis is demonstrated with non-sequential model.
Electron-impact Ionization of P-like Ions Forming Si-like Ions
NASA Astrophysics Data System (ADS)
Kwon, D.-H.; Savin, D. W.
2014-03-01
We have calculated electron-impact ionization (EII) for P-like systems from P to Zn15 + forming Si-like ions. The work was performed using the flexible atomic code (FAC) which is based on a distorted-wave approximation. All 3l → nl' (n = 3-35) excitation-autoionization (EA) channels near the 3p direct ionization threshold and 2l → nl' (n = 3-10) EA channels at the higher energies are included. Close attention has been paid to the detailed branching ratios. Our calculated total EII cross sections are compared both with previous FAC calculations, which omitted many of these EA channels, and with the available experimental results. Moreover, for Fe11 +, we find that part of the remaining discrepancies between our calculations and recent measurements can be accounted for by the inclusion of the resonant excitation double autoionization process. Lastly, at the temperatures where each ion is predicted to peak in abundances in collisional ionization equilibrium, the Maxwellian rate coefficients derived from our calculations differ by 50%-7% from the previous FAC rate coefficients, with the difference decreasing with increasing charge.
NASA Astrophysics Data System (ADS)
Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu
2017-12-01
Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS.
The use of lithiated adducts for structural analysis of acylglycerols by MS-ESI
USDA-ARS?s Scientific Manuscript database
Electrospray ionization mass spectrometry (ESI-MS) using lithium adducts is the method of choice for the analysis of acyglycerols. The method can be used for the identification of the structures of fatty acid constituents, including the number and location of double bonds and hydroxyl groups. The me...
Weber, Thorsten; Foucar, Lutz; Jahnke, Till; ...
2017-07-07
In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less
Clustered DNA damages induced by high and low LET radiation, including heavy ions
NASA Technical Reports Server (NTRS)
Sutherland, B. M.; Bennett, P. V.; Schenk, H.; Sidorkina, O.; Laval, J.; Trunk, J.; Monteleone, D.; Sutherland, J.; Lowenstein, D. I. (Principal Investigator)
2001-01-01
Clustered DNA damages--here defined as two or more lesions (strand breaks, oxidized purines, oxidized pyrimidines or abasic sites) within a few helical turns--have been postulated as difficult to repair accurately, and thus highly significant biological lesions. Further, attempted repair of clusters may produce double strand breaks (DSBs). However, until recently, there was no way to measure ionizing radiation-induced clustered damages, except DSB. We recently described an approach for measuring classes of clustered damages (oxidized purine clusters, oxidized pyrimidine clusters, abasic clusters, along with DSB). We showed that ionizing radiation (gamma rays and Fe ions, 1 GeV/amu) does induce such clusters in genomic DNA in solution and in human cells. These studies also showed that each damage cluster results from one radiation hit (and its track), thus indicating that they can be induced by very low doses of radiation, i.e. two independent hits are not required for cluster induction. Further, among all complex damages, double strand breaks comprise--at most-- 20%, with the other clustered damages being at least 80%.
Ultrafast electronic dynamics driven by nuclear motion
NASA Astrophysics Data System (ADS)
Vendrell, Oriol
2016-05-01
The transfer of electrical charge on a microscopic scale plays a fundamental role in chemistry, in biology, and in technological applications. In this contribution, we will discuss situations in which nuclear motion plays a central role in driving the electronic dynamics of photo-excited or photo-ionized molecular systems. In particular, we will explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we will illustrate how the double hole can be transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. We thank the Hamburg Centre for Ultrafast Imaging and the Volkswagen Foundation for financial support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Thorsten; Foucar, Lutz; Jahnke, Till
In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less
Lísa, Miroslav; Holcapek, Michal
2008-07-11
Optimized non-aqueous reversed-phase high-performance liquid chromatography method using acetonitrile-2-propanol gradient elution and the column coupling in the total length of 45 cm has been applied for the high resolution separation of plant oils important in food industry, dietetics and cosmetics. Positive-ion atmospheric pressure chemical ionization mass spectrometry is used for the unambiguous identification and also the reliable quantitation with the response factors approach. Based on the precise determination of individual triacyglycerol concentrations, the calculation of average parameters important in the nutrition is performed, i.e. average carbon number, average double bond number, relative concentrations of essential, saturated, monounsaturated and polyunsaturated fatty acids. Results are reported in the form of both chromatographic fingerprints and tables containing relative concentrations for all triacylglycerols and fatty acids in individual samples. In total, 264 triacylglycerols consisting of 28 fatty acids with the alkyl chain length from 6 to 26 carbon atoms and 0 to 4 double bonds have been identified in 26 industrial important plant oils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, G. G.; Ye, D. F.; Graduate School, China Academy of Engineering Physics, Beijing 100088
2010-12-15
In the present paper, we investigate the correlated electron emission of atoms irradiated by a few-cycle laser pulse, with emphasis on the correlated longitudinal momentum spectra. We find that the spectra show clear v-shaped structures, in analogy to what was observed recently in long-pulse experiments. Moreover, the patterns of the spectra depend sensitively on the carrier-envelope phase as well as the laser intensity. The v-shaped structure is more pronounced at lower and higher intensities and becomes obscure at medium intensity. At a lower intensity, upon change of the phase from 0 to {pi}/2, the v-shaped structure shifts from the firstmore » quadrant to the third quadrant and the ratios between the double ionization yields in the first and third quadrants are found to increase by a few orders of magnitude. The semiclassical rescattering model is exploited in the preceding calculations and the underlying mechanisms are uncovered by analyzing the subcycle dynamics of classical trajectories.« less
Piechura, Joseph R.; Tseng, Tzu-Ling; Hsu, Hsin-Fang; Byrne, Rose T.; Windgassen, Tricia A.; Chitteni-Pattu, Sindhu; Battista, John R.; Li, Hung-Wen; Cox, Michael M.
2015-01-01
Among strains of Escherichia coli that have evolved to survive extreme exposure to ionizing radiation, mutations in the recA gene are prominent and contribute substantially to the acquired phenotype. Changes at amino acid residue 276, D276A and D276N, occur repeatedly and in separate evolved populations. RecA D276A and RecA D276N exhibit unique adaptations to an environment that can require the repair of hundreds of double strand breaks. These two RecA protein variants (a) exhibit a faster rate of filament nucleation on DNA, as well as a slower extension under at least some conditions, leading potentially to a distribution of the protein among a higher number of shorter filaments, (b) promote DNA strand exchange more efficiently in the context of a shorter filament, and (c) are markedly less inhibited by ADP. These adaptations potentially allow RecA protein to address larger numbers of double strand DNA breaks in an environment where ADP concentrations are higher due to a compromised cellular metabolism. PMID:25559557
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doughty, Benjamin; Haber, Louis H.; Leone, Stephen R.
2011-10-15
Pump-probe photoelectron velocity-map imaging, using 27-eV high-harmonic excitation and 786-nm ionization, is used to resolve overlapping autoionizing resonances in atomic krypton, obtaining two-photon photoelectron angular distributions (PADs) for singly and doubly excited states. Two features in the photoelectron spectrum are assigned to singly excited 4s{sup 1}4p{sup 6}np{sup 1} (n = 7,8) configurations and four features provide information about double excitation configurations. The anisotropy parameters for the singly excited 7p configuration are measured to be {beta}{sub 2} = 1.61 {+-} 0.06 and {beta}{sub 4} = 1.54 {+-} 0.16 while the 8p configuration gives {beta}{sub 2} = 1.23 {+-} 0.19 and {beta}{submore » 4} = 0.60 {+-} 0.15. These anisotropies most likely represent the sum of overlapping PADs from states of singlet and triplet spin multiplicities. Of the four bands corresponding to ionization of doubly excited states, two are assigned to 4s{sup 2}4p{sup 4}5s{sup 1}6p{sup 1} configurations that are probed to different J-split ion states. The two remaining doubly excited states are attributed to a previously observed, but unassigned, resonance in the vacuum-ultraviolet photoabsorption spectrum. The PADs from each of the double excitation states are also influenced by overlap from neighboring states that are not completely spectrally resolved. The anisotropies of the observed double excitation states are reported, anticipating future theoretical and experimental work to separate the overlapping PADs into the state resolved PADs. The results can be used to test theories of excited state ionization.« less
Transition from moving to stationary double layers in a single-ended Q machine
NASA Technical Reports Server (NTRS)
Song, Bin; Merlino, R. L.; D'Angelo, N.
1990-01-01
Large-amplitude (less than about 100 percent) relaxation oscillations in the plasma potential are known to be generated when the cold endplate of a single-ended Q machine is biased positively. These oscillations are associated with double layers that form near the hot plate (plasma source) and travel toward the endplate at about the ion-acoustic velocity. At the endplate they dissolve and then form again near the hot plate, the entire process repeating itself in a regular manner. By admitting a sufficient amount of neutral gas into the system, the moving double layers were slowed down and eventually stopped. The production of stationary double layers requires an ion source on the high-potential side of the double layers. These ions are provided by ionization of the neutral gas by electrons that are accelerated through the double layer. The dependence of the critical neutral gas pressure required for stationary double-layer formation on endplate voltage, magnetic field strength, and neutral atom mass has been examined. These results are discussed in terms of a simple model of ion production and loss, including ion losses across the magnetic field.
NASA Astrophysics Data System (ADS)
Belkic, Dzevad
Inelastic collisions between bare nuclei and hydrogen-like atomic systems are characterized by three main channels: electron capture, excitation, and ionization. Capture dominates at lower energies, whereas excitation and ionization prevail at higher impact energies. At intermediate energies and in the region of resonant scattering near the Massey peak, all three channels become competitive. For dressed or clothed nuclei possessing electrons, such as hydrogen-like ions, several additional channels open up, including electron loss (projectile ionization or stripping). The most important aspect of electron loss is the competition between one- and two-electron processes. Here, in a typical one-electron process, the projectile emits an electron, whereas the target final and initial states are the same. A prototype of double-electron transitions in loss processes is projectile ionization accompanied with an alteration of the target state. In such a two-electron process, the target could be excited or ionized. The relative importance of these loss channels with single- and double-electron transitions involving collisions of dressed projectiles with atomic systems is also strongly dependent on the value of the impact energy. Moreover, impact energies determine which theoretical method is likely to be more appropriate to use for predictions of cross sections. At low energies, an expansion of total scattering wave functions in terms of molecular orbitals is adequate. This is because the projectile spends considerable time in the vicinity of the target, and as a result, a compound system comprised of the projectile and the target can be formed in a metastable molecular state which is prone to decay. At high energies, a perturbation series expansion is more appropriate in terms of powers of interaction potentials. In the intermediate energy region, atomic orbitals are often used with success while expanding the total scattering wave functions. The present work is focused on quantum mechanical perturbation theories applied to electron loss collisions involving two hydrogen-like atoms. Both the one- and two-electron transitions (target unaffected by collision, as well as loss-ionization) are thoroughly examined in various intervals of impact energies varying from the threshold via the Massey peak to the Bethe asymptotic region. Systematics are established for the fast, simple, and accurate computations of cross sections for loss-excitation and loss-ionization accounting for the entire spectra of all four particles, including two free electrons and two free protons. The expounded algorithmic strategy of quantum mechanical methodologies is of great importance for wide applications to particle transport physics, especially in fusion research and hadron radiotherapy. This should advantageously replace the current overwhelming tendency in these fields for using phenomenological modeling with artificial functions extracted from fitting the existing experimental/theoretical data bases for cross sections.
Repeated Nrf2 stimulation using sulforaphane protects fibroblasts from ionizing radiation.
Mathew, Sherin T; Bergström, Petra; Hammarsten, Ola
2014-05-01
Most of the cytotoxicity induced by ionizing radiation is mediated by radical-induced DNA double-strand breaks. Cellular protection from free radicals can be stimulated several fold by sulforaphane-mediated activation of the transcription factor Nrf2 that regulates more than 50 genes involved in the detoxification of reactive substances and radicals. Here, we report that repeated sulforaphane treatment increases radioresistance in primary human skin fibroblasts. Cells were either treated with sulforaphane for four hours once or with four-hour treatments repeatedly for three consecutive days prior to radiation exposure. Fibroblasts exposed to repeated-sulforaphane treatment showed a more pronounced dose-dependent induction of Nrf2-regulated mRNA and reduced amount of radiation-induced free radicals compared with cells treated once with sulforaphane. In addition, radiation- induced DNA double-strand breaks measured by gamma-H2AX foci were attenuated following repeated sulforaphane treatment. As a result, cellular protection from ionizing radiation measured by the 5-ethynyl-2'-deoxyuridine (EdU) assay was increased, specifically in cells exposed to repeated sulforaphane treatment. Sulforaphane treatment was unable to protect Nrf2 knockout mouse embryonic fibroblasts, indicating that the sulforaphane-induced radioprotection was Nrf2-dependent. Moreover, radioprotection by repeated sulforaphane treatment was dose-dependent with an optimal effect at 10 uM, whereas both lower and higher concentrations resulted in lower levels of radioprotection. Our data indicate that the Nrf2 system can be trained to provide further protection from radical damage. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Papa, A.; Kettle, P.-R.; Ripiccini, E.; Rutar, G.
2016-07-01
Several scintillating fibre prototypes (single- and double-layers) made of 250 μm multi-clad square fibres coupled to silicon photomultiplier have been studied using electrons, positrons and muons at different energies. Current measurements show promising results: already for a single fibre layer and minimum ionizing particles we obtain a detection efficiency ≥ 95 % (mean collected light/fibre ≈ 8 phe), a timing resolution of 550 ps/fibre and a foreseen spatial resolution < 100 μm, based on the achieved negligible optical cross-talk between fibres (< 1 %). We will also discuss the performances of a double-layer staggered prototype configuration, for which a full detection efficiency (≥ 99 %) has been measured together with a timing resolution of ≈ 400 ps for double hit events.
Perkins, R; Williamson, C; Lavaud, J; Mouget, J-L; Campbell, D A
2018-04-16
Photoacclimation by strains of Haslea "blue" diatom species H. ostrearia and H. silbo sp. nov. ined. was investigated with rapid light curves and induction-recovery curves using fast repetition rate fluorescence. Cultures were grown to exponential phase under 50 µmol m -2 s -1 photosynthetic available radiation (PAR) and then exposed to non-sequential rapid light curves where, once electron transport rate (ETR) had reached saturation, light intensity was decreased and then further increased prior to returning to near growth light intensity. The non-sequential rapid light curve revealed that ETR was not proportional to the instantaneously applied light intensity, due to rapid photoacclimation. Changes in the effective absorption cross sections for open PSII reaction centres (σ PSII ') or reaction centre connectivity (ρ) did not account for the observed increases in ETR under extended high light. σ PSII ' in fact decreased as a function of a time-dependent induction of regulated excitation dissipation Y(NPQ), once cells were at or above a PAR coinciding with saturation of ETR. Instead, the observed increases in ETR under extended high light were explained by an increase in the rate of PSII reopening, i.e. Q A - oxidation. This acceleration of electron transport was strictly light dependent and relaxed within seconds after a return to low light or darkness. The time-dependent nature of ETR upregulation and regulated NPQ induction was verified using induction-recovery curves. Our findings show a time-dependent induction of excitation dissipation, in parallel with very rapid photoacclimation of electron transport, which combine to make ETR independent of short-term changes in PAR. This supports a selective advantage for these diatoms when exposed to fluctuating light in their environment.
Chen, Jianzhong; Green, Kari B; Nichols, Kelly K
2015-01-01
A series of different types of wax esters (represented by RCOOR′) were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS3 (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2]+, [RCO]+ and [RCO – H2O]+ that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: 1) [RCOOH2]+ for saturated wax esters, 2) [RCOOH2]+, [RCO]+ and [RCO – H2O]+ for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and 3) [RCOOH2]+ and [RCO]+ for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R′]+ and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2]+ ions for all types of wax esters and [R′ – 2H]+ ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions. PMID:26178197
Chen, Jianzhong; Green, Kari B; Nichols, Kelly K
2015-08-01
A series of different types of wax esters (represented by RCOOR') were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS(3) (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2](+), [RCO](+) and [RCO-H2O](+) that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: (1) [RCOOH2](+) for saturated wax esters, (2) [RCOOH2](+), [RCO](+) and [RCO-H2O](+) for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and (3) [RCOOH2](+) and [RCO](+) for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R'](+) and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2](+) ions for all types of wax esters and [R'-2H](+) ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions.
Guttek, Karina; Hartig, Roland; Godenschweger, Frank; Roggenbuck, Dirk; Ricke, Jens; Reinhold, Dirk; Speck, Oliver
2015-01-01
The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated. PMID:26176601
Destruction of PAHs by X-Rays in circumnuclear regions of AGNs
NASA Astrophysics Data System (ADS)
Monfredini, T.; Wolff, W.; Boechat-Roberty, H. M.; Sales, D. A.; Pastoriza, M. G.
2017-07-01
Emission bands associated with PAH molecules are observed in the direction of some classes of AGNs like Seyfert 2, LINERs and obscured quasars (e.g. Kaneda et al., 2008, Sansigre et al., 2008 and Sales et al. 2013). The molecular stability in these environments suggest the presence of very dense gas (˜ 1023-24 cm-2) to shield the cloud of PAHs against X-ray radiation (Voit, 1992, Tielens, 2011, Sales et al., 2013). We examined the photochemistry of simple PAHs: naphtalene (C10H8), anthracene (C14H10), methyl-anthracene (C15H12) and pyrene (C16H10) at the photon energies of 275 eV, 310 eV, 1900 eV and 2500 eV in order to apply the findings at the AGN scenario. The absolute single and double photoionization and photodissociation cross sections were determined for each molecule at each energy. Their ionization and destruction induced by X-rays were examined in the conditions of the circumnuclear region of NGC 1808, a Seyfert 2 galaxy, where PAH emission was detected at 26 pc from the central object (Sales et al., 2013). It was verified the higher photostability of PAHs without functional groups attached. At higher photon energies, the results suggest a higher production yield of double charged PAHs in comparision with the single charged ones (e.g., 2 × higher for double ionized naphtalene at 2500 eV). The production of double charged molecules increase with the size of the molecules. We also discuss a minimum formation rate of PAH to balance the photodestruction rate and maintain a minimum density for their detection (e.g. 4,0× 10-7 M⊙ year-1 for a column density NH of 1023 cm-2 at 26 pc).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia
2009-09-09
Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/Δm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.
Photoabsorption cross section of acetylene in the EUV region
NASA Technical Reports Server (NTRS)
Wu, C. Y. R.; Judge, D. L.
1985-01-01
The measurement of the absolute photoabsorption cross sections of C2H2 in the 175-740 A region by means of a double ionization chamber is reported. The continuum background source is the synchrotron radiation emitted by the Wisconsin 240 MeV electron storage ring. It is found that the cross sections range from 2 to a maximum of 36 Mb. Two new Rydberg series are identified and the cross section data are applied in the analysis of various sum rules. From the rules, it is shown that the data of C2H2 in the 580-1088 A range may be too low, while the measured ionization transition moment may be too high.
Diode laser based resonance ionization mass spectrometric measurement of strontium-90
NASA Astrophysics Data System (ADS)
Bushaw, B. A.; Cannon, B. D.
1997-10-01
A diode laser based scheme for the isotopically selective excitation and ionization of strontium is presented. The double-resonance excitation 5s 21S 0→5s5p 3P 1→5s6s 3S 1 is followed by photoionization at 488 nm. The isotope shifts and hyperfine structure in the resonance transitions have been accurately measured for the stable isotopes and 90Sr, with the measurement of the 90Sr shifts using sub-pg samples. Analytical tests, using graphite crucible atomization, demonstrated 90Sr detection limits of 0.8 fg and overall (optical+mass spectrometer) isotopic selectivity of >10 10 against stable strontium.
NASA Astrophysics Data System (ADS)
Xie, Xiaobo; Wang, Zhenpeng; Li, Yafeng; Zhan, Lingpeng; Nie, Zongxiu
2017-06-01
A liquid sampling-atmospheric pressure afterglow microplasma ionization (LS-APAG) source is presented for the first time, which is embedded with both electrospray ionization (ESI) and atmospheric pressure afterglow microplasma ionization (APAG) techniques. This ion source is capable of analyzing compounds with diverse molecule weights and polarities. An unseparated mixture sample was detected as a proof-of-concept, giving complementary information (both polarities and non-polarities) with the two ionization modes. It should also be noted that molecular mass can be quickly identified by ESI with clean and simple spectra, while the structure can be directly studied using APAG with in-source oxidation. The ionization/oxidation mechanism and applications of the LS-APAG source have been further explored in the analysis of nonpolar alkanes and unsaturated fatty acids/esters. A unique [M + O - 3H]+ was observed in the case of individual alkanes (C5-C19) and complex hydrocarbons mixture under optimized conditions. Moreover, branched alkanes generated significant in-source fragments, which could be further applied to the discrimination of isomeric alkanes. The technique also facilitates facile determination of double bond positions in unsaturated fatty acids/esters due to diagnostic fragments (the acid/ester-containing aldehyde and acid oxidation products) generated by on-line ozonolysis in APAG mode. Finally, some examples of in situ APAG analysis by gas sampling and surface sampling were given as well. [Figure not available: see fulltext.
Xie, Xiaobo; Wang, Zhenpeng; Li, Yafeng; Zhan, Lingpeng; Nie, Zongxiu
2017-06-01
A liquid sampling-atmospheric pressure afterglow microplasma ionization (LS-APAG) source is presented for the first time, which is embedded with both electrospray ionization (ESI) and atmospheric pressure afterglow microplasma ionization (APAG) techniques. This ion source is capable of analyzing compounds with diverse molecule weights and polarities. An unseparated mixture sample was detected as a proof-of-concept, giving complementary information (both polarities and non-polarities) with the two ionization modes. It should also be noted that molecular mass can be quickly identified by ESI with clean and simple spectra, while the structure can be directly studied using APAG with in-source oxidation. The ionization/oxidation mechanism and applications of the LS-APAG source have been further explored in the analysis of nonpolar alkanes and unsaturated fatty acids/esters. A unique [M + O - 3H] + was observed in the case of individual alkanes (C 5 -C 19 ) and complex hydrocarbons mixture under optimized conditions. Moreover, branched alkanes generated significant in-source fragments, which could be further applied to the discrimination of isomeric alkanes. The technique also facilitates facile determination of double bond positions in unsaturated fatty acids/esters due to diagnostic fragments (the acid/ester-containing aldehyde and acid oxidation products) generated by on-line ozonolysis in APAG mode. Finally, some examples of in situ APAG analysis by gas sampling and surface sampling were given as well. Graphical Abstract ᅟ.
Bandwidth-induced reversal of asymmetry in optical-double-resonance amplitudes
NASA Astrophysics Data System (ADS)
Nitz, D. E.; Smith, A. V.; Levenson, M. D.; Smith, S. J.
1981-07-01
Optical-double-resonance measurements using ionization detection have been carried out in the 3S12-3P12-4D atomic-sodium system. Asymmetries observed in production of 4D atoms from the two components of the Stark-split 3P12 state are found to be controlled by the far, very weak wings of the 17-MHz full-width-at-half-maximum laser line which is used to drive the 3S12-3P12 transition at detunings in the range 0-70 GHz. Suppression of the wings with a Fabry-Perot filter causes a pronounced reversal of the asymmetry.
Stinson, Craig A; Zhang, Wenpeng; Xia, Yu
2018-03-01
Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Maitra, Rahul; Akinaga, Yoshinobu; Nakajima, Takahito
2017-08-01
A single reference coupled cluster theory that is capable of including the effect of connected triple excitations has been developed and implemented. This is achieved by regrouping the terms appearing in perturbation theory and parametrizing through two different sets of exponential operators: while one of the exponentials, involving general substitution operators, annihilates the ground state but has a non-vanishing effect when it acts on the excited determinant, the other is the regular single and double excitation operator in the sense of conventional coupled cluster theory, which acts on the Hartree-Fock ground state. The two sets of operators are solved as coupled non-linear equations in an iterative manner without significant increase in computational cost than the conventional coupled cluster theory with singles and doubles excitations. A number of physically motivated and computationally advantageous sufficiency conditions are invoked to arrive at the working equations and have been applied to determine the ground state energies of a number of small prototypical systems having weak multi-reference character. With the knowledge of the correlated ground state, we have reconstructed the triple excitation operator and have performed equation of motion with coupled cluster singles, doubles, and triples to obtain the ionization potential and excitation energies of these molecules as well. Our results suggest that this is quite a reasonable scheme to capture the effect of connected triple excitations as long as the ground state remains weakly multi-reference.
NASA Astrophysics Data System (ADS)
Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu
2018-03-01
Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. [Figure not available: see fulltext.
Buonanno, Manuela; de Toledo, Sonia M; Azzam, Edouard I
2011-01-01
An increased risk of carcinogenesis caused by exposure to space radiation during prolonged space travel is a limiting factor for human space exploration. Typically, astronauts are exposed to low fluences of ionizing particles that target only a few cells in a tissue at any one time. The propagation of stressful effects from irradiated to neighboring bystander cells and their transmission to progeny cells would be of importance in estimates of the health risks of exposure to space radiation. With relevance to the risk of carcinogenesis, we investigated, in model C3H 10T½ mouse embryo fibroblasts (MEFs), modulation of the spontaneous frequency of neoplastic transformation in the progeny of bystander MEFs that had been in co-culture 10 population doublings earlier with MEFs exposed to moderate doses of densely ionizing iron ions (1 GeV/nucleon) or sparsely ionizing protons (1 GeV). An increase (P<0.05) in neoplastic transformation frequency, likely mediated by intercellular communication through gap junctions, was observed in the progeny of bystander cells that had been in co-culture with cells irradiated with iron ions, but not with protons.
Electron-impact ionization of P-like ions forming Si-like ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, D.-H.; Savin, D. W., E-mail: hkwon@kaeri.re.kr
2014-03-20
We have calculated electron-impact ionization (EII) for P-like systems from P to Zn{sup 15+} forming Si-like ions. The work was performed using the flexible atomic code (FAC) which is based on a distorted-wave approximation. All 3ℓ → nℓ' (n = 3-35) excitation-autoionization (EA) channels near the 3p direct ionization threshold and 2ℓ → nℓ' (n = 3-10) EA channels at the higher energies are included. Close attention has been paid to the detailed branching ratios. Our calculated total EII cross sections are compared both with previous FAC calculations, which omitted many of these EA channels, and with the available experimentalmore » results. Moreover, for Fe{sup 11+}, we find that part of the remaining discrepancies between our calculations and recent measurements can be accounted for by the inclusion of the resonant excitation double autoionization process. Lastly, at the temperatures where each ion is predicted to peak in abundances in collisional ionization equilibrium, the Maxwellian rate coefficients derived from our calculations differ by 50%-7% from the previous FAC rate coefficients, with the difference decreasing with increasing charge.« less
Generation of attosecond electron beams in relativistic ionization by short laser pulses
NASA Astrophysics Data System (ADS)
Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.
2018-03-01
Ionization by relativistically intense short laser pulses is studied in the framework of strong-field quantum electrodynamics. Distinctive patterns are found in the energy probability distributions of photoelectrons, which are sensitive to the properties of a driving laser field. It is demonstrated that these electrons are generated in the form of solitary attosecond wave packets. This is particularly important in light of various applications of attosecond electron beams such as in ultrafast electron diffraction and crystallography, or in time-resolved electron microscopy of physical, chemical, and biological processes. We also show that, for intense laser pulses, high-energy ionization takes place in narrow regions surrounding the momentum spiral, the exact form of which is determined by the shape of a driving pulse. The self-intersections of the spiral define the momenta for which the interference patterns in the energy distributions of photoelectrons are observed. Furthermore, these interference regions lead to the synthesis of single-electron wave packets characterized by coherent double-hump structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaskaran-Nair, Kiran; Kowalski, Karol; Jarrell, Mark
2015-11-05
Polyacenes have attracted considerable attention due to their use in organic based optoelectronic materials. Polyacenes are polycyclic aromatic hydrocarbons composed of fused benzene rings. Key to understanding and design of new functional materials is an understanding of their excited state properties starting with their electron affinity (EA) and ionization potential (IP). We have developed a highly accurate and com- putationally e*fficient EA/IP equation of motion coupled cluster singles and doubles (EA/IP-EOMCCSD) method that is capable of treating large systems and large basis set. In this study we employ the EA/IP-EOMCCSD method to calculate the electron affinity and ionization potential ofmore » naphthalene, anthracene, tetracene, pentacene, hex- acene and heptacene. We have compared our results with other previous theoretical studies and experimental data. Our EA/IP results are in very good agreement with experiment and when compared with the other theoretical investigations our results represent the most accurate calculations as compared to experiment.« less
Gu, Quanli; Knee, J L
2012-09-14
The relative ionization energies of tryptamine conformations are determined by zero kinetic energy photoelectron spectroscopy and photoionization efficiency measurements. The relative cationic conformational stabilities are compared to the published results for the neutral molecule. In the cation, the interaction strength changes significantly between amino group and either the phenyl or the pyrrole moiety of the indole chromophore where most of the positive charge is located, leading to different conformational structures and relative conformer energies in the cation. In particular, the measured adiabatic ionization potential of isomer B is 60,928 ± 5 cm(-1), at least 400 cm(-1) higher than any of the 6 other tryptamine isomers which all have ionization potentials within 200 cm(-1) of each other. In addition to the monomer, measurements were made on the A conformer of the tryptamine(+)-H(2)O complex including the ionization threshold and cation dissociation energy measured using a threshold photoionization fragmentation method. The water cluster exhibits an unexpectedly high ionization potential of 60,307 ± 100 cm(-1), close to the conformer A monomer of 60 320 ± 100 cm(-1). It also exhibits surprisingly low dissociation energy of 1750 ± 150 cm(-1) compared to other H-bonding involved cation-H(2)O complexes which are typically several thousands of wavenumbers higher. Quantum chemical calculations indicate that upon ionization the structure of the parent molecule in the water complex remains mostly unchanged due to the rigid intermolecular double hydrogen bonded water molecule bridging the monomer backbone and its side chain thus leading to the high ionization potential in the water cluster. The surprisingly low dissociation energy measured in the cationic water complex is attributed to the formation of a much more stable structural isomer H(+) in the exit channel.
Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions
NASA Astrophysics Data System (ADS)
Qi, Y. Y.; Ning, L. N.; Wang, J. G.; Qu, Y. Z.
2013-12-01
Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ɛ /I2p (I2p is the ionization energy of 2p state and ɛ is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δnlc, corresponding to the special plasma condition when the bound state |nl⟩ just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δnlc, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.
Lara-Ortega, Felipe J; Beneito-Cambra, Miriam; Robles-Molina, José; García-Reyes, Juan F; Gilbert-López, Bienvenida; Molina-Díaz, Antonio
2018-04-01
Analytical methods based on ambient ionization mass spectrometry (AIMS) combine the classic outstanding performance of mass spectrometry in terms of sensitivity and selectivity along with convenient features related to the lack of sample workup required. In this work, the performance of different mass spectrometry-based methods has been assessed for the direct analyses of virgin olive oil for quality purposes. Two sets of experiments have been setup: (1) direct analysis of untreated olive oil using AIMS methods such as Low-Temperature Plasma Mass Spectrometry (LTP-MS) or paper spray mass spectrometry (PS-MS); or alternatively (2) the use of atmospheric pressure ionization (API) mass spectrometry by direct infusion of a diluted sample through either atmospheric pressure chemical ionization (APCI) or electrospray (ESI) ionization sources. The second strategy involved a minimum sample work-up consisting of a simple olive oil dilution (from 1:10 to 1:1000) with appropriate solvents, which originated critical carry over effects in ESI, making unreliable its use in routine; thus, ESI required the use of a liquid-liquid extraction to shift the measurement towards a specific part of the composition of the edible oil (i.e. polyphenol rich fraction or lipid/fatty acid profile). On the other hand, LTP-MS enabled direct undiluted mass analysis of olive oil. The use of PS-MS provided additional advantages such as an extended ionization coverage/molecular weight range (compared to LTP-MS) and the possibility to increase the ionization efficiency towards nonpolar compounds such as squalene through the formation of Ag + adducts with carbon-carbon double bounds, an attractive feature to discriminate between oils with different degree of unsaturation. Copyright © 2017 Elsevier B.V. All rights reserved.
Barrow, Mark P; Peru, Kerry M; Fahlman, Brian; Hewitt, L Mark; Frank, Richard A; Headley, John V
2015-09-01
There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.
Mineral Tells Tale of Watery Past
NASA Technical Reports Server (NTRS)
2004-01-01
This spectrum, taken by the Mars Exploration Rover Opportunity's Moessbauer spectrometer, shows the presence of an iron-bearing mineral called jarosite in the collection of rocks dubbed 'El Capitan.' 'El Capitan' is located within the rock outcrop that lines the inner edge of the small crater where Opportunity landed. The pair of yellow peaks specifically indicates a jarosite phase, which contains water in the form of hydroxyl as a part of its structure. These data suggest water-driven processes exist on Mars. Three other phases are also identified in this spectrum: a magnetic phase (blue), attributed to an iron-oxide mineral; a silicate phase (green), indicative of minerals containing double-ionized iron (Fe 2+); and a third phase (red) of minerals with triple-ionized iron (Fe 3+).
Mineral Tells Tale of Watery Past-2
NASA Technical Reports Server (NTRS)
2004-01-01
This spectrum, taken by the Mars Exploration Rover Opportunity's Moessbauer spectrometer, shows the presence of an iron-bearing mineral called jarosite in the collection of rocks dubbed 'El Capitan.' 'El Capitan' is located within the outcrop that lines the inner edge of the small crater where Opportunity landed. The pair of yellow peaks specifically indicates a jarosite phase, which contains water in the form of hydroxyl as a part of its structure. These data suggest water-driven processes exist on Mars. Three other phases are also identified in this spectrum: a magnetic phase (blue), attributed to an iron-oxide mineral; a silicate phase (green), indicative of minerals containing double-ionized iron (Fe 2+); and a third phase (red) of minerals with triple-ionized iron (Fe 3+).
NASA Astrophysics Data System (ADS)
Ma, Junyang; Li, Hui; Lin, Kang; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Li, Hanxiao; Sun, Fenghao; Qiang, Junjie; Lu, Peifen; Gong, Xiaochun; Zeng, Heping; Wu, Jian
2018-06-01
We experimentally investigate the dissociative double ionization of hydrogen chloride (HCl) molecules in intense femtosecond laser pulses. In addition to the prompt dissociation channels which occur on femtosecond timescales, long-lived hydrogen chloride dications which Coulomb-explode in flight towards the detector are clearly identified in the photoion-photoion coincidence spectrum. Different pathways leading to these prompt and delayed dissociation channels involving various bound and repulsive states of the HCl dication are discussed based on the observed kinetic energy release and momentum distributions. Our results indicate that the specific features of the HCl dication potential energy curves are responsible for the generation of the delayed fragmentation channels, which are expected to be general processes for the hydrogen halides.
Laser-induced breakup of helium 3S 1s2s with intermediate doubly excited states
NASA Astrophysics Data System (ADS)
Simonsen, A. S.; Bachau, H.; Førre, M.
2014-02-01
Solving the time-dependent Schrödinger equation in full dimensionality for two electrons, it is found that in the XUV regime the two-photon double ionization dynamics of He(1s2s) is predominantly dictated by the process of resonance enhanced multiphoton ionization via doubly excited states (DESs). We have studied a pump-probe scenario where the full laser-driven breakup of the 3S 1s2s metastable state is dominated by intermediate quasiresonant excitation to doubly excited (autoionizing) states in the 3Po series. Clear evidence of multipath interference effects is revealed in the resulting angular distributions of the ejected electrons in cases where more than one intermediate DES is populated in the process.
Solid xenon radiation detectors
NASA Astrophysics Data System (ADS)
Dolinski, Michelle J.
2014-03-01
Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of the liquid xenon detector technology is in the combination of the ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a unique anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers, under development at Drexel University, are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. Supported by a grant from the Charles E. Kaufman Foundation.
Proteomic Analysis of Trypanosoma cruzi Response to Ionizing Radiation Stress
Vieira, Helaine Graziele Santos; Grynberg, Priscila; Bitar, Mainá; Pires, Simone da Fonseca; Hilário, Heron Oliveira; Macedo, Andrea Mara; Machado, Carlos Renato; de Andrade, Hélida Monteiro; Franco, Glória Regina
2014-01-01
Trypanosoma cruzi, the causative agent of Chagas disease, is extremely resistant to ionizing radiation, enduring up to 1.5 kGy of gamma rays. Ionizing radiation can damage the DNA molecule both directly, resulting in double-strand breaks, and indirectly, as a consequence of reactive oxygen species production. After a dose of 500 Gy of gamma rays, the parasite genome is fragmented, but the chromosomal bands are restored within 48 hours. Under such conditions, cell growth arrests for up to 120 hours and the parasites resume normal growth after this period. To better understand the parasite response to ionizing radiation, we analyzed the proteome of irradiated (4, 24, and 96 hours after irradiation) and non-irradiated T. cruzi using two-dimensional differential gel electrophoresis followed by mass spectrometry for protein identification. A total of 543 spots were found to be differentially expressed, from which 215 were identified. These identified protein spots represent different isoforms of only 53 proteins. We observed a tendency for overexpression of proteins with molecular weights below predicted, indicating that these may be processed, yielding shorter polypeptides. The presence of shorter protein isoforms after irradiation suggests the occurrence of post-translational modifications and/or processing in response to gamma radiation stress. Our results also indicate that active translation is essential for the recovery of parasites from ionizing radiation damage. This study therefore reveals the peculiar response of T. cruzi to ionizing radiation, raising questions about how this organism can change its protein expression to survive such a harmful stress. PMID:24842666
NASA Astrophysics Data System (ADS)
Pyak, P. E.; Usachenko, V. I.
2018-03-01
The phenomenon of pronounced peak structure(s) of longitudinal momentum distributions as well as a spike-like structure of low-energy spectra of photoelectrons emitted from laser-irradiated Ar and Ne atoms in a single ionization process is theoretically studied in the tunneling and multiphoton regimes of ionization. The problem is addressed assuming only the direct above-threshold ionization (ATI) as a physical mechanism underlying the phenomenon under consideration (viz. solely contributing to observed photoelectron momentum distributions (PMD)) and using the Coulomb-Volkov (CV) ansatz within the frame of conventional strong-field approximation (SFA) applied in the length-gauge formulation. The developed CV-SFA approach also incorporates the density functional theory essentially exploited for numerical composition of initial (laser-free) atomic state(s) constructed from atomic orbitals of Gaussian type. Our presented CV-SFA based (and laser focal-volume averaged) calculation results proved to be well reproducing both the pronounced double-peak and/or ATI-like multi-peak structure(s) experimentally observed in longitudinal PMD under conditions of tunneling and/or multiphoton regime, respectively. In addition, our CV-SFA results presented for tunneling regime also suggest and remarkably reproduce a pronounced structure observed in relevant experiments as a ‘spike-like’ enhanced maximum arising in low-energy region (around the value of about 1 eV) of photoelectron spectra. The latter consistency allows to identify and interpret these results as the so-called low-energy structure (LES) since the phenomenon proved to appear as the most prominent if the influence of Coulomb potential on photoelectron continuum states is maximally taken into account under calculations (viz. if the parameter Z in CV’s functions is put equal to 1). Moreover, the calculated LES proved to correspond (viz., established as closely related) to the mentioned double-peak structure arising in the low-momentum region ({p}| | ≤slant | 0.2| a.u.) of longitudinal PMDs calculated under condition of the tunneling regime. Thus, the phenomena under consideration can be well understood and adequately interpreted beyond the terms and/or concepts of various different alternative strong-field approaches and models (such as e.g., extensively invoked and exploited nowadays though, more sophisticated SFA-based ‘rescattering’ mechanism) compared to which, the currently applied CV-SFA model (through the same underlying physical mechanism of solely direct ATI suggested) is additionally able to provide and reveal an intimate and transparent interrelation between the phenomena of LES and double-peak structure arising in PMDs observed in the tunneling regime.
Total absorption and photoionization cross sections of water vapor between 100 and 1000 A
NASA Technical Reports Server (NTRS)
Haddad, G. N.; Samson, J. A. R.
1986-01-01
Absolute photoabsorption and photoionization cross sections of water vapor are reported at a large number of discrete wavelengths between 100 and 1000 A with an estimate error of + or - 3 percent in regions free from any discrete structure. The double ionization chamber technique utilized is described. Recent calculations are shown to be in reasonable agreement with the present data.
Wavelength-dependence of double optical gating for attosecond pulse generation
NASA Astrophysics Data System (ADS)
Tian, Jia; Li, Min; Yu, Ji-Zhou; Deng, Yong-Kai; Liu, Yun-Quan
2014-10-01
Both polarization gating (PG) and double optical gating (DOG) are productive methods to generate single attosecond (as) pulses. In this paper, considering the ground-state depletion effect, we investigate the wavelength-dependence of the DOG method in order to optimize the generation of single attosecond pulses for the future application. By calculating the ionization probabilities of the leading edge of the pulse at different driving laser wavelengths, we obtain the upper limit of duration for the driving laser pulse for the DOG setup. We find that the upper limit duration increases with the increase of laser wavelength. We further describe the technical method of choosing and calculating the thickness values of optical components for the DOG setup.
Segmented all-electron Gaussian basis sets of double and triple zeta qualities for Fr, Ra, and Ac
NASA Astrophysics Data System (ADS)
Campos, C. T.; de Oliveira, A. Z.; Ferreira, I. B.; Jorge, F. E.; Martins, L. S. C.
2017-05-01
Segmented all-electron basis sets of valence double and triple zeta qualities plus polarization functions for the elements Fr, Ra, and Ac are generated using non-relativistic and Douglas-Kroll-Hess (DKH) Hamiltonians. The sets are augmented with diffuse functions with the purpose to describe appropriately the electrons far from the nuclei. At the DKH-B3LYP level, first atomic ionization energies and bond lengths, dissociation energies, and polarizabilities of a sample of diatomics are calculated. Comparison with theoretical and experimental data available in the literature is carried out. It is verified that despite the small sizes of the basis sets, they are yet reliable.
Dissociative and double photoionization of CO2 from threshold to 90 A
NASA Technical Reports Server (NTRS)
Masuoka, T.; Samson, J. A. R.
1979-01-01
The molecular photoionization, dissociative photoionization and double photoionization cross sections for CO2 were measured from their onsets down to 90 A by using various combinations of mass spectrometers (a coincidence time-of-flight mass spectrometer and a magnetic mass spectrometer) and light sources (synchrotron radiation, and glow and spark discharge). It is concluded that the one broad peak and the three shoulders in the total adsorption cross section curve between 640 and 90 A are caused completely by dissociative ionization processes. Several peaks observed in the cross section curve for the total fragmentation CO(+)3, O(+) and C(+) are compared with those in the photoelectron spectrum reported for CO2.
ATS displays: A reasoning visualization tool for expert systems
NASA Technical Reports Server (NTRS)
Selig, William John; Johannes, James D.
1990-01-01
Reasoning visualization is a useful tool that can help users better understand the inherently non-sequential logic of an expert system. While this is desirable in most all expert system applications, it is especially so for such critical systems as those destined for space-based operations. A hierarchical view of the expert system reasoning process and some characteristics of these various levels is presented. Also presented are Abstract Time Slice (ATS) displays, a tool to visualize the plethora of interrelated information available at the host inferencing language level of reasoning. The usefulness of this tool is illustrated with some examples from a prototype potable water expert system for possible use aboard Space Station Freedom.
A Binary-Encounter-Bethe Approach to Simulate DNA Damage by the Direct Effect
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cucinotta, Francis A.
2013-01-01
The DNA damage is of crucial importance in the understanding of the effects of ionizing radiation. The main mechanisms of DNA damage are by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research in this area, many questions on the formation of DNA damage remains. To refine existing DNA damage models, an approach based on the Binary-Encounter-Bethe (BEB) model was developed[1]. This model calculates differential cross sections for ionization of the molecular orbitals of the DNA bases, sugars and phosphates using the electron binding energy, the mean kinetic energy and the occupancy number of the orbital. This cross section has an analytic form which is quite convenient to use and allows the sampling of the energy loss occurring during an ionization event. To simulate the radiation track structure, the code RITRACKS developed at the NASA Johnson Space Center is used[2]. This code calculates all the energy deposition events and the formation of the radiolytic species by the ion and the secondary electrons as well. We have also developed a technique to use the integrated BEB cross section for the bases, sugar and phosphates in the radiation transport code RITRACKS. These techniques should allow the simulation of DNA damage by ionizing radiation, and understanding of the formation of double-strand breaks caused by clustered damage in different conditions.
Biomedical applications of laser photoionization
NASA Astrophysics Data System (ADS)
Xiong, Xiaoxiong; Moore, Larry J.; Fassett, John R.; O'Haver, Thomas C.
1991-07-01
Trace elements are important for many essential metabolic functions. Zinc is a structural/functional component in more than 200 enzymes active in the biochemistry of cell division and tissue growth, neurology and endocrine control. Calcium is involved in intracellular control mechanisms and in skeletal bone building and resorption processes related to osteoporosis. Sensitive and selective laser photoionization is being developed to understand mechanisms in smaller samples and biological units approaching the cellular domain. Zinc has an ionization potential of 9.4 eV, or 75766.8 cm-1. Several processes are being explored, including two-photon resonant, three- photon ionization utilizing sequential UV transitions, e.g., 4s2 1S0 yields 4s4p 3P1 and 4s4p 3P1 yields 4s5d 3D1. Preliminary zinc stable isotope ratio data obtained by thermal atomization and laser photoionization agree with accepted values within 2 to 5%, except for anomalous 67Zn. Photoionization of calcium is being studied for isotope enrichment and ratio measurement using narrow and medium bandwidth lasers. Several ionization pathways, e.g., 4s2 1S0 - 2hv1 yields 4s10s - hv2 yields Ca+ (4s2S), are being investigated for isotopically selective ionization. Auto-ionization pathways are explored for greater efficiency in isotopic analysis. All studies have utilized a Nd:YAG- pumped laser system with one or two frequency-doubled tunable dye lasers coupled either to a magnetic sector or time-of-flight mass spectrometer.
NASA Astrophysics Data System (ADS)
Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.
2015-10-01
The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.
Bacterial and archaeal resistance to ionizing radiation
NASA Astrophysics Data System (ADS)
Confalonieri, F.; Sommer, S.
2011-01-01
Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in radioresistance. Here, we compare mechanisms and discuss hypotheses suggested to contribute to radioresistance in several Archaea and Eubacteria.
Allen, Christopher; Borak, Thomas B.; Tsujii, Hirohiko; Nickoloff, Jac A.
2011-01-01
Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. PMID:21376738
Elemental abundances of cosmic rays with Z 33 as measured on HEAO-3
NASA Technical Reports Server (NTRS)
Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Garrard, T. L.; Israel, M. H.; Klarmann, J.
1985-01-01
The Heavy Nuclei Experiment on (HEAO-3) high energy astronomy observatory 3 uses a combination of ion chambers and a Cerenkov counter. During analysis, each particle is assigned two parameters, Z sub c and Z sub i, proportional to the square roots of the Cerenkov and mean ionization signals respectively. Because the ionization signal is double valued, a unique assignment of particle charge, Z, is not possible in general. Previous work was limited to particles of either high rigidity or low energy, for which a unique charge assignment was possible, although those subsets contain less than 50% of the total number of particles observed. The maximum likelihood technique was used to determine abundances for the complete data set from approx. 1.5 to approx. 80 GeV/amu.
NASA Astrophysics Data System (ADS)
Xu, SongPo; Quan, Wei; Chen, YongJu; Xiao, ZhiLei; Wang, YanLan; Kang, HuiPeng; Hua, LinQiang; Gong, Cheng; Lai, XuanYang; Liu, XiaoJun; Hao, XiaoLei; Hu, ShiLin; Chen, Jing
2017-06-01
The long-range Coulomb effect (LRCE) is demonstrated experimentally and theoretically by investigating the pulse duration dependence of low-energy structure (LES) in above-threshold ionization of Ne. It is found experimentally that at 800 nm the LES shows itself as a double-hump structure (DHS) in momentum distribution of singly charged ion for Ne, and moreover, this structure is more prominent for multicycle laser fields than for few-cycle cases. This result can be reproduced and explained qualitatively with a semiclassical model and attributed to the paramount role of LRCE. That is to say, after the laser field vanishes, the electrons decelerate while flying away from the core by the long-range tail of Coulomb potential, which eventually makes DHS less notable.
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Boyang, Jia; Sun, Hezhi; Wei, Liqiu; Peng, Wuji; Li, Peng; Yu, Daren
2018-02-01
Discharge characteristics of a non-wall-loss Hall thruster were studied under different channel lengths using a design based on pushing a magnetic field through a double permanent magnet ring. The effect of different magnetic field intensities and channel lengths on ionization, efficiency, and plume divergence angle were studied. The experimental results show that propellant utilization is improved for optimal matching between the magnetic field and channel length. While matching the magnetic field and channel length, the ionization position of the neutral gas changes. The ion flow is effectively controlled, allowing the thrust force, specific impulse, and efficiency to be improved. Our study shows that the channel length is an important design parameter to consider for improving the performance of non-wall-loss Hall thrusters.
MIMAC-
NASA Astrophysics Data System (ADS)
Santos, D.; Guillaudin, O.; Lamy, Th.; Mayet, F.; Moulin, E.
2007-08-01
The project of a micro-TPC matrix of chambers of 3He for direct detection of non-baryonic dark matter is outlined. The privileged properties of 3He are highlighted. The double detection (ionization - projection of tracks) will assure the electron-recoil discrimination. The complementarity of MIMAC-He3 for supersymmetric dark matter search with respect to other experiments is illustrated. The modular character of the detector allows to have different gases to get A-dependence. The pressure degreee of freedom gives the possibility to work at high and low pressure. The low pressure regime gives the possibility to get the directionality of the tracks. The first measurements of ionization at very few keVs for 3He in 4He gas are described.
A new NIST primary standardization of 18F.
Fitzgerald, R; Zimmerman, B E; Bergeron, D E; Cessna, J C; Pibida, L; Moreira, D S
2014-02-01
A new primary standardization of (18)F by NIST is reported. The standard is based on live-timed beta-gamma anticoincidence counting with confirmatory measurements by three other methods: (i) liquid scintillation (LS) counting using CIEMAT/NIST (3)H efficiency tracing; (ii) triple-to-double coincidence ratio (TDCR) counting; and (iii) NaI integral counting and HPGe γ-ray spectrometry. The results are reported as calibration factors for NIST-maintained ionization chambers (including some "dose calibrators"). The LS-based methods reveal evidence for cocktail instability for one LS cocktail. Using an ionization chamber to link this work with previous NIST results, the new value differs from the previous reports by about 4%, but appears to be in good agreement with the key comparison reference value (KCRV) of 2005. © 2013 Published by Elsevier Ltd.
Bañuelos, C A; Banáth, J P; MacPhail, S H; Zhao, J; Eaves, C A; O'Connor, M D; Lansdorp, P M; Olive, P L
2008-09-01
Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse, but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed <10% of the level of mouse embryo fibroblasts (MEFs) although Ku70/80 protein levels were higher than MEFs. However, the low level of DNA-PK(cs) found in wild-type cells appeared sufficient to allow rejoining of dsb after doses <20Gy even in G1 phase cells. Inhibition of DNA-PK(cs) with wortmannin and NU7026 still sensitized mES cells to radiation confirming the importance of the residual DNA-PK(cs) at low doses. In contrast to wild-type cells, mES cells lacking H2AX, a histone protein involved in the DNA damage response, were radiosensitive but they rejoined double-strand breaks more rapidly. Consistent with more rapid dsb rejoining, H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs), an increase in dsb rejoining rate, and a decrease in Ku70/80. Unlike mouse ES, human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells, they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM, and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.
Distinct RAD51 Associations with RAD52 and BCCIP in Response to DNA Damage and Replication Stress
Wray, Justin; Liu, Jingmei; Nickoloff, Jac A.; Shen, Zhiyuan
2009-01-01
RAD51 has critical roles in homologous recombination (HR) repair of DNA double-strand breaks (DSB) and restarting stalled or collapsed replication forks. In yeast, Rad51 function is facilitated by Rad52 and other “mediators.” Mammalian cells express RAD52, but BRCA2 may have supplanted RAD52 in mediating RAD51 loading onto ssDNA. BCCIP interacts with BRCA2, and both proteins are important for RAD51 focus formation after ionizing radiation and HR repair of DSBs. Nonetheless, mammalian RAD52 shares biochemical activities with yeast Rad52, including RAD51 binding and single-strand annealing, suggesting a conserved role in HR. Because RAD52 and RAD51 associate, and RAD51 and BCCIP associate, we investigated the colocalization of RAD51 with BCCIP and RAD52 in human cells. We found that RAD51 colocalizes with BCCIP early after ionizing radiation, with RAD52 later, and there was little colocalization of BCCIP and RAD52. RAD52 foci are induced to a greater extent by hydroxyurea, which stalls replication forks, than by ionizing radiation. Using fluorescence recovery after photo bleaching, we show that RAD52 mobility is reduced to a greater extent by hydroxyurea than ionizing radiation. However, BCCIP showed no changes in mobility after hydroxyurea or ionizing radiation. We propose that BCCIP-dependent repair of DSBs by HR is an early RAD51 response to ionizing radiation–induced DNA damage, and that RAD52-dependent HR occurs later to restart a subset of blocked or collapsed replication forks. RAD52 and BRCA2 seem to act in parallel pathways, suggesting that targeting RAD52 in BRCA2-deficient tumors may be effective in treating these tumors. PMID:18413737
The Hydroxyl Radical Reaction Rate Constant and Products of Cyclohexanol
2007-10-01
Analysis Samples from kinetic studies were quantitativelymon- itored using a Hewlett-Packard (HP) gas chromato- graph (GC) 5890 with a flame ionization...excluded from the reaction mixture and the COL concentration was approximately doubled (4.9–9 ppm). Product Study Analysis Reactant mixtures and standards...from product identi- fication experiments were sampled by exposing a 100% polydimethylsiloxane solid phase microextrac- tion fiber (SPME) in the
Inhibition of DNA-Dependent Protein Kinase Activity for Breast Cancer Therapy
2002-06-01
Dependent Protein Kinase Activity for Breast Cancer Therapy PRINCIPAL INVESTIGATOR: Chin-Rang Yang, Ph.D. CONTRACTING ORGANIZATION: University of Rochester...Activity for Breast Cancer Therapy 6. AUTHOR(S) Chin-Rang Yang, Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...The formation of DNA double strand breaks (DSBs) correlates well with lethality of cancer cells following ionizing radiation (IR). The DNA-dependent
A model of electron collecting plasma contractors
NASA Technical Reports Server (NTRS)
Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.
1989-01-01
A model of plasma contractors is being developed, which can be used to describe electron collection in a laboratory test tank and in the space environment. To validate the model development, laboratory experiments are conducted in which the source plasma is separated from the background plasma by a double layer. Model calculations show that an increase in ionization rate with potential produces a steep rise in collected current with increasing potential.
Immunofluorescent Detection of DNA Double Strand Breaks induced by High-LET Radiation
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wu, Honglu; Desai, Nirav
2004-01-01
Within cell nuclei, traversing charged heavy ion particles lead to the accumulation of proteins related to DNA lesions and repair along the ion trajectories. Irradiation using a standard geometric setup with the beam path perpendicular to the cell monolayer generates discrete foci of several proteins known to localize at sites of DNA double strand breaks (DSBs). One such molecule is the histone protein H2AX (gamma-H2AX), which gets rapidly phosphorylated in response to ionizing radiation. Here we present data obtained with a modified irradiation geometry characterized by a beam path parallel to a monolayer of human fibroblast cells. This new irradiation geometry leads to the formation of gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in the x/y plane, thus enabling the analysis of the fluorescence distributions along the particle trajectories. Qualitative analysis of these distributions presented insights into the DNA repair kinetics along the primary track structure and visualization of possible chromatin movement. We also present evidence of colocalization of gamma-H2AX with several other proteins in responses to ionizing radiation exposure. Analysis of gamma-H2AX has the potential to provide useful information on human cell responses to high LET radiation after exposure to space-like radiation.
Hysteresis free negative total gate capacitance in junctionless transistors
NASA Astrophysics Data System (ADS)
Gupta, Manish; Kranti, Abhinav
2017-09-01
In this work, we report on the hysteresis free impact ionization induced off-to-on transition while preserving sub-60 mV/decade Subthreshold swing (S-swing) using asymmetric mode operation in double gate silicon (Si) and germanium (Ge) junctionless (JL) transistor. It is shown that sub-60 mV/decade steep switching due to impact ionization implies a negative value of the total gate capacitance. The performance of asymmetric gate JL transistor is compared with symmetric gate operation of JL device, and the condition for hysteresis free current transition with a sub-60 mV/decade switching is analyzed through the product of current density (J) and electric field (E). It is shown that asymmetric gate operation limits the degree of impact ionization inherent in the semiconductor film to levels sufficient for negative total gate capacitance but lower than that required for the occurrence of hysteresis. The work highlights new viewpoints related to the suppression of hysteresis associated with steep switching JL transistors while maintaining S-swing within the range 6-15 mV/decade leading to the negative value of total gate capacitance.
NASA Astrophysics Data System (ADS)
Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.
2011-11-01
Double-differential ionization cross sections (DDCSs) of vapor-phase adenine molecules (C5H5N5) by 0.5- and 2.0-MeV proton impact have been measured by the electron spectroscopy method. Electrons ejected from adenine were analyzed by a 45∘ parallel-plate electrostatic spectrometer over an energy range of 1.0-1000 eV at emission angles from 15∘ to 165∘. Single-differential cross sections (SDCSs) and total ionization cross sections (TICSs) were also deduced. It was found from the Platzman plot, defined as SDCSs divided by the classical Rutherford knock-on cross sections per target electron, that the SDCSs at higher electron energies are proportional to the total number of valence electrons (50) of adenine, while those at low-energy electrons are highly enhanced due to dipole and higher-order interactions. The present results of TICS are in fairly good agreement with recent classical trajectory Monte Carlo calculations, and moreover, a simple analytical formula gives nearly equivalent cross sections in magnitude at the incident proton energies investigated.
Electron molecular ion recombination: product excitation and fragmentation.
Adams, Nigel G; Poterya, Viktoriya; Babcock, Lucia M
2006-01-01
Electron-ion dissociative recombination is an important ionization loss process in any ionized gas containing molecular ions. This includes the interstellar medium, circumstellar shells, cometary comae, planetary ionospheres, fusion plasma boundaries, combustion flames, laser plasmas and chemical deposition and etching plasmas. In addition to controlling the ionization density, the process generates many radical species, which can contribute to a parallel neutral chemistry. Techniques used to obtain rate data and product information (flowing afterglows and storage rings) are discussed and recent data are reviewed including diatomic to polyatomic ions and cluster ions. The data are divided into rate coefficients and cross sections, including their temperature/energy dependencies, and quantitative identification of neutral reaction products. The latter involve both ground and electronically excited states and including vibrational excitation. The data from the different techniques are compared and trends in the data are examined. The reactions are considered in terms of the basic mechanisms (direct and indirect processes including tunneling) and recent theoretical developments are discussed. Finally, new techniques are mentioned (for product identification; electrostatic storage rings, including single and double rings; Coulomb explosion) and new ways forward are suggested.
Misconceived causal explanations for emergent processes.
Chi, Michelene T H; Roscoe, Rod D; Slotta, James D; Roy, Marguerite; Chase, Catherine C
2012-01-01
Studies exploring how students learn and understand science processes such as diffusion and natural selection typically find that students provide misconceived explanations of how the patterns of such processes arise (such as why giraffes' necks get longer over generations, or how ink dropped into water appears to "flow"). Instead of explaining the patterns of these processes as emerging from the collective interactions of all the agents (e.g., both the water and the ink molecules), students often explain the pattern as being caused by controlling agents with intentional goals, as well as express a variety of many other misconceived notions. In this article, we provide a hypothesis for what constitutes a misconceived explanation; why misconceived explanations are so prevalent, robust, and resistant to instruction; and offer one approach of how they may be overcome. In particular, we hypothesize that students misunderstand many science processes because they rely on a generalized version of narrative schemas and scripts (referred to here as a Direct-causal Schema) to interpret them. For science processes that are sequential and stage-like, such as cycles of moon, circulation of blood, stages of mitosis, and photosynthesis, a Direct-causal Schema is adequate for correct understanding. However, for science processes that are non-sequential (or emergent), such as diffusion, natural selection, osmosis, and heat flow, using a Direct Schema to understand these processes will lead to robust misconceptions. Instead, a different type of general schema may be required to interpret non-sequential processes, which we refer to as an Emergent-causal Schema. We propose that students lack this Emergent Schema and teaching it to them may help them learn and understand emergent kinds of science processes such as diffusion. Our study found that directly teaching students this Emergent Schema led to increased learning of the process of diffusion. This article presents a fine-grained characterization of each type of Schema, our instructional intervention, the successes we have achieved, and the lessons we have learned. Copyright © 2011 Cognitive Science Society, Inc.
Koltun, G.F.
2001-01-01
This report provides data and methods to aid in the hydrologic design or evaluation of impounding reservoirs and side-channel reservoirs used for water supply in Ohio. Data from 117 streamflow-gaging stations throughout Ohio were analyzed by means of nonsequential-mass-curve-analysis techniques to develop relations between storage requirements, water demand, duration, and frequency. Information also is provided on minimum runoff for selected durations and frequencies. Systematic record lengths for the streamflow-gaging stations ranged from about 10 to 75 years; however, in many cases, additional streamflow record was synthesized. For impounding reservoirs, families of curves are provided to facilitate the estimation of storage requirements as a function of demand and the ratio of the 7-day, 2-year low flow to the mean annual flow. Information is provided with which to evaluate separately the effects of evaporation on storage requirements. Comparisons of storage requirements for impounding reservoirs determined by nonsequential-mass-curve-analysis techniques with storage requirements determined by annual-mass-curve techniques that employ probability routing to account for carryover-storage requirements indicate that large differences in computed required storages can result from the two methods, particularly for conditions where demand cannot be met from within-year storage. For side-channel reservoirs, tables of demand-storage-frequency information are provided for a primary pump relation consisting of one variable-speed pump with a pumping capacity that ranges from 0.1 to 20 times demand. Tables of adjustment ratios are provided to facilitate determination of storage requirements for 19 other pump sets consisting of assorted combinations of fixed-speed pumps or variable-speed pumps with aggregate pumping capacities smaller than or equal to the primary pump relation. The effects of evaporation on side-channel reservoir storage requirements are incorporated into the storage-requirement estimates. The effects of an instream-flow requirement equal to the 80-percent-duration flow are also incorporated into the storage-requirement estimates.
Modeling photoionization of aqueous DNA and its components.
Pluhařová, Eva; Slavíček, Petr; Jungwirth, Pavel
2015-05-19
Radiation damage to DNA is usually considered in terms of UVA and UVB radiation. These ultraviolet rays, which are part of the solar spectrum, can indeed cause chemical lesions in DNA, triggered by photoexcitation particularly in the UVB range. Damage can, however, be also caused by higher energy radiation, which can ionize directly the DNA or its immediate surroundings, leading to indirect damage. Thanks to absorption in the atmosphere, the intensity of such ionizing radiation is negligible in the solar spectrum at the surface of Earth. Nevertheless, such an ionizing scenario can become dangerously plausible for astronauts or flight personnel, as well as for persons present at nuclear power plant accidents. On the beneficial side, ionizing radiation is employed as means for destroying the DNA of cancer cells during radiation therapy. Quantitative information about ionization of DNA and its components is important not only for DNA radiation damage, but also for understanding redox properties of DNA in redox sensing or labeling, as well as charge migration along the double helix in nanoelectronics applications. Until recently, the vast majority of experimental and computational data on DNA ionization was pertinent to its components in the gas phase, which is far from its native aqueous environment. The situation has, however, changed for the better due to the advent of photoelectron spectroscopy in liquid microjets and its most recent application to photoionization of aqueous nucleosides, nucleotides, and larger DNA fragments. Here, we present a consistent and efficient computational methodology, which allows to accurately evaluate ionization energies and model photoelectron spectra of aqueous DNA and its individual components. After careful benchmarking, the method based on density functional theory and its time-dependent variant with properly chosen hybrid functionals and polarizable continuum solvent model provides ionization energies with accuracy of 0.2-0.3 eV, allowing for faithful modeling and interpretation of DNA photoionization. The key finding is that the aqueous medium is remarkably efficient in screening the interactions within DNA such that, unlike in the gas phase, ionization of a base, nucleoside, or nucleotide depends only very weakly on the particular DNA context. An exception is the electronic interaction between neighboring bases which can lead to sequence-specific effects, such as a partial delocalization of the cationic hole upon ionization enabled by presence of adjacent bases of the same type.
Electron impact ionization of O2 and the interference effect from forward-backward asymmetry
NASA Astrophysics Data System (ADS)
Chowdhury, Madhusree Roy; Tribedi, Lokesh C.
2017-08-01
Absolute double differential cross sections (DDCSs) of secondary electrons emitted from O2 under the impact of 7 keV electrons were measured for different emission angles between 30° and 145° having energies from 1-600 eV. The forward-backward angular asymmetry was observed from angular distribution of the DDCS of secondary electrons. The asymmetry parameter, thus obtained from the DDCS of two complementary angles, showed a clear signature of interference oscillation. The Cohen-Fano model of Young type electron interference at a molecular double slit is found to provide a good fit to the observed oscillatory structures. The present observation is in qualitative agreement with the recent results obtained from photoionization.
van Haaften, Gijs; Vastenhouw, Nadine L.; Nollen, Ellen A. A.; Plasterk, Ronald H. A.; Tijsterman, Marcel
2004-01-01
Here, we describe a systematic search for synthetic gene interactions in a multicellular organism, the nematode Caenorhabditis elegans. We established a high-throughput method to determine synthetic gene interactions by genome-wide RNA interference and identified genes that are required to protect the germ line against DNA double-strand breaks. Besides known DNA-repair proteins such as the C. elegans orthologs of TopBP1, RPA2, and RAD51, eight genes previously unassociated with a double-strand-break response were identified. Knockdown of these genes increased sensitivity to ionizing radiation and camptothecin and resulted in increased chromosomal nondisjunction. All genes have human orthologs that may play a role in human carcinogenesis. PMID:15326288
The role of Upper Hybrid Turbulence on HF Artificial Ionization
NASA Astrophysics Data System (ADS)
Papadopoulos, Konstantinos Dennis; Najmi, Amir; Eliasson, Bengt; Milikh, Gennady
2016-07-01
One of the most fascinating and scientifically interesting phenomena of active space experiments is the discovery of artificial ionization by Todd Pedersen when the HAARP ERP reached the GW level. The phenomenon has been well documented experimentally. A theoretical model based on ionization by energetic electrons accelerated by 50-100 V/m localized electric fields due to Strong Langmuir Turbulence (SLT) near the reflection surface of the HF pump wave, reproduced the observed dynamics of the descending plasma layer quite accurately. A major defect of the model was that the electron temperature in the SLT region was a free parameter. When taken as the 2000 K representing the ambient electron temperature the SLT driven electron flux was insufficient to produce ionization. An equivalent electron temperature of 5000 K or higher was necessary to reproduce the observations. The needed electron heating was attributed to the interaction of the HF at the Upper Hybrid (UH) resonant layer, approximately 5 Km below the reflection region where the HF electric field is perpendicular to the ambient magnetic field. The heated electrons expanded upwards along the magnetic field line and interacted with SLT fields near the resonance region. A consequence of this defect was that the theory could not explain the puzzling double resonance effect. Namely the observation that the ionization level was much stronger when the HF frequency and the UH resonance were a multiple of the electron cyclotron frequency. To remedy this we used a series of Vlasov simulations to explore the HF-plasma interaction in the vicinity of the UH resonance. The simulations followed the evolution of the spectral density of the electric field over a 7.5 MHz frequency band and cm scale lengths and of the electron distribution function over one millisecond for both double resonant and non-resonant cases. Many new features were revealed by the analysis of the simulations such as: 1. Broadening of the wave-number spectral region at the at the UH frequency 2. Excitation of all Bernstein modes associated with cyclotron frequency harmonics both below and above the UH frequency for both the resonant and non0resonant cases. 3. Moderate electron heating, in the form of bulk heating caused by first Bernstein mode, although its wave intensity is more than 20 dB lower than the intensity of the UH branch for all non-resonant cases. 4. Strong generation of non-thermal tails for the resonant cases, by the UH waves downshifted by the lower hybrid frequency when the downshifted frequency was equal to an harmonic of the electron gyro-frequency. The new UH turbulence resolves several f the mysteries associated with artificial ionization and suggests several new observations. Acknowledgment:Work supported by AFOSR MURI grant FA95501410019.
X-Rays from the Location of the Double-humped Transient ASASSN-15lh
NASA Astrophysics Data System (ADS)
Margutti, R.; Metzger, B. D.; Chornock, R.; Milisavljevic, D.; Berger, E.; Blanchard, P. K.; Guidorzi, C.; Migliori, G.; Kamble, A.; Lunnan, R.; Nicholl, M.; Coppejans, D. L.; Dall'Osso, S.; Drout, M. R.; Perna, R.; Sbarufatti, B.
2017-02-01
We present the detection of persistent soft X-ray radiation with {L}x˜ {10}41-1042 erg s-1 at the location of the extremely luminous, double-humped transient ASASSN-15lh as revealed by Chandra and Swift. We interpret this finding in the context of observations from our multiwavelength campaign, which revealed the presence of weak narrow nebular emission features from the host-galaxy nucleus and clear differences with respect to superluminous supernova optical spectra. Significant UV flux variability on short timescales detected at the time of the rebrightening disfavors the shock interaction scenario as the source of energy powering the long-lived UV emission, while deep radio limits exclude the presence of relativistic jets propagating into a low-density environment. We propose a model where the extreme luminosity and double-peaked temporal structure of ASASSN-15lh is powered by a central source of ionizing radiation that produces a sudden change in the ejecta opacity at later times. As a result, UV radiation can more easily escape, producing the second bump in the light curve. We discuss different interpretations for the intrinsic nature of the ionizing source. We conclude that, if the X-ray source is physically associated with the optical-UV transient, then ASASSN-15lh most likely represents the tidal disruption of a main-sequence star by the most massive spinning black hole detected to date. In this case, ASASSN-15lh and similar events discovered in the future would constitute the most direct probes of very massive, dormant, spinning, supermassive black holes in galaxies. Future monitoring of the X-rays may allow us to distinguish between the supernova hypothesis and the hypothesis of a tidal disruption event.
X-Rays from the Location of the Double-humped Transient ASASSN-15lh
Margutti, R.; Metzger, B. D.; Chornock, R.; Milisavljevic, D.; Berger, E.; Blanchard, P. K.; Guidorzi, C.; Migliori, G.; Kamble, A.; Lunnan, R.; Nicholl, M.; Coppejans, D. L.; Dall’Osso, S.; Drout, M. R.; Perna, R.; Sbarufatti, B.
2017-01-01
We present the detection of persistent soft X-ray radiation with Lx ~ 1041–1042 erg s−1 at the location of the extremely luminous, double-humped transient ASASSN-15lh as revealed by Chandra and Swift. We interpret this finding in the context of observations from our multiwavelength campaign, which revealed the presence of weak narrow nebular emission features from the host-galaxy nucleus and clear differences with respect to superluminous supernova optical spectra. Significant UV flux variability on short timescales detected at the time of the rebrightening disfavors the shock interaction scenario as the source of energy powering the long-lived UV emission, while deep radio limits exclude the presence of relativistic jets propagating into a low-density environment. We propose a model where the extreme luminosity and double-peaked temporal structure of ASASSN-15lh is powered by a central source of ionizing radiation that produces a sudden change in the ejecta opacity at later times. As a result, UV radiation can more easily escape, producing the second bump in the light curve. We discuss different interpretations for the intrinsic nature of the ionizing source. We conclude that, if the X-ray source is physically associated with the optical–UV transient, then ASASSN-15lh most likely represents the tidal disruption of a main-sequence star by the most massive spinning black hole detected to date. In this case, ASASSN-15lh and similar events discovered in the future would constitute the most direct probes of very massive, dormant, spinning, supermassive black holes in galaxies. Future monitoring of the X-rays may allow us to distinguish between the supernova hypothesis and the hypothesis of a tidal disruption event. PMID:28966348
Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A
2011-06-03
Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. 2011 Elsevier B.V. All rights reserved.
The advanced thermionic converter with microwave power as an auxiliary ionization source
NASA Technical Reports Server (NTRS)
Manikopoulos, C. N.; Hatziprocopiou, M.; Chiu, H. S.; Shaw, D. T.
1978-01-01
In the search for auxiliary sources of ionization for the advanced thermionic converter plasma, as required for terrestial applications, the use of externally applied microwave power is considered. The present work is part of the advanced model thermionic converter development research currently performed at the laboratory for Power and Environmental Studies at SUNY Buffalo. Microwave power in the frequency range 1-3 GHz is used to externally pump a thermionic converter and the results are compared to the theoretical model proposed by Lam (1976) in describing the thermionic converter plasma. The electron temperature of the plasma is found to be raised considerably by effective microwave heating which results in the disappearance of the double sheath ordinarily erected in front of the emitter. The experimental data agree satisfactorily with theory in the low current region.
Multiband counterparts of two eclipsing ultraluminous X-ray sources in M 51
NASA Astrophysics Data System (ADS)
Urquhart, R.; Soria, R.; Johnston, H. M.; Pakull, M. W.; Motch, C.; Schwope, A.; Miller-Jones, J. C. A.; Anderson, G. E.
2018-04-01
We present the discovery and interpretation of ionized nebulae around two ultraluminous X-ray sources in M 51; both sources share the rare property of showing X-ray eclipses by their companion stars and are therefore prime targets for follow-up studies. Using archival Hubble Space Telescope images, we found an elongated, 100-pc-long emission-line structure associated with one X-ray source (CXOM51 J132940.0+471237; ULX-1 for simplicity), and a more circular, ionized nebula at the location of the second source (CXOM51 J132939.5+471244; ULX-2 for simplicity). We observed both nebulae with the Large Binocular Telescope's Multi-Object Double Spectrograph. From our analysis of the optical spectra, we argue that the gas in the ULX-1 bubble is shock-ionized, consistent with the effect of a jet with a kinetic power of ≈2 × 1039 erg s-1. Additional X-ray photoionization may also be present, to explain the strength of high-ionization lines such as He II λ4686 and [Ne V] λ3426. On the other hand, the emission lines from the ULX-2 bubble are typical for photoionization by normal O stars suggesting that the nebula is actually an H II region not physically related to the ULX but is simply a chance alignment. From archival Very Large Array data, we also detect spatially extended, steep-spectrum radio emission at the location of the ULX-1 bubble (consistent with its jet origin), but no radio counterpart for ULX-2 (consistent with the lack of shock-ionized gas around that source).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plotkin, Richard M.; Gallo, Elena; Shemmer, Ohad
Over the past 15 yr, examples of exotic radio-quiet quasars with intrinsically weak or absent broad emission line regions (BELRs) have emerged from large-scale spectroscopic sky surveys. Here, we present spectroscopy of seven such weak emission line quasars (WLQs) at moderate redshifts (z = 1.4–1.7) using the X-shooter spectrograph, which provides simultaneous optical and near-infrared spectroscopy covering the rest-frame ultraviolet (UV) through optical. These new observations effectively double the number of WLQs with spectroscopy in the optical rest-frame, and they allow us to compare the strengths of (weak) high-ionization emission lines (e.g., C iv) to low-ionization lines (e.g., Mg ii,more » Hβ, Hα) in individual objects. We detect broad Hβ and Hα emission in all objects, and these lines are generally toward the weaker end of the distribution expected for typical quasars (e.g., Hβ has rest-frame equivalent widths ranging from 15–40 Å). However, these low-ionization lines are not exceptionally weak, as is the case for high-ionization lines in WLQs. The X-shooter spectra also display relatively strong optical Fe ii emission, Hβ FWHM ≲ 4000 km s{sup −1}, and significant C iv blueshifts (≈1000–5500 km s{sup −1}) relative to the systemic redshift; two spectra also show elevated UV Fe ii emission, and an outflowing component to their (weak) Mg ii emission lines. These properties suggest that WLQs are exotic versions of “wind-dominated” quasars. Their BELRs either have unusual high-ionization components, or their BELRs are in an atypical photoionization state because of an unusually soft continuum.« less
Zhu, Wei; Xu, Jing; Ge, Yangyang; Cao, Han; Ge, Xin; Luo, Judong; Xue, Jiao; Yang, Hongying; Zhang, Shuyu; Cao, Jianping
2014-11-01
Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent of green tea, is a potent antioxidant and free radical scavenger that may have therapeutic applications for the treatment of many disorders. Radiation therapy is widely used for the treatment of various types of cancers; however, radiation-induced skin injury remains a serious concern. EGCG has not yet been reported as protecting skin cells against ionizing radiation. In the present study, we investigated whether EGCG confers cytoprotection against ionizing radiation. We found that, compared with the control, pretreatment with EGCG significantly enhanced the viability of human skin cells that were irradiated with X-rays, and decreased apoptosis induced by X-ray irradiation. Mito-Tracker assay showed that EGCG suppressed the damage to mitochondria induced by ionizing radiation via upregulation of SOD2. Reactive oxygen species (ROS) in HaCaT cells were significantly reduced when pretreated with EGCG before irradiation. Radiation-induced γH2AX foci, which are representative of DNA double-strand breaks, were decreased by pretreatment with EGCG. Furthermore, EGCG induced the expression of the cytoprotective molecule heme oxygenase-1 (HO-1) in a dose-dependent manner via transcriptional activation. HO-1 knockdown or treatment with the HO-1 inhibitor tin protoporphyrin (SnPPIX) reversed the protective role of EGCG, indicating an important role for HO-1. These results suggest that EGCG offers a new strategy for protecting skin against ionizing radiation. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
NASA Technical Reports Server (NTRS)
Dar, M. E.; Jorgensen, T. J.
1995-01-01
Using the radiomimetic drug, bleomycin, we have determined the mutagenic potential of DNA strand breaks in the shuttle vector pZ189 in human fibroblasts. The bleomycin treatment conditions used produce strand breaks with 3'-phosphoglycolate termini as > 95% of the detectable dose-dependent lesions. Breaks with this end group represent 50% of the strand break damage produced by ionizing radiation. We report that such strand breaks are mutagenic lesions. The type of mutation produced is largely determined by the type of strand break on the plasmid (i.e. single versus double). Mutagenesis studies with purified DNA forms showed that nicked plasmids (i.e. those containing single-strand breaks) predominantly produce base substitutions, the majority of which are multiples, which presumably originate from error-prone polymerase activity at strand break sites. In contrast, repair of linear plasmids (i.e. those containing double-strand breaks) mainly results in deletions at short direct repeat sequences, indicating the involvement of illegitimate recombination. The data characterize the nature of mutations produced by single- and double-strand breaks in human cells, and suggests that deletions at direct repeats may be a 'signature' mutation for the processing of DNA double-strand breaks.
Vibration Based Sun Gear Damage Detection
NASA Technical Reports Server (NTRS)
Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll
2013-01-01
Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.
A multiple technique approach to the analysis of urinary calculi.
Rodgers, A L; Nassimbeni, L R; Mulder, K J
1982-01-01
10 urinary calculi have been qualitatively and quantitatively analysed using X-ray diffraction, infra-red, scanning electron microscopy, X-ray fluorescence, atomic absorption and density gradient procedures. Constituents and compositional features which often go undetected due to limitations in the particular analytical procedure being used, have been identified and a detailed picture of each stone's composition and structure has been obtained. In all cases at least two components were detected suggesting that the multiple technique approach might cast some doubt as to the existence of "pure" stones. Evidence for a continuous, non-sequential deposition mechanism has been detected. In addition, the usefulness of each technique in the analysis of urinary stones has been assessed and the multiple technique approach has been evaluated as a whole.
Padula, Gisel; Ponzinibbio, María Virginia; Seoane, Analia I
2016-08-01
Ionizing radiation (IR) induces DNA damage through production of single and double-strand breaks and reactive oxygen species (ROS). Folic acid (FA) prevents radiation-induced DNA damage by modification of DNA synthesis and/or repair and as a radical scavenger. We hypothesized that in vitro supplementation with FA will decrease the sensitivity of cells to genetic damage induced by low dose of ionizing radiation. Annexin V, comet and micronucleus assays were performed in cultured CHO cells. After 7 days of pre-treatment with 0, 100, 200 or 300 nM FA, cultures were exposed to radiation (100 mSv). Two un-irradiated controls were executed (0 and 100 nM FA). Data were statistically analyzed with X2-test and linear regression analysis (P 0.05). We observed a significantly decreased frequency of apoptotic cells with the increasing FA concentration (P <0.05). The same trend was observed when analyzing DNA damage and chromosomal instability (P <0.05 for 300 nM). Only micronuclei frequencies showed significant differences for linear regression analysis (R2=94.04; P <0.01). Our results have demonstrated the radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro; folate status should be taken into account when studying the effect of low dose radiation in environmental or occupational exposure.
Ward, R L; Yeager, J G; Ashley, C S
1981-01-01
Two studies were carried out to determine the influence of moisture content of the survival of bacteria in raw wastewater sludge. The first study involved the effect of water loss by evaporation on the bacterial population. The second used these dewatered samples to measure the effects of moisture content on the inactivation of bacteria sludge by ionizing radiation. Both studies involved survival measurements of six representative fecally associated bacteria grown separately in sterilized sludge as well as survival data on bacteria indigenous to sludge. Growth of bacteria was stimulated in sludge during the initial phase of moisture removal by evaporation, but the reduction of moisture content below about 50% by weight caused a proportional decrease in bacterial numbers. In comparison with the original sludge, this decrease reached about one-half to one order of magnitude in all dried samples except those containing Proteus mirabilis, which decreased about four orders of magnitude. The rates of inactivation of bacteria by ionizing radiation in sludge were usually modified to some degrees by variations in moisture content. Most bacteria were found to be somewhat protected from ionizing radiation at reduced moisture levels. The largest effect was found with Salmonella typhimurium, whose radiation resistance approximately doubled in dried sludge. However, no excessively large D10 values were found for any bacterial species tested. PMID:6789765
NASA Astrophysics Data System (ADS)
Jing, Qingli; Bello, Roger Y.; Martín, Fernando; Palacios, Alicia; Madsen, Lars Bojer
2018-04-01
Recent research interests have been raised in uncovering and controlling ultrafast dynamics in excited neutral molecules. In this work we generalize the Monte Carlo wave packet (MCWP) approach to XUV-pump-IR-probe schemes to simulate the process of dissociative double ionization of H2 where singly excited states in H2 are involved. The XUV pulse is chosen to resonantly excite the initial ground state of H2 to the lowest excited electronic state of 1Σu + symmetry in H2 within the Franck-Condon region. The delayed intense IR pulse couples the excited states of 1Σu + symmetry with the nearby excited states of 1Σg + symmetry. It also induces the first ionization from H2 to H2 + and the second ionization from H2 + to H++H+. To reduce the computational costs in the MCWP approach, a sampling method is proposed to determine in time the dominant ionization events from H2 to H2+. By conducting a trajectory analysis, which is a unique possibility within the MCWP approach, the origins of the characteristic features in the nuclear kinetic energy release spectra are identified for delays ranging from 0 to 140 fs and the nuclear dynamics in the singly excited states in H2 is mapped out.
DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, K. L.; Shields, G. A.; Salviander, S.
Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotatingmore » ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.« less
Liquid xenon purification, de-radonation (and de-kryptonation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pocar, Andrea, E-mail: pocar@umass.edu; Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550
Liquid xenon detectors are at the forefront of rare event physics, including searches for neutrino-less double beta decay and WIMP dark matter. The xenon for these experiments needs to be purified from chemical impurities such as electronegative atoms and molecules, which absorb ionization electrons, and VUV (178 nm) scintillation light-absorbing chemical species. In addition, superb purification from radioactive impurities is required. Particularly challenging are radioactive noble isotopes ({sup 85}Kr,{sup 39,42}Ar,{sup 220,222}Rn). Radon is a particularly universal problem, due to the extended decay sequence of its daughters and its ubiquitous presence in detector materials. Purification and de-radonation of liquid xenon aremore » addressed with particular focus on the experience gained with the EXO-200 neutrino-less double beta decay detector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, I.; Quevedo, H. J.; Feldman, S.
2013-12-15
Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental datamore » characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.« less
Ma, Yan; Li, Peibo; Chen, Dawei; Fang, Tiezheng; Li, Haitian; Su, Weiwei
2006-01-13
A highly sensitive and specific electrospray ionization (ESI) liquid chromatography-tandem mass spectrometry (LC/MS/MS) method for quantitation of naringenin (NAR) and an explanation for the double peaks phenomenon was developed and validated. NAR was extracted from rat plasma and tissues along with the internal standard (IS), hesperidin, with ethyl acetate. The analytes were analyzed in the multiple-reaction-monitoring (MRM) mode as the precursor/product ion pair of m/z 273.4/151.3 for NAR and m/z 611.5/303.3 for the IS. The assay was linear over the concentration range of 5-2500 ng/mL. The lower limit quantification was 5 ng/mL, available for plasma pharmacokinetics of NAR in rats. Accuracy in within- and between-run precisions showed good reproducibility. When NAR was administered orally, only little and predominantly its glucuronidation were into circulation in the plasma. There existed double peaks phenomenon in plasma concentration-time curve leading to the relatively slow elimination of NAR in plasma. The results showed that there was a linear relationship between the AUC of total NAR and dosages. And the double peaks are mainly due to enterohepatic circulation.
The Enriched Xenon Observatory: EXO-200 and Ba+ tagging
NASA Astrophysics Data System (ADS)
Dolinski, M. J.; EXO Collaboration
2012-08-01
The Enriched Xenon Observatory (EXO) is a proposed ton-scale double beta decay experiment with a tentative design sensitivity to the Majorana mass of ˜10 meV. The first phase of EXO is EXO-200, which uses 200 kg of Xe enriched to 80% in 136Xe to search for neutrinoless double beta decay. EXO-200 is a liquid Xe time projection chamber with the ability to detect both scintillation and ionization signals. The detector is constructed from ultra-low background materials and is currently installed at the Waste Isolation Pilot Plant, a salt mine with a 1600 meter water equivalent overburden. The projected 2 year sensitivity for EXO-200 is T1/20ν>6.4×1025 y at 90% confidence level. Looking toward a ton-scale EXO, one unique feature of the experiment is the proposal to identify the barium daughter produced by 136Xe double beta decay on an event-by-event basis. This technique will allow for the elimination of all backgrounds other than the background from the two-neutrino double beta decay spectrum. The EXO Collaboration is exploring a number of options to implement Ba-daughter tagging in the next generation EXO experiment.
New Technique for Barium Daughter Ion Identification in a Liquid Xe-136 Double Beta Decay Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fairbank, William
2016-06-08
This work addresses long-standing issues of fundamental interest in elementary particle physics. The most important outcome of this work is a new limit on neutrinoless double beta decay. This is an extremely rare and long-sought-after type of radioactive decay. If discovered, it would require changes in the standard model of the elementary constituents of matter, and would prove that neutrinos and antineutrinos are the same, a revolutionary concept in particle physics. Neutrinos are major components of the matter in the universe that are so small and so weakly interacting with other matter that their masses have not yet been discovered.more » A discovery of neutrinoless double beta decay could help determine the neutrino masses. An important outcome of the work on this project was the Colorado State University role in operating the EXO-200 neutrinoless double beta decay experiment and in analysis of the data from this experiment. One type of double beta decay of the isotope 136Xe, the two-neutrino variety, was discovered in this work. Although the other type of double beta decay, the neutrinoless variety, was not yet discovered in this work, a world’s best sensitivity of 1.9x10 25 year half-life was obtained. This result rules out a previous claim of a positive result in a different isotope. This work also establishes that the masses of the neutrinos are less than one millionth of that of electrons. A unique EXO-200 analysis, in which the CSU group had a leading role, has established for the first time ever in a liquid noble gas the fraction of daughter atoms from alpha and beta decay that are ionized. This result has important impact on other pending studies, including nucleon decay and barium tagging. Novel additional discoveries include multiphoton ionization of liquid xenon with UV pulsed lasers, which may find application in calibration of future noble liquid detectors, and studies of association and dissociation reactions of Ba + ions in gaseous xenon. Through this project, we are substantially closer to demonstrating “barium tagging”, i.e., detection of single daughter 136Ba atoms from 136Xe double beta decay. Milestones achieved include obtaining spectra of small numbers of Ba atoms and cryoprobe advances toward trapping single 136Ba atoms in solid xenon and probe extraction for detection. One of the other benefits to society is the training of six Ph.D. students in a variety of state-of-the-art technologies, half under primary support of this grant and half with partial support, with four finishing their Ph.D. degrees and two well on their way.« less
Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications
NASA Astrophysics Data System (ADS)
Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul
2015-09-01
The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.
Absolute electron-impact total ionization cross sections of chlorofluoromethanes
NASA Astrophysics Data System (ADS)
Martínez, Roberto; Sierra, Borja; Redondo, Carolina; Rayo, María N. Sánchez; Castaño, Fernando
2004-12-01
An experimental study is reported on the electron-impact total ionization cross sections (TICSs) of CCl4, CCl3F, CCl2F2, and CClF3 molecules. The kinetic energy of the colliding electrons was in the 10-85 eV range. TICSs were obtained as the sum of the partial ionization cross sections of all fragment ions, measured and identified in a linear double focusing time-of-flight mass spectrometer. The resulting TICS profiles—as a function of the electron-impact energy—have been compared both with those computed by ab initio and (semi)empirical methods and with the available experimental data. The computational methods used include the binary-encounter-Bethe (BEB) modified to include atoms with principal quantum numbers n⩾3, the Deutsch and Märk (DM) formalism, and the modified additivity rule (MAR). It is concluded that both modified BEB and DM methods fit the experimental TICS for (CF4), CClF3, CCl2F2, CCl3F, and CCl4 to a high accuracy, in contrast with the poor accord of the MAR method. A discussion on the factors influencing the discrepancies of the fittings is presented.
NASA Astrophysics Data System (ADS)
Lerner, Eric J.; Hassan, Syed M.; Karamitsos, Ivana; Von Roessel, Fred
2017-10-01
To reduce impurities in the dense plasma focus FF-1 device, we used monolithic tungsten electrodes with pre-ionization. With this new set-up, we demonstrated a three-fold reduction of impurities by mass and a ten-fold reduction by ion number. FF-1 produced a 50% increase in fusion yield over our previous copper electrodes, both for a single shot and for a mean of ten consecutive shots with the same conditions. These results represent a doubling of fusion yield as compared with any other plasma focus device with the same 60 kJ energy input. In addition, FF-1 produced a new single-shot record of 240 ± 20 keV for mean ion energy, a record for any confined fusion plasma, using any device, and a 50% improvement in ten-shot mean ion energy. With a deuterium-nitrogen mix and corona-discharge pre-ionization, we were also able to reduce the standard deviation in the fusion yield to about 15%, a four-fold reduction over the copper-electrode results. We intend to further reduce impurities with new experiments using microwave treatment of tungsten electrodes, followed by the use of beryllium electrodes.
Direct Real-Time Detection of Vapors from Explosive Compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewing, Robert G.; Clowers, Brian H.; Atkinson, David A.
2013-10-03
The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX and nitroglycerine along with various compositions containing these substances is demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a non-radioactive ionization source and coupled to a mass spectrometer. Direct vapor detection was demonstrated in less than 5 seconds at ambient temperature without sample pre-concentration. The several seconds of residence time of analytes in the AFT provides a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ionsmore » (NO3- and NO3-•HNO3), enables highly sensitive explosives detection. Observed signals from diluted explosive vapors indicate detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284 and 289 for tetryl, PETN, RDX and NG respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations, including double base propellants, plastic explosives and commercial blasting explosives using SIM for the NG, PETN and RDX product ions.« less
Direct real-time detection of vapors from explosive compounds.
Ewing, Robert G; Clowers, Brian H; Atkinson, David A
2013-11-19
The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX, and nitroglycerine along with various compositions containing these substances was demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a nonradioactive ionization source coupled to a mass spectrometer. Direct vapor detection was accomplished in less than 5 s at ambient temperature without sample preconcentration. The several seconds of residence time of analytes in the AFT provided a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ions (NO3(-) and NO3(-)·HNO3), enabled highly sensitive explosives detection from explosive vapors present in ambient laboratory air. Observed signals from diluted explosive vapors indicated detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284, and 289 for tetryl, PETN, RDX, and NG, respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations sampled in ambient laboratory air, including double base propellants, plastic explosives, and commercial blasting explosives using SIM for the NG, PETN, and RDX product ions.
UV + V UV double-resonance studies of autoionizing Rydberg states of the hydroxyl radical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Amy M.; Liu, Fang; Lester, Marsha I., E-mail: milester@sas.upenn.edu
2016-05-14
The hydroxyl radical (OH) is a key oxidant in atmospheric and combustion chemistry. Recently, a sensitive and state-selective ionization method has been developed for detection of the OH radical that utilizes UV excitation on the A{sup 2}Σ{sup +}–X{sup 2}Π transition followed by fixed 118 nm vacuum ultraviolet (VUV) radiation to access autoionizing Rydberg states [J. M. Beames et al., J. Chem. Phys. 134, 241102 (2011)]. The present study uses tunable VUV radiation generated by four-wave mixing to examine the origin of the enhanced ionization efficiency observed for OH radicals prepared in specific A{sup 2}Σ{sup +} intermediate levels. The enhancement ismore » shown to arise from resonant excitation to distinct rotational and fine structure levels of two newly identified {sup 2}Π Rydberg states with an A{sup 3}Π cationic core and a 3d electron followed by ionization. Spectroscopic constants are derived and effects due to uncoupling of the Rydberg electron are revealed for the OH {sup 2}Π Rydberg states. The linewidths indicate a Rydberg state lifetime due to autoionization on the order of a picosecond.« less
van Haaften, Gijs; Romeijn, Ron; Pothof, Joris; Koole, Wouter; Mullenders, Leon H F; Pastink, Albert; Plasterk, Ronald H A; Tijsterman, Marcel
2006-07-11
Ionizing radiation is extremely harmful for human cells, and DNA double-strand breaks (DSBs) are considered to be the main cytotoxic lesions induced. Improper processing of DSBs contributes to tumorigenesis, and mutations in DSB response genes underlie several inherited disorders characterized by cancer predisposition. Here, we performed a comprehensive screen for genes that protect animal cells against ionizing radiation. A total of 45 C. elegans genes were identified in a genome-wide RNA interference screen for increased sensitivity to ionizing radiation in germ cells. These genes include orthologs of well-known human cancer predisposition genes as well as novel genes, including human disease genes not previously linked to defective DNA-damage responses. Knockdown of eleven genes also impaired radiation-induced cell-cycle arrest, and seven genes were essential for apoptosis upon exposure to irradiation. The gene set was further clustered on the basis of increased sensitivity to DNA-damaging cancer drugs cisplatin and camptothecin. Almost all genes are conserved across animal phylogeny, and their relevance for humans was directly demonstrated by showing that their knockdown in human cells results in radiation sensitivity, indicating that this set of genes is important for future cancer profiling and drug development.
Development of Solid Xenon Bolometers
NASA Astrophysics Data System (ADS)
Dolinski, Michelle; Hansen, Erin
2016-09-01
Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of liquid xenon detector technology is in the combination of ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a microscopic anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers operated at 10 mK are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. We present work toward the development and characterization of solid xenon bolometers at Drexel University. Funding for this project was provided by the Charles E. Kaufman Foundation of The Pittsburgh Foundation.
Optimal control of the strong-field ionization of silver clusters in helium droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truong, N. X.; Goede, S.; Przystawik, A.
Optimal control techniques combined with femtosecond laser pulse shaping are applied to steer and enhance the strong-field induced emission of highly charged atomic ions from silver clusters embedded in helium nanodroplets. With light fields shaped in amplitude and phase we observe a substantial increase of the Ag{sup q+} yield for q>10 when compared to bandwidth-limited and optimally stretched pulses. A remarkably simple double-pulse structure, containing a low-intensity prepulse and a stronger main pulse, turns out to produce the highest atomic charge states up to Ag{sup 20+}. A negative chirp during the main pulse hints at dynamic frequency locking to themore » cluster plasmon. A numerical optimal control study on pure silver clusters with a nanoplasma model converges to a similar pulse structure and corroborates that the optimal light field adapts to the resonant excitation of cluster surface plasmons for efficient ionization.« less
Inversion of the resonance line of Sr/+/ produced by optically pumping Sr atoms
NASA Technical Reports Server (NTRS)
Green, W. R.; Falcone, R. W.
1978-01-01
A description is presented of an experiment which demonstrates the selective production of excited-state ions by an optical absorption from neutrals. An inversion on the resonance line of Sr(+) was produced by laser excitation of a two-electron transition, followed by ionization of one of the excited electrons by the same laser. A pulsed, mode-locked laser operating at 2680 A was used to excite atoms from the Sr ground level. The same laser then ionized the excited atoms. The 2680-A pump beam was generated by frequency doubling the output of a synchronously pumped mode-locked dye laser in a KDP crystal. It is pointed out that the reported results are significant for the construction of vacuum-ultraviolet and X-ray lasers. Many of the proposed methods for making such lasers depend on the selective production of excited-state ions.
Strong field control of the interatomic Coulombic decay process in quantum dots
NASA Astrophysics Data System (ADS)
Haller, Anika; Chiang, Ying-Chih; Menger, Maximilian; Aziz, Emad F.; Bande, Annika
2017-01-01
In recent years the laser-induced interatomic Coulombic decay (ICD) process in paired quantum dots has been predicted (Bande, 2013). In this work we target the enhancement of ICD by scanning over a range of strong-field laser intensities. The GaAs quantum dots are modeled by a one-dimensional double-well potential in which simulations are done with the space-resolved multi-configuration time-dependent Hartree method including antisymmetrization to account for the fermions. As a novelty a complementary state-resolved ansatz is developed to consolidate the interpretation of transient state populations, widths obtained for the ICD and the competing direct ionization channel, and Fano peak profiles in the photoelectron spectra. The major results are that multi-photon processes are unimportant even for the strongest fields. Further, below- π to π pulses display the highest ICD efficiency while the direct ionization becomes less dominant.
Back bias induced dynamic and steep subthreshold swing in junctionless transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parihar, Mukta Singh; Kranti, Abhinav, E-mail: akranti@iiti.ac.in
In this work, we analyze back bias induced steep and dynamic subthreshold swing in junctionless double gate transistors operated in the asymmetric mode. This impact ionization induced dynamic subthreshold swing is explained in terms of the ratio between minimum hole concentration and peak electron concentration, and the dynamic change in the location of the conduction channel with applied front gate voltage. The reason for the occurrence of impact ionization at sub-bandgap drain voltages in silicon junctionless transistors is also accounted for. The optimum junctionless transistor operating at a back gate bias of −0.9 V, achieves over 5 orders of change inmore » drain current at a gate overdrive of 200 mV and drain bias of 1 V. These results for junctionless transistors are significantly better than those exhibited by silicon tunnel field effect transistors operating at the same drain bias.« less
NASA Astrophysics Data System (ADS)
Braenzel, J.; Barriga-Carrasco, M. D.; Morales, R.; Schnürer, M.
2018-05-01
We investigate, both experimentally and theoretically, how the spectral distribution of laser accelerated carbon ions can be filtered by charge exchange processes in a double foil target setup. Carbon ions at multiple charge states with an initially wide kinetic energy spectrum, from 0.1 to 18 MeV, were detected with a remarkably narrow spectral bandwidth after they had passed through an ultrathin and partially ionized foil. With our theoretical calculations, we demonstrate that this process is a consequence of the evolution of the carbon ion charge states in the second foil. We calculated the resulting spectral distribution separately for each ion species by solving the rate equations for electron loss and capture processes within a collisional radiative model. We determine how the efficiency of charge transfer processes can be manipulated by controlling the ionization degree of the transfer matter.
NASA Astrophysics Data System (ADS)
Ali, Esam; Nixon, Kate; Murray, Andrew; Ning, Chuangang; Colgan, James; Madison, Don
2015-10-01
We have recently examined electron-impact ionization of molecules that have one large atom at the center, surrounded by H nuclei (H2O , N H3 , C H4 ). All of these molecules have ten electrons; however, they vary in their molecular symmetry. We found that the triple-differential cross sections (TDCSs) for the highest occupied molecular orbitals (HOMOs) were similar, as was the character of the HOMO orbitals which had a p -type "peanut" shape. In this work, we examine ethane (C2H6 ) which is a molecule that has two large atoms surrounded by H nuclei, so that its HOMO has a double-peanut shape. The experiment was performed using a coplanar symmetric geometry (equal final-state energies and angles). We find the TDCS for ethane is similar to the single-center molecules at higher energies, and is similar to a diatomic molecule at lower energies.
The galaxy NGC 1566 - Distribution and kinematics of the ionized gas
NASA Astrophysics Data System (ADS)
Comte, G.; Duquennoy, A.
1982-10-01
H-alpha narrowband observations are the basis of a study of ionized hydrogen in the large spiral galaxy NGC 1566 which has yielded a catalog of 418 H II regions covering the main body of the galaxy, supplemented by 59 positions and estimated H-alpha luminosities for regions located in the pseudo-outer ring where no H-alpha plate is available. A discussion of luminosity function, diameter distribution and spiral structure notes evidence for a double two-armed spiral pattern. The plane of the galaxy appears warped, and the efficiency of the two different spiral patterns in star formation is different. A preliminary radial velocity field is determined from three interferograms in H-alpha light, and is found to be acceptably fitted by a simple bulge-plus-disk dynamical model in which the apparent disk mass-to-light ratio sharply increases from center to edge.
Main principles of developing exploitation models of semiconductor devices
NASA Astrophysics Data System (ADS)
Gradoboev, A. V.; Simonova, A. V.
2018-05-01
The paper represents primary tasks, solutions of which allow to develop the exploitation modes of semiconductor devices taking into account complex and combined influence of ionizing irradiation and operation factors. The structure of the exploitation model of the semiconductor device is presented, which is based on radiation and reliability models. Furthermore, it was shown that the exploitation model should take into account complex and combine influence of various ionizing irradiation types and operation factors. The algorithm of developing the exploitation model of the semiconductor devices is proposed. The possibility of creating the radiation model of Schottky barrier diode, Schottky field-effect transistor and Gunn diode is shown based on the available experimental data. The basic exploitation model of IR-LEDs based upon double AlGaAs heterostructures is represented. The practical application of the exploitation models will allow to output the electronic products with guaranteed operational properties.
NASA Astrophysics Data System (ADS)
Drzewicz, Przemyslaw; Trojanowicz, Marek; Zona, Robert; Solar, Sonja; Gehringer, Peter
2004-03-01
Electron beam (EB), ozone (O 3) and the combination EB/O 3 were used to study the oxidative decomposition of 2,4-dichlorophenoxyacetic acid (2,4-D) in local tap water. Using an EB treatment, a dose of 10 kGy was required for complete 2,4-D degradation, and a 90% conversion of organic chlorine into chloride ions. Using additionally 1.33 mmol dm -3 O 3 during irradiation, the same result was achieved with a dose of 2.7 kGy. The yields of products acetate and formate were almost doubled by the combined EB/O 3 treatment, compared to those obtained with the same dose by EB irradiation. Gamma radiolysis showed that the degradation dose was proportional to the initial concentration of 2,4-D in the range of 50-2260 μmol dm -3.
A New Theory of Mix in Omega Capsule Implosions
NASA Astrophysics Data System (ADS)
Knoll, Dana; Chacon, Luis; Rauenzahn, Rick; Simakov, Andrei; Taitano, William; Welser-Sherrill, Leslie
2014-10-01
We put forth a new mix model that relies on the development of a charge-separation electrostatic double-layer at the fuel-pusher interface early in the implosion of an Omega plastic ablator capsule. The model predicts a sizable pusher mix (several atom %) into the fuel. The expected magnitude of the double-layer field is consistent with recent radial electric field measurements in Omega plastic ablator implosions. Our theory relies on two distinct physics mechanisms. First, and prior to shock breakout, the formation of a double layer at the fuel-pusher interface due to fast preheat-driven ionization. The double-layer electric field structure accelerates pusher ions fairly deep into the fuel. Second, after the double-layer mix has occurred, the inward-directed fuel velocity and temperature gradients behind the converging shock transports these pusher ions inward. We first discuss the foundations of this new mix theory. Next, we discuss our interpretation of the radial electric field measurements on Omega implosions. Then we discuss the second mechanism that is responsible for transporting the pusher material, already mixed via the double-layer deep into the fuel, on the shock convergence time scale. Finally we make a connection to recent mix motivated experimental data on. This work conducted under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory, managed by LANS, LLC under Contract DE-AC52-06NA25396.
Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Y. Y.; Ning, L. N.; Wang, J. G.
2013-12-15
Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ε/I{sub 2p} (I{sub 2p} is the ionizationmore » energy of 2p state and ε is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δ{sub nl}{sup c}, corresponding to the special plasma condition when the bound state |nl just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δ{sub nl}{sup c}, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.« less
NASA Technical Reports Server (NTRS)
Rydberg, B.; Chatterjee, A. (Principal Investigator)
1996-01-01
The basic 30-nm chromatin fiber in the mammalian cell consists of an unknown (possibly helical) arrangement of nucleosomes, with about 1.2 kb of DNA per 10-nm length of fiber. Track-structure considerations suggest that interactions of single delta rays or high-LET particles with the chromatin fiber might result in the formation of multiple lesions spread over a few kilobases of DNA (see the accompanying paper: W.R. Holley and A. Chatterjee, Radiat. Res. 145, 188-199, 1996). In particular, multiple DNA double-strand breaks and single-strand breaks may form. To test this experimentally, primary human fibroblasts were labeled with [3H]thymidine and exposed at 0 degrees C to X rays or accelerated nitrogen or iron ions in the LET range of 97-440 keV/microns. DNA was isolated inside agarose plugs and subjected to agarose gel electrophoresis under conditions that allowed good separation of 0.1-2 kb size DNA. The bulk of DNA remained in the well or migrated only a small distance into the gel. It was found that DNA fragments in the expected size range were formed linearly with dose with an efficiency that increased with LET. A comparison of the yield of such fragments with the yield of total DNA double-strand breaks suggests that for the high-LET ions a substantial proportion (20-90%) of DNA double-strand breaks are accompanied within 0.1-2 kb by at least one additional DNA double-strand break. It is shown that these results are in good agreement with theoretical calculations based on treating the 30-nm chromatin fiber as the target for ionizing particles. Theoretical considerations also predict that the clusters will contain numerous single-strand breaks and base damages. It is proposed that such clusters be designated "regionally multiply damaged sites." Postirradiation incubation at 37 degrees C resulted in a decline in the number of short DNA fragments, suggesting a repair activity. The biological significance of regionally multiply damaged sites is presently unknown.
Non-random distribution of DNA double-strand breaks induced by particle irradiation
NASA Technical Reports Server (NTRS)
Lobrich, M.; Cooper, P. K.; Rydberg, B.; Chatterjee, A. (Principal Investigator)
1996-01-01
Induction of DNA double-strand breaks (dsbs) in mammalian cells is dependent on the spatial distribution of energy deposition from the ionizing radiation. For high LET particle radiations the primary ionization sites occur in a correlated manner along the track of the particles, while for X-rays these sites are much more randomly distributed throughout the volume of the cell. It can therefore be expected that the distribution of dsbs linearly along the DNA molecule also varies with the type of radiation and the ionization density. Using pulsed-field gel and conventional gel techniques, we measured the size distribution of DNA molecules from irradiated human fibroblasts in the total range of 0.1 kbp-10 Mbp for X-rays and high LET particles (N ions, 97 keV/microns and Fe ions, 150 keV/microns). On a mega base pair scale we applied conventional pulsed-field gel electrophoresis techniques such as measurement of the fraction of DNA released from the well (FAR) and measurement of breakage within a specific NotI restriction fragment (hybridization assay). The induction rate for widely spaced breaks was found to decrease with LET. However, when the entire distribution of radiation-induced fragments was analysed, we detected an excess of fragments with sizes below about 200 kbp for the particles compared with X-irradiation. X-rays are thus more effective than high LET radiations in producing large DNA fragments but less effective in the production of smaller fragments. We determined the total induction rate of dsbs for the three radiations based on a quantitative analysis of all the measured radiation-induced fragments and found that the high LET particles were more efficient than X-rays at inducing dsbs, indicating an increasing total efficiency with LET. Conventional assays that are based only on the measurement of large fragments are therefore misleading when determining total dsb induction rates of high LET particles. The possible biological significance of this non-randomness for dsb induction is discussed.
Karanam, Narasimha Kumar; Srinivasan, Kalayarasan; Ding, Lianghao; Sishc, Brock; Saha, Debabrata; Story, Michael D
2017-03-30
The use of tumor-treating fields (TTFields) has revolutionized the treatment of recurrent and newly diagnosed glioblastoma (GBM). TTFields are low-intensity, intermediate frequency, alternating electric fields that are applied to tumor regions and cells using non-invasive arrays. The predominant mechanism by which TTFields are thought to kill tumor cells is the disruption of mitosis. Using five non-small cell lung cancer (NSCLC) cell lines we found that there is a variable response in cell proliferation and cell killing between these NSCLC cell lines that was independent of p53 status. TTFields treatment increased the G2/M population, with a concomitant reduction in S-phase cells followed by the appearance of a sub-G1 population indicative of apoptosis. Temporal changes in gene expression during TTFields exposure was evaluated to identify molecular signaling changes underlying the differential TTFields response. The most differentially expressed genes were associated with the cell cycle and cell proliferation pathways. However, the expression of genes found within the BRCA1 DNA-damage response were significantly downregulated (P<0.05) during TTFields treatment. DNA double-strand break (DSB) repair foci increased when cells were exposed to TTFields as did the appearance of chromatid-type aberrations, suggesting an interphase mechanism responsible for cell death involving DNA repair. Exposing cells to TTFields immediately following ionizing radiation resulted in increased chromatid aberrations and a reduced capacity to repair DNA DSBs, which were likely responsible for at least a portion of the enhanced cell killing seen with the combination. These findings suggest that TTFields induce a state of 'BRCAness' leading to a conditional susceptibility resulting in enhanced sensitivity to ionizing radiation and provides a strong rationale for the use of TTFields as a combined modality therapy with radiation or other DNA-damaging agents.
Formation of nanograting in fused silica by temporally delayed femtosecond double-pulse irradiation
NASA Astrophysics Data System (ADS)
Wang, Haodong; Song, Juan; Li, Qin; Zeng, Xianglong; Dai, Ye
2018-04-01
A 1 kHz femtosecond double-pulse sequence irradiation is used to study the temporal evolution of nanograting in fused silica by controlling the delay times and polarization combinations of two independent beams from a Mach–Zehnder interferometer. A lateral laser-scan experiment with speed at 5 µm s‑1 and each pulse energy of 1 µJ is firstly performed with the delay time from sub-picosecond to 10 ps, and then the written nanostructures are systematically studied under a cross-polarized microscope because the intensity of birefringence signal nearly corresponds to optical retardance and development level of the induced nanograting. The trend shows that the induced nanogratings can continue developing with a decrease of delay time in the case of the linear polarization pulse arriving before. In another vertical laser-scan experiment at the same speed and pulse energy, the morphologies of nanogratings embedded in the lines are characterized by scanning electron microscope after mechanical polishing and chemical etching. The self-organized patterns have a commonly spatial period of 200–300 nm and the orientation is always perpendicular to the polarization of the first laser pulse, and the second pulse in each sequence seems to promote the as-formed nanograting developing further even if the polarized direction is different from the previous pulse. These new findings verify again that a localized memory effect can make positive feedback to reinforce the patterned nanostripes. In that process, the impact ionization from the seed electrons left by the first pulse excitation and the photoionization of self-trapped excitons with lower ionization threshold results in an increase of the re-excited carriers during the second pulse irradiation and the subsequent development of the as-formed nanograting. Our result provides further proofs for understanding the physical mechanism of nanograting strongly connection with the interplay on multiple ionization channels.
Moskovets, Eugene
2015-01-01
RATIONALE Understanding the mechanisms of MALDI promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample has been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laserless matrix-assisted ionization. METHODS An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser was turned off and MALDI sample was removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly- and doubly-charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. RESULTS The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. CONCLUSIONS The observations were partially consistent with a model of the supersonic jet from the inlet capillary accelerating detached particles to kinetic energies suitable for matrix-assisted hypersonic-velocity impact ionization. PMID:26212165
A Green's Function Approach to Simulate DNA Damage by the Indirect Effect
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cicinotta, Francis A.
2013-01-01
The DNA damage is of fundamental importance in the understanding of the effects of ionizing radiation. DNA is damaged by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research, many questions on the DNA damage by ionizing radiation remains. In the recent years, the Green's functions of the diffusion equation (GFDE) have been used extensively in biochemistry [1], notably to simulate biochemical networks in time and space [2]. In our future work on DNA damage, we wish to use an approach based on the GFDE to refine existing models on the indirect effect of ionizing radiation on DNA. To do so, we will use the code RITRACKS [3] developed at the NASA Johnson Space Center to simulate the radiation track structure and calculate the position of radiolytic species after irradiation. We have also recently developed an efficient Monte-Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state [4], which can be modified and adapted to simulate DNA damage by free radicals. To do so, we will use the known reaction rate constants between radicals (OH, eaq, H,...) and the DNA bases, sugars and phosphates and use the sampling algorithms to simulate the diffusion of free radicals and chemical reactions with DNA. These techniques should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.
Kill, Jade B; Oliveira, Izabela F; Tose, Lilian V; Costa, Helber B; Kuster, Ricardo M; Machado, Leandro F; Correia, Radigya M; Rodrigues, Rayza R T; Vasconcellos, Géssica A; Vaz, Boniek G; Romão, Wanderson
2016-09-01
The synthetic cannabinoids (SCs) represent the most recent advent of the new psychotropic substances (NPS) and has become popularly known to mitigate the effects of the Δ(9)-THC. The SCs are dissolved in organic solvents and sprayed in a dry herbal blend. However, little information is reported on active ingredients of SCs as well as the excipients or diluents added to the herbal blend. In this work, the direct infusion electrospray ionization Fourier transform ion cyclotron mass spectrometry technique (ESI-FT-ICR MS) was applied to explore the chemical composition of nine samples of herbal extract blends, where a total of 11 SCs (UR-144, JWH-073, XLR-11, JWH-250, JWH-122, AM-2201, AKB48, JWH-210, JWH-081, MAM-2201 and 5F-AKB48) were identified in the positive ionization mode, ESI(+), and other 44 chemical species (saturated and unsaturated fatty acids, sugars, flavonoids, etc.) were detected in the negative ionization mode, ESI(-). Additionally, CID experiments were performed, and fragmentation pathways were proposed to identify the connectivity of SCs. Thus, the direct infusion ESI-FT-ICR MS technique is a powerful tool in forensic chemistry that enables the rapid and unequivocal way for the determination of molecular formula, the degree of unsaturation (DBE-double bond equivalent) and exact mass (<1ppm) of a total of 55 chemical species without the prior separation step. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Doc Richardson; Nancy W. Hinman; Jill R. Scott
2009-10-01
With the discovery of Na-sulfate minerals on Mars and Europa, recent studies using these minerals have focused on their ability to assist in the detection of bio/organic signatures. This study further investigates the ability of thenardite (Na2SO4) to effectively facilitate the ionization and identification of aromatic amino acids (phenylalanine, tyrosine, and tryptophan) using a technique called geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform mass spectrometry (FTICR-MS). This technique is based on the ability of a mineral host to facilitate the ionization and detection of bio/organic molecules. Spectra obtained from each aromatic amino acid alone and in combinationmore » with thenardite show differences in ionization mechanism and fragmentation patterns. These differences are due to chemical and structural differences between the aromatic side chains of their respective amino acid. Tyrosine and tryptophan when combined with thenardite were observed to undergo cation-attachment ([M+Na]+), due to the high alkali affinity of their aromatic side chains. Subsequent cation substitution of the carboxyl group led to formation double cation-attached peaks ([M-H+Na]Na+). In contrast, phenylalanine mixed with thenardite showed no evidence of Na+ interaction. Understanding how codeposition of amino acids with thenardite can affect the observed mass spectra is important for future exploration missions that are likely to use laser desorption mass spectrometry to search for bio/organic compounds in extraterrestrial environments.« less
Simulation of Peptides at Aqueous Interfaces
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, M.; Chipot, C.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Behavior of peptides at water-membrane interfaces is of great interest in studies on cellular transport and signaling, membrane fusion, and the action of toxins and antibiotics. Many peptides, which exist in water only as random coils, can form sequence-dependent, ordered structures at aqueous interfaces, incorporate into membranes and self-assembly into functional units, such as simple ion channels. Multi -nanosecond molecular dynamics simulations have been carried out to study the mechanism and energetics of interfacial folding of both non-polar and amphiphilic peptides, their insertion into membranes and association into higher-order structures. The simulations indicate that peptides fold non-sequentially, often through a series of amphiphilic intermediates. They further incorporate into the membrane in a preferred direction as folded monomers, and only then aggregate into dimers and, possibly, further into "dimers of dimers".
Mean-field crack networks on desiccated films and their applications: Girl with a Pearl Earring.
Flores, J C
2017-02-15
Usual requirements for bulk and fissure energies are considered in obtaining the interdependence among external stress, thickness and area of crack polygons in desiccated films. The average area of crack polygons increases with thickness as a power-law of 4/3. The sequential fragmentation process is characterized by a topological factor related to a scaling finite procedure. Non-sequential overly tensioned (prompt) fragmentation is briefly discussed. Vermeer's painting, Girl with a Pearl Earring, is considered explicitly by using computational image tools and simple experiments and applying the proposed theoretical analysis. In particular, concerning the source of lightened effects on the girl's face, the left/right thickness layer ratio (≈1.34) and the stress ratio (≈1.102) are evaluated. Other master paintings are briefly considered.
Research on the properties and interactions of simple atomic and ionic systems
NASA Technical Reports Server (NTRS)
Novick, R.
1972-01-01
Simple ionic systems were studied, such as metastable autoionizing states of the negative He ion, two-photon decay spectrum of metastable He ion, optical excitation with low energy ions, and lifetime measurements of singly ionized Li and metastable He ion. Simple atomic systems were also investigated. Metastable autoionizing atomic energy levels in alkali elements were included, along with lifetime measurements of Cr-53, group 2A isotopes, and alkali metal atoms using level crossing and optical double resonance spectroscopy.
NASA Technical Reports Server (NTRS)
Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.
1999-01-01
The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.
Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A., E-mail: gpetersson@wesleyan.edu
2015-12-07
We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mE{sub h}) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies.
Hill, M.A.; O'Neill, P.; McKenna, W.G.
2016-01-01
Magnetic resonance imaging (MRI) is increasingly being used in cardiology to detect heart disease and guide therapy. It is mooted to be a safer alternative to imaging techniques, such as computed tomography (CT) or coronary angiographic imaging. However, there has recently been an increased interest in the potential long-term health risks of MRI, especially in the light of the controversy resulting from a small number of research studies reporting an increase in DNA damage following exposure, with calls to limit its use and avoid unnecessary examination, according to the precautionary principle. Overall the published data are somewhat limited and inconsistent; the ability of MRI to produce DNA lesions has yet to be robustly demonstrated and future experiments should be carefully designed to optimize sensitivity and benchmarked to validate and assess reproducibility. The majority of the current studies have focussed on the initial induction of DNA damage, and this has led to comparisons between the reported induction of γH2AX and implied double-strand break (DSB) yields produced following MRI with induction by imaging techniques using ionizing radiation. However, γH2AX is not only a marker of classical double-ended DSB, but also a marker of stalled replication forks and in certain circumstances stalled DNA transcription. Additionally, ionizing radiation is efficient at producing complex DNA damage, unique to ionizing radiation, with an associated reduction in repairability. Even if the fields associated with MRI are capable of producing DNA damage, the lesions produced will in general be simple, similar to those produced by endogenous processes. It is therefore inappropriate to try and infer cancer risk by simply comparing the yields of γH2AX foci or DNA lesions potentially produced by MRI to those produced by a given exposure of ionizing radiation, which will generally be more biologically effective and have a greater probability of leading to long-term health effects. As a result, it is important to concentrate on more relevant downstream end points (e.g. chromosome aberration production), along with potential mechanisms by which MRI may lead to DNA lesions. This could potentially involve a perturbation in homeostasis of oxidative stress, modifying the background rate of endogenous DNA damage induction. In summary, what the field needs at the moment is more research and less fear mongering. PMID:27550664
The equation-of-motion coupled cluster method for triple electron attached states
NASA Astrophysics Data System (ADS)
Musiał, Monika; Olszówka, Marta; Lyakh, Dmitry I.; Bartlett, Rodney J.
2012-11-01
The initial implementation of the triple electron attachment (TEA) equation-of-motion (EOM) coupled cluster (CC) method is presented, aiming at the description of electronic states with three open shell electrons outside a suitably chosen closed shell vacuum. In particular, such an approach can be used for describing dissociation of chemical bonds predominantly formed by three valence electrons, for example, in LiC and NaC molecules. Both ground and excited states are considered while rigorously maintaining the correct spin value. The preliminary results show a correct asymptotic behavior of the dissociation curves. At the same time, we emphasize that a chemically accurate description will require an extension of the minimal TEA-EOM-CC model introduced here, analogous to those already used in the double ionization potential and double electron attachment methods.
Ground-based plasma contractor characterization
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Aadland, Randall S.
1987-01-01
Presented are recent NASA Lewis Research Center (LeRC) plasma contractor experimental results, as well as a description of the plasma contractor test facility. The operation of a 24 cm diameter plasma source with hollow cathode was investigated in the lighted-mode regime of electron current collection from 0.1 to 7.0 A. These results are compared to those obtained with a 12 cm plasma source. Full two-dimensional plasma potential profiles were constructed from emissive probe traces of the contractor plume. The experimentally measured dimensions of the plume sheaths were then compared to those theoretically predicted using a model of a spherical double sheath. Results are consistent for currents up to approximately 1.0 A. For currents above 1.0 A, substantial deviations from theory occur. These deviations are due to sheath asphericity, and possibly volume ionization in the double-sheath region.
From double-slit interference to structural information in simple hydrocarbons
Kushawaha, Rajesh Kumar; Patanen, Minna; Guillemin, Renaud; Journel, Loic; Miron, Catalin; Simon, Marc; Piancastelli, Maria Novella; Skates, C.; Decleva, Piero
2013-01-01
Interferences in coherent emission of photoelectrons from two equivalent atomic centers in a molecule are the microscopic analogies of the celebrated Young’s double-slit experiment. By considering inner-valence shell ionization in the series of simple hydrocarbons C2H2, C2H4, and C2H6, we show that double-slit interference is widespread and has built-in quantitative information on geometry, orbital composition, and many-body effects. A theoretical and experimental study is presented over the photon energy range of 70–700 eV. A strong dependence of the oscillation period on the C–C distance is observed, which can be used to determine bond lengths between selected pairs of equivalent atoms with an accuracy of at least 0.01 Å. Furthermore, we show that the observed oscillations are directly informative of the nature and atomic composition of the inner-valence molecular orbitals and that observed ratios are quantitative measures of elusive many-body effects. The technique and analysis can be immediately extended to a large class of compounds. PMID:24003155
Lau, Kai-Chung; Zheng, Wenxu; Wong, Ning-Bew; Li, Wai-Kee
2007-10-21
The ionization energies (IEs) for the 1-methylallyl, 2-methylallyl, cyclopropylmethyl, and cyclobutyl radicals have been calculated by the wave function based ab initio CCSD(T)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled cluster level with single and double excitations plus quasiperturbative triple excitation [CCSD(T)]. The zero-point vibrational energy correction, the core-valence electronic correction, and the scalar relativistic effect correction are included in these calculations. The present CCSD(T)/CBS results are then compared with the IEs determined in the photoelectron experiment by Schultz et al. [J. Am. Chem. Soc. 106, 7336 (1984)] The predicted IE value (7.881 eV) of 2-methylallyl radical is found to compare very favorably with the experimental value of 7.90+/-0.02 eV. Two ionization transitions for cis-1-methylallyl and trans-1-methylallyl radicals have been considered here. The comparison between the predicted IE values and the previous measurements shows that the photoelectron peak observed by Schultz et al. likely corresponds to the adiabatic ionization transition for the trans-1-methylallyl radical to form trans-1-methylallyl cation. Although a precise IE value for the cyclopropylmethyl radical has not been directly determined, the experimental value deduced indirectly using other known energetic data is found to be in good accord with the present CCSD(T)/CBS prediction. We expect that the Franck-Condon factor for ionization transition of c-C4H7-->bicyclobutonium is much less favorable than that for ionization transition of c-C4H7-->planar-C4H7+, and the observed IE in the previous photoelectron experiment is likely due to the ionization transition for c-C4H7-->planar-C4H7+. Based on our CCSD(T)/CBS prediction, the ionization transition of c-C4H7-->bicyclobutonium with an IE value around 6.92 eV should be taken as the adiabatic ionization transition for the cyclobutyl radical. The present study provides support for the conclusion that the CCSD(T)/CBS approach with high-level energetic corrections can be used to provide reliable IE predictions for C4 hydrocarbon radicals with an uncertainty of +/-22 meV. The CCSD(T)/CBS predictions to the heats of formation for the aforementioned radicals and cations are also presented.
Space plasma contactor research, 1987
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.
1988-01-01
A simple model describing the process of electron collection from a low pressure ambient plasma in the absence of magnetic field and contactor velocity effects is presented. Experimental measurments of the plasma surrounding the contactor are used to demonstrate that a double-sheath generally develops and separates the ambient plasma from a higher density, anode plasma located adjacent to the contactor. Agreement between the predictions of the model and experimental measurements obtained at the electron collection current levels ranging to 1 A suggests the surface area at the ambient plasma boundary of the double-sheath is equal to the electron current being collected divided by the ambient plasma random electron current density; the surface area of the higher density anode plasma boundary of the double-sheath is equal to the ion current being emitted across this boundary divided by the ion current density required to sustain a stable sheath; and the voltage drop across the sheath is determined by the requirement that the ion and electron currents counterflowing across the boundaries be at space-charge limited levels. The efficiency of contactor operation is shown to improve when significant ionization and excitation is induced by electrons that stream from the ambient plasma through the double-sheath and collide with neutral atoms being supplied through the hollow cathode.
Inhibition of APOBEC3G Activity Impedes Double-Strand DNA Repair
Prabhu, Ponnandy; Shandilya, Shivender; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A.; Kotler, Moshe
2015-01-01
The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in dsDNA damage, such as ionizing irradiation (IR) and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases sensitivity of lymphoma cells to IR. In the current study, we show that additional peptides derived from Vif, A3G and A3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, while, replacing a single amino acid in the LYYF motif completely abrogate inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break (DSB) repair after radiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit DSB repair halts their propagation. These results suggest that A3G may be a potential therapeutic target amenable to peptide and peptidomimetic inhibition. PMID:26460502
Löser, Dana A; Shibata, Atsushi; Shibata, Akiko K; Woodbine, Lisa J; Jeggo, Penny A; Chalmers, Anthony J
2010-06-01
As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.
NASA Astrophysics Data System (ADS)
Ren, Xueguang; Senftleben, Arne; Pflüger, Thomas; Bartschat, Klaus; Zatsarinny, Oleg; Berakdar, Jamal; Colgan, James; Pindzola, Michael S.; Bray, Igor; Fursa, Dmitry V.; Dorn, Alexander
2015-11-01
We report a combined experimental and theoretical study on the electron-impact ionization of helium at E0=70.6 eV and equal energy sharing of the two outgoing electrons (E1=E2=23 eV ), where a double-peak or dip structure in the binary region of the triple differential cross section is observed. The experimental cross sections are compared with results from convergent close-coupling (CCC), B -spline R-matrix-with-pseudostates (BSR), and time-dependent close-coupling (TDCC) calculations, as well as predictions from the dynamic screening three-Coulomb (DS3C) theory. Excellent agreement is obtained between experiment and the nonperturbative CCC, BSR, and TDCC theories, and good agreement is also found for the DS3C model. The data are further analyzed regarding contributions in particular coupling schemes for the spins of either the two outgoing electrons or one of the outgoing electrons and the 1 s electron remaining in the residual ion. While both coupling schemes can be used to explain the observed double-peak structure in the cross section, the second one allows for the isolation of the exchange contribution between the incident projectile and the target. For different observation angles of the two outgoing electrons, we interpret the results as a propensity for distinguishing these two electrons—one being more likely the incident projectile and the other one being more likely ejected from the target.
Cao, Zhen; Kuhne, Wendy W; Steeb, Jennifer; Merkley, Mark A; Zhou, Yunfeng; Janata, Jiri; Dynan, William S
2010-08-01
Eukaryotic cells begin to assemble discrete, nucleoplasmic repair foci within seconds after the onset of exposure to ionizing radiation. Real-time imaging of this assembly has the potential to further our understanding of the effects of medical and environmental radiation exposure. Here, we describe a microirradiation system for targeted delivery of ionizing radiation to individual cells without the need for specialized facilities. The system consists of a 25-micron diameter electroplated Nickel-63 electrode, enveloped in a glass capillary and mounted in a micromanipulator. Because of the low energy of the beta radiation and the minute total amount of isotope present on the tip, the device can be safely handled with minimum precautions. We demonstrate the use of this system for tracking assembly of individual repair foci in real time in live U2OS human osteosarcoma cells. Results indicate that there is a subset of foci that appear and disappear rapidly, before a plateau level is reached approximately 30 min post-exposure. This subset of foci would not have been evident without real-time observation. The development of a microirradiation system that is compatible with a standard biomedical laboratory expands the potential for real-time investigation of the biological effects of ionizing radiation.
NASA Astrophysics Data System (ADS)
Heßelmann, Andreas
2017-06-01
A many-body Green's-function method employing an infinite order summation of ring and exchange-ring contributions to the self-energy is presented. The individual correlation and relaxation contributions to the quasiparticle energies are calculated using an iterative scheme which utilizes density fitting of the particle-hole, particle-particle and hole-hole densities. It is shown that the ionization energies and electron affinities of this approach agree better with highly accurate coupled-cluster singles and doubles with perturbative triples energy difference results than those obtained with second-order Green's-function approaches. An analysis of the correlation and relaxation terms of the self-energy for the direct- and exchange-random-phase-approximation (RPA) Green's-function methods shows that the inclusion of exchange interactions leads to a reduction of the two contributions in magnitude. These differences, however, strongly cancel each other when summing the individual terms to the quasiparticle energies. Due to this, the direct- and exchange-RPA methods perform similarly for the description of ionization energies (IPs) and electron affinities (EAs). The coupled-cluster reference IPs and EAs, if corrected to the adiabatic energy differences between the neutral and charged molecules, were shown to be in very good agreement with experimental measurements.
NASA Astrophysics Data System (ADS)
Kowski, Klaus; Lüttke, Wolfgang; Rademacher, Paul
2001-06-01
The gas phase He(I) photoelectron (PE) spectra of several unsaturated alcohols (1-11) have been measured and analysed with respect to intramolecular OH⋯π hydrogen bonding. Evidence for such a hydrogen bond has been detected in the spectra of 2-allylphenol (1) and 2-phenylethan-1-ol (3). 1 exists as a conformational mixture of a hydrogen bonded form 1a and an open form 1b in a composition of roughly 2:1. A strong ionization band (IPv=10.01 eV; where IPv is the vertical ionization potential) is assigned to the ethylenic Cdbnd C double bond in the major conformer (1a) and a weak band (IPv=9.72 eV) to that of the minor conformer (1b). The latter IP coincides with the corresponding ionization of allylbenzene. In the series of ω-phenylalkan-1-ols, compound 3 exhibits an unusually low nπ(O) ionization indicating hydrogen bonding between the OH group and the π electron system of the phenyl ring. The higher homologs 4 and 5 prefer 'open' conformations without such interaction. The PE spectra of alkenols such as but-3-en-1-ol (7) and pent-4-en-1-ol (8) as well as of alkynols such as but-3-yn-1-ol (10) and pent-4-yn-1-ol (11) are consistent with OH⋯π hydrogen bonded conformers. The methanol/ethylene hetero-dimer has a T-shaped structure, as indicated by B3LYP/6-311++G(d) calculations, with a binding energy of 5.65 kJ mol-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGee, Mackenzie C.; Hamner, J. Blair; Williams, Regan F.
2010-04-15
Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-beta (IFN-beta) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-beta and bevaziumab profoundly affectedmore » the tumor vasculature, albeit with different cellular phenotypes. IFN-beta caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-beta or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-beta or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-beta each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.« less
Numerical investigation of the double-arcing phenomenon in a cutting arc torch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancinelli, B. R., E-mail: bmancinelli@frvt.utn.edu.ar; Minotti, F. O.; Kelly, H.
2014-07-14
A numerical investigation of the double-arcing phenomenon in a cutting arc torch is reported. The dynamics of the double-arcing were simulated by using a two-dimensional model of the gas breakdown development in the space-charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen. The kinetic scheme includes ionization of heavy particles by electron impact, electron attachment, electron detachment, electron–ion recombination, and ion–ion recombination. Complementary measurements during double-arcing phenomena were also conducted. A marked rise of the nozzle voltage was found. The numerical results showed that the dynamics of a cathode spot at the exit of themore » nozzle inner surface play a key role in the raising of the nozzle voltage, which in turn allows more electrons to return to the wall at the nozzle inlet. The return flow of electrons thus closes the current loop of the double-arcing. The increase in the (floating) nozzle voltage is due to the fact that the increased electron emission at the spot is mainly compensated by the displacement current (the ions do not play a relevant role due to its low-mobility) until that the stationary state is achieved and the electron return flow fully-compensates the electron emission at the spot. A fairly good agreement was found between the model and the experiment for a spot emission current growth rate of the order of 7 × 10{sup 4} A/s.« less
Kashino, Genro; Liu, Yong; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Yuko; Ono, Koji; Tano, Keizo; Watanabe, Masami
2010-01-01
The radioprotective effects of dimethyl sulfoxide (DMSO) have been known for many years, and the suppression of hydroxyl (OH) radicals induced by ionizing radiation has been thought to be the main cause of this effect. However, the DMSO concentration used was very high, and might be toxic, in earlier studies. In the present study, we administered a lower, non-toxic concentration (0.5%, i.e., 64 mM) of DMSO before irradiation and examined its radioprotective effects. Colony formation assay and micronucleus assay showed significant radioprotective effects in CHO, but not in xrs5, which is defective in the repair function of DNA double-strand breaks. The levels of phosphorylated H2AX and the formation of 53BP1 foci 15 minutes after irradiation, which might reflect initial DNA double-strand breaks, in DMSO-treated CHO cells were similar to those in non-treated cells, suggesting that the radioprotective effects were not attributable to the suppression of general indirect action in the lower concentration of DMSO. On the other hand, 2 hours after irradiation, the average number of 53BP1 foci, which might reflect residual DNA double-strand breaks, was significantly decreased in DMSO-treated CHO cells compared to non-treated cells. The results indicated that low concentration of DMSO exerts radioprotective effects through the facilitation of DNA double-strand break repair rather than through the suppression of indirect action.
NASA Astrophysics Data System (ADS)
Falcinelli, Stefano; Vecchiocattivi, Franco; Alagia, Michele; Schio, Luca; Richter, Robert; Stranges, Stefano; Catone, Daniele; Arruda, Manuela S.; Mendes, Luiz A. V.; Palazzetti, Federico; Aquilanti, Vincenzo; Pirani, Fernando
2018-03-01
Propylene oxide, a favorite target of experimental and theoretical studies of circular dichroism, was recently discovered in interstellar space, further amplifying the attention to its role in the current debate on protobiological homochirality. In the present work, a photoelectron-photoion-photoion coincidence technique, using an ion-imaging detector and tunable synchrotron radiation in the 18.0-37.0 eV energy range, permits us (i) to observe six double ionization fragmentation channels, their relative yields being accounted for about two-thirds by the couple (C2H4+, CH2O+) and one-fifth by (C2H3+, CH3O+); (ii) to measure thresholds for their openings as a function of photon energy; and (iii) to unravel a pronounced bimodality for a kinetic-energy-released distribution, fingerprint of competitive non-adiabatic mechanisms.
X-ray absorption fine structure (XAFS) spectroscopy using synchrotron radiation
NASA Astrophysics Data System (ADS)
Shrivastava, B. D.
2012-05-01
The X-ray absorption fine structure (XAFS) spectra are best recorded when a highly intense beam of X-rays from a synchrotron is used along with a good resolution double crystal or curved crystal spectrometer and detectors like ionization chambers, scintillation counters, solid state detectors etc. Several synchrotrons around the world have X-ray beamlines dedicated specifically to XAFS spectroscopy. Fortunately, the Indian synchrotron (Indus-2) at Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore has started operation. A dispersive type EXAFS beamline called BL-8 has been commissioned at this synchrotron and another beamline having double crystal monochromator (DCM) is going to be commissioned shortly. In Indian context, in order that more research workers use these beamlines, the study of XAFS spectroscopy using synchrotron radiation becomes important. In the present work some of the works done by our group on XAFS spectroscopy using synchrotron radiation have been described.
A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2
NASA Technical Reports Server (NTRS)
Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.
1993-01-01
We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).
PIC Modeling of Argon Plasma Flow in MNX
NASA Astrophysics Data System (ADS)
Cohen, Samuel; Sefkow, Adam
2007-11-01
A linear helicon-heated plasma device - the Magnetic Nozzle Experiment (MNX) at the Princeton Plasma Physics Laboratory - is used for studies of the formation of strong electrostatic double layers near mechanical and magnetic apertures and the acceleration of plasma ions into supersonic directed beams. In order to characterize the role of the aperture and its involvement with ion acceleration, detailed particle-in-cell simulations are employed to study the effects of the surrounding boundary geometry on the plasma dynamics near the aperture region, within which the transition from a collisional to collisionless regime occurs. The presence of a small superthermal electron population is examined, and the model includes a background neutral population which can be ionized by energetic electrons. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the formation mechanism of the double layer is investigated.
One-electron-mediated rearrangements of 2,3-disiladicarbene.
Mondal, Kartik Chandra; Samuel, Prinson P; Roesky, Herbert W; Aysin, Rinat R; Leites, Larissa A; Neudeck, Sven; Lübben, Jens; Dittrich, Birger; Holzmann, Nicole; Hermann, Markus; Frenking, Gernot
2014-06-25
A disiladicarbene, (Cy-cAAC)2Si2 (2), was synthesized by reduction of Cy-cAAC:SiCl4 adduct with KC8. The dark-colored compound 2 is stable at room temperature for a year under an inert atmosphere. Moreover, it is stable up to 190 °C and also can be characterized by electron ionization mass spectrometry. Theoretical and Raman studies reveal the existence of a Si═Si double bond with a partial double bond between each carbene carbon atom and silicon atom. Cyclic voltammetry suggests that 2 can quasi-reversibly accept an electron to produce a very reactive radical anion, 2(•-), as an intermediate species. Thus, reduction of 2 with potassium metal at room temperature led to the isolation of an isomeric neutral rearranged product and an anionic dimer of a potassium salt via the formation of 2(•-).
Indirect double photoionization of water
NASA Astrophysics Data System (ADS)
Resccigno, T. N.; Sann, H.; Orel, A. E.; Dörner, R.
2011-05-01
The vertical double ionization thresholds of small molecules generally lie above the dissociation limits corresponding to formation of two singly charged fragments. This gives the possibility of populating singly charged molecular ions by photoionization in the Franck-Condon region at energies below the lowest dication state, but above the dissociation limit into two singly charged fragment ions. This process can produce a superexcited neutral fragment that autoionizes at large internuclear separation. We study this process in water, where absorption of a photon produces an inner-shell excited state of H2O+ that fragments to H++OH*. The angular distribution of secondary electrons produced by OH* when it autoionizes produces a characteristic asymmetric pattern that reveals the distance, and therefore the time, at which the decay takes place. LBNL, Berkeley, CA, J. W. Goethe Universität, Frankfurt, Germany. Work performed under auspices of US DOE and supported by OBES, Div. of Chemical Sciences.
APOBEC3 Cytidine Deaminases in Double-Strand DNA Break Repair and Cancer Promotion
Nowarski, Roni; Kotler, Moshe
2013-01-01
High frequency of cytidine to thymidine conversions were identified in the genome of several types of cancer cells. In breast cancer cells these mutations are clustered in long DNA regions associated with ssDNA, double-strand DNA breaks (DSBs) and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs and clustered mutations. PMID:23598277
APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion.
Nowarski, Roni; Kotler, Moshe
2013-06-15
High frequency of cytidine to thymidine conversions was identified in the genome of several types of cancer cells. In breast cancer cells, these mutations are clustered in long DNA regions associated with single-strand DNA (ssDNA), double-strand DNA breaks (DSB), and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs, and clustered mutations. Cancer Res; 73(12); 3494-8. ©2013 AACR. ©2013 AACR.
Physics of soft hyaluronic acid-collagen type II double network gels
NASA Astrophysics Data System (ADS)
Morozova, Svetlana; Muthukumar, Murugappan
2015-03-01
Many biological hydrogels are made up of multiple interpenetrating, charged components. We study the swelling, elastic diffusion, mechanical, and optical behaviors of 100 mol% ionizable hyaluronic acid (HA) and collagen type II fiber networks. Dilute, 0.05-0.5 wt% hyaluronic acid networks are extremely sensitive to solution salt concentration, but are stable at pH above 2. When swelled in 0.1M NaCl, single-network hyaluronic acid gels follow scaling laws relevant to high salt semidilute solutions; the elastic shear modulus G' and diffusion constant D scale with the volume fraction ϕ as G' ~ϕ 9 / 4 and D ~ϕ 3 / 4 , respectively. With the addition of a collagen fiber network, we find that the hyaluronic acid network swells to suspend the rigid collagen fibers, providing extra strength to the hydrogel. Results on swelling equilibria, elasticity, and collective diffusion on these double network hydrogels will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahn, Karl E.; Averill, April M.; Aller, Pierre
DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break–inducing agents, including ionizing radiation. Reported in this paper are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contactsmore » to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. Finally, these observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.« less
Collision problems treated with the Generalized Hyperspherical Sturmian method
NASA Astrophysics Data System (ADS)
Mitnik, D. M.; Gasaneo, G.; Ancarani, L. U.; Ambrosio, M. J.
2014-04-01
An hyperspherical Sturmian approach recently developed for three-body break-up processes is presented. To test several of its features, the method is applied to two simplified models. Excellent agreement is found when compared with the results of an analytically solvable problem. For the Temkin-Poet model of the double ionization of He by high energy electron impact, the present method is compared with the Spherical Sturmian approach, and again excellent agreement is found. Finally, a study of the channels appearing in the break-up three-body wave function is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obaid, Razib; Buth, Christian; Dakovski, Georgi L.
Here, we measured the fluorescence photon yield of neon upon soft x-ray ionization (~1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.
Alalwiat, Ahlam; Tang, Wen; Gerişlioğlu, Selim; Becker, Matthew L; Wesdemiotis, Chrys
2017-01-17
The bioconjugate BMP2-(PEO-HA) 2 , composed of a dendron with two monodisperse poly(ethylene oxide) (PEO) branches terminated by a hydroxyapatite binding peptide (HA), and a focal point substituted with a bone growth stimulating peptide (BMP2), has been comprehensively characterized by mass spectrometry (MS) methods, encompassing matrix-assisted laser desorption ionization (MALDI), electrospray ionization (ESI), tandem mass spectrometry (MS 2 ), and ion mobility mass spectrometry (IM-MS). MS 2 experiments using different ion activation techniques validated the sequences of the synthetic, bioactive peptides HA and BMP2, which contained highly basic amino acid residues either at the N-terminus (BMP2) or C-terminus (HA). Application of MALDI-MS, ESI-MS, and IM-MS to the polymer-peptide biomaterial confirmed its composition. Collision cross-section measurements and molecular modeling indicated that BMP2-(PEO-HA) 2 exists in several folded and extended conformations, depending on the degree of protonation. Protonation of all basic sites of the hybrid material nearly doubles its conformational space and accessible surface area.
NASA Astrophysics Data System (ADS)
Arruda, Manuela S.; Medina, Aline; Sousa, Josenilton N.; Mendes, Luiz A. V.; Marinho, Ricardo R. T.; Prudente, Frederico V.
2016-04-01
The ionization and fragmentation of monomers of organic molecules have been extensively studied in the gas phase using mass spectroscopy. In the spectra of these molecules it is possible to identify the presence of protonated cations, which have a mass-to-charge ratio one unit larger than the parent ion. In this work, we investigate this protonation process as a result of dimers photofragmentation. Experimental photoionization and photofragmentation results of doubly deuterated formic acid (DCOOD) in the gas phase by photons in the vacuum ultraviolet region are presented. The experiment was performed by using a time-of-flight mass spectrometer installed at the Brazilian Synchrotron Light Laboratory and spectra for different pressure values in the experimental chamber were obtained. The coupled cluster approach with single and double substitutions was employed to assist the experimental analysis. Results indicate that protonated formic acid ions are originated from dimer dissociation, and the threshold photoionization of (DCOOD)ṡD+ is also determined.
Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Ma, Wuying; Huang, Shaoyan
The characterization of total ionizing dose (TID) damage in COTS pinned photodiode (PPD) CMOS image sensors (CISs) is investigated. The radiation experiments are carried out at a {sup 60}Co γ-ray source. The CISs are produced by 0.18-μm CMOS technology and the pixel architecture is 8T global shutter pixel with correlated double sampling (CDS) based on a 4T PPD front end. The parameters of CISs such as temporal domain, spatial domain, and spectral domain are measured at the CIS test system as the EMVA 1288 standard before and after irradiation. The dark current, random noise, dark signal non-uniformity (DSNU), photo responsemore » non-uniformity (PRNU), overall system gain, saturation output, dynamic range (DR), signal to noise ratio (SNR), quantum efficiency (QE), and responsivity versus the TID are reported. The behaviors of the tested CISs show remarkable degradations after radiation. The degradation mechanisms of CISs induced by TID damage are also analyzed.« less
Amini, Kasra; Boll, Rebecca; Lauer, Alexandra; Burt, Michael; Lee, Jason W L; Christensen, Lauge; Brauβe, Felix; Mullins, Terence; Savelyev, Evgeny; Ablikim, Utuq; Berrah, Nora; Bomme, Cédric; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Johnsson, Per; Kierspel, Thomas; Krecinic, Faruk; Küpper, Jochen; Müller, Maria; Müller, Erland; Redlin, Harald; Rouzée, Arnaud; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Wiese, Joss; Vallance, Claire; Rudenko, Artem; Stapelfeldt, Henrik; Brouard, Mark; Rolles, Daniel
2017-07-07
Laser-induced adiabatic alignment and mixed-field orientation of 2,6-difluoroiodobenzene (C 6 H 3 F 2 I) molecules are probed by Coulomb explosion imaging following either near-infrared strong-field ionization or extreme-ultraviolet multi-photon inner-shell ionization using free-electron laser pulses. The resulting photoelectrons and fragment ions are captured by a double-sided velocity map imaging spectrometer and projected onto two position-sensitive detectors. The ion side of the spectrometer is equipped with a pixel imaging mass spectrometry camera, a time-stamping pixelated detector that can record the hit positions and arrival times of up to four ions per pixel per acquisition cycle. Thus, the time-of-flight trace and ion momentum distributions for all fragments can be recorded simultaneously. We show that we can obtain a high degree of one-and three-dimensional alignment and mixed-field orientation and compare the Coulomb explosion process induced at both wavelengths.
Short Telomeres Result in Organismal Hypersensitivity to Ionizing Radiation in Mammals
Goytisolo, Fermín A.; Samper, Enrique; Martín-Caballero, Juan; Finnon, Paul; Herrera, Eloísa; Flores, Juana M.; Bouffler, Simon D.; Blasco, María A.
2000-01-01
Here we show a correlation between telomere length and organismal sensitivity to ionizing radiation (IR) in mammals. In particular, fifth generation (G5) mouse telomerase RNA (mTR)−/− mice, with telomeres 40% shorter than in wild-type mice, are hypersensitive to cumulative doses of gamma rays. 60% of the irradiated G5 mTR−/− mice die of acute radiation toxicity in the gastrointestinal tract, lymphoid organs, and kidney. The affected G5 mTR−/− mice show higher chromosomal damage and greater apoptosis than similarly irradiated wild-type controls. Furthermore, we show that G5 mTR−/− mice show normal frequencies of sister chromatid exchange and normal V(D)J recombination, suggesting that short telomeres do not significantly affect the efficiency of DNA double strand break repair in mammals. The IR-sensitive phenotype of G5 mTR−/− mice suggests that telomere function is one of the determinants of radiation sensitivity of whole animals. PMID:11104804
NASA Astrophysics Data System (ADS)
Nygren, David
2015-10-01
To proceed toward effective ``discovery class'' ton-scale detectors in the search for neutrino-less double beta decay, a robust technique for rejection of all radioactivity-induced backgrounds is urgently needed. An efficient technique for detection of the barium daughter in the decay 136Xe -->136Ba + 2e- would provide a long-sought pathway toward this goal. Single-molecule fluorescent imaging appears to offer a new way to detect the barium daughter atom, which emerges naturally in an ionized state in pure xenon. A doubly charged barium ion can initiate a chelation process with a non-fluorescent precursor molecule, leading to a highly fluorescent complex. Repeated photo-excitation of the complex can reveal both presence and location of a single ionized atom with high precision and selectivity. Detection within the active volume of a xenon gas Time Projection Chamber operating at high pressure would be automatic, and with a capability for redundant confirmation.
Coherent electron emission from O2 in collisions with fast electrons
NASA Astrophysics Data System (ADS)
Chowdhury, Madhusree Roy; Stia, Carlos R.; Tachino, Carmen A.; Fojón, Omar A.; Rivarola, Roberto D.; Tribedi, Lokesh C.
2017-08-01
Absolute double differential cross sections (DDCS) of secondary electrons emitted in ionization of O2 by fast electrons have been measured for different emission angles. Theoretical calculations of atomic DDCS were obtained using the first Born approximation with an asymptotic charge of Z T = 1. The measured molecular DDCS were divided by twice the theoretical atomic DDCS to detect the presence of interference effects which was the aim of the experiment. The experimental to theoretical DDCS ratios showed clear signature of first order interference oscillation for all emission angles. The ratios were fitted by a first order Cohen-Fano type model. The variation of the oscillation amplitudes as a function of the electron emission angle showed a parabolic behaviour which goes through a minimum at 90°. The single differential and total ionization cross sections have also been deduced, besides the KLL Auger cross sections. In order to make a comparative study, we have discussed these results along with our recent experimental data obtained for N2 molecule.
Photoionization Modeling with TITAN Code, Distance to the Warm Absorber in AGN
NASA Astrophysics Data System (ADS)
Różańska, A.
2012-08-01
We present a method that allows us to estimate a distance from the source of continuum radiation located in the center of AGN to the highly ionized gas - warm absorber (WA). We computed a set of constant total pressure photoionization models compatible with the warm absorber conditions, where a metal-rich gas is irradiated by a continuum in the form of a double powerlaw. The first powerlaw is hard, up to 100 keV, and represents radiation from an X-ray source, while the second powerlaw extends up to several eV, and illustrates radiation from an accretion disk. When the ionized continuum is dominated by the soft component, the warm absorber is heated by free-free absorption, instead of Comptonization, and the transmitted spectra show different absorption-line characteristics for different values of the hydrogen number density at the cloud illuminated surface. This fact results in the possibility of deriving the number density on the cloud illuminated side from observations, and hence the distance to the warm absorber.
Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors
NASA Astrophysics Data System (ADS)
Wang, Zujun; Ma, Wuying; Huang, Shaoyan; Yao, Zhibin; Liu, Minbo; He, Baoping; Liu, Jing; Sheng, Jiangkun; Xue, Yuan
2016-03-01
The characterization of total ionizing dose (TID) damage in COTS pinned photodiode (PPD) CMOS image sensors (CISs) is investigated. The radiation experiments are carried out at a 60Co γ-ray source. The CISs are produced by 0.18-μm CMOS technology and the pixel architecture is 8T global shutter pixel with correlated double sampling (CDS) based on a 4T PPD front end. The parameters of CISs such as temporal domain, spatial domain, and spectral domain are measured at the CIS test system as the EMVA 1288 standard before and after irradiation. The dark current, random noise, dark signal non-uniformity (DSNU), photo response non-uniformity (PRNU), overall system gain, saturation output, dynamic range (DR), signal to noise ratio (SNR), quantum efficiency (QE), and responsivity versus the TID are reported. The behaviors of the tested CISs show remarkable degradations after radiation. The degradation mechanisms of CISs induced by TID damage are also analyzed.
Ionization of pyridine: Interplay of orbital relaxation and electron correlation.
Trofimov, A B; Holland, D M P; Powis, I; Menzies, R C; Potts, A W; Karlsson, L; Gromov, E V; Badsyuk, I L; Schirmer, J
2017-06-28
The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green's function and the outer-valence Green's function method. The results were used to interpret angle resolved photoelectron spectra recorded with synchrotron radiation in the photon energy range of 17-120 eV. The lowest four states of the pyridine radical cation, namely, 2 A 2 (1a 2 -1 ), 2 A 1 (7a 1 -1 ), 2 B 1 (2b 1 -1 ), and 2 B 2 (5b 2 -1 ), were studied in detail using various high-level electronic structure calculation methods. The vertical ionization energies were established using the equation-of-motion coupled-cluster approach with single, double, and triple excitations (EOM-IP-CCSDT) and the complete basis set extrapolation technique. Further interpretation of the electronic structure results was accomplished using Dyson orbitals, electron density difference plots, and a second-order perturbation theory treatment for the relaxation energy. Strong orbital relaxation and electron correlation effects were shown to accompany ionization of the 7a 1 orbital, which formally represents the nonbonding σ-type nitrogen lone-pair (nσ) orbital. The theoretical work establishes the important roles of the π-system (π-π* excitations) in the screening of the nσ-hole and of the relaxation of the molecular orbitals in the formation of the 7a 1 (nσ) -1 state. Equilibrium geometric parameters were computed using the MP2 (second-order Møller-Plesset perturbation theory) and CCSD methods, and the harmonic vibrational frequencies were obtained at the MP2 level of theory for the lowest three cation states. The results were used to estimate the adiabatic 0-0 ionization energies, which were then compared to the available experimental and theoretical data. Photoelectron anisotropy parameters and photoionization partial cross sections, derived from the experimental spectra, were compared to predictions obtained with the continuum multiple scattering approach.
Harris, Rachel A; May, Jody C; Stinson, Craig A; Xia, Yu; McLean, John A
2018-02-06
The increasing focus on lipid metabolism has revealed a need for analytical techniques capable of structurally characterizing lipids with a high degree of specificity. Lipids can exist as any one of a large number of double bond positional isomers, which are indistinguishable by single-stage mass spectrometry alone. Ozonolysis reactions coupled to mass spectrometry have previously been demonstrated as a means for localizing double bonds in unsaturated lipids. Here we describe an online, solution-phase reactor using ozone produced via a low-pressure mercury lamp, which generates aldehyde products diagnostic of cleavage at a particular double bond position. This flow-cell device is utilized in conjunction with structurally selective ion mobility-mass spectrometry. The lamp-mediated reaction was found to be effective for multiple lipid species in both positive and negative ionization modes, and the conversion efficiency from precursor to product ions was tunable across a wide range (20-95%) by varying the flow rate through the ozonolysis device. Ion mobility separation of the ozonolysis products generated additional structural information and revealed the presence of saturated species in a complex mixture. The method presented here is simple, robust, and readily coupled to existing instrument platforms with minimal modifications necessary. For these reasons, application to standard lipidomic workflows is possible and aids in more comprehensive structural characterization of a myriad of lipid species.
NASA Astrophysics Data System (ADS)
Volonakis, George; Giustino, Feliciano
2018-06-01
Halide double perovskites based on combinations of monovalent and trivalent cations have been proposed as promising lead-free alternatives to lead halide perovskites. Among the newly synthesized compounds Cs2BiAgCl6, Cs2BiAgBr6, Cs2SbAgCl6, and Cs2InAgCl6, some exhibit bandgaps in the visible range and all have low carrier effective masses; therefore, these materials constitute potential candidates for various opto-electronic applications. Here, we use first-principles calculations to investigate the electronic properties of the surfaces of these four compounds and determine, for the first time, their ionization potential and electron affinity. We find that the double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 are potentially promising materials for photo-catalytic water splitting, while Cs2InAgCl6 and Cs2SbAgCl6 would require controlling their surface termination to obtain energy levels appropriate for water splitting. The energy of the halogen p orbitals is found to control the conduction band level; therefore, we propose that mixed halides could be used to fine-tune the electronic affinity.
NASA Astrophysics Data System (ADS)
Lee, Sung-Yun; Kim, Hui Eun; Jo, William; Kim, Young-Hwan; Yoo, Sang-Im
2015-11-01
We report the greatly improved dielectric properties of CaCu3Ti4O12 (CCTO) films with a 60 nm-thick CaTiO3 (CTO) interlayer on Pt/TiO2/SiO2/Si substrates. Both CCTO films and CTO interlayers were prepared by pulsed laser deposition (PLD). With increasing the thickness of CCTO from 200 nm to 1.3 μm, the dielectric constants ( ɛ r ) at 10 kHz in both CCTO single-layered and CCTO/CTO double-layered films increased from ˜260 to ˜6000 and from ˜630 to ˜3700, respectively. Compared with CCTO single-layered films, CCTO/CTO double-layered films irrespective of CCTO film thickness exhibited a remarkable decrease in their dielectric losses ( tanδ) (<0.1 at the frequency region of 1 - 100 kHz) and highly reduced leakage current density at room temperature. The reduced leakage currents in CCTO/CTO double-layered films are attributable to relatively higher trap ionization energies in the Poole-Frenkel conduction model. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Song, Juan; Tao, Wenjun; Song, Hui; Gong, Min; Ma, Guohong; Dai, Ye; Zhao, Quanzhong; Qiu, Jianrong
2016-04-01
In this paper, a time-delay-adjustable double-pulse train with 800-nm wavelength, 200-fs pulse duration and a repetition rate of 1 kHz, produced by a collinear two-beam optical system like a Mach-Zehnder interferometer, was employed for irradiation of 6H-SiC crystal. The dependence of the induced structures on time delay of double-pulse train for parallel-polarization configuration was studied. The results show that as the time delay of collinear parallel-polarization dual-pulse train increased, the induced near-subwavelength ripples (NSWRs) turn from irregular rippled pattern to regularly periodic pattern and have their grooves much deepened. The characteristics timescale for this transition is about 6.24 ps. Besides, the areas of NSWR were found to decay exponentially for time delay from 0 to 1.24 ps and then slowly increase for time delay from 1.24 to 14.24 ps. Analysis shows that multiphoton ionization effect, grating-assisted surface plasmon coupling effect, and timely intervene of second pulse in a certain physical stage experienced by 6H-SiC excited upon first pulse irradiation may contribute to the transition of morphology details.
Theoretical study of the electronic states of newly detected dications. Case of MgS2+ AND SiN2+
NASA Astrophysics Data System (ADS)
Khairat, Toufik; Salah, Mohammed; Marakchi, Khadija; Komiha, Najia
2017-08-01
The dications MgS2+ and SiN2+, experimentally observed by mass spectroscopy, are theoretically studied here. The potential energy curves of the electronic states of the two dications MgS2+ and SiN2+ are mapped and their spectroscopic parameters determined by analysis of the electronic, vibrational and rotational wave functions obtained by using complete active space self-consistent field (CASSCF) calculations, followed by the internally contracted multi-reference configuration interaction (MRCI)+Q associated with the AV5Z correlation consistent atomic orbitals basis sets. In the following, besides the characterization of the potential energy curves, excitation and dissociation energies, spectroscopic constants and a double-ionization spectra of MgS and SiN are determined using the transition moments values and Franck-Condon factors. The electronic ground states of the two dications appear to be of X3∑-nature for MgS2+ and X4∑- for SiN2+ and shows potential wells of about 1.20 eV and 1.40 eV, respectively. Several excited states of these doubly charged molecules also depicted here are slightly bound. The adiabatic double-ionization energies were deduced, at 21.4 eV and 18.4 eV, respectively, from the potential energy curves of the electronic ground states of the neutral and charged species. The neutral molecules, since involved, are also investigated here. From all these results, the experimental lines of the mass spectra of MgS and SiN could be partly assigned.
Demuth, Ilja; Digweed, Martin; Concannon, Patrick
2004-11-11
DNA interstrand crosslinks (ICLs) are critical lesions for the mammalian cell since they affect both DNA strands and block transcription and replication. The repair of ICLs in the mammalian cell involves components of different repair pathways such as nucleotide-excision repair and the double-strand break/homologous recombination repair pathways. However, the mechanistic details of mammalian ICL repair have not been fully delineated. We describe here the complete coding sequence and the genomic organization of hSNM1B, one of at least three human homologs of the Saccharomyces cerevisiae PSO2 gene. Depletion of hSNM1B by RNA interference rendered cells hypersensitive to ICL-inducing agents. This requirement for hSNM1B in the cellular response to ICL has been hypothesized before but never experimentally verified. In addition, siRNA knockdown of hSNM1B rendered cells sensitive to ionizing radiation, suggesting the possibility of hSNM1B involvement in homologous recombination repair of double-strand breaks arising as intermediates of ICL repair. Monoubiquitination of FANCD2, a key step in the FANC/BRCA pathway, is not affected in hSNM1B-depleted HeLa cells, indicating that hSNM1B is probably not a part of the Fanconi anemia core complex. Nonetheless, similarities in the phenotype of hSNM1B-depleted cells and cultured cells from patients suffering from Fanconi anemia make hSNM1B a candidate for one of the as yet unidentified Fanconi anemia genes not involved in monoubiquitination of FANCD2.
Nowak, Jeremy A; Weber, Robert J; Goldstein, Allen H
2018-03-12
The ability to structurally characterize and isomerically quantify crude oil hydrocarbons relevant to refined fuels such as motor oil, diesel, and gasoline represents an extreme challenge for chromatographic and mass spectrometric techniques. This work incorporates two-dimensional gas chromatography coupled to a tunable vacuum ultraviolet soft photoionization source, the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source at the Lawrence Berkeley National Laboratory, with a time-of-flight mass spectrometer (GC × GC-VUV-TOF) to directly characterize and isomerically sum the contributions of aromatic and aliphatic species to hydrocarbon classes of four crude oils. When the VUV beam is tuned to 10.5 ± 0.2 eV, both aromatic and aliphatic crude oil hydrocarbons are ionized to reveal the complete chemical abundance of C 9 -C 30 hydrocarbons. When the VUV beam is tuned to 9.0 ± 0.2 eV only aromatic hydrocarbons are ionized, allowing separation of the aliphatic and aromatic fractions of the crude oil hydrocarbon chemical classes in an efficient manner while maintaining isomeric quantification. This technique provides an effective tool to determine the isomerically summed aromatic and aliphatic hydrocarbon compositions of crude oil, providing information that goes beyond typical GC × GC separations of the most dominant hydrocarbon isomers.
Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells
Neumaier, Teresa; Swenson, Joel; Pham, Christopher; Polyzos, Aris; Lo, Alvin T.; Yang, PoAn; Dyball, Jane; Asaithamby, Aroumougame; Chen, David J.; Bissell, Mina J.; Thalhammer, Stefan; Costes, Sylvain V.
2012-01-01
The concept of DNA “repair centers” and the meaning of radiation-induced foci (RIF) in human cells have remained controversial. RIFs are characterized by the local recruitment of DNA damage sensing proteins such as p53 binding protein (53BP1). Here, we provide strong evidence for the existence of repair centers. We used live imaging and mathematical fitting of RIF kinetics to show that RIF induction rate increases with increasing radiation dose, whereas the rate at which RIFs disappear decreases. We show that multiple DNA double-strand breaks (DSBs) 1 to 2 μm apart can rapidly cluster into repair centers. Correcting mathematically for the dose dependence of induction/resolution rates, we observe an absolute RIF yield that is surprisingly much smaller at higher doses: 15 RIF/Gy after 2 Gy exposure compared to approximately 64 RIF/Gy after 0.1 Gy. Cumulative RIF counts from time lapse of 53BP1-GFP in human breast cells confirmed these results. The standard model currently in use applies a linear scale, extrapolating cancer risk from high doses to low doses of ionizing radiation. However, our discovery of DSB clustering over such large distances casts considerable doubts on the general assumption that risk to ionizing radiation is proportional to dose, and instead provides a mechanism that could more accurately address risk dose dependency of ionizing radiation. PMID:22184222
Weyemi, Urbain; Redon, Christophe E; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R; Bonner, Michael Y; Arbiser, Jack L; Bonner, William M
2015-03-01
Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year.
Weyemi, Urbain; Redon, Christophe E.; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R.; Bonner, Michael Y.; Arbiser, Jack L.; Bonner, William M.
2015-01-01
Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year. PMID:25706776
NASA Astrophysics Data System (ADS)
Kobayashi, K.; Usami, N.; Sasaki, I.; Frohlich, H.; Le Sech, C.
2003-01-01
Complexes made of DNA and Cyclo-Pt bound to plasmid DNA, were placed in aqueous solution and irradiated with monochromatic X-rays in the range E=8.5-13 keV, including the resonant photoabsorption energy of the L III shell of the platinum atom. The number of single- and double-strand breaks (ssb and dsb) induced by irradiation on a supercoiled DNA plasmid was measured by the production of circular-nicked and linear forms. In order to disentangle the contribution of the direct effects imparted to ionization, and the indirect effects due to a free radical attack, experiments have been performed in the presence of a small concentration (64 mmol l -1) of hydroxyl free radical scavenger dimethyl sulfoxide (DMSO). An enhancement of the number of ssb and dsb is observed when the plasmids contain the Pt intercalating molecules. Even when off-resonant X-rays are used, the strand break efficiency remains higher than expected based upon the absorption cross-section, as if the Pt bound to DNA is increasing the yield of strand breaks. A mechanism is suggested, involving photoelectrons generated from the ionization of water which efficiently ionize Pt atoms. This observation may provide an insight to understanding the effects of new radiotherapy protocols, associated chemotherapeutic agents such as cisplatin and ordinary radiotherapy for tumoral treatments.
EDITORIAL: Focus on Attosecond Physics
NASA Astrophysics Data System (ADS)
Bandrauk, André D.; Krausz, Ferenc; Starace, Anthony F.
2008-02-01
Investigations of light-matter interactions and motion in the microcosm have entered a new temporal regime, the regime of attosecond physics. It is a main 'spin-off' of strong field (i.e., intense laser) physics, in which nonperturbative effects are fundamental. Attosecond pulses open up new avenues for time-domain studies of multi-electron dynamics in atoms, molecules, plasmas, and solids on their natural, quantum mechanical time scale and at dimensions shorter than molecular and even atomic scales. These capabilities promise a revolution in our microscopic knowledge and understanding of matter. The recent development of intense, phase-stabilized femtosecond (10-15 s) lasers has allowed unparalleled temporal control of electrons from ionizing atoms, permitting for the first time the generation and measurement of isolated light pulses as well as trains of pulses on the attosecond (1 as = 10-18 s) time scale, the natural time scale of the electron itself (e.g., the orbital period of an electron in the ground state of the H atom is 152 as). This development is facilitating (and even catalyzing) a new class of ultrashort time domain studies in photobiology, photochemistry, and photophysics. These new coherent, sub-fs pulses carried at frequencies in the extreme ultraviolet and soft-x-ray spectral regions, along with their intense, synchronized near-infrared driver waveforms and novel metrology based on sub-fs control of electron-light interactions, are spawning the new science of attosecond physics, whose aims are to monitor, to visualize, and, ultimately, to control electrons on their own time and spatial scales, i.e., the attosecond time scale and the sub-nanometre (Ångstrom) spatial scale typical of atoms and molecules. Additional goals for experiment are to advance the enabling technologies for producing attosecond pulses at higher intensities and shorter durations. According to theoretical predictions, novel methods for intense attosecond pulse generation may in future involve using overdense plasmas. Electronic processes on sub-atomic spatio-temporal scales are the basis of chemical physics, atomic, molecular, and optical physics, materials science, and even some life science processes. Research in these areas using the new attosecond tools will advance together with the ability to control electrons themselves. Indeed, we expect that developments will advance in a way that is similar to advances that have occurred on the femtosecond time scale, in which much previous experimental and theoretical work on the interaction of coherent light sources has led to the development of means for 'coherent control' of nuclear motion in molecules. This focus issue of New Journal of Physics is centered on experimental and theoretical advances in the development of new methodologies and tools for electron control on the attosecond time scale. Topics such as the efficient generation of harmonics; the generation of attosecond pulses, including those having only a few cycles and those produced from overdense plasmas; the description of various nonlinear, nonperturbative laser-matter interactions, including many-electron effects and few-cycle pulse effects; the analysis of ultrashort propagation effects in atomic and molecular media; and the development of inversion methods for electron tomography, as well as many other topics, are addressed in the current focus issue dedicated to the new field of 'Attosecond Physics'. Focus on Attosecond Physics Contents Observing the attosecond dynamics of nuclear wavepackets in molecules by using high harmonic generation in mixed gases Tsuneto Kanai, Eiji J Takahashi, Yasuo Nabekawa and Katsumi Midorikawa Core-polarization effects in molecular high harmonic generation G Jordan and A Scrinzi Interferometric autocorrelation of an attosecond pulse train calculated using feasible formulae Y Nabekawa and K Midorikawa Attosecond pulse generation from aligned molecules—dynamics and propagation in H2+ E Lorin, S Chelkowski and A D Bandrauk Broadband generation in a Raman crystal driven by a pair of time-delayed linearly chirped pulses Miaochan Zhi and Alexei V Sokolov Ultrafast nanoplasmonics under coherent control Mark I Stockman Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions: roles of frequency, intensity and an additional IR pulse Liang-You Peng, Evgeny A Pronin and Anthony F Starace Angular encoding in attosecond recollision Markus Kitzler, Xinhua Xie, Stefan Roither, Armin Scrinzi and Andrius Baltuska Polarization-resolved pump-probe spectroscopy with high harmonics Y Mairesse, S Haessler, B Fabre, J Higuet, W Boutu, P Breger, E Constant, D Descamps, E Mével, S Petit and P Salières Macroscopic effects in attosecond pulse generation T Ruchon, C P Hauri, K Varjú, E Mansten, M Swoboda, R López-Martens and A L'Huillier Monitoring long-term evolution of molecular vibrational wave packet using high-order harmonic generation M Yu Emelin, M Yu Ryabikin and A M Sergeev Intense single attosecond pulses from surface harmonics using the polarization gating technique S G Rykovanov, M Geissler, J Meyer-ter-Vehn and G D Tsakiris Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields M F Kling, J Rauschenberger, A J Verhoef, E Hasović, T Uphues, D B Milošević, H G Muller and M J J Vrakking Self-compression of optical laser pulses by filamentation A Mysyrowicz, A Couairon and U Keller Towards efficient generation of attosecond pulses from overdense plasma targets N M Naumova, C P Hauri, J A Nees, I V Sokolov, R Lopez-Martens and G A Mourou Quantum-path control in high-order harmonic generation at high photon energies Xiaoshi Zhang, Amy L Lytle, Oren Cohen, Margaret M Murnane and Henry C Kapteyn Time-resolved mapping of correlated electron emission from helium atom in an intense laser pulse C Ruiz and A Becker Pump and probe ultrafast electron dynamics in LiH: a computational study M Nest, F Remacle and R D Levine Exploring intense attosecond pulses D Charalambidis, P Tzallas, E P Benis, E Skantzakis, G Maravelias, L A A Nikolopoulos, A Peralta Conde and G D Tsakiris Attosecond timescale analysis of the dynamics of two-photon double ionization of helium Emmanuel Foumouo, Philippe Antoine, Henri Bachau and Bernard Piraux Generation of tunable isolated attosecond pulses in multi-jet systems V Tosa, V S Yakovlev and F Krausz Electron wavepacket control with elliptically polarized laser light in high harmonic generation from aligned molecules Y Mairesse, N Dudovich, J Levesque, M Yu Ivanov, P B Corkum and D M Villeneuve Tracing non-equilibrium plasma dynamics on the attosecond timescale in small clusters Ulf Saalmann, Ionut Georgescu and Jan M Rost Ionization in attosecond pulses: creating atoms without nuclei? John S Briggs and Darko Dimitrovski Angular distributions in double ionization of helium under XUV sub-femtosecond radiation P Lambropoulos and L A A Nikolopoulos Potential for ultrafast dynamic chemical imaging with few-cycle infrared lasers Toru Morishita, Anh-Thu Le, Zhangjin Chen and C D Lin Attosecond electron thermalization in laser-induced nonsequential multiple ionization: hard versus glancing collisions X Liu, C Figueira de Morisson Faria and W Becker Ion-charge-state chronoscopy of cascaded atomic Auger decay Th Uphues, M Schultze, M F Kling, M Uiberacker, S Hendel, U Heinzmann, N M Kabachnik and M Drescher Measurement of electronic structure from high harmonic generation in non-adiabatically aligned polyatomic molecules N Kajumba, R Torres, Jonathan G Underwood, J S Robinson, S Baker, J W G Tisch, R de Nalda, W A Bryan, R Velotta, C Altucci, I Procino, I C E Turcu and J P Marangos Wavelength dependence of sub-laser-cycle few-electron dynamics in strong-field multiple ionization O Herrwerth, A Rudenko, M Kremer, V L B de Jesus, B Fischer, G Gademann, K Simeonidis, A Achtelik, Th Ergler, B Feuerstein, C D Schröter, R Moshammer and J Ullrich Attosecond metrology in the few-optical-cycle regime G Sansone, E Benedetti, C Vozzi, S Stagira and M Nisoli Attosecond x-ray pulses produced by ultra short transverse slicing via laser electron beam interaction A A Zholents and M S Zolotorev
Ko, Jae Yoon; Choi, Sun Mi; Rhee, Young Min; Beauchamp, J L; Kim, Hugh I
2012-01-01
Field-induced droplet ionization (FIDI) is a recently developed ionization technique that can transfer ions from the surface of microliter droplets to the gas phase intact. The air-liquid interfacial reactions of cholesterol sulfate (CholSO(4)) in a 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) surfactant layer with ozone (O(3)) are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Time-resolved studies of interfacial ozonolysis of CholSO(4) reveal that water plays an important role in forming oxygenated products. An epoxide derivative is observed as a major product of CholSO(4) oxidation in the FIDI-MS spectrum after exposure of the droplet to O(3) for 5 s. The abundance of the epoxide product then decreases with continued O(3) exposure as the finite number of water molecules at the air-liquid interface becomes exhausted. Competitive oxidation of CholSO(4) and POPG is observed when they are present together in a lipid surfactant layer at the air-liquid interface. Competitive reactions of CholSO(4) and POPG with O(3) suggest that CholSO(4) is present with POPG as a well-mixed interfacial layer. Compared with CholSO(4) and POPG alone, the overall ozonolysis rates of both CholSO(4) and POPG are reduced in a mixed layer, suggesting the double bonds of both molecules are shielded by additional hydrocarbons from one another. Molecular dynamics simulations of a monolayer comprising POPG and CholSO(4) correlate well with experimental observations and provide a detailed picture of the interactions between CholSO(4), lipids, and water molecules in the interfacial region. © American Society for Mass Spectrometry, 2011
NASA Astrophysics Data System (ADS)
Berg, Danielle A.; Erb, Dawn K.; Auger, Matthew W.; Pettini, Max; Brammer, Gabriel B.
2018-06-01
We report new observations of SL2S J021737–051329, a lens system consisting of a bright arc at z = 1.84435, magnified ∼17× by a massive galaxy at z = 0.65. SL2S0217 is a low-mass (M < 109 M ⊙), low-metallicity (Z ∼ 1/20 Z ⊙) galaxy, with extreme star-forming conditions that produce strong nebular UV emission lines in the absence of any apparent outflows. Here we present several notable features from rest-frame UV Keck/LRIS spectroscopy: (1) Very strong narrow emission lines are measured for C IV λλ1548, 1550, He II λ1640, O III] λλ1661, 1666, Si III] λλ1883, 1892, and C III] λλ1907, 1909. (2) Double-peaked Lyα emission is observed with a dominant blue peak and centered near the systemic velocity. (3) The low- and high-ionization absorption features indicate very little or no outflowing gas along the sight line to the lensed galaxy. The relative emission-line strengths can be reproduced with a very high ionization, low-metallicity starburst with binaries, with the exception of He II, which indicates that an additional ionization source is needed. We rule out large contributions from active galactic nuclei and shocks to the photoionization budget, suggesting that the emission features requiring the hardest radiation field likely result from extreme stellar populations that are beyond the capabilities of current models. Therefore, SL2S0217 serves as a template for the extreme conditions that are important for reionization and thought to be more common in the early universe.
NASA Astrophysics Data System (ADS)
Peláez, R. J.; Afonso, C. N.; Bator, M.; Lippert, T.
2013-06-01
The aim of this work is to demonstrate that single-photon photoionization processes make a significant difference in the expansion and temperature of the plasma produced by laser ablation of ceramic Al2O3 in vacuum as well as to show their consequences in the kinetic energy distribution of the species that eventually will impact on the film properties produced by pulsed laser deposition. This work compares results obtained by mass spectrometry and optical spectroscopy on the composition and features of the plasma produced by laser ablation at 193 nm and 248 nm, i.e., photon energies that are, respectively, above and below the ionization potential of Al, and for fluences between threshold for visible plasma and up to ≈2 times higher. The results show that the ionic composition and excitation of the plasma as well as the ion kinetic energies are much higher at 193 nm than at 248 nm and, in the latter case, the population of excited ions is even negligible. The comparison of Maxwell-Boltzmann temperature, electron temperatures, and densities of the plasmas produced with the two laser wavelengths suggests that the expansion of the plasma produced at 248 nm is dominated by a single population. Instead, the one produced at 193 nm is consistent with the existence of two populations of cold and hot species, the latter associated to Al+ ions that travel at the forefront and produced by single photon ionization as well as Al neutrals and double ionized ions produced by electron-ion impact. The results also show that the most energetic Al neutrals in the plasma produced at the two studied wavelengths are in the ground state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia; Halpern, Jules P.; Eracleous, Michael
2016-01-20
One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocitymore » can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.« less
Zhou, Ying; Park, Hyejung; Kim, Philseok; Jiang, Yan; Costello, Catherine E
2014-06-17
A simple, fast approach elucidated carbon-carbon double bond positions in unsaturated lipids. Lipids were deposited onto various surfaces and the products from their oxidation in ambient air were observed by electrospray ionization (ESI) mass spectrometry (MS). The most common oxidative products, aldehydes, were detected as transformations at the cleaved double bond positions. Ozonides and carboxylic acids were generated in certain lipids. Investigations of the conditions controlling the appearance of these products indicated that the surface oxidation depends on light and ambient air. Since the lipid oxidation was slower in a high concentration of ozone, singlet oxygen appeared to be a parallel oxidant for unsaturated lipids. The 3-hydroxyl group in the sphingoid base of sulfatides offered some protection from oxidation for the Δ4,5-double bond, slowing its oxidation rate relative to that of the isolated double bond in the N-linked fatty acyl chain. Direct sampling by thin-layer chromatography (TLC)-ESI-MS provides a powerful approach to elucidate detailed structural information on biological samples. Co-localization of the starting lipids and their oxidation products after TLC separation allowed assignment of the native unsaturation sites. Phosphatidylserine and N,N-dimethyl phosphatidylethanolamine isomers in a bovine brain total lipid extract were distinguished on the basis of their oxidation products. Meanwhile, the findings reported herein reveal a potential pitfall in the assignment of structures to lipids extracted from TLC plates because of artifactual oxidation after the plate development.
Spacecraft Data Simulator for the test of level zero processing systems
NASA Technical Reports Server (NTRS)
Shi, Jeff; Gordon, Julie; Mirchandani, Chandru; Nguyen, Diem
1994-01-01
The Microelectronic Systems Branch (MSB) at Goddard Space Flight Center (GSFC) has developed a Spacecraft Data Simulator (SDS) to support the development, test, and verification of prototype and production Level Zero Processing (LZP) systems. Based on a disk array system, the SDS is capable of generating large test data sets up to 5 Gigabytes and outputting serial test data at rates up to 80 Mbps. The SDS supports data formats including NASA Communication (Nascom) blocks, Consultative Committee for Space Data System (CCSDS) Version 1 & 2 frames and packets, and all the Advanced Orbiting Systems (AOS) services. The capability to simulate both sequential and non-sequential time-ordered downlink data streams with errors and gaps is crucial to test LZP systems. This paper describes the system architecture, hardware and software designs, and test data designs. Examples of test data designs are included to illustrate the application of the SDS.
NASA Astrophysics Data System (ADS)
Goldbery, R.; Tehori, O.
SEDPAK provides a comprehensive software package for operation of a settling tube and sand analyzer (2-0.063 mm) and includes data-processing programs for statistical and graphic output of results. The programs are menu-driven and written in APPLESOFT BASIC, conforming with APPLE 3.3 DOS. Data storage and retrieval from disc is an important feature of SEDPAK. Additional features of SEDPAK include condensation of raw settling data via standard size-calibration curves to yield statistical grain-size parameters, plots of grain-size frequency distributions and cumulative log/probability curves. The program also has a module for processing of grain-size frequency data from sieved samples. An addition feature of SEDPAK is the option for automatic data processing and graphic output of a sequential or nonsequential array of samples on one side of a disc.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1974-01-01
A study was conducted of an alternate method for storage and use of bathymetry data in the Langley Research Center and Virginia Institute of Marine Science mid-Atlantic continental-shelf wave-refraction computer program. The regional bathymetry array was divided into 105 indexed modules which can be read individually into memory in a nonsequential manner from a peripheral file using special random-access subroutines. In running a sample refraction case, a 75-percent decrease in program field length was achieved by using the random-access storage method in comparison with the conventional method of total regional array storage. This field-length decrease was accompanied by a comparative 5-percent increase in central processing time and a 477-percent increase in the number of operating-system calls. A comparative Langley Research Center computer system cost savings of 68 percent was achieved by using the random-access storage method.
Luo, Yuan; Castro, Jose; Barton, Jennifer K.; Kostuk, Raymond K.; Barbastathis, George
2010-01-01
A new methodology describing the effects of aperiodic and multiplexed gratings in volume holographic imaging systems (VHIS) is presented. The aperiodic gratings are treated as an ensemble of localized planar gratings using coupled wave methods in conjunction with sequential and non-sequential ray-tracing techniques to accurately predict volumetric diffraction effects in VHIS. Our approach can be applied to aperiodic, multiplexed gratings and used to theoretically predict the performance of multiplexed volume holographic gratings within a volume hologram for VHIS. We present simulation and experimental results for the aperiodic and multiplexed imaging gratings formed in PQ-PMMA at 488nm and probed with a spherical wave at 633nm. Simulation results based on our approach that can be easily implemented in ray-tracing packages such as Zemax® are confirmed with experiments and show proof of consistency and usefulness of the proposed models. PMID:20940823
Hypermedia or Hyperchaos: Using HyperCard to Teach Medical Decision Making
Smith, W.R.; Hahn, J.S.
1989-01-01
HyperCard presents an uncoventional instructional environment for educators and students, in that it is nonlinear, nonsequential, and it provides innumerable choices of learning paths to learners. The danger of this environment is that it may frustrate learners whose cognitive and learning styles do not match this environment. Leaners who prefer guided learning rather than independent exploration may become distracted or disoriented by this environment, lost in “hyperspace.” In the context of medical education, these ill-matched styles may produce some physicians who have not mastered skills essential to the practice of medicine. The authors have sought to develop a HyperCard learning environment consisting of related programs that teach medical decision making. The environment allows total learner control until the learner demonstrates a need for guidance in order to achieve the essential objectives of the program. A discussion follows of the implications of hypermedia for instructional design and medical education.
NASA Astrophysics Data System (ADS)
Masson, Andre; Schulte In den Baeumen, J.; Zuegge, Hannfried
1989-04-01
Recent advances in the design of large optical components are discussed in reviews and reports. Sections are devoted to calculation and optimization methods, optical-design software, IR optics, diagnosis and tolerancing, image formation, lens design, and large optics. Particular attention is given to the use of the pseudoeikonal in optimization, design with nonsequential ray tracing, aspherics and color-correcting elements in the thermal IR, on-line interferometric mirror-deforming measurement with an Ar-ion laser, and the effect of ametropia on laser-interferometric visual acuity. Also discussed are a holographic head-up display for air and ground applications, high-performance objectives for a digital CCD telecine, the optics of the ESO Very Large Telescope, static wavefront correction by Linnik interferometry, and memory-saving techniques in damped least-squares optimization of complex systems.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoli; Zou, Jie; Le, Daniel X.; Thoma, George
2010-01-01
"Investigator Names" is a newly required field in MEDLINE citations. It consists of personal names listed as members of corporate organizations in an article. Extracting investigator names automatically is necessary because of the increasing volume of articles reporting collaborative biomedical research in which a large number of investigators participate. In this paper, we present an SVM-based stacked sequential learning method in a novel application - recognizing named entities such as the first and last names of investigators from online medical journal articles. Stacked sequential learning is a meta-learning algorithm which can boost any base learner. It exploits contextual information by adding the predicted labels of the surrounding tokens as features. We apply this method to tag words in text paragraphs containing investigator names, and demonstrate that stacked sequential learning improves the performance of a nonsequential base learner such as an SVM classifier.
Barhoum, Erek; Johnston, Richard; Seibel, Eric
2005-09-19
An optical model of an ultrathin scanning fiber endoscope was constructed using a non-sequential ray tracing program and used to study the relationship between fiber deflection and collection efficiency from tissue. The problem of low collection efficiency of confocal detection through the scanned single-mode optical fiber was compared to non-confocal cladding detection. Collection efficiency is 40x greater in the non-confocal versus the confocal geometry due to the majority of rays incident on the core being outside the numerical aperture. Across scan angles of 0 to 30o, collection efficiency decreases from 14.4% to 6.3% for the non-confocal design compared to 0.34% to 0.10% for the confocal design. Non-confocality provides higher and more uniform collection efficiencies at larger scan angles while sacrificing the confocal spatial filter.
Angular correlations in the prompt neutron emission in spontaneous fission of 252Cf
NASA Astrophysics Data System (ADS)
Kopatch, Yuri; Chietera, Andreina; Stuttgé, Louise; Gönnenwein, Friedrich; Mutterer, Manfred; Gagarski, Alexei; Guseva, Irina; Dorvaux, Olivier; Hanappe, Francis; Hambsch, Franz-Josef
2017-09-01
An experiment aiming at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf has been performed at IPHC Strasbourg using the angle-sensitive double ionization chamber CODIS for measuring fission fragments and a set of 60 DEMON scintillator counters for neutron detection. The main aim of the experiment is to search for an anisotropy of neutron emission in the center-of-mass system of the fragments. The present status of the data analysis and the full Monte-Carlo simulation of the experiment are reported in the present paper.
Observations of H II regions around Zeta OPH and other O-B stars
NASA Astrophysics Data System (ADS)
Shestakova, L. I.; Kutirev, A. S.; Ataev, A. Sh.
1988-01-01
A Fabry-Perot spectrometer was used to measure the emission intensities in H-beta near Zeta Oph, Alpha Vir, Alpha Cam, and HD 188209. The spectrometer sensitivity is 0.2 rayleighs, the intensity measurement accuracy is 20 percent. Ionization zone boundaries are determined for Zeta Oph and Alpha Vir; the angular diameters of both regions are about 15 deg. The contour of the H II region near Zeta Oph on the level of the double background in the southwest does not close; instead, it expands again and incorporates the region associated with the B-association II Sco.
LCLS in—photon out: fluorescence measurement of neon using soft x-rays
Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; ...
2018-01-09
Here, we measured the fluorescence photon yield of neon upon soft x-ray ionization (~1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.
Single and double grid long-range alpha detectors
MacArthur, Duncan W.; Allander, Krag S.
1993-01-01
Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.
Structure of 2,4-Diaminopyrimidine - Theobromine Alternate Base Pairs
NASA Technical Reports Server (NTRS)
Gengeliczki, Zsolt; Callahan, Michael P.; Kabelac, Martin; Rijs, Anouk M.; deVries, Mattanjah S.
2011-01-01
We report the structure of clusters of 2,4-diaminopyrimidine with 3,7-dimethylxanthine (theobromine) in the gas phase determined by IR-UV double resonance spectroscopy in both the near-IR and mid-IR regions in combination with ab initio computations. These clusters represent potential alternate nucleobase pairs, geometrically equivalent to guanine-cytosine. We have found the four lowest energy structures, which include the Watson-Crick base pairing motif. This Watson-Crick structure has not been observed by resonant two-photon ionization (R2PI) in the gas phase for the canonical DNA base pairs.
Single and double grid long-range alpha detectors
MacArthur, D.W.; Allander, K.S.
1993-03-16
Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.
LCLS in—photon out: fluorescence measurement of neon using soft x-rays
NASA Astrophysics Data System (ADS)
Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; Beerwerth, Randolf; Holmes, Michael; Aldrich, Jeff; Lin, Ming-Fu; Minitti, Michael; Osipov, Timur; Schlotter, William; Cederbaum, Lorenz S.; Fritzsche, Stephan; Berrah, Nora
2018-02-01
We measured the fluorescence photon yield of neon upon soft x-ray ionization (∼1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.
Fantle, M.S.; Bullen, T.D.
2009-01-01
The use of isotopes to understand the behavior of metals in geological, hydrological, and biological systems has rapidly expanded in recent years. One of the mass spectrometric techniques used to analyze metal isotopes is thermal ionization mass spectrometry, or TIMS. While TIMS has been a useful analytical technique for the measurement of isotopic composition for decades and TIMS instruments are widely distributed, there are significant difficulties associated with using TIMS to analyze isotopes of the lighter alkaline earth elements and transition metals. Overcoming these difficulties to produce relatively long-lived and stable ion beams from microgram-sized samples is a non-trivial task. We focus here on TIMS analysis of three geologically and environmentally important elements (Fe, Cr, and Ca) and present an in-depth look at several key aspects that we feel have the greatest potential to trouble new users. Our discussion includes accessible descriptions of different analytical approaches and issues, including filament loading procedures, collector cup configurations, peak shapes and interferences, and the use of isotopic double spikes and related error estimation. Building on previous work, we present quantitative simulations, applied specifically in this study to Fe and Ca, that explore the effects of (1) time-variable evaporation of isotopically homogeneous spots from a filament and (2) interferences on the isotope ratios derived from a double spike subtraction routine. We discuss how and to what extent interferences at spike masses, as well as at other measured masses, affect the double spike-subtracted isotope ratio of interest (44Ca/40Ca in the case presented, though a similar analysis can be used to evaluate 56Fe/54Fe and 53Cr/52Cr). The conclusions of these simulations are neither intuitive nor immediately obvious, making this examination useful for those who are developing new methodologies. While all simulations are carried out in the context of a specific isotope system, it should be noted that the same methods can be used to evaluate any isotope system of interest. ?? 2008 Elsevier B.V.
Rotationally excited HD toward Zeta Ophiuchi
NASA Technical Reports Server (NTRS)
Wright, E. L.; Morton, D. C.
1979-01-01
Copernicus satellite measurements of HD in J-double prime = 1 and J-double prime = 0 toward Zeta Oph are reported. The ratio of the number densities of HD in the J = 0 and J = 1 states is determined to be 0.15 + or - 0.02 at the 1-sigma level. A value of approximately 24 x 10 to the -17th erg/cu cm per A at 1000 A is obtained for the UV energy density at the Zeta Oph cloud, and the mechanisms for excitation of HD are examined. A tight upper limit is derived for the abundance of HCl, which has been predicted to be present due to the interaction of ionized chlorine with neutral hydrogen. A calculation is performed which indicates that the cloud is 28 pc from the star. It is shown that the two-component cloud model of Black and Dalgarno (1977) with densities of 500 and 2500 H nuclei per cu cm for the outer regions and core, respectively, is in excellent agreement with the observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekine-Suzuki, Emiko; Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522; Yu, Dong
2008-12-12
Cytotoxicity and DNA double strand breaks (DSBs) were studied in HeLa cells treated with sulforaphane (SFN), a well-known chemo-preventive agent. Cell survival was impaired by SFN in a concentration and treatment time-dependent manner. Both constant field gel electrophoresis (CFGE) and {gamma}-H2AX assay unambiguously indicated formation of DSBs by SFN, reflecting the cell survival data. These DSBs were predominantly processed by homologous recombination repair (HRR), judging from the SFN concentration-dependent manner of Rad51 foci formation. On the other hand, the phosphorylation of DNA-PKcs, a key non-homologous end joining (NHEJ) protein, was not observed by SFN treatment, suggesting that NHEJ may notmore » be involved in DSBs induced by this chemical. G2/M arrest by SFN, a typical response for cells exposed to ionizing radiation was also observed. Our new data indicate the clear induction of DSBs by SFN and a useful anti-tumor aspect of SFN through the induction of DNA DSBs.« less
Twelve years of IUE spectra of the interacting binary VV Cephei
NASA Technical Reports Server (NTRS)
Bauer, W. H.; Stencel, R. E.; Neff, D. H.
1991-01-01
All well-exposed high-resolution IUE spectra obtained of the eclipsing binary system VV Cephei (M2Iabep + B) are examined. High-temperature absorption features attributable to the hot companion were detected, indicating that the companion (or the inner regions of its accretion disk) are not as hot as a B1-B2 star. Doubling of Fe II (UV 1) lines, with an additional narrow component redshifted by about 60 km/sec, occurs only when the B star is behind the plane of the sky containing the M supergiant, suggesting the existence of mass transfer from the red to the blue star. Absorption features from neutral elements weaken dramatically during egress, while those from ionized elements remain at nearly constant strength. During egress from primary eclipse, the Mg II resonance doublet shows asymmetric double-peaked emission indicative of formation in an expanding chromosphere. It is concluded that the outer atmosphere of the M supergiant is highly clumped.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, Nicole; /SLAC
2011-12-06
EXO-200 is the first phase of the Enriched Xenon Observatory (EXO) experiment, which searches for neutrinoless double beta decay in {sup 136}Xe to measure the mass and probe the Majorana nature of the neutrino. EXO-200 consists of 200 kg of liquid Xe enriched to 80% in {sup 136}Xe in an ultra-low background TPC. Energy resolution is enhanced through the simultaneous collection of scintillation light using Large Area Avalanche Photodiodes (LAAPD's) and ionization charge. It is being installed at the WIPP site in New Mexico, which provides a 2000 meter water-equivalent overburden. EXO-200 will begin taking data in 2009, with themore » expected two-year sensitivity to the half-life for neutrinoless double beta decay of 6.4 x 10{sup 25} years. According to the most recent nuclear matrix element calculations, this corresponds to an effective Majorana neutrino mass of 0.13 to 0.19 eV. It will also measure the two neutrino mode for the first time in {sup 136}Xe.« less
NASA Astrophysics Data System (ADS)
Mitra, Vramori; Sarma, Bornali; Sarma, Arun
2017-10-01
Plasma fireballs are luminous glowing region formed around a positively biased electrode. The present work reports the observation of mix mode oscillation (MMO) in the dynamics of plasma oscillations that are excited in the presence of fireball in a double plasma device. Source voltage and applied electrode voltage are considered as the controlling parameters for the experiment. Many sequences of distinct multi peaked periodic states reflects the presence of MMO with the variation of control parameter. The sequences of states with two patterns are characterized well by Farey arithmetic, which provides rational approximations of irrational numbers. These states can be characterized by a firing number, the ratio of the number of small amplitude oscillations to the total number of oscillations per period. The dynamical transition in plasma fireball is also demonstrated by spectral analysis, recurrence quantification analysis (RQA) and by statistical measures viz., skewness and kurtosis. The mix mode phenomenon observed in the experiment is consistent with a model that describes the dynamics of ionization instabilities.
Lightweight Thermal Insulation for a Liquid-Oxygen Tank
NASA Technical Reports Server (NTRS)
Willen, G. Scott; Lock, Jennifer; Nieczkoski, Steve
2005-01-01
A proposed lightweight, reusable thermal-insulation blanket has been designed for application to a tank containing liquid oxygen, in place of a non-reusable spray-on insulating foam. The blanket would be of the multilayer-insulation (MLI) type and equipped with a pressure-regulated nitrogen purge system. The blanket would contain 16 layers in two 8-layer sub-blankets. Double-aluminized polyimide 0.3 mil (.0.008 mm) thick was selected as a reflective shield material because of its compatibility with oxygen and its ability to withstand ionizing radiation and high temperature. The inner and outer sub-blanket layers, 1 mil (approximately equals 0.025 mm) and 3 mils (approximately equals 0.076 mm) thick, respectively, would be made of the double-aluminized polyimide reinforced with aramid. The inner and outer layers would provide structural support for the more fragile layers between them and would bear the insulation-to-tank attachment loads. The layers would be spaced apart by lightweight, low-thermal-conductance netting made from polyethylene terephthalate.
Mechanisms and Consequences of Double-strand DNA Break Formation in Chromatin
Cannan, Wendy J.; Pederson, David S.
2016-01-01
All organisms suffer double-strand breaks (DSBs) in their DNA as a result of exposure to ionizing radiation. DSBs can also form when replication forks encounter DNA lesions or repair intermediates. The processing and repair of DSBs can lead to mutations, loss of heterozygosity, and chromosome rearrangements that result in cell death or cancer. The most common pathway used to repair DSBs in metazoans (non-homologous DNA end joining) is more commonly mutagenic than the alternative pathway (homologous recombination mediated repair). Thus, factors that influence the choice of pathways used DSB repair can affect an individual’s mutation burden and risk of cancer. This review describes radiological, chemical and biological mechanisms that generate DSBs, and discusses the impact of such variables as DSB etiology, cell type, cell cycle, and chromatin structure on the yield, distribution, and processing of DSBs. The final section focuses on nucleosome-specific mechanisms that influence DSB production, and the possible relationship between higher order chromosome coiling and chromosome shattering (chromothripsis). PMID:26040249
NASA Technical Reports Server (NTRS)
Foster, John E.; Patterson, Michael J.
2002-01-01
The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 5A) has been documented in the literature. In order to further elucidate these findings, an investigation of a high current cathode operating in an ion thruster discharge chamber has been undertaken. Using Langmuir probes, a low energy charged particle analyzer and emission spectroscopy, the behavior of the near-cathode plasma and the emitted ion energy distribution was characterized. The presence of energetic ions was confirmed. It was observed that these ions had energies in excess of the discharge voltage and thus cannot be simply explained by ions falling out of plasma through a potential difference of this order. Additionally, evidence provided by Langmuir probes suggests the existence of a double layer essentially separating the hollow cathode plasma column from the main discharge. The radial potential difference associated with this double layer was measured to be of order the ionization potential.
Human DNA polymerase θ grasps the primer terminus to mediate DNA repair
Zahn, Karl E.; Averill, April M.; Aller, Pierre; ...
2015-03-16
DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break–inducing agents, including ionizing radiation. Reported in this paper are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contactsmore » to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. Finally, these observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.« less
Adams, Steven F; Williamson, James M
2013-12-19
A spectroscopic analysis of the strongly perturbed N2(b(1)Πu, ν = 8) state has been conducted, accounting for b(1)Πu(ν = 8) ← X (1)Σg(+)(ν = 0) transitions, for the first time, up to J' = 20. A novel laser spectroscopy technique, using a combination of resonant-enhanced multiphoton ionization and fluorescence detection at atmospheric pressure, avoids the severe effects of perturbation reported in past extreme vacuum ultraviolet absorption experiments that produced weak and unusable spectra for the ν = 8 level. The R, Q, and P branches of the three-photon absorption transition b(1)Πu(ν = 8) ← X(1)Σg(+)(ν = 0) were fit, allowing rotational term energy assignment up to J' = 20 and molecular constants to be determined. Evidence of the previously suspected perturbation in b(1)Πu(ν = 8) is clear in this data, with significant Λ-type doubling at higher J' along with an anomalous negative value determined for the centrifugal distortion coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, Himadri, E-mail: hmdrpthk@gmail.com; Sasmal, Sudip, E-mail: sudipsasmal.chem@gmail.com; Vaval, Nayana
2016-08-21
The open-shell reference relativistic equation-of-motion coupled-cluster method within its four-component description is successfully implemented with the consideration of single- and double- excitation approximations using the Dirac-Coulomb Hamiltonian. At the first attempt, the implemented method is employed to calculate ionization potential value of heavy atomic (Ag, Cs, Au, Fr, and Lr) and molecular (HgH and PbF) systems, where the effect of relativity does really matter to obtain highly accurate results. Not only the relativistic effect but also the effect of electron correlation is crucial in these heavy atomic and molecular systems. To justify the fact, we have taken two further approximationsmore » in the four-component relativistic equation-of-motion framework to quantify how the effect of electron correlation plays a role in the calculated values at different levels of theory. All these calculated results are compared with the available experimental data as well as with other theoretically calculated values to judge the extent of accuracy obtained in our calculations.« less
No hot and luminous progenitor for Tycho's supernova
NASA Astrophysics Data System (ADS)
Woods, T. E.; Ghavamian, P.; Badenes, C.; Gilfanov, M.
2017-11-01
Type Ia supernovae have proven vital to our understanding of cosmology, both as standard candles and for their role in galactic chemical evolution; however, their origin remains uncertain. The canonical accretion model implies a hot and luminous progenitor that would ionize the surrounding gas out to a radius of 10-100 pc for 100,000 years after the explosion. Here, we report stringent upper limits on the temperature and luminosity of the progenitor of Tycho's supernova (SN 1572), determined using the remnant itself as a probe of its environment. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the radius of the present remnant ( 3 pc) can thus be excluded. This conclusively rules out steadily nuclear-burning white dwarfs (supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting approximately greater than 10-8 M⊙ yr-1 (recurrent novae; M⊙ is equal to one solar mass). The lack of a surrounding Strömgren sphere is consistent with the merger of a double white dwarf binary, although other more exotic scenarios may be possible.
The Progenitor of Tycho’s Supernova was Not Hot and Luminous
NASA Astrophysics Data System (ADS)
Ghavamian, Parviz; Woods, T. E.; Gilfanov, M.; Badenes, C.; T. E. Woods, C. Badenes, M. Gilfanov
2018-01-01
Canonical accretion models of Type Ia supernovae predict that a hot and luminous progenitor will ionize the surrounding gas out to a radius of ∼10–100 pc for ∼100,000 years after the explosion. Tycho’s supernova of 1572 was a Type Ia explosion which produced a remnant that is currently interacting with neutral gas in the form of Balmer-dominated shocks. From analysis of these shocks and photoionization calculations, we have placed stringent upper limits on the temperature and luminosity of the progenitor of Tycho’s supernova. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the current SNR radius (∼3 parsecs) can thus be excluded. This rules out steadily nuclear-burning white dwarfs (i..e, supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting 1E-8 solar masses per year (recurrent novae). The lack of a Stromgren sphere around Tycho’s SNR is consistent with a double degenerate explosion, although other more exotic scenarios may be possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boothman, D.A.
Transformed Chinese hamster embryo fibroblasts (CHEF), which gradually increase in tumor-forming ability in nude mice, were isolated from normal diploid CHEF/18 cells. Transformed CHEF cells (i.e., T30-4 > 21-2M3 > 21-2 > normal CHEF/18) showed gradual increases in potentially lethal damage (PLD) survival recovery. {beta}-Lapachone and camptothecin, modulators of topoisomerase I (Topo I) activity, not only prevented survival recovery in normal as well as in tumor cells, but enhanced unscheduled DNA synthesis. These seemingly conflicting results are due to the fact that Topo I activity can be modulated by inhibitors to convert single-stranded DNA lesions into double-stranded breaks. Increases inmore » unscheduled DNA synthesis may result from a continual supply of free ends, on which DNA repair processes may act. Altering Topo I activity with modulators appears to increase X-ray lethality via a DNA lesion modification suicide pathway. Cells down-regulate Topo I immediately after ionizing radiation to prevent Topo I-mediated lesion modification and to enhance survival recovery. 16 refs., 3 figs., 1 tab.« less
Evaluation of chromosomal aberrations induced by 188Re-dendrimer nanosystem on B16f1 melanoma cells.
Tassano, Marcos; Oddone, Natalia; Fernández, Marcelo; Porcal, Williams; García, María Fernanda; Martínez-López, Wilner; Benech, Juan Claudio; Cabral, Pablo
2018-06-19
To study the rhenium-188 labeling of polyamidoamine (PAMAM) generation 4 (G4) dendrimer and its evaluation on biodistribution and chromosomal aberrations in melanoma cells induced by ionizing radiation as potential treatment agent. Dendrimers were first conjugated with Suc-HYNIC (succinimidyl 6-hydrazinopyridine-3-carboxylic acid hydrochloride). Dendrimer-HYNIC was then incubated with 188 ReO 4 - . Biodistribution was performed administrating 188 Re-dendrimer to normal (NM) or melanoma-bearing mice (MBM). Chromosome aberration test was conducted in order to measure treatment capacity of 188 Re-dendrimer in melanoma cells. Radiolabeling yield of dendrimer was approx. 70%. Biodistribution studies in NM showed blood clearance with hepatic and renal depuration. MBM showed a similar pattern of biodistribution with tumor uptake of 6% of injected dose. Aberrant metaphases quantified in control cells were 7%, increasing to 29.5% in cells treated with 15μCi (0.555 MBq) of 188 Re-dendrimer for 24 h. 188 Re-dendrimer can produce double-stranded breaks in DNA induced by ionizing radiation in melanoma cells in vitro.
Synchrotron-based valence shell photoionization of CH radical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gans, B., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr; Falvo, C.; Holzmeier, F.
2016-05-28
We report the first experimental observations of X{sup +} {sup 1}Σ{sup +}←X {sup 2}Π and a{sup +} {sup 3}Π←X {sup 2}Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg statesmore » of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.« less
Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector.
Long, Jingming; Furch, Federico J; Durá, Judith; Tremsin, Anton S; Vallerga, John; Schulz, Claus Peter; Rouzée, Arnaud; Vrakking, Marc J J
2017-07-07
A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (<6 μm) is achieved by the use of a center-of-mass centroiding algorithm. This performance is achieved while retaining a high event rate (10 4 per s). The spectrometer was characterized and used in a proof-of-principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO 2 ), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.
Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector
NASA Astrophysics Data System (ADS)
Long, Jingming; Furch, Federico J.; Durá, Judith; Tremsin, Anton S.; Vallerga, John; Schulz, Claus Peter; Rouzée, Arnaud; Vrakking, Marc J. J.
2017-07-01
A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (<6 μm) is achieved by the use of a center-of-mass centroiding algorithm. This performance is achieved while retaining a high event rate (104 per s). The spectrometer was characterized and used in a proof-of-principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO2), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.
NASA Astrophysics Data System (ADS)
Orimo, Yuki; Sato, Takeshi; Scrinzi, Armin; Ishikawa, Kenichi L.
2018-02-01
We present a numerical implementation of the infinite-range exterior complex scaling [Scrinzi, Phys. Rev. A 81, 053845 (2010), 10.1103/PhysRevA.81.053845] as an efficient absorbing boundary to the time-dependent complete-active-space self-consistent field method [Sato, Ishikawa, Březinová, Lackner, Nagele, and Burgdörfer, Phys. Rev. A 94, 023405 (2016), 10.1103/PhysRevA.94.023405] for multielectron atoms subject to an intense laser pulse. We introduce Gauss-Laguerre-Radau quadrature points to construct discrete variable representation basis functions in the last radial finite element extending to infinity. This implementation is applied to strong-field ionization and high-harmonic generation in He, Be, and Ne atoms. It efficiently prevents unphysical reflection of photoelectron wave packets at the simulation boundary, enabling accurate simulations with substantially reduced computational cost, even under significant (≈50 % ) double ionization. For the case of a simulation of high-harmonic generation from Ne, for example, 80% cost reduction is achieved, compared to a mask-function absorption boundary.
Higher-order equation-of-motion coupled-cluster methods for ionization processes.
Kamiya, Muneaki; Hirata, So
2006-08-21
Compact algebraic equations defining the equation-of-motion coupled-cluster (EOM-CC) methods for ionization potentials (IP-EOM-CC) have been derived and computer implemented by virtue of a symbolic algebra system largely automating these processes. Models with connected cluster excitation operators truncated after double, triple, or quadruple level and with linear ionization operators truncated after two-hole-one-particle (2h1p), three-hole-two-particle (3h2p), or four-hole-three-particle (4h3p) level (abbreviated as IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively) have been realized into parallel algorithms taking advantage of spin, spatial, and permutation symmetries with optimal size dependence of the computational costs. They are based on spin-orbital formalisms and can describe both alpha and beta ionizations from open-shell (doublet, triplet, etc.) reference states into ionized states with various spin magnetic quantum numbers. The application of these methods to Koopmans and satellite ionizations of N2 and CO (with the ambiguity due to finite basis sets eliminated by extrapolation) has shown that IP-EOM-CCSD frequently accounts for orbital relaxation inadequately and displays errors exceeding a couple of eV. However, these errors can be systematically reduced to tenths or even hundredths of an eV by IP-EOM-CCSDT or CCSDTQ. Comparison of spectroscopic parameters of the FH+ and NH+ radicals between IP-EOM-CC and experiments has also underscored the importance of higher-order IP-EOM-CC treatments. For instance, the harmonic frequencies of the A 2Sigma- state of NH+ are predicted to be 1285, 1723, and 1705 cm(-1) by IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively, as compared to the observed value of 1707 cm(-1). The small adiabatic energy separation (observed 0.04 eV) between the X 2Pi and a 4Sigma- states of NH+ also requires IP-EOM-CCSDTQ for a quantitative prediction (0.06 eV) when the a 4Sigma- state has the low-spin magnetic quantum number (s(z) = 1/2). When the state with s(z) = 3/2 is sought, the energy separations converge much more rapidly with the IP-EOM-CCSD value (0.03 eV) already being close to the observed (0.04 eV).
NASA Technical Reports Server (NTRS)
Plante, Ianik; Ponomarev, Artem L.; Wu, Honglu; Blattnig, Steve; George, Kerry
2014-01-01
The formation of DNA double-strand breaks (DSBs) and chromosome aberrations is an important consequence of ionizing radiation. To simulate DNA double-strand breaks and the formation of chromosome aberrations, we have recently merged the codes RITRACKS (Relativistic Ion Tracks) and NASARTI (NASA Radiation Track Image). The program RITRACKS is a stochastic code developed to simulate detailed event-by-event radiation track structure: [1] This code is used to calculate the dose in voxels of 20 nm, in a volume containing simulated chromosomes, [2] The number of tracks in the volume is calculated for each simulation by sampling a Poisson distribution, with the distribution parameter obtained from the irradiation dose, ion type and energy. The program NASARTI generates the chromosomes present in a cell nucleus by random walks of 20 nm, corresponding to the size of the dose voxels, [3] The generated chromosomes are located within domains which may intertwine, and [4] Each segment of the random walks corresponds to approx. 2,000 DNA base pairs. NASARTI uses pre-calculated dose at each voxel to calculate the probability of DNA damage at each random walk segment. Using the location of double-strand breaks, possible rejoining between damaged segments is evaluated. This yields various types of chromosomes aberrations, including deletions, inversions, exchanges, etc. By performing the calculations using various types of radiations, it will be possible to obtain relative biological effectiveness (RBE) values for several types of chromosome aberrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glick, A; Diffenderfer, E
2016-06-15
Proton radiation therapy can deliver high radiation doses to tumors while sparing normal tissue. However, protons yield secondary neutron and gamma radiation that is difficult to detect, small in comparison to the prescribed dose, and not accounted for in most treatment planning systems. The risk for secondary malignancies after proton therapy may be dependent on the quality of this dose. Consequently, there is interest in characterizing the secondary radiation. Previously, we used the dual ionization chamber method to measure the separate absorbed dose from gamma-rays and neutrons secondary to the proton beam1, relying on characterization of ionization chamber response inmore » the unknown neutron spectrum from Monte Carlo simulation. We developed a procedure to use Shieldwerx activation foils, with neutron activation energies ranging from 0.025 eV to 13.5 MeV, to measure the neutron energy spectrum from double scattering (DS) and pencil beam scanning (PBS) protons outside of the treatment volume in a water tank. The activated foils are transferred to a NaI well chamber for gamma-ray spectroscopy and activity measurement. Since PBS treats in layers, the switching time between layers is used to correct for the decay of the activated foils and the relative dose per layer is assumed to be proportional to the neutron fluence per layer. MATLAB code was developed to incorporate the layer delivery and switching time into a calculation of foil activity, which is then used to determine the neutron energy fluence from tabulated foil activation energy thresholds.1. Diffenderfer et. al., Med. Phys., 38(11) 2011.« less
Ovčačíková, Magdaléna; Lísa, Miroslav; Cífková, Eva; Holčapek, Michal
2016-06-10
Reversed-phase ultrahigh-performance liquid chromatography (RP-UHPLC) method using two 15cm sub-2μm particles octadecylsilica gel columns is developed with the goal to separate and unambiguously identify a large number of lipid species in biological samples. The identification is performed by the coupling with high-resolution tandem mass spectrometry (MS/MS) using quadrupole - time-of-flight (QTOF) instrument. Electrospray ionization (ESI) full scan and tandem mass spectra are measured in both polarity modes with the mass accuracy better than 5ppm, which provides a high confidence of lipid identification. Over 400 lipid species covering 14 polar and nonpolar lipid classes from 5 lipid categories are identified in total lipid extracts of human plasma, human urine and porcine brain. The general dependences of relative retention times on relative carbon number or relative double bond number are constructed and fit with the second degree polynomial regression. The regular retention patterns in homologous lipid series provide additional identification point for UHPLC/MS lipidomic analysis, which increases the confidence of lipid identification. The reprocessing of previously published data by our and other groups measured in the RP mode and ultrahigh-performance supercritical fluid chromatography on the silica column shows more generic applicability of the polynomial regression for the description of retention behavior and the prediction of retention times. The novelty of this work is the characterization of general trends in the retention behavior of lipids within logical series with constant fatty acyl length or double bond number, which may be used as an additional criterion to increase the confidence of lipid identification. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudasinghe, Nilusha; Cort, John R.; Hallen, Richard
2014-12-01
Hydrothermal liquefaction (HTL) crude oil and hydrotreated product from pine tree farm waste (forest product residual, FPR) have been analyzed by direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) in both positive- and negative-ionization modes and high-resolution twodimensional heteronuclear 1H-13C NMR spectroscopy. FT-ICR MS resolves thousands of compounds in complex oils and provides unparalleled compositional details for individual molecules for identification of compound class (heteroatom content), type (number of rings plus double bonds to carbon or double bond equivalents (DBE) and carbon number (degree of alkylation). Heteronuclear 1H-13C NMR spectroscopy provides one-bond and multiple-bondmore » correlations between pairs of 1H and 13C chemical shifts that are characteristic of different organic functional groups. Taken together this information provides a picture of the chemical composition of these oils. Pyrolysis crude oil product from pine wood was characterized for comparison. Generally, pyrolysis oil is comprised of a more diverse distribution of heteroatom classes with higher oxygen number relative to HTL oil as shown by both positive- and negative-ion ESI FT-ICR MS. A total of 300 N1, 594 O1 and 267 O2 compounds were observed as products of hydrotreatment. The relative abundance of N1O1, N1O2, N1O3, N2, N2O1, N2O2 and O3 compounds are reduced to different degrees after hydrotreatment and other higher heteroatom containing species (O4-O10, N1O4, N1O5 and N2O3) are completely removed by hydrotreatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Jody; Smith, Graeme; Curtin, Nicola J., E-mail: n.j.curtin@ncl.ac.u
2009-12-01
Purpose: Radiation-induced DNA double strand breaks (DSBs) are predominantly repaired by nonhomologous end joining (NHEJ), involving DNA-dependent protein kinase (DNA-PK). Poly(ADP-ribose) polymerase-1 (PARP-1), well characterized for its role in single strand break repair, may also facilitate DSB repair. We investigated the activation of these enzymes by differing DNA ends and their interaction in the cellular response to ionizing radiation (IR). Methods and Materials: The effect of PARP and DNA-PK inhibitors (KU-0058684 and NU7441) on repair of IR-induced DSBs was investigated in DNA-PK and PARP-1 proficient and deficient cells by measuring gammaH2AX foci and neutral comets. Complementary in vitro enzyme kineticsmore » assays demonstrated the affinities of DNA-PK and PARP-1 for DSBs with varying DNA termini. Results: DNA-PK and PARP-1 both promoted the fast phase of resolution of IR-induced DSBs in cells. Inactivation of both enzymes was not additive, suggesting that PARP-1 and DNA-PK cooperate within the same pathway to promote DSB repair. The affinities of the two enzymes for oligonucleotides with blunt, 3' GGG or 5' GGG overhanging termini were similar and overlapping (K{sub dapp} = 2.6-6.4nM for DNA-PK; 1.7-4.5nM for PARP-1). DNA-PK showed a slightly greater affinity for overhanging DNA and was significantly more efficient when activated by a 5' GGG overhang. PARP-1 had a preference for blunt-ended DNA and required a separate factor for efficient stimulation by a 5' GGG overhang. Conclusion: DNA-PK and PARP-1 are both required in a pathway facilitating the fast phase of DNA DSB repair.« less
NASA Astrophysics Data System (ADS)
Nimmerichter, Alfred; Holdhaus, Johann; Mehnen, Lars; Vidotto, Claudia; Loidl, Markus; Barker, Alan R.
2014-09-01
Limited research has suggested that acute exposure to negatively charged ions may enhance cardio-respiratory function, aerobic metabolism and recovery following exercise. To test the physiological effects of negatively charged air ions, 14 trained males (age: 32 ± 7 years; : 57 ± 7 mL min-1 kg-1) were exposed for 20 min to either a high-concentration of air ions (ION: 220 ± 30 × 103 ions cm-3) or normal room conditions (PLA: 0.1 ± 0.06 × 103 ions cm-3) in an ionization chamber in a double-blinded, randomized order, prior to performing: (1) a bout of severe-intensity cycling exercise for determining the time constant of the phase II response ( τ) and the magnitude of the slow component (SC); and (2) a 30-s Wingate test that was preceded by three 30-s Wingate tests to measure plasma [adrenaline] (ADR), [nor-adrenaline] (N-ADR) and blood [lactate] (BLac) over 20 min during recovery in the ionization chamber. There was no difference between ION and PLA for the phase II τ (32 ± 14 s vs. 32 ± 14 s; P = 0.7) or SC (404 ± 214 mL vs 482 ± 217 mL; P = 0.17). No differences between ION and PLA were observed at any time-point for ADR, N-ADR and BLac as well as on peak and mean power output during the Wingate tests (all P > 0.05). A high-concentration of negatively charged air ions had no effect on aerobic metabolism during severe-intensity exercise or on performance or the recovery of the adrenergic and metabolic responses after repeated-sprint exercise in trained athletes.
H α and H β Raman scattering line profiles of the symbiotic star AG Pegasi
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Hyung, Siek
2018-04-01
The H α and H β line profiles of the symbiotic star AG Pegasi, observed in 1998 September (phase ϕ = 10.24), display top narrow double Gaussian components and bottom broad components (FWHM = 200-400 km s-1). The photoionization model indicates that the ionized zone, responsible for the hydrogen Balmer and Lyman lines, is radiation-bounded, with a hydrogen gas number density of nH ˜ 109.85 cm-3 and a gas temperature of Te = 12 000-15 000 K. We have carried out Monte Carlo simulations to fit the Raman scattering broad wings, assuming that the hydrogen Ly β and Ly γ lines emitted within the radiation-bounded H II zone around a white dwarf have the same double Gaussian line profile shape as the hydrogen Balmer lines. The simulation shows that the scattering H I zones are attached to (or located just outside) the inner H II shells. The best fit to the observed broad H I line profiles indicates that the column density of the scattering neutral zone is NH ≃ 3-5 × 1019 cm-2. We have examined whether the geometrical structure responsible for the observed H α and H β line profiles is a bipolar conical shell structure, consisting of the radiation-bounded ionized zone and the outer material bounded neutral zone. The expanding bipolar structure might be two opposite regions of the common envelope or the outer shell of the Roche lobe around the hot white dwarf, formed through the mass inflows from the giant star and pushed out by the fast winds from the hot white dwarf.
Plasma contactor research, 1990
NASA Technical Reports Server (NTRS)
Williams, John D.; Wilbur, Paul J.
1991-01-01
Emissive and Langmuir probes were used to measure plasma potential profiles, plasma densities, electron energy distributions, and plasma noise levels near a hollow cathode-based plasma contactor emitting electrons. The effects of electron emission current (100 to 1500 mA) and contactor flowrate (2 to 10 sccm (Xenon)) on these data are examined. Retarding potential analyzer (RPA) measurements showing that high energy ions generally stream from a contactor along with the electrons being emitted are also presented, and a mechanism by which this occurs is postulated. This mechanism, which involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice, results in a region of high positive space charge and high positive potential. Langmuir and RPA probe data suggests that both electrons and ions expand spherically from this potential hill region. In addition to experimental observations, a simple one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and is shown to agree qualitatively with these observations. Experimental results of the first stage of bilateral cooperation with the Italian Institute of Interplanetary Space Physics (IFSI CNR) are presented. Sharp, well-defined double layers were observed downstream of a contactor collecting electrons from an ambient plasma created in the IFSI Facility. The voltage drop across these double layers was observed to increase with the current drawn from the ambient plasma. This observation, which was not as clear in previous IFSI tests conducted at higher neutral pressures, is in agreement with previous experimental observations made at both Colorado State University and NASA Lewis Research Center. Greater double layer voltage drops, multiple double layers, and higher noise levels in the region near the double layers were also observed when a magnetic field was imposed and oriented perpendicular to the line joining the contactor and simulator.
Chew, Gina; Walczyk, Thomas
2013-04-02
Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.
Radioprotection and contrast agent use in pediatrics: what, how, and when.
Lancharro Zapata, Á M; Rodríguez, C Marín
2016-05-01
It is essential to minimize exposure to ionizing radiation in children for various reasons. The risk of developing a tumor from exposure to a given dose of radiation is greater in childhood. Various strategies can be used to reduce exposure to ionizing radiation. It is fundamental to avoid unnecessary tests and tests that are not indicated, to choose an alternative test that does not use ionizing radiation, and/or to take a series of measures that minimize the dose of radiation that the patient receives, such as avoiding having to repeat tests, using the appropriate projections, using shields, adjusting the protocol (mAs, Kv, or pitch) to the patient's body volume, etc… When contrast agents are necessary, intracavitary ultrasound agents can be used, although the use of ultrasound agents is also being extended to include intravenous administration. In fluoroscopy, contrast agents with low osmolarity must be used, as in CT where we must adjust the dose and speed of injection to the patient's weight and to the caliber of the peripheral line, respectively. In MRI, only three types of contrast agents have been approved for pediatric use. It is sometimes necessary to use double doses or organ-specific contrast agents in certain clinical situations; the safety of contrast agents for these indications has not been proven, so they must be used off label. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
ToF diagnostic of Tin resonant laser photoionization in SPES laser offline laboratory
NASA Astrophysics Data System (ADS)
Scarpa, D.; Fedorov, D.; Andrighetto, A.; Mariotti, E.; Nicolosi, P.; Sottili, L.; Tomaselli, A.; Cecchi, R.; Stiaccini, L.
2016-09-01
Tin is the principal element of interest in the SPES ISOL facility, which is under construction at Legnaro INFN Laboratories. Atomic nuclei have a shell structure in which nuclei with \\textquoteleft magic numbers\\textquoteright of protons and neutrons are analogous to the noble gasses in atomic physics. In particular, recent theoretical studies, reveal double-magic nature of radioactive 132Sn. For this reason the nuclear physics community demonstrated, in the last years, a huge interest to produce and study this radioactive neutron rich isotope. Experiments on Tin laser resonant ionization have been performed in the offline SPES laser laboratory to investigate the capability of the new home-made Time of Flight (ToF) mass spectrometer. Several three-step, two color ionization schemes have been tested by comparing fast and slow optogalvanic signals from a Tin Hollow Cathode Lamp (HCL) and Time of Flight signals from the spectrometer. By scanning the wavelength of one of the two dye lasers across the specific resonance, comparisons of ionization signals from both the ToF and the HCL have been made, finding perfect agreement. Furthermore, with the mass spectrometer, resolved peaks of all the natural Tin isotopes have been detected. The natural abundances extracted from these measurements are in agreement with the table values for Tin isotopes. This work, with comparison of OGE and ToF signals, confirm the fully functional SPES offline laser laboratory capability in order to develop scheme studies also for the other possible Radioactive Ion Beam (RIB) elements.
Creating space plasma from the ground
NASA Astrophysics Data System (ADS)
Carlson, H. C.; Djuth, F. T.; Zhang, L. D.
2017-01-01
We have performed an experiment to compare as directly as realizable the ionization production rate by HF radio wave energy versus by solar EUV. We take advantage of the commonality that ionization production by both ground-based high-power HF radio waves and by solar EUV is driven by primary and secondary suprathermal electrons near and above 20 eV. Incoherent scatter radar (ISR) plasma-line amplitudes are used as a measure of suprathermal electron fluxes for ISR wavelengths near those for 430 MHz and are indeed a clean measure of such for those fluxes sufficiently weak to have negligible self-damping. We present data from an HF heating experiment on November 2015 at Arecibo, which even more directly confirm the only prior midlatitude estimate, of order 10% efficiency for conversion of HF energy to ionospheric ionization. We note the theoretical maximum possible is 1/3, while 1% or less reduces the question to near practical irrelevance. Our measurements explicitly confirm the prediction that radio-frequency production of artificial ionospheres can be practicable, even at midlatitudes. Furthermore, that this midlatitude efficiency is comparable to efficiencies measured at high latitudes (which include enhancements unique to high latitudes including magnetic zenith effect, gyrofrequency multiples, and double resonances) requires reexamination of current theoretical thinking about soft-electron acceleration processes in weakly magnetized plasmas. The implications are that electron acceleration by any of a variety of processes may be a fundamental underpinning to energy redistribution in space plasmas.
Characterization of an Ionization Readout Tile for nEXO
Jewell, M.; Schubert, A.; Cen, W. R.; ...
2018-01-10
Here, a new design for the anode of a time projection chamber, consisting of a charge-detecting "tile", is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3 mm wide, on a 10 cm × 10 cm fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so amore » Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a 207Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution σ/ E=5.5% is observed at 570 keV, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936 V/cm.« less
The Pleiades Using Astronomical Spectroscopic Technique within the Range of H-{alpha} Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambri Zainuddin, Mohd; Muhyidin, Meer Ashwinkumar; Ahmad, Nazhatulshima
2011-03-30
The Pleiades is an open star cluster located in the constellation of Taurus, which mainly consists of hot and luminous B-type stars. Observations were conducted over five-day period in December 2009 at Langkawi National Observatory, Malaysia by using 20-inch telescope diameter of Ritchey-Chretien reflector telescope, together with SBIG Self Guided Spectrograph and SBIG ST-7 CCD camera. The spectra of seven main members of the cluster, namely Alcyone; Atlas; Celaeno; Electra; Maia; Merope and Taygeta; and of Alcyone B; a smaller component of Alcyone quadruple system, were obtained in the optical range of approximately 6300 A to 7100 A. This rangemore » was picked due to the vicinity of Balmer H-{alpha} spectral line at 6562.852 A. Alcyone, Electra and Merope were found to have H-{alpha} emissions possibly caused by the presence of equatorial circumstellar disks or envelopes made up of ejected matter. Electra and Merope in particular exhibited peculiar asymmetric double emission peaks, which could be evidence of one-armed density wave in each of their circumstellar disks. Atlas, Celaeno, Merope, Taygeta and Alcyone B showed strong H-{alpha} absorptions with broadening characteristic of high rotational velocities. As deduced from the spectra, the stars were found to have atmospheres with similar chemical content, with spectral lines characteristics of singly ionized silicon, singly ionized iron and singly ionized oxygen. The measured radial velocities of all eight stars also suggest that the cluster could someday disperse.« less
Characterization of an Ionization Readout Tile for nEXO
NASA Astrophysics Data System (ADS)
Jewell, M.; Schubert, A.; Cen, W. R.; Dalmasson, J.; DeVoe, R.; Fabris, L.; Gratta, G.; Jamil, A.; Li, G.; Odian, A.; Patel, M.; Pocar, A.; Qiu, D.; Wang, Q.; Wen, L. J.; Albert, J. B.; Anton, G.; Arnquist, I. J.; Badhrees, I.; Barbeau, P.; Beck, D.; Belov, V.; Bourque, F.; Brodsky, J. P.; Brown, E.; Brunner, T.; Burenkov, A.; Cao, G. F.; Cao, L.; Chambers, C.; Charlebois, S. A.; Chiu, M.; Cleveland, B.; Coon, M.; Craycraft, A.; Cree, W.; Côté, M.; Daniels, T.; Daugherty, S. J.; Daughhetee, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; Didberidze, T.; Dilling, J.; Ding, Y. Y.; Dolinski, M. J.; Dragone, A.; Fairbank, W.; Farine, J.; Feyzbakhsh, S.; Fontaine, R.; Fudenberg, D.; Giacomini, G.; Gornea, R.; Hansen, E. V.; Harris, D.; Hasan, M.; Heffner, M.; Hoppe, E. W.; House, A.; Hufschmidt, P.; Hughes, M.; Hößl, J.; Ito, Y.; Iverson, A.; Jiang, X. S.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Lan, Y.; Leonard, D. S.; Li, S.; Li, Z.; Licciardi, C.; Lin, Y. H.; MacLellan, R.; Michel, T.; Mong, B.; Moore, D.; Murray, K.; Newby, R. J.; Ning, Z.; Njoya, O.; Nolet, F.; Odgers, K.; Oriunno, M.; Orrell, J. L.; Ostrovskiy, I.; Overman, C. T.; Ortega, G. S.; Parent, S.; Piepke, A.; Pratte, J.-F.; Radeka, V.; Raguzin, E.; Rao, T.; Rescia, S.; Retiere, F.; Robinson, A.; Rossignol, T.; Rowson, P. C.; Roy, N.; Saldanha, R.; Sangiorgio, S.; Schmidt, S.; Schneider, J.; Sinclair, D.; Skarpaas, K.; Soma, A. K.; St-Hilaire, G.; Stekhanov, V.; Stiegler, T.; Sun, X. L.; Tarka, M.; Todd, J.; Tolba, T.; Tsang, R.; Tsang, T.; Vachon, F.; Veeraraghavan, V.; Visser, G.; Vuilleumier, J.-L.; Wagenpfeil, M.; Weber, M.; Wei, W.; Wichoski, U.; Wrede, G.; Wu, S. X.; Wu, W. H.; Yang, L.; Yen, Y.-R.; Zeldovich, O.; Zhang, X.; Zhao, J.; Zhou, Y.; Ziegler, T.
2018-01-01
A new design for the anode of a time projection chamber, consisting of a charge-detecting "tile", is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3 mm wide, on a 10 cm × 10 cm fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a 207Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution σ/E=5.5% is observed at 570 keV, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936 V/cm.
Characterization of an Ionization Readout Tile for nEXO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jewell, M.; Schubert, A.; Cen, W. R.
Here, a new design for the anode of a time projection chamber, consisting of a charge-detecting "tile", is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3 mm wide, on a 10 cm × 10 cm fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so amore » Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a 207Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution σ/ E=5.5% is observed at 570 keV, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936 V/cm.« less
Sigurdson, Alice J.; Land, Charles E.; Bhatti, Parveen; Pineda, Marbin; Brenner, Alina; Carr, Zhanat; Gusev, Boris I.; Zhumadilov, Zhaxibay; Simon, Steven L.; Bouville, Andre; Rutter, Joni L.; Ron, Elaine; Struewing, Jeffery P.
2010-01-01
Risk factors for thyroid cancer remain largely unknown except for ionizing radiation exposure during childhood and a history of benign thyroid nodules. Because thyroid nodules are more common than thyroid cancers and are associated with thyroid cancer risk, we evaluated several polymorphisms potentially relevant to thyroid tumors and assessed interaction with ionizing radiation exposure to the thyroid gland. Thyroid nodules were detected in 1998 by ultrasound screening of 2997 persons who lived near the Semipalatinsk nuclear test site in Kazakhstan when they were children (1949-62). Cases with thyroid nodules (n=907) were frequency matched (1:1) to those without nodules by ethnicity (Kazakh or Russian), gender, and age at screening. Thyroid gland radiation doses were estimated from fallout deposition patterns, residence history, and diet. We analyzed 23 polymorphisms in 13 genes and assessed interaction with ionizing radiation exposure using likelihood ratio tests (LRT). Elevated thyroid nodule risks were associated with the minor alleles of RET S836S (rs1800862, p = 0.03) and GFRA1 -193C>G (rs not assigned, p = 0.05) and decreased risk with XRCC1 R194W (rs1799782, p-trend = 0.03) and TGFB1 T263I (rs1800472, p = 0.009). Similar patterns of association were observed for a small number of papillary thyroid cancers (n=25). Ionizing radiation exposure to the thyroid gland was associated with significantly increased risk of thyroid nodules (age and gender adjusted excess odds ratio/Gy = 0.30, 95% confidence interval 0.05-0.56), with evidence for interaction by genotype found for XRCC1 R194W (LRT p value = 0.02). Polymorphisms in RET signaling, DNA repair, and proliferation genes may be related to risk of thyroid nodules, consistent with some previous reports on thyroid cancer. Borderline support for gene-radiation interaction was found for a variant in XRCC1, a key base excision repair protein. Other pathways, such as genes in double strand break repair, apoptosis, and genes related to proliferation should also be pursued. PMID:19138047
Evolution of Cometary Activity at 67P/Churyumov-Gerasimenko as seen by ROSINA/Rosetta
NASA Astrophysics Data System (ADS)
Jäckel, A.; Altwegg, K.; Balsiger, H.; Calmonte, U.; Gasc, S.; Le Roy, L.; Rubin, M.; Tzou, C. Y.; Wurz, P.; Bieler, A.; Berthelier, J.-J.; Fiethe, B.; Hässig, M.; deKeyser, J.; Mall, U.; Rème, H.
2015-10-01
Since nine months the European Space Agency's spacecraft Rosetta, with the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) onboard, is in the comet escort phase. ROSINA is a suite of three instruments, consisting of the COmetary Pressure Sensor (COPS), the Double Focusing Mass Spectrometer (DFMS), and the Reflectron-type Time-Of-Flight (RTOF) mass spectrometer [1]. The two mass spectrometers measure in situ the neutral and ionized volatile material in the coma of comet 67P/Churyumov- Gerasimenko (67P/C-G). With COPS we are able to derive the total gas density, bulk velocities and temperatures of the coma.
Multiple core-hole formation by free-electron laser radiation in molecular nitrogen
NASA Astrophysics Data System (ADS)
Banks, H. I. B.; Little, D. A.; Emmanouilidou, A.
2018-05-01
We investigate the formation of multiple-core-hole states of molecular nitrogen interacting with a free-electron laser pulse. In previous work, we obtained bound and continuum molecular orbitals in the single-center expansion scheme and used these orbitals to calculate photo-ionization and auger decay rates. We extend our formulation to track the proportion of the population that accesses single-site versus two-site double-core-hole (TSDCH) states, before the formation of the final atomic ions. We investigate the pulse parameters that favor the formation of the single-site and TSDCH as well as triple-core-hole states for 525 and 1100 eV photons.
NASA Astrophysics Data System (ADS)
Zhaunerchyk, V.; Kamińska, M.; Mucke, M.; Squibb, R. J.; Eland, J. H. D.; Piancastelli, M. N.; Frasinski, L. J.; Grilj, J.; Koch, M.; McFarland, B. K.; Sistrunk, E.; Gühr, M.; Coffee, R. N.; Bostedt, C.; Bozek, J. D.; Salén, P.; Meulen, P. v. d.; Linusson, P.; Thomas, R. D.; Larsson, M.; Foucar, L.; Ullrich, J.; Motomura, K.; Mondal, S.; Ueda, K.; Richter, R.; Prince, K. C.; Takahashi, O.; Osipov, T.; Fang, L.; Murphy, B. F.; Berrah, N.; Feifel, R.
2015-12-01
Competing multi-photon ionization processes, some leading to the formation of double core hole states, have been examined in 4-aminophenol. The experiments used the linac coherent light source (LCLS) x-ray free electron laser, in combination with a time-of-flight magnetic bottle electron spectrometer and the correlation analysis method of covariance mapping. The results imply that 4-aminophenol molecules exposed to the focused x-ray pulses of the LCLS sequentially absorb more than two x-ray photons, resulting in the formation of multiple core holes as well as in the sequential removal of photoelectrons and Auger electrons (so-called PAPA sequences).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, S. T.; Chemistry
The photoelectron spectrum following resonant two-photon ionization of 1,4-diazabicyclo[2.2.2]octane (DABCO) was recorded with the laser tuned to the origin band of the S{sub 2}{l_arrow}S{sub 0} transition. The spectrum is consistent with the rapid radiationless transition from the S2 state into high vibrational levels of the S1 state, as proposed by Smith et al. Features in the double-resonance spectrum of Smith et al. that were previously assigned to photoionization of S(-) 3s(-){sup 1}A'{sub 2} vibrational levels populated by a radiationless transition from the S2 state are reinterpreted, with the conclusion that the S(-) state has yet to be observed.
Spencer, William T.; Vaidya, Tulaza; Frontier, Alison J.
2013-01-01
The requirement for new strategies for synthesizing five-membered carbocycles has driven an expansion in the study of the Nazarov cyclization. This renewed interest in the reaction has led to the discovery of several interesting new methods for generating the pentadienyl cation intermediate central to the cyclization. Methods reviewed include carbon-heteroatom ionization, functionalization of a double bond, nucleophilic addition, or electrocyclic ring opening. Additional variations employ unconventional substrates to produce novel pentacycles, such as the iso- and imino-Nazarov. Herein, we provide an overview of these unconventional, yet highly useful versions of the Nazarov cyclization. PMID:24348092
Zhaunerchyk, V.; Kaminska, M.; Mucke, M.; ...
2015-10-28
Competing multi-photon ionization processes, some leading to the formation of double core hole states, have been examined in 4-aminophenol. The experiments used the linac coherent light source (LCLS) x-ray free electron laser, in combination with a time-of-flight magnetic bottle electron spectrometer and the correlation analysis method of covariance mapping. Furthermore, the results imply that 4-aminophenol molecules exposed to the focused x-ray pulses of the LCLS sequentially absorb more than two x-ray photons, resulting in the formation of multiple core holes as well as in the sequential removal of photoelectrons and Auger electrons (so-called PAPA sequences).
High Power Light Gas Helicon Plasma Source For VASMIR
NASA Technical Reports Server (NTRS)
Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.
2004-01-01
The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we discuss modeling of these configurations using ORNL's EMIR code.
Acquisition plan for Digital Document Storage (DDS) prototype system
NASA Technical Reports Server (NTRS)
1990-01-01
NASA Headquarters maintains a continuing interest in and commitment to exploring the use of new technology to support productivity improvements in meeting service requirements tasked to the NASA Scientific and Technical Information (STI) Facility, and to support cost effective approaches to the development and delivery of enhanced levels of service provided by the STI Facility. The DDS project has been pursued with this interest and commitment in mind. It is believed that DDS will provide improved archival blowback quality and service for ad hoc requests for paper copies of documents archived and serviced centrally at the STI Facility. It will also develop an operating capability to scan, digitize, store, and reproduce paper copies of 5000 NASA technical reports archived annually at the STI Facility and serviced to the user community. Additionally, it will provide NASA Headquarters and field installations with on-demand, remote, electronic retrieval of digitized, bilevel, bit mapped report images along with branched, nonsequential retrieval of report subparts.
Hollunder, Jens; Friedel, Maik; Kuiper, Martin; Wilhelm, Thomas
2010-04-01
Many large 'omics' datasets have been published and many more are expected in the near future. New analysis methods are needed for best exploitation. We have developed a graphical user interface (GUI) for easy data analysis. Our discovery of all significant substructures (DASS) approach elucidates the underlying modularity, a typical feature of complex biological data. It is related to biclustering and other data mining approaches. Importantly, DASS-GUI also allows handling of multi-sets and calculation of statistical significances. DASS-GUI contains tools for further analysis of the identified patterns: analysis of the pattern hierarchy, enrichment analysis, module validation, analysis of additional numerical data, easy handling of synonymous names, clustering, filtering and merging. Different export options allow easy usage of additional tools such as Cytoscape. Source code, pre-compiled binaries for different systems, a comprehensive tutorial, case studies and many additional datasets are freely available at http://www.ifr.ac.uk/dass/gui/. DASS-GUI is implemented in Qt.
NASA Astrophysics Data System (ADS)
Tremblay, Grant; O'Dea, Christopher; Labiano, Alvaro; Baum, Stefi; McDermid, Richard; Combes, Francoise; Garcia-Burillo, Santiago; Davis, Timothy
2014-08-01
3C 236 is the second largest known radio galaxy and one of the largest objects in the known Universe. Its central AGN has recently reignited after a 10 Myr dormancy period, giving rise to a very young and compact radio source and a 1000 km/sec outflow of warm ionized and atomic HI gas. We propose GMOS-N IFU observations to resolve this outflow, determine its driver, and estimate the relative coupling efficiencies between the warm ionized, atomic, and cold molecular gas phases. We will assemble a much-needed spatially resolved Balmer decrement (extinction map) across the dramatic double dust lanes of this source, enabling high spatial resolution star formation rate, efficiency, and gas excitation and velocity maps. These will address several mysteries related to the very high star formation efficiency and the unique nature of the multiphase outflow in this source. 3C 236 is such a remarkable galaxy that whatever the results of the proposed observations, they will have wide-ranging implications for the triggering of star formation and AGN activity, their possibly coupled co-evolution, and the feedback effects of the latter on the former.
Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng
2013-04-28
Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.
Yuan, Qing; Tian, Ran; Zhao, Haiying; Li, Lijuan; Bi, Xiaolin
2018-05-31
Mre11 is a key player for DNA double strand break repair. Previous studies have shown that mammalian Mre11 is methylated at multiple arginines in its C-terminal Glycine-Arginine-Rich motif (GAR) by protein arginine methyltransferase PRMT1. Here, we found that the Drosophila Mre11 is methylated at arginines 559, 563, 565, and 569 in the GAR motif by DART1, the Drosophila homolog of PRMT1. Mre11 interacts with DART1 in S2 cells, and this interaction does not require the GAR motif. Arginines methylated Mre11 localizes exclusively in the nucleus as soluble nuclear protein or chromatin-binding protein. To study the in vivo functions of methylation, we generated the single Arg-Ala and all Arginines mutated flies. We found these mutants were sensitive to ionizing radiation. Furthermore, Arg-Ala mutated flies had no irradiation induced G2/M checkpoint defect in wing disc and eye disc. Thus, we provided evidence that arginines in Drosophila Mre11 are methylated by DART1 methytransferase and flies loss of arginine methylation are sensitive to irradiation. Copyright © 2018 Yuan et al.
Energy and angular distribution of electrons ejected from water by the impact of fast O8+ ion beams
NASA Astrophysics Data System (ADS)
Bhattacharjee, Shamik; Bagdia, Chandan; Chowdhury, Madhusree Roy; Monti, Juan M.; Rivarola, Roberto D.; Tribedi, Lokesh C.
2018-01-01
Double differential cross sections (DDCS) of electrons emitted from vapor water molecules (in vapor phase) by 2.0 MeV/u and 3.75 MeV/u bare oxygen ion impact have been measured by continuum electron spectroscopy technique. The ejected electrons were detected by an electrostatic hemispherical deflection analyzer over an energy range of 1-600 eV and emission angles from 20∘ to 160∘. The DDCS data has been compared with the continuum-distorted-wave-eikonal-initial state (CDW-EIS) approximation and a reasonable agreement was found with both version of the models i.e. post and prior version. By numerical integration of the DDCS data, the single differential cross section (SDCS) and total ionization cross section (TCS) were obtained. The obtained TCS results were compared with other available TCS results for water target within the same energy range. The total ionization cross sections values are seen to saturate as the projectile charge state ( q p ) increases, which is in contrast to the first-Born predicted q p 2 dependence. This is also in contrast to the prediction of the CDW-EIS models.
Petroleomics by Direct Analysis in Real Time-Mass Spectrometry.
Romão, Wanderson; Tose, Lilian V; Vaz, Boniek G; Sama, Sara G; Lobinski, Ryszard; Giusti, Pierre; Carrier, Hervé; Bouyssiere, Brice
2016-01-01
The analysis of crude oil and its fractions by applying ambient ionization techniques remains underexplored in mass spectrometry (MS). Direct analysis in real time (DART) in the positive-ion mode was coupled to a linear quadrupole ion trap Orbitrap mass spectrometer (LTQ Orbitrap) to analyze crude oil, paraffin samples, and porphyrin standard compounds. The ionization parameters of DART-MS were optimized for crude oil analysis. DART-MS rendered the optimum conditions of the operation using paper as the substrate, T = 400°C, helium as the carrier gas, and a sample concentration ≥6 mg mL(-1). In the crude oils analysis, the DART(+)-Orbitrap mass spectra detected the typical N, NO, and O-containing compounds. In the paraffin samples, oxidized hydrocarbon species (Ox classes, where x = 1-4) with double-bond equivalent of 1-4 were detected, and their structures and connectivity were confirmed by collision-induced dissociation (CID) experiments. DART(+)-MS has identified the porphyrin standard compounds as [M + H](+) ions of m/z 615.2502 and 680.1763, where M = C44H30N4 and C44H28N4OV, respectively, based on the formula assignment and by phenyl losses observed on CID experiments.
Fast atom bombardment tandem mass spectrometry of carotenoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Breeman, R.B.; Schmitz, H.H.; Schwartz, S.J.
Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenesmore » formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.« less
Observations of the planetary nebula RWT 152 with OSIRIS/GTC
NASA Astrophysics Data System (ADS)
Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.
2016-11-01
RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Erica A.; Lee, Young Jin
2010-08-23
Fast pyrolysis of biomass produces bio-oils that can be upgraded into biofuels. Despite similar physical properties to petroleum, the chemical properties of bio-oils are quite different and their chemical compositions, particularly those of non-volatile compounds, are not well-known. Here, we report the first time attempt at analyzing bio-oils using high-resolution mass spectrometry (MS), which employed laser desorption ionization-linear ion trap-Orbitrap MS. Besides a few limitations, we could determine chemical compositions for over 100 molecular compounds in a bio-oil sample produced from the pyrolysis of a loblolly pine tree. These compounds consist of 3-6 oxygens and 9-17 double-bond equivalents (DBEs). Amongmore » those, O{sub 4} compounds with a DBE of 9-13 were most abundant. Unlike petroleum oils, the lack of nearby molecules within a {+-}2 Da mass window for major components enabled clear isolation of precursor ions for subsequent MS/MS structural investigations. Petroleomic analysis and a comparison to low-mass components in hydrolytic lignin suggest that they are dimers and trimers of depolymerized lignin.« less
Neutron-Induced Charged Particle Studies at LANSCE
NASA Astrophysics Data System (ADS)
Lee, Hye Young; Haight, Robert C.
2014-09-01
Direct measurements on neutron-induced charged particle reactions are of interest for nuclear astrophysics and applied nuclear energy. LANSCE (Los Alamos Neutron Science Center) produces neutrons in energy of thermal to several hundreds MeV. There has been an effort at LANSCE to upgrade neutron-induced charged particle detection technique, which follows on (n,z) measurements made previously here and will have improved capabilities including larger solid angles, higher efficiency, and better signal to background ratios. For studying cross sections of low-energy neutron induced alpha reactions, Frisch-gridded ionization chamber is designed with segmented anodes for improving signal-to-noise ratio near reaction thresholds. Since double-differential cross sections on (n,p) and (n,a) reactions up to tens of MeV provide important information on deducing nuclear level density, the ionization chamber will be coupled with silicon strip detectors (DSSD) in order to stop energetic charged particles. In this paper, we will present the status of this development including the progress on detector design, calibrations and Monte Carlo simulations. This work is funded by the US Department of Energy - Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.
NASA Astrophysics Data System (ADS)
Michałowski, P. P.; Pasternak, I.; Strupiński, W.
2018-01-01
In this study, we demonstrate that graphene grown on Ge does not contain any copper contamination, and identify some of the errors affecting the accuracy of commonly used measurement methods. Indeed, one of these, the secondary ion mass spectrometry (SIMS) technique, reveals copper contamination in Ge-based graphene but does not take into account the effect of the presence of the graphene layer. We have shown that this layer increases negative ionization significantly, and thus yields false results, but also that the graphene enhances, by an order of two, the magnitude of the intensity of SIMS signals when compared with a similar graphene-free sample, enabling much better detection limits. This forms the basis of a new measurement procedure, graphene enhanced SIMS (GESIMS) (pending European patent application no. EP 16461554.4), which allows for the precise estimation of the realistic distribution of dopants and contamination in graphene. In addition, we present evidence that the GESIMS effect leads to unexpected mass interferences with double-ionized species, and that these interferences are negligible in samples without graphene. The GESIMS method also shows that graphene transferred from Cu results in increased copper contamination.
NASA Astrophysics Data System (ADS)
Knippenberg, S.; Nixon, K. L.; Brunger, M. J.; Maddern, T.; Campbell, L.; Trout, N.; Wang, F.; Newell, W. R.; Deleuze, M. S.; Francois, J.-P.; Winkler, D. A.
2004-12-01
We report on the results of an exhaustive study of the valence electronic structure of norbornane (C7H12), up to binding energies of 29 eV. Experimental electron momentum spectroscopy and theoretical Green's function and density functional theory approaches were all utilized in this investigation. A stringent comparison between the electron momentum spectroscopy and theoretical orbital momentum distributions found that, among all the tested models, the combination of the Becke-Perdew functional and a polarized valence basis set of triple-ζ quality provides the best representation of the electron momentum distributions for all of the 20 valence orbitals of norbornane. This experimentally validated quantum chemistry model was then used to extract some chemically important properties of norbornane. When these calculated properties are compared to corresponding results from other independent measurements, generally good agreement is found. Green's function calculations with the aid of the third-order algebraic diagrammatic construction scheme indicate that the orbital picture of ionization breaks down at binding energies larger than 22.5 eV. Despite this complication, they enable insights within 0.2 eV accuracy into the available ultraviolet photoemission and newly presented (e,2e) ionization spectra, except for the band associated with the 1a2-1 one-hole state, which is probably subject to rather significant vibronic coupling effects, and a band at ˜25 eV characterized by a momentum distribution of "s-type" symmetry, which Green's function calculations fail to reproduce. We note the vicinity of the vertical double ionization threshold at ˜26 eV.
Solving the three-body Coulomb breakup problem using exterior complex scaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.
2004-05-17
Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish themore » formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.« less
Energetics of short hydrogen bonds in photoactive yellow protein.
Saito, Keisuke; Ishikita, Hiroshi
2012-01-03
Recent neutron diffraction studies of photoactive yellow protein (PYP) proposed that the H bond between protonated Glu46 and the chromophore [ionized p-coumaric acid (pCA)] was a low-barrier H bond (LBHB). Using the atomic coordinates of the high-resolution crystal structure, we analyzed the energetics of the short H bond by two independent methods: electrostatic pK(a) calculations and a quantum mechanical/molecular mechanical (QM/MM) approach. (i) In the QM/MM optimized geometry, we reproduced the two short H-bond distances of the crystal structure: Tyr42-pCA (2.50 Å) and Glu46-pCA (2.57 Å). However, the H atoms obviously belonged to the Tyr or Glu moieties, and were not near the midpoint of the donor and acceptor atoms. (ii) The potential-energy curves of the two H bonds resembled those of standard asymmetric double-well potentials, which differ from those of LBHB. (iii) The calculated pK(a) values for Glu46 and pCA were 8.6 and 5.4, respectively. The pK(a) difference was unlikely to satisfy the prerequisite for LBHB. (iv) The LBHB in PYP was originally proposed to stabilize the ionized pCA because deprotonated Arg52 cannot stabilize it. However, the calculated pK(a) of Arg52 and QM/MM optimized geometry suggested that Arg52 was protonated on the protein surface. The short H bond between Glu46 and ionized pCA in the PYP ground state could be simply explained by electrostatic stabilization without invoking LBHB.
Valence shell threshold photoelectron spectroscopy of the CHxCN (x = 0-2) and CNC radicals.
Garcia, Gustavo A; Krüger, Julia; Gans, Bérenger; Falvo, Cyril; Coudert, Laurent H; Loison, Jean-Christophe
2017-07-07
We present the photoelectron spectroscopy of four radical species, CH x CN (x = 0-2) and CNC, formed in a microwave discharge flow-tube reactor by consecutive H abstractions from CH 3 CN (CH x CN + F → CH x-1 CN + HF (x = 1-3)). The spectra were obtained combining tunable vacuum ultraviolet synchrotron radiation with double imaging electron/ion coincidence techniques, which yielded mass-selected threshold photoelectron spectra. The results obtained for H 2 CCN complement existing ones while for the other radicals the data represent the first observation of their (single-photon) ionizing transitions. In the case of H 2 CCN, Franck-Condon calculations have been performed in order to assign the vibrational structure of the X + 1 A 1 ←X 2 B 1 ionizing transition. A similar treatment for the HCCN, CCN, and CNC radicals appeared to be more complicated mainly because a Renner-Teller effect strongly affects the vibrational levels of the ground electronic state of the HCCN + , CCN, and CNC species. Nevertheless, the first adiabatic ionization energies of these radicals are reported and compared to our ab initio calculated values, leading to new values for enthalpies of formation (Δ f H 298 0 (HCCN + (X 2 A ' ))=1517±12kJmol -1 ,Δ f H 298 0 (CCN(X 2 Π))=682±13kJmol -1 , and Δ f H 298 0 (CNC(X 2 Πg))=676±12kJmol -1 ), which are of fundamental importance for astrochemistry.
Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap
NASA Astrophysics Data System (ADS)
Snyder, Dalton T.; Szalwinski, Lucas J.; Schrader, Robert L.; Pirro, Valentina; Hilger, Ryan; Cooks, R. Graham
2018-03-01
Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Cao, Zhitao; Jiang, Lan; Wang, Sumei; Wang, Mengmeng; Liu, Lei; Yang, Fan; Lu, Yongfeng
2018-03-01
Femtosecond laser pulse train induced breakdown of fused silica was studied by investigating its plasma emission and the ablated crater morphology. It was demonstrated that the electron dynamics in the ablated fused silica play a dominant role in the emission intensity of induced plasma and the volume of material removal, corresponding to the evolution of free-electron, self-trapped excitons, and the phase change of the fused silica left over by the first pulse. For a fluence of 11 J/cm2, the maximum plasma intensity of double-pulse irradiation at an interpulse delay of 120 ps was about 35 times stronger than that of a single-pulse, while the ablated crater was reduced by 27% in volume. The ionization of slow plume component generated by the first pulse was found to be the main reason for the extremely high intensity enhancement for an interpulse delay of over 10 ps. The results serve as a route to simultaneously increase the spatial resolution and plasma intensity in laser-induced breakdown spectroscopy of dielectrics.
Sadybekov, Arman; Krylov, Anna I.
2017-07-07
A theoretical approach for calculating core-level states in condensed phase is presented. The approach is based on equation-of-motion coupled-cluster theory (EOMCC) and effective fragment potential (EFP) method. By introducing an approximate treatment of double excitations in the EOM-CCSD (EOM-CC with single and double substitutions) ansatz, we address poor convergence issues that are encountered for the core-level states and significantly reduce computational costs. While the approximations introduce relatively large errors in the absolute values of transition energies, the errors are systematic. Consequently, chemical shifts, changes in ionization energies relative to reference systems, are reproduced reasonably well. By using different protonation formsmore » of solvated glycine as a benchmark system, we show that our protocol is capable of reproducing the experimental chemical shifts with a quantitative accuracy. The results demonstrate that chemical shifts are very sensitive to the solvent interactions and that explicit treatment of solvent, such as EFP, is essential for achieving quantitative accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrario, P.
2016-01-19
The NEXT experiment aims to observe the neutrinoless double beta decay of xenon in a high-pressure 136Xe gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Q ββ. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of 22Na 1275 keV gammas and electron-positron pairs produced by conversions of gammas from the 228Th decay chain were usedmore » to represent the background and the signal in a double beta decay. Furthermore, these data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24.3 ± 1.4 (stat.)%, while maintaining an efficiency of 66.7 ± 1% for signal events.« less
Collective relaxation processes in atoms, molecules and clusters
NASA Astrophysics Data System (ADS)
Kolorenč, Přemysl; Averbukh, Vitali; Feifel, Raimund; Eland, John
2016-04-01
Electron correlation is an essential driver of a variety of relaxation processes in excited atomic and molecular systems. These are phenomena which often lead to autoionization typically involving two-electron transitions, such as the well-known Auger effect. However, electron correlation can give rise also to higher-order processes characterized by multi-electron transitions. Basic examples include simultaneous two-electron emission upon recombination of an inner-shell vacancy (double Auger decay) or collective decay of two holes with emission of a single electron. First reports of this class of processes date back to the 1960s, but their investigation intensified only recently with the advent of free-electron lasers. High fluxes of high-energy photons induce multiple excitation or ionization of a system on the femtosecond timescale and under such conditions the importance of multi-electron processes increases significantly. We present an overview of experimental and theoretical works on selected multi-electron relaxation phenomena in systems of different complexity, going from double Auger decay in atoms and small molecules to collective interatomic autoionization processes in nanoscale samples.
The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End Joining Pathway
Lieber, Michael R.
2011-01-01
Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination and nonhomologous DNA end joining (NHEJ). The diverse causes of DSBs result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, polymerases and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during V(D)J recombination and class switch recombination. Therefore, patients lacking normal NHEJ are not only sensitive to ionizing radiation, but also severely immunodeficient. PMID:20192759
Dantuma, Nico P; Pfeiffer, Annika
2016-01-01
Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process.