Nonlinear nonuniform torsional vibrations of bars by the boundary element method
NASA Astrophysics Data System (ADS)
Sapountzakis, E. J.; Tsipiras, V. J.
2010-05-01
In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross-section taking into account the effect of geometrical nonlinearity. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are supported by the most general torsional boundary conditions. The transverse displacement components are expressed so as to be valid for large twisting rotations (finite displacement-small strain theory), thus the arising governing differential equations and boundary conditions are in general nonlinear. The resulting coupling effect between twisting and axial displacement components is considered and torsional vibration analysis is performed in both the torsional pre- or post-buckled state. A distributed mass model system is employed, taking into account the warping, rotatory and axial inertia, leading to the formulation of a coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an "average" axial displacement of the cross-section of the bar. The numerical solution of the aforementioned initial boundary value problem is performed using the analog equation method, a BEM based method, leading to a system of nonlinear differential-algebraic equations (DAE), which is solved using an efficient time discretization scheme. Additionally, for the free vibrations case, a nonlinear generalized eigenvalue problem is formulated with respect to the fundamental mode shape at the points of reversal of motion after ignoring the axial inertia to verify the accuracy of the proposed method. The problem is solved using the direct iteration technique (DIT), with a geometrically linear fundamental mode shape as a starting vector. The validity of negligible axial inertia assumption is examined for the problem at hand.
NASA Technical Reports Server (NTRS)
Davis, R. B.; Stephens, M. V.
1974-01-01
An approximate method for calculating the longitudinal and torsional natural frequencies and associated modal data of a beamlike, variable cross section multibranch structure is presented. The procedure described is the numerical integration of the first order differential equations that characterize the beam element in longitudinal motion and that satisfy the appropriate boundary conditions.
Active structures to reduce torsional vibrations
NASA Astrophysics Data System (ADS)
Matthias, M.; Schlote, D.; Atzrodt, H.
2013-03-01
This paper describes the development of different active measures to reduce torsional vibrations in power trains. The measures are based on concepts developed for active mounts to reduce the transmission of structure-borne sound. To show the potential of these active measures and investigate their mode of operation to influence torsional vibrations, numerical simulations of powertrains with different active measures were done. First experimental results from tests on an experimental (reduced size) power train were used to align the numerical models. The work was done within the project 'LOEWE-Zentrum AdRIA: Adaptronik - Research, Innovation, Application' funded by the German federal state of Hessen, and the Project AKTos: 'Active control of torsional vibrations by coupling elements' placed in the research Framework program 'Navigation and Maritime Technology for the 21st Century' funded by the German Federal Ministry of Economics and Technology.
Nonuniform Shear Strains in Torsional Kolsky Bar Tests on Soft Specimens
2015-02-01
ARL-RP-0519 ● FEB 2015 US Army Research Laboratory Nonuniform Shear Strains in Torsional Kolsky Bar Tests on Soft Specimens...originator. ARL-RP-0519 ● FEB 2015 US Army Research Laboratory Nonuniform Shear Strains in Torsional Kolsky Bar Tests on Soft Specimens...
Design of a nonlinear torsional vibration absorber
NASA Astrophysics Data System (ADS)
Tahir, Ammaar Bin
Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is
Laser-Based Measurement Of Torsional Vibration
NASA Astrophysics Data System (ADS)
Eastwood, P. G.; Halliwell, N. A.
1986-07-01
Investigations of the torsional vibration characteristics of shaft systems which transmit pulsating torques are an important part of a machinery designer's responsibility. Satisfactory operation of such systems depends to a large extent on successful treatment of this vibration problem, since incorrectly or insufficiently controlled torsional oscillations can lead to fatigue failure, rapid bearing wear, gear hammer etc. The problem is particularly severe in engine crankshaft design where numerous failures have been traced to abnormal vibration at "critical" speeds. Traditionally, the monitoring of torsional oscillation has been performed using strain gauges, slip rings and a variety of mechanical and electrical "torsiographs". More recently systems employing slotted discs or toothed wheels together with proximity transducers have been preferred, but a disadvantage arises from all these methods in that they require contact with the rotating component which necessitates "downtime" for transducer attachment. Moreover, physical access to the rotating surface is often restricted thus making the use of such methods impractical. The "cross-beam" laser velocimeter provides a means of measuring torsional vibration by a non-contact method, thus effectively overcoming the disadvantages of previous measurement systems. This well established laser-based instrument provides a time-resolved voltage analogue of shaft tangential surface velocity and laboratory and field tests have shown it to be both accurate and reliable. The versatility of this instrument, however, is restricted by the need for accurate positioning, since the velocimeter must be arranged so that the rotating surface always traverses the beam intersection region, which is typically only a fraction of a millimetre in length. As a consequence use is restricted to components of circular cross section. This paper compares and contrasts the "cross-beam" system with a new laser instrument, the laser torsional vibrometer
Control of Torsional Vibrations by Pendulum Masses
NASA Technical Reports Server (NTRS)
Stieglitz, Albert
1942-01-01
Various versions of pendulum masses have been developed abroad within the past few years by means of which resonant vibrations of rotating shafts can be eliminated at a given tuning. They are already successfully employed on radial engines in the form of pendulous counterweights. Compared with the commonly known torsional vibration dampers, the pendulum masses have the advantage of being structurally very simple, requiring no internal damping and being capable of completely eliminating certain vibrations. Unexplained, so far, remains the problem of behavior of pendulum masses in other critical zones to which they are not tuned, their dynamic behavior at some tuning other than in resonance, and their effect within a compound vibration system and at simultaneous application of several differently tuned pendulous masses. These problems are analyzed in the present report. The results constitute an enlargement of the scope of application of pendulum masses, especially for in-line engines. Among other things it is found that the natural frequency of a system can be raised by means of a correspondingly tuned pendulum mass. The formulas necessary for the design of any practical version are developed, and a pendulum mass having two different natural frequencies simultaneously is described.
Fault diagnosis of planetary gearboxes via torsional vibration signal analysis
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Zuo, Ming J.
2013-04-01
Torsional vibration signals are theoretically free from the amplitude modulation effect caused by time variant vibration transfer paths due to the rotation of planet carrier and sun gear, and therefore their spectral structure are simpler than transverse vibration signals. Thus, it is potentially easy and effective to diagnose planetary gearbox faults via torsional vibration signal analysis. We give explicit equations to model torsional vibration signals, considering both distributed gear faults (like manufacturing or assembly errors) and local gear faults (like pitting, crack or breakage of one tooth), and derive the characteristics of both the traditional Fourier spectrum and the proposed demodulated spectra of amplitude envelope and instantaneous frequency. These derivations are not only effective to diagnose single gear fault of planetary gearboxes, but can also be generalized to detect and locate multiple gear faults. We validate experimentally the signal models, as well as the Fourier spectral analysis and demodulation analysis methods.
NASA Technical Reports Server (NTRS)
White, W. F., Jr.; Malatino, R. E.
1975-01-01
A method is presented for determining the free vibration characteristics of a rotating blade having nonuniform spanwise properties and cantilever boundary conditions. The equations which govern the coupled flapwise, chordwise, and torsional motion of such a blade are solved using an integrating matrix method. By expressing the equations of motion and matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the equations are formulated into an eigenvalue problem whose solutions may be determined by conventional methods. Computer results are compared with experimental data.
Non-uniform beam vibration using Differential Transform Method
NASA Astrophysics Data System (ADS)
Shali, S.; Nagaraja, S. R.; Jafarali, P.
2016-09-01
The paper focuses on the vibration characteristics of non-uniform Euler- Bernoulli beam using Differential Transform Method (DTM). DTM is a numerical method to solve differential equations where the governing equations are reduced into a set of polynomials. Non-uniformity is considered corresponding to linear variation in breadth and height of the beam. The effect of taper ratio on the fundamental frequency of tapered beams is also analysed. The method has proved to be accurate, simple and effective for eigenvalue analysis. For the two cases of non-uniform beam analysed, the frequency computed by the method of differential transform is found to be comparable with the previously available results.
A torsion quasi-zero stiffness vibration isolator
NASA Astrophysics Data System (ADS)
Zhou, Jiaxi; Xu, Daolin; Bishop, Steven
2015-03-01
A torsion vibration isolator with quasi-zero stiffness (QZS) is proposed to attenuate the transmission of torsional vibration along a shaft system, which also plays a role of coupling between shafts. A pre-compressed cam-roller mechanism is designed to provide torsional negative stiffness that counteracts with the positive torsion stiffness of the vulcanized rubber between shafts. With the design parameters are set to satisfy a unique condition, the stiffness of the isolator delivers a QZS property about the equilibrium position. A nonlinear mathematical model is developed and its dynamic characteristics are further analyzed by using the Harmonic Balance method. A typical folded resonance curve occurs when the vibration amplitude is plotted as the excitation frequency is varied, illustrating a jump phenomenon in the response. The efficiency of vibration attenuation is estimated under a designed torque load, showing that the torsion QZS vibration isolator outperforms the corresponding linear counterpart, especial in low frequency ranges. Furthermore, the torque transmissibility of the QZS isolator is also studied to demonstrate the performance of the QZS isolator when the actual torque deviates from the design load.
Free torsional vibrations of tapered cantilever I-beams
NASA Astrophysics Data System (ADS)
Rao, C. Kameswara; Mirza, S.
1988-08-01
Torsional vibration characteristics of linearly tapered cantilever I-beams have been studied by using the Galerkin finite element method. A third degree polynomial is assumed for the angle of twist. The analysis presented is valid for long beams and includes the effect of warping. The individual as well as combined effects of linear tapers in the width of the flanges and the depth of the web on the torsional vibration of cantilever I-beams are investigated. Numerical results generated for various values of taper ratios are presented in graphical form.
Vibrations of a Marine Propeller Operating in a Nonuniform Inflow.
1980-04-01
Expanded Blade Midsurface ......... ........................ ... 73 16 - Calculated Normalized Propeller RMS Vibration Velocity as a Function of...averaged over the blade midsurface ), rather thaft the maximum velocities near the blade tip. Then, for the two test propellers, the rms nonuniform inflow...time- averaged midsurface of the blade, then the instantaneous position S of the vibrating midsurface is _S (ric)+ qct S(r,c,t) = (rc) + q(t) i(rc
Structural and torsional vibration analysis of a dry screw compressor
NASA Astrophysics Data System (ADS)
Willie, J.; Sachs, R.
2015-08-01
This paper investigates torsional vibration and pulsating noise in a dry screw compressor. The compressor is designed at Gardner Denver (GD) and is oil free and use for mounting on highway trucks. They are driven using a Power Take-Off (PTO) transmission and gear box on a truck. Torque peak fluctuation and noise measurements are done and their sources are investigated and reported in this work. To accurately predict the torsional response (frequency and relative angular deflection and torque amplitude), the Holzer method is used. It is shown that the first torsional frequency is manifested as sidebands in the gear train meshing frequencies and this can lead to noise that is the result of amplitude modulation. Sensitivity analysis of the drive train identifies the weakest link in the drive train that limits the first torsional frequency to a low value. Finally, the significance of higher mode shapes on inter-lobe clearance distribution of the rotors is investigated.
Vibration analysis of multiple-cracked non-uniform beams
NASA Astrophysics Data System (ADS)
Mazanoglu, K.; Yesilyurt, I.; Sabuncu, M.
2009-03-01
This paper presents the energy-based method for the vibration identification of non-uniform Euler-Bernoulli beams having multiple open cracks. The method includes significant modifications for the energy-based method presented by Yang et al. [Crack identification in vibrating beams using the energy method, Journal of Sound and Vibration 244 (2) (2001) 339-357.] The distribution of the energy consumed is determined by taking into account not only the strain change at the cracked beam surface as in general but also the considerable effect of the stress field caused by the angular displacement of the beam due to bending. The Rayleigh-Ritz approximation method is used in the analysis. The method is adapted to the cases of multiple cracks with an approach based on the definition of strain disturbance variation along the beam. Examples are presented on cantilever beams having different truncation factors. When the results are compared with a commercial finite element program and with the results of Zheng and Fan [Natural frequencies of a non-uniform beam with multiple cracks via modified Fourier series, Journal of Sound and Vibration 242 (4) (2001) 701-717], good agreements are obtained. The effects of truncation factors and positions of cracks on the natural frequency ratios are presented in graphics.
Gascooke, Jason R; Virgo, Edwina A; Lawrance, Warren D
2015-07-28
We have examined the S1←S0 transition of toluene in the region from the 0(0)(0) band to ∼210 cm(-1) above it. The spectrum reveals methyl rotor levels of 0(0) toluene up to m = 6 and of the lowest frequency vibration, 20(1), up to m = 4. The rotor levels of both 20(1) and 0(0) are perturbed by torsion-vibration coupling. The inclusion of torsion-vibration coupling leads to the S1 torsional barrier, V6, being revised from -26.376 cm(-1) to -5.59 cm(-1). The torsion-vibration coupling constant is determined to be 21.1 cm(-1). This situation is the S1 analogue of that recently reported for S0 toluene [Gascooke et al., J. Chem. Phys. 142, 024315 (2015)]. Torsion-vibration coupling alters both the rotor band positions and the rotational contours, which particularly affects the rotational constants associated with motion around the a-axis, about which the methyl group rotates. Every vibrational state (indicated generically by X) will be involved in the corresponding X - X20(1) torsion-vibration coupling; so, this interaction permeates the vib-rotor manifold, providing a mechanism to enhance intramolecular vibrational energy redistribution.
Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades
NASA Technical Reports Server (NTRS)
Hodges, D. H.; Dowell, E. H.
1974-01-01
The equations of motion are developed by two complementary methods, Hamilton's principle and the Newtonian method. The resulting equations are valid to second order for long, straight, slender, homogeneous, isotropic beams undergoing moderate displacements. The ordering scheme is based on the restriction that squares of the bending slopes, the torsion deformation, and the chord/radius and thickness/radius ratios are negligible with respect to unity. All remaining nonlinear terms are retained. The equations are valid for beams with mass centroid axis and area centroid (tension) axis offsets from the elastic axis, nonuniform mass and stiffness section properties, variable pretwist, and a small precone angle. The strain-displacement relations are developed from an exact transformation between the deformed and undeformed coordinate systems. These nonlinear relations form an important contribution to the final equations. Several nonlinear structural and inertial terms in the final equations are identified that can substantially influence the aeroelastic stability and response of hingeless helicopter rotor blades.
Diabatic Versus Adiabatic Calculation of Torsion-Vibration Interactions
NASA Astrophysics Data System (ADS)
Hougen, Jon T.
2013-06-01
The introductory part of this talk will deal briefly with two historical topics: (i) use of the words adiabatic, nonadiabatic, and diabatic in thermodynamics and quantum mechanics, and (ii) application of diabatic and adiabatic ideas to vibrational energy level calculations for a pair of diatomic-molecule potential energy curves exhibiting an avoided crossing. The main part of the talk will be devoted to recent work with Li-Hong Xu and Ron Lees on how ab initio projected frequency calculations for small-amplitude vibrations along the large-amplitude internal rotation path in methanol can best be used to help guide experimental assignments and fits in the IR vibrational spectrum. The three CH stretching vibrations for CH_{3}OH can conveniently be represented as coefficients multiplying three different types of basis vibrations, i.e., as coefficients of: (i) the local mode C-H_i bond displacements δr_{i} for hydrogens H_{1}, H_{2} and H_{3} of the methyl top, (ii) symmetrized linear combinations of the three δr_{i} of species A_{1} oplus E in the permutation-inversion group G_{6} = C_{3v} appropriate for methanol, or (iii) symmetrized linear combinations of the three δr_{i} of species 2A_{1} oplus A_{2} in the permutation-inversion group G_{6}. In this talk, we will focus on diabatic and adiabatic computations for the A_{1} oplus E basis vibrations of case (ii) above. We will briefly explain how Jahn-Teller-like and Renner-Teller-like torsion-vibration interaction terms occurring in the potential energy expression in the diabatic calculation become torsion-vibration Coriolis interaction terms occurring in the kinetic energy expression of the adiabatic calculations, and also show how, for algebraically solvable parameter choices, the same energy levels are obtained from either calculation. A final conclusion as to which approach is computationally superior for the numerical data given in a quantum chemistry output file has not yet been arrived at.
Molecular dynamics study of the torsional vibration characteristics of boron-nitride nanotubes
NASA Astrophysics Data System (ADS)
Ansari, R.; Ajori, S.
2014-08-01
In recent years, synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) has led to extensive studies on their exceptional properties. In this study, the torsional vibration behavior of boron-nitride nanotubes (BNNTs) is explored on the basis of molecular dynamics (MD) simulation. The results show that the torsional frequency is sensitive to geometrical parameters such as length and boundary conditions. The axial vibration is found to be induced by torsional vibration of nanotubes which can cause instability in the nanostructure. It is also observed that the torsional frequency of BNNTs is higher than that of their carbon counterpart. Moreover, the shear modulus is predicted by incorporating MD simulation numerical results into torsional vibration frequency obtained through continuum-based model of tubes. Finally, it is seen that the torsional frequency of double-walled boron-nitride nanotubes (DWBNNTs) is between the frequencies of their constituent inner and outer tubes.
NASA Astrophysics Data System (ADS)
Huang, Yuxin; Xin, Qinkun; Yin, Huabing
2010-06-01
The torsional vibration of vehicle transmission system is heavily concerned with the increase of vehicle speed. The whole powertrain system has to be matched according to the torsional vibration characteristics, especially in developing a new vehicle. The selection of proper elastic coupling has to be made for the torsional vibration match and some frequencies have to be moved out of engine's range . Thus the torsional vibration model of powertrain needs to be built. In the paper a new torsional vibration model is built, which is programmed in the form of a platform. The whole powertrain system torsional vibration model of a vehicle is built firstly with consideration of gear mesh stiffness and engine's excitation in it. The free torsional vibration mode analysis is made and the resonant torques of each lumped inertia in the transmission system are obtained. Secondly the forced vibration of transmission system with the engine's excitation is made and the dynamic torques of each lumped inertias are obtained. Thirdly the process for the torsional vibration analysis is integrated into the optimization process and the selection of elastic coupling for the transmission system is made according the optimization and match results. Fourthly in order to modify the design parameters in the structural design, the sensitivities of inertia and torsional stiffness with reference to eigenvalues are obtained. At last the evaluations of analysis results are made and some suggestions for structural modification for engineers are presented. According to the above study, the conclusion can be made that the new torsional modelling method, the elastic coupling selection method and integration optimization method in the paper are practical and reliabl and these methods play very important roles in torsional vibration analyzing, match and optimization of vehicle transmission system.
Spinning optical resonator sensor for torsional vibrational applications measurements
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Gatherer, Andrew; Ibrahim, Mariam S.
2016-03-01
Spinning spherical resonators in the torsional vibrational applications could cause a shift in its whispering gallery mode (WGM). The centripetal force acting on the spinning micro sphere resonator will leads to these WGM shifts. An analysis and experiment were carried out in this paper to investigate and demonstrate this effect using different polymeric resonators. In this experiment, centripetal force exerted by the DC-Motor on the sphere induces an elastic deformation of the resonator. This in turn induces a shift in the whispering gallery modes of the sphere resonator. Materials used for the sphere are polydimethylsiloxane (PDMS 60:1 where 60 parts base silicon elastomer to 1 part polymer curing agent by volume) with shear modulus (G≍1kPa), (PDMS 10:1) with shear modulus (G≍300kPa), polymethylmethacrylate (PMMA, G≍2.6×109GPa) and silica (G≍3×1010 GPa). The sphere size was kept constant with 1mm in diameter for all above materials. The optical modes of the sphere exit using a tapered single mode optical fiber that is coupled to a distributed feedback laser. The transmission spectrum through the fiber is monitored to detect WGM shifts. The results showed the resonators with smaller shear modulus G experience larger WGM shift due to the larger mechanical deformation induced by the applied external centripetal force. Also, the results show that angular velocity sensors used in the torsional vibrational applications could be designed using this principle.
Spontaneous formation of non-uniform double helices for elastic rods under torsion
NASA Astrophysics Data System (ADS)
Li, Hongyuan; Zhao, Shumin; Xia, Minggang; He, Siyu; Yang, Qifan; Yan, Yuming; Zhao, Hanqiao
2017-02-01
The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory.
Law of Torsional Vibration and Discussion on Vibration Suppression Based on Helicopter/Engine System
NASA Astrophysics Data System (ADS)
Miao, Lizhen; Zhang, Haibo; Ning, Jingtao
2016-04-01
With both the advantages like attacking close targets and the disadvantages especially like dynamic coupling, helicopter deserves more investigations these days. This paper did dynamic study both in a simplified and a multi-degree of freedom, comprehensive helicopter model, so that to reveal the law of torsional vibration. In the simplified model, the law how arbitrary parameter affects the first-order vibration mode, is discussed. Then, the validation is done in a multi-degree of freedom model by means of the fast Fourier transformation (FFT) method. In this case, how the low-frequency vibration mode relates with the first-order vibration mode is clearly presented, as well as the research direction to design a filter. Lastly, a simple filter is designed with some simulations.
NASA Astrophysics Data System (ADS)
Tang, Xiaolin; Yang, Wei; Hu, Xiaosong; Zhang, Dejiu
2017-02-01
In this study, based on our previous work, a novel simplified torsional vibration dynamic model is established to study the torsional vibration characteristics of a compound planetary hybrid propulsion system. The main frequencies of the hybrid driveline are determined. In contrast to vibration characteristics of the previous 16-degree of freedom model, the simplified model can be used to accurately describe the low-frequency vibration property of this hybrid powertrain. This study provides a basis for further vibration control of the hybrid powertrain during the process of engine start/stop.
Optimal design of a magneto-rheological brake absorber for torsional vibration control
NASA Astrophysics Data System (ADS)
Nguyen, Q. H.; Choi, S. B.
2012-02-01
This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given.
Vibration and chaos control of non-linear torsional vibrating systems
NASA Astrophysics Data System (ADS)
El-Bassiouny, A. F.
2006-07-01
Vibration of a mechanical system is often an undesirable phenomenon, as it may cause damage, disturbance, discomfort and, sometimes, destruction of systems and structures. To reduce vibration, many methods can be used. The most famous method is using dynamic absorbers or dampers. In the present work, a non-linear elastomeric damper or absorber is used to control the torsional vibrations of the crankshaft in internal combustion engines, when subjected to both external and parametric excitation torques. The multiple time scale perturbation method is applied to determine the equations governing the modulation of both amplitudes and phases of the crankshaft and the absorber. These equations are used to determine the steady-state amplitudes and system stability. Numerical integration of the basic equations is applied to investigate the effects of the different parameters on system behavior. A comparison is made with the available published work. Some recommendations are given at the end of the work.
Torsional vibrational modes of tryptophan studied by terahertz time-domain spectroscopy.
Yu, B; Zeng, F; Yang, Y; Xing, Q; Chechin, A; Xin, X; Zeylikovich, I; Alfano, R R
2004-03-01
The low-frequency torsional modes, index of refraction, and absorption of a tryptophan film and pressed powders from 0.2 to 2.0 THz (6.6-66 cm(-1)) were measured by terahertz time-domain spectroscopy at room temperature. It was found that there were two dominated torsional vibrational modes at around 1.435 and 1.842 THz. The associated relaxation lifetimes ( approximately 1 ps) for these modes of the tryptophan molecule were measured. Using a density-functional calculation, the origins of the observed torsional vibrations were assigned to the chain and ring of the tryptophan molecule.
Ultrasonic rock sampling using longitudinal-torsional vibrations.
Cardoni, Andrea; Harkness, Patrick; Lucas, Margaret
2010-04-01
In the last years several European and US space projects have been focused on the development of surface rovers for planetary missions, such as ExoMars and Mars Exploration Rovers. The main function of these vehicles consists of moving across planet surfaces, and drilling and retrieving samples for in situ analysis. Recent research has shown that drilling of rock materials can be achieved using axially oscillating tuned devices which, compared with conventional rotary drills, operate at lower power and highly reduced preload requirements. As a result, at present, ultrasonics is considered a very promising technology for exobiological prospecting. In this work, two novel ultrasonic rock samplers, both operating in a longitudinal-torsional composite mode, are proposed along with the conceptual design of a full coring apparatus, for preload delivery and core removal. To assess the penetration capability of the excited composite vibrations, preliminary drilling trials were conducted. Since sand constitutes a significant portion of the Martian surface, sandstone was used in the trials.
Field Telemetry of Blade-rotor Coupled Torsional Vibration at Matuura Power Station Number 1 Unit
NASA Technical Reports Server (NTRS)
Isii, Kuniyoshi; Murakami, Hideaki; Otawara, Yasuhiko; Okabe, Akira
1991-01-01
The quasi-modal reduction technique and finite element model (FEM) were used to construct an analytical model for the blade-rotor coupled torsional vibration of a steam turbine generator of the Matuura Power Station. A single rotor test was executed in order to evaluate umbrella vibration characteristics. Based on the single rotor test results and the quasi-modal procedure, the total rotor system was analyzed to predict coupled torsional frequencies. Finally, field measurement of the vibration of the last stage buckets was made, which confirmed that the double synchronous resonance was 124.2 Hz, meaning that the machine can be safely operated. The measured eigen values are very close to the predicted value. The single rotor test and this analytical procedure thus proved to be a valid technique to estimate coupled torsional vibration.
Gascooke, Jason R; Virgo, Edwina A; Lawrance, Warren D
2015-01-14
We report a two dimensional, laser induced fluorescence study of the lowest 345 cm(-1) region of S0 toluene. Methyl rotor levels of 00 up to m = 6 and of 201 up to m = 4 are observed. The rotor levels of 00 and 201 have quite different energy spacings that are well fit by a model that includes strong torsion-vibration coupling between them. The model requires that the rotor barrier height be revised from -4.84 cm(-1) (methyl hydrogens in a staggered conformation) to +1.57 cm(-1) (eclipsed conformation). However, the 3a2″ state lies below the 3a1″ state as expected for a staggered conformation due to energy shifts associated with the torsion-vibration coupling. It is shown that the rotor wave-functions exhibit little localization at the torsional energy minima. The variation in the m = 0 wavefunction probability distribution with torsional angle is shown to be very similar for the previously accepted negative V6 value and the torsion-vibration coupling model as this coupling shifts the phase of the wavefunction by 30° compared with its phase for V6 alone. The presence of a strong Δυ = ± 1 torsion-vibration coupling involving the lowest frequency vibrational mode provides a potential pathway for rapid intramolecular vibrational energy redistribution at higher energies.
One-dimensional longitudinal-torsional vibration converter with multiple diagonally slitted parts
Tsujino; Ueoka; Otoda; Fujimi
2000-03-01
For increasing the available vibration velocity of the one-dimensional longitudinal-torsional vibration converter, a new type of complex vibration converter with multiple slitted parts installed in the positions avoiding longitudinal nodal positions along the converter for decreasing the maximum vibration stress level at the vibration nodal part was studied. The free end of the converter vibrates in an elliptical or circular locus. Complex vibration systems with elliptical to circular or rectangular to square loci can be applied effectively for various high-power applications, including ultrasonic welding of metal or plastics, ultrasonic wire bonding of IC, LSI and electronic devices, and also ultrasonic motors. The converter with multiple slitted parts was improved in the vibration stress level and the quality factor compared with the converter with single slitted part.
Two methods for damping torsional vibrations in DFIG-based wind generators using power converters
NASA Astrophysics Data System (ADS)
Zhao, Zuyi; Lu, Yupu; Xie, Da; Yu, Songtao; Wu, Wangping
2017-01-01
This paper proposes novel damping control algorithms by using static synchronous compensator (STATCOM) and energy storage system (ESS) to damp torsional vibrations in doubly fed induction generator (DFIG) based wind turbine systems. It first analyses the operating characteristics of STATCOM and ESS for regulating power variations to increase grid voltage stability. Then, new control strategies for STATCOM and ESS are introduced to damp the vibrations. It is followed by illustration of their effectiveness to damp the drive train torsional vibrations of wind turbines, which can be caused by grid disturbances, such as voltage sags and frequency fluctuations. Results suggest that STATCOM is a promising technology to mitigate the torsional vibrations caused by grid voltage sags. By contrast, the ESS connected to the point of common coupling (PCC) of wind turbine systems shows even obvious advantages because of its capability of absorbing/releasing both active and reactive power. It can thus be concluded that STATCOM is useful for stabilizing power system voltage fluctuations, and ESS is more effective both in regulating PCC voltage fluctuations and damping torsional vibrations caused by grid voltage frequency fluctuations.
Torsion - Vibration Couplings in the CH{_3}OO{\\cdot} Radical
NASA Astrophysics Data System (ADS)
Huang, Meng; Miller, Terry A.; McCoy, Anne B.; Hsu, Kuo-Hsiang; Huang, Yu-Hsuan; Lee, Yuan-Pern
2016-06-01
A partially rotationally resolved infrared spectrum of CH{_3}OO{\\cdot} in the CH stretch region has been reported. The rotational contour of the {ν_2} CH stretch band in the experimental spectrum can be simulated with an asymmetric rotor model. The simulation shows good agreement with the experimental spectrum except that the broadening of the Q-branch in the experimental spectrum remains unexplained. This broadening is likely due to the sequence band transitions from the torsionally excited levels populated at room temperature to combination levels involving the CH stretch and the same number of torsional quanta. A four dimension model involving three CH stretches and the CH{_3} torsion is applied to the CH{_3}OO{\\cdot} radical to obtain the frequencies and intensities of the vibrational transitions in the CH stretch region. Based on these calculations, the torsional sequence bands are calculated to be slightly shifted from the origin band, because of the couplings between the CH stretches and CH{_3} torsion, thereby causing the apparent broadening observed for the {ν_2} fundamental. Due to the accidental degeneracy of two different CH stretch and CH{_3} torsion combination levels which differ by one quantum in the torsional excitation, the frequencies of the torsional sequence bands will be very sensitive to details of the potential, which makes the shifts difficult to precisely predict with electronic structure calculations. Complementary analyses are now underway for the other two CH stretch vibrational bands, {ν_1} and {ν_9}. K.-H. Hsu, Y.-H. Huang, Y.-P. Lee, M. Huang, T. A. Miller and A. B. McCoy J. Phys. Chem. A, in press, DOI: 10.1021/acs.jpca.5b12334
Torsional vibration of crankshaft in an engine propeller nonlinear dynamical system
NASA Astrophysics Data System (ADS)
Zhang, X.; Yu, S. D.
2009-01-01
Theoretical and experimental studies on torsional vibration of an aircraft engine-propeller system are presented in this paper. Two system models—a rigid body model and a flexible body model, are developed for predicting torsional vibrations of the crankshaft under different engine powers and propeller pitch settings. In the flexible body model, the distributed torsional flexibility and mass moment of inertia of the crankshaft are considered using the finite element method. The nonlinear autonomous equations of motion for the engine-propeller dynamical system are established using the augmented Lagrange equations, and solved using the Runge-Kutta method after a degrees of freedom reduction scheme is applied. Experiments are carried out on a three-cylinder four-stroke engine. Both theoretical and experimental studies reveal that the crankshaft flexibility has significant influence on the system dynamical behavior.
Torsional Vibration in the National Wind Technology Center’s 2.5-Megawatt Dynamometer
Sethuraman, Latha; Keller, Jonathan; Wallen, Robb
2016-08-31
This report documents the torsional drivetrain dynamics of the NWTC's 2.5-megawatt dynamometer as identified experimentally and as calculated using lumped parameter models using known inertia and stiffness parameters. The report is presented in two parts beginning with the identification of the primary torsional modes followed by the investigation of approaches to damp the torsional vibrations. The key mechanical parameters for the lumped parameter models and justification for the element grouping used in the derivation of the torsional modes are presented. The sensitivities of the torsional modes to different test article properties are discussed. The oscillations observed from the low-speed and generator torque measurements were used to identify the extent of damping inherently achieved through active and passive compensation techniques. A simplified Simulink model of the dynamometer test article integrating the electro-mechanical power conversion and control features was established to emulate the torque behavior that was observed during testing. The torque response in the high-speed, low-speed, and generator shafts were tested and validated against experimental measurements involving step changes in load with the dynamometer operating under speed-regulation mode. The Simulink model serves as a ready reference to identify the torque sensitivities to various system parameters and to explore opportunities to improve torsional damping under different conditions.
NASA Technical Reports Server (NTRS)
Gray, Carl E., Jr.
1988-01-01
Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.
NASA Astrophysics Data System (ADS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-03-01
Theoretical natural frequencies of the first three modes of torsional vibration of pre-twisted, rotating cantilever beams are determined for various thickness and aspect ratios. Conclusions concerning individual and collective effects of warping, pretwist, tension-torsion coupling and tennis racket effect (twist-rotational coupling) terms on the natural frequencies are drawn from numerical results obtained by using a finite difference procedure with first order central differences. The relative importance of structural warping, inertial warping, pretwist, tension-torsion and twist-rotational coupling terms is discussed for various rotational speeds. The accuracy of results obtained by using the finite difference approach is verified by a comparison with the exact solution for specialized simple cases of the equation of motion used in this paper.
Bifurcation analysis of coupled lateral/torsional vibrations of rotor systems
NASA Astrophysics Data System (ADS)
Lee, Kyoung-Hyun; Han, Hyung-Suk; Park, Sungho
2017-01-01
This paper presents a numerical method to analyze the bifurcation of coupled lateral/torsional vibrations of rotor systems. Based on a Hamiltonian approach, a three degree-of-freedom dynamic model of a rotor is derived. Nonlinear ordinary differential equations are derived from the dynamic model. The stability of the equilibrium and linear normal modes (LNMs) are analyzed using a linearized matrix of the system equation. For bifurcation analysis of the periodic orbits, a nonlinear normal modes (NNMs) computation algorithm is performed using multiple shooting methods and pseudo-arclength continuation. Multiple shooting points are continued from LNMs near equilibrium, bifurcation points of the NNMs are detected from the stability change of the periodic orbits during the continuation. The proposed stability analysis, an NNMs computation of coupled lateral/torsional vibration, is demonstrated using two different rotor models: a system with strong eccentricity, and a system with weak eccentricity.
Torsional vibration characteristic study of the grid-connected DFIG wind turbine
NASA Astrophysics Data System (ADS)
Yu, Songtao; Xie, Da; Wu, Wangping; Gu, Chenghong; Li, Furong
2017-01-01
This paper studies the torsional vibration characteristics of the grid-connected doubly-fed induction generator (DFIG) wind turbine by small signal analysis method. Firstly a detailed small-signal stability union model of the grid-connected DFIG wind turbine is developed, including the mechanical system and electrical system. To study the dynamic characteristic of the blade, gearbox, low speed and high speed shafts, a three mass shaft model for the mechanical system is adopted. At the same time, small signal models of DFIG, the voltage source converter (VSC) and the transmission line of the electrical system are developed respectively. Then, through calculating the eigenvalues of the state matrix A and the corresponding participation factors, the modal analysis is conducted in the shaft torsional vibration issues. And the impact of the system parameters including the series compensation capacitor, the flat-wave reactor, the PI parameters, especially the speed controller of generator rotor on shaft torsional vibration are discussed. The results show that the speed controller strengthens association between the mechanical system and the electrical system, and also produces a low-frequency oscillation mode.
NASA Astrophysics Data System (ADS)
Jagiełowicz-Ryznar, C.
2016-12-01
The numerical calculations results of torsional vibration of the multi-cylinder crankshaft in the serial combustion engine (MC), including a viscous damper (VD), at complex forcing, were shown. In fact, in the MC case the crankshaft rotation forcings spectrum is the sum of harmonic forcing whose amplitude can be compared with the amplitude of the 1st harmonic. A significant impact, in the engine operational velocity, on the vibration damping process of MC, may be the amplitude of the 2nd harmonic of a forcing moment. The calculations results of MC vibration, depending on the amplitude of the 2nd harmonic of the forcing moment, for the first form of the torsional vibration, were shown. Higher forms of torsional vibrations have no practical significance. The calculations assume the optimum damping coefficient VD, when the simple harmonic forcing is equal to the base critical velocity of the MC crankshaft.
Vibration and Noise Characteristics of Elliptical Gears due to Non-Uniform Rotation
NASA Astrophysics Data System (ADS)
Liu, Xing; Nagamura, Kazuteru; Ikejo, Kiyotaka
Elliptical gear is a typical non-circular gear, which transmits a variable-ratio rotation and power simultaneously. Due to the non-uniform rotation, the vibration and noise of elliptical gears demonstrate particular characteristics which should be paid attention to in practical application. In this paper, two elliptical gears, which are a single elliptical gear and a double elliptical gear, have been investigated to analyze the vibration and noise characteristics of elliptical gears. The corresponding circular gears for comparison are also investigated. General factors including the torque, the rotation speed, the gear vibration acceleration and the gear noise of the four test gears are measured by running test. The root mean square of the Circumferential Vibration Acceleration (CVA) and the sound pressure level of the noise of elliptical gears are obtained from the measured results and compared with those of circular gears to clarify the vibration and noise characteristics of elliptical gears. Furthermore, the frequency analysis of the CVA of elliptical gears is conducted by Fast Fourier Transform Algorithm (FFT) and compared with that of circular gears. The main vibration component of elliptical gear is uncovered according to the obtained frequency spectra. In addition, the Critical Rotation Speeds of Tooth Separation (CRSTS) of elliptical gear is obtained and its relation with load torque is unveiled.
Efficiency improvement of a cantilever-type energy harvester using torsional vibration
NASA Astrophysics Data System (ADS)
Kim, In-Ho; Jang, Seon-Jun; Koo, Jeong-Hoi; Jung, Hyung-Jo
2016-04-01
In this paper, a piezoelectric vibrational energy harvester utilizing coupled bending and torsional vibrations is investigated. The proposed system consists of a cantilever-type substrate covered by the piezoelectric ceramic and a proof mass which is perpendicularly connected to the free end of the cantilever beam by a rigid bar. While the natural frequency and output voltage of the conventional system are affected by bending deformation of the piezoelectric plate, the proposed system makes use of its twisting deformation. The natural frequency of the device can be significantly decreased by manipulating the location of the proof mass on the rigid bar. In order to validate the performance of the proposed energy harvester, numerical simulations and vertical shaker tests are carried out. It is demonstrated that the proposed energy harvester can shift down its resonant frequency considerably and generate much higher output power than the conventional system. It is, therefore, concluded that the proposed energy harvester utilizing the coupled bending and torsional vibrations can be effectively applied to low-frequency vibration situations.
Wang, Jian; Guo, Jifeng
2009-05-01
A longitudinal-torsional hybrid-type ultrasonic motor has larger torque and lower revolution speed compared with other kinds of ultrasonic motors. It drives devices directly and precisely, so it is adaptable to many fields, especially aeronautics and astronautics, as a servo actuator. Due to the different sound propagation speeds of longitudinal and torsional vibrations in the stator, it is difficult to match resonant frequencies of longitudinal and torsional vibrations. In this paper, a new radial-torsional vibration hybrid-type ultrasonic motor is put forward, which utilizes longitudinal vibration derived from radial vibration by the Poisson effect. The short, hollow cylindrical structure easily makes resonant frequencies of first-order radial and torsional vibrations into degeneracy. First, the new structure of the motor is presented. Second, the principle of matching the resonant frequencies is developed, and the motor geometry is optimized by ANSYS software. Finally, a 60-mm diameter prototype is fabricated, which performs well. The no-load velocity and maximum torque are 25 r/min and 5 N x m, respectively. This kind of motor is small, light, and noiseless.
Study on residual stresses in ultrasonic torsional vibration assisted micro-milling
NASA Astrophysics Data System (ADS)
Lu, Zesheng; Hu, Haijun; Sun, Yazhou; Sun, Qing
2010-10-01
It is well known that machining induced residual stresses can seriously affect the dimensional accuracy, corrosion and wear resistance, etc., and further influence the longevity and reliability of Micro-Optical Components (MOC). In Ultrasonic Torsional Vibration Assisted Micro-milling (UTVAM), cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank are the main factors which affect residual stresses. A 2D model of UTVAM was established with FE analysis software ABAQUS. Johnson-Cook's flow stress model and shear failure principle are used as the workpiece material model and failure principle, while friction between tool and workpiece uses modified Coulomb's law whose sliding friction area is combined with sticking friction. By means of FEA, the influence rules of cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank on residual stresses are obtained, which provides a basis for choosing optimal process parameters and improving the longevity and reliability of MOC.
Numerical Investigation of Flapwise-Torsional Vibration Model of a Smart Section Blade with Microtab
Li, Nailu; Balas, Mark J.; Yang, Hua; ...
2015-01-01
This study presents a method to develop an aeroelastic model of a smart section blade equipped with microtab. The model is suitable for potential passive vibration control study of the blade section in classic flutter. Equations of the model are described by the nondimensional flapwise and torsional vibration modes coupled with the aerodynamic model based on the Theodorsen theory and aerodynamic effects of the microtab based on the wind tunnel experimental data. The aeroelastic model is validated using numerical data available in the literature and then utilized to analyze the microtab control capability on flutter instability case and divergence instabilitymore » case. The effectiveness of the microtab is investigated with the scenarios of different output controllers and actuation deployments for both instability cases. The numerical results show that the microtab can effectively suppress both vibration modes with the appropriate choice of the output feedback controller.« less
NASA Astrophysics Data System (ADS)
Clark, P.; White, R. G.
1994-09-01
With the majority of industrial machinery installations it is one-dimensional or beam-like structures - for example, pipework and other mechanical linkages - which form one of the main vibration paths which bypass isolator systems. It is of interest to consider the effects that the addition of certain discontinuities to this type of structure would have on the overall vibration transmission properties of the complete system. Previous work has considered the vibration neutralizer as one such discontinuity in terms of impinging axial and flexural wave motion. In this work, the analytical study is further extended to include the third major type of structural wave motion observed in one-dimensional structures: torsional motion.
Hu, Zheng; Lin, Jun; Chen, Zhong-Sheng; Yang, Yong-Min; Li, Xue-Jun
2015-01-22
High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT) have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes.
Hu, Zheng; Lin, Jun; Chen, Zhong-Sheng; Yang, Yong-Min; Li, Xue-Jun
2015-01-01
High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT) have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes. PMID:25621612
NASA Technical Reports Server (NTRS)
Robertson, D. K.
1984-01-01
Partial differential equations are derived for free lateral and torsional vibration of a uniform free-free beam with a rotational mass attached to each extremity. For appropriate boundary conditions, nonlinear algebraic equations are obtained using a symbolic manipulation computer program, the solutions of which enable the computation of the neutral frequencies and mode-shapes. The mode-shapes are linear combinations of trigonometric and hyperbolic sine and cosine functions. A computer program is written for the numerical solution of the algebraic equations mentioned above, which can compute the natural frequencies, mode-shapes, and node points for any given set of parameters, for any given number of modes.
Study of torsional vibrations in an initially stressed composite poroelastic cylinders
NASA Astrophysics Data System (ADS)
Sandhya, Rani B.; Ch, Balu; Malla, Reddy P.
2015-12-01
This paper investigates torsional vibrations in an initially stressed composite poroelastic cylinder in the framework of Biot's theory of wave propagation in poroelastic solids. Poroelastic composite cylinder consists of two concentric cylindrical layers made of different poroelastic materials. The governing equations are formulated from the Biot's incremental deformation theory. The non-dimensional frequency is computed as a function of ratio of thickness to wavelength. The limiting cases of a poroelastic solid cylinder and poroelastic hollow cylinder are discussed. The results are presented graphically for two poroelastic composite cylinders and then compared with the published results.
NASA Technical Reports Server (NTRS)
Laskowski, B. C.; Jaffe, R. L.; Komornicki, A.
1985-01-01
The structure, torsional potentials, vibrational spectra, and harmonic force fields for s-cis and s-trans isomers of methacryloyl fluoride are examined to understand the conformational properties of the molecules and their relationship to macroscopic polymer properties. The structure is found to be in good agreement with experiment. It is shown by calculations that the energy difference between the cis and the transisomers is less than 1 kcal/mol at both the split valence and the split valence polarized levels, with the trans form favored. Analysis of the torsional potentials indicates that a rigid rotor model provides a reasonable description of the motion of the COF group in the molecule. The torsional barrier to interconvert the s-trans to the s-cis form is found to be 7.0 kcal/mol. A fit of the data to a three-term Fourier series shows that it is possible to reproduce the experimentally derived barrier, even though a direct determination indicates that the barrier is higher.
A novel torsional exciter for modal vibration testing of large rotating machinery
NASA Astrophysics Data System (ADS)
Sihler, Christof
2006-10-01
A novel exciter for applying a dynamic torsional force to a rotating structure is presented in this paper. It has been developed at IPP in order to perform vibration tests with shaft assemblies of large flywheel generators (synchronous machines). The electromagnetic exciter (shaker) needs no fixture to the rotating shaft because the torque is applied by means of the stator winding of an electrical machine. Therefore, the exciter can most easily be applied in cases where a three-phase electrical machine (a motor or generator) is part of the shaft assembly. The oscillating power for the shaker is generated in a separate current-controlled DC circuit with an inductor acting as a buffer storage of magnetic energy. An AC component with adjustable frequency is superimposed on the inductor current in order to generate pulsating torques acting on the rotating shaft with the desired waveform and frequency. Since this torsional exciter does not require an external power source, can easily be installed (without contact to the rotating structure) and provides dynamic torsional forces which are sufficient for multi-megawatt applications, it is best suited for on-site tests of large rotating machinery.
Zhao, Libo; Hu, Yingjie; Hebibul, Rahman; Ding, Jianjun; Wang, Tongdong; Xu, Tingzhong; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde
2016-01-01
A novel method, which was called a slope method, has been proposed to measure fluid density by the micro-cantilever sensing chip. The theoretical formulas of the slope method were discussed and established when the micro-cantilever sensing chip was under flexural and torsional vibrations. The slope was calculated based on the fitted curve between the excitation and output voltages of sensing chip under the nonresonant status. This measuring method need not sweep frequency to find the accurate resonant frequency. Therefore, the fluid density was measured easily based on the calculated slope. In addition, the micro-cantilver was drived by double sided excitation and free end excitation to oscillate under flexural and torsional vibrations, respectively. The corresponding experiments were carried out to measure the fluid density by the slope method. The measurement results were also analyzed when the sensing chip was under flexural and torsional nonresonant vibrations separately. The measurement accuracies under these vibrations were all better than 1.5%, and the density measuring sensitivity under torsional nonresonant vibration was about two times higher than that under flexural nonresonant vibration. PMID:27626425
Zhao, Libo; Hu, Yingjie; Hebibul, Rahman; Ding, Jianjun; Wang, Tongdong; Xu, Tingzhong; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde
2016-09-11
A novel method, which was called a slope method, has been proposed to measure fluid density by the micro-cantilever sensing chip. The theoretical formulas of the slope method were discussed and established when the micro-cantilever sensing chip was under flexural and torsional vibrations. The slope was calculated based on the fitted curve between the excitation and output voltages of sensing chip under the nonresonant status. This measuring method need not sweep frequency to find the accurate resonant frequency. Therefore, the fluid density was measured easily based on the calculated slope. In addition, the micro-cantilver was drived by double sided excitation and free end excitation to oscillate under flexural and torsional vibrations, respectively. The corresponding experiments were carried out to measure the fluid density by the slope method. The measurement results were also analyzed when the sensing chip was under flexural and torsional nonresonant vibrations separately. The measurement accuracies under these vibrations were all better than 1.5%, and the density measuring sensitivity under torsional nonresonant vibration was about two times higher than that under flexural nonresonant vibration.
Low-frequency band gap mechanism of torsional vibration of lightweight elastic metamaterial shafts
NASA Astrophysics Data System (ADS)
Li, Lixia; Cai, Anjiang
2016-07-01
In this paper, the low-frequency band gap mechanism of torsional vibration is investigated for a kind of light elastic metamaterial (EM) shafts architecture comprised of a radial double-period element periodically as locally resonant oscillators with low frequency property. The dispersion relations are calculated by a method combining the transfer matrix and a lumped-mass method. The theoretical results agree well with finite method simulations, independent of the density of the hard material ring. The effects of the material parameters on the band gaps are further explored numerically. Our results show that in contrast to the traditional EM shaft, the weight of our proposed EM shaft can be reduced by 27% in the same band gap range while the vibration attenuation is kept unchanged, which is very convenient to instruct the potential engineering applications. Finally, the band edge frequencies of the lower band gaps for this light EM shaft are expressed analytically using physical heuristic models.
Torsional vibrations of helically buckled drill-strings: experiments and FE modelling
NASA Astrophysics Data System (ADS)
Kapitaniak, M.; Hamaneh, V. V.; Wiercigroch, M.
2016-05-01
This paper presents investigations of a complex drill-string vibrations on a novel experimental rig, developed by the Centre for Applied Dynamics Research at the University of Aberdeen. The rig is capable of exhibiting of all major types of drill-string vibrations, including torsional, axial and lateral modes. The importance of this work lies in the fact, that the experimental rig utilizes real industrial drill-bits and rock samples, which after careful identification of Torque On Bit (TOB) speed curves, allows to use an equivalent friction model to accommodate for both frictional and cutting components of the bit-rock interactions. Moreover, the proposed Finite Element model, after a careful calibration, is capable of replicating experimental results, for the prebuckled configuration of the drill-string. This allows us to observe the effect of winding and unwinding of the helical deformation during stick-slip motion.
Automated misfire diagnosis in engines using torsional vibration and block rotation
NASA Astrophysics Data System (ADS)
Chen, J.; Randall, R. B.; Peeters, B.; Van der Auweraer, H.; Desmet, W.
2012-05-01
Even though a lot of research has gone into diagnosing misfire in IC engines, most approaches use torsional vibration of the crankshaft, and only a few use the rocking motion (roll) of the engine block. Additionally, misfire diagnosis normally requires an expert to interpret the analysis results from measured vibration signals. Artificial Neural Networks (ANNs) are potential tools for the automated misfire diagnosis of IC engines, as they can learn the patterns corresponding to various faults. This paper proposes an ANN-based automated diagnostic system which combines torsional vibration and rotation of the block for more robust misfire diagnosis. A critical issue with ANN applications is the network training, and it is improbable and/or uneconomical to expect to experience a sufficient number of different faults, or generate them in seeded tests, to obtain sufficient experimental results for the network training. Therefore, new simulation models, which can simulate combustion faults in engines, were developed. The simulation models are based on the thermodynamic and mechanical principles of IC engines and therefore the proposed misfire diagnostic system can in principle be adapted for any engine. During the building process of the models, based on a particular engine, some mechanical and physical parameters, for example the inertial properties of the engine parts and parameters of engine mounts, were first measured and calculated. A series of experiments were then carried out to capture the vibration signals for both normal condition and with a range of faults. The simulation models were updated and evaluated by the experimental results. Following the signal processing of the experimental and simulation signals, the best features were selected as the inputs to ANN networks. The automated diagnostic system comprises three stages: misfire detection, misfire localization and severity identification. Multi-layer Perceptron (MLP) and Probabilistic Neural Networks were
Free vibrations of non-uniform CNT/fiber/polymer nanocomposite beams
NASA Astrophysics Data System (ADS)
Seidi, J.; Kamarian, S.
2017-01-01
In this paper, free vibrations of non-uniform multi-scale nanocomposite beams reinforced by carbon nanotubes (CNTs) are studied. Mori-Tanaka (MT) technique is employed to estimate the effective mechanical properties of three-phase CNT/fiber/polymer composite (CNTFPC) beam. In order to obtain the natural frequencies of structure, the governing equation is solved by means of Generalized Differential Quadrature (GDQ) approach. The accuracy and efficiency of the applied methods are studied and compared with some experimental data reported in previous published works. The influences of volume fraction and agglomeration of nanotubes, volume fraction of long fibers, and different laminate lay-ups on the natural frequency response of structure are examined.
Lee, Nam Ki; Park, Soonyong; Yoon, Myung-Han; Kim, Zee Hwan; Kim, Seong Keun
2012-01-14
The role of ring torsion in the enhancement of intramolecular vibrational energy redistribution (IVR) in aromatic molecules was investigated by conducting excitation and dispersed fluorescence spectroscopy of 1,1'-binaphthyl (1,1'-BN) and 2,2'-BN. The dispersed fluorescence spectra of 1,1'-BN in the origin region of S(1)-S(0) were well resolved, which presented 25-27 cm(-1) gaps of torsional mode in the ground state. The overall profile of the dispersed spectra of 1,1'-BN is similar to that of naphthalene. In contrast, the spectra of 2,2'-BN were not resolved due to the multitude of the active torsional modes. In both cases, dissipative IVR was observed to take place with a relatively small excess vibrational energy: 237.5 cm(-1) for 1,1'-BN and 658 cm(-1) for 2,2'-BN, which clearly shows that ring torsion efficiently enhances the IVR rate. Ab initio and density functional theory calculations with medium-sized basis sets showed that the torsional potential of 1,1'-BN has a very flat minimum over the range of torsional angles from ca. 60° to 120°, whereas that of 2,2'-BN showed two well-defined potential minima at ca. 40° and 140°, in resemblance to the case of biphenyl. In this work, we propose that aromatic molecules be classified into "strong" and "weak" torsional hindrance cases: molecules with strong hindrance case show shorter torsional progressions and more effective IVR dynamics than do those with weak hindrance.
Flexural-torsional vibration of simply supported open cross-section steel beams under moving loads
NASA Astrophysics Data System (ADS)
Michaltsos, G. T.; Sarantithou, E.; Sophianopoulos, D. S.
2005-02-01
SummaryThe present work deals with linearized modal analysis of the combined flexural-torsional vibration of simply supported steel beams with open monosymmetric cross-sections, acted upon by a load of constant magnitude, traversing its span eccentrically with constant velocity. After thoroughly investigating the free vibrations of the structure, which simulates a commonly used highway bridge, its forced motions under the aforementioned loading type are investigated. Utilizing the capabilities of symbolic computations within modern mathematical software, the effect of the most significant geometrical and cross-sectional beam properties on the free vibration characteristics of the beam are established and presented in tabular and graphical form. Moreover, adopting realistic values of the simplified vehicle model adopted, the effects of eccentricity, load magnitude and corresponding velocity are assessed and interesting conclusions for structural design purposes are drawn. The proposed methodology may serve as a starting point for further in-depth study of the whole scientific subject, in which sophisticated vehicle models, energy dissipation and more complicated bridge models may be used.
Zhao, Libo; Hu, Yingjie; Wang, Tongdong; Ding, Jianjun; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde
2016-01-01
Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS) technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m3 to 900 kg/m3 and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail. PMID:27275823
NASA Technical Reports Server (NTRS)
Berg, Robert F.; Grodsinsky, Carlos M.
1992-01-01
Critical point viscosity measurements are limited to their reduced temperature approach to T(sub c) in an Earth bound system, because of density gradients imposed by gravity. Therefore, these classes of experiments have been proposed as good candidates for 'microgravity' science experiments where this limitation is not present. The nature of these viscosity measurements dictate hardware that is sensitive to low frequency excitations. Because of the vibratory acceleration sensitivity of a torsion oscillator viscometer, used to acquire such measurements, a vibration isolation sensitivity test was performed on candidate 'microgravity' hardware to study the possibility of meeting the stringent oscillatory sensitivity requirements of a National Institute of Standards and Technology (NIST) torsion oscillator viscometer. A prototype six degree of freedom active magnetic isolation system, developed at NASA Lewis Research Center, was used as the isolation system. The ambient acceleration levels of the platform were reduced to the noise floor levels of its control sensors, about one microgravity in the 0.1 to 10 Hz bandwidth.
Torsional Vibration Analysis of Reciprocating Compressor Trains driven by Induction Motors
NASA Astrophysics Data System (ADS)
Brunelli, M.; Fusi, A.; Grasso, F.; Pasteur, F.; Ussi, A.
2015-08-01
The dynamic study of electric motor driven compressors, for Oil&Gas (O&G) applications, are traditionally performed in two steps separating the mechanical and the electrical systems. The packager conducts a Torsional Vibration Analysis (TVA) modeling the mechanical system with a lumped parameter scheme, without taking into account the electrical part. The electric motor supplier later performs a source current pulsation analysis on the electric motor system, based on the TVA results. The mechanical and the electrical systems are actually linked by the electromagnetic effect. The effect of the motor air-gap on TVA has only recently been taken into account by adding a spring and a damper between motor and ground in the model. This model is more accurate than the traditional one, but is applicable only to the steady-state condition and still fails to consider the reciprocal effects between the two parts of the system. In this paper the torsional natural frequencies calculated using both the traditional and the new model have been compared. Furthermore, simulation of the complete system has been achieved through the use of LMS AMESim, multi-physics, one-dimensional simulation software that simultaneously solves the shafts rotation and electric motor voltage equation. Finally, the transient phenomena that occur during start-up have been studied.
The Coupling of Flexural Propeller Vibrations with the Torsional Crankshaft Vibrations
NASA Technical Reports Server (NTRS)
Meyer, J.
1943-01-01
The exact mathematical treatment of the problem is possible by replacing the propeller blade by a homogeneous prismatic rod. Conclusions can them be drawn as to the behavior of an actual propeller, since tests on propeller blades have indicated a qualitative agreement with the homogeneous rod. The natural frequencies are determined and the stressing of the systems under the various vibration modes are discussed.
Kodama, Tomoaki; Honda, Yasuhiro; Wakabayashi, Katsuhiko; Iwamoto, Shoichi
1996-09-01
The cheap and compact rubber dampers of shear-type have been widely employed as the torsional vibration control of the crankshaft system of high-speed, automobile diesel engines. The conventional rubber dampers have various rubber forms owing to the thorough investigation of optimum dampers in the design stage. Their rubber forms can be generally grouped into three classes such as the disk type, the bush type and the composite type. The disk type and the bush type rubber dampers are called the basic-pattern rubber dampers hereafter. The composite type rubber part is supposed to consist of the disk type and the bush type parts, regarded respectively as the basic patterns of the rubber part, at large. The dynamic characteristics of the vibration isolator rubber depend generally on temperature, frequency, strain amplitude, shape and size effect,s so it is difficult to estimate accurately their characteristics. With the present technical level, it is also difficult to determine the suitable rubber geometry which optimizes the vibration control effect. The study refers to the calculation method of the torsional vibration of a crankshaft system with a shear-type rubber damper having various rubber forms in order to offer the useful method for optimum design. In this method, the rheological formula of the three-element Maxwell model, from which the torsional stiffness and the damping coefficient of the damper rubber part in the equivalent vibration system are obtained, are adopted in order to decide the dynamic characteristics of the damper rubber part.
Lattanzi; di Lauro C
1999-12-01
The mechanism of torsional Coriolis interaction of E(1d) and E(2d) vibrational modes in ethane-like molecules is investigated, and it is shown that this coupling can drastically affect the torsional splitting in the degenerate vibrational states. A basic point of our treatment is that the sets of coordinates of head and tail which combine with the + sign to generate E(1d) normal coordinates are in general different from those which combine with the - sign to generate E(2d) normal coordinates. It is shown that the zeta(gamma) torsional Coriolis coefficients calculated by the usual methods of normal mode analysis are related to the vibrational angular momenta within head and tail referred to the internal rotor axis systems. With knowledge of the L and L(-1) matrices it is possible to transform these coefficients for reference to the molecule-fixed frame. It is peculiar that torsional Coriolis matrix elements occur between E(1d) and E(2d) vibrational components with the same x or y orientation in the molecule-fixed frame. The matrix elements of the torsional Coriolis operator and other operators responsible for the end-to-end coupling are determined, and a method for calculating vibration-torsion energies, and then torsional splittings, in degenerate vibrational states is outlined. Detailed calculations require a global model, involving all the degenerate vibrational basis states in a complex mechanism of interactions, but it is shown that useful information can be obtained by means of simplified models. Our semiempirical rule that degenerate vibrational states with a large negative value of the diagonal vibration-rotation Coriolis coefficient are likely to deviate much from the behavior of E(1d) or E(2d) vibrational states, with a sensible decrease of the torsional splittings, is confirmed. Copyright 1999 Academic Press.
NASA Technical Reports Server (NTRS)
Houbolt, John C; Brooks, George W
1958-01-01
The differential equations of motion for the lateral and torsional deformations of twisted rotating beams are developed for application to helicopter rotor and propeller blades. No assumption is made regarding the coincidence of the neutral, elastic, and mass axes, and the generality is such that previous theories involving various simplifications are contained as subcases to the theory presented in this paper. Special attention is given the terms which are not included in previous theories. These terms are largely coupling-type terms associated with the centrifugal forces. Methods of solution of the equations of motion are indicated by selected examples.
NASA Technical Reports Server (NTRS)
Houbolt, John C; Brooks, George W
1957-01-01
The differential equations of motion for the lateral and torsional deformations of twisted rotating beams are developed for application to helicopter rotor and propeller blades. No assumption is made regarding the coincidence of the neutral, elastic, and mass axes, and the generality is such that previous theories involving various simplifications are contained as subcases to the theory developed and presented in this paper. Special attention is given to coupling terms not found in previous theories, and methods of solution of the equations of motion are indicated by selected examples.
NASA Astrophysics Data System (ADS)
Ekel'Chik, V. S.; Perren, A. A.; Riabov, V. M.; Iartsev, B. A.
1992-04-01
A number of primary natural frequencies of flexural and torsional vibrations are determined experimentally for specimens cut from a unidirectional CFRP plate at the angles phi = 0, 90 deg to the reinforcement direction. The flexural and torsional vibration values yielded primary values of elasticity and shear moduli, which were then corrected on the basis of a comparison of the experimental data and theoretical calculations of the frequencies of coupled flexural-torsional vibrations of specimens cut at angles of 15, 30, 45, 60 and 75 deg. Good agreement between the calculated and experimental data is obtained, and it is shown that the flexural-torsional interaction must be considered in studying the natural vibrations for specimens whose longitudinal axes do not coincide with the elasticity symmetry axis.
NASA Astrophysics Data System (ADS)
Meroño, P. A.; Gómez, F. C.; Marín, F.; Zaghar, L.
2017-02-01
One of the widely used processes to measure torsional vibration focuses on the analysis of a square signal from a device set in the machine shaft. The tools used for this purpose usually consist of a toothed wheel connected to an appropriate transducer, of an electromagnetic or optic type, which provides a square wave signal. If the rotation velocity is constant, the signal pulses are the same width, but when the velocity changes, the width of the pulses changes too, lengthening or shortening its width, resulting in a frequency modulated signal. When the shafts of the machines are misaligned angularly, the average speed changes due to variable torque action, so that spectral features of modulated signal show frequency components that are explained by the Bessel Functions. This work shows that these components are caused by a carrying (constant average speed) and a modulator signal (variable turning speed) between the harmonics surrounding the central frequency. Besides, it may also test their relationship with the presence of angular misalignment in the coupled-machine shafts. In addition, an iterative method is applied to construct the frequency spectral diagram of the induced square signal, once the appropriate modulation indices of the Bessel functions have been calculated. To compare and validate the method, different bench tests have been performed using pulse signal and laser interferometry.
NASA Astrophysics Data System (ADS)
Kojima, Hirohisa; Kunugi, Kouta; Trivailo, Pavel M.
2016-06-01
Tape tethers show great promise for application in space debris removal because they possess a large collecting area, which is crucial for the collection of electrons from a plasma environment in space. Tape tethers are therefore preferred over string tethers in electrodynamic tethered systems (EDTS), which operate based on the Lorentz force derived from the interaction between the electric current on the tether and the Earth's magnetic field. Vibrations of the tether may disturb the attitude of the mother satellite and the subsatellite, and are difficult to damp in space because the damping would be minimal owing to the almost zero drag force in space. Due to their relatively large width, tape tethers experience torsional deformation and therefore cannot be treated as a string tether. If torsional deformation of tape tethers is not avoided, the advantage of tape tethers as the materials for EDT systems will be deteriorated. Point-type sensors and actuators are usually used to sense and control vibrations. However, it is difficult to apply such sensors and actuators to tape tethers because of the substantial length of the tether as well as the need for a deployment mechanism, such as a reel. In order to overcome the difficulties related to vibrations, the use of smart-film sensors and actuators for sensing and controlling vibrations of tape tethers is considered in this study. In a previous study, we presented an application of smart film for sensing vibrations of tape tethers, but the actuation of tape tethers using smart-film actuators has not yet been reported. In the present paper, we mathematically derive suitable configurations of smart-film attachment to a tape tether for cluster filtering and actuation of bending and torsional vibrations of the tape tether, and carried out cluster actuation experiments. The experimental results reveal that the bending and torsional vibrations of a tape tether can be reduced by cluster actuation control based on direct
NASA Technical Reports Server (NTRS)
Pearson, J. C.; Pickett, Herbert M.; Sastry, K. V. L. N.
2000-01-01
C2H5CN (Propionitrile or ethyl cyanide) is a well known interstellar species abundantly observed in hot cores during the onset of star formation. The onset of star formation generally results in elevated temperature, which thermally populates may low lying vibrational states such as the 206/cm in-plane bend and the 212/cm first excited torsional state in C2H5CN. Unfortunately, these two states are strongly coupled through a complex series of torsion-vibration-rotation interactions, which dominate the spectrum. In order to understand the details of these interactions and develop models capable of predicting unmeasured transitions for astronomical observations in C2H5CN and similar molecules, several thousand rotational transitions in the lowest excited in-plane bend and first excited torsional state have been recorded, assigned and analyzed. The analysis reveals very strong a- and b-type Coriolis interactions and a number of other smaller interactions and has a number of important implications for other C3V torsion-rotation-vibration systems. The relative importance and the physical origins of the coupling among the rotational, vibrational and torsional motions will be presented along with a full spectroscopic analysis and supporting astronomical observations.
Vibration analysis of rotor blades with an attached concentrated mass
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Barna, P. S.
1977-01-01
The effect of an attached concentrated mass on the dynamics of helicopter rotor blades is determined. The point transmission matrix method was used to define, through three completely automated computer programs, the natural vibrational characteristics (natural frequencies and mode shapes) of rotor blades. The problems of coupled flapwise bending, chordwise bending, and torsional vibration of a twisted nonuniform blade and its special subcase pure torsional vibration are discussed. The orthogonality relations that exist between the natural modes of rotor blades with an attached concentrated mass are derived. The effect of pitch, rotation, and point mass parameters on the collective, cyclic, scissor, and pure torsional modes of a seesaw rotor blade is determined.
NASA Astrophysics Data System (ADS)
Coral, W.; Rossi, C.; Curet, O. M.
2015-12-01
This paper presents a Differential Quadrature Element Method for free transverse vibration of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses (fish ribs). The proposed method is based on the theory of a Timoshenko cantilever beam. The effects of the masses (number, magnitude and position) on the value of natural frequencies are investigated. Governing equations, compatibility and boundary conditions are formulated according to the Differential Quadrature rules. The convergence, efficiency and accuracy are compared to other analytical solution proposed in the literature. Moreover, the proposed method has been validate against the physical prototype of a flexible fish backbone. The main advantages of this method, compared to the exact solutions available in the literature are twofold: first, smaller computational cost and second, it allows analysing the free vibration in beams whose section is an arbitrary function, which is normally difficult or even impossible with other analytical methods.
NASA Astrophysics Data System (ADS)
Koroleva, L. A.; Tyulin, V. I.; Matveev, V. K.; Pentin, Yu. A.
2013-05-01
B3LYP, MP2, CCSD(T), and MP4/MP2 in the 6-311G( d, p), 6-311++G( d, p), cc-pVTZ, aug-cc-pVTZ bases used to calculate the transition frequencies of torsional vibration of trans- and cis-isomers of acrolein in the ground electronic state ( S 0) are analyzed. It is found that for trans-isomers, all methods of calculation except for B3LYP in the cc-pVTZ basis yield good agreement between the calculated and experimental values. It is noted that for the cis-isomer of acrolein, no method of calculation confirms the experimental value of the frequency of torsional vibration (138 cm-1). It is shown that the calculated and experimental values for obertones at 273.0 cm-1 and other transitions of torsional vibration are different for this isomer in particular. However, it is established that in some calculation methods (B3LYP, MP2), the frequency of the torsional vibration of the cis-isomer coincides with another experimental value of this frequency (166.5 cm-1). It is concluded that in analyzing the vibrational structure of the UV spectrum, the calculated and experimental values of its obertone (331.3 cm-1) coincide, along with its frequency. It is also noted that the frequency of torsional vibration for the cis-isomer (166.5 cm-1) can also be found in other experimental works if we change the allocation of torsional transition 18{1/1}.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.
1986-01-01
The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by comparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.
Hammons, T.J.; Tay, B.W.; Kok, K.L.
1995-08-01
The paper describes an in-depth analysis of excitation of shaft torsional vibrations in steam-turbine-generator-exciter shafts in close proximity to HVDC converter stations by variable-frequency ripple currents superimposed on the DC currents in asynchronous Links. It extends earlier work to include an in depth analysis of system scaling factors for harmonic currents impressed on generators in Northern Ireland by an inverter and to investigate the phenomena for possible torsional vibrations in the generators by the Link. Frequencies at which shaft torsional vibrations would be excited by modulation product harmonics in 50Hz/50Hz asynchronous Links as a function of deviation in system frequency is reviewed. Relative noncharacteristic current levels for 50Hz/50Hz connectors are illustrated assuming ripple currents at the inverter which gives realistic harmonic voltages in a twelve-pulse bridge. The paper then shows that torques in machines in multi-machine networks may be estimated by proportioning HVDC link harmonic disturbance current appropriately to each machine at risk. It is concluded that variable-frequency ripple currents superimposed on the DC current in asynchronous links can excite sympathetic torsional vibrations in turbine-generator-exciter shafts.
Zhai, Min; Li, Bing; Li, Dehua
2017-02-07
Resonance frequency analysis (RFA) methods are widely used to assess implant stability, particularly the Osstell(®) device. The potential effects associated with this method have been discussed in the literature. Torsional RFA (T-RFA), mentioned in our previous study, could represent a new measurement method. The purpose of this study was to simulate T-shaped and Osstell(®) transducer-implant-bone system models; compare their vibration modes and corresponding resonance frequencies; and investigate the effects of their parameters, such as the effective implant length (EIL), bone quality, and osseointegration level, on the torsional resonance frequency (TRF) and bending resonance frequency (BRF) using three-dimensional finite element analysis. Following the finite element model validation, the TRFs and BRFs for three different EILs and four types of bone quality were obtained, and the change rates during 25 degrees of osseointegration were observed. The analysis showed that an increase in the EIL and a decrease in bone quality have less effect on the declination rate of TRFs than on that of BRFs. TRFs are highly sensitive to the stiffness of the implant-bone interface during the healing period. It was concluded that T-RFA has better sensitivity and specificity.
NASA Astrophysics Data System (ADS)
Wang, Chang; Wu, Hong-Lin; Song, Yun-Fei; He, Xing; Yang, Yan-Qiang; Tan, Duo-Wang
2016-11-01
The structural deformation induced by intense laser field of liquid nitrobenzene (NB) molecule, a typical molecule with restricting internal rotation, is tracked by time- and frequency-resolved coherent anti-Stokes. Raman spectroscopy (CARS) technique with an intense pump laser. The CARS spectra of liquid NB show that the NO2 torsional mode couples with the NO2 symmetric stretching mode, and the NB molecule undergoes ultrafast structural deformation with a relaxation time of 265 fs. The frequency of NO2 torsional mode in liquid NB (42 cm-1) at room temperature is found from the sum and difference combination bands involving the NO2 symmetric stretching mode and torsional mode in time- and frequency-resolved CARS spectra. Project supported by the National Natural Science Foundation of China (Grant Nos. 21173063 and 21203047), the Foundation of Heilongjiang Bayi Agricultural University, China (Grant No. XZR2014-16), NSAF (Grant No. U1330106), and the Special Research Project of National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics (Grant No. 2012-S-07).
Torsional vibrations and dynamic loads in a basic planetary gear system
NASA Technical Reports Server (NTRS)
August, R.; Kasuba, R.
1986-01-01
An iterative method has been developed for analyzing dynamic loads in a light weight basic planetary gear system. The effects of fixed, semi-floating, and fully-floating sun gear conditions have been emphasized. The load dependent variable gear mesh stiffness were incorporated into a practical torsional dynamic model of a planetary gear system. The dynamic model consists of input and output units, shafts, and a planetary train. In this model, the sun gear has three degrees of freedom; two transverse and one rotational. The planets, ring gear, and the input and output units have one degree of freedom, (rotation) thus giving a total of nine degrees of freedoms for the basic system. The ring gear has a continuous radial support. The results indicate that the fixed sun gear arrangement with accurate or errorless gearing offers in general better performance than the floating sun gear system.
NASA Astrophysics Data System (ADS)
Ompusunggu, Agusmian Partogi; Papy, Jean-Michel; Vandenplas, Steve; Sas, Paul; Van Brussel, Hendrik
2013-02-01
Wet friction clutches play a critical role in vehicles equipped with automatic transmissions, power shift transmissions and limited slip differentials. An unexpected failure occurring in these components can therefore lead to an unexpected total breakdown of the vehicle. This undesirable situation can put human safety at risk, possibly cause long-term vehicle down times, and result in high maintenance costs. In order to minimize the negative impacts caused by the unexpected breakdown, an optimal maintenance scheme driven by accurate condition monitoring and prognostics therefore needs to be developed and implemented for wet friction clutches. In this paper, the development of a condition monitoring system that can serve as a basis for health prognostics of wet friction clutches with a focus in heavy duty vehicle applications is presented. The developed method is based on monitoring the dominant modal parameters extracted from the torsional vibration response occurring in the post-lockup phase, i.e. just after the clutch is fully engaged. These modal parameters, namely the damped torsional natural frequency fd and the decay factor σ, are computed based on the pre-filtered Hankel Total Least Squares (HTLS) method which has an excellent performance in estimating the parameters of transient signals with a relatively short duration. In order to experimentally validate the proposed monitoring method, accelerated life tests were carried out on five different paper-based wet friction clutches using a fully instrumented SAE#2 test setup. The dominant modal parameters extracted from the post-lockup velocity signals are then plotted in function of the service life (duty cycle) of the tested clutches. All the plots exhibit distinct trends that can be associated with the progression of the clutch degradation. Therefore, the proposed quantities can be seen as relevant features that may enable us to monitor and assess the condition of wet friction clutches. Since velocity sensor
Characteristic of torsional vibration of mill main drive excited by electromechanical coupling
NASA Astrophysics Data System (ADS)
Zhang, Yifang; Yan, Xiaoqiang; Lin, Qihui
2016-01-01
In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMULINK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system.
NASA Astrophysics Data System (ADS)
Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.
2016-06-01
Methacrolein and methyl vinyl ketone are the two major oxidation products of isoprene emitted in the troposphere. New spectroscopic information is provided with the aim to allow unambiguous identification of these molecules, characterized by a large amplitude motion associated with the methyl top. State-of-the-art millimeter-wave spectroscopy experiments coupled to quantum chemical calculations have been performed. Comprehensive sets of molecular parameters have been obtained. The torsion-rotation-vibration effects will be discussed in detail. From the atmospheric application point of view the results provide precise ground state molecular constants essential as a foundation (by using the Ground State Combination Differences method) for the analysis of high resolution spectrum, recorded from 600 to 1600 wn. The infrared range can be then refitted using appropriate Hamiltonian parameters. The present work is funded by the French ANR through the PIA under contract ANR-11-LABX-0005-01 (Labex CaPPA), by the Regional Council Nord-Pas de Calais and by the European Funds for Regional Economic Development (FEDER).
Vibrational-Torsional Coupling Revealed in the Infrared Spectrum of He-Solvated n-PROPYL Radical
NASA Astrophysics Data System (ADS)
Moradi, Christopher P.; Broderick, Bernadette M.; Agarwal, Jay; Schaefer, Henry F., III.; Douberly, Gary E.
2015-06-01
The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite (CH3(CH2)3ONO) and i-butyl nitrite (CH3CH(CH3)CH2ONO) precursors, respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the C-H stretching region. In addition to three vibrations of n-propyl previously measured in an Ar matrix, we observe many unreported bands between 2800 and 3150 wn, which we attribute to propyl radicals. The C-H stretching modes observed above 2960 wn for both radicals are in excellent agreement with anharmonic frequencies computed using VPT2. Between 2800 and 2960 wn, however, the spectra of n-propyl and i-propyl radicals become quite congested and difficult to assign due to the presence of multiple anharmonic resonances. Computations reveal the likely origin of the spectral congestion to be strong coupling between the high frequency C-H stretching modes and a lower frequency torsional motion, which modulates quite substantially a through-space hyperconjugation interaction. Pacansky, et. al., J. Phys. Chem. 1977, 81, 2149.
NASA Astrophysics Data System (ADS)
Duffy, Daniel J.; Quenneville, Jason; Baumbaugh, T. M.; Kitchener, S. A.; McCormick, R. K.; Dormady, C. N.; Croce, T. A.; Navabi, A.; Stidham, Howard D.; Hsu, Shaw L.; Guirgis, Gamil A.; Deng, Shiping; Durig, James R.
2004-02-01
Ab initio calculations are reported for three of four possible conformers of 1,3-dichloropropane. The fourth conformer, with C s symmetry, has a predicted enthalpy difference of more than 1500 cm -1 from the most stable conformer from each calculation regardless of the basis set used, so there is little chance of observing it. Thus, there is no evidence in the infrared or Raman spectrum of the presence of a fourth conformer. The order of stability given by the ab initio calculations is C 2(GG)>C 1(AG)>C 2v(AA)>C s(GG'), where A indicates the anti form for one of the CH 2Cl groups and G indicates the gauche conformation for the other CH 2Cl group relative to the plane of the carbon atoms. Almost every band observed can be confidently assigned to one or another of the conformers. Many observed bands proved to be of a composite nature, with several nearly coincident vibrations of different conformers contributing to the band contour. Nonetheless, a complete assignment of fundamentals is possible for the most stable C 2 conformer, and 5 of the fundamentals of the C 2v conformer and 13 those of the C 1 conformer can be confidently assigned.
Flexural-torsional vibration of a tapered C-section beam
NASA Astrophysics Data System (ADS)
Dennis, Scott T.; Jones, Keith W.
2017-04-01
Previous studies have shown that numerical models of tapered thin-walled C-section beams based on a stepped or piecewise prismatic beam approximation are inaccurate regardless of the number of elements assumed in the discretization. Andrade recently addressed this problem by extending Vlasov beam theory to a tapered geometry resulting in new terms that vanish for the uniform beam. (See One-Dimensional Models for the Spatial Behaviour of Tapered Thin-Walled Bars with Open Cross-Sections: Static, Dynamic and Buckling Analyses, PhD Thesis, University of Coimbra, Portugal, 2012, https://estudogeral.sib.uc.pt) In this paper, we model the coupled bending-twisting vibration of a cantilevered tapered thin-walled C-section using a Galerkin approximation of Andrade's beam equations resulting in an 8-degree-of-freedom beam element. Experimental natural frequencies and mode shapes for 3 prismatic and 2 tapered channel beams are compared to model predictions. In addition, comparisons are made to detailed shell finite element models and exact solutions for the uniform beams to confirm the validity of the approach. Comparisons to the incorrect stepped model are also presented.
Inelastic torsion of steel I-beams
NASA Astrophysics Data System (ADS)
Pi, Y. L.; Trahair, N. S.
1993-09-01
A nonlinear inelastic analysis of the non-uniform torsion of I-section beams is presented in this paper. Large twist rotations are included in the geometry non-linearity. The nonlinear equilibrium equations of beams in nonuniform torsion have been derived and a finite element procedure has been developed based on the analysis. The elastic-plastic behavior of beams in non-uniform torsion is studied using the finite element procedure and the results are compared with tests. It is found that I-section beams have much larger torsional capacities than can be predicted by linear plastic collapse analysis, and that torsional failure occurs not by the formation of a mechanism but by the tensile rupture of the flanges. A method is proposed for calculating the full plastic non-uniform torque for practical design purposes.
NASA Astrophysics Data System (ADS)
Liu, Yang; Shu, Dong-Wei
2014-08-01
Delaminations in structures may significantly reduce the stiffness and strength of the structures and may affect their vibration characteristics. As structural components, beams have been used for various purposes, in many of which beams are often subjected to axial loads and static end moments. In the present study, an analytical solution is developed to study the coupled bending-torsion vibration of a homogeneous beam with a single delamination subjected to axial loads and static end moments. Euler-Bernoulli beam theory and the "free mode" assumption in delamination vibration are adopted. This is the first study of the influences of static end moments upon the effects of delaminations on natural frequencies, critical buckling loads and critical moments for lateral instability. The results show that the effects of delamination on reducing natural frequencies, critical buckling load and critical moment for lateral instability are aggravated by the presence of static end moment. In turn, the effects of static end moments on vibration and instability characteristics are affected by the presence of delamination. The analytical results of this study can serve as a benchmark for finite element method and other numerical solutions.
Gascooke, Jason R; Lawrance, Warren D
2013-02-28
The methyl rotor and van der Waals vibrational levels in the S1 and S0 states of toluene-Ar have been investigated by the technique of two-dimensional laser induced fluorescence (2D-LIF). The S0 van der Waals and methyl rotor levels are reported for the first time, while improved S1 values are presented. The correlations seen in the 2D-LIF images between the S0 and S1 states lead to a reassignment of key features in the S1 ← S0 excitation spectrum. This reassignment reveals that there are significant changes in the methyl rotor levels in the complex compared with those in bare toluene, particularly at low m. The observed rotor energies are explained by the introduction of a three-fold, V3, term in the torsion potential (this term is zero in toluene) and a reduction in the height of the six-fold, V6, barriers in S0 and S1 from their values in bare toluene. The V3 term is larger in magnitude than the V6 term in both S0 and S1. The constants determined are ∣V3(S1)∣ = 33.4 ± 1.0 cm(-1), ∣V3(S0)∣ = 20.0 ± 1.0 cm(-1), V6(S1) = -10.7 ± 1.0 cm(-1), and V6(S0) = -1.7 ± 1.0 cm(-1). The methyl rotor is also found to couple with van der Waals vibration; specifically, the m(") = 2 rotor state couples with the combination level involving one quantum of the long axis bend and m(") = 1. The coupling constant is determined to be 1.9 cm(-1), which is small compared with the values typically reported for torsion-vibration coupling involving ring modes.
... Journal of Urology. 2011;185:2469. Hittelman AB. Neonatal testicular torsion. http://www.uptodate.com/home. Accessed ... 16, 2015. Snyder HM, et al. In utero/neonatal torsion: Observation versus prompt exploration. Journal of Urology. ...
Ringdahl, Erika; Teague, Lynn
2006-11-15
Each year, testicular torsion affects one in 4,000 males younger than 25 years. Early diagnosis and definitive management are the keys to avoid testicular loss. All prepubertal and young adult males with acute scrotal pain should be considered to have testicular torsion until proven otherwise. The finding of an ipsilateral absent cremasteric reflex is the most accurate sign of testicular torsion. Torsion of the appendix testis is more common in children than testicular torsion and may be diagnosed by the "blue dot sign" (i.e., tender nodule with blue discoloration on the upper pole of the testis). Epididymitis/orchitis is much less common in the prepubertal male, and the diagnosis should be made with caution in this age group. Doppler ultrasonography may be needed for definitive diagnosis; radionuclide scintigraphy is an alternative that may be more accurate but should be ordered only if it can be performed without delay. Diagnosis of testicular torsion is based on the finding of decreased or absent blood flow on the ipsilateral side. Treatment involves rapid restoration of blood flow to the affected testis. The optimal time frame is less than six hours after the onset of symptoms. Manual detorsion by external rotation of the testis can be successful, but restoration of blood flow must be confirmed following the maneuver. Surgical exploration provides definitive treatment for the affected testis by orchiopexy and allows for prophylactic orchiopexy of the contralateral testis. Surgical treatment of torsion of the appendix testis is not mandatory but hastens recovery.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Indra; Billinghurst, B. E.
2016-11-01
In our effort to systematically study the far infrared (FIR) spectra of asymmetrically mono deuterated methanol (CH2DOH) and thereby obtain the transition wavenumbers with better and better accuracy (Mukhopadhyay, 2016a,b), the complete Fourier transform (FT) spectra from FIR to infrared (IR) vibrational bands (in the range 50-1190 cm-1) have been re-recorded using the Synchrotron Radiation Source at the Canadian Light Sources in Saskatchewan, Canada. The resolution of the spectrum is unprecedented, reaching beyond the Doppler limited resolution as low as about 0.0008 cm-1 with a signal to noise (S/N) ratio is many fold better than that can be obtained by commercially available FT spectrometer using thermal sources (e.g., Globar). Spectra were also recorded beyond 1190 cm-1 to about 5000 cm-1 at a somewhat lower resolution of 0.002-0.004 cm-1. In this report the analysis of the b-type and c-type torsional - rotational spectra in the ground vibrational state corresponding to gauche- (e1/o1) to gauche- (e1/o1) and gauche- (e1/o1) to trans- (e0) states in the ground vibrational state are reported and an atlas of the wavenumber for about 2500 FIR assigned absorption lines has been prepared. The transitions within a given sub-band are analyzed using state dependent expansion parameters and the Q-branch origins. The data from previous results (Mukhopadhyay, 2016a,b) along with the present work allowed a global analysis yielding a complete set of molecular parameters. The state dependent molecular parameters reproduce the experimental wavenumbers within experimental uncertainty. In addition, the sensitivity of the spectrum allowed observation of forbidden transitions previously unobserved and helped reassignment of rotational angular momentum quantum numbers of some ΔK = ±1, Q-branch transitions in highly excited states recently reported in the literature. To our knowledge the wavenumbers reported in the present work are the most accurate so far reported in the
Torsional Optomechanics of a Levitated Nonspherical Nanoparticle
NASA Astrophysics Data System (ADS)
Hoang, Thai M.; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, F.; Yin, Zhang-Qi; Li, Tongcang
2016-09-01
An optically levitated nanoparticle in vacuum is a paradigm optomechanical system for sensing and studying macroscopic quantum mechanics. While its center-of-mass motion has been investigated intensively, its torsional vibration has only been studied theoretically in limited cases. Here we report the first experimental observation of the torsional vibration of an optically levitated nonspherical nanoparticle in vacuum. We achieve this by utilizing the coupling between the spin angular momentum of photons and the torsional vibration of a nonspherical nanoparticle whose polarizability is a tensor. The torsional vibration frequency can be 1 order of magnitude higher than its center-of-mass motion frequency, which is promising for ground state cooling. We propose a simple yet novel scheme to achieve ground state cooling of its torsional vibration with a linearly polarized Gaussian cavity mode. A levitated nonspherical nanoparticle in vacuum will also be an ultrasensitive nanoscale torsion balance with a torque detection sensitivity on the order of 10-29 N m /√{Hz } under realistic conditions.
Thermoelastic damping in torsion microresonators with coupling effect between torsion and bending
NASA Astrophysics Data System (ADS)
Tai, Yongpeng; Li, Pu; Fang, Yuming
2014-02-01
Predicting thermoelastic damping (TED) is crucial in the design of high Q MEMS resonators. In the past, there have been few works on analytical modeling of thermoelastic damping in torsion microresonators. This could be related to the assumption of pure torsional mode for the supporting beams in the torsion devices. The pure torsional modes of rectangular supporting beams involve no local volume change, and therefore, they do not suffer any thermoelastic loss. However, the coupled motion of torsion and bending usually exists in the torsion microresonator when it is not excited by pure torque. The bending component of the coupled motion causes flexural vibrations of supporting beams which may result in significant thermoelastic damping for the microresonator. This paper presents an analytical model for thermoelastic damping in torsion microresonators with the coupling effect between torsion and bending. The theory derives a dynamic model for torsion microresonators considering the coupling effect, and approximates the thermoelastic damping by assuming the energy loss to occur only in supporting beams of flexural vibrations. The thermoelastic damping obtained by the present model is compared to the measured internal friction of single paddle oscillators. It is found that thermoelastic damping contributes significantly to internal friction for the case of the higher modes at room temperature. The present model is validated by comparing its results with the finite-element method (FEM) solutions. The effects of structural dimensions and other parameters on thermoelastic damping are investigated for the representative case of torsion microresonators.
Bigoni, D.; Dal Corso, F.; Misseroni, D.; Bosi, F.
2014-01-01
One edge of an elastic rod is inserted into a friction-less and fitting socket head, whereas the other edge is subjected to a torque, generating a uniform twisting moment. It is theoretically shown and experimentally proved that, although perfectly smooth, the constraint realizes an expulsive axial force on the elastic rod, which amount is independent of the shape of the socket head. The axial force explains why screwdrivers at high torque have the tendency to disengage from screw heads and demonstrates torsional locomotion along a perfectly smooth channel. This new type of locomotion finds direct evidence in the realization of a ‘torsional gun’, capable of transforming torque into propulsive force. PMID:25383038
Zakharenko, O.; Motiyenko, R. A.; Aviles Moreno, J.-R.; Huet, T. R.; Jabri, A.; Kleiner, I.
2016-01-14
Methacrolein is a major oxidation product of isoprene emitted in the troposphere. New spectroscopy information is provided with the aim to allow unambiguous identification of this complex molecule, characterized by a large amplitude motion associated with the methyl top. State-of-the-art millimeter-wave spectroscopy experiments coupled to quantum chemical calculations have been performed. For the most stable s-trans conformer of atmospheric interest, the torsional and rotational structures have been characterized for the ground state, the first excited methyl torsional state (ν{sub 27}), and the first excited skeletal torsional state (ν{sub 26}). The inverse sequence of A and E tunneling sub-states as well as anomalous A-E splittings observed for the rotational lines of v{sub 26} = 1 state clearly indicates a coupling between methyl torsion and skeletal torsion. A comprehensive set of molecular parameters has been obtained. The far infrared spectrum of Durig et al. [Spectrochim. Acta, Part A 42, 89–103 (1986)] was reproduced, and a Fermi interaction between ν{sub 25} and 2ν{sub 27} was evidenced.
NASA Astrophysics Data System (ADS)
Stone, Stephen C.; Miller, C. Cameron; Philips, Laura A.; Andrews, A. M.; Fraser, G. T.; Pate, B. H.; Xu, Li-Hong
1995-12-01
The 3-MHz-resolution infrared spectra of the 10-μm bands of thegaucheconformer of 1,2-difluoroethane (HFC152) and theC1-symmetry conformer of 1,1,2-trifluoroethane (HFC143) have been measured using a molecular-beam electric-resonance optothermal spectrometer with a tunable microwave-sideband CO2laser source. For 1,2-difluoroethane, two bands have been studied, the ν17B-symmetry C-F stretch at 1077.3 cm-1and the ν13B-symmetry CH2rock at 896.6 cm-1. Both bands are well fit to a asymmetric-rotor Hamiltonian to better than 0.5 MHz. The ν13band is effectively unperturbed, while the ν17band is weakly perturbed, as shown by the large change in centrifugal distortion constants from the ground state values. Two bands have also been studied for 1,1,2-trifluoroethane, the ν11symmetric CF2stretch at 1077.2 cm-1and the ν13C-C stretch at 905.1 cm-1. One of the two bands, ν11, is unperturbed and fit to near the experimental precision. The ν13vibration, on the other hand, is weakly perturbed by an interaction with a nearby state. This perturbation leads to a doubling or splitting of the lines, due to a perturbation-induced lifting of the degeneracy of the symmetric and antisymmetric tunneling states associated with tunneling between the two equivalentC1forms. For theJ,Kastates studied, the splittings are as large as 37 MHz. Combining this observation with published low-resolution far-infrared measurements of torsional sequence-band and hot-band frequencies and calculations from an empirical torsional potential allows us to identify the perturbing state as ν17+ 6ν18. Here, ν17is the CF2twist and ν18is the torsion. The matrix element responsible for this interaction exchanges eight vibrational quanta!
Application of a boundary element method to the study of dynamical torsion of beams
NASA Technical Reports Server (NTRS)
Czekajski, C.; Laroze, S.; Gay, D.
1982-01-01
During dynamic torsion of beam elements, consideration of nonuniform warping effects involves a more general technical formulation then that of Saint-Venant. Nonclassical torsion constants appear in addition to the well known torsional rigidity. The adaptation of the boundary integral element method to the calculation of these constants for general section shapes is described. The suitability of the formulation is investigated with some examples of thick as well as thin walled cross sections.
Bowlin, Paul R; Gatti, John M; Murphy, J Patrick
2017-02-01
The pediatric patient presenting with acute scrotal pain requires prompt evaluation and management given the likelihood of testicular torsion as the underlying cause. Although other diagnoses can present with acute testicular pain, it is important to recognize the possibility of testicular torsion because the best chance of testicular preservation occurs with expeditious management. When testicular torsion is suspected, prompt surgical exploration is warranted. A delay in surgical management should not occur in an effort to obtain confirmatory imaging. When torsion is discovered, the contralateral testicle should undergo fixation to reduce the risk of asynchronous torsion.
Daszkiewicz, Marek
2014-11-11
Crystal structure of the ortho-nitroanilinium chloride, (HoNA)Cl, was re-determined by means of X-ray single crystal diffraction. Hydrogen atoms of the ammonio form intra- and intermolecular hydrogen bonds which are arranged in chain and ring patterns. The patterns are described by the mathematical relations of the elementary graph-set descriptors. Since the interactions have a weak nature, the interpretation of the vibrational spectra was carried out with the help of theoretical calculations of the spectra for the HoNA+ ion. In order to properly assign experimental bands, theoretical spectra were calculated at the B3LYP/6-31G(d,p) level of theory for the geometry of global minimum of HoNA+ ion as a reference and for the other conformations, including in-crystal geometry of the ion, changing the relative position of the ammonio and nitro groups. Overall, the 89 spectra were analyzed as a two-dimensional dependence of each of 45 normal modes of the HoNA+ ion on two dihedral angles, dih(HNCC) and dih(ONCC). Additionally, calculations were done for the in-crystal conformation of the (HoNA)Cl3(2-) anion. Great increase of frequency is observed for the ν7 (641 cm(-1)), where the H1C atom is involved in, because the intramolecular N-H1C⋯O hydrogen bond weakens upon rotation of the NH3+ group. PED analysis shows that also the modes of vibrations changes upon rotation. The mode of vibrations for the (HoNA)Cl3(2-) anion differs from the HoNA+ ion, especially for the ν(N-H) vibrations. Besides, when three chloride anions where included in the calculations, only then the experimental spectra were well reproduced.
Torsional anharmonicity in the conformational thermodynamics of flexible molecules
NASA Astrophysics Data System (ADS)
Miller, Thomas F., III; Clary, David C.
We present an algorithm for calculating the conformational thermodynamics of large, flexible molecules that combines ab initio electronic structure theory calculations with a torsional path integral Monte Carlo (TPIMC) simulation. The new algorithm overcomes the previous limitations of the TPIMC method by including the thermodynamic contributions of non-torsional vibrational modes and by affordably incorporating the ab initio calculation of conformer electronic energies, and it improves the conventional ab initio treatment of conformational thermodynamics by accounting for the anharmonicity of the torsional modes. Using previously published ab initio results and new TPIMC calculations, we apply the algorithm to the conformers of the adrenaline molecule.
14 CFR 33.43 - Vibration test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each engine must undergo a vibration survey to establish the torsional and bending vibration...
NASA Technical Reports Server (NTRS)
Leese, G. E.
1984-01-01
Torsional fatigue testing and data analysis procedures are described. Since there are no standards governing cyclic torsion testing that are generally accepted on a widespread basis by the technical community, the different approaches that dominate current experimental activity, and the ramifications of each are discussed. Particular attention is given to the theoretical and experimental difficulties that have paced refinement and general acceptance of test procedures. Finally, specific quantities and nomenclature modelled after analagous axial fatigue properties are suggested as an effective way to communicate torsional fatigue results until accepted standards are established.
Torsion effect of swing frame on the measurement of horizontal two-plane balancing machine
NASA Astrophysics Data System (ADS)
Wang, Qiuxiao; Wang, Dequan; He, Bin; Jiang, Pan; Wu, Zhaofu; Fu, Xiaoyan
2017-03-01
In this paper, the vibration model of swing frame of two-plane balancing machine is established to calculate the vibration center position of swing frame first. The torsional stiffness formula of spring plate twisting around the vibration center is then deduced by using superposition principle. Finally, the dynamic balancing experiments prove the irrationality of A-B-C algorithm which ignores the torsion effect, and show that the torsional stiffness deduced by experiments is consistent with the torsional stiffness calculated by theory. The experimental datas show the influence of the torsion effect of swing frame on the separation ratio of sided balancing machines, which reveals the sources of measurement error and assesses the application scope of A-B-C algorithm.
NASA Astrophysics Data System (ADS)
Gültekin, Kemal
2016-03-01
In this study, we give a thorough analysis of a general affine gravity with torsion. After a brief exposition of the affine gravities considered by Eddington and Schrödinger, we construct and analyze different affine gravities based on the determinants of the Ricci tensor, the torsion tensor, the Riemann tensor, and their combinations. In each case we reduce equations of motion to their simplest forms and give a detailed analysis of their solutions. Our analyses lead to the construction of the affine connection in terms of the curvature and torsion tensors. Our solutions of the dynamical equations show that the curvature tensors at different points are correlated via non-local, exponential rescaling factors determined by the torsion tensor.
[Adnexal torsion: three cases].
Sánez, Henry Aristóteles Mateo; Taboada-Pérez, Grecia Carolina; Hernández-Arroyo, Lysandra; Mateo-Madrigal, Melissa; Mateo-Madrigal, Victoria
2013-05-01
Adnexal torsion is a gynecological emergency caused by the torsion of the ovary over its pedicle producing lymphatic and venous stasis, later it develops into ischemia and necrosis, when is not treated. Until recently, the treatment for adnexal torsion has been adnexectomy. This paper report three cases treated successfully with conservative treatment. It is essential to establish a protocol for adnexal torsion management where radical treatments are abandoned and conservative surgeries, such as detorsion and plication, are performed. We suggest as a first choice management adnexal detorsion, in case malignity is suspected to have intraoperative pathologic analysis, and based on the results to decide to preserve the adnexal or remove it for definitive cure.
Testicular Torsion (For Parents)
... ON THIS TOPIC Hernias Ultrasound: Scrotum Undescended Testicles Male Reproductive System PQ: I have a lump on one of ... How to Perform a Testicular Self-Examination Varicocele Male Reproductive System Testicular Torsion Contact Us Print Resources Send to ...
Effective Torsion and Spring Constants in a Hybrid Translational-Rotational Oscillator
ERIC Educational Resources Information Center
Nakhoda, Zein; Taylor, Ken
2011-01-01
A torsion oscillator is a vibrating system that experiences a restoring torque given by [tau] = -[kappa][theta] when it experiences a rotational displacement [theta] from its equilibrium position. The torsion constant [kappa] (kappa) is analogous to the spring constant "k" for the traditional translational oscillator (for which the restoring force…
Electromagnetic nonuniformly correlated beams.
Tong, Zhisong; Korotkova, Olga
2012-10-01
A class of electromagnetic sources with nonuniformly distributed field correlations is introduced. The conditions on source parameters guaranteeing that the source generates a physical beam are derived. It is shown that the new sources are capable of producing beams with polarization properties that evolve on propagation in a manner much more complex compared to the well-known electromagnetic Gaussian Schell-model beams.
Natural vibrations of corrugated orthotropic shells of revolution
NASA Astrophysics Data System (ADS)
Vatul'yan, K. A.; Makarov, S. S.; Ustinov, Yu. A.
2016-11-01
The torsional and longitudinal-flexural vibrations of corrugated orthotropic shells are investigated. Relations, including the equations of motion in forces and moments and Hooke's relations, are obtained using the Kirchhoff-Love hypotheses. The influence of the geometric parameters of the shell (corrugation amplitude and length) on the eigenfrequencies and natural vibrations modes is studied for fixed-end shells. It is found that during torsional vibrations, increasing the corrugation amplitude and increasing the number of corrugations leads to a decrease in the resonant frequencies. In the case of torsional and longitudinal-flexural vibrations, the influence of the corrugation amplitude on the natural vibration modes is investigated.
Testicular Torsion (For Parents)
... damaged. As a general rule: within about 4-6 hours of the start of the torsion, the testicle can be saved 90% of the time after 12 hours, this drops to 50% after 24 hours, the testicle can be saved only 10% ...
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Parsons, Adam H. (Inventor); Mehling, Joshua S. (Inventor); Griffith, Bryan Kristian (Inventor)
2012-01-01
A torsion spring comprises an inner mounting segment. An outer mounting segment is located concentrically around the inner mounting segment. A plurality of splines extends from the inner mounting segment to the outer mounting segment. At least a portion of each spline extends generally annularly around the inner mounting segment.
NASA Astrophysics Data System (ADS)
Clary, David C.; Meijer, Anthony J. H. M.
2002-06-01
Quantum dynamical calculations have been carried out on the excitation of the torsional vibrations of a protein by collision with a solvent molecule. This energy transfer process represents the first step in the unfolding of the protein. The method developed for this purpose is the torsional close coupling, infinite order sudden approximation. Both time-independent and time dependent methods are used to solve the scattering problem and individual excitation of all the torsional modes of the protein is treated. The method is applied to the excitation of the HIV protein gp41 colliding with a water molecule. This protein has 1101 atoms, 56 amino acids, and 452 torsional modes. A major mode-selective effect is found in the computations: it is much easier to excite backbone torsions than sidechain torsions in the protein. In addition, resonances arise in the collisional process and these complexes involve temporary trapping of the water molecule inside the pockets of the protein.
Spin on perinatal testicular torsion.
Samnakay, Naeem; Tudehope, David; Walker, Rosslyn
2006-11-01
We describe a recent case of perinatal testicular torsion at our institution. The presentation, management and outcome of perinatal testicular torsion are quite different to testicular torsion in the general paediatric population. The literature describes a variety of management options for perinatal testicular torsion and these are briefly reviewed. In cases of unilateral perinatal testicular torsin, there is controversy over whether surgery to fix the contralateral testis is required, and if so, the appropriate timing for the surgery. A good understanding of the issues unique to perinatal torsion will facilitate appropriate counseling of parents of affected neonates.
Numerical modeling of pendulum dampers in torsional systems
Johnston, P.R.; Shusto, L.M.
1986-01-01
Centrifugal pendulum-design dampers are utilized in torsional systems to reduce the vibration amplitude at certain objectionable torsional speeds. The damper is tuned by proper design of its mass, dimensions, and position on a carrier disk, which is rigidly attached to the torsional system. The effects of the pendulum damper on the response of the torsional system may be included by modifying the structural model to include a separate damper element representing each order of the pendulum damper. The stiffness and mass matrices for a damper element are dependent upon the order of vibration being dampened, the mass, and the geometry of the damper. A general form of the mass and stiffness equations for a simple centrifugal pendulum damper are derived from first principles using Lagrange's equations of motion. The analysis of torsional systems with pendulum dampers utilizing the mass and stiffness properties developed is included in the program SHAMS. SHAMS calculates the steady-state response of a system of springs and masses to harmonic loads using modal superposition. The response of a crankshaft system with and without the pendulum dampers are included as a case study.
Thermal Vibrational Convection
NASA Astrophysics Data System (ADS)
Gershuni, G. Z.; Lyubimov, D. V.
1998-08-01
Recent increasing awareness of the ways in which vibrational effects can affect low-gravity experiments have renewed interest in the study of thermal vibrational convection across a wide range of fields. For example, in applications where vibrational effects are used to provide active control of heat and mass transfer, such as in heat exchangers, stirrers, mineral separators and crystal growth, a sound understanding of the fundamental theory is required. In Thermal Vibrational Convection, the authors present the theory of vibrational effects caused by a static gravity field, and of fluid flows which appear under vibration in fluid-filled cavities. The first part of the book discusses fluid-filled cavities where the fluid motion only appears in the presence of temperature non-uniformities, while the second considers those situations where the vibrational effects are caused by a non-uniform field. Throughout, the authors concentrate on consideration of high frequency vibrations, where averaging methods can be successfully applied in the study of the phenomena. Written by two of the pioneers in this field, Thermal Vibrational Convection will be of great interest to scientists and engineers working in the many areas that are concerned with vibration, and its effect on heat and mass transfer. These include hydrodynamics, hydro-mechanics, low gravity physics and mechanics, and geophysics. The rigorous approach adopted in presenting the theory of this fascinating and highly topical area will facilitate a greater understanding of the phenomena involved, and will lead to the development of more and better-designed experiments.
Nonlinear Hysteretic Torsional Waves
NASA Astrophysics Data System (ADS)
Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.
2015-07-01
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Nonlinear Hysteretic Torsional Waves.
Cabaret, J; Béquin, P; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V
2015-07-31
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Dirican, A; Burak, I; Ara, C; Unal, B; Ozgor, D; Meydanli, M M
2009-01-01
Wandering spleen is characterized by ectopic localization of spleen owing to the lack or weakening of the major splenic ligaments. In present study, two cases with torsion of wandering spleen were reported. The first case was a 30-year-old female who was admitted to emergency department with acute abdominal pain and vomiting. Abdominal Ultrasonography and computed tomography showed a round solid hypodense mass that was located in the left hypochondriac region of abdomen. At laparotomy, the patient was found to have torsion of a wandering spleen with complete infarction and pancreatic tail infarction. Splenectomy and distal pancreatectomy were performed. The second patient was a 19-year-old female. She was admitted to emergency department with abdominal pain. Axial computed tomography (CT) showed pelvic mass that indicated a possibility of a wandering spleen. The wandering spleen was removed with its long pedicle because of infarction. Torsion of wandering spleen must be considered in differential diagnosis of acute abdomen when a palpable painful abdominal mass is present on physical examination, and the spleen is absent in its normal anatomical location on radiological examination (Fig. 4, Ref. 8). Full Text (Free, PDF) www.bmj.sk.
Torsion effects in braneworld scenarios
Hoff da Silva, J. M.; Rocha, R. da
2010-01-15
We present gravitational aspects of braneworld models endowed with torsion terms both in the bulk and on the brane. In order to investigate a conceivable and measurable gravitational effect, arising genuinely from bulk torsion terms, we analyze the variation in the black hole area by the presence of torsion. Furthermore, we extend the well-known results about consistency conditions in a framework that incorporates brane torsion terms. It is shown, in a rough estimate, that the resulting effects are generally suppressed by the internal space volume. This formalism provides manageable models and their possible ramifications into some aspects of gravity in this context, and cognizable corrections and physical effects as well.
The predicted effect of aerodynamic detuning on coupled bending-torsion unstalled supersonic flutter
NASA Technical Reports Server (NTRS)
Hoyniak, D.; Fleeter, S.
1986-01-01
A mathematical model is developed to predict the enhanced coupled bending-torsion unstalled supersonic flutter stability due to alternate circumferential spacing aerodynamic detuning of a turbomachine rotor. The translational and torsional unsteady aerodynamic coefficients are developed in terms of influence coefficients, with the coupled bending-torsion stability analysis developed by considering the coupled equations of motion together with the unsteady aerodynamic loading. The effect of this aerodynamic detuning on coupled bending-torsion unstalled supersonic flutter as well as the verification of the modeling are then demonstrated by considering an unstable 12 bladed rotor, with Verdon's uniformly spaced Cascade B flow geometry as a baseline. However, with the elastic axis and center of gravity at 60 percent of the chord, this type of aerodynamic detuning has a minimal effect on stability. For both uniform and nonuniform circumferentially space rotors, a single degree of freedom torsion mode analysis was shown to be appropriate for values of the bending-torsion natural frequency ratio lower than 0.6 and higher 1.2. When the elastic axis and center of gravity are not coincident, the effect of detuning on cascade stability was found to be very sensitive to the location of the center of gravity with respect to the elastic axis. In addition, it was determined that when the center of gravity was forward of an elastic axis located at midchord, a single degree of freedom torsion model did not accurately predict cascade stability.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2009-01-01
The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.
The intermountain power project commissioning - Subsynchronous torsional interaction tests
Wu, C.T.; Peterson, K.J. ); Pinko, R.J.; Kankam, M.D.; Baker, D.H. )
1988-10-01
Subsyncronous torsional vibration as a result of electrochemical interaction between the HVDC controls and a turbine-generator was first discovered during the commissioning of the Square Butte Project in 1977. The level of interaction between the HVDC controls and the turbine-generator depends on several interacting factors: the characteristic torsional frequencies of the turbine-generator, the bandwidth of the HVDC controls and the relative strength of the connecting ac system. For the Intermountain Power Project (IPP), early analysis of these interacting factors indicated that there exist definite potential for subsynchronous oscillation to occur. The calculated torsional frequencies of the IPP units showed that the first mode frequency is 14.0 Hz and is within the typical bandwidth of an HVDC control which is between 10-20 Hz. The HVDC controls, therefore, can influence the torsional stability of the IPP units. Further, the IPP turbine-generators are required to operate isolated on the HVDC rectifier terminal, with no other interconnecting ac network. This ''radial'' mode of operation will result in maximum interaction between the converter station and the IPP units. It became obvious that special measure must be implemented in the design of the IPP HVDC control system to modify its typical characteristics to avoid the occurrence of the subsynchronous oscillation. This paper presents the results of the subsynchronous torsional interaction (SSTI) tests that were performed during the commissioning of the IPP Unit 1 and the HVDC Transmission system.
Torsion of Accessory Hepatic Lobe
Natarajan, Saravanan; Jayasudha; Periasamy, Manikandhan; Rangasamy, Saminathan
2017-01-01
An accessory hepatic lobe is a rare congenital anomaly that can undergo torsion and present as an acute surgical emergency. A 5-year-old child admitted as acute abdomen, on laparotomy found to have torsion of accessory lobe of liver, is being reported. PMID:28082782
Influence of torsional-lateral coupling on stability behavior of geared rotor systems
NASA Technical Reports Server (NTRS)
Schwibinger, P.; Nordmann, R.
1987-01-01
In high-performance turbomachinery trouble often arises because of unstable nonsynchronous lateral vibrations. The instabilities are mostly caused by oil-film bearings, clearance excitation, internal damping, annular pressure seals in pumps, or labyrinth seals in turbocompressors. In recent times the coupling between torsional and lateral vibrations has been considered as an additional influence. This coupling is of practical importance in geared rotor systems. The literature describes some field problems in geared drive trains where unstable lateral vibrations occurred together with torsional oscillations. This paper studies the influence of the torsional-lateral coupling on the stability behavior of a simple geared system supported by oil-film bearings. The coupling effect is investigated by parameter studies and a sensitivity analysis for the uncoupled and coupled systems.
Axions in gravity with torsion
NASA Astrophysics Data System (ADS)
Castillo-Felisola, Oscar; Corral, Cristóbal; Kovalenko, Sergey; Schmidt, Iván; Lyubovitskij, Valery E.
2015-04-01
We study a scenario allowing a solution of the strong charge parity problem via the Peccei-Quinn mechanism, implemented in gravity with torsion. In this framework there appears a torsion-related pseudoscalar field known as the Kalb-Ramond axion. We compare it with the so-called Barbero-Immirzi axion recently proposed in the literature also in the context of the gravity with torsion. We show that they are equivalent from the viewpoint of the effective theory. The phenomenology of these torsion-descended axions is completely determined by the Planck scale without any additional model parameters. These axions are very light and very weakly interacting with ordinary matter. We briefly comment on their astrophysical and cosmological implications in view of the recent BICEP2 and Planck data.
Inverse problems for torsional modes.
Willis, C.
1984-01-01
Considers a spherically symmetric, non-rotating Earth consisting of an isotropic, perfect elastic material where the density and the S-wave velocity may have one or two discontinuities in the upper mantle. Shows that given the velocity throughout the mantle and the crust and given the density in the lower mantle, then the freqencies of the torsional oscillations of one angular order (one torsional spectrum), determine the density in the upper mantle and in the crust uniquely. If the velocity is known only in the lower mantle, then the frequencies of the torsional oscillations of two angular orders uniquely determine both the density and the velocity in the upper mantle and in the crust. In particular, the position and size of the discontinuities in the density and velocity are uniquely determined by two torsional spectra.-Author
Isolated penile torsion in newborns
Eroglu, Egemen; Gundogdu, Gokhan
2015-01-01
Introduction: We reported on the incidence of isolated penile torsion among our healthy children and our approach to this anomaly. Methods: Between 2011 and 2014, newborn babies with penile torsion were classified according to the angle of torsion. Surgical correction (penile degloving and reattachment for moderate cases and dorsal dartos flap technique in case of resistance) after 6 months was advised to the babies with rotations more than 45°. Results: Among 1000 newborn babies, 200 isolated penile torsions were found, and among these, 43 had torsions more than 45°, and 4 of these had angles greater than 90°. The mean angle of the rotations was found 30.45° (median: 20°). In total, 8 children with 60° torsions were previously circumcised. Surgery was performed on 19 patients, with a mean patient age of 12 ± 2 months. Of these 19, 13 babies were corrected with degloving and reattachment. This technique was not enough on the remaining 6 patients; therefore, derotational dorsal dartos flap was added to correct the torsion. After a mean of 15.6 ± 9.8 months, residual penile rotation, less than 15°, was found only in 2 children. Conclusion: The incidence of isolated penile torsion is 20% in newborns. However, rotation more than 45° angles are seen in 4.3% of male babies. Correction is not necessary in mild degrees, and penile degloving with reattachment is enough in most cases. If the initial correction is insufficient, dorsal dartos flap rotation is easy and effective. Prior circumcision neither disturbs the operative procedure nor affects the outcomes. PMID:26600889
The Millimeter-Wave Spectrum of Methacrolein. Torsion-Rotation Effects in the Excited States
NASA Astrophysics Data System (ADS)
Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.
2015-06-01
Last year we reported the analysis of the rotational spectrum of s-trans conformer of methacrolein CH2=C(CH3)CHO in the ground vibrational state. In this talk we report the study of its low lying excited vibrational states. The study is based on room-temperature absorption spectra of methacrolein recorded in the frequency range 150 - 465 GHz using the spectrometer in Lille. The new results include assignment of the first excited torsional state (131 cm-1), and the joint analysis of the vt = 0 and vt = 1 states, that allowed us to improve the model in the frame of Rho-Axis-Method (RAM) Hamiltonian and to remove some strong correlations between parameters. Also we assigned the first excited vibrational state of the skeletal torsion mode (170 cm-1). The inverse sequence of A and E tunneling substates as well as anomalous A-E splittings observed for the rotational lines of vsk = 1 state clearly indicate a coupling between methyl torsion and skeletal torsion. However we were able to fit within experimental accuracy the rotational lines of vsk = 1 state using the RAM Hamiltonian. Because of the inversion of the A and E tunneling substates the rotational lines of the vsk = 1 states were assumed to belong to a virtual first excited torsional state. Finally, we assigned several low-Ka rotational transitions of the excited vibrational states above 200 cm-1 but their analysis is complicated by different rotation-vibration interactions. In particular there is an evidence of the Fermi-type resonance between the second excited torsional state and the first excited state of the in-plane skeletal bending mode (265 cm-1). Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged. Zakharenko O. et al., 69th ISMS, 2014, TI01
Development of Torsional and Linear Piezoelectrically Driven Motors
NASA Technical Reports Server (NTRS)
Duong, Khanh; Newton, David; Garcia, Ephrahim
1996-01-01
The development of rotary and linear inchworm-motors using piezoelectric actuators is presented. The motors' design has the advantage of a macro and micro stepper motor with high load and speed. The torsional design is capable of fast angular positioning with micro level accuracy. Additionally, the rotary motor, as designed, can be used as a clutch/brake mechanism. Constructed prototype motors of both types along with their characteristics are presented. The torsional motor consists of a torsional section that provides angular displacement and torque, and two alternating clamping sections which provide the holding force. The motor relies on the principal piezoelectric coupling coefficient (d33) with no torsional elements, increasing its torque capability. The linear motor consists of a longitudinal vibrator that provides displacement and load, and two alternating clamping sections which provide the holding force. This design eliminates bending moment, tension and shear applied to the actuator elements, increase its load capability and life. Innovative flexure designs have been introduced for both motor types. Critical issues that affect the design and performance of the motors are explored and discussed. Experiments are performed demonstrating the motor prototypes based on the aforementioned design considerations.
Propagating torsion in the Einstein frame
NASA Astrophysics Data System (ADS)
Popławski, Nikodem J.
2006-11-01
The Einstein-Cartan-Saa theory of torsion modifies the spacetime volume element so that it is compatible with the connection. The condition of connection compatibility gives constraints on torsion, which are also necessary for the consistence of torsion, minimal coupling, and electromagnetic gauge invariance. To solve the problem of positivity of energy associated with the torsionic scalar, we reformulate this theory in the Einstein conformal frame. In the presence of the electromagnetic field, we obtain the Hojman-Rosenbaum-Ryan-Shepley theory of propagating torsion with a different factor in the torsionic kinetic term.
Microwave Spectroscopy of Trans-Ethyl Methyl Ether in the Torsionally Excited State 3
NASA Astrophysics Data System (ADS)
Kobayashi, Kaori; Murata, Keigo; Tsunekawa, Shozo; Ohashi, Nobukimi
2010-06-01
The trans-ethyl methyl ether molecule (CH_3CH_2OCH_3) has two methyl group internal rotors which are equivalent to the two vibrational motions, ν28 and ν29. There is another low-lying torsional motion which is a skeltal torsion (ν30) and does not cause splitting. The microwave spectra of the trans-ethyl methyl ether molecule in the ν28 = 1, ν29 = 1, and ν30 = 1 have been studied and interactions between these states were discussed. In this paper we report results on the ν30 = 2, and 3 state. The analysis based on Hougen's tunneling matrix formulation considering two methyl groups are used. We try to interpret tunneling parameters obtained in the present analysis quantitatively from the viewpoint of torsion-torsion interaction.
Raman spectra of gases. XVI - Torsional transitions in ethanol and ethanethiol
NASA Technical Reports Server (NTRS)
Durig, J. R.; Bucy, W. E.; Wurrey, C. J.; Carreira, L. A.
1975-01-01
The Raman spectra of gaseous ethanol and ethanethiol have been investigated. Thiol torsional fundamentals for the gauche conformer of EtSH and EtSD have been observed and the asymmetric potential function for this vibration has been calculated. Methyl torsional transitions and overtones have also been observed for both of these molecules. Barriers to internal rotation for the methyl top are calculated to be 3.77 and 3.84 kcal/mol for the EtSH and EtSD compounds, respectively. Hydroxyl torsional fundamentals were observed at 207 and 170 per cm in the EtOH and EtOD spectra, respectively. Overtones of the methyl torsion in both molecules yield a barrier to internal rotation of 3.62 kcal/mol for the gauche conformer.
Application of the contact transformation method to torsional problems in methyl silane
NASA Astrophysics Data System (ADS)
Moazzen-Ahmadi, N.; Ozier, I.
1987-11-01
The effect of the torsional degree of freedom on redundancies in the Hamiltonian and on the dipole operator has been investigated for methyl silane-like molecules. By applying a rotational contact transformation to the torsion-rotation Hamiltonian HTR for the ground vibrational state, a systematic method is demonstrated for treating the redundancies that relate different terms in HTR. In general, with this method, the experimentally accessible molecular parameters in the reduced Hamiltonian can be related to the physically significant molecular parameters in the untransformed Hamiltonian. It is shown that HTR contains a new term which has matrix elements with selection rules (Δ K = ±3), (Δ σ = 0), and Δ vT arbitrary, where vT and σ label the torsional levels and sublevels, respectively. As a result of this term, the distortion dipole constant μD which characterizes (Δ K = ±3) matrix elements in C3 v molecules cannot, in systems like CH 3SiH 3, be ascribed entirely to centrifugal distortion but can contain a significant contribution from torsional effects. Furthermore, new transitions can appear in the pure torsional bands which may be strong enough to observe in low barrier molecules. By applying a vibrational contact transformation, the form is derived of the leading torsional terms in the dipole moment expansion. The four dipole distortion constants μ0T, μ2T, μ|;T, and μΛT which characterize these terms are related to the molecular parameters that enter the Coriolis, centrifugal distortion, and anharmonicity contributions to the vibration-torsion-rotation Hamiltonian.
Constraining torsion with Gravity Probe B
Mao Yi; Guth, Alan H.; Cabi, Serkan; Tegmark, Max
2007-11-15
It is well-entrenched folklore that all torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally, and consider nonstandard torsion theories in which torsion can be generated by macroscopic rotating objects. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope would be expected to feel torsion. An experiment with a gyroscope (without nuclear spin) such as Gravity Probe B (GPB) can test theories where this is the case. Using symmetry arguments, we show that to lowest order, any torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the parametrized post-Newtonian formalism and provide a concrete framework for further testing Einstein's general theory of relativity (GR). We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi-Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B is an ideal experiment for further constraining nonstandard torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters.
Torsional carbon nanotube artificial muscles.
Foroughi, Javad; Spinks, Geoffrey M; Wallace, Gordon G; Oh, Jiyoung; Kozlov, Mikhail E; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D W; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H
2011-10-28
Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.
Torsional Carbon Nanotube Artificial Muscles
NASA Astrophysics Data System (ADS)
Foroughi, Javad; Spinks, Geoffrey M.; Wallace, Gordon G.; Oh, Jiyoung; Kozlov, Mikhail E.; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D. W.; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H.
2011-10-01
Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.
Torsional rigidity, isospectrality and quantum graphs
NASA Astrophysics Data System (ADS)
Colladay, Don; Kaganovskiy, Leon; McDonald, Patrick
2017-01-01
We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity.
Wandering spleen with chronic torsion.
Misawa, Takeyuki; Yoshida, Kazuhiko; Shiba, Hiroaki; Kobayashi, Susumu; Yanaga, Katsuhiko
2008-04-01
Wandering spleen, a rare clinical entity with a high incidence of splenic torsion and infarction, was preoperatively diagnosed in a 28-year-old woman. Axial computed tomography showed the absence of the spleen in the left subphrenic space and a spleen-like mass in the pelvis, suggestive of a wandering spleen. A coronal contrast-enhanced computed tomography image exhibited the enlarged spleen suspended by elongated, dilated, and somewhat tortuous splenic vessels. Owing to the symptomatic splenomegaly with hypersplenism and chronic torsion, laparoscopic splenectomy was performed.
Jude, Nwashilli N.; Onochie, Nwajei C.
2015-01-01
Wandering spleen is a rare condition that accounts for less than 0.25% of all indications for splenectomy. It is characterized by ectopic localization of the spleen owing to the lack or weakening of its ligaments. Torsion is the most common complication due to its long pedicle and high mobility, which may result in acute abdomen. We report a case of torsion in a wandering spleen in a 28-year-old male presenting with an acute abdomen that was treated by splenectomy. PMID:26620993
Comparison of test particle acceleration in torsional spine and fan reconnection regimes
Hosseinpour, M. Mehdizade, M.; Mohammadi, M. A.
2014-10-15
Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as high as 100 MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.
Shaft instantaneous angular speed for blade vibration in rotating machine
NASA Astrophysics Data System (ADS)
Gubran, Ahmed A.; Sinha, Jyoti K.
2014-02-01
Reliable blade health monitoring (BHM) in rotating machines like steam turbines and gas turbines, is a topic of research since decades to reduce machine down time, maintenance costs and to maintain the overall safety. Transverse blade vibration is often transmitted to the shaft as torsional vibration. The shaft instantaneous angular speed (IAS) is nothing but the representing the shaft torsional vibration. Hence the shaft IAS has been extracted from the measured encoder data during machine run-up to understand the blade vibration and to explore the possibility of reliable assessment of blade health. A number of experiments on an experimental rig with a bladed disk were conducted with healthy but mistuned blades and with different faults simulation in the blades. The measured shaft torsional vibration shows a distinct difference between the healthy and the faulty blade conditions. Hence, the observations are useful for the BHM in future. The paper presents the experimental setup, simulation of blade faults, experiments conducted, observations and results.
Torsion Modified Plasma Screening in Astrophysics
NASA Astrophysics Data System (ADS)
Sivaram, C.; Garcia de Andrade, L. C.
The torsion modified Maxwell-Proca equations when applied to describe a plasma is shown to lead to a correction to the Debye screening length. For hot new born neutron stars the torsion correction is shown to be significant. This effect may provide an indirect evidence for torsion.
Gradient scaling for nonuniform meshes
Margolin, L.G.; Ruppel, H.M.; Demuth, R.B.
1985-01-01
This paper is concerned with the effect of nonuniform meshes on the accuracy of finite-difference calculations of fluid flow. In particular, when a simple shock propagates through a nonuniform mesh, one may fail to model the jump conditions across the shock even when the equations are differenced in manifestly conservative fashion. We develop an approximate dispersion analysis of the numerical equations and identify the source of the mesh dependency with the form of the artificial viscosity. We then derive an algebraic correction to the numerical equations - a scaling factor for the pressure gradient - to essentially eliminate the mesh dependency. We present several calculations to illustrate our theory. We conclude with an alternate interpretation of our results. 14 refs., 5 figs.
Nonuniform spatially adaptive wavelet packets
NASA Astrophysics Data System (ADS)
Carre, Philippe; Fernandez-Maloigne, Christine
2000-12-01
In this paper, we propose a new decomposition scheme for spatially adaptive wavelet packets. Contrary to the double tree algorithm, our method is non-uniform and shift- invariant in the time and frequency domains, and is minimal for an information cost function. We prose some-restrictions to our algorithm to reduce the complexity and permitting us to provide some time-frequency partitions of the signal in agreement with its structure. This new 'totally' non-uniform transform, more adapted than Malvar, Packets or dyadic double-tree decomposition, allows the study of all possible time-frequency partitions with the only restriction that the blocks are rectangular. It permits one to obtain a satisfying Time-Frequency representation, and is applied for the study of EEG signals.
Brabson, Tamera L.; Maki, Lynn C.; Newell, Susan M.; Ralphs, S. Christopher
2015-01-01
A 6-month-old male intact Cane Corso mastiff dog was presented for a recent history of vomiting, abdominal pain, and lethargy. A diagnosis of pancreatic torsion was made during abdominal exploratory surgery and was confirmed with histopathology. The dog underwent partial pancreatectomy and recovered with no complications. PMID:25969579
Torsional electromechanical quantum oscillations in carbon nanotubes
NASA Astrophysics Data System (ADS)
Cohen-Karni, Tzahi; Segev, Lior; Srur-Lavi, Onit; Cohen, Sidney R.; Joselevich, Ernesto
2006-10-01
Carbon nanotubes can be distinctly metallic or semiconducting depending on their diameter and chirality. Here we show that continuously varying the chirality by mechanical torsion can induce conductance oscillations, which can be attributed to metal-semiconductor periodic transitions. The phenomenon is observed in multiwalled carbon nanotubes, where both the torque and the current are shown to be carried predominantly by the outermost wall. The oscillation period with torsion is consistent with the theoretical shifting of the corners of the first Brillouin zone of graphene across different sub-bands allowed in the nanotube. Beyond a critical torsion, the conductance irreversibly drops due to torsional failure, allowing us to determine the torsional strength of carbon nanotubes. Carbon nanotubes could be ideal torsional springs for nanoscopic pendulums, because electromechanical detection of motion could replace the microscopic detection techniques used at present. Our experiments indicate that carbon nanotubes could be used as electronic sensors of torsional motion in nanoelectromechanical systems.
NASA Astrophysics Data System (ADS)
Richard, C.; Margulès, L.; Caux, E.; Kahane, C.; Ceccarelli, C.; Guillemin, J.-C.; Motiyenko, R. A.; Vastel, C.; Groner, P.
2013-04-01
Context. Dimethyl ether is one of the most abundant complex organic molecules (COMs) in star-forming regions. Like other COMs, its formation process is not yet clearly established, but the relative abundances of its deuterated isotopomers may provide crucial hints in studying its chemistry and tracing the source history. The mono-deuterated species (CHDOCH) is still a relatively light molecule compared to other COMs. Its spectrum is the most intense in the THz domain in the 100-150 K temperature regime, tracing the inner parts of the low-mass star-forming region. Therefore, it is necessary to measure and assign its transitions in this range in order to be able to compute accurate predictions required by astronomical observations, in particular with the telescope operating in the submm range, such as ALMA. Aims: We present the analysis of mono-deuterated dimethyl ether in its ground-vibrational state, based on an effective Hamiltonian for an asymmetric rotor molecules with internal rotors. The analysis covers the frequency range 150-990 GHz. Methods: The laboratory rotational spectrum of this species was measured with a submillimeter spectrometer (50-990 GHz) using solid-state sources. For the astronomical detection, we used the IRAM 30 m telescope to observe a total range of 27 GHz, in 4 frequency bands from 100 GHz to 219 GHz. Results: New sets of spectroscopic parameters have been determined by a least squares fit with the ERHAM code for both conformers. These parameters have permitted the first identification in space of both mono-deuterated DME isomers via detection of twenty transitions in the solar-type protostar IRAS 16293-2422 with the IRAM 30 m telescope. The DME deuteration ratio in this source appears as high as observed for methanol and formaldehyde, two species known to play an important role in the COMs formation history. Full Tables A.1, A.2, B.1, and B.2, which respectively give the measured (in laboratory) and predicted frequencies, are only
Tsujino, Jiromaru; Harada, Yoshiki; Ihara, Shigeru; Kasahara, Kohei; Shimizu, Masanori; Ueoka, Tetsugi
2004-04-01
Ultrasonic high-frequency complex vibrations are effective for various ultrasonic high-power applications. Three types of ultrasonic complex vibration system with a welding tip vibrating elliptical to circular locus for packaging in microelectronics were studied. The complex vibration sources are using (1) a longitudinal-torsional vibration converter with diagonal slits that is driven only by a longitudinal vibration source, (2) a complex transverse vibration rod with several stepped parts that is driven by two longitudinal vibration source crossed at a right angle and (3) a longitudinal vibration circular disk and three longitudinal transducers that are installed at the circumference of the disk.
A Theoretical Study of the Methyl and Aldehyde Torsion FIR Spectra in Symmetric Propanal Isotopomers
NASA Astrophysics Data System (ADS)
Smeyers, Y. G.; Villa, M.; Uc, V. H.; Vivier-Bunge, A.
2000-05-01
This paper is an extension of the techniques developed by us [A. Vivier-Bunge, V. H. Uc, and Y. G. Smeyers, J. Chem. Phys. 109, 2279 (1998)] for standard propanal. In that paper the potential energy surface for the simultaneous methyl and asymmetric aldehydic torsions was calculated at RHF/MP2 level using the 6-311(3df,p) basis set for propanal. The fit of the energy values to symmetry-adapted functional forms was carried out by using the 28 energy values which retain the C3 dynamical symmetry of the methyl group in the optimization procedure. With this potential, as well as with the kinetic parameters and the electric dipole moment variations, the FIR frequencies and intensities for the methyl and aldehyde torsions of seven symmetric isotopomers of propanal were determined theoretically using two-dimensional calculations. The calculated spectra of propanal and three of its isotopomers were compared with the available experimental data. It is found that the calculations for the cis conformer satisfactorily reproduce the aldehyde and methyl torsion spectra and furnish also methyl torsionally excited progressions for the aldehyde torsion modes. The methyl torsion frequencies agree especially well whenever the methyl group is nondeuterated. The small deviations encountered for the deuterated compound are probably due to some mass effect, such as the zero-point vibrational energy correction, which is not taken into account in the present calculations. Finally, the influence of the deuteration on the intensities is discussed.
EZW coding using nonuniform quantization
NASA Astrophysics Data System (ADS)
Yin, Che-Yi; Derin, Haluk
1999-10-01
This paper presents an image coder that modifies the EZW coder and provides an improvement in its performance. The subband EZW image coder uses a uniform quantizer with a threshold (deadzone). Whereas, we know that the distribution/histogram of the wavelet tree subband coefficients, all except the lowest subband, tend to be Laplacian. To accommodate for this, we modify the refining procedure in EZW and use a non-uniform quantizer on the coefficients that better fits their distribution. The experimental results show that the new image coder performs better than EZW.
Torsional Split Hopkinson Bar Optimization
2012-04-10
is the torsional wave speed . Also, one can relate the torque with the yield stress of the material, as seen in equation 2; where r is the radius of...be equal to the mechanical impedance of the bars. In other words, the product of density, speed of wave and polar moment of inertia must remain...pillow blocks used to mount the incident and transmitter bars are cast iron based- mounted Babbitt-lined bearing split, for 1 in. shaft diameter
Torsion of a wandering spleen.
El Bouhaddouti, Hicham; Lamrani, Jihane; Louchi, Abdellatif; El Yousfi, Mounia; Aqodad, Noureddine; Ibrahimi, Adil; Boubou, Meriem; Kamaoui, Imane; Tizniti, Siham
2010-01-01
Wandering spleen is a rare condition defined as a mobile spleen only attached with its pedicle. It can be complicated by a volvulus, which is a surgical abdominal emergency. Preventing infarction is the aim of a prompt surgery that can preserve the spleen and then proceed to splenopexy. We report a rare case of torsion of a wandering spleen associated with a dolichosigmoοd.
Topological design of torsional metamaterials
NASA Astrophysics Data System (ADS)
Vitelli, Vincenzo; Paulose, Jayson; Meeussen, Anne; Topological Mechanics Lab Team
Frameworks - stiff elements with freely hinged joints - model the mechanics of a wide range of natural and artificial structures, including mechanical metamaterials with auxetic and topological properties. The unusual properties of the structure depend crucially on the balance between degrees of freedom associated with the nodes, and the constraints imposed upon them by the connecting elements. Whereas networks of featureless nodes connected by central-force springs have been well-studied, many real-world systems such as frictional granular packings, gear assemblies, and flexible beam meshes incorporate torsional degrees of freedom on the nodes, coupled together with transverse shear forces exerted by the connecting elements. We study the consequences of such torsional constraints on the mechanics of periodic isostatic networks as a foundation for mechanical metamaterials. We demonstrate the existence of soft modes of topological origin, that are protected against disorder or small perturbations of the structure analogously to their counterparts in electronic topological insulators. We have built a lattice of gears connected by rigid beams that provides a real-world demonstration of a torsional metamaterial with topological edge modes and mechanical Weyl modes.
Hydraulic machine with non-uniform cascade
NASA Astrophysics Data System (ADS)
Haluza, M.; Pochylý, F.; Habán, V.
2012-11-01
In this article is introduced the sentence of an extension of operational zone of hydraulic machines. The problems of its extending is based on the design of non-uniform cascade. The non-uniform cascade is connected with other factors. The change of own frequency of the runner of a hydraulic machine and pressure pulsations. The suitable construction of non-uniform cascade is introduced on the results of computational simulation and experiment.
Les torsions sur testicules cryptorchides
Gharbi, Mohamed; Amri, Najmeddine; Chambeh, Wahib; Braiek, Salem; Kamel, Rafik El
2010-01-01
Résumé But : La cryptorchidie est une pathologie assez fréquente en urologie. Elle est associée à un risque élevé d’infertilité et de dégénérescence. Elle semble aussi être associée à un risque important de torsion. Cette entité est très peu abordée dans la littérature. Nous rapportons tous les cas de torsion sur testicule cryptorchide observés à notre service dans le but de mieux caractériser cette pathologie et de réduire ainsi le taux d’orchidectomies. Méthodologie : Il s’agit d’une étude rétrospective portant sur tous les cas de torsion sur testicule cryptorchide opérés dans notre service d’urologie entre 1999 et 2007. Les patients ont fait l’objet d’une description basée sur le résumé de leurs observations. Résultats : Les patients étaient âgés de 7 mois à 39 ans. La torsion touchait le testicule droit dans 53 % des cas. Le tableau clinique comportait une douleur au niveau de la région inguinale d’apparition soudaine avec une masse sous-cutanée inflammatoire et douloureuse à ce niveau et surtout un hémiscrotum homolatéral vide. Dans 60 % des cas, le diagnostic était tardif et une orchidectomie a été réalisée. Dans les autre cas, un abaissement du testicule a été réalisé avec orchidopexie controlatéral dans le même temps opératoire. Conclusion : Bien qu’il s’agisse d’une pathologie peu courante, la torsion sur testicule cryptorchide doit être étudiée davantage. Le diagnostic précoce permettra de sauver et d’abaisser le testicule et faciliter ainsi le dépistage d’une éventuelle dégénérescence. PMID:21191497
Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang
2014-10-14
The torsional energy levels of CH3OH(+), CH3OD(+), and CD3OD(+) have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH3OH, CH3OD, and CD3OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm(-1), which is about half of that of the neutral (340 cm(-1)). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C-O stretch vibrational energy level for CD3OD(+) has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C-O stretch vibration indicate a strong torsion-vibration coupling.
Intranatal Torsion of Polydactyly: A Rare Event.
Gupta, Priyanka; Neogi, Sujoy; Shukla, Amlin; Patwari, A K
2016-01-01
Polydactyly is one of the most common anomalies of hand and/or foot. Postnatal torsion of pedunculated polydactyly is a well known complication but intranatal torsion has been infrequently described in published literature. Here, we describe a case of pedunculated ulnar polydactyly which was gangrenous at birth due to intranatal torsion. Controversies surrounding the management of narrow pedicled pedunculated polydactyly by traditional method of suture ligation at base are also discussed.
A New Ultra-low Frequency Passive Vertical Vibration Isolation System
NASA Astrophysics Data System (ADS)
Zhao, Peng-Fei; Huang, Yu-Ying; Tang, Meng-Xi
2002-02-01
A new ultra-low frequency passive vertical vibration isolation system is constructed by connecting the torsion spring isolator with a reverse pendulum. The theoretical analysis shows that the new system can achieve a much longer resonant period and have a smaller size than the current torsion spring isolators with the same geometric parameters.
[A case of neonatal testicular torsion].
Nishizawa, Satoshi; Nanpo, Yoshihito; Kuramoto, Tomomi; Iba, Akinori; Fujii, Reona; Matsumura, Nagahide; Shintani, Yasuyo; Inagaki, Takeshi; Kohjimoto, Yasuo; Hara, Isao
2008-12-01
An infant normally delivered at the 38th week of gestation was referred to our department one day after birth for a firm and painless right hemiscrotal mass with bluish coloration. Since contralateral scrotum showed swelling, we performed emergency surgery on that day. The right spermatic cord was constricted due to extravaginal torsion, and degree and direction of torsion was unclear since the spermatic cord was already organized. Right testis showed irreversible necrotic change, requiring orchiectomy. We confirmed that left testis was intact and performed orchidopexy. Since high incidence of contralateral asymptomatic torsion has been reported in patients with prenatal testicular torsion, emergency surgery should be considered when contralateral scrotum shows abnormal findings.
Heat transport in nonuniform superconductors
NASA Astrophysics Data System (ADS)
Richard, Caroline; Vorontsov, Anton B.
2016-08-01
We calculate electronic energy transport in inhomogeneous superconductors using a fully self-consistent nonequilibrium quasiclassical Keldysh approach. We develop a general theory and apply it to a superconductor with an order parameter that forms domain walls of the type encountered in the Fulde-Ferrell-Larkin-Ovchinnikov state. The heat transport in the presence of a domain wall is inherently anisotropic and nonlocal. The bound states in the nonuniform region play a crucial role and control heat transport in several ways: (i) they modify the spectrum of quasiparticle states and result in Andreev reflection processes and (ii) they hybridize with the impurity band and produce a local transport environment with properties very different from those in a uniform superconductor. As a result of this interplay, heat transport becomes highly sensitive to temperature, magnetic field, and disorder. For strongly scattering impurities, we find that the transport across domain walls at low temperatures is considerably more efficient than in the uniform superconducting state.
Effects of gear box vibration and mass imbalance on the dynamics of multistage gear transmission
NASA Technical Reports Server (NTRS)
Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, D. P.
1991-01-01
The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.
NASA Technical Reports Server (NTRS)
He, X. M.; Craven, B. M.
1993-01-01
For molecular crystals, a procedure is proposed for interpreting experimentally determined atomic mean square anisotropic displacement parameters (ADPs) in terms of the overall molecular vibration together with internal vibrations with the assumption that the molecule consists of a set of linked rigid segments. The internal librations (molecular torsional or bending modes) are described using the variable internal coordinates of the segmented body. With this procedure, the experimental ADPs obtained from crystal structure determinations involving six small molecules (sym-trinitrobenzene, adenosine, tetra-cyanoquinodimethane, benzamide, alpha-cyanoacetic acid hydrazide and N-acetyl-L-tryptophan methylamide) have been analyzed. As a consequence, vibrational corrections to the bond lengths and angles of the molecule are calculated as well as the frequencies and force constants for each internal torsional or bending vibration.
Studying Rotation/torsion Coupling in H5^+ Using Diffusion Monte Carlo
NASA Astrophysics Data System (ADS)
Marlett, Melanie L.; Lin, Zhou; McCoy, Anne B.
2015-06-01
H5+ is a highly fluxional intermediate found in interstellar clouds. The rotational/torsional couplings in this molecule are of great interest due to the unusually large coupling between these modes. However, theoretical studies of highly fluxional molecules like H5+ are challenging due to the lack of a good zero-order model. In order to better understand the rotation/vibration interaction, a method has been developed to model the rotational/torsional motions. This method is based upon diffusion Monte Carlo (DMC). In this approach, the vibrational contribution to the wavefunction is modeled using standard DMC approaches, while the rotational/torsional contribution is treated as a set of coefficients that are assigned to the various rotational/torsional state vectors. The potential portion of the Hamiltonian is expressed as a low-order expansion in terms of the torsion angle between the two outer H2 units. The expansion coefficients are evaluated at each time step for each walker and depend on the 3N-7 other internal coordinates. The transition frequencies obtained from this method for J ≤ 1 agree well with results obtained using other methods such as fixed-node diffusion Monte Carlo. This new method is advantageous over the fixed-node approach because it allows for multiple state calculations at once which saves on computation time. Sarka, J.; Fábri, C.; Szidarovszky, T.; Császár, A.G.; Lin Z.; McCoy, A.B., "Modeling Rotations, Vibrations, and Rovibrational Couplings in Astructural Molecules - A Case Study Based on the H5+ Molecular Ion.", accepted by Mol. Phys.
Development and analysis of a longitudinal and torsional type ultrasonic motor with two stators.
Yi, Youping; Seemann, Wolfgang; Gausmann, Rainer; Zhong, Jue
2005-08-01
In this paper, a new longitudinal and torsional type ultrasonic motor with two stators is presented and investigated. Normally, such a motor consists of one rotor and one stator, and two types of transducers that are longitudinal PZT and torsional PZT are used to generate the desired elliptical locus on the stator surface. The operating frequency is at the resonance frequency of torsional transducer. In order to enhance the efficiency of the motor, however, the resonance frequencies of both transducers should be closed to each other. For the purpose of matching the resonance frequencies, a symmetrical structure is adopted in design of the motor. Furthermore, two rings are added to the stators in order to adjust the resonance frequencies of these two transducers. A finite element model is developed and ANSYS software is used to analyze the resonance frequencies of longitudinal vibration and torsional vibration as well as optimize the motor geometry. According to the FE results, an experimental prototype is fabricated and the experimental results agree well with the theoretical predictions.
A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator.
Morita, T; Yoshida, R; Okamoto, Y; Kurosawa, M K; Higuchi, T
1999-01-01
A smooth impact rotation motor was fabricated and successfully operated using a torsional piezo actuator. Yoshida et al. reported a linear type smooth impact motor in 1997. This linear motor demonstrated a high output force and a long stroke. A superior feature of the smooth impact drive is a high positioning resolution compared with an impact drive. The positioning resolution of SIDM (smooth impact drive mechanism) is equal to the piezo displacement. The reported positioning resolution of the linear type was 5 nm. Our rotation motor utilized a torsional actuator containing multi-layered piezoelectric material. The torsional actuator was cylindrical in shape with an outer diameter of 15 mm, an inner diameter of 10 mm, and a length of 11 mm. Torsional vibration performance was measured with a laser Doppler vibrometer. The obtained torsional displacement agreed with the calculated values and was sufficient to drive a rotor. The rotor was operated with a saw-shaped input voltage (180 V; 8 kHz). The revolution direction was reversible. The maximum revolution speed was 27 rpm, and the maximum output torque was 56 gfcm. In general, smooth-impact drives do not show high efficiency; however, the level of efficiency of our results (max., 0.045%) could be increased by improving the contact surface material. In addition, we are studying quantitative consideration, for example, about the optimum pre-load or frictional force.
Bulk micromachined quasistatic torsional micromirror
NASA Astrophysics Data System (ADS)
Kiessling, Torsten; Wolter, Alexander; Schenk, Harald; Lakner, Hubert
2004-01-01
One dimensional torsional micro mirrors for laser steering applications have been developed and manufactured at Fraunhofer Institute of Photonic Microsystems. Several design variations with rectangular plates are available. The device can be operated in resonant mode and quasistatic mode as well. The device is fabricated out of a BSOI wafer and a second conductive silicon wafer. The structure is assembled by conductive adhesive bonding. Torsional springs connect the mirror plate to the mirror frame mechanically and electrically. Filled isolation trench structures separate volumes of different electrical potentials at the frame and at the deflective mirror respectively. Comb drive structures at both sides of the deflectable mirror and the part of frame located opposite increases capacitance at both mirror half sides. Applying a low level drive voltage between the combs, the mirror can be operated in resonant mode. The second silicon wafer is placed below the deflective mirror and is electrically at ground. Applying a electrical potential of higher level to one side of the deflectable mirror, the mirror can be driven quasistatic and resonant as well. While the drive voltage is applied to one side of the mirror, the comb drive structure of the opposite side can be used for capacitance based position read out.
Spatial distribution of defects in ultra fine grained copper prepared by high pressure torsion
NASA Astrophysics Data System (ADS)
Čížek, J.; Melikhova, O.; Procházka, I.; Janeček, M.; Hruška, P.; Dobatkin, S.
2016-01-01
Bulk materials with ultra fine grain structure can be fabricated by severe plastic deformation. Among variety of techniques based on severe plastic deformation high pressure torsion is the most efficient method for grain refinement down to nano-scale. In torsion deformation the strain distribution across the sample is non-uniform and increases with increasing radial distance from the centre of the sample corresponding to the axis of torsional straining. Due to this reason it is very important to examine homogeneity of ultra fine grained structure of samples prepared by high pressure torsion. In the present work positron annihilation spectroscopy was employed for mapping of spatial distribution of defects in ultra fine grained copper prepared by high pressure torsion. Spatial distribution of defects was examined by means of (i) Doppler broadening using S parameter for mapping of defect density and (ii) positron lifetime spectroscopy. Spatially resolved positron annihilation studies were combined with mapping by microhardness testing. Hardness is sensitive to dislocation density due to work hardening but is practically not affected by vacancies while positron annihilation is sensitive both to dislocations and vacancies. Our investigations revealed that ultra fine grained copper contains dislocations and vacancy clusters created by agglomeration of deformation-induced vacancies. Average size of vacancy clusters increases with increasing radial distance from the centre of the sample due to higher production rate of vacancies resulting in larger clusters. During high pressure torsion deformation microhardness increases firstly at the periphery of the sample due to the highest imposed strain. With increasing number of high pressure torsion revolutions the hardness increases also in the centre and finally becomes practically uniform across the whole sample indicating the homogeneous distribution of dislocations. Doppler broadening mapping revealed a remarkable increase of
Torsional and rotational couplings in nonrigid molecules
NASA Astrophysics Data System (ADS)
Omiste, Juan J.; Madsen, Lars Bojer
2017-02-01
We analyze theoretically the interplay between the torsional and the rotational motion of an aligned biphenyl-like molecule. To do so, we consider a transition between two electronic states with different internal torsional potentials, induced by means of a resonant laser pulse. The change in the internal torsional potential provokes the motion of the torsional wave packet in the excited electronic state, modifying the structure of the molecule, and hence, its inertia tensor. We find that this process has a strong impact on the rotational wave function, displaying different behavior depending on the electronic states involved and their associated torsional potentials. We describe the dynamics of the system by considering the degree of alignment and the expectation values of the angular momentum operators for the overall rotation of the molecule.
Optically probing torsional superelasticity in spider silks
Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P.
2013-11-11
We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10{sup 2−3} rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices.
Direct measurement of torsional properties of single fibers
NASA Astrophysics Data System (ADS)
Liu, Dabiao; Peng, Kai; He, Yuming
2016-11-01
In order to characterize the torsional behavior of micron-scale specimens, a direct technique is established based on the principle of torsion balance. The technique applies twist to the specimen and balances the resulting torque against a torsion wire of known torsional rigidity. The torsional rigidity of the torsion wire is determined by a torsion pendulum. To measure the rotation of the torsion wire, a sensitive angle detector, comprising a thin cross-beam attached between the torsion wire and the fiber specimen and a laser displacement sensor, is developed. The presented technique permits the measurement of torque in single fibers as low as 10-9 Nm with a reasonable resolution. Using this technique, torsion tests on micro-diameter copper wires, silver wires and carbon fibers were performed. The longitudinal shear modulus and other torsional properties of these samples, such as yielding shear strength, were obtained.
Equivalences between nonuniform exponential dichotomy and admissibility
NASA Astrophysics Data System (ADS)
Zhou, Linfeng; Lu, Kening; Zhang, Weinian
2017-01-01
Relationship between exponential dichotomies and admissibility of function classes is a significant problem for hyperbolic dynamical systems. It was proved that a nonuniform exponential dichotomy implies several admissible pairs of function classes and conversely some admissible pairs were found to imply a nonuniform exponential dichotomy. In this paper we find an appropriate admissible pair of classes of Lyapunov bounded functions which is equivalent to the existence of nonuniform exponential dichotomy on half-lines R± separately, on both half-lines R± simultaneously, and on the whole line R. Additionally, the maximal admissibility is proved in the case on both half-lines R± simultaneously.
Torsional Motion of the Chromophore Catechol following the Absorption of Ultraviolet Light
NASA Astrophysics Data System (ADS)
Young, J. D.; Staniforth, M.; Paterson, M. J.; Stavros, V. G.
2015-06-01
The ability to probe energy flow in molecules, following the absorption of ultraviolet light, is crucial to unraveling photophysical phenomena. Here we excite a coherent superposition of vibrational states in the first excited electronic state (S1 ) in catechol, resulting in a vibrational wave packet. The observed quantum beats, assigned to superpositions of the low-frequency, and strongly mixed, O-H torsional mode τ2 , elegantly demonstrate how changes in geometry upon photoionization from the S1 state to the ground state of the cation (D0 ) enables one to probe energy flow at the very early stages of photoexcitation in this biological chromophore.
NASA Technical Reports Server (NTRS)
Green, C.
1971-01-01
Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.
Magnetic Torsional Oscillations in Magnetars
Sotani, Hajime; Kokkotas, Kostas D.; Stergioulas, Nikolaos
2009-05-01
We investigate torsional Alfven oscillations of relativistic stars with a global dipole magnetic field, via 2D numerical simulations. We find that a) there exist two families of quasi-periodic oscillations (QPOs) with harmonics at integer multiples of the fundamental frequency, b) the QPOs are long-lived, c) for the chosen form of dipolar magnetic field, the frequency ratio of the lower to upper fundamental QPOs is about 0.6, independent of the equilibrium model or of the strength of the magnetic field, and d) within a representative sample of EOS and of various magnetar masses, the Alfven QPO frequencies are given by accurate empirical relations that depend only on the compactness of the star and on the magnetic field strength. Compared to the observational frequencies, we also obtain an upper limit on the strength of magnetic field of SGR 1806-20 (if is dominated by a dipolar component) between {approx}3 and 7x10{sup 15} Gauss.
New insights into perinatal testicular torsion
Van Kerrebroeck, Philip
2009-01-01
Perinatal testicular torsion is a relatively rare event that remains unrecognized in many patients or is suspected and treated accordingly only after an avoidable loss of time. The authors report their own experience with several patients, some of them quite atypical but instructive. Missed bilateral torsion is an issue, as are partial torsion, possible antenatal signs, and late presentation. These data are discussed together with the existing literature and may help shed new light on the natural course of testicular torsion and its treatment. The most important conclusion is that a much higher index of suspicion based on clinical findings is needed for timely detection of perinatal torsion. It is the authors’ opinion that immediate surgery is mandatory not only in suspected bilateral torsions but also in cases of possible unilateral torsions. There is no place for a more fatalistic “wait-and-see” approach. Whenever possible, even necrotic testes should not be removed during surgery because some endocrine function may be retained. PMID:19856186
Nonlinear backbone torsional pair correlations in proteins
NASA Astrophysics Data System (ADS)
Long, Shiyang; Tian, Pu
2016-10-01
Protein allostery requires dynamical structural correlations. Physical origin of which, however, remain elusive despite intensive studies during last two and half decades. Based on analysis of molecular dynamics (MD) simulation trajectories for ten proteins with different sizes and folds, we found that nonlinear backbone torsional pair (BTP) correlations, which are mainly spatially long-ranged and are dominantly executed by loop residues, exist extensively in most analyzed proteins. Examination of torsional motion for correlated BTPs suggested that such nonlinear correlations are mainly associated aharmonic torsional state transitions and in some cases strongly anisotropic local torsional motion of participating torsions, and occur on widely different and relatively longer time scales. In contrast, correlations between backbone torsions in stable α helices and β strands are mainly linear and spatially short-ranged, and are more likely to associate with harmonic local torsional motion. Further analysis revealed that the direct cause of nonlinear contributions are heterogeneous linear correlations. These findings implicate a general search strategy for novel allosteric modulation sites of protein activities.
Nonlinear backbone torsional pair correlations in proteins
Long, Shiyang; Tian, Pu
2016-01-01
Protein allostery requires dynamical structural correlations. Physical origin of which, however, remain elusive despite intensive studies during last two and half decades. Based on analysis of molecular dynamics (MD) simulation trajectories for ten proteins with different sizes and folds, we found that nonlinear backbone torsional pair (BTP) correlations, which are mainly spatially long-ranged and are dominantly executed by loop residues, exist extensively in most analyzed proteins. Examination of torsional motion for correlated BTPs suggested that such nonlinear correlations are mainly associated aharmonic torsional state transitions and in some cases strongly anisotropic local torsional motion of participating torsions, and occur on widely different and relatively longer time scales. In contrast, correlations between backbone torsions in stable α helices and β strands are mainly linear and spatially short-ranged, and are more likely to associate with harmonic local torsional motion. Further analysis revealed that the direct cause of nonlinear contributions are heterogeneous linear correlations. These findings implicate a general search strategy for novel allosteric modulation sites of protein activities. PMID:27708342
Bimetal sensor averages temperature of nonuniform profile
NASA Technical Reports Server (NTRS)
Dittrich, R. T.
1968-01-01
Instrument that measures an average temperature across a nonuniform temperature profile under steady-state conditions has been developed. The principle of operation is an application of the expansion of a solid material caused by a change in temperature.
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Shishkin, V. M.
2016-01-01
A rod-shape finite element with twelve degrees of freedom is proposed for modeling the elastic and damping properties of rotor blades with regard to their geometric stiffness caused by rotation of the rotor. A model of coupling of the torsion bar with blades is developed based on the hypothesis of linear deplanation of the connecting section of the torsion bar and a special transition element to ensure the compatibility of displacements of the torsion bar and blades upon their vibrations in the flapping and rotation planes. Numerical experiments were carried out to test and assess the validity of the model developed. Suggestions are made for ensuring unconditional stability of the iteration method in a subspace in determining the specified number of modes and frequencies of free vibrations of the torsion bar-blade structure.
Torsional Resonators Based on Inorganic Nanotubes.
Divon, Yiftach; Levi, Roi; Garel, Jonathan; Golberg, Dmitri; Tenne, Reshef; Ya'akobovitz, Assaf; Joselevich, Ernesto
2017-01-11
We study for the first time the resonant torsional behaviors of inorganic nanotubes, specifically tungsten disulfide (WS2) and boron nitride (BN) nanotubes, and compare them to that of carbon nanotubes. We have found WS2 nanotubes to have the highest quality factor (Q) and torsional resonance frequency, followed by BN nanotubes and carbon nanotubes. Dynamic and static torsional spring constants of the various nanotubes were found to be different, especially in the case of WS2, possibly due to a velocity-dependent intershell friction. These results indicate that inorganic nanotubes are promising building blocks for high-Q nanoelectromechanical systems (NEMS).
Modification of gravity due to torsion
Nair, V. P.; Nikiforova, V.; Randjbar-Daemi, S.; Rubakov, V.
2010-01-01
Modifications of general relativity have been considered as one of the possible ways of addressing some of the outstanding problems related to the large scale gravitational physics. In this contribution we review some of the recent results which are due to the inclusion of dynamical torsion. More specifically we shall discuss the propagation of massive spin-2 particles in flat and curved space times. We shall show that, contrary to what is generally believed, spinning matter is not the sole source of torsion field. A symmetric energy momentum tensor can also couple to torsion degrees of freedom. The massive and massless spin-2 particles mix giving rise to an infrared modification of gravity.
Torsion of wandering spleen and distal pancreas
Sheflin, J.R.; Lee, C.M.; Kretchmar, K.A.
1984-01-01
Wandering spleen is the term applied to the condition in which a long pedicle allows the spleen to lie in an abnormal location. Torsion of a wandering spleen is an unusual cause of an acute abdomen and is rarely diagnosed preoperatively. Associated torsion of the distal pancreas is even more uncommon. The authors describe a patient with torsion of a wandering spleen and distal pancreas, who was correctly diagnosed, and define the merits of the imaging methods used. The initial examination should be /sup 99//sup m/Tc-sulfur colloid liner-spleen scanning.
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Shishkin, V. M.
2015-11-01
A prismatic semiquadratic element with a nonclassical approximation of its displacements is suggested for modeling the composite and soft layers of a torsion bar and multilayered plate-rod structures. The stiffness, weight, damping, and geometric stiffness matrices of the above-mentioned element are obtained. Expressions for computing stresses in the finite element under the action of static loads and vibrations in the resonance zone are presented. Test examples confirming the validity of the element suggested are given. An example of finite element determination of the dynamic response of a multilayered torsion bar in the resonant mode is considered.
Effects of gear box vibration and mass imbalance on the dynamics of multi-stage gear transmissions
NASA Technical Reports Server (NTRS)
Choy, Fred K.; Tu, Yu K.; Zakrajsek, James J.; Townsend, Dennis P.
1991-01-01
The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.
Zhang, Feng; Wang, Houng-Wei; Tominaga, Keisuke; Hayashi, Michitoshi
2015-03-26
This paper presents a theoretical analysis of the low-frequency phonons of L-alanine by using the solid-state density functional theory at the Γ point. We are particularly interested in the intramolecular vibrations accessing low-frequency phonons via harmonic coupling with intermolecular vibrations. A new mode-analysis method is introduced to quantify the vibrational characteristics of such intramolecular vibrations. We find that the torsional motions of COO(-) are involved in low-frequency phonons, although COO(-) is conventionally assumed to undergo localized torsion. We also find the broad distributions of intramolecular vibrations relevant to important functional groups of amino acids, e.g., the COO(-) and NH3(+) torsions, in the low-frequency phonons. The latter finding is illustrated by the concept of frequency distribution of vibrations. These findings may lead to immediate implications in other amino acid systems.
Torsion-induced effects in magnetic nanowires
NASA Astrophysics Data System (ADS)
Sheka, Denis D.; Kravchuk, Volodymyr P.; Yershov, Kostiantyn V.; Gaididei, Yuri
2015-08-01
A magnetic helix wire is one of the simplest magnetic systems which manifests properties of both curvature and torsion. Possible equilibrium magnetization states in the helix wire with different anisotropy directions are studied theoretically. There exist two equilibrium states in the helix wire with easy-tangential anisotropy: a quasitangential magnetization distribution in the case of relatively small curvatures and torsions, and an onion state in the opposite case. The curvature and torsion also essentially influence the spin-wave dynamics in the helix wire, acting as an effective magnetic field. Originated from a geometry-induced effective Dzyaloshinskii interaction, this magnetic field leads to a coupling between the helix chirality and the magnetochirality and breaks mirror symmetry in the spin-wave spectrum: the modification of magnon dispersion relation is linear with respect to the torsion and quadratic with respect to the curvature. All analytical predictions on magnetization statics and dynamics are well confirmed by direct spin-lattice simulations.
Torsion and geometrostasis in covariant superstrings
Zachos, C.
1985-01-01
The covariant action for freely propagating heterotic superstrings consists of a metric and a torsion term with a special relative strength. It is shown that the strength for which torsion flattens the underlying 10-dimensional superspace geometry is precisely that which yields free oscillators on the light cone. This is in complete analogy with the geometrostasis of two-dimensional sigma-models with Wess-Zumino interactions. 13 refs.
Torsion and buckling of open sections
NASA Technical Reports Server (NTRS)
Wagner, Herbert
1936-01-01
In this paper is a discussion of the general principles for open sections of any shape. In what follows the torsion will be computed and on the basis of the results it will be possible to obtain a proper design of section in each case. The torsion of buckling members for the case where they are centrally loaded, leads to a problem in pure stability and is similar to that of stressed beams.
Magnetic resonance imaging of experimental testicular torsion.
Kaipia, A; Ryymin, P; Mäkelä, E; Aaltonen, M; Kähärä, V; Kangasniemi, M
2005-12-01
We investigated the feasibility of contrast enhanced (CE)-dynamic magnetic resonance imaging (MRI) for the detection of testicular torsion induced hypoperfusion in an experimental rat model. Adult Sprague-Dawley rats were subjected to unilateral testicular torsion of 360 or 720 degrees. After 1 h, the tail veins of the anaesthetized rats were cannulated and T2 -, diffusion-weighted and T1-weighted CE-dynamic MRI were subsequently performed by a 1.5 T MRI scanner. On apparent diffusion coefficient (ADC) images, the region of interest values of the ischaemic and control testes was compared. From CE-dynamic MR images, the maximal slopes of contrast enhancement were calculated and compared. In testicular torsion of 360 degrees, the maximal slope of contrast enhancement was 0.072%/s vs. 0.47%/s in the contralateral control testis (p < 0.001). A torsion of 720 degrees diminished the slope of contrast enhancement to 0.046%/s vs. 0.37%/s in the contralateral testis (p < 0.001). Diminished blood flow during torsion also followed in decreased ADC values in both 360 degrees (12.4% decrease; p < 0.05) and 720 degrees (10.8% decrease; p < 0.001) of torsion. Torsion of the testis causes ipsilateral hypoperfusion and decreased gadolinium uptake in a rat model that can be easily detected and quantified by CE-dynamic MRI. In diffusion-weighted MRI images, acute hypoperfusion results in a slight decrease of ADC values. Our results suggest that CE-dynamic MRI in combination with diffusion-weighted MRI can be used to detect compromised blood flow due to acute testicular torsion.
Vibration isolation mounting system
NASA Technical Reports Server (NTRS)
Carter, Sam D. (Inventor); Bastin, Paul H. (Inventor)
1995-01-01
A system is disclosed for mounting a vibration producing device onto a spacecraft structure and also for isolating the vibration forces thereof from the structure. The system includes a mount on which the device is securely mounted and inner and outer rings. The rings and mount are concentrically positioned. The system includes a base (secured to the structure) and a set of links which are interconnected by a set of torsion bars which allow and resist relative rotational movement therebetween. The set of links are also rotatably connected to a set of brackets which are rigidly connected to the outer ring. Damped leaf springs interconnect the inner and outer rings and the mount allow relative translational movement therebetween in X and Y directions. The links, brackets and base are interconnected and configured so that they allow and resist translational movement of the device in the Z direction so that in combination with the springs they provide absorption of vibrational energy produced by the device in all three dimensions while providing rotational stiffness about all three axes to prevent undesired rotational motions.
Attentional Modulation of Eye Torsion Responses
NASA Technical Reports Server (NTRS)
Stevenson, Scott B.; Mahadevan, Madhumitha S.; Mulligan, Jeffrey B.
2016-01-01
Eye movements generally have both reflexive and voluntary aspects, but torsional eye movements are usually thought of as a reflexive response to image rotation around the line of sight (torsional OKN) or to head roll (torsional VOR). In this study we asked whether torsional responses could be modulated by attention in a case where two stimuli rotated independently, and whether attention would influence the latency of responses. The display consisted of rear-projected radial "pinwheel" gratings, with an inner annulus segment extending from the center to 22 degrees eccentricity, and an outer annulus segment extending from 22 degrees out to 45 degrees eccentricity. The two segments rotated around the center in independent random walks, stepping randomly 4 degrees clockwise or counterclockwise at 60 Hz. Subjects were asked to attend to one or the other while keeping fixation steady at the center of the display. To encourage attention on one or the other segment of the display, subjects were asked to move a joystick in synchrony with the back and forth rotations of one part of the image while ignoring the other. Eye torsion was recorded with the scleral search coil technique, sampled at 500 Hz. All four subjects showed roughly 50% stronger torsion responses to the attended compared to unattended segments. Latency varied from 100 to 150 msec across subjects and was unchanged by attention. These findings suggest that attention can influence eye movement responses that are not typically under voluntary control.
Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations
NASA Technical Reports Server (NTRS)
Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.
1990-01-01
A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.
Nonuniform sampling techniques for antenna applications
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya; Cheung, Rudolf Lap-Tung
1987-01-01
A two-dimensional sampling technique, which can employ irregularly spaced samples (amplitude and phase) in order to generate the complete far-field patterns is presented. The technique implements a matrix inversion algorithm, which depends only on the nonuniform sampled data point locations and with no dependence on the actual field values at these points. A powerful simulation algorithm is presented to allow a real-life simulation of many reflector/feed configurations and to determine the usefulness of the nonuniform sampling technique for the copolar and cross-polar patterns. Additionally, an overlapped window concept and a generalized error simulation model are discussed to identify the stability of the technique for recovering the field data among the nonuniform sampled data. Numerical results are tailored for the pattern reconstruction of a 20-m offset reflector antenna operating at L-band. This reflector is planned to be used in a proposed measurement concept of large antenna aboard the Space Shuttle, whereby it would be almost impractical to accurately control the movement of the Shuttle with respect to the RF source in prescribed directions in order to generate uniform sampled points. Also, application of the nonuniform sampling technique to patterns obtained using near-field measured data is demonstrated. Finally, results of an actual far-field measurement are presented for the construction of patterns of a reflector antenna from a set of nonuniformly distributed measured amplitude and phase data.
Williamson, M.M.; Pratt, G.A.
1999-06-08
The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.
Williamson, Matthew M.; Pratt, Gill A.
1999-06-08
The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.
Subrandom methods for multidimensional nonuniform sampling
NASA Astrophysics Data System (ADS)
Worley, Bradley
2016-08-01
Methods of nonuniform sampling that utilize pseudorandom number sequences to select points from a weighted Nyquist grid are commonplace in biomolecular NMR studies, due to the beneficial incoherence introduced by pseudorandom sampling. However, these methods require the specification of a non-arbitrary seed number in order to initialize a pseudorandom number generator. Because the performance of pseudorandom sampling schedules can substantially vary based on seed number, this can complicate the task of routine data collection. Approaches such as jittered sampling and stochastic gap sampling are effective at reducing random seed dependence of nonuniform sampling schedules, but still require the specification of a seed number. This work formalizes the use of subrandom number sequences in nonuniform sampling as a means of seed-independent sampling, and compares the performance of three subrandom methods to their pseudorandom counterparts using commonly applied schedule performance metrics. Reconstruction results using experimental datasets are also provided to validate claims made using these performance metrics.
Active Suppression Of Vibrations On Elastic Beams
NASA Technical Reports Server (NTRS)
Silcox, Richard J.; Fuller, Chris R.; Gibbs, Gary P.
1993-01-01
Pairs of colocated piezoelectric transducers, independently controlled by multichannel adaptive controller, employed as actuators and sensors to achieve simultaneous attenuation of both extensional and flexural motion. Single pair used to provide simultaneous control of flexural and extensional waves, or two pairs used to control torsional motion also. Capability due to nature of piezoelectric transducers, when bonded to surfaces of structures and activated by oscillating voltages, generate corresponding oscillating distributions of stresses in structures. Phases and amplitudes of actuator voltages adjusted by controller to impede flow of vibrational energy simultaneously, in waves of various forms, beyond locations of actuators. Concept applies equally to harmonic or random response of structure and to multiple responses of structure to transverse bending, torsion, and compression within structural element. System has potential for many situations in which predominant vibration transmission path through framelike structure.
Improvement of the longitudinal vibration system for the hybrid transducer ultrasonic motor.
Satonobu, J; Lee, D; Nakamura, K; Ueha, S
2000-01-01
This paper presents a symmetric hybrid transducer ultrasonic motor designed to produce large longitudinal vibration stress in the rotor/stator contact interface for high-torque operation. The nodal plane of the longitudinal vibration mode was adjusted to match the rotor/stator contact interface, and the piezoelectric ceramic disks for the longitudinal vibration were installed at the nodal plane of the longitudinal vibration mode for effective excitation. An experimental motor, 20 mm in diameter, using the first torsional vibration mode and the second longitudinal vibration mode was manufactured. A maximum torque of 0.8 N.m was achieved in the prototype, an improvement over previous versions.
Torsional oscillations in dynamo simulations
NASA Astrophysics Data System (ADS)
Wicht, Johannes; Christensen, Ulrich R.
2010-06-01
Cylinders aligned with the planetary rotation axis have a special significance in the dynamics of planetary dynamo regions. The azimuthal Lorentz forces on these geostrophic cylinders is expected to cancel to a large degree, establishing the so-called Taylor state. Deviations from this state take the form of torsional oscillations (TOs) that are supposed to represent important fast flow variations. These oscillations have reportedly been identified in the secular variation signal from the top of Earth's core. We have performed several dynamo simulations at different parameters to check whether Taylor state and TOs can also be identified in a numerical model. Taylor states are approached when viscous effects are small at Ekman numbers of E = 3 × 10-5 or below and Reynolds stresses are kept low by choosing moderate Rayleigh numbers. One-dimensional magnetic Alfvén waves that travel towards the boundaries then become prominent in the motion of the geostrophic cylinders. These waves obey the TO theory but are also damped and modified by other effects. For example, fast variations of likely convective origin remain important in all our simulations. Reynolds stresses may play a more sizable role for the dynamics in Earth's dynamo region than commonly assumed. They may also contribute to the motions of geostrophic cylinders and severely reduce the significance of TOs for the fast core dynamics. The amplitude of TOs amounts to not more than a few percent of the total flow amplitude in the simulations, which renders these motions insignificant for the long-term dynamo process.
An analytical model of a longitudinal-torsional ultrasonic transducer
NASA Astrophysics Data System (ADS)
Al-Budairi, Hassan; Lucas, Margaret
2012-08-01
The combination of longitudinal and torsional (LT) vibrations at high frequencies finds many applications such as ultrasonic drilling, ultrasonic welding, and ultrasonic motors. The LT mode can be obtained by modifications to the design of a standard bolted Langevin ultrasonic transducer driven by an axially poled piezoceramic stack, by a technique that degenerates the longitudinal mode to an LT motion by a geometrical alteration of the wave path. The transducer design is developed and optimised through numerical modelling which can represent the geometry and mechanical properties of the transducer and its vibration response to an electrical input applied across the piezoceramic stack. However, although these models can allow accurate descriptions of the mechanical behaviour, they do not generally provide adequate insights into the electrical characteristics of the transducer. In this work, an analytical model is developed to present the LT transducer based on the equivalent circuit method. This model can represent both the mechanical and electrical aspects and is used to extract many of the design parameters, such as resonance and anti-resonance frequencies, the impedance spectra and the coupling coefficient of the transducer. The validity of the analytical model is demonstrated by close agreement with experimental results.
Endodontic instruments after torsional failure: nanoindentation test.
Jamleh, Ahmed; Sadr, Alireza; Nomura, Naoyuki; Ebihara, Arata; Yahata, Yoshio; Hanawa, Takao; Tagami, Junji; Suda, Hideaki
2014-01-01
This study aimed to evaluate effects of torsional loading on the mechanical properties of endodontic instruments using the nanoindentation technique. ProFile (PF; size 30, taper 04; Dentsply Maillefer, Switzerland) and stainless steel (SS; size 30, taper 02; Mani, Japan) instruments were subjected to torsional test. Nanoindentation was then performed adjacent to the edge of fracture (edge) and at the cutting part beside the shank (shank). Hardness and elastic modulus were measured under 100-mN force on 100 locations at each region, and compared to those obtained from the same regions on new instruments. It showed that PF and SS instruments failed at 559 ± 67 and 596 ± 73 rotation degrees and mean maximum torque of 0.90 ± 0.07 and 0.99 ± 0.05 N-cm, respectively. Hardness and elastic modulus ranged 4.8-6.7 and 118-339 GPa in SS, and 2.7-3.2 and 52-81 GPa in PF. Significant differences between torsion-fractured and new instruments in hardness and elastic modulus were detected in the SS system used. While in PF system, the edge region after torsional fracture had significantly lower hardness and elastic modulus compared to new instruments. The local hardness and modulus of elasticity of endodontic instruments adjacent to the fracture edge are significantly reduced by torsional loading.
The Shock and Vibration Digest. Volume 16, Number 2
1984-02-01
theoretical analysis, selection of dampers and couplings, appli- cations, and program developments. Other reviews of similar topics have also...71]. Performance standards for diesel locomotive crank- shaft vibration dampers have been evaluated [38, 391. 16 Static measurements of machine...studied [73]. Torsional stresses in marine enyine shafts with and without dampers have been analyzed [102]. Correlation between dynamic loads
Li, Zhijie; Wang, Shengjie; Wang, Zhiguo; Zu, Xiaotao T.; Gao, Fei; Weber, William J.
2010-07-01
The mechanical behavior of twinned silicon carbide (SiC) nanowires under combined tension-torsion and compression-torsion is investigated using molecular dynamics simulations with an empirical potential. The simulation results show that both the tensile failure stress and buckling stress decrease under combined tension-torsional and combined compression-torsional strain, and they decrease with increasing torsional rate under combined loading. The torsion rate has no effect on the elastic properties of the twinned SiC nanowires. The collapse of the twinned nanowires takes place in a twin stacking fault of the nanowires.
Transport of torsional stress in DNA
Nelson, Philip
1999-01-01
It is well known that transcription can induce torsional stress in DNA, affecting the activity of nearby genes or even inducing structural transitions in the DNA duplex. It has long been assumed that the generation of significant torsional stress requires the DNA to be anchored, forming a limited topological domain, because otherwise it would spin almost freely about its axis. Previous estimates of the rotational drag have, however, neglected the role of small natural bends in the helix backbone. We show how these bends can increase the drag several thousandfold relative to prior estimates, allowing significant torsional stress even in linear unanchored DNA. The model helps explain several puzzling experimental results on structural transitions induced by transcription of DNA. PMID:10588707
Vibration signature analysis of multistage gear transmission
NASA Technical Reports Server (NTRS)
Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.
1989-01-01
An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.
NASA Astrophysics Data System (ADS)
Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra
2016-03-01
A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.
Elastic stability of non-uniform columns
NASA Astrophysics Data System (ADS)
Lee, S. Y.; Kuo, Y. H.
1991-07-01
A simple and efficient method is proposed to investigate the elastic stability of three different tapered columns subjected to uniformly distributed follower forces. The influences of the boundary conditions and taper ratio on critical buckling loads are investigated. The critical buckling loads of columns of rectangular cross section with constant depth and linearly varied width ( T1), constant width and linearly varied depth ( T2) and double taper ( T3) are investigated. Among the three different non-uniform columns considered, taper ratio has the greatest influence on the critical buckling load of column T3 and the lowest influence on that of column T1. The types of instability mechanisms for hinged-hinged and cantilever non-uniform columns are divergence and flutter respectively. However, for clamped-hinged and clamped-clamped non-uniform columns, the type of instability mechanism for column T1 is divergence, while that for columns T2 and T3 is divergence only when the taper ratio of the columns is greater than certain critical values and flutter for the rest value of taper ratio. When the type of instability mechanism changes from divergence to flutter, there is a finite jump for the critical buckling load. The influence of taper ratio on the elastic stability of cantilever column T3 is very sensitive for small values of the taper ratio and there also exist some discontinieties in the critical buckling loads of flutter instability. For a hinged-hinged non-uniform column ( T2 or T3) with a rotational spring at the left end of the column, when the taper ratio is less than the critical value the instability mechanism changes from divergence to flutter as the rotational spring constant is increased. For a clamped-elastically supported non-uniform column, when the taper ratio is greater than the critical value the instability mechanism changes from flutter to divergence as the translational spring constant is increased.
Torsional wave propagation in solar tornadoes
NASA Astrophysics Data System (ADS)
Vasheghani Farahani, S.; Ghanbari, E.; Ghaffari, G.; Safari, H.
2017-02-01
Aims: We investigate the propagation of torsional waves in coronal structures together with their collimation effects in the context of magnetohydrodynamic (MHD) theory. The interplay of the equilibrium twist and rotation of the structure, e.g. jet or tornado, together with the density contrast of its internal and external media is studied to shed light on the nature of torsional waves. Methods: We consider a rotating magnetic cylinder embedded in a plasma with a straight magnetic field. This resembles a solar tornado. In order to express the dispersion relations and phase speeds of the axisymmetric magnetohydrodynamic waves, the second-order thin flux tube approximation is implemented for the internal medium and the ideal MHD equations are implemented for the external medium. Results: The explicit expressions for the phase speed of the torsional wave show the modification of the torsional wave speed due to the equilibrium twist, rotation, and density contrast of the tornado. The speeds could be either sub-Alfvénic or ultra-Alfvénic depending on whether the equilibrium twist or rotation is dominant. The equilibrium twist increases the phase speed while the equilibrium rotation decreases it. The good agreement between the explicit versions for the phase speed and that obtained numerically proves adequate for the robustness of the model and method. The density ratio of the internal and external media also play a significant role in the speed and dispersion. Conclusions: The dispersion of the torsional wave is an indication of the compressibility of the oscillations. When the cylinder is rotating or twisted, in contrast to when it only possesses a straight magnetic field, the torsional wave is a collective mode. In this case its phase speed is determined by the Alfvén waves inside and outside the tornado.
THE MICROWAVE SPECTROSCOPY OF METHYL FORMATE IN THE SECOND TORSIONAL EXCITED STATE
Kobayashi, Kaori; Takamura, Kazunori; Sakai, Yusuke; Tsunekawa, Shozo; Odashima, Hitoshi; Ohashi, Nobukimi
2013-03-01
The cis-methyl formate molecule is a well known molecule found in interstellar space. Recently, rotational lines of methyl formate in the first CH{sub 3} torsional excited state were observed in Orion KL and W51e2. It is quite natural to observe methyl formate in even higher vibrational states considering the temperature estimated in Orion KL and W51e2. Maeda et al. reported results on the laboratory spectroscopy of methyl formate including the spectral analysis in its second CH{sub 3} torsional state. Their assignments were limited to a series of a-type R-branch lines and low K{sub a} b-type R-branch transitions, and many assigned lines are excluded in the least-squares analysis. In the present study, we extended the line assignments of both the A- and E-species transitions in the second CH{sub 3} torsional state especially in the frequency region below the 120 GHz region. By combining the present assignments and those made by Maeda et al., 1951 transitions in total for the second CH{sub 3} torsional state, 1096 A-species transitions up to J = 39, and K{sub a} = 15 and 855 E-species transitions up to J = 35 and K{sub a} = 13, were least-squares analyzed by using the pseudo-principal-axis-method Hamiltonian with 42 parameters consisting of rotational, centrifugal distortion, and internal rotational constants in the second CH{sub 3} torsional state. In addition, 1012 transitions out of 1096 A-species transitions could also be least-squares analyzed by using Watson's A-reduced Hamiltonian with 43 parameters, which can serve to calculate the energy levels of the A-species lines of molecules with the CH{sub 3} internal rotation conveniently.
Acute Scrotum Caused by Hernia Sac Torsion.
Fukui, Shinji; Aoki, Katsuya; Shimada, Keiji; Samma, Shoji
2016-03-01
A 9-year-old boy was referred to us with an acute pain attack of the left scrotal contents. Ultrasonography showed a normal blood supply to the left testis, suggesting an incarcerated left inguinal hernia. Surgical exploration did not demonstrate an incarcerated left inguinal hernia. After exploration of the left testis, a dark red pedunculated cystic mass, separate from the left testis, was found to be twisted. Immunohistochemical studies of the excised cyst demonstrated torsion of the hernia sac of the peritoneum. In conclusion, we encountered a case of acute scrotum which was probably caused by torsion of the hernia sac.
Acute torsion of a wandering spleen.
Lam, Y; Yuen, Kenny K Y; Chong, L C
2012-04-01
The 'wandering spleen' is a rare condition due to extreme laxity or absence of ligaments that fix the organ in its normal anatomical position within the left upper quadrant. Without early surgical intervention, wandering spleen can lead to torsion and subsequent splenic infarction or rupture. Clinical suspicion plus urgent investigation and intervention are important, so as to salvage the spleen and prevent complications. We present a case of torsion of a wandering spleen in a 21-year-old young woman, who presented with a painful pelvic mass. We also reviewed the literature on this entity.
Wandering spleen with torsion and complete infarction.
Chu, Jianping; Li, Ziping; Luo, Boning; Yang, Jianyong
2011-10-01
Wandering spleen is rare and is associated with a high incidence of splenic torsion and infarction. Presenting symptoms range from an asymptomatic, incidentally palpated abdominal mass to an acutely ill patient. Because wandering spleen is uncommon in the pediatric population, a heightened awareness of the condition is required for accurate diagnosis and appropriate management. We present a case of a 4-year-old girl who presented with acute abdomen and was surgically confirmed to have a wandering spleen with torsion and complete infarction.
Improved Coating System for High Strength Torsion Bars
1981-04-23
SwW IMPROVED COATING SYSTEM FOR HIGH S- TYPE Of REPORT & PEROo CovERED STRENGTH TORSION BAR Final Report Plastisol Coating System Provides a Cost...8217 mumber) Torsion Bar Plastisol Coating Inorganic Coating Protective Coating Polyvinyl Chloride Coating Polyurethane Coating Corrosion Protection Tape...Bars E. Endurance Test Results for One-third Length Torsion E-1 Bar F. Specification for Application of Plastisol to High F-1 Strength Torsion Bar
Anisotropy of torsional rigidity of sheet polymer composite materials
NASA Astrophysics Data System (ADS)
Startsev, O. V.; Kovalenko, A. A.; Nasonov, A. D.
1999-05-01
Wide application of polymer composite materials (PCM) in modern technology calls for detailed evaluation of their stress-strain properties in a broad temperature range. To obtain such information, we use the dynamic mechanical analysis and with the help of a reverse torsion pendulum measure the dynamic torsional rigidity of PCM bars of rectangular cross section in the temperature range up to 600 K. It is found that the temperature dependences of the dynamic rigidity of the calculated values of dynamic shear moduli are governed by the percentage and properties of the binder and fibers, the layout of fibers, the phase interaction along interfaces, etc. The principles of dynamic mechanical spectrometry are used to substantiate and analyze the parameters of anisotropy by which the behavior of a composite can be described in the temperature range including the transition of the binder from the glassy into a highly elastic state. For this purpose, the values of dynamic rigidity are measured under low-amplitude vibrations of the PCM specimens with a fiber orientation angle from 0 to 90°. It is shown that for unidirectional composites the dependence between the dynamic rigidity and the fiber orientation angle is of extreme character. The value and position of the peak depend on the type of the binder and fibers and change with temperature. It is found that the anisotropy degree of PCM is dictated by the molecular mobility and significantly changes in the temperature range of transition of the binder and reinforcement from the glassy into a highly elastic state (in the case of SVM fibers). The possibility of evaluating the anisotropy of composites with other reinforcement schemes, in particular, of orthogonally reinforced PCMs, is shown.
Non-uniform space charge controlled KTN beam deflector
NASA Astrophysics Data System (ADS)
Chao, Ju-Hung; Zhu, Wenbin; Chen, Chang-Jiang; Yin, Stuart; Hoffman, Robert C.
2016-09-01
A non-uniform space charge-controlled KTN beam deflector is presented and analyzed. We found that a non-uniform space charge can result in a non-uniform beam deflection angles. This effect can be useful for some applications such as electric field controlled beam separation. However, a non-uniform space charge needs to be avoided if one wants uniform beam deflection throughout the entire crystal.
Torsionally Excited Dimethyl Ether in the Laboratory and in Space
NASA Astrophysics Data System (ADS)
Endres, C. P.; Müller, H. S. P.; Lewen, F.; Giesen, T. F.; Schlemmer, S.; Drouin, B. J.; Bisschop, S.; Groner, P.
2010-06-01
Dimethyl ether (DME) is highly abundant in hot cores and numerous transitions within the vibrational ground state have been detected in various interstellar line surveys of sources such as Orion KL. As a nearly prolate asymmetric top with two internal rotors, it shows a complex spectrum with low lying torsional modes. The energy levels of the two lowest torsional states (v11, and v15) lie only 200 and 240 cm-1 above the ground state (barrier height ≈ 915 cm-1), and are thus sufficiently populated in these interstellar sources to exhibit transitions in line surveys due to high excitation temperatures in hot cores. So far, the lack of sufficiently accurate predictions for the two lowest excited torsional states prevented their identification in astronomical spectra. Therefore, we analyzed spectra, which have been recorded within the context of the investigations of the ground state. In total, more than 9500 transitions have been assigned covering the frequency range from 38 up to 1670 GHz. The enlarged splitting of each rotational level into four substates (AA, EE, AE, EA) compared to its size in the ground state and a large number of perturbed transitions hampered not only the line assignment but also the astrophysical modelling. However, the inclusion of interaction terms between both excited states in the model of an effective Hamiltonian for a symmetric two-top rotor, allowed us to model both excited states within a global fit, and also to accurately determine the energy difference between both states. Frequency predictions have been calculated based on this analysis and have been used to unambiguously assign numerous rotational transitions within these excited states in the astronomical line survey of the hot core region G327.3-0.6. P. Schilke, T.D. Groesbeck et al., Astrophys.J.Suppl.Ser., 108,(1997) 301-337 P. Schilke, D.J. Benford, T.R. Hunter et al., Astrophys.J.Suppl.Ser., 132,(2001) 281-364. P. Groner, S. Albert, E. Herbst, and F.C. De Lucia, Astrophys
Tussive syncope in a pug with lung-lobe torsion.
Davies, John A; Snead, Elisabeth C R; Pharr, John W
2011-06-01
The most common presenting clinical signs of lung-lobe torsion include dyspnea, tachypnea, lethargy, and anorexia. Tussive syncope secondary to lung-lobe torsion has not been documented. This article describes the presentation, diagnosis, management, and outcome of a pug with tussive syncope secondary to lung-lobe torsion.
NASA Technical Reports Server (NTRS)
Heath, Atwood R , Jr
1953-01-01
The structural damping in the torsion mode of vibration of a series of untwisted, laminated thin beams simulating propeller blades is presented. The number of lamination were varied, as well as the bonding material and the method of joining lamination. Application of the data to the calculation of the minimum flutter speed of thin propeller blades indicates that appreciable gains in the minimum flutter speed may be obtained for laminated blades using a Cycleweld bond.
a Study on the Squeal of a Drum Brake which has Shoes of Non-Uniform Cross-Section
NASA Astrophysics Data System (ADS)
LEE, J. M.; YOO, S. W.; KIM, J. H.; AHN, C. G.
2001-03-01
A stability analysis of a drum brake, which has shoes of non-uniform cross-section, is performed to find a simple and effective method of reducing the squeal of the drum brake by partially changing the shapes of the shoes. The squeal is considered as a noise induced by the self-excited vibration of the drum brake which makes the brake unstable. Shoes of non-uniform cross-section are often used for the drum brake of current passenger cars to reduce the squeal. However, the influence of this non-uniformity upon the squeal has not been analyzed theoretically. In this study, the drum and the shoes are assumed as a uniform ring and non-uniform arches, respectively, for modelling the brake. For a reasonable method of modelling, the vibration characteristics of the brake and their relations to the squeal are discussed based on the results of modal tests. The influences of brake design parameters upon the squeal are investigated, and a minor change of the cross-section is proposed to reduce the squeal. The effect of the minor change is verified through noise dynamometer tests. In addition, the effect of asymmetry of the drum, which can be built by mass addition, is presented.
Cryptorchid testis with torsion: Inguinoscrotal whirlpool sign
Indiran, Venkatraman
2016-01-01
Non contrast helical computed tomography (CT) study of the abdomen is frequently performed in evaluation of suspected ureteric colic. We present CT images of a young adult male patient who had torsion of an undescended, non-neoplastic testis and describe the “Inguinoscrotal whirlpool sign on CT”. PMID:27555688
Clinical Characteristics of Torsion of the Omentum
Montiel-Jarquin, Alvaro; Lopez-Colombo, Aurelio; Nava, Arnulfo; Juarez-Santiesteban, Rayo; Leyva-Trejo, Hugo; Zamora-Ustaran, Alfonso; García-Carrasco, Mario; Munoz-Guarneros, Margarita
2009-01-01
Background The aim of this paper is to describe clinical aspects of the torsion of the omentum. Methods In this observational, retrospective study, the study group consisted of patients surgically managed for torsion of the omentum, between 1998 and 2008, in a second level medical facility in Mexico. Variables in the study included age, sex, signs and symptoms, body mass index (BMI), treatment and evolution time. Descriptive statistical analysis was employed. Results Eleven patients were confirmed torsion of omentum, 7 (63.63%) women and 4 (36.36%) men, median age 33 (20 to 58) years, BMI > 25.0 in 9 (81.81%), average evolution 6.54, SD 3.47 days. All presented with abdominal pain, 6 (54.54%) with abdominal distension, 4 (36.36%) with ambulatory difficulty, 3 (27.27%) with malaise, and 5 (45.45%) with previous surgery. In all cases diagnosis was made by means of laparotomy, treatment was the resection of the affected segment, and there were no further complications. Conclusions Torsion of the omentum resembles acute appendicitis; abdominal pain and abdominal distension are the most common symptoms. It is often discovered during surgery and it is treated surgically by removal of the affected segment of the omentum. PMID:27942278
Fakhry, Mohamed A; Shazly, Malak I El
2011-01-01
Purpose To compare torsional versus combined torsional and conventional ultrasound modes in hard cataract surgery regarding ultrasound energy and time and effect on corneal endothelium. Settings Kasr El Aini hospital, Cairo University, and International Eye Hospital, Cairo, Egypt. Methodology Ninety-eight eyes of 63 patients were enrolled in this prospective comparative randomized masked clinical study. All eyes had nuclear cataracts of grades III and IV using the Lens Opacities Classification System III (LOCS III). Two groups were included, each having an equal number of eyes (49). The treatment for group A was combined torsional and conventional US mode phacoemulsification, and for group B torsional US mode phacoemulsification only. Pre- and post-operative assessments included best corrected visual acuity (BCVA), intraocular pressure (IOP), slit-lamp evaluation, and fundoscopic evaluation. Endothelial cell density (ECD) and central corneal thickness (CCT) were measured preoperatively, 1 day, 7 days, and 1 month postoperatively. All eyes were operated on using the Alcon Infiniti System (Alcon, Fort Worth, TX) with the quick chop technique. All eyes were implanted with AcrySof SA60AT (Alcon) intraocular lens (IOL). The main phaco outcome parameters included the mean ultrasound time (UST), the mean cumulative dissipated energy (CDE), and the percent of average torsional amplitude in position 3 (%TUSiP3). Results Improvement in BCVA was statistically significant in both groups (P < 0.001). Comparing UST and CDE for both groups revealed results favoring the pure torsional group (P = 0.002 and P < 0.001 for UST; P = 0.058 and P = 0.009 for CDE). As for %TUSiP3, readings were higher for the pure torsional group (P = 0.03 and P = 0.01). All changes of CCT, and ECD over time were found statistically significant using one-way ANOVA testing (P < 0.001). Conclusion Both modes are safe in hard cataract surgery, however the pure torsional mode showed less US energy used. PMID
On a finite-state inflow application to flap-lag-torsion damping in hover
NASA Technical Reports Server (NTRS)
De Andrade, Donizeti; Peters, David A.
1992-01-01
An aerodynamic model with a coupled set of generalized dynamic wake equations and hybrid equations of motion for an elastic blade are applied here to a two-blade untwisted stiff in-plane hingeless small-scale model rotor with torsionally soft blades. Blade root offset, precone, blade droop, pitch control stiffness, and blade pitch angle are included in the model rotor. Numerical results show that 3D tip relief effects within the nonuniform steady-state inflow are significant to predict steady-state aerodynamic loads and blade deflections. Eigenvalue results confirm the importance of unsteady 3D aerodynamics in predicting lead-lag damping and frequency. Eigenvector analysis correlations reinforced qualitative and quantitative shortcomings associated with quasi-steady 2D aerodynamic theory for aeroelastic applications in hover.
Discrete Fourier transforms of nonuniformly spaced data
NASA Technical Reports Server (NTRS)
Swan, P. R.
1982-01-01
Time series or spatial series of measurements taken with nonuniform spacings have failed to yield fully to analysis using the Discrete Fourier Transform (DFT). This is due to the fact that the formal DFT is the convolution of the transform of the signal with the transform of the nonuniform spacings. Two original methods are presented for deconvolving such transforms for signals containing significant noise. The first method solves a set of linear equations relating the observed data to values defined at uniform grid points, and then obtains the desired transform as the DFT of the uniform interpolates. The second method solves a set of linear equations relating the real and imaginary components of the formal DFT directly to those of the desired transform. The results of numerical experiments with noisy data are presented in order to demonstrate the capabilities and limitations of the methods.
Orbital behavior around a nonuniform celestial body
NASA Astrophysics Data System (ADS)
Rosson, Z.; Hall, F.; Vogel, T.
2016-09-01
To effectively model the orbit around a nonuniform celestial body, detailed information needs to be determined of the perturbations. This research looked at one of the most crucial perturbations: the nonuniform gravitational field of a celestial body. Given an orbiting particle (a satellite), we utilized numerical methods to calculate its orbit in two dimensions around a discretized center mass structure. The gravitational acceleration imposed on the particle due to each mass point sums vectorally as the particle completes each infinitesimal time step of one orbit. There are noticeable effects on the orbit as the conditions of the center mass change. The development of a simulation code allows for the modelling of the orbit about an irregular body with satisfactory accuracy.
Rindler effect for a nonuniformly accelerating observer
Zhu Jian-yang; Bao Aidong; Zhao Zheng
1995-10-01
Both the Klein-Gordon equation and the Dirac equation are dealt with in the generalized Rindler space-time of a nonuniformly accelerating observer. Making use of a new method and introducing a tortoise-type coordinate transformation, it is proved that there exist an event horizon and thermal radiation depending on time in the space-time. The Hawking-Unruh temperature is proportional to the variable acceleration.
Torsion of a Large Appendix Testis Misdiagnosed as Pyocele
Meher, Susanta; Rath, Satyajit; Sharma, Rakesh; Sasmal, Prakash Kumar; Mishra, Tushar Subhadarshan
2015-01-01
Torsion of the appendix testis is not an uncommon cause of acute hemiscrotum. It is frequently misdiagnosed as acute epididymitis, orchitis, or torsion of testis. Though conservative management is the treatment of choice for this condition, prompt surgical intervention is warranted when testicular torsion is suspected. We report a case of torsion of a large appendix testis misdiagnosed as pyocele. Emergency exploration of it revealed a large appendix testis with torsion and early features of gangrene. After excision of the appendix testis, the wound was closed with an open drain. The patient had an uneventful and smooth postoperative recovery. PMID:25861514
Torsion of an intra-abdominal testis.
Lewis; Roller; Parra; Cotlar
2000-09-01
To present a case of torsion of a nonneoplastic intra-abdominal testis with an unusual clinical presentation.A 26-year-old active duty Navy Petty Officer presented to the emergency department on 3 occasions over a 5-day period with lower abdominal pain. Physical examination demonstrated acute tenderness in the left lower quadrant with sugestion of a normal spermatic cord and atrophic testis in the left scrotum. Computed tomography scan demonstrated an intra-abdominal lesion near the internal inguinal ring. The patient underwent surgical exploration through an inguinal incision. Torsion of a nonviable intra-abdominal testis was present. The scrotum contained only the vas deferens and cremasteric muscle. An orchiectomy was performed with removal of the vas deferens and other cord structures.The unusual clinical finding of acute torsion of an intra-abdominal testis, associated with an apparent atrophic scrotal testis, presented a confusing clinical picture. Computed tomography scan did not clarify the issue sufficiently to establish a definite preoperative diagnosis. Clinical suspicion prompted early surgical intervention. Review of the current literature produced 60 reported cases of torsion of an intra-abdominal testis. Two thirds of these involved testicular neoplasm, usually seminoma. Although the clinical presentation varied, most patients had recent onset of lower abdominal pain associated with tenderness and, in half the cases, a mass. Patients almost always presented with an absent scrotal testis on the involved side, and not infrequently reported previous surgery thought to be an orchiectomy.Diagnosis of an intra-abdominal testicular torsion is rare, particularly when no neoplasm is present. A high index of suspicion must be maintained whenever there is abdominal pain and undescended testis. The surgical history and imaging studies may not clarify a confusing clinical picture.
Ultrasonography of Extravaginal Testicular Torsion in Neonates
Bombiński, Przemysław; Warchoł, Stanisław; Brzewski, Michał; Majkowska, Zofia; Dudek-Warchoł, Teresa; Żerańska, Maria; Panek, Małgorzata; Drop, Magdalena
2016-01-01
Summary Background Extravaginal testicular torsion (ETT), also called prenatal or perinatal, occurs prenatally and is present at birth or appears within the first month of life. It has different etiology than intravaginal torsion, which appears later in life. Testicular torsion must be taken into consideration in differential diagnosis of acute scrotum and should be confirmed or ruled out at first diagnostic step. Ultrasonography is a basic imaging modality, however diagnostic pitfalls are still possible. There is still wide discussion concerning management of ETT, which varies from immediate orchiectomy to conservative treatment resulting in testicle atrophy. Material/Methods In this article we present ultrasonographic spectrum of ETT in neonates, which were diagnosed and treated in our hospital during the last 8 years (2008–2015), in correlation with clinical and intraoperative findings. Results Thirteen neonates with ETT were enrolled in the study – 11 patients with a single testicle affected and 2 patients with bilateral testicular torsion. Most common signs on clinical examination were: hardened and enlarged testicle and discoloration of the scrotum. Most common ultrasonographic signs were: abnormal size or echostructure of the affected testicle and absence of the blood flow in Doppler ultrasonography. In 3 patients ultrasound elastography was performed, which appeared very useful in testicle structure assessment. Conclusions Testicular torsion may concern boys even in the perinatal period. Ultrasonographic picture of acute scrotum in young boys may be confused. Coexistence of the abnormal size or echostructure of the torsed testicle with absence of the blood flow in Doppler ultrasonography appear as very specific but late ultrasonographic sings. Ultrasound elastography may be a very useful tool for visualisation of a very common clinical sign – hardening of the necrotic testicle. PMID:27757176
Multimode vibration reduction concept for machine tools and automotive applications
NASA Astrophysics Data System (ADS)
Neugebauer, Reimund; Drossel, Welf-Guntram; Kranz, Burkhard; Kunze, Holger
2005-05-01
This paper reports a numerical and experimental study on a new multi mode vibration reduction concept for struts of machine tools or shafts of automotives. The example described in detail validates this new concept for high dynamic parallel kinematic struts. The structural advantages of parallel kinematic mechanisms are undisputed. However statical and dynamical bending and torsional loads must be considered during the design process of the structure and thus effect the shape of the strut geometry. The here described new actuator concept for multi mode vibration reduction is to influence these bending and torsional loads. It uses piezopatches based on the MFC technology licensed by NASA. Initial simulation and experimental tests were done at an one side clamped aluminium beam with applicated 45°-MFC's on both sides. Simulation results show, that driving the piezos in opposite direction leads to a bending deflection of the beam, driving them in the same phase leads to a torsional deflection of the aluminium beam. Experimental measurements confirm the simulation results. The benefit we get is a decreased number of actuators for multimode vibration reduction. Likewise these actuators allow the separation or selective combination of bending and torsion. This new actuation concept is not limited on beams. Further simulations for cylindrical struts result in a design of a MFC-ring with eight segments with changing fiber orientation for separation of bending and torsion on struts and shafts. The selective controlled activation of each of the segments leads to bending in x-direction, bending in y-direction or torsion.
Activated-like hopping transition in weakly vibrated granular media
NASA Astrophysics Data System (ADS)
D'Anna, G.; Gremaud, G.
2001-06-01
The slow dynamics of a weakly vibrated granular medium is investigated using a low-frequency forced torsion pendulum method. A loss factor peak is observed in the pendulum response (or the granular susceptibility) as a function of the vibration intensity or the forcing frequency. The position of the peak follows an Arrhenius-like behaviour and the data can be described as an activated hopping process. The peak can be seen as a vibration-induced glass-like transition between a low-Γ jammed phase and the high-Γ fluid-like phase.
Vibration analysis of rotor blades with pendulum absorbers
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Hammond, C. E.
1979-01-01
A comprehensive vibration analysis of rotor blades with spherical pendulum absorbers is presented. Linearized equations of motion for small oscillations about the steady-state deflection of a spherical pendulum on elastic rotor blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations are obtained. A transmission matrix formulation is given to determine the natural vibrational characteristics of rotor blades with spherical or simple flapping pendulum absorbers. The natural frequencies and mode shapes of a hingeless rotor blade with a spherical pendulum are computed.
Design and analysis of a torsion braid pendulum displacement transducer
NASA Technical Reports Server (NTRS)
Rind, E.; Bryant, E. L.
1981-01-01
The dynamic properties at various temperatures of braids impregnated with polymer can be measured by using the braid as the suspension of a torsion pendulum. This report describes the electronic and mechanical design of a torsional braid pendulum displacement transducer which is an advance in the state of the art. The transducer uses a unique optical design consisting of refracting quartz windows used in conjunction with a differential photocell to produce a null signal. The release mechanism for initiating free torsional oscillation of the pendulum has also been improved. Analysis of the precision and accuracy of the transducer indicated that the maximum relative error in measuring torsional amplitude was approximately 0. A serious problem inherent in all instruments which use a torsional suspension was analyzed: misalignment of the physical and torsional axes of the torsional member which results in modulation of the amplitude of the free oscillation.
DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM
Martin E. Cobern
2004-08-31
The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.
Viscosity-density sensor with resonant torsional paddle for direct detection in liquid.
Li, H; Wang, J; Li, X; Chen, D
2011-12-01
A novel micro-machined biosensor based on the resonant torsional paddle with electromagnetic excitation which can work in liquid directly is presented. The sensor designed consists of two paddles with resonant torsional mode, in which the energy loss of the resonator during the vibration is so lower that it can be suitable for detection in liquid. Finite element method analysis was carried out to guarantee the sensitivity of the sensor. Micro electro-mechanical system (MEMS) bulk silicon processes were adopted to accomplish the fabrication. A positive-feedback circuit with energy compensation is designed to improve the characteristics of the sensor in liquid. Experiments show that the resonant torsional paddle can work directly in liquid and the Q-factor of the sensor in liquid can be improved from 2.65 to 40 with energy compensation. Viscosity tests and density tests for the sensor show that the decrease in frequency and the decrease in Q-factor are related to density and viscosity of the solutions, respectively.
Active damping of spacecraft structural appendage vibrations
NASA Technical Reports Server (NTRS)
Fedor, Joseph V. (Inventor)
1990-01-01
An active vibration damper system, for bending in two orthogonal directions and torsion, in each of three mutually perpendicular axes is located at the extremities of the flexible appendages of a space platform. The system components for each axis includes: an accelerometer, filtering and signal processing apparatus, and a DC motor-inertia wheel torquer. The motor torquer, when driven by a voltage proportional to the relative vibration tip velocity, produces a reaction torque for opposing and therefore damping a specific modal velocity of vibration. The relative tip velocity is obtained by integrating the difference between the signal output from the accelerometer located at the end of the appendage with the output of a usually carried accelerometer located on a relatively rigid body portion of the space platform. A selector switch, with sequential stepping logic or highest modal vibration energy logic, steps to another modal tip velocity channel and receives a signal voltage to damp another vibration mode. In this manner, several vibration modes can be damped with a single sensor/actuator pair. When a three axis damper is located on each of the major appendages of the platform, then all of the system vibration modes can be effectively damped.
Torsional Buckling Tests of a Simulated Solar Array
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1996-01-01
Spacecraft solar arrays are typically large structures supported by long, thin deployable booms. As such, they may be particularly susceptible to abnormal structural behavior induced by mechanical and thermal loading. One example is the Hubble Space Telescope solar arrays which consist of two split tubes fit one inside the other called BiSTEMs. The original solar arrays on the Hubble Space Telescope were found to be severely twisted following deployment and later telemetry data showed the arrays were vibrating during daylight to night and night to daylight transition. The solar array twist however can force the BiSTEM booms to change in cross-section and cause tile solar arrays to react unpredictably to future loading. The solar arrays were redesigned to correct for tile vibration, however, upon redeployment they again twisted. To assess the influence of boom cross-sectional configuration, experiments were conducted on two types of booms, (1)booms with closed cross-sections, and (2) booms with open cross-sections. Both models were subjected to compressive loading and imposed tip deflections. An existing analytical model by Chung and Thornton was used to define the individual load ranges for each model solar array configuration. The load range for the model solar array using closed cross-section booms was 0-120 Newtons and 0-160 Newtons for the model solar array using open cross-section booms. The results indicate the model solar array with closed cross-section booms buckled only in flexure. However, the results of the experiment with open cross-section booms indicate the model solar array buckled only in torsion and with imposed tip deflections the cross section can degrade by rotation of the inner relative to the outer STEM. For tile Hubble Space Telescope solar arrays the results of these experiments indicate the twisting resulted from the initial mechanical loading of the open cross-section booms.
Hauth, J.J.
1962-07-01
A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)
Standing Torsional Waves in Fluid-Saturated Porous Circular Cylinder
NASA Astrophysics Data System (ADS)
Solorza, S.; Sahay, P. N.
2002-12-01
For dynamic measurement of elastic constants of a porous material saturated with viscous fluid when resonance-bar technique is applied, one also observes attenuation of the wave field. The current practice is to interpret it in terms of solid-viscosity by assuming a viscoelastic rheology for porous material. The likely mechanisms of attenuation in a fluid saturated porous material are: 1) motion of the fluid with respect to the solid frame and 2) viscous loss within the pore fluid. Therefore, it is appropriate to assume a poroelastic rheology and link the observed attenuation value to fluid properties and permeability. In the framework of poroelastic theory, the explicit formula linking attenuation to the properties of solid and fluid constituents and permeability are not worked out yet. In order to established such a link one has to workout solutions of appropriate boundary value problems in such a framework. Here, we have carried out the solution of boundary value problem associated with torsional oscillation of a finite poroelastic circular cylinder, casted in the framework of volume-averaged theory of poroelasticity. Analysing this solution by a perturbative approach we are able to develop explicit expressions for resonance frequency and attenuation for this mode of vibration. It shows how the attenuation is controlled by the permeability and the fluid properties, and how the resonance frequency drops over its value for the dry porous frame due to the effect of the fluid-mass.
Axial and torsional fatigue behavior of Waspaloy
NASA Technical Reports Server (NTRS)
Zamrik, S.; Mirdamadi, M.; Zahiri, F.
1986-01-01
The cyclic flow response and crack growth behavior of Waspaloy at room temperature and 650 C under tensile loading and torsional loading was studied, for two conditions of Waspaloy: fine grain, large gamma prime size; coarse grain, small gamma prime size. The fine grain material showed 5 to 10 percent hardening after about 10 percent of life, with sequent softening to failure at both themperature levels. The coarse grain material showed either stable response or monotonic softening to failure. Early crack initiation was observed on planes of maximum shear, with eventual branching to principle planes under torsional loading; cracks were always normal to load axis under tensile loading. Also, crack paths were intergranular at 650 C, mostly transgranular at room temperature.
Chronic splenic torsion in two dogs.
Reinhart, Jennifer M; Sherwood, J Matthew; KuKanich, Katherine S; Klocke, Emily; Biller, David S
2015-01-01
A 5 yr old spayed female poodle (case 1) was presented with a 4 mo history of lethargy, inappetence, and nonregenerative anemia. A 5 yr old castrated male French bulldog (case 2) was presented with a 2 wk history of mild abdominal pain, dyschezia, and intermittent anorexia. Both dogs were diagnosed with chronic splenic torsion based on changes in splenic position, echogenicity, and/or echotexture identified on B-mode abdominal ultrasonography, as well as either decreased or absent splenic blood flow on color-flow Doppler ultrasonography. Both dogs underwent splenectomy and had full resolution of clinical signs. Presentation of chronic splenic torsion is variable, and clinical signs can be nonspecific. Abdominal ultrasound with Doppler evaluation is an important diagnostic step that can lead to appropriate surgical intervention and good long-term prognosis.
Wang, Shibo; Niu, Chengchao
2016-01-01
In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T-θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model.
Wang, Shibo; Niu, Chengchao
2016-01-01
In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T–θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model. PMID:26799324
Myocardial Rotation and Torsion in Child Growth
Kim, Chang Sin; Park, Sora
2016-01-01
Background The speckle tracking echocardiography can benefit to assess the regional myocardial deformations. Although, previous reports suggested no significant change in left ventricular (LV) torsion with aging, there are certain differences in LV rotation at the base and apex. The purpose of this study was to evaluate the change and relationship of LV rotation for torsion with aging in children. Methods Forty healthy children were recruited and divided into two groups of twenty based on whether the children were preschool-age (2–6 years of age) or school-age (7–12 years of age). After obtaining conventional echocardiographic data, apical and basal short axis rotation were assessed with speckle tracking echocardiography. LV rotation in the basal and apical short axis planes was determined using six myocardial segments along the central axis. Results Apical and basal LV rotation did not show the statistical difference with increased age between preschool- and school-age children. Apical radial strain showed significant higher values in preschool-age children, especially at the anterior (52.8 ± 17.4% vs. 34.7 ± 23.2%, p < 0.02), lateral (55.8 ± 20.4% vs. 36.1 ± 22.7%, p < 0.02), and posterior segments (57.1 ± 17.6% vs. 38.5 ± 21.7%, p < 0.01). The torsion values did not demonstrate the statistical difference between two groups. Conclusion This study revealed the tendency of higher rotation values in preschool-age children than in school-age children. The lesser values of rotation and torsion with increased age during childhood warrant further investigation. PMID:27721953
Fluid driven torsional dipole seismic source
Hardee, Harry C.
1991-01-01
A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.
TORSIONAL OSCILLATIONS OF NONBARE STRANGE STARS
Mannarelli, Massimo; Pagliaroli, Giulia; Parisi, Alessandro; Pilo, Luigi; Tonelli, Francesco
2015-12-20
Strange stars are one of the possible compact stellar objects that can form after a supernova collapse. We consider a model of a strange star having an inner core in the color-flavor locked phase surmounted by a crystalline color superconducting (CCSC) layer. These two phases constitute the quarksphere, which we assume to be the largest and heaviest part of the strange star. The next layer consists of standard nuclear matter forming an ionic crust, hovering on the top of the quarksphere and prevented from falling by a strong dipolar electric field. The dipolar electric field arises because quark matter is confined in the quarksphere by the strong interaction, but electrons can leak outside forming an electron layer a few hundred fermi thick separating the ionic crust from the underlying quark matter. The ionic matter and the CCSC matter constitute two electromagnetically coupled crust layers. We study the torsional oscillations of these two layers. Remarkably, we find that if a fraction larger than 10{sup −4} of the energy of a Vela-like glitch is conveyed to a torsional oscillation, the ionic crust will likely break. The reason is that the very rigid and heavy CCSC crust layer will absorb only a small fraction of the glitch energy, leading to a large-amplitude torsional oscillation of the ionic crust. The maximum stress generated by the torsional oscillation is located inside the ionic crust and is very close to the star’s surface. This peculiar behavior leads to a much easier crust cracking than in standard neutron stars.
UBIQUITOUS TORSIONAL MOTIONS IN TYPE II SPICULES
De Pontieu, B.; Hansteen, V. H.; Carlsson, M.; Rouppe van der Voort, L. H. M.; Rutten, R. J.; Watanabe, H.
2012-06-10
Spicules are long, thin, highly dynamic features that jut out ubiquitously from the solar limb. They dominate the interface between the chromosphere and corona and may provide significant mass and energy to the corona. We use high-quality observations with the Swedish 1 m Solar Telescope to establish that so-called type II spicules are characterized by the simultaneous action of three different types of motion: (1) field-aligned flows of order 50-100 km s{sup -1}, (2) swaying motions of order 15-20 km s{sup -1}, and (3) torsional motions of order 25-30 km s{sup -1}. The first two modes have been studied in detail before, but not the torsional motions. Our analysis of many near-limb and off-limb spectra and narrowband images using multiple spectral lines yields strong evidence that most, if not all, type II spicules undergo large torsional modulation and that these motions, like spicule swaying, represent Alfvenic waves propagating outward at several hundred km s{sup -1}. The combined action of the different motions explains the similar morphology of spicule bushes in the outer red and blue wings of chromospheric lines, and needs to be taken into account when interpreting Doppler motions to derive estimates for field-aligned flows in spicules and determining the Alfvenic wave energy in the solar atmosphere. Our results also suggest that large torsional motion is an ingredient in the production of type II spicules and that spicules play an important role in the transport of helicity through the solar atmosphere.
Big bounce from spin and torsion
NASA Astrophysics Data System (ADS)
Popławski, Nikodem J.
2012-04-01
The Einstein-Cartan-Sciama-Kibble theory of gravity naturally extends general relativity to account for the intrinsic spin of matter. Spacetime torsion, generated by spin of Dirac fields, induces gravitational repulsion in fermionic matter at extremely high densities and prevents the formation of singularities. Accordingly, the big bang is replaced by a bounce that occurred when the energy density {ɛ ∝ gT^4} was on the order of {n^2/m_Pl^2} (in natural units), where {n ∝ gT^3} is the fermion number density and g is the number of thermal degrees of freedom. If the early Universe contained only the known standard-model particles ( g ≈ 100), then the energy density at the big bounce was about 15 times larger than the Planck energy. The minimum scale factor of the Universe (at the bounce) was about 1032 times smaller than its present value, giving ≈ 50 μm. If more fermions existed in the early Universe, then the spin-torsion coupling causes a bounce at a lower energy and larger scale factor. Recent observations of high-energy photons from gamma-ray bursts indicate that spacetime may behave classically even at scales below the Planck length, supporting the classical spin-torsion mechanism of the big bounce. Such a classical bounce prevents the matter in the contracting Universe from reaching the conditions at which a quantum bounce could possibly occur.
Evaluation of the torsional VOR in weightlessness.
Clarke, A H; Teiwes, W; Scherer, H
1993-01-01
The experimental concept and findings from a recent manned orbital spaceflight are described. Together with ongoing terrestrial and parabolic studies, the present experiment is intended to further our knowledge of the sensory integrative processing of information from the semicircular canals and the otolithic receptors, and to quantify the presumed otolithic adaptation to altered gravito-inertial force environments in a more reliable manner than to date. The experiment included measurement of the basic vestibulo-oculomotor response during active head rotation about each of the three orthogonal axes. Priority was given to the recording of ocular torsion, as elicited by head oscillation about the roll axis, and thus due to the concomitant stimulation of the semicircular canals and otolith receptors. Videooculography was employed for the measurement of eye movements; head movement was measured by three orthogonally arranged angular rate sensors and a triaxial linear accelerometer device. All signals were recorded synchronously on a video/data recorder. Preliminary results indicate alterations in the torsional VOR under zero-g conditions, suggesting an adaptive modification of the torsional VOR gain over the course of the 6-day orbital flight. In addition, the inflight test findings yielded discrepancies between intended and performed head movement, indicating impairment in sensorimotor coordination under prolonged microgravity conditions.
Neonatal testicular torsion: a systematic literature review.
Nandi, Biplab; Murphy, Feilim Liam
2011-10-01
Neonatal testicular torsion (NTT) is rare and reported salvage rates vary widely both in their cited frequency and plausibility. The timing and necessity of surgery is controversial with different centers arguing for the conservative management of all cases while others argue for prompt exploration for all. Confusion also reigns over the need to fix the contralateral testis. In order to clarify the issue the authors reviewed the literature and found 18 case series of NTT, containing 268 operated cases suitable for analysis. This paper reviews the literature on NTT specifically regarding salvage rates and timing/necessity of surgery. Its primary aim is to produce an overall salvage rate in the operated group. Overall salvage rate was 8.96%, 24 testes. When operation is specified as an emergency, salvage may be as high as 21.7%. While salvage of a testis torted at birth is rare, it is reported. Early asynchronous torsion is also rare but reported. Worryingly, bilateral torsion can present with unilateral signs.Given these findings, we would suggest early surgery with fixation of the contralateral side.
Perinatal testicular torsion and medicolegal considerations.
Massoni, F; Troili, G M; Pelosi, M; Ricci, S
2014-06-01
Perinatal testicular torsion (PTT) is a very complex condition because of rarity of presentation and diagnostic and therapeutic difficulties. In presence of perinatal testicular torsion, the involvement of contralateral testis can be present also in absence of other indications which suggest the bilateral involvement; therefore, occurrences supported by literature do not exclude the use of surgery to avoid the risk of omitted or delayed diagnosis. The data on possible recovery of these testicles are not satisfactory, and treatment consists of an observational approach ("wait-and-see") or an interventional approach. The hypothesis of randomized clinical trials seems impracticable because of rarity of disease. The authors present a case of PTT, analyzing injuries due to clinical and surgical management of these patients, according to medicolegal profile. The delayed diagnosis and the choice of an incorrect therapeutic approach can compromise the position of healthcare professionals, defective in terms of skill, prudence and diligence. Endocrine insufficiency is an unfortunate event. The analysis of literature seems to support, because of high risk, a surgical approach aimed not only at resolution of unilateral pathology or prevention of a relapse, but also at prevention of contralateral testicular torsion.
Polyorchidism with presumed contralateral intrauterine testicular torsion
Leodoro, B.M.; Beasley, S.W.; Stringer, M.D.
2014-01-01
INTRODUCTION Polyorchidism was first described by Blasius in 16701 during a routine autopsy. We report a child with unilateral polyorchidism and a contralateral absent testis, a combination not reported previously. PRESENTATION OF CASE A 2-year-old boy was referred to the outpatient clinic with an impalpable left testis. At laparoscopy, the left vas deferens and testicular vessels ended blindly proximal to a closed internal ring. No gonadal tissue was identified. On the right side, a single vas deferens and testicular vessels were seen entering the internal ring as normal. The right side of the scrotum was explored and two testes were identified within a single tunica vaginalis. DISCUSSION Polyorchidism is rare with a literature search identifying approximately 230 reported cases. Whilst prenatal testicular torsion is increasing being recognized and treated as a surgical emergency,9 prenatal testicular torsion in association with polyorchidism has not been previously reported. CONCLUSION We describe a unique case of a 2-year-old boy with right-sided polyorchidism and an absent left testis associated with a blind ending vas deferens and testicular vessels, presumed secondary to intrauterine testicular torsion. PMID:25462053
Nonlinear subharmonic generation in nonuniform plasmas
NASA Astrophysics Data System (ADS)
Gradov, O. M.; Stenflo, L.
1980-07-01
Direct subharmonic wave generation in a nonuniform plasma is considered. That mechanism exists only when leaking surface waves can be parametrically excited. An expression for the instability growth rate, which includes collisions, resonance absorption and leaking losses, is derived. A possibility of generating subharmonics at omega(0)/4, 3-omega(0)/4, and 5-omega(0)/4, where omega(0) is the pump wave frequency, is pointed out, and the corresponding field intensities are estimated. The conditions for total energy absorption are discussed, and the pump wave intensity, which produces complete absorption, is obtained for a plasma with a steep density gradient.
Advanced optics experiments using nonuniform aperture functions
NASA Astrophysics Data System (ADS)
Wood, Lowell T.
2013-05-01
A method to create instructive, nonuniform aperture functions using spatial frequency filtering is described. The diffraction from a single slit in the Fresnel limit and the interference from a double slit in the Fraunhofer limit are spatially filtered to create electric field distributions across an aperture to produce apodization, inverse apodization or super-resolution, and apertures with phase shifts across their widths. The diffraction effects from these aperture functions are measured and calculated. The excellent agreement between the experimental results and the calculated results makes the experiment ideal for use in an advanced undergraduate or graduate optics laboratory to illustrate experimentally several effects in Fourier optics.
Unraveling torsional bath interactions with the CO stretching state in methanol
NASA Astrophysics Data System (ADS)
Pearson, John C.; Daly, Adam M.; Lees, Ronald M.
2015-12-01
Quantum mechanical models describing the effects of a C3 internal rotor have been successful in modeling all the torsional manifolds of isolated vibrational states. However, modeling the coupling between nearly degenerate small amplitude vibrations in the C3 internal rotation case remains far from satisfactory and a variety of practical and fundamental questions persist on basis sets, the relative importance of effects and how the problem should be approached. The ν8 C-O stretching state of methanol has been well studied with infrared techniques and has the potential to serve as an experimental reference data set for the development of models for the coupled large and small amplitude motion case. A combined infrared-microwave study of the lowest K A-states of vt = 3, vt = 4 and ν8 has been performed to understand the nature of the interactions between ν8 the excited torsional states. The interaction between vt = 4 and ν8 at K = 0+ has been confirmed to be Fermi type with magnitude of 2.5 cm-1. Additionally, the fundamental a-symmetry and b-symmetry Coriolis interactions between vt = 3 and ν8 have been estimated to be 8900 MHz and -360 MHz, respectively. The magnitude of these interactions suggests that modeling the ν8 state, the vt = 3 state, and the vt = 4 states will have to carefully account for these interactions.
Torsion-rotation intensities in methanol
NASA Astrophysics Data System (ADS)
Pearson, John
Methanol exists in numerous kinds of astronomical objects featuring a wide range of local conditions. The light nature of the molecule coupled with the internal rotation of the methyl group with respect to the hydroxyl group results in a rich, strong spectrum that spans the entire far-infrared region. As a result, any modest size observational window will have a number of strong methanol transitions. This has made it the gas of choice for testing THz receivers and to extract the local physical conditions from observations covering small frequency windows. The latter has caused methanol to be dubbed the Swiss army knife of astrophysics. Methanol has been increasingly used in this capacity and will be used even more for subsequent investigations into the Herschel archive, and with SOFIA and ALMA. Interpreting physical conditions on the basis of a few methanol lines requires that the molecular data, line positions, intensities, and collision rates, be complete, consistent and accurate to a much higher level than previously required for astrophysics. The need for highly reliable data is even more critical for modeling the two classes of widespread maser action and many examples of optical pumping through the torsional bands. Observation of the torsional bands in the infrared will be a unique opportunity to directly connect JWST observations with those of Herschel, SOFIA, and ALMA. The theory for the intensities of torsion-rotation transitions in a molecule featuring a single internally rotating methyl group is well developed after 70 years of research. However, other than a recent very preliminary and not completely satisfactory investigation of a few CH3OH torsional bands, this theory has never been experimentally tested for any C3V internal rotor. More alarming is a set of recent intensity calibrated microwave measurements that showed deviations relative to calculations of up to 50% in some ground state rotational transitions commonly used by astronomers to extract
Biothermal sensing of a torsional artificial muscle
NASA Astrophysics Data System (ADS)
Lee, Sung-Ho; Kim, Tae Hyeob; Lima, Márcio D.; Baughman, Ray H.; Kim, Seon Jeong
2016-02-01
Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25-37 °C) while maintaining the mechanical properties originating from the carbon nanotubes. This biothermal sensing of a torsional artificial muscle offers a versatile platform for the recognition of various types of biomolecules by replacing the enzyme, because an exothermic reaction is a general property accompanying a biochemical transformation.Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25-37 °C) while maintaining the mechanical properties
NASA Astrophysics Data System (ADS)
Awall, Md. Robiul; Hayashikawa, Toshiro; Matsumoto, Takashi; He, Xingwen
2012-03-01
Curved twin I-girder bridges (CTIGBs) have low torsional stiffness that makes them vulnerable to dynamic loads. This study investigates the effects of bottom bracings on the torsional dynamic characteristics of CTIGBs. Five types of bottom bracings are designed to investigate their effects on the dynamic characteristics of CTIGBs with different curvatures under free and forced vibrations. To perform numerical investigations, three-dimensional (3-D) finite element (FE) bridge and vehicle models are established using commercial ANSYS code, and then a vehicle-bridge interaction analysis approach is proposed. Road roughness profiles generated from power spectral density and cross spectral functions are also taken into account in the analyses. The numerical results show that torsional frequencies increase significantly after providing bottom bracings, and the increasing rate depends on the type of bottom bracings and their locations of installation. Bottom bracings can act as load transmitting members from one main girder to the others. Large negative bearing forces that have occurred in bridges with small radii of curvatures can be remarkably reduced by providing bottom bracing systems. It is found that the performances of several bottom bracing systems are effective in improving the torsional dynamic characteristics of the bridges in this study.
Wajchman, David; Liu, Kuang-Chen; Friend, James; Yeo, Leslie
2008-04-01
A rotary piezoelectric motor design with simple structural components and the potential for miniaturization using a pretwisted beam stator is demonstrated in this paper. The beam acts as a vibration converter to transform axial vibration input from a piezoelectric element into combined axial-torsional vibration. The axial vibration of the stator modulates the torsional friction forces transmitted to the rotor. Prototype stators measuring 6.5 x 6.5 x 67.5 mm were constructed using aluminum (2024-T6) twisted beams with rectangular cross-section and multilayer piezoelectric actuators. The stall torque and noload speed attained for a rectangular beam with an aspect ratio of 1.44 and pretwist helix angle of 17.7 degrees C were 0.17 mNm and 840 rpm with inputs of 184.4 kHz and 149 mW, respectively. Operation in both clockwise and counterclockwise directions was obtained by choosing either 70.37 or 184.4 kHz for the operating frequency. The effects of rotor preload and power input on motor performance were investigated experimentally. The results suggest that motor efficiency is higher at low power input, and that efficiency increases with preload to a maximum beyond which it begins to drop.
Magnetic tearing of plasma discharges due to nonuniform resistivity
NASA Technical Reports Server (NTRS)
Hassam, A. B.
1988-01-01
The rearrangement of current in a plasma discharge in response to resistivity nonuniformities within a magnetic surface is studied. It is shown that macroscopic magnetic islands develop about those surfaces where the nonuniformity is aligned with the magnetic field. If the nonuniformity and the field are not aligned anywhere, there is no current rearrangement; instead, relatively large plasma flows are set up. Such resistivity inhomogeneities can obtain in solar coronal loops and, in some circumstances, in tokamak discharges.
Nonquasineutral electron vortices in nonuniform plasmas
NASA Astrophysics Data System (ADS)
Angus, J. R.; Richardson, A. S.; Ottinger, P. F.; Swanekamp, S. B.; Schumer, J. W.
2014-11-01
Electron vortices are observed in the numerical simulation of current carrying plasmas on fast time scales where the ion motion can be ignored. In plasmas with nonuniform density n, vortices drift in the B × ∇n direction with a speed that is on the order of the Hall speed. This provides a mechanism for magnetic field penetration into a plasma. Here, we consider strong vortices with rotation speeds Vϕ close to the speed of light c where the vortex size δ is on the order of the magnetic Debye length λB=|B |/4 πe n and the vortex is thus nonquasineutral. Drifting vortices are typically studied using the electron magnetohydrodynamic model (EMHD), which ignores the displacement current and assumes quasineutrality. However, these assumptions are not strictly valid for drifting vortices when δ ≈ λB. In this paper, 2D electron vortices in nonuniform plasmas are studied for the first time using a fully electromagnetic, collisionless fluid code. Relatively large amplitude oscillations with periods that correspond to high frequency extraordinary modes are observed in the average drift speed. The drift speed W is calculated by averaging the electron velocity field over the vorticity. Interestingly, the time-averaged W from these simulations matches very well with W from the much simpler EMHD simulations even for strong vortices with order unity charge density separation.
Nonquasineutral electron vortices in nonuniform plasmas
Angus, J. R.; Richardson, A. S.; Swanekamp, S. B.; Schumer, J. W.; Ottinger, P. F.
2014-11-15
Electron vortices are observed in the numerical simulation of current carrying plasmas on fast time scales where the ion motion can be ignored. In plasmas with nonuniform density n, vortices drift in the B × ∇n direction with a speed that is on the order of the Hall speed. This provides a mechanism for magnetic field penetration into a plasma. Here, we consider strong vortices with rotation speeds V{sub ϕ} close to the speed of light c where the vortex size δ is on the order of the magnetic Debye length λ{sub B}=|B|/4πen and the vortex is thus nonquasineutral. Drifting vortices are typically studied using the electron magnetohydrodynamic model (EMHD), which ignores the displacement current and assumes quasineutrality. However, these assumptions are not strictly valid for drifting vortices when δ ≈ λ{sub B}. In this paper, 2D electron vortices in nonuniform plasmas are studied for the first time using a fully electromagnetic, collisionless fluid code. Relatively large amplitude oscillations with periods that correspond to high frequency extraordinary modes are observed in the average drift speed. The drift speed W is calculated by averaging the electron velocity field over the vorticity. Interestingly, the time-averaged W from these simulations matches very well with W from the much simpler EMHD simulations even for strong vortices with order unity charge density separation.
A non-uniform grid for triangular differential quadrature
NASA Astrophysics Data System (ADS)
Zhong, HongZhi; Xu, Jia
2016-12-01
The triangular differential quadrature method based on a non-uniform grid is proposed in the paper. Explicit expressions of the non-uniform grid point coordinates are given and the weighting coefficients of the triangular differential quadrature method are determined with the aid of area coordinates. Two typical examples are presented to testify the effectiveness of the non-uniform grid. It is shown that rapid convergence is achieved under the non-uniform grid in comparison with those from the uniform grid with the same order of approximation.
Missed Spermatic Cord Torsion in an Old Man
Seo, Yu Mi; Myung, Na-Hye
2013-01-01
The fate of testicular salvage in spermatic cord torsion depends on the duration of ischemia and the degree of torsion. Even though spermatic cord torsion (SCT) can occur at any age, it is rarely reported in older patients. If the physician does not pay close attention to this unusual situation, the lack of suspicion for SCT may result in a missed or delayed diagnosis. We report a very uncommon case of missed SCT occurring in a 63-year-old man. PMID:24175049
Torsion in wandering spleen: CT demonstration of whirl sign.
Priyadarshi, Rajeev N; Anand, Utpal; Kumar, Bindey; Prakash, Vijay
2013-08-01
Wandering spleen is a rare occurrence. Torsion of the splenic pedicle is the major life-threatening complication of this entity. Preoperative diagnosis is based on radiological investigation. We report two consecutive cases, one adult and one child, in whom torsion in a wandering spleen was diagnosed based on a typical whirled appearance of the splenic vessels on computed tomography. We present a review of computed tomographic appearance of splenic torsion, and emphasize the "whirled appearance" as a specific sign for splenic torsion in wandering spleen.
Güneş, Mustafa; Umul, Mehmet; Çelik, Ahmet Orhan; Armağan, Hamit Hakan; Değirmenci, Bumin
2015-01-01
A 17-year-old boy presented with right testicular torsion to the lateral side. Torsion was diagnosed by physical examination; the colour Doppler ultrasonography (CDU) confirmed right testicular torsion with minimal peripheral hydrocele. Transverse and longitudinal examination of the spermatic cord with ultrasound and CDU revealed a counter-clockwise testicular torsion. Manual de-torsion was performed in a clockwise direction (720o) and testicular blood flow and the neutral position of the spermatic cord were confirmed by CDU. We did not encounter a residual twist of the spermatic cord upon surgical exploration. In our experience, ultrasound and CDU may predict the direction of testicular torsion and may allow appropriate management of cases prior to surgery.
Güneş, Mustafa; Umul, Mehmet; Çelik, Ahmet Orhan; Armağan, Hamit Hakan; Değirmenci, Bumin
2015-01-01
A 17-year-old boy presented with right testicular torsion to the lateral side. Torsion was diagnosed by physical examination; the colour Doppler ultrasonography (CDU) confirmed right testicular torsion with minimal peripheral hydrocele. Transverse and longitudinal examination of the spermatic cord with ultrasound and CDU revealed a counter-clockwise testicular torsion. Manual de-torsion was performed in a clockwise direction (720o) and testicular blood flow and the neutral position of the spermatic cord were confirmed by CDU. We did not encounter a residual twist of the spermatic cord upon surgical exploration. In our experience, ultrasound and CDU may predict the direction of testicular torsion and may allow appropriate management of cases prior to surgery. PMID:26425241
Lerwill, W.E.
1980-09-16
Apparatus for generating vibrations in a medium, such as the ground, comprises a first member which contacts the medium, means , preferably electromagnetic, which includes two relatively movable members for generating vibrations in the apparatus and means operatively connecting the said two members to said first member such that the relatively amplitudes of the movements of said three members can be adjusted to match the impedances of the apparatus and the medium.
Standing Waves in a Nonuniform Medium
ERIC Educational Resources Information Center
Gluck, Paul
2011-01-01
A recent note in this journal presented a demonstration of standing waves along a cord consisting of two parts having different material densities, showing different sized wavelengths in each part. A generalization of that experiment to a continuously varying linear mass density is to vibrate a strip of material with gradually varying width (mass…
Electronic and Vibrational Properties of meso -Tetraphenylporphyrin on Silver Substrates
El-Khoury, Patrick Z.; Honkala, Karoliina; Hess, Wayne P.
2014-09-18
The electronic and vibrational properties of meso-tetraphenylporphyrin (mtpp) on silver substrates are investigated using UV–vis and surface-enhanced resonance Raman scattering (SERRS) spectroscopy. Whereas the vibrational signatures associated with the tetrapyrrole backbone exhibit minor variations throughout sequences of consecutively recorded SERRS spectra, the C=C stretching vibrational modes localized on the meso-phenyl moieties of mtpp exhibit noticeable intensity fluctuations, masked in the average SERRS response. Finally, we attribute the observed vibrational-state-specific blinking events to conformational changes in mtpp, namely, torsional flexibility which mediates the coupling between the π-framework of the meso-phenyls and the underlying metal substrate.
The Torsional Spectrum of Doubly Deuterated Methanol CHD_2OH
NASA Astrophysics Data System (ADS)
Ndao, M.; Coudert, L. H.; Kwabia Tchana, F.; Barros, J.; Margulès, L.; Manceron, Laurent; Roy, P.
2014-06-01
Although the torsional spectrum of several isotopic species of methanol with a symmetrical CH_3 or CD_3 was analyzed some time ago, it is recently, and only for the monodeuterated species CH_2DOH, that such an analysis was extended to the case of an asymmetrical methyl group. In this talk, based on a Fourier transform high-resolution spectrum recorded in the 20 to 670 wn region, the first analysis of the torsional spectrum of doubly deuterated methanol CHD_2OH will be presented. The Q branch of many torsional subbands could be observed and their assignment was initiated using a theoretical torsion-rotation spectrum computed with an approach accounting for the torsion-rotation Coriolis coupling and for the dependence of the generalized inertia tensor on the angle of internal rotation. 46 torsional subbands were thus assigned. For 28 of them, their rotational structure could be assigned and fitted using an effective Hamiltonian expressed as a J(J+1) expansion; and for 2 of them microwave transitions within the lower torsional level could also be included in the analysis. In several cases these analysis revealed that the torsional levels are strongly perturbed. In the talk, the torsional parameters retrieved in the analysis of the torsional subband centers will be discussed. The results of the analysis of the rotational structure of the torsional subbands will be presented and we will also try to understand the nature of the perturbations. At last, preliminary results about the analysis of the microwave spectrum will be presented. El Hilali, Coudert, Konov, and Klee, J. Chem. Phys. 135 (2011) 194309 Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spectrosc. 256 (2009) 204 Quade, Liu, Mukhopadhyay, and Su, J. Mol. Spectrosc. 192 (1998) 378 Pearson, Yu, and Drouin, J. Mol. Spectrosc. 280 (2012) 119
Nonuniform radiation damage in permanent magnet quadrupoles
Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.
2014-08-15
We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.
Primary torsion of the greater omentum.
Gul, Y A; Jabbar, M F; Moissinac, K
2001-01-01
Primary or idiopathic greater omental torsion remains a rare cause of acute surgical abdomen in adults and children. The aetiology is as yet unknown and the treatment of choice, once diagnosis is established, is resection of the torted omentum. We report our experience with three such cases encountered over the last five years, two of which were diagnosed and subsequently managed laparoscopically. The performance of diagnostic laparoscopy for acute abdominal pain of an undetermined origin may lead to an increased detection of this condition and subsequent therapeutic intervention.
NASA Technical Reports Server (NTRS)
Messaro. Semma; Harrison, Phillip
2010-01-01
Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.
Contribution to the theory of propeller vibrations
NASA Technical Reports Server (NTRS)
Liebers, F
1930-01-01
This report presents a calculation of the torsional frequencies of revolving bars with allowance for the air forces. Calculation of the flexural or bonding frequencies of revolving straight or tapered bars in terms of the angular velocity of revolution. Calculation on the basis of Rayleigh's principle of variation. There is also a discussion of error estimation and the accuracy of results. The author then provides an application of the theory to screw propellers for airplanes and the discusses the liability of propellers to damage through vibrations due to lack of uniform loading.
Torsional Strengthening of RC Beams Using GFRP Composites
NASA Astrophysics Data System (ADS)
Patel, Paresh V.; Jariwala, Vishnu H.; Purohit, Sharadkumar P.
2016-09-01
Fiber reinforced polymer as an external reinforcement is used extensively for axial, flexural and shear strengthening in structural systems. The strengthening of members subjected to torsion is recently being explored. The loading mechanism of beams located at the perimeter of buildings which carry loads from slabs, joists and beams from one side of the member generates torsion that are transferred from the beams to the columns. In this work an experimental investigation on the improvement of the torsional resistance of reinforced concrete beams using Glass Fiber Reinforced Polymer (GFRP) is presented. Total 24 RC beams have been cast in this work. Ten beams of dimension 150 mm × 150 mm × 1300 mm are subjected to pure torsion while fourteen beams of 150 mm × 150 mm × 1700 mm are subjected to combined torsion and bending. Two beams in each category are designated as control specimen and remaining beams are strengthened by GFRP wrapping of different configurations. Pure torsion on specimens is applied using specially fabricated support mechanism and universal testing machine. For applying combined torsion and bending a loading frame and test set up are fabricated. Measurements of angle of twist at regular interval of torque, torsion at first crack, and ultimate torque, are obtained for all specimens. Results of different wrapping configurations are compared for control and strengthened beams to suggest effective GFRP wrapping configuration.
Hydrostatic self-aligning axial/torsional mechanism
O'Connor, Daniel G.; Gerth, Howard L.
1990-01-01
The present invention is directed to a self-aligning axial/torsional loading mechanism for testing the strength of brittle materials which are sensitive to bending moments. Disposed inside said self-aligning loading mechanism is a frictionless hydrostatic ball joint with a flexure ring to accommodate torsional loads through said ball joint.
Omental torsion in a guinea pig (Cavia porcellus)
Shrubsole-Cockwill, Alana N.; Cockwill, Ken R.N.; Parker, Dennilyn L.
2008-01-01
An adult intact male guinea pig (Cavia porcellus) was presented with gastrointestinal stasis. Radiographic findings demonstrated a gas- and fluid-filled cecum. Treatment was initiated but the animal died shortly after presentation. Gross postmortem revealed omental torsion with vascular thrombosis and necrosis. This is the first report of omental torsion with vascular thrombosis in a domestic animal. PMID:19043488
Mechanical origins of rightward torsion in early chick brain development
NASA Astrophysics Data System (ADS)
Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry
2015-03-01
During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.
The Shock and Vibration Digest. Volume 12, Number 7,
1980-07-01
engine is a good indicator of [)Mc 1979) 22 fits, 7 refs the quality of the gears and the gear assembly. The gears of these planetary gear stages are...coupled lem of the labyrinth seal has not yet been solved with torsional and lateral vibrations in a geared system of sufficient accuracy for practical...system. An analytical approach for studying the vibratory excitation of gear systems The angular velocity and torque change of a rotor has been developed
[Cardiac herniation and torsion after transpericardial pneumonectomy].
Schummer, W; Hottenrott, A; Nissel, C
2016-07-05
This article presents the case of a 43 year old woman with right-sided lung cancer. She underwent transpericardial pneumonectomy. After an uneventfull surgery, the patient was transferred to the intensive care unit for postoperative monitoring. She was hemodynamically stable and had already been extubated in the OR.On postoperative chest X‑ray a mediastinal shift to the operated side as well as a herniation of the heart into the right chest cavity was detected. While the patient remained hemodynamically stable a computed tomography of the chest was performed which confirmed the diagnosis of cardiac herniation and torsion. The lady underwent rethoracotomy the following day where the heart was repositioned and the pericardial defect was closed. She made an uneventfull recovery.Five years after the pneumonectomy she remains well and is without relapse of lung cancer.Mechanism for cardiac herniation and torsion, the clinical presentation and the typical radiologic signs are discussed. However, the clue to early diagnosis is a high index of clinical suspicion.It is highlighted that a hemodynamically unstable patient under these circumstances demands urgent rethoracotomy.
Curvature and torsion in growing actin networks
Shaevitz, Joshua W; Fletcher, Daniel A
2011-01-01
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque. PMID:18560043
Curvature and torsion in growing actin networks
NASA Astrophysics Data System (ADS)
Shaevitz, Joshua W.; Fletcher, Daniel A.
2008-06-01
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.
Infrared modified gravity with dynamical torsion
Nikiforova, V.; Randjbar-Daemi, S.; Rubakov, V.
2009-12-15
We continue the recent study of the possibility of constructing a consistent infrared modification of gravity by treating the vierbein and connection as independent dynamical fields. We present the generalized Fierz-Pauli equation that governs the propagation of a massive spin-2 mode in a model of this sort in the backgrounds of arbitrary torsionless Einstein manifolds. We show explicitly that the number of propagating degrees of freedom in these backgrounds remains the same as in flat space-time. This generalizes the recent result that the Boulware-Deser phenomenon does not occur in de Sitter and anti-de Sitter backgrounds. We find that, at least for weakly curved backgrounds, there are no ghosts in the model. We also discuss the interaction of sources in flat background. It is generally believed that the spinning matter is the only source of torsion. Our flat space study shows that this is not the case. We demonstrate that an ordinary conserved symmetric energy-momentum tensor can also generate torsion fields and thus excite massive spin-2 degrees of freedom.
Torsion and noninertial effects on a nonrelativistic Dirac particle
Bakke, K.
2014-07-15
We investigate torsion and noninertial effects on a spin-1/2 quantum particle in the nonrelativistic limit of the Dirac equation. We consider the cosmic dislocation spacetime as a background and show that a rotating system of reference can be used out to distances which depend on the parameter related to the torsion of the defect. Therefore, we analyse torsion effects on the spectrum of energy of a nonrelativistic Dirac particle confined to a hard-wall potential in a Fermi–Walker reference frame. -- Highlights: •Torsion effects on a spin- 1/2 particle in a noninertial reference frame. •Fermi–Walker reference frame in the cosmic dislocation spacetime background. •Torsion and noninertial effects on the confinement to a hard-wall confining potential.
Unravelling the structural plasticity of stretched DNA under torsional constraint
NASA Astrophysics Data System (ADS)
King, Graeme A.; Peterman, Erwin J. G.; Wuite, Gijs J. L.
2016-06-01
Regions of the genome are often held under torsional constraint. Nevertheless, the influence of such constraint on DNA-protein interactions during genome metabolism is still poorly understood. Here using a combined optical tweezers and fluorescence microscope, we quantify and explain how torsional constraint influences the structural stability of DNA under applied tension. We provide direct evidence that concomitant basepair melting and helical unwinding can occur in torsionally constrained DNA at forces >~50 pN. This striking result indicates that local changes in linking number can be absorbed by the rest of the DNA duplex. We also present compelling new evidence that an overwound DNA structure (likely P-DNA) is created (alongside underwound structures) at forces >~110 pN. These findings substantiate previous theoretical predictions and highlight a remarkable structural plasticity of torsionally constrained DNA. Such plasticity may be required in vivo to absorb local changes in linking number in DNA held under torsional constraint.
NASA Astrophysics Data System (ADS)
Kandel, S. Alex; Zare, Richard N.
1998-12-01
The reactions of atomic chlorine with CH4 and CD4 were studied at five collision energies ranging from 0.13 to 0.29 eV using resonance-enhanced multiphoton ionization of the CH3 and CD3 products. Core-extracted ion arrival profiles were used to determine methyl radical product speed distributions. The distributions contain products that are moving anomalously fast which energetically cannot result from the reaction of ground-state chlorine with ground-state methane. We attribute these products to reaction of ground-state chlorine with methane vibrationally excited in trace quantities into low-energy bending and torsional modes. Measurements of product spatial anisotropy are used to confirm this interpretation and to indicate that the possible reaction of spin-orbit excited chlorine is less important. These low-energy vibrations create large enhancements in reactivity over ground-state molecules, and consequently, vibrationally excited reagents dominate reactivity at low collision energies and contribute substantially at the highest collision energies studied. It is suggested that vibrationally excited reagents play an important role in the thermal kinetics of the reaction of chlorine with methane and may contribute significantly to explain the observed deviation from Arrhenius equation behavior. Scattering distributions of the products of both ground-state and vibrationally excited reactions are reported, and additional measurements of the internal state distributions of the CH3 and CD3 products reveal that the methyl radicals contain very little energy in rotation or vibration.
Development of monofilar rotor hub vibration absorber
NASA Technical Reports Server (NTRS)
Duh, J.; Miao, W.
1983-01-01
A design and ground test program was conducted to study the performance of the monofilar absorber for vibration reduction on a four-bladed helicopter. A monofilar is a centrifugal tuned two degree-of-freedom rotor hub absorber that provides force attenuation at two frequencies using the same dynamic mass. Linear and non-linear analyses of the coupled monofilar/airframe system were developed to study tuning and attenuation characteristics. Based on the analysis, a design was fabricated and impact bench tests verified the calculated non-rotating natural frequencies and mode shapes. Performance characteristics were measured using a rotating absorber test facility. These tests showed significant attenuation of fixed-system 4P hub motions due to 3P inplane rotating-system hub forces. In addition, detuning effects of the 3P monofilar modal response were small due to the nonlinearities and tuning pin slippage. However, attenuation of 4P hub motions due to 5P inplane hub forces was poor. The performance of the 5P monofilar modal response was degraded by torsional motion of the dynamic mass relative to the support arm which resulted in binding of the dynamic components. Analytical design studies were performed to evaluate this torsional motion problem. An alternative design is proposed which may alleviate the torsional motion of the dynamic mass.
A Consideration on Inertia-Ratio and Vibration Control of Two-Inertia System
NASA Astrophysics Data System (ADS)
Takesue, Naoyuki; Furusho, Junji; Iwakoshi, Kunio
Most Industrial robots are driven through reduction gears such as harmonic drives and RV gears. Since the exibility of the drive system, the vibratory behavior is caused duringthe operation. When the exibility is considered, the drive system of the robot joint can be modeled as a resonant mechanical system called two-inertia system. Two-inertia systems are the vibratory systems that have poles on/near the imaginary axis. Acceleration feedback and torque feedback are known as the vibration control methods of two-inertia systems. In this paper, we consider the two-inertia system with the feedbacks of motor-acceleration, load-acceleration and torsion-torque. It is shown that each feedback works to control the inertia-ratio of two-inertia system. Then, the control performances are compared. Torsion vibration in robot joint, which occurs owingto the accuracy of components and assembly error of gears at a certain speed of rotation, becomes a problem. In order to suppress the torsion vibration, each feedback is applied to the robot arm. As a result, the torsion vibrations are suppressed e ectively.
Imaging Mechanical Vibrations in Suspended Graphene Sheets
NASA Astrophysics Data System (ADS)
Garcia-Sanchez, D.; van der Zande, A. M.; Paulo, A. San; Lassagne, B.; McEuen, P. L.; Bachtold, A.
2008-05-01
We carried out measurements on nanoelectromechanical systems based on multilayer graphene sheets suspended over trenches in silicon oxide. The motion of the suspended sheets was electrostatically driven at resonance using applied radio-frequency voltages. The mechanical vibrations were detected using a novel form of scanning probe microscopy, which allowed identification and spatial imaging of the shape of the mechanical eigenmodes. In as many as half the resonators measured, we observed a new class of exotic nanoscale vibration eigenmodes not predicted by the elastic beam theory, where the amplitude of vibration is maximum at the free edges. By modeling the suspended sheets with the finite element method, these edge eigenmodes are shown to be the result of non-uniform stress with remarkably large magnitudes (up to 1.5 GPa). This non-uniform stress, which arises from the way graphene is prepared by pressing or rubbing bulk graphite against another surface, should be taken into account in future studies on electronic and mechanical properties of graphene.
NASA Astrophysics Data System (ADS)
Monsalve-Cano, J. F.; Darío Aristizábal-Ochoa, J.
2009-12-01
The stability and free vibration analyses (i.e., buckling, natural frequencies and modal shapes) of an orthotropic singly symmetric 3D Timoshenko beam-column with generalized boundary conditions (i.e., with bending and torsional semirigid restraints and lateral bracings as well as lumped masses at both ends) subjected to an eccentric end axial load are presented in a classical manner. The five governing equations of dynamic equilibrium (i.e., two transverse shear equations, two bending moment equations and pure torsional moment equation) are sufficient to determine the natural frequencies and the corresponding modal shapes of the beam-column in the two principal planes of bending and torsion about its longitudinal axis. The proposed model includes the coupling effects among: (1) the deformations due to bending, shear and pure torsion; (2) inertias (translational, rotational and torsional) of all masses considered; (3) eccentric axial loads applied at the ends, and (4) restraints at the supports (bending, torsional and lateral bracings at both ends of the member). However, the effects of axial deformations and warping torsion produced by the axial load are not included; consequently the proposed model is not capable of capturing the phenomena of torsional buckling or combined lateral bending-torsional buckling. The proposed analytical model indicates that the stability and dynamic response of beam-columns are highly sensitive to the coupling effects, particularly in members with both ends free to rotate. The natural frequencies and modal shapes can be determined from the eigenvalues of a full 4×4 matrix for vibration in the plane of symmetry (using the uncoupled equations of transverse force and moment equilibrium at both ends) and from a full 6×6 matrix for the coupled shear-bending-torsional vibration (using the coupled equations of transverse shear, bending and torsional moment equilibrium at both ends). Also, it is shown that the proposed method reproduces the
Nonradiating electromagnetic sources in a nonuniform medium.
Nikolova, Natalia K; Rickard, Yotka S
2005-01-01
Nonradiating electromagnetic sources are sources whose field is identically zero outside of their volume. They are undetectable unless the observation point is in direct contact with them. They are the basis of the theory of source equivalence, which studies the field invariance with respect to source transformations. In this work, we focus on the equivalent source transformations in a nonuniform medium and the implications in the theory of the electromagnetic vector potentials. We identify three types of nonradiating sources. Subsequently, we define the mathematical transformations of the sources, which preserve the field outside of their support (source invariance). We give complimentary expressions, which preserve the field inside the source support as well. We show that the nonuniqueness of the electromagnetic potentials is due to the nonunique solution to the inverse problem. The well known field gauge invariance follows from its source invariance. Also, the gauge-invariant transformation appears to be just one possibility in an infinite set of field-invariant vector-potential representations all related to the respective equivalent source transformations.
High harmonic terahertz confocal gyrotron with nonuniform electron beam
Fu, Wenjie; Guan, Xiaotong; Yan, Yang
2016-01-15
The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.
Lomb-Wech periodogram for non-uniform sampling.
Thong, Tran; McNames, James; Aboy, Mateo
2004-01-01
The Lomb-Scargle transform has been proposed for the direct evaluation, namely without interpolation, of non-uniformly sampled signals. In its current form, it is suitable only for single transform evaluation due to the implicit normalization. Enhancements of this transform are proposed to allow the evaluation of shorter transforms, combined with windows and averaging of overlapped records. This requires a de-normalization of the transform by a factor of 2(sigma)/sup 2//N, the use of equal time duration records, and multiplication by windows sampled at corresponding non-uniform time instances. This results in a Welch-like periodogram for non-uniform sampling.
NASA Astrophysics Data System (ADS)
Chen, Han; Li, Fuguo; Liu, Jie; Li, Jinghui; Ma, Xinkai; Wan, Qiong
2017-03-01
Systematic experimental studies of microstructure and crystallographic texture of pure titanium during the Single Direction Torsion (SDT) and Alternating Cyclic Torsion (ACT) are carried out at room temperature. The microstructure evolution indicates that the grain size can be refined during SDT, while the grain morphology can be controlled during ACT. Also, lots of {10-12} and few {11-22} twins are observed and their area percentages increase with increasing torsion angles during SDT. The microtexture evolution states that the deformation texture first approaches to the B fiber (0, 90, 0 to 60 deg), and then stays away from B fiber (0, 90, 0 to 60 deg) with increasing plastic strain during SDT. The change of deformation texture is mainly attributed to the appearance of {10-12} twin. However, the deformation texture is always close to B fiber (0, 90, 0 to 60 deg) during ACT. Finally, the effects of different dislocation movements caused by SDT and ACT are discussed. Quantities of subgrains with high density dislocation are observed during SDT while the {10-12} and {11-22} twins intersect with each other, and high density dislocations distribute the twin during ACT.
Torsional suspension system for testing space structures
NASA Technical Reports Server (NTRS)
Reed, Wilmer H., III (Inventor); Gold, Ronald R. (Inventor)
1991-01-01
A low frequency torsional suspension system for testing a space structure uses a plurality of suspension stations attached to the space structure along the length thereof in order to suspend the space structure from an overhead support. Each suspension station includes a disk pivotally mounted to the overhead support, and two cables which have upper ends connected to the disk and lower ends connected to the space structure. The two cables define a parallelogram with the center of gravity of the space structure being vertically beneath the pivot axis of the disk. The vertical distance between the points of attachment of the cables to the disk and the pivot axis of the disk is adjusted to lower the frequency of the suspension system to a level which does not interfere with frequency levels of the space structure, thereby enabling accurate measurement.
Plant-based torsional actuator with memory
NASA Astrophysics Data System (ADS)
Plaza, Nayomi; Zelinka, Samuel L.; Stone, Don S.; Jakes, Joseph E.
2013-07-01
A bundle of a few loblolly pine (Pinus taeda) cells are moisture-activated torsional actuators that twist multiple revolutions per cm length in direct proportion to moisture content. The bundles generate 10 N m kg-1 specific torque during both twisting and untwisting, which is higher than an electric motor. Additionally, the bundles exhibit a moisture-activated, shape memory twist effect. Over 70% of the twist in a wetted bundle can be locked-in by drying under constraint and then released by rewetting the bundle. Our results indicate that hemicelluloses dominate the shape fixity mechanism and lignin is primarily responsible for remembering the bundle’s original form. The bundles demonstrate proof of a high specific torque actuator with large angles of rotation and shape memory twist capabilities that can be used in microactuators, sensors, and energy harvesters.
Torsional thrust stand for characterization of microthrusters
NASA Astrophysics Data System (ADS)
Cheah, K. H.; Low, K. S.
2016-10-01
This paper describes the setup of a precise thrust stand based on torsional pendulum design for characterizing the performance of microthrusters. Calibration has been carried out by using an improved version of electrostatic calibrator, which produces a wide range of accurate and repeatable calibration force. After the calibration, the thrust stand can resolve constant force from 40μN to 3.4mN and impulse bit from 7μNs to 340μNs. The usefulness of the thrust stand has been demonstrated by measuring the performance of two different microthrusters: a pulsed plasma thruster that produces impulse bit of 23.15μNs and a vaporizing liquid microthruster that produces steady state thrust of 633.5μN.
Experimental Study of Torsional Column Failure
NASA Technical Reports Server (NTRS)
Nile, Alfred S
1939-01-01
Thirty-three 24ST aluminum-alloy 2- by 2- by 0.10-inch channels, with lengths ranging from 10 to 90 inches were tested at Stanford University in compression to obtain an experimental verification of the theoretical formulas for torsional failure developed by Eugene E. Lundquist of the N.A.C.A. The observed critical loads and twist-axis locations were sufficiently close to the values obtained from the formulas to establish the substantial validity of the latter. The differences between observed and computed results were small enough to be accounted for by small and mostly unavoidable differences between actual test conditions and those assumed in deriving the formulas. Some data were obtained from the shorter specimens regarding the growth of the buckles that resulted in local buckling failure.
Torsional ultrasonic transducer computational design optimization.
Melchor, J; Rus, G
2014-09-01
A torsional piezoelectric ultrasonic sensor design is proposed in this paper and computationally tested and optimized to measure shear stiffness properties of soft tissue. These are correlated with a number of pathologies like tumors, hepatic lesions and others. The reason is that, whereas compressibility is predominantly governed by the fluid phase of the tissue, the shear stiffness is dependent on the stroma micro-architecture, which is directly affected by those pathologies. However, diagnostic tools to quantify them are currently not well developed. The first contribution is a new typology of design adapted to quasifluids. A second contribution is the procedure for design optimization, for which an analytical estimate of the Robust Probability Of Detection, called RPOD, is presented for use as optimality criteria. The RPOD is formulated probabilistically to maximize the probability of detecting the least possible pathology while minimizing the effect of noise. The resulting optimal transducer has a resonance frequency of 28 kHz.
Torsion Tests of Stiffened Circular Cylinders
NASA Technical Reports Server (NTRS)
Moore, R L; Wescoat, C
1944-01-01
The design of curved sheet panels to resist shear involves a consideration of several factors: the buckling resistance of the sheet, the stress at which buckling becomes permanent, and the strength which may be developed beyond the buckling limit by tension-field action. Although some experimental as well as theoretical work has been done on the buckling and tension-field phases of this problem, neither of these types of action appears to be very well understood. The problem is of sufficient importance from the standpoint of aircraft design, it is believed, to warrant further experimental investigation. This report presents the results of the first series of torsion tests of stiffened circular cylinders to be completed in connection with this study at Aluminum Research Laboratories. (author)
Primordial magnetic fields and dynamos from parity violated torsion
NASA Astrophysics Data System (ADS)
Garcia de Andrade, L. C.
2012-05-01
It is well known that torsion induced magnetic fields may seed galactic dynamos, but the price one pays for that is the conformal and gauge invariance breaks and a tiny photon mass. More recently I have shown [L.C. Garcia de Andrade, Phys. Lett. B 468 (2011) 28] that magnetic fields decay in a gauge invariant non-minimal coupling theory of torsion is slow down, which would allow for dynamo action to take place. In this Letter, by adding a parity violation term of the type Rɛ to the non-coupling term, a magnetic dynamo equation is obtained. From dynamo equation it is shown that torsion terms only appear in the dynamo equation when diffusion in the cosmic plasma is present. Torsion breaks the homogeneity of the magnetic field in the universe. Since Zeldovich anti-dynamo theorem assumes that the spacetime should be totally flat, torsion is responsible for violation of anti-dynamo theorem in 2D spatial dimensions. Contrary to previous results torsion induced primordial magnetic fields cannot seed galactic dynamos since from torsion and diffusion coefficient the decaying time of the magnetic field is 106yrs, which is much shorter than the galaxy age.
Management of suspected antenatal torsion: what is the best strategy?
Stone, K T; Kass, E J; Cacciarelli, A A; Gibson, D P
1995-03-01
Currently, management of the newborn with suspected antenatal torsion is somewhat controversial. Many surgeons recommend early surgical exploration within the first few days of life, primarily to avoid errors in diagnosis. However, since the surgical and general anesthetic risks at this age are increased, it might be preferable to defer an operation until risks to the patient are minimized. The optimal solution to this dilemma would be the ability to diagnose torsion and exclude other conditions noninvasively. We present a series of 12 patients 1 to 14 days old who presented with a scrotal mass secondary to suspected antenatal testis torsion. Color Doppler ultrasound in each case demonstrated abnormal testicular blood flow and architecture consistent with testis torsion. Eventual exploration of all 12 patients confirmed prenatal torsion. We conclude that scrotal ultrasound with color Doppler enhancement can accurately identify neonates with antenatal testis torsion and exclude other scrotal pathological conditions. If elected, surgery for torsion can then be deferred until the risks of anesthesia and surgery are improved.
Constraining spacetime torsion with the Moon and Mercury
March, Riccardo; Bellettini, Giovanni; Tauraso, Roberto; Dell'Agnello, Simone
2011-05-15
We report a search for new gravitational physics phenomena based on Riemann-Cartan theory of general relativity including spacetime torsion. Starting from the parametrized torsion framework of Mao, Tegmark, Guth, and Cabi, we analyze the motion of test bodies in the presence of torsion, and, in particular, we compute the corrections to the perihelion advance and to the orbital geodetic precession of a satellite. We consider the motion of a test body in a spherically symmetric field, and the motion of a satellite in the gravitational field of the Sun and the Earth. We describe the torsion field by means of three parameters, and we make use of the autoparallel trajectories, which in general differ from geodesics when torsion is present. We derive the specific approximate expression of the corresponding system of ordinary differential equations, which are then solved with methods of celestial mechanics. We calculate the secular variations of the longitudes of the node and of the pericenter of the satellite. The computed secular variations show how the corrections to the perihelion advance and to the orbital de Sitter effect depend on the torsion parameters. All computations are performed under the assumptions of weak field and slow motion. To test our predictions, we use the measurements of the Moon's geodetic precession from lunar laser ranging data, and the measurements of Mercury's perihelion advance from planetary radar ranging data. These measurements are then used to constrain suitable linear combinations of the torsion parameters.
[Torsion and necrosis of epiploic appendices of the large bowel].
Timofeev, M E; Fedorov, E D; Krechetova, A P; Shapoval'iants, S G
2014-01-01
The features of the clinical symptoms was studied, the possibility of laparoscopy in modern diagnosis and treatment of epiploic appendices torsion and necrosis of the large bowel was assessed in the article. It was done the retrospective analysis of the medical records of 87 patients with a diagnosis of epiploic appendices torsion and necrosis of the large bowel. The patients had laparoscopic operations in our hospital in the period from January 1995 to December 2012. The clinical picture, laboratory and instrumental datas in cases of epiploic appendices torsion and necrosis were scarce and nonspecific. An abdominal pain preferentially localized in the lower divisions was the main symptom (97.7%). The instrumental methods did not allow to diagnose the torsion and necrosis of epiploic appendices in the majority of cases and all these techniques were used for the differential diagnosis with other diseases. The assumption of the presence of appendices torsion and necrosis occured just in 34.5% of cases before the operation. Diagnosis of epiploic appendices torsion and necrosis present significant difficulties on prehospital and preoperative stages. The diagnostic laparoscopy is the method of choice in unclear situations and it allows to diagnose the torsion and necrosis of epiploic appendices in 96.6% of cases. Successful surgical treatment by using laparoscopic approach is possible in 90.8% of cases.
Torsion constraints from cosmological magnetic field and QCD domain walls
NASA Astrophysics Data System (ADS)
Garcia de Andrade, L. C.
2014-10-01
Earlier Kostelecky [Phys. Rev. D 69, 105009 (2004)] has investigated the role of gravitational sector in Riemann-Cartan (RC) spacetime with torsion, in Lorentz and CPT violating (LV) Standard Model extension (SME). In his paper use of quantum electrodynamic (QED) extension in RC spacetime is made. More recently L. C. Garcia de Andrade [Phys. Lett. B 468, 28 (2011)] obtained magnetic field galactic dynamo seeds in the bosonic sector with massless photons, which proved to decay faster than necessary [Phys. Lett. B 711, 143 (2012)] to be able to seed galactic dynamos. In this paper it is shown that by using the fermionic sector of Kostelecky-Lagrangian and torsion written as a chiral current, one obtains torsion and magnetic fields explicitly from a Heisenberg-Ivanenko form of Dirac equation whose solution allows us to express torsion in terms of LV coefficients and magnetic field in terms of fermionic matter fields. When minimal coupling between electromagnetic and torsion fields is used it is shown that the fermionic sector of QED with torsion leads to resonantly amplify magnetic fields which mimics an α2-dynamo mechanism. Fine-tuning of torsion is shown to result in the dynamo reversal, a phenomenon so important in solar physics and geophysics. Of course this is only an analogy since torsion is very weak in solar and geophysics contexts. An analogous expression for the α-effect of mean-field dynamos is also obtained where the α-effect is mimic by torsion. Similar resonant amplification mechanisms connected to early universe have been considered by Finelli and Gruppuso.
Localized Torsional Tension in the DNA of Human Cells
NASA Astrophysics Data System (ADS)
Ljungman, Mats; Hanawalt, Philip C.
1992-07-01
Torsional tension in DNA may be both a prerequisite for the efficient initiation of transcription and a consequence of the transcription process itself with the generation of positive torsional tension in front of the RNA polymerase and negative torsional tension behind it. To examine torsional tension in specific regions of genomic DNA in vivo, we developed an assay using photoactivated psoralen as a probe for unconstrained DNA superhelicity and x-rays as a means to relax DNA. Psoralen intercalates more readily into DNA underwound by negative torsional tension than into relaxed DNA, and it can form interstrand DNA cross-links upon UVA irradiation. By comparing the amount of psoralen-induced DNA cross-links in cells irradiated with x-rays either before or after the psoralen treatment, we examined the topological state of the DNA in specific regions of the genome in cultured human 6A3 cells. We found that although no net torsional tension was detected in the bulk of the genome, localized tension was prominent in the DNA of two active genes. Negative torsional tension was found in the 5' end of the amplified dihydrofolate reductase gene and in a region near the 5' end of the 45S rRNA transcription unit, whereas a low level of positive torsional tension was found in a region near the 3' end of the dihydrofolate reductase gene. These results document an intragenomic heterogeneity of DNA torsional tension and lend support to the twin supercoiled domain model for transcription in the genome of intact human cells.
An experimental investigation of the structural dynamics of a torsionally soft rotor in vacuum
NASA Technical Reports Server (NTRS)
Srinivasan, A. V.; Cutts, D. G.; Shu, H. T.
1986-01-01
An extensive data base of structural dynamic characteristics has been generated from an experimental program conducted on a torsionally soft two-bladed model helicopter rotor system. Measurements of vibratory strains for five modes of vibration were made at twenty-one locations on the two blades at speeds varying from 0 to 1000 RPM and for several combinations of precone, droop and flexure stiffness. Tests were conducted in vacuum under carefully controlled conditions using a unique excitation device with a system of piezoelectric crystals bonded to the blade surface near the root. Frequencies, strain mode shapes and dampings are extracted from the time histories and can be used to validate structural dynamics codes. The dynamics of the system are such that there is a clear tendency for the first torsion and second flap modes to couple within the speed range considered. Strain mode shapes vary significantly with speed and configuration. This feature is important in the calcualtion of aeroelastic instabilities. The tension axis tests confirmed that the modulus-weighted centroid for the nonhomogeneous airfoil is slightly off the mass centroid and validated previous static tests done to determine location of the tension axis.
Validation of an Automated Torsional and Warping Stress Analysis Program
1992-08-19
AD-A256 035 I HEI| I IIHAI l! VALIDATION OF AN AUTOMATED TORSIONAL AND WARPING STRESS ANALYSIS PROGRAM DI f ELECTE ND OCT 8 1992 A Special Research...7 2.2 Torsional Analysis Case Charts ....................... 8 2.3 Determination of Plane Bending, Torsional ............. 9 and Warping...Fixed-Free 6 W1Ox49 Fixed-Free 7 W6x15 Fixed-Free 8 W8x67 Fixed-Free 9 ClOx20 Fixed-Free 10 C12x30 Fixed-Free 11 C5x9 Fixed-Fire 12 MC18x42 Fixed-Free
Spinning Particles in Scalar-Tensor Gravity with Torsion
Wang, C.-H.
2008-10-10
A new model of neutral spinning particles in scalar-tensor gravity with torsion is developed by using a Fermi coordinates associated with orthonormal frames attached to a timelike curve and Noether identities. We further analyze its equations of motion both in background Brans-Dicke torsion field and the constant pseudo-Riemannian curvature with a constant scalar field. It turns that the particle's spin vector is parallel transport along its wordline in the Brans-Dicke torsion field and de Sitter spacetime. However, the dynamics of the spinning particle cannot completely determined in anti-de Sitter spacetime and it requires a further investigation.
Experimental investigation of cyclic thermomechanical deformation in torsion
NASA Technical Reports Server (NTRS)
Ellis, John R.; Castelli, Michael G.; Bakis, Charles E.
1992-01-01
An investigation of thermomechanical testing and deformation behavior of tubular specimens under torsional loading is described. Experimental issues concerning test accuracy and control specific to thermomechanical loadings under a torsional regime are discussed. A series of shear strain-controlled tests involving the nickel-base superalloy Hastelloy X were performed with various temperature excursions and compared to similar thermomechanical uniaxial tests. The concept and use of second invariants of the deviatoric stress and strain tensors as a means of comparing uniaxial and torsional specimens is also briefly presented and discussed in light of previous thermomechanical tests conducted under uniaxial conditions.
Torsion of a wandering spleen: an unusual abdominal catastrophe.
Riaz ul Haq, Muhammad; Elhassan, Elbagir; Mahdi, Diaa
2014-11-01
Wandering spleen is a rare clinical entity characterised by splenic hypermobility resulting from laxity or maldevelopment of the suspensory gastrosplenic, splenorenal, and phrenicocolic ligaments. Diagnosis is quite difficult, especially in children because of the lack of symptoms and signs until splenic torsion have occurred. An array of investigations is possible but US with color Doppler, CT with intravenous contrast and MRI are frequently being used to diagnose wandering spleen with or without torsion. We present a case of 5 years old child with torsion of wandering spleen to highlight the importance of prompt diagnosis and management.
Acute torsion of wandering spleen: report of one case.
Lien, Chi-Hone; Lee, Hung-Chang; Yeung, Chun-Yan; Chan, Wai-Tao; Wang, Nein-Lu
2009-08-01
Wandering spleen is a rare condition that can lead to splenic infarction or rupture if torsion persists. Early diagnosis and intervention are necessary, and abdominal ultrasonography and abdominal computed tomography are well accepted as the diagnostic imaging modalities. In this study, we present a boy with nic infarction due to acute torsion of a wandering spleen, after initial failure to demonstrate an ectopic spleen. Instead, acute torsion of the wandering spleen with spontaneous partial detorsion was incidentally found by multi-detector row CT with angiography. The patient was managed by splenectomy instead of splenopexy, because poor reperfusion after Laparoscopic detorsion.
Discussion on massive gravitons and propagating torsion in arbitrary dimensions
Hernaski, C. A.; Vargas-Paredes, A. A.; Helayeel-Neto, J. A.
2009-12-15
In this paper, we reassess a particular R{sup 2}-type gravity action in D dimensions, recently studied by Nakasone and Oda, now taking torsion effects into account. Considering that the vielbein and the spin connection carry independent propagating degrees of freedom, we conclude that ghosts and tachyons are absent only if torsion is nonpropagating, and we also conclude that there is no room for massive gravitons. To include these excitations, we understand how to enlarge Nakasone-Oda's model by means of explicit torsion terms in the action and we discuss the unitarity of the enlarged model for arbitrary dimensions.
NASA Astrophysics Data System (ADS)
Fatihou, Ali; Zouzou, Noureddine; Iuga, Gheorghe; Dascalescu, Lucian
2015-10-01
The aim of this paper is to establish the conditions in which the vibrating capacitive probe of an electrostatic voltmeter could be employed for mapping the electric potential at the surface of non-uniformly charged insulating bodies. A first set of experiments are performed on polypropylene non-woven media (thickness: 0.4 mm; fiber diameter: 20 μm) in ambient air. In a second set of experiments the non-uniformity of charge is simulated using five copper strips (width: 2 mm or 3 mm; distance between strips: 2 mm). All the strips are connected to a high-voltage supply (Vs = 1000 V). The sample carrier is attached to a computer-controlled positioning system that transfers it under the capacitive probe (TREK, model 3451) of an electrostatic voltmeter (TREK, model 1341B). The measurements are performed at various relative speeds Vb between the sample and the probe, and for various sample rates Fe. A first set of experiments point out that the electric potential displayed by the electrostatic voltmeter depends on the spacing h between the sample and the probe. The diameter D of the spot “seen” by the probe is approximately D ≈ 8h/3. From the second set of experiments performed with the test plate, it can be concluded that the surface potential can be measured with the media in motion, but the accuracy is limited by the spatial resolution defined by k = Vb/Fe.
Excitation of unsteady Görtler vortices by localized surface nonuniformities
NASA Astrophysics Data System (ADS)
Boiko, A. V.; Ivanov, A. V.; Kachanov, Yu. S.; Mischenko, D. A.; Nechepurenko, Yu. M.
2017-02-01
A combined theoretical and numerical analysis of an experiment devoted to the excitation of Görtler vortices by localized stationary or vibrating surface nonuniformities in a boundary layer over a concave surface is performed. A numerical model of generation of small-amplitude disturbances and their downstream propagation based on parabolic equations is developed. In the framework of this model, the optimal and the modal parts of excited disturbance are defined as solutions of initial-value problems with initial values being, respectively, the optimal disturbance and the leading local mode at the location of the source. It is shown that a representation of excited disturbance as a sum of the optimal part and a remainder makes it possible to describe its generation and downstream propagation, as well as to predict satisfactorily the corresponding receptivity coefficient. In contrast, the representation based on the modal part provides only coarse information about excitation and propagation of disturbance in the range of parameters under investigation. However, it is found that the receptivity coefficients estimated using the modal parts can be reinterpreted to preserve their practical significance. A corresponding procedure was developed. The theoretical and experimental receptivity coefficients are estimated and compared. It is found that the receptivity magnitudes grow significantly with the disturbance frequency. Variation of the span-wise scale of the nonuniformities affects weakly the receptivity characteristics at zero frequency. However, at high frequencies, the efficiency of excitation of Görtler vortices depends substantially on the span-wise scale.
Bitkina, N.S.; Vernigorov, Yu.M.; Ignatov, B.P.; Lemeshko, G.F.
1988-04-01
The breakup process of floccules in the fluid state under the action of a constant magnetic and of strongly nonuniform electromagnetic fields was described and recorded by comparing the magnetic properties of samples pressed from powders, texturized, and prefluidized. Commercial barium ferrite powder was fluidized in a dielectric mold. A vibration magnetometer measured the magnetic properties. To evaluate the role of the resonance response to magnetic properties, a system of magnetic strings was formed and held in an oscillation regime induced by an alternating field with different frequency. It was found from the results of these formations that the magnetic structure of the sample consists of magnetic strings formed predominantly by separate particles and whose magnetic moments are oriented along the direction of the texturizing field. Results are also given for the fluidization of samarium-cobalt and samarium-cobalt-copper alloy powders.
NASA Astrophysics Data System (ADS)
Gorospe, Alking; Bautista, Zhierwinjay; Shin, Hyung-Seop
2016-10-01
Coated conductor (CC) tapes utilized in high-current-density superconducting cables are commonly subjected to different loading modes, primarily torsion and tension especially in the case of twisted stacked-tape cable. Torsion load can occur due to twisting along the length or when winding the CC tapes around a former, while tension load can occur due to pre-tension when coiled and as a hoop stress when the coil is energized. In this study, electromechanical properties of single CC tapes under torsion load were investigated using a new test apparatus. The results could provide basic information for cable designers to fully characterize stacked cables. Copper-electroplated and brass-laminated CC tapes fabricated with different deposition techniques were subjected to pure torsion and combined tension-torsion loading. The critical current, I c degradation behaviours of CC tapes under torsional deformation were examined. Also, the effect of further external lamination on the I c degradation behaviour of the CC tapes under such loading conditions was investigated. In the case of the combined tension-torsion test, short samples were subjected to twist pitches of 200 mm and 100 mm. Critical parameters including reversible axial stress and strain in such twist pitch conditions were also investigated.
Charged particle acceleration in nonuniform plasmas
Bulanov, S.V.; Naumova, N.M.; Dudnikova, G.I.; Vshivkov, V.A.; Pegoraro, F.; Pogorelsky, I.V.
1996-11-01
The high-gradient electron acceleration schemes that have been demonstrated using LWFA appear promising for the development of plasma-based laser accelerators into practical devices. However, a question still exists: how to avoid the wake field deterioration and the loss of the phase synchronism between the plasma wave and the electrons that prevent them from being accelerated up to the theoretical limit. In order to obtain the highest possible values of the wake electric field one must use as intense laser pulses as possible i.e., pulses with dimensionless amplitudes a {much_gt} 1. Pulses that have a dimensionless amplitude larger than one tend to be subject to a host of instabilities, such as relativistic self-focusing, self modulation and stimulated Raman scattering, that affect their propagation in the plasma. Such processes could be beneficial, in so far as they increase the pulse energy density, enhance the wake field generation, and provide the mechanism for transporting the laser radiation over several Rayleigh lengths without diffraction spreading. However, it is still far from certain that these processes can be exploited in a controlled form and can lead to regular, stationary wake fields. It is known that, in order to create good quality wake fields, it would be preferable to use laser pulses with steep fronts of order {lambda}{sub p}. The present paper aims at analyzing the influence of the laser pulse shape and of the plasma nonuniformity on the charged particle acceleration. This study is based on the results obtained with one dimensional PIC simulations.
Fast Scene Based Nonuniformity Correction with Minimal Temporal Latency
2006-09-01
exist in a focal plane array and mitigating the effect those nonuniformities. v To my beloved vi Acknowledgments...motion between frames to mitigating the effect of the spatial nonuniformities in the sensor FPA. A LIDAR example is shown in figure 1 below...detector responds to photons that collide with it by generating a charge. This charge is then amplified and converted from a voltage to a digital
Dielectrophoresis device and method having nonuniform arrays for manipulating particles
Cummings, Eric B.; Fintschenko, Yolanda; Simmons, Blake A.
2012-09-04
Microfluidic devices according to embodiments of the present invention include an inlet port, an outlet port, and a channel or chamber having a non-uniform array of insulating features on one or more surfaces. Electrodes are provided for generation of a spatially non-uniform electric field across the array. A voltage source, which may be an A.C. and/or a D.C. voltage source may be coupled to the electrodes for the generation of the electric field.
NASA Astrophysics Data System (ADS)
Qiu, Zhi-cheng; Zhang, Si-ma
2016-10-01
A kind of non-contact vibration measurement method for a two-connected flexible piezoelectric plate using laser sensors is proposed. Decoupling of the bending and torsional vibration on measurement and driving control is carried out via using two laser displacement sensors and piezoelectric actuators. The fuzzy fast terminal sliding mode controller (FFTSMC) is investigated to suppress both the larger and the smaller amplitude vibrations quickly. In order to alleviate the chattering phenomenon and enhance the control effect, the fuzzy logic adaptive algorithm is used to adjust the switching control gain for softening the signum function adaptively. To verify the non-contact measurement method and the designed controller, the experimental setup is built up. Experiments on active vibration control using the designed FFTSMC are conducted, compared with the classical proportional derivative (PD) control algorithm. The experimental identification results demonstrate that the laser displacement sensors can detect the low-frequency bending and torsional vibration effectively, after using the decoupling method. Furthermore, the designed FFTSMC can suppress both bending and torsional vibration more quickly than the designed PD controller owing to the adjustment of the switching control gains and the softening factors, especially for the small amplitude residual vibrations.
Childhood chronic inflammatory demyelinating polyneuropathy with nonuniform pathologic features.
Luan, Xinghua; Zheng, Riliang; Chen, Bin; Yuan, Yun
2010-08-01
Nonuniform pathologic changes in chronic inflammatory demyelinating polyneuropathy were previously reported only in adult humans. We analyzed the pathologic features of 12 children, aged 2-17 years, with chronic inflammatory demyelinating polyneuropathy. Six patients manifested a preceding illness. Five patients presented a chronic, monophasic course, and seven presented a relapsing-remitting course. Three patients exhibited multiple cranial-nerve involvement. Five of 12 (41.7%) patients presented nonuniform features. Two subtypes of nonuniform lesions were revealed. One exhibited varying myelinated fiber content between nerve fascicles, and one exhibited onion bulbs involving a variable number of fascicles. Macrophages were evident in 11 patients, and the number of CD3-positive T cells in the nonuniform group was greater compared with the uniform group (P = 0.045). Our results demonstrate that childhood chronic inflammatory demyelinating polyneuropathy exhibits pathologically nonuniform features, thus providing more evidence to assist in differential diagnoses of pediatric patients. However, clinical and electrophysiologic features, as well as responses to treatment, were similar in the nonuniform and uniform groups.
Coupled vibrations of rectangular buildings subjected to normally-incident random wind loads
Safak, E.; Foutch, D.A.
1987-01-01
A method for analyzing the three-directional coupled dynamic response of wind-excited buildings is presented. The method is based on a random vibration concept and is parallel to those currently used for analyzing alongwind response. Only the buildings with rectangular cross-section and normally-incident wind are considered. The alongwind pressures and their correlations are represented by the well-known expressions that are available in the literature. The acrosswind forces are assumed to be mainly due to vortex shedding. The torque acting on the building is taken as the sum of the torque due to random alongwind forces plus the torque due to asymmetric acrosswind forces. The study shows the following: (1) amplitude of acrosswind vibrations can be several times greater than that of alongwind vibrations; (2) torsional vibrations are significant if the building has large frontal width, and/or it is asymmetric, and/or its torsional natural frequency is low; (3) even a perfectly symmetric structure with normally incident wind can experience significant torsional vibrations due to the randomness of wind pressures. ?? 1987.
Effect of tensile and torsion on GMI in amorphous wire
NASA Astrophysics Data System (ADS)
Blanco, J. M.; Zhukov, A.; Gonzalez, J.
1999-05-01
GMI effect, Δ Z/Z = [ Z( H) - Z( Hmax)]/ Z( Hmax) has been measured in (Fe 0.94Co 0.06) 72.5B 15Si 12.5 wire under tensile, σ ten, and torsional, σ tor, stresses. Generally Δ Z/Z( H) dependence has a non-monotonic shape with a maximum at certain axial magnetic field, Hm. Both tension and torsion modify Δ Z/Z( H) dependence. Application of tension results in an increase of Hm with σ ten. Torsional stress dependence of GMI effect has asymmetry with a maximum at torsion angle, φ, around + 12π/m in as-cast wire, when Δ Z/Z is around 250%. An increase of Δ Z/Zm up to 350% and change of Δ Z/Z(φ) dependence towards a nearly symmetric shape have been observed after Joule heating.
Response characteristics of the human torsional vestibuloocular reflex
NASA Technical Reports Server (NTRS)
Peterka, Robert J.
1992-01-01
The characteristics of the response dynamics of the human torsional vestibuloocular reflex were studied during controlled rotations about an earth-horizontal axis. The results extended the frequency range to 2 Hz and identified the nonlinearity of the amplitude response.
Torsional Newton-Cartan geometry from Galilean gauge theory
NASA Astrophysics Data System (ADS)
Banerjee, Rabin; Mukherjee, Pradip
2016-11-01
Using the recently advanced Galilean gauge theory (GGT) we give a comprehensive construction of torsional Newton-Cartan (NC) geometry. The coupling of a Galilean symmetric model with background NC geometry following GGT is illustrated by a free nonrelativistic scalar field theory. The issue of spatial diffeomorphism (Son and Wingate 2006 Ann. Phys. 321 197-224 Banerjee et al 2015 Phys. Rev. D 91 084021) is focussed from a new angle. The expression of the torsionful connection is worked out, which is in complete parallel with the relativistic theory. Also, smooth transition of the connection to its well known torsionless expression is demonstrated. A complete (implicit) expression of the torsion tensor for the NC spacetime is provided where the first-order variables occur in a suggestive way. The well known result for the temporal part of torsion is reproduced from our expression.
Torsional dynamics of steerable needles: modeling and fluoroscopic guidance.
Swensen, John P; Lin, MingDe; Okamura, Allison M; Cowan, Noah J
2014-11-01
Needle insertions underlie a diversity of medical interventions. Steerable needles provide a means by which to enhance existing needle-based interventions and facilitate new ones. Tip-steerable needles follow a curved path and can be steered by twisting the needle base during insertion, but this twisting excites torsional dynamics that introduce a discrepancy between the base and tip twist angles. Here, we model the torsional dynamics of a flexible rod-such as a tip-steerable needle-during subsurface insertion and develop a new controller based on the model. The torsional model incorporates time-varying mode shapes to capture the changing boundary conditions inherent during insertion. Numerical simulations and physical experiments using two distinct setups-stereo camera feedback in semitransparent artificial tissue and feedback control with real-time X-ray imaging in optically opaque artificial tissue-demonstrate the need to account for torsional dynamics in control of the needle tip.
Bilateral perinatal testicular torsion: successful salvage supports emergency surgery.
Granger, Jeremy; Brownlee, Ewan M; Cundy, Thomas P; Goh, Day Way
2016-06-15
Perinatal testicular torsion (PTT) has poor rates of testicular salvage. Although rare, bilateral PTT carries the risk of anorchia. We present a case of a 2-day-old term infant with acute onset right-sided scrotal discolouration and tenderness. The infant was promptly taken to the operating theatre for emergency scrotal exploration. Bilateral extravaginal testicular torsion was identified, with the right testis appearing to have a more established ischaemic appearance compared to that on the left side. Intraoperative findings were representative of metachronous PTT with a short time period of only several hours separating the torsion events. Both testes were detorted and fixated in the scrotum. The infant made an uneventful recovery. Outpatient clinic review at 6 weeks and 6 months postoperatively confirmed no clinical evidence of testicular atrophy. Given the potential for contralateral torsion and the morbidity of anorchia, our experience supports the role for emergency scrotal exploration in suspected PTT.
Spin-torsion effects in the hyperfine structure of methanol
NASA Astrophysics Data System (ADS)
Coudert, L. H.; Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.
2015-07-01
The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling.
Spin-torsion effects in the hyperfine structure of methanol
Coudert, L. H. Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.
2015-07-28
The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling.
An Inexpensive Torsional Pendulum Apparatus for Rigidity Modulus Measurement.
ERIC Educational Resources Information Center
Tyagi, S.; Lord, A. E., Jr.
1979-01-01
Described is an easy to assemble, and inexpensive, torsional pendulum which gives an accuracy of measurement of the modulus of rigidity, G, comparable to the accuracy obtained with the more expensive commercially available student models. (Author/GA)
Tomographic elastography of contracting skeletal muscles from their natural vibrations
NASA Astrophysics Data System (ADS)
Sabra, Karim G.; Archer, Akibi
2009-11-01
Conventional elastography techniques require an external mechanical or radiation excitation to measure noninvasively the viscoelastic properties of skeletal muscles and thus monitor human motor functions. We developed instead a passive elastography technique using only an array of skin-mounted accelerometers to record the low-frequency vibrations of the biceps brachii muscle naturally generated during voluntary contractions and to determine their two-dimensional directionality. Cross-correlating these recordings provided travel-times measurements of these muscle vibrations between multiple sensor pairs. Travel-time tomographic inversions yielded spatial variations of their propagation velocity during isometric elbow flexions which indicated a nonuniform longitudinal stiffening of the biceps.
Torsion of the Appendix Testis in a Neonate
Krishnan, Arvind; Rich, Mark A.; Swana, Hubert S.
2016-01-01
Torsion of the appendix testis is a rare cause of scrotal swelling in the neonatal period. We present a case of torsion of the appendix testis in a one-day-old male. We discuss the physical examination and radiologic studies used to make the diagnosis. Nonoperative therapy was recommended and the patient has done well. Recognition of this condition in the neonatal period can prevent surgical intervention and its associated risks. PMID:27379193
Cosmic Magnetic Fields from Torsion Modes and Massive Photon Inflation
NASA Astrophysics Data System (ADS)
Garcia de Andrade, L. C.
2014-09-01
Earlier Barrow & Tsagas (2008) showed that a slower decay of magnetic fields are present in open Friedmann universes, with traditional Maxwell equations. In their paper magnetic fields of the order of B˜10-33 G which are far below the value required to seed galactic dynamos were obtained. In this paper galactic dynamo seeds of the order of B˜10-23 G are obtained from massive electrodynamics in Einstein-Cartan-Proca (ECP) expanding universe of de Sitter type. Slow decay of magnetic fields in photon-torsion coupling in QED (Garcia de Andrade 2011b) have been recently shown by Garcia de Andrade (2012) also not be able to seed galactic dynamos. Torsion modes are constrained by the field equations. Space-time torsion is shown to be explicitly responsible for the slow decay of cosmic magnetic field. In the absence of massive photon torsion coupling the magnetic field decay is of the order B˜t-3/2, while when torsion is turn on B˜t-1.2. The pure massive-photon-torsion contribution amplifies the magnetic field by Btorsion˜t0.1 which characterizes an extremely slow magnetic dynamo action due to purely torsion gravitational effects. Recently, Barrow et al. (2012) have obtained superadiabatic amplification of B-fields in the Friedmann open cosmology which lies within 10-20 G and 10-12 G which falls very comfortable within limits to seed galactic dynamos. Other simple solutions where B-field decays as B˜a-1, relatively weak photon-torsion coupling approximation. These solutions are obtained for the de Sitter and Friedmann metrics.
Salvage splenopexy for torsion of wandering spleen in a child.
Goyal, Ram Babu; Gupta, Rahul; Prabhakar, Girish; Mathur, Praveen; Mala, Tariq Ahmed
2014-01-01
The wandering spleen is a rare condition characterized by the absence or underdevelopment of one or all of the splenic suspensory ligaments that resulting in increased splenic mobility and rarely torsion. Preventing infarction is the aim of a prompt surgery by splenopexy. We report a case of salvage splenopexy in torsion of a wandering spleen in a three year old girl presented with severe abdominal pain for three days.
Salvage Splenopexy for Torsion of Wandering Spleen in a Child
Goyal, Ram Babu; Prabhakar, Girish; Mathur, Praveen; Mala, Tariq Ahmed
2014-01-01
The wandering spleen is a rare condition characterized by the absence or underdevelopment of one or all of the splenic suspensory ligaments that resulting in increased splenic mobility and rarely torsion. Preventing infarction is the aim of a prompt surgery by splenopexy. We report a case of salvage splenopexy in torsion of a wandering spleen in a three year old girl presented with severe abdominal pain for three days. PMID:24834385
Thermal conductivity and torsional oscillations of solid 4He
NASA Astrophysics Data System (ADS)
Brazhnikov, M. Yu.; Zmeev, D. E.; Golov, A. I.
2012-11-01
Polycrystalline samples of hcp 4He of molar volume Vm = 19.5 cm3 with small amount of 3He impurities were grown in an annular container by the blocked-capillary method. Three concentrations of 3He, x3, were studied: isotopically purified 4He with the estimated x3 < 10-10, commercial `well-grade' helium with x3 ˜ 3.10-7 and a mixture with x3 = 2.5.10-6. Torsional oscillations at two frequencies, 132.5 and 853.6 Hz, and thermal conductivity were investigated before and after annealing. The solid helium under investigation was located not only in the annular container but also in the axial fill line inside two torsion rods and dummy bob of the double-frequency torsional oscillator. The analysis of the frequency shifts upon loading with helium and changing temperatures of different parts of the oscillator suggests that the three techniques probe the properties of solid helium in three different locations: the two different torsion modes respond to the changes of the shear modulus of solid helium in either of the two torsion rods while the thermal conductivity probes the phonon mean free path in solid helium inside the annular container. The temperature and width of the torsional anomaly increase with increasing frequency and x3. The phonon mean free path increases with increasing x3. Annealing typically resulted in an increased phonon mean free path but often in little change in the torsional oscillator response. While the magnitude of the torsional anomaly and phonon mean free path can be very different in different samples, no correlation was found between them.
Torsional texturing of superconducting oxide composite articles
Christopherson, Craig John; Riley, Jr., Gilbert N.; Scudiere, John
2002-01-01
A method of texturing a multifilamentary article having filaments comprising a desired oxide superconductor or its precursors by torsionally deforming the article is provided. The texturing is induced by applying a torsional strain which is at least about 0.3 and preferably at least about 0.6 at the surface of the article, but less than the strain which would cause failure of the composite. High performance multifilamentary superconducting composite articles having a plurality of low aspect ratio, twisted filaments with substantially uniform twist pitches in the range of about 1.00 inch to 0.01 inch (25 to 0.25 mm), each comprising a textured desired superconducting oxide material, may be obtained using this texturing method. If tighter twist pitches are desired, the article may be heat treated or annealed and the strain repeated as many times as necessary to obtain the desired twist pitch. It is preferred that the total strain applied per step should be sufficient to provide a twist pitch tighter than 5 times the diameter of the article, and twist pitches in the range of 1 to 5 times the diameter of the article are most preferred. The process may be used to make a high performance multifilamentary superconducting article, having a plurality of twisted filaments, wherein the degree of texturing varies substantially in proportion to the radial distance from the center of the article cross-section, and is substantially radially homogeneous at any given cross-section of the article. Round wires and other low aspect ratio multifilamentary articles are preferred forms. The invention is not dependent on the melting characteristics of the desired superconducting oxide. Desired oxide superconductors or precursors with micaceous or semi-micaceous structures are preferred. When used in connection with desired superconducting oxides which melt irreversibly, it provides multifilamentary articles that exhibit high DC performance characteristics and AC performance markedly
An Axial-Torsional, Thermomechanical Fatigue Testing Technique
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Bonacuse, Peter J.
1995-01-01
A technique for conducting strain-controlled, thermomechanical, axial-torsional fatigue tests on thin-walled tubular specimens was developed. Three waveforms of loading, namely, the axial strain waveform, the engineering shear strain waveform, and the temperature waveform were required in these tests. The phasing relationships between the mechanical strain waveforms and the temperature and axial strain waveforms were used to define a set of four axial-torsional, thermomechanical fatigue (AT-TMF) tests. Real-time test control (3 channels) and data acquisition (a minimum of 7 channels) were performed with a software program written in C language and executed on a personal computer. The AT-TMF testing technique was used to investigate the axial-torsional thermomechanical fatigue behavior of a cobalt-base superalloy, Haynes 188. The maximum and minimum temperatures selected for the AT-TMF tests were 760 and 316 C, respectively. Details of the testing system, calibration of the dynamic temperature profile of the thin-walled tubular specimen, thermal strain compensation technique, and test control and data acquisition schemes, are reported. The isothermal, axial, torsional, and in- and out-of-phase axial-torsional fatigue behaviors of Haynes 188 at 316 and 760 C were characterized in previous investigations. The cyclic deformation and fatigue behaviors of Haynes 188 in AT-TMF tests are compared to the previously reported isothermal axial-torsional behavior of this superalloy at the maximum and minimum temperatures.
Testicular torsion, oxidative stress and the role of antioxidant therapy.
Dokmeci, Dikmen
2006-01-01
Testicular torsion is a urological syndrome caused mainly by a twist in the spermatic cord. It constitutes a surgical emergency and affects newborns, children and adolescent boys. The torsion must be treated promptly to avoid loss of function of ipsilateral and contralateral testis. This syndrome often leads to infertility of the ipsilateral (torted) and contralateral (not torted) testis,but the mechanisms of cellular injury remain still incompletely understood. The primary pathophysiologic event in testicular torsion is ischemia followed by reperfusion; thus, testicular torsion/detorsion is an ischemia/reperfusion (I/R) injury to the testis. Testicular torsion and detorsion causes morphological and biochemical changes by both ischemia and reperfusion of the tissues. These I/R injury is associated with overgeneration of reactive oxygen species (ROS) and reactive nitrogen species (RNS), and also with a common mechanism to other organs such as brain, heart and kidneys. Although the results are not conclusive and the molecular mechanism by which antioxidants control male fertility have not yet been clearly identified, several antioxidant enzymes and antioxidant drugs have been studied to prevent such I/R injury in testis. As a result, antioxidant therapy may represent a new non-hormonal option within a broader therapeutic strategy in men with ROS-mediated infertility such as testicular torsion.
NASA Astrophysics Data System (ADS)
Liu, Na; Dittmer, Robert; Stark, Robert W.; Dietz, Christian
2015-07-01
Polar nanoregions (PNRs) play a key role in the functionality of relaxor ferroelectrics; however, visualizing them in lead-free relaxor ferroelectrics with high lateral resolution is still challenging. Thus, we studied herein the local ferroelectric domain distribution of the lead-free bismuth-based (1 - x)(Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3) - x(Bi1/2Mg1/2TiO3) piezoceramics which show a relaxor behavior using dual AC resonance tracking (DART) piezoresponse force microscopy (PFM). By using excitation frequencies at either side of the contact resonance peak of the torsional cantilever vibration, an enhanced contrast in the amplitude and phase images of the piezoresponse can be achieved. Additionally, this tracking technique reduces the topographical crosstalk while mapping the local electromechanical properties. The true drive amplitude, drive phase, contact resonant frequency and quality factor can be estimated from DART-PFM data obtained with vertically or torsionally vibrating cantilevers. This procedure yields a three-dimensional quantitative map of the local piezoelectric properties of the relaxor ferroelectric samples. With this approach, torsional DART allowed for the visualization of fine substructures within the monodomains, suggesting the existence of PNRs in relaxor ferroelectrics. The domain structures of the PNRs were visualized with high precision, and the local electromechanical characteristics of the lead-free relaxor ferroelectrics were quantitatively mapped.Polar nanoregions (PNRs) play a key role in the functionality of relaxor ferroelectrics; however, visualizing them in lead-free relaxor ferroelectrics with high lateral resolution is still challenging. Thus, we studied herein the local ferroelectric domain distribution of the lead-free bismuth-based (1 - x)(Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3) - x(Bi1/2Mg1/2TiO3) piezoceramics which show a relaxor behavior using dual AC resonance tracking (DART) piezoresponse force microscopy (PFM). By using excitation
Association between pregnancy and adnexal torsion
Yuk, Jin-Sung; Shin, Ji-Yeon; Park, Won I.; Kim, Dae Woon; Shin, Jung Whan; Lee, Jung Hun
2016-01-01
Abstract The purpose of this study was to determine the effect of pregnancy on adnexal torsion (AT). We conducted a matched case-control study using the Korean Health Insurance Review and Assessment Service–National Inpatients Sample (HIRA-NIS) from 2009 to 2011. AT patients were defined as women with both a diagnostic code (N835) and a surgical code for AT. The AT patients were randomly matched 1:4 with women without AT by age and year of claim. In total, 545 AT cases and 2180 controls were enrolled from a total of 1,843,451 women. After adjustment for such covariates as age, pregnancy was found to be associated with a lower rate of AT (adjusted odds ratio 0.314, 95% confidence interval [CI] 0.237–0.416, P value <0.01) and ovarian hyperstimulation syndrome was associated with a higher rate of AT (adjusted odds ratio 20.091, 95% CI 3.607–111.908, P value <0.01). We found that pregnancy is a negative risk factor for AT. However, a further study is needed to elucidate the mechanisms underlying these results. PMID:27310967
Scrotal Exploration for Testicular Torsion and Testicular Appendage Torsion: Emergency and Reality
Yu, You; Zhang, Feng; An, Qun; Wang, Long; Li, Chao; Xu, Zhilin
2015-01-01
Background: Scrotal exploration is considered the procedure of choice for acute scrotum. Objectives: We evaluated the importance of early diagnosis and testicular salvage on the therapeutic outcomes of patients with pediatric testicular torsion (TT) and testicular appendage torsion (TAT) in our geographic area. Patients and Methods: We performed a retrospective database analysis of patients who underwent emergency surgery for TT or TAT between January 1996 and June 2009. Patient history, physical examination findings, laboratory test results, color Doppler sonography (CDS) results, and surgical findings were reviewed. Results: A total of 65 cases were included in our analysis. Forty-two cases were followed up for at least 3 months. Testicular tenderness was identified as the major clinical manifestation of TT, while only a few patients with TAT presented with swelling. CDS was an important diagnostic modality. The orchiectomy rate was 71% in the TT group. Conclusions: Cases of acute scrotum require attention in our area. Early diagnosis and scrotal exploration could salvage the testis or preserve normal function without the need for surgery. PMID:26199690
Kollipost, F.; Heger, M.; Suhm, M. A.; Andersen, J.; Mahler, D. W.; Wugt Larsen, R.; Heimdal, J.
2014-11-07
The effect of strong intermolecular hydrogen bonding on torsional degrees of freedom is investigated by far-infrared absorption spectroscopy for different methanol dimer isotopologues isolated in supersonic jet expansions or embedded in inert neon matrices at low temperatures. For the vacuum-isolated and Ne-embedded methanol dimer, the hydrogen bond OH librational mode of the donor subunit is finally observed at ∼560 cm{sup −1}, blue-shifted by more than 300 cm{sup −1} relative to the OH torsional fundamental of the free methanol monomer. The OH torsional mode of the acceptor embedded in neon is observed at ∼286 cm{sup −1}. The experimental findings are held against harmonic predictions from local coupled-cluster methods with single and double excitations and a perturbative treatment of triple excitations [LCCSD(T)] and anharmonic. VPT2 corrections at canonical MP2 and density functional theory (DFT) levels in order to quantify the contribution of vibrational anharmonicity for this important class of intermolecular hydrogen bond vibrational motion.
Does a Randall-Sundrum Scenario Create the Illusion of a Torsion-Free Universe?
NASA Astrophysics Data System (ADS)
Mukhopadhyaya, Biswarup; Sen, Somasri; Sengupta, Soumitra
2002-08-01
We consider spacetime with torsion in a Randall-Sundrum scenario where torsion, identified with the rank-2 Kalb-Ramond field, exists in the bulk together with gravity. While the interactions of both graviton and torsion in the bulk are controlled by the Planck mass, an additional exponential suppression comes for the torsion zero-mode on the visible brane. This may serve as a natural explanation of why the effect of torsion is so much weaker than that of curvature on the brane. The massive torsion modes, on the other hand, are correlated with the corresponding gravitonic modes and may be detectable in TeV-scale experiments.
Photovoltaic healing of non-uniformities in semiconductor devices
Karpov, Victor G.; Roussillon, Yann; Shvydka, Diana; Compaan, Alvin D.; Giolando, Dean M.
2006-08-29
A method of making a photovoltaic device using light energy and a solution to normalize electric potential variations in the device. A semiconductor layer having nonuniformities comprising areas of aberrant electric potential deviating from the electric potential of the top surface of the semiconductor is deposited onto a substrate layer. A solution containing an electrolyte, at least one bonding material, and positive and negative ions is applied over the top surface of the semiconductor. Light energy is applied to generate photovoltage in the semiconductor, causing a redistribution of the ions and the bonding material to the areas of aberrant electric potential. The bonding material selectively bonds to the nonuniformities in a manner such that the electric potential of the nonuniformities is normalized relative to the electric potential of the top surface of the semiconductor layer. A conductive electrode layer is then deposited over the top surface of the semiconductor layer.
Design optimization of axisymmetric bodies in nonuniform transonic flow
NASA Technical Reports Server (NTRS)
Lan, C. Edward
1989-01-01
An inviscid transonic code capable of designing an axisymmetric body in a uniform or nonuniform flow was developed. The design was achieved by direct optimiation by coupling an analysis code with an optimizer. Design examples were provided for axisymmetric bodies with fineness ratios of 8.33 and 5 at different Mach numbers. It was shown that by reducing the nose radius and increasing the afterbody thickness of initial shapes obtained from symmetric NACA four-digit airfoil contours, wave drag could be reduced by 29 percent for a body of fineness ratio 8.33 in a nonuniform transonic flow of M = 0.98 to 0.995. The reduction was 41 percent for a body of fineness ratio 5 in a uniform transonic flow of M = 0.925 and 65 percent for the same body but in a nonuniform transonic flow of M = 0.90 to 0.95.
Early onset torsion dystonia (Oppenheim's dystonia)
Kamm, Christoph
2006-01-01
Early onset torsion dystonia (EOTD) is a rare movement disorder characterized by involuntary, repetitive, sustained muscle contractions or postures involving one or more sites of the body. A US study estimated the prevalence at approximately 1 in 30,000. The estimated prevalence in the general population of Europe seems to be lower, ranging from 1 in 330,000 to 1 in 200,000, although precise numbers are currently not available. The estimated prevalence in the Ashkenazi Jewish population is approximately five to ten times higher, due to a founder mutation. Symptoms of EOTD typically develop first in an arm or leg in middle to late childhood and progress in approximately 30% of patients to other body regions (generalized dystonia) within about five years. Distribution and severity of symptoms vary widely between affected individuals. The majority of cases from various ethnic groups are caused by an autosomal dominantly inherited deletion of 3 bp (GAG) in the DYT1 gene on chromosome 9q34. This gene encodes a protein named torsinA, which is presumed to act as a chaperone protein associated with the endoplasmic reticulum and the nuclear envelope. It may interact with the dopamine transporter and participate in intracellular trafficking, although its precise function within the cell remains to be determined. Molecular genetic diagnostic and genetic counseling is recommended for individuals with age of onset below 26 years, and may also be considered in those with onset after 26 years having a relative with typical early onset dystonia. Treatment options include botulinum toxin injections for focal symptoms, pharmacological therapy such as anticholinergics (most commonly trihexiphenydil) for generalized dystonia and surgical approaches such as deep brain stimulation of the internal globus pallidus or intrathecal baclofen application in severe cases. All patients have normal cognitive function, and despite a high rate of generalization of dystonia, 75% of those patients
Stochastic vibration of the vehicle-bridge system subject to non-uniform ground motions
NASA Astrophysics Data System (ADS)
Zhu, D. Y.; Zhang, Y. H.; Kennedy, D.; Williams, F. W.
2014-03-01
A study of a train moving along a cable-stayed bridge is performed by considering both the stationary track irregularity and a non-stationary earthquake. A detailed bridge model with 3972 degrees of freedom is established while the train model consists of two locomotives and eight carriages. The equations of motion of the coupled system are obtained by using the displacement continuous condition at the contact, with track irregularities. The earthquake is assumed to occur once the train has entered the bridge. The pseudo-excitation method is used to find the random responses of the coupled system, and the results indicate that the effect of the earthquake is much greater than that of the track irregularities. The paper discusses the influence of the intensity of the earthquake, the wave propagation velocity, the speed of the train, and the dynamic interaction between the vehicles and the bridge.
a Hamiltonian to Obtain a Global Frequency Analysis of all the Vibrational Bands of Ethane
NASA Astrophysics Data System (ADS)
Moazzen-Ahmadi, Nasser; Norooz Oliaee, Jalal
2016-06-01
The interest in laboratory spectroscopy of ethane stems from the desire to understand the methane cycle in the atmospheres of planets and their moons and from the importance of ethane as a trace species in the terrestrial atmosphere. Solar decomposition of methane in the upper part of these atmospheres followed by a series of reactions leads to a variety of hydrocarbon compounds among which ethane is often the second most abundant species. Because of its high abundance, ethane spectra have been measured by Voyager and Cassini in the regions around 30, 12, 7, and 3 μm. Therefore, a complete knowledge of line parameters of ethane is crucial for spectroscopic remote sensing of planetary atmospheres. Experimental characterization of torsion-vibration states of ethane lying below 1400 cm-1 have been made previously, but extension of the Hamiltonian model for treatment of the strongly perturbed νb{8} fundamental and the complex band system of ethane in the 3 micron region requires careful examination of the operators for many new torsionally mediated vibration-rotation interactions. Following the procedures outlined by Hougen, we have re-examined the transformation properties of the total angular momentum, the translational and vibrational coordinates and momenta of ethane, and for vibration-torsion-rotation interaction terms constructed by taking products of these basic operators. It is found that for certain choices of phase, the doubly degenerate vibrational coordinates with and symmetry can be made to transform under the group elements in such a way as to yield real matrix elements for the torsion-vibration-rotation couplings whereas other choices of phase may require complex algebra. In this talk, I will discuss the construction of a very general torsion-vibration-rotation Hamiltonian for ethane, as well as the prospect for using such a Hamiltonian to obtain a global frequency analysis (based in large part on an extension of earlier programs and ethane fits^a from
Investigation of Nonuniform Dose Voxel Geometry in Monte Carlo Calculations.
Yuan, Jiankui; Chen, Quan; Brindle, James; Zheng, Yiran; Lo, Simon; Sohn, Jason; Wessels, Barry
2015-08-01
The purpose of this work is to investigate the efficacy of using multi-resolution nonuniform dose voxel geometry in Monte Carlo (MC) simulations. An in-house MC code based on the dose planning method MC code was developed in C++ to accommodate the nonuniform dose voxel geometry package since general purpose MC codes use their own coupled geometry packages. We devised the package in a manner that the entire calculation volume was first divided into a coarse mesh and then the coarse mesh was subdivided into nonuniform voxels with variable voxel sizes based on density difference. We name this approach as multi-resolution subdivision (MRS). It generates larger voxels in small density gradient regions and smaller voxels in large density gradient regions. To take into account the large dose gradients due to the beam penumbra, the nonuniform voxels can be further split using ray tracing starting from the beam edges. The accuracy of the implementation of the algorithm was verified by comparing with the data published by Rogers and Mohan. The discrepancy was found to be 1% to 2%, with a maximum of 3% at the interfaces. Two clinical cases were used to investigate the efficacy of nonuniform voxel geometry in the MC code. Applying our MRS approach, we started with the initial voxel size of 5 × 5 × 3 mm(3), which was further divided into smaller voxels. The smallest voxel size was 1.25 × 1.25 × 3 mm(3). We found that the simulation time per history for the nonuniform voxels is about 30% to 40% faster than the uniform fine voxels (1.25 × 1.25 × 3 mm(3)) while maintaining similar accuracy.
Accounting for the Torsional Splitting in the ν 5 and 2ν 9 Bands of Nitric Acid
NASA Astrophysics Data System (ADS)
Coudert, L. H.; Perrin, A.
1995-08-01
In an attempt to account for the large-amplitude torsional ν9 mode of nitric acid, a formalism is set up, based on an internal-axis-method-like approach previously developed for high-barrier tunneling problems. This formalism is applied to the calculation of the tunneling-rotational-vibrational energy of the interacting ν9 = 2 and ν5 = 1 vibrational states and accounts for the relational dependence of the tunneling splitting and for the strong Coriolis and Fermi resonances between these two vibrational states. With the help of this formalism, it is shown that the effects of the large-amplitude motion may be very different depending on the way the rotational states are clustered. For large Ka values, shifts of about 0.001 cm-1 are predicted, while splittings of roughly the same value occur for large Kc values. This formalism is used to carry out a simultaneous analysis of the microwave data relevant to the two vibrational states (Goyette et al., J. Mol. Spectrosc.167, 365-374, 1994) and of the infrared transitions belonging to the 2ν9 and ν5 bands (Perrin et al., J. Mol. Spectrosc.157, 112-121, 1993). The frequency of the microwave transitions and the wavenumber of the infrared transitions are satisfactorily reproduced and it is possible to point out the effects of the large-amplitude motion in the latter data set.
Protective effect of thymoquinone against testicular torsion induced oxidative injury.
Ayan, M; Tas, U; Sogut, E; Caylı, S; Kaya, H; Esen, M; Erdemir, F; Uysal, M
2016-03-01
We aimed to determine the protective effects of thymoquinone (TQ), against ischaemia-reperfusion (I/R) injury in the testis tissue of rats. Twenty-seven male Wistar albino rats were randomly divided into three equal groups as follows: Group I, sham group; Group II, torsion group; and Group III, torsion + thymoquinone group. The ischaemia period was 2 h, and orchiectomy was performed after 30 min of detorsion. Testis tissue sections were analysed with the terminal transferase mediated dUTP-nick end labelling (TUNEL) assay to determine in situ apoptotic DNA fragmentation. Additionally, Caspase 3 and Bax proteins were analysed immunohistochemically. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) activity levels in the testis tissue were also measured. The superoxide dismutase activity and malondialdehyde levels in the torsion group were significantly higher than those of the sham group (P < 0.05). Thymoquinone administration significantly reduced these levels. Torsion significantly increased active-Caspase 3 and Bax expression, which was decreased by thymoquinone. The apoptotic index of the torsion group was significantly higher than that of the control group. However, thymoquinone significantly reduced the apoptotic index (P < 0.05). Our results indicate that thymoquinone plays a protective role in oxidative stress induced ischaemia-reperfusion in the testis tissue of rats.
Optical fiber accelerometer based on MEMS torsional micromirror
NASA Astrophysics Data System (ADS)
Zeng, Fanlin; Zhong, Shaolong; Xu, Jing; Wu, Yaming
2008-03-01
A novel structure of optical fiber accelerometer based on MEMS torsional micro-mirror is introduced, including MEMS torsional micro-mirror and optical signal detection. The micro-mirror is a non-symmetric one, which means that the torsional bar supporting the micro-mirror is not located in the axis where the center of the micro-mirror locates. The optical signal detection is composed of PIN diode and dual fiber collimator, which is very sensitive to the coupling angle between the input fiber and output fiber. The detection principle is that acceleration is first transformed into torsional angle of the micro-mirror, then, optical insertion loss of the dual fiber collimator caused by the angle can be received by PIN. So under the flow of acceleration to torsional angle to optical signal attenuation to optical power detection, the acceleration is detected. The theory about sensing and optical signal detect of the device are discussed in this paper. The sensitive structure parameters and performance parameters are calculated by MATLAB. To simulate the static and modal analysis, the finite element analysis, ANSYS, is employed. Based on the above calculation, several optimization methods and the final structure parameters are given. The micro-mirror is completed by using silicon-glass bonding and deep reactive ion etching (DRIE). In the experiment, the acceleration is simulated by electrostatic force and the test results show that the static acceleration detection agrees with the theory analysis very well.
Unravelling the structural plasticity of stretched DNA under torsional constraint
King, Graeme A.; Peterman, Erwin J. G.; Wuite, Gijs J. L.
2016-01-01
Regions of the genome are often held under torsional constraint. Nevertheless, the influence of such constraint on DNA–protein interactions during genome metabolism is still poorly understood. Here using a combined optical tweezers and fluorescence microscope, we quantify and explain how torsional constraint influences the structural stability of DNA under applied tension. We provide direct evidence that concomitant basepair melting and helical unwinding can occur in torsionally constrained DNA at forces >∼50 pN. This striking result indicates that local changes in linking number can be absorbed by the rest of the DNA duplex. We also present compelling new evidence that an overwound DNA structure (likely P-DNA) is created (alongside underwound structures) at forces >∼110 pN. These findings substantiate previous theoretical predictions and highlight a remarkable structural plasticity of torsionally constrained DNA. Such plasticity may be required in vivo to absorb local changes in linking number in DNA held under torsional constraint. PMID:27263853
[Torsion of wandering spleen in a teenager: about a case].
Dème, Hamidou; Akpo, Léra Géraud; Fall, Seynabou; Badji, Nfally; Ka, Ibrahima; Guèye, Mohamadou Lamine; Touré, Mouhamed Hamine; Niang, El Hadj
2016-01-01
Wandering or migrating spleen is a rare anomaly which is usually described in children. Complications, which include pedicle torsion, are common and can be life-threatening. We report the case of a 17 year-old patient with a long past medical history of epigastric pain suffering from wandering spleen with chronic torsion of the pedicle. The clinical picture was marked by spontaneously painful epigastric mass, evolved over the past 48 hours. Abdominal ultrasound objectified heterogeneous hypertrophied ectopic spleen in epigastric position and a subcapsular hematoma. Doppler showed a torsion of splenic pedicle which was untwisted 2 turns and a small blood stream on the splenic artery. Abdominal CT scan with contrast injection showed a lack of parenchymal enhancement of large epigastric ectopic spleen and a subcapsular hematoma. The diagnosis of wandering spleen with chronic torsion of the pedicle complicated by necrosis and subcapsular hematoma was confirmed. The patient underwent splenectomy. The postoperative course was uneventful. We here discuss the contribution of ultrasound and CT scan in the diagnosis of wandering spleen with chronic torsion of the pedicle.
Elevated temperature axial and torsional fatigue behavior of Haynes 188
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1995-01-01
The results are reported for high-temperature axial and torsional low-cycle fatigue experiments performed at 760 C in air on thin-walled tubular specimens of Haynes 188, a wrought cobalt-based superalloy. Data are also presented for mean coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. This data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME Boiler and Pressure Code), Manson-Halford, modified multiaxiality factor (proposed in this paper), modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The modified multiaxiality factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.
Elevated temperature axial and torsional fatigue behavior of Haynes 188
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1992-01-01
The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.
Induced Velocities Near a Lifting Rotor with Nonuniform Disk Loading
NASA Technical Reports Server (NTRS)
Heyson, Harry H; Katzoff, S
1957-01-01
A method is given for converting known uniformly loaded rotor induced velocities to correspond with arbitrary axisymmetric nonuniform disk load distributions. Numerical results for two specific distributions are given in chart form. Symmetry relations and relations between radial disk loading and wake velocities are developed. Experimental flow measurements are presented and compared with theory. Reasonable agreement is shown in the forward part of the flow when nonuniform loading is assumed, but far behind the rotor the flow is more like that of a wing.
Usefulness of T2*-weighted MRI in the detection of adnexal torsion
Kawai, Nobuyuki; Kanematsu, Masayuki; Kawaguchi, Shimpei; Kojima, Toshihisa; Furui, Tatsuro; Morishige, Ken-ichirou; Matsuo, Masayuki
2016-01-01
Background The usefulness of T2*-weighted (T2*W) imaging for the detection of adnexal torsion has yet to be determined. Purpose To assess the usefulness of T2*W imaging for detecting and differentiating adnexal torsion. Material and Methods Eight patients with eight ovaries with torsion and 44 patients with 72 ovaries without torsion were included in this study. All patients underwent 1.5-T magnetic resonance imaging (MRI) including T2*W images. The frequency and distribution of hypointensity on T2*W images were compared between ovaries with torsion and ovaries without torsion. Results Hypointensity on T2*W images was significantly more frequent in ovaries with torsion than in ovaries without torsion (75% vs. 36%; P < 0.05). Among patients with hypointensity on T2*W images, the frequency of diffuse hypointensity was significantly higher in ovaries with torsion than in ovaries without torsion (83% vs. 0%; P < 0.01); whereas the frequency of focal hypointensity was significantly lower in ovaries with torsion than in ovaries without torsion (17% vs. 100%; P < 0.01). Conclusion The presence and distribution of hypointensity on T2*W images may play a supplementary role in the detection of adnexal torsion. PMID:27478621
Methyl rotor dependent vibrational interactions in toluene.
Gascooke, Jason R; Lawrance, Warren D
2013-04-07
The methyl rotor dependence of a three state Fermi resonance in S1 toluene at ∼460 cm(-1) has been investigated using two-dimensional laser induced fluorescence. An earlier time-resolved study has shown the Fermi resonance levels to have different energy spacings at the two lowest methyl rotor states, m = 0 and 1 [J. A. Davies, A. M. Green, and K. L. Reid, Phys. Chem. Chem. Phys. 12, 9872 (2010)]. The overlapped m = 0 and 1 spectral features have been separated to provide direct spectral evidence for the m dependence of the resonance. The resonance has been probed at m = 3a(") 1 for the first time and found to be absent, providing further evidence for a large change in the interaction with m. Deperturbing the resonance at m = 0 and 1 reveals that the m dependence arises through differences in the separations of the "zero-order," locally coupled states. It is shown that this is the result of the local "zero-order" states being perturbed by long-range torsion-vibration coupling that shifts their energy by small amounts. The m dependence of the shifts arises from the Δm = ±3n (n = 1, 2, ...) coupling selection rule associated with torsion-rotation coupling in combination with the m(2) scaling of the rotor energies, which changes the ΔE for the interaction for each m. There is also an increase in the number of states that can couple to m = 1 compared with m = 0. Consideration of the magnitude of reported torsion-rotation coupling constants suggests that this effect is likely to be pervasive in molecules with methyl rotors.
Understanding Vibration Spectra of Planetary Gear Systems for Fault Detection
NASA Technical Reports Server (NTRS)
Mosher, Marianne
2003-01-01
An understanding of the vibration spectra is very useful for any gear fault detection scheme based upon vibration measurements. The vibration measured from planetary gears is complicated. Sternfeld noted the presence of sidebands about the gear mesh harmonics spaced at the planet passage frequency in spectra measured near the ring gear of a CH-47 helicopter. McFadden proposes a simple model of the vibration transmission that predicts high spectral amplitudes at multiples of the planet passage frequency, for planetary gears with evenly spaced planets. This model correctly predicts no strong signal at the meshing frequency when the number of teeth on the ring gear is not an integer multiple of the number of planets. This paper will describe a model for planetary gear vibration spectra developed from the ideas started in reference. This model predicts vibration to occur only at frequencies that are multiples of the planet repetition passage frequency and clustered around gear mesh harmonics. Vibration measurements will be shown from tri-axial accelerometers mounted on three different planetary gear systems and compared with the model. The model correctly predicts the frequencies with large components around the first several gear mesh harmonics in measurements for systems with uniformly and nonuniformly spaced planet gears. Measurements do not confirm some of the more detailed features predicted by the model. Discrepancies of the ideal model to the measurements are believed due to simplifications in the model and will be discussed. Fault detection will be discussed applying the understanding will be discussed.
Noncontact Electromagnetic Vibration Source
NASA Technical Reports Server (NTRS)
Namkung, Min; Fulton, James P.; Wincheski, Buzz A.
1994-01-01
Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.
Downhole Vibration Monitoring and Control System
Martin E. Cobern
2007-09-30
The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. The key feature of this system is its use of a magnetorheological fluid (MRF) to allow the damping coefficient to be changed extensively, rapidly and reversibly without the use of mechanical valves, but only by the application of a current. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Much of the effort was devoted to the design and testing of the MRF damper, itself. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and a final report was issued. Work on Phase III of the project began during the first quarter, 2006, with the objectives of building precommercial prototypes, testing them in a drilling laboratory and the field; developing and implementing a commercialization plan. All of these have been accomplished. The Downhole Vibration Monitoring & Control System (DVMCS) prototypes have been successfully proven in testing at the TerraTek drilling facility and at the Rocky Mountain Oilfield Test Center (RMOTC.) Based on the results of these tests, we have signed a definitive development and distribution agreement with Smith, and commercial deployment is underway. This current version of the DVMCS monitors and controls axial vibrations. Due to time and budget constraints of this program, it was not possible to complete a system that would also deal with lateral and torsional (stick-slip) vibrations as originally planned; however, this effort is continuing without DOE
Torsion Strain Effects on Critical Currents of Hts Superconducting Tapes
NASA Astrophysics Data System (ADS)
Takayasu, Makoto; Minervini, Joseph V.; Bromberg, Leslie
2010-04-01
A torsional twist strain effect on the critical current of a thin HTS tape has been found to be well described by a longitudinal strain model taking into account the internal shortening compressive strains accompanied with the tensile longitudinal strains due to a torsional twist. The critical current of a twisted tape is given by the integration of the critical current densities corresponding to the strain distribution over the tape cross-section using axial strain data of the tape. The model is supported with experimental results of YBCO and BSCCO-2223 tapes. It has been also found that torsional twisting effects on the critical currents of a tape composing of the conventional lapped-tape cable and the twisted stacked-tape cable are described by the same equation as that of a twisted single tape.
Complete axial torsion of pregnant uterus with leiomyoma
Sachan, Rekha; Patel, M L; Sachan, Pushpalata; Arora, Anubha
2014-01-01
Uterine torsion is defined as a rotation of the uterus of more than 45° along its long axis. It is a rare complication during pregnancy; a common cause of torsion can be uterine myoma. Here we describe the case of a 27-year-old G2P1+0 woman at 15 weeks 3 day pregnancy, who presented to our outpatient department as a case of acute abdomen, in a state of shock. Clinical findings did not correlate with investigation. On lapratomy she was diagnosed as a case of complete axial torsion of pregnant uterus with fundal myoma with massive abruption. Early diagnosis and timely intervention would help in improving both maternal and fetal outcome. PMID:25193815
Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity
NASA Astrophysics Data System (ADS)
Arda, Mustafa; Aydogdu, Metin
2016-03-01
Torsional wave propagation in multiwalled carbon nanotubes is studied in the present work. Governing equation of motion of multiwalled carbon nanotube is obtained using Eringen's nonlocal elasticity theory. The effect of van der Waals interaction coefficient is considered between inner and outer nanotubes. Dispersion relations are obtained and discussed in detail. Effect of nonlocal parameter and van der Waals interaction to the torsional wave propagation behavior of multiwalled carbon nanotubes is investigated. It is obtained that torsional van der Waals interaction between adjacent tubes can change the rotational direction of multiwalled carbon nanotube as in-phase or anti-phase. The group and escape velocity of the waves converge to a limit value in the nonlocal elasticity approach.
Torsion-balance experiments and ultra-low-mass fields
NASA Astrophysics Data System (ADS)
Terrano, William
2017-01-01
Many of the solutions to outstanding problems in modern cosmology posit new, ultra-light fields. Unifying General Relativity and Quantum Mechanics appears to require new ultra-light fields at some level. Such fields are also invoked to drive inflation and dark energy. Ultra-light fields may also make up much or all of the dark matter density of the universe. Torsion pendulums, a technology that dates to the 18th century, remain one of the most sensitive experimental techniques to search for ultra-light, weakly interacting fields. I will explain how torsion balance experiments can search for beyond-the-standard-model fields using laboratory-based as well as galactic sources, and the important cosmological implications of these measurements. I will also describe a new experimental signature for which certain torsion balance geometries make very sensitive direct dark matter detectors over a broad range of interesting dark matter parameter space.
BCN nanotubes as highly sensitive torsional electromechanical transducers.
Garel, Jonathan; Zhao, Chong; Popovitz-Biro, Ronit; Golberg, Dmitri; Wang, Wenlong; Joselevich, Ernesto
2014-11-12
Owing to their mechanically tunable electronic properties, carbon nanotubes (CNTs) have been widely studied as potential components for nanoelectromechanical systems (NEMS); however, the mechanical properties of multiwall CNTs are often limited by the weak shear interactions between the graphitic layers. Boron nitride nanotubes (BNNTs) exhibit a strong interlayer mechanical coupling, but their high electrical resistance limits their use as electromechanical transducers. Can the outstanding mechanical properties of BNNTs be combined with the electromechanical properties of CNTs in one hybrid structure? Here, we report the first experimental study of boron carbonitride nanotube (BCNNT) mechanics and electromechanics. We found that the hybrid BCNNTs are up to five times torsionally stiffer and stronger than CNTs, thereby retaining to a large extent the ultrahigh torsional stiffness of BNNTs. At the same time, we show that the electrical response of BCNNTs to torsion is 1 to 2 orders of magnitude higher than that of CNTs. These results demonstrate that BCNNTs could be especially attractive building blocks for NEMS.
Determining Angle of Humeral Torsion Using Image Software Technique
Sethi, Madhu; Vasudeva, Neelam
2016-01-01
Introduction Several researches have been done on the measurement of angles of humeral torsion in different parts of the world. Previously described methods were more complicated, not much accurate, cumbersome or required sophisticated instruments. Aim The present study was conducted with the aim to determine the angles of humeral torsion with a newer simple technique using digital images and image tool software. Materials and Methods A total of 250 dry normal adult human humeri were obtained from the bone bank of Department of Anatomy. The length and mid-shaft circumference of each bone was measured with the help of measuring tape. The angle of humeral torsion was measured directly from the digital images by the image analysis using Image Tool 3.0 software program. The data was analysed statistically with SPSS version 17 using unpaired t-test and Spearman’s rank order correlation coefficient. Results The mean angle of torsion was 64.57°±7.56°. On the right side it was 66.84°±9.69°, whereas, on the left side it was found to be 63.31±9.50°. The mean humeral length was 31.6 cm on right side and 30.33 cm on left side. Mid shaft circumference was 5.79 on right side and 5.63 cm on left side. No statistical differences were seen in angles between right and left humeri (p>0.001). Conclusion From our study, it was concluded that circumference of shaft is inversely proportional to angle of humeral torsion. The length and side of humerus has no relation with the humeral torsion. With advancement of digital technology, it is better to use new image softwares for anatomical studies. PMID:27891326
Impact of torsion and stretching on the thermal conductivity of polyethylene strands
NASA Astrophysics Data System (ADS)
Tu, Runchun; Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei
2017-03-01
A single polyethylene chain was reported to have a high metal-like thermal conductivity (TC), which stands in sharp contrast to the thermally insulating feature of common bulk polyethylene materials. This work numerically investigates the impact of torsion and stretching on the TC of polyethylene strands by using equilibrium molecular dynamics simulations. The simulation results show that torsion slightly reduces the TC of a single polyethylene chain. In contrast, the heat conduction of polyethylene strands could be slightly enhanced under torsional loading with a specific torsional angle. Particularly, an apparent improvement of TC of polyethylene strands is achieved by combining torsion and stretching functions. It is found that the TC of torsional polyethylene strands is sensitive to torsional patterns. Our study proposes a specific torsional pattern of polyethylene strands that significantly enhances the heat conduction of the original counterpart. This study will play an essential role in guiding the improvements of thermal conduction property of polymers.
Kodali, Sunil Kumar; Abdullah, Zuhair Saleh; Sharma, Punit; Khan, Muhammad Umar; Naeem, Muhammad
2013-01-01
Torsion of undescended testis, although not uncommon, causes diagnostic difficulties. We here present testicular scintigraphy images of a typical case of torsion of an undescended inguinal testis with disparity between clinical and ultrasonography (USG) findings in the contralateral retractile testis.
Allan Variance Calculation for Nonuniformly Spaced Input Data
2015-01-01
Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Allan Variance ( AV ) characterizes the...temporal randomness in sensor output data streams at various times scales. The conventional formula for calculating the AV assumes that the data...presents a modified approach to AV calculation, which accommodates nonuniformly spaced time samples. The basic concept of the modified approach is
Constructal design for a rectangular body with nonuniform heat generation
NASA Astrophysics Data System (ADS)
Feng, Huijun; Chen, Lingen; Xie, Zhihui; Sun, Fengrui
2016-08-01
Nonuniform heat generation models with constant and variable cross-section high-conductivity channels (HCCs) are built in this paper. The minimum dimensionless peak temperature (DPT) is taken as the optimization objective. Different from the models with uniform heat generation and constant cross-section HCCs built by Bejan (1997) and Ledezma et al. (1997), the model with nonuniform heat generation and variable cross-section HCC is more practical and can help to improve the heat conduction performance of a thermal system. The results show that for the rectangular first-order assembly (RFOA) with nonuniform heat generation, there exist both the optimal shape of the RFOA and the optimal HCCs width ratio, which lead to the minimum DPT. They are different from those with uniform heat generation. When the heat is nonuniformly generated in the RFOA, the minimum DPT of the RFOA with variable cross-section HCC is reduced by 12.11% compared with that with constant cross-section HCC. Moreover, the numerical results are also verified by the analytical method.
Scintillation of nonuniformly correlated beams in atmospheric turbulence.
Gu, Yalong; Gbur, Greg
2013-05-01
We investigated the scintillation properties of nonuniformly correlated (NUC) beams in atmospheric turbulence and have shown that NUC beams can not only have lower scintillation but also higher intensity than Gaussian-Schell model beams and even higher intensity than coherent Gaussian beams over certain propagation distances.
GaAs MESFET with lateral non-uniform doping
NASA Technical Reports Server (NTRS)
Wang, Y. C.; Bahrami, M.
1983-01-01
An analytical model of the GaAs MESFET with arbitrary non-uniform doping is presented. Numerical results for linear lateral doping profile are given as a special case. Theoretical considerations predict that better device linearity and improved F(T) can be obtained by using linear lateral doping when doping density increases from source to drain.
Torsional instability in suspension bridges: The Tacoma Narrows Bridge case
NASA Astrophysics Data System (ADS)
Arioli, Gianni; Gazzola, Filippo
2017-01-01
All attempts of aeroelastic explanations for the torsional instability of suspension bridges have been somehow criticised and none of them is unanimously accepted by the scientific community. We suggest a new nonlinear model for a suspension bridge and we perform numerical experiments with the parameters corresponding to the collapsed Tacoma Narrows Bridge. We show that the thresholds of instability are in line with those observed the day of the collapse. Our analysis enables us to give a new explanation for the torsional instability, only based on the nonlinear behavior of the structure.
Massless fermions and Kaluza--Klein theory with torsion
Wu, Y.; Zee, A.
1984-09-01
A pure Kaluza--Klein theory contains no massless fermion in four-dimensional theory. We investigate the effect of introducing torsion on the internal manifold and find that there are massless fermions. The hope is that given an isometry group the representation to which these fermions belong is fixed, in contrast to the situation in Yang--Mills theory. We show that this is indeed the case, but the representations do not appear to be the ones favored by current theoretical prejudice. The cases with parallelizable torsions on a group manifold as the internal manifold are analyzed in detail.
New supersymmetric index of heterotic compactifications with torsion
NASA Astrophysics Data System (ADS)
Israël, Dan; Sarkis, Matthieu
2015-12-01
We compute the new supersymmetric index of a large class of N=2 heterotic compactifications with torsion, corresponding to principal two-torus bundles over warped K3 surfaces with H-flux. Starting from a UV description as a (0,2) gauged linear sigma-model with torsion, we use supersymmetric localization techniques to provide an explicit expression of the index as a sum over the Jeffrey-Kirwan residues of the one-loop determinant. We finally propose a geometrical formula that gives the new supersymmetric index in terms of bundle data, regardless of any particular choice of underlying two-dimensional theory.
Coated Fused Silica Fibers for Enhanced Sensitivity Torsion Pendulum
NASA Technical Reports Server (NTRS)
Numata, Kenji; Horowitz, Jordan; Camp, Jordan
2007-01-01
In order to investigate the fundamental thermal noise limit of a torsion pendulum using a fused silica fiber, we systematically measured and modeled the mechanical losses of thin fused silica fibers coated by electrically conductive thin metal films. Our results indicate that it is possible to achieve a thermal noise limit for coated silica lower by a factor between 3 and 9, depending on the silica diameter, compared to the best tungsten fibers available. This will allow a corresponding increase in sensitivity of torsion pendula used for weak force measurements, including the gravitational constant measurement and ground-based force noise testing for the Laser Interferometer Space Antenna (LISA) mission.
Portal venous thrombosis developing after torsion of a wandering spleen.
Yilmaz, Ö; Kiziltan, R; Almali, N; Aras, A
2017-03-01
Torsion of a wandering spleen is a rare disease. The symptoms and signs of this condition are only present when the splenic pedicle torts. The etiological factors are the congenital absence of the ligaments that hold the spleen in its normal anatomic position, or the relaxation of these ligaments resulting from conditions like trauma and abdominal surgery. We aimed to present a rare case with torsion of wandering spleen that consequently developed thrombosis of portal vein and its branches, taking into consideration the relevant literature.
Wandering spleen with chronic torsion in a patient with thalassaemia.
Ho, Chi Long
2014-12-01
Wandering spleen or splenoptosis is an uncommon entity and often an asymptomatic finding of acute abdomen in the emergency department. A high index of suspicion for splenic torsion is required, particularly in patients with known splenomegaly, as this condition could potentially lead to splenic infarction. Recognition of this condition can help avoid potential confusion with acute abdomen of other aetiologies. Herein, we present a unique case of wandering spleen with chronic torsion, which, to the best of our knowledge, has never been described in an elderly patient with haemoglobin H thalassaemia. We also review the literature for the aetiology and pathogenesis of wandering spleen, and discuss the relevant diagnostic modalities and treatment options.
A monolithically integrated torsional CMOS-MEMS relay
NASA Astrophysics Data System (ADS)
Riverola, M.; Sobreviela, G.; Torres, F.; Uranga, A.; Barniol, N.
2016-11-01
We report experimental demonstrations of a torsional microelectromechanical (MEM) relay fabricated using the CMOS-MEMS approach (or intra-CMOS) which exploits the full foundry inherent characteristics enabling drastic reduction of the fabrication costs and batch production. In particular, the relay is monolithically integrated in the back end of line of a commercial standard CMOS technology (AMS 0.35 μm) and released by means of a simple one-step mask-less wet etching. The fabricated torsional relay exhibits an extremely steep switching behaviour symmetrical about both contact sides with an on-state contact resistance in the k Ω -range throughout the on-off cycling test.
Albino, Giuseppe; Nenna, Rosanna; Corvasce, Antonio; Marucco, Ettore Cirillo
2012-12-01
Cases of torsion of the spermatic cord are rare in men over 30-years-old. Testicular tumors manifest themselves rarely with symptoms of acute scrotum. We report the case of a 38-years-old patient who presented for a suspected left testis torsion. On examination, the testicle was markedly increased in size and painful. The manual derotation made pain dramatically disappear. He came to our attention after about a month asking for an orchidopexy. During the surgery a biopsy was performed. The diagnosis was a Yolk Sac Tumor. A radical inguinal orchiectomy was performed with left hemiscrotal excision, "in block". He performed four cycles of chemotherapy and with no recurrence after 12 months of follow-up. In literature only seven cases of torsion of an intrascrotal testicle with cancer are reported. Our case is the eighth one.
Peculiar Traits of Hsoh in its Rotational-Torsional Spectrum above 1 THz
NASA Astrophysics Data System (ADS)
Baum, O.; Koerber, M.; Schlemmer, S.; Giesen, T. F.; Yurchenko, S. N.; Thiel, W.; Jensen, P.; Yamada, K. M. T.
2009-06-01
In this paper we present highly accurate spectral data of oxadisulfane, HSOH, in the region of 1.1-1.3 THz. The simple skew chain molecule HSOH is an asymmetric rotor close to the limiting case of a symmetric prolate top molecule. Therefore the pure rotational spectra of this molecule appear very simple at first glance. However, if the spectra are inspected in detail, the molecule manifests its peculiarities. HSOH can be considered as a link between the well-known molecules HSSH and HOOH. For these two species a simple model to explain the alternation of the torsional splittings with the rotational quantum number K_a has been proposed by Hougen. HSOH obviously has lower symmetry than HSSH and HOOH and therefore the observed variation of the torsional splittings with the rotational quantum number K_a cannot be explained by the Hougen model. The new data allow to calculate the experimental tunneling splitting of energy levels up to K_a=7 for the first time. The obtained results are essential to test novel models on torsional tunneling splitting in HSOH. In case of K''_a<3 the HSOH molecule displays a dominating perpendicular-type spectrum in the vibrational ground state with strong c- and somewhat weaker accompanying b-type transitions, as can be understood from theoretical values of the dipole-moment components. In contrary, transitions with K_a''≥ 3 display only c- but no b-type transitions. The absence of b-type transitions is completely unexpected and yet not well understood. J.T. Hougen and B. DeKoven}, J. Mol. Spectrosc. 98 (1983) 375 J.T. Hougen, Can. J. Phys. 62 (1984) 1392 R.I. Ovsyannikov, V.V. Melnikov, W. Thiel, P. Jensen, O. Baum, T.F. Giesen, S.N. Yurchenko, J.Chem.Phys. 129 (2008) 154314 K.M.T. Yamada, G. Winnewisser, P. Jensen, J. Mol. Struct. 695-696, (2004) 323 K.M.T. Yamada, P. Jensen, S. Ross, O. Baum, T.F. Giesen, S. Schlemmer, J. Mol. Struct. (2009) accepted
THz spectroscopy and first ISM detection of excited torsional states of 13C-methyl formate
NASA Astrophysics Data System (ADS)
Haykal, I.; Carvajal, M.; Tercero, B.; Kleiner, I.; López, A.; Cernicharo, J.; Motiyenko, R. A.; Huet, T. R.; Guillemin, J. C.; Margulès, L.
2014-08-01
Context. An astronomical survey of interstellar molecular clouds needs a previous analysis of the spectra in the microwave and sub-mm energy range of organic molecules to be able to identify them. We obtained very accurate spectroscopic constants in a comprehensive laboratory analysis of rotational spectra. These constants can be used to predict the transitions frequencies very precisely that were not measured in the laboratory. Aims: We present the experimental study and its theoretical analysis for two 13C-methyl formate isotopologues to detect these two isotopologues for the first time in their excited torsional states, which lie at 130 cm-1 (200 K) in Orion-KL. Methods: New spectra of HCOO13CH3 (13C2) methyl formate were recorded with the mm- and submm-wave spectrometer in Lille from 50 to 940 GHz. A global fit for vt = 0 and 1 was accomplished with the BELGI program to reproduce the experimental spectra with greater accuracy. Results: We analysed 5728 and 2881 new lines for vt = 0 and 1 for HCOO13CH3. These new lines were globally fitted with 846 previously published lines for vt = 0. In consequence, 52 parameters of the RAM Hamiltonian were accurately determined and the value of the barrier height (V3 = 369.93168(395) cm-1) was improved. We report the detection of the first excited torsional states (vt = 1) in Orion-KL for the 13C2 and 13C1 methyl formate based on the present analysis and previously published data. We provide column densities, isotopic abundances, and vibrational temperatures for these species. Conclusions: Following this work, accurate prediction can be provided. This permits detecting 135 features of the first excited torsional states of 13C-methyl formate isotopologues in Orion-KL in the 80-280 GHz frequency range, without missing lines. Full Table A.1 and the IRAM spectra as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568
Vibration analysis for electronic equipment (2nd edition)
NASA Astrophysics Data System (ADS)
Steinberg, Dave S.
This book describes methods for designing electronic equipment that must work with a high degree of reliability in severe vibration and shock environments. It explains how to design and predict the operational life of electronic equipment based upon the type of electronic components used and the type of vibration and shock exposure. The book begins with a review of the dynamics of nonuniform sections and composite construction methods for electronic assemblies, followed by a discussion of methods for mounting electronic components and determining electrical lead wire and solder joint stresses and fatigue life. Printed circuit boards and chassis assemblies are examined in detail, with methods for determining natural frequency, dynamic coupling transmissibility, and fatigue life. The design and analysis of electronic components, circuit boards, electrical lead wires, and solder joints for sinusoidal and random vibrations, acoustics, shock, and pyrotechnic shock are addressed.
Left common basal pyramid torsion following left upper lobectomy/segmentectomy.
Wang, Wei-Li; Cheng, Yen-Po; Cheng, Ching-Yuan; Wang, Bing-Yen
2015-05-01
Lobar or segmental lung torsion is a severe complication of lung resection. To the best of our knowledge, common basal pyramid torsion has never been reported. We describe a case of left basal pyramid torsion after left upper lobectomy and superior segmentectomy, which was successfully treated by thoracoscopic surgery.
Fedoruk, Sergey Ivanov, Evgeny; Smilga, Andrei
2014-05-15
We present simple models of N= 4 supersymmetric mechanics with ordinary and mirror linear (4, 4, 0) multiplets that give a transparent description of Hyper-Kähler with Torsion (HKT), Clifford Kähler with Torsion (CKT), and Octonionic Kähler with Torsion (OKT) geometries. These models are treated in the N= 4 and N=2 superfield approaches, as well as in the component approach. Our study makes manifest that the CKT and OKT supersymmetric sigma models are distinguished from the more simple HKT models by the presence of extra holomorphic torsion terms in the supercharges.
An Approach to Study Elastic Vibrations of Fractal Cylinders
NASA Astrophysics Data System (ADS)
Steinberg, Lev; Zepeda, Mario
2016-11-01
This paper presents our study of dynamics of fractal solids. Concepts of fractal continuum and time had been used in definitions of a fractal body deformation and motion, formulation of conservation of mass, balance of momentum, and constitutive relationships. A linearized model, which was written in terms of fractal time and spatial derivatives, has been employed to study the elastic vibrations of fractal circular cylinders. Fractal differential equations of torsional, longitudinal and transverse fractal wave equations have been obtained and solution properties such as size and time dependence have been revealed.
Alfven seismic vibrations of crustal solid-state plasma in quaking paramagnetic neutron star
Bastrukov, S.; Xu, R.-X.; Molodtsova, I.; Takata, J.; Chang, H.-K.
2010-11-15
Magneto-solid-mechanical model of two-component, core-crust, paramagnetic neutron star responding to quake-induced perturbation by differentially rotational, torsional, oscillations of crustal electron-nuclear solid-state plasma about axis of magnetic field frozen in the immobile paramagnetic core is developed. Particular attention is given to the node-free torsional crust-against-core vibrations under combined action of Lorentz magnetic and Hooke's elastic forces; the damping is attributed to Newtonian force of shear viscose stresses in crustal solid-state plasma. The spectral formulas for the frequency and lifetime of this toroidal mode are derived in analytic form and discussed in the context of quasiperiodic oscillations of the x-ray outburst flux from quaking magnetars. The application of obtained theoretical spectra to modal analysis of available data on frequencies of oscillating outburst emission suggests that detected variability is the manifestation of crustal Alfven's seismic vibrations restored by Lorentz force of magnetic field stresses.
Hu, Yan-Gao; Liew, K M; Wang, Q
2011-12-01
Free transverse, longitudinal and torsional vibrations of single-walled carbon nanotubes (SWCNTs) are investigated through nonlocal beam model, nonlocal rod model and verified by molecular dynamics (MD) simulations. The nonlocal Timoshenko beam model offers a better prediction of the fundamental frequencies of shorter SWCNTs, such as a (5, 5) SWCNT shorter than 3.5 nm, than local beam models. The nonlocal rod model is employed to study the longitudinal and torsional vibrations of SWCNT and found to enable a good prediction of the MD results for shorter SWCNTs. Nonlocal and local continuum models provide a good agreement with MD results for relatively longer SWCNTs, such as (5, 5) SWCNTs longer than 3.5 nm. The scale parameter in nonlocal beam and rod models is estimated by calibrations from MD results.
Free Torsional Vibrations of a Hollow Cylinder with Laminated Periodic Structure.
1981-02-01
requires that 0 < 13 It can be easily verified that at the interface z = k of the two layers in a primitive cell w (9) = Wl(t) w2() = 2(1) (12) and wiw...be easily general- ized if there are more than two layers in a primitive cell . Such an extension to three and four layered composite is contained in...equation 02 - oj,(d) + wj(d)I + 1 =0, (7 Note that the 2x2- form of the determinant remains unchanged if there are more than two layers in a primitive
The 2004 Hyperflare from SGR 1806-20: Further Evidence for Global Torsional Vibrations
NASA Technical Reports Server (NTRS)
Strohmayer, Tod E.; Watts, Anna L.
2006-01-01
We report an analysis of the archival Rossi X-ray Timing Explorer (RXTE) data from the December 2004 hyperflare from SGR 1806-20. In addition to the approx. equal to 90 Hz QPO first discovered by Israel et al., we report the detection of higher frequency oscillations at approx. equal to 150, 625, and 1,835 Hz. In addition to these frequencies there are indications of oscillations at approx. equal to 720, and 2,384 Hz, but with lower significances. The 150 Hz QPO has a width (FWHM) of about 17 Hz, an average amplitude (rms) of 6.5%, and is detected in average power spectra centered on the rotational phase of the strongest peak in the pulse profile. This is approximately half a rotational cycle from the phase at which the 90 Hz QPO is strongly detected. The 625 Hz oscillation was first detected in an average power spectrum from nine successive cycles beginning approximately 180 s after the initial hard spike. It has a width (FWHM) of approx. equal to 2 Hz and an average amplitude (rms) during this interval of 9%. We find a strong detection of the 625 Hz oscillation in a pair of successive rotation cycles beginning about 230 s after the start of the flare. In these cycles we also detect the 1,835 Hz QPO with the 625 Hz oscillation. The rotational phase in which the 625 Hz &PO is detected is similar to that for the 90 Hz QPO, indeed, this feature is seen in the same average power spectrum. During the time the 625 Hz QPO is detected we also confirm the simultaneous presence of 30 and 92 Hz QPOs, first reported by Israel et al. The centroid frequency of the 625 Hz QPO detected with RXTE is within 1 Hz of the M 626 Hz oscillation recently found in RHESSI data from this hyperflare by Watts & Strohmayer, however, the two detections were made in different phase and energy intervals. Nevertheless, we argue that the two results likely represent detections of the same oscillation frequency intrinsic to the source, but we comment on some of the difficulties in making direct comparisons between the RXTE and RHESSI measurements
Long-wavelength torsional modes of solar coronal plasma structures
NASA Astrophysics Data System (ADS)
Vasheghani Farahani, S.; Nakariakov, V. M.; van Doorsselaere, T.
2010-07-01
Aims: We consider the effects of the magnetic twist and plasma rotation on the propagation of torsional m = 0 perturbations of cylindrical plasma structures (straight magnetic flux tubes) in the case when the wavelength is much longer than the cylinder diameter. Methods: The second order thin flux tube approximation is used to derive dispersion relations and phase relations in linear long-wavelength axisymmetric magnetohydrodynamic waves in uniformly twisted and rotating plasma structures. Results: Asymptotic dispersion relations linking phase speeds with the plasma parameters are derived. When twist and rotation are both present, the phase speed of torsional waves depends upon the direction of the wave propagation, and also the waves are compressible. The phase relations show that in a torsional wave the density and azimuthal magnetic field perturbations are in phase with the axial magnetic field perturbations and anti-phase with tube cross-section perturbations. In a zero-β non-rotating plasma cylinder confined by the equilibrium twist, the density perturbation is found to be about 66 percent of the amplitude of the twist perturbation in torsional waves.
Torsional Oscillations and Waves Projected on the Wall
ERIC Educational Resources Information Center
Bartlett, Albert A.
2008-01-01
The article "Torsional Oscillations with Lorentz Force" by Paul Gluck provides a glimpse into the major world of ancient physics demonstrations in the late 19th and first half of the 20th centuries. The apparatus that was described and similar pieces of apparatus are the basis for many memorable but long forgotten educational demonstrations. The…
Ectopic ovary with torsion: uncommon diagnosis made by ultrasound
Castro, Adham do Amaral e; Morandini, Fernando; Calixto, Caroline Paludo; Barros, Wagner Haese; Nakatani, Edson Tetsuya; Castro, Allan do Amaral e
2017-01-01
Ultrasound is an important diagnostic tool in inguinal hernia and in the evaluation of the contents of the hernia sac. This report presents a case in which ultrasound revealed a herniated ectopic ovary, complicated by torsion of its vascular pedicle, in the right labia majora. We also present a brief discussion of ovarian hernia, its potential complications, and the treatments available. PMID:28298734
Toeplitz Operators, Analytic Torsion, and the Hypoelliptic Laplacian
NASA Astrophysics Data System (ADS)
Bismut, Jean-Michel
2016-12-01
The purpose of this paper is to explain how Toeplitz operators can be used in studying asymptotic torsion, and also in the theory of the hypoelliptic Laplacian. The role of the hypoelliptic Laplacian in the explicit computation of orbital integrals will be described. The geodesic flow will be viewed as implementing a dynamical version of Fourier transform.
Solution of elastoplastic torsion problem by boundary integral method
NASA Technical Reports Server (NTRS)
Mendelson, A.
1975-01-01
The boundary integral method was applied to the elastoplastic analysis of the torsion of prismatic bars, and the results are compared with those obtained by the finite difference method. Although fewer unknowns were used, very good accuracy was obtained with the boundary integral method. Both simply and multiply connected bodies can be handled with equal ease.
New Approaches to Data Acquisitions in a Torsion Pendulum Experiment
ERIC Educational Resources Information Center
Jiang, Daya; Xiao, Jinghua; Li, Haihong; Dai, Qionglin
2007-01-01
In this paper, two simple non-contact and cost-effective methods to acquire data in the student laboratory are applied to investigate the motion of a torsion pendulum. The first method is based on a Hall sensor, while the second makes use of an optical mouse.
Quaternionic Torsion Geometry, Superconformal Symmetry and T-duality
Swann, Andrew
2009-02-02
HyperKaehler metrics with torsion (HKT metrics) are constructed via superconformal symmetry. It is shown how T-duality interpreted as a twist construction for circle actions provides a number of compact simply-connected examples. Further applications of the twist construction are discussed to obtain compact simply-connected HKT manifolds with few symmetries and to construct all HKT nilmanifolds.
A measurement of G with a cryogenic torsion pendulum.
Newman, Riley; Bantel, Michael; Berg, Eric; Cross, William
2014-10-13
A measurement of Newton's gravitational constant G has been made with a cryogenic torsion pendulum operating below 4 K in a dynamic mode in which G is determined from the change in torsional period when a field source mass is moved between two orientations. The source mass was a pair of copper rings that produced an extremely uniform gravitational field gradient, whereas the pendulum was a thin fused silica plate, a combination that minimized the measurement's sensitivity to error in pendulum placement. The measurement was made using an as-drawn CuBe torsion fibre, a heat-treated CuBe fibre, and an as-drawn Al5056 fibre. The pendulum operated with a set of different large torsional amplitudes. The three fibres yielded high Q-values: 82 000, 120 000 and 164 000, minimizing experimental bias from fibre anelasticity. G-values found with the three fibres are, respectively: {6.67435(10),6.67408(15),6.67455(13)}×10(-11) m(3) kg(-1) s(-2), with corresponding uncertainties 14, 22 and 20 ppm. Relative to the CODATA2010 G-value, these are higher by 77, 37 and 107 ppm, respectively. The unweighted average of the three G-values, with the unweighted average of their uncertainties, is 6.67433(13)×10(-11) m(3) kg(-1) s(-2) (19 ppm).
34. VERTICAL AND TORSIONAL MOTION VIEWED FROM EAST TOWER, 7 ...
34. VERTICAL AND TORSIONAL MOTION VIEWED FROM EAST TOWER, 7 NOVEMBER 1940, FROM 16MN FILM SHOT BY PROFESSOR F.B. FARQUHARSON, UNIVERSITY OF WASHINGTON. (LABORATORY STUDIES ON THE TACOMA NARROWS BRIDGE, AT UNIVERSITY OF WASHINGTON (SEATTLE: UNIVERSITY OF WASHINGTON, DEPARTMENT OF CIVIL ENGINEERING, 1941) - Tacoma Narrows Bridge, Spanning Narrows at State Route 16, Tacoma, Pierce County, WA
The human ocular torsion position response during yaw angular acceleration.
Smith, S T; Curthoys, I S; Moore, S T
1995-07-01
Recent results by Wearne [(1993) Ph.D. thesis] using the scleral search-coil method of measuring eye position indicate that changes in ocular torsion position (OTP) occur during yaw angular acceleration about an earth vertical axis. The present set of experiments, using an image processing method of eye movement measurement free from the possible confound of search coil slippage, demonstrates the generality and repeatability of this phenomenon and examines its possible causes. The change in torsion position is not a linear vestibulo-ocular reflex (LVOR) response to interaural linear acceleration stimulation of the otoliths, but rather the effect is dependent on the characteristics of the angular acceleration stimulus, commencing at the onset and decaying at the offset of the angular acceleration. In the experiments reported here, the magnitude of the angular acceleration stimulus was varied and the torsion position response showed corresponding variations. We consider that the change in torsion position observed during angular acceleration is most likely to be due to activity of the semicircular canals.
Protective role of erythropoietin during testicular torsion of the rats.
Yazihan, Nuray; Ataoglu, Haluk; Koku, Naim; Erdemli, Esra; Sargin, Ayse Kose
2007-10-01
Testicular torsion is an important clinical urgency. Similar mechanisms occurred after detorsion of the affected testis as in the ischemia reperfusion (I/R) damage. This study was designed to investigate the effects of erythropoietin (EPO) treatment after unilateral testicular torsion. Fifty male Sprague-Dawley rats were divided into five groups. Group 1 underwent a sham operation of the right testis under general anesthesia. Group 2 was same as sham, and EPO (3,000 IU/kg) infused i.p., group 3 underwent a similar operation but the right testis was rotated 720 degrees clockwise for 1 h, maintained by fixing the testis to the scrotum, and saline infused during the procedure. Group 4 underwent similar torsion but EPO was infused half an hour before the detorsion procedure, and in group 5, EPO was infused after detorsion procedure. Four hours after detorsion, ipsilateral and contralateral testes were taken out for evaluation. Treatment with EPO improved testicular structures in the ipsilateral testis but improvement was less in the contralateral testis histologically, but EPO treatment decreased germ cell apoptosis in both testes following testicular IR. TNF-alpha, IL-1beta, IL-6 and nitrite levels decreased after EPO treatment especially in the ipsilateral testis. We conclude that testicular I/R causes an increase in germ cell apoptosis both in the ipsilateral and contralateral testes. Erythropoietin has antiapoptotic and anti-inflammatory effects following testicular torsion.
Otçu, Selçuk; Durakoğugil, Murat; Orer, Hakan S; Tanyel, Feridun C
2002-10-01
The decrease in blood flow due to the activation of sympathetic system has been suggested to play a role in contralateral testicular deterioration associated with unilateral testicular torsion. Sympathetic nerve discharges (SND) from the genitofemoral nerve were evaluated before and during unilateral testicular torsion. Under urethane anesthesia, arterial blood pressure and SND from splanchnic and right genitofemoral nerves were recorded in 12 male Sprague-Dawley rats, 8 of which were included in subsequent analyses. After control recordings of basal discharges for 2 min the left testis was twisted 720 degrees counterclockwise, and recording was resumed for an additional 30 min. Changes in nerve activity were calculated by measuring the area under the autospectrum curve, and alterations were compared. Following testicular torsion no significant changes were obtained for splanchnic SND, but the amplitude of SND from contralateral genitofemoral nerve showed an overall increase of 21.20+/-7.03% in six rats. This increase lasted about 10-15 min and activities returned to pretorsion levels. In two other rats no significant change was observed in either splanchnic or genitofemoral SND. Ipsilateral testicular torsion results in a transient increase in genitofemoral SND. A possible autonomic reflex mechanism may exist, and it may be activated by noxious stimuli from contralateral side. This reflex mechanism may initiate a series of events that lead to the injury of contralateral testis.
The Rotation-Torsion Spectrum of CH_2DOH
NASA Astrophysics Data System (ADS)
Hilali, A. El; Coudert, L. H.; Margulès, L.; Motiyenko, R.; Klee, S.
2010-06-01
Due to the asymmetry of the CH_2D group, the internal rotation problem in the partially deuterated species of methanol CH_2DOH is a complicated one as, unlike in the normal species CH_3OH, the inertia tensor depends on the angle of internal rotation. The CH_2DOH species also displays a dense far infrared torsional spectrum difficult to assign. Recently 38 torsional subbands of CH_2DOH have been identified, but for most of them there is neither an assignment nor an analysis of their rotational structure. In this paper an analysis of the rotation-torsion spectrum of CH_2DOH will be presented. The rotational structure of 23 torsional subbands have been assigned. These subbands are Δ v_t &ge 1 perpendicular subbands with a value of v'_t up to 10b and values of K' and K'' ranging from 0 to 9. For all subbands, the Q-branch was assigned, for 3 subbands, the R- and P-branches could also be found. The results of the rotational analysis with an expansion in J(J+1) of the new subbands and of already observed ones will be presented. When available, microwave lines within the lower torsional level, recorded in this work or already measured, were added to the data set. A theoretical approach aimed at calculating the rotation-torsion energy levels has also been developed. It is based on an expansion in terms of rotation-torsion operators with C_s symmetry and accounts for the dependence of the inertia tensor on the angle of internal rotation. This approach will be used to carry out a preliminary global analyses of the wavenumbers and of the frequencies. Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spec. 256 (2009) 204. Quade, Liu, Mukhopadhyay, and Su, J. Mol. Spec. 192 (1998) 378; Mukhopadhyay, J. Mol. Struct. 695-696 (2004) 357. Liu and Quade, J. Mol. Spec. 146 (1991) 252 Mukhopadhyay et al., J. Chem. Phys. 116 (2002) 3710.
Torsional waves operating in geodynamo and magnetoconvection simulations
NASA Astrophysics Data System (ADS)
Teed, Robert; Jones, Chris; Tobias, Steve
2015-04-01
Torsional waves are a principal feature of the dynamics of the fluid outer core where the Earth's magnetic field is generated. These oscillations are Alfvén waves operating about an equilibrium known as a Taylor state (Taylor, 1963) and they propagate in the cylindrical radial direction. The change in core angular momentum inferred from geomagnetic observations has a measurable impact on the length of the day, and the small decadal variations in the length-of-day signal confirm the existence of torsional oscillations (Holme & de Viron, 2013). Many questions remain unanswered about the exact nature of these waves and this presentation will attempt to address some of these. In order to gain insight we perform three-dimensional spherical dynamo and magnetoconvection simulations in parameter regimes where Earth-like magnetic fields are produced. Many of our simulations produce the desired torsional oscillations, identified by their movement at the correct Alfvén speed, and several show Earth-like core travel times of around 4 years. Our dynamo simulations (Teed et al., 2014) show torsional waves within the tangent cylinder region that also have the ability to pass through this theoretical cylinder. By calculating the driving terms for these waves we find that both the Reynolds force and ageostrophic convection acting through the Lorentz force can be important in driving torsional oscillations. Driven by a desire to reach smaller Ekman numbers and larger magnetic field strengths, which are computationally unattainable in dynamo simulations, we perform, in our follow up work, magnetoconvection simulations (Teed et al., 2015) by imposing a dipolar field on the core-mantle boundary. Under this configuration we find a transition, at low Ekman numbers, to regimes where excitation is found only at the tangent cylinder, is delivered by the Lorentz force and gives rise to a periodic Earth-like wave pattern. This pattern is approximately operating on a 4 to 5 year timescale
Measurements of self-excited rotor-blade vibrations using optical dispacements
NASA Technical Reports Server (NTRS)
Kurkov, A. P.
1982-01-01
The characteristics of optical displacement spectra and their role of monitoring rotor blade vibrations are discussed. During the operation of a turbofan engine at part speed, near stall, and elevated inlet pressure and temperature, several vibratory instabilities were excited simultaneously on the first fan rotor. The torsional and bending contributions to the main flutter mode were resolved by using casing-mounted optical displacement sensors. Other instabilities in the blade deflection spectra were identified.
The protective role of erdosteine on testicular tissue after testicular torsion and detorsion.
Koc, Ahmet; Narci, Adnan; Duru, Mehmet; Gergerlioglu, H Serdar; Akaydin, Yesim; Sogut, Sadik
2005-12-01
Testicular torsion and detorsion are important clinical problems for infertile man and oxidative stress may have a role in this clinical situation. The aim of this study was to investigate the protective role of erdosteine, an antioxidant, on unilateral testicular reperfusion injury in rats. The rats were divided into four groups including seven rats in each group: control, torsion, torsion/detorsion and torsion/detorsion+erdosteine. Rats, except the sham operation group, were subjected to left unilateral torsion (720( composite function) rotation in the clockwise direction) without including the epididymis. The experiments were finished after sham operation time for control, 120 min torsion for torsion group and 120 min torsion and 240 min detorsion for torsion/detorsion groups. Bilateral orchiectomy was performed for all groups of rats. The ipsilateral and controlateral testis were divided into two pieces to analyse biochemical parameters and to investigate the light microscopic view. Malondialdehyde level of ipsilateral testis was increased in torsion and torsion/detorsion groups in comparison with the other groups (p < 0.05). Erdosteine treatment ameliorated lipid peroxidation after torsion/detorsion in ipsilateral testis (p < 0.05). Also, xanthine oxidase activity of ipsilateral testis was increased in torsion/detorsion group in comparison with the others (p < 0.05). Nitric oxide (NO) level of ipsilateral testis was higher in all experimental groups than sham operated control group (p < 0.05). Also, NO level of torsion group was increased in comparison with detorsion groups (p < 0.05). Erdosteine treatment caused increased glutathione peroxidase activity in comparison with torsion and torsion/detorsion groups and catalase activity in comparison with the other groups in ipsilateral testis (p < 0.05). Superoxide dismutase activity of ipsilateral testis was higher in torsion/detorsion and torsion/detorsion+erdosteine groups than control and torsion groups (p < 0
NASA Astrophysics Data System (ADS)
Amabili, M.; Garziera, R.; Carra, S.
2005-12-01
This paper completes a study of Amabili and Garziera [2000, Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass; Part I: empty and fluid-filled shells. J. Fluids Struct. 14, 669 690; 2002a, Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass; Part II: shells containing or immersed in axial flow. J. Fluids Struct. 16, 31 51; 2002b, Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass; Part III: steady viscous effects on shells conveying fluid. J. Fluids Struct. 16, 795 809] by adding the effect of rotary inertia of added masses to the DIVA code, based on the Rayleigh Ritz method and developed to study free vibrations of circular cylindrical shells with nonuniform boundary conditions, added masses, partial elastic bed, initial pre-stress, conveying flow or immersed in axial flow. The effect of rotary inertia has also been evaluated by commercial FEM software and experiments in order to validate the DIVA code. Calculations and experiments show that the effect of rotary inertia of added masses is generally negligible, except for additional local modes; this is in contrast with what has been found for thin plates, due to the geometric stiffness of the circular cylindrical shell.
The torsional mechanical properties of copper nanowires supported by carbon nanotubes
NASA Astrophysics Data System (ADS)
Huan, Hao; Fu, Bing; Ye, Xiang
2017-02-01
The torsional mechanical properties of hollow Cu nanowires supported by carbon nanotubes (CNTs) are studied by all atoms molecular dynamic simulation. It is found that the critical angles of Cu nanowires almost do not decrease when the temperature increases to a limit value, and this invariant feature also has been found as the torsional loading rate is lower than 4.5 ×1012 °s-1. Due to the support of CNTs, Cu nanowires can bear larger torsional angle at low torsional rates and high temperatures compared with those without CNTs, which means the CNTs will increase the torsion-tolerance of Cu nanowires.
Development of a Meso-Scale SMA-Based Torsion Actuator for Image-Guided Procedures.
Sheng, Jun; Gandhi, Dheeraj; Gullapalli, Rao; Simard, J Marc; Desai, Jaydev P
2017-02-01
This paper presents the design, modeling, and control of a meso-scale torsion actuator based on shape memory alloy (SMA) for image-guided surgical procedures. Developing a miniature torsion actuator is challenging, but it opens the possibility of significantly enhancing the robot agility and maneuverability. The proposed torsion actuator is bi-directionally actuated by a pair of antagonistic SMA torsion springs through alternate Joule heating and natural cooling. The torsion actuator is integrated into a surgical robot prototype to demonstrate its working performance in the humid environment under C-Arm CT image guidance.
Free vibration of multiwall carbon nanotubes
NASA Astrophysics Data System (ADS)
Wang, C. Y.; Ru, C. Q.; Mioduchowski, A.
2005-06-01
A multiple-elastic shell model is applied to systematically study free vibration of multiwall carbon nanotubes (MWNTs). Using Flugge [Stresses in Shells (Springer, Berlin, 1960)] equations of elastic shells, vibrational frequencies and associated modes are calculated for MWNTs of innermost radii 5 and 0.65 nm, respectively. The emphasis is placed on the effect of interlayer van der Waals (vdW) interaction on free vibration of MWNTs. Our results show that the interlayer vdW interaction has a crucial effect on radial (R) modes of large-radius MWNTs (e.g., of the innermost radius 5 nm), but is less pronounced for R modes of small-radius MWNTs (e.g., of the innermost radius 0.65 nm), and usually negligible for torsional (T) and longitudinal (L) modes of MWNTs. This is attributed to the fact that the interlayer vdW interaction, characterized by a radius-independent vdW interaction coefficient, depends on radial deflections only, and is dominant only for large-radius MWNTs of lower radial rigidity but less pronounced for small-radius MWNTs of much higher radial rigidity. As a result, the R modes of large-radius MWNTs are typically collective motions of almost all nested tubes, and the R modes of small-radius MWNTs, as well as the T and L modes of MWNTs, are basically vibrations of individual tubes. In particular, an approximate single-shell model is suggested to replace the multiple-shell model in calculating the lowest frequency of R mode of thin MWNTs (defined by the innermost radius-to-thickness ratio not less than 4) with relative errors less than 10%. In addition, the simplified Flugge single equation is adopted to substitute the exact Flugge equations in determining the R-mode frequencies of MWNTs with relative errors less than 10%.
Torsion Bounds from CP Violation α2-DYNAMO in Axion-Photon Cosmic Plasma
NASA Astrophysics Data System (ADS)
Garcia de Andrade, L. C.
Years ago Mohanty and Sarkar [Phys. Lett. B 433, 424 (1998)] have placed bounds on torsion mass from K meson physics. In this paper, associating torsion to axions a la Campanelli et al. [Phys. Rev. D 72, 123001 (2005)], it is shown that it is possible to place limits on spacetime torsion by considering an efficient α2-dynamo CP violation term. Therefore instead of Kostelecky et al. [Phys. Rev. Lett. 100, 111102 (2008)] torsion bounds from Lorentz violation, here torsion bounds are obtained from CP violation through dynamo magnetic field amplification. It is also shown that oscillating photon-axion frequency peak is reduced to 10-7 Hz due to torsion mass (or Planck mass when torsion does not propagate) contribution to the photon-axion-torsion action. Though torsion does not couple to electromagnetic fields at classical level, it does at the quantum level. Recently, Garcia de Andrade [Phys. Lett. B 468, 28 (2011)] has shown that the photon sector of Lorentz violation (LV) Lagrangian leads to linear nonstandard Maxwell equations where the magnetic field decays slower giving rise to a seed for galactic dynamos. Torsion constraints of the order of K0≈10-42 GeV can be obtained which are more stringent than the value obtained by Kostelecky et al. A lower bound for the existence of galactic dynamos is obtained for torsion as K0≈10-37 GeV.
Object tracking under nonuniform illumination with adaptive correlation filtering
NASA Astrophysics Data System (ADS)
Picos, Kenia; Díaz-Ramírez, Víctor H.; Kober, Vitaly
2013-09-01
A real-time system for illumination-invariant object tracking is proposed. The system is able to estimate at high-rate the position of a moving target in an input scene when is corrupted by the presence of a high cluttering background and nonuniform illumination. The position of the target is estimated with the help of a filter bank of space-variant correlation filters. The filters in the bank, adapt their parameters according to the local statistical parameters of the observed scene in a small region centered at coordinates of a predicted position for the target in each frame. The prediction is carried out by exploiting information of present and past frames, and by using a dynamic motion model of the target in a two-dimensional plane. Computer simulation results obtained with the proposed system are presented and discussed in terms of tracking accuracy, computational complexity, and tolerance to nonuniform illumination.
Infrared fiber optic sensor for measurements of nonuniform temperature distributions
NASA Astrophysics Data System (ADS)
Belotserkovsky, Edward; Drizlikh, S.; Zur, Albert; Bar-Or, O.; Katzir, Abraham
1992-04-01
Infrared (IR) fiber optic radiometry of thermal surfaces offers several advantages over refractive optics radiometry. It does not need a direct line of sight to the measured thermal surface and combines high capability of monitoring small areas with high efficiency. These advantages of IR fibers are important in the control of nonuniform temperature distributions, in which the temperature of closely situated points differs considerably and a high spatial resolution is necessary. The theoretical and experimental transforming functions of the sensor during scanning of an area with a nonuniform temperature distribution were obtained and their dependence on the spacial location of the fiber and type of temperature distribution were analyzed. Parameters such as accuracy and precision were determined. The results suggest that IR fiber radiometric thermometry may be useful in medical applications such as laser surgery, hyperthermia, and hypothermia.
Net diffusivity in ocean general circulation models with nonuniform grids
NASA Technical Reports Server (NTRS)
Yin, F. L.; Fung, I. Y.
1991-01-01
The numerical vertical diffusivity K(num), embedded in a numerical ocean general circulation model with nonuniform vertical grid, is estimated. It is shown that in a downwelling region, K(num) is negative for a grid with grid size increasing with depth. When the grid size increment, or the downward vertical velocity, is large, K(num) may exceed the vertical diffusivity specified and may result in a negative effective vertical diffusivity. Therefore care needs to be taken to specify the vertical diffusivity in a numerical model with nonuniform grid, and a lower bound is generally imposed in order to avoid an unphysical negative value. Some possible effects of the negative effective diffusivity are discussed.
Current distribution and nonuniformity effects in MHD disk generators
NASA Astrophysics Data System (ADS)
Roseman, D. F.
1982-08-01
Current distribution and nonuniformity effects in combustion driven MHD disk generators were studied. The importance of these phenomena to baseload power generation was investigated. The peg wall construction allowed current and voltage distributions to be measured. The channel was operated with plasma temperatures up to 2750 K and magnetic field strengths up to 5.5 Tesla. The magnitudes of the currents and voltages were reduced by significant loss mechanisms, primarily electrode losses and current leakage through the wall caused by potassium seed penetration of the castable ceramic between the pegs. A simple circuit model accounting for these losses was developed to be compared with analytical calculations. Under normal uniform electrical loading the distributions measured in the channel were uniform as expected. Nonuniform electrical loading was used to produce and measure effects on the current distribution that occur only in the presence of high magnetic fields as required for MHD power generation.
Effect of non-uniform exchange field in ferromagnetic graphene
Chowdhury, Debashree Basu, B.
2015-04-15
We have presented here the consequences of the non-uniform exchange field on the spin transport issues in spin chiral configuration of ferromagnetic graphene. Taking resort to the spin–orbit coupling (SOC) term and non-uniform exchange coupling term we are successful to express the expression of Hall conductivity in terms of the exchange field and SOC parameters through the Kubo formula approach. However, for a specific configuration of the exchange parameter we have evaluated the Berry curvature of the system. We also have paid attention to the study of SU(2) gauge theory of ferromagnetic graphene. The generation of anti damping spin–orbit torque in spin chiral magnetic graphene is also briefly discussed.
Detector non-uniformity in scanning transmission electron microscopy.
Findlay, S D; LeBeau, J M
2013-01-01
A non-uniform response across scanning transmission electron microscope annular detectors has been found experimentally, but is seldom incorporated into simulations. Through case study simulations, we establish the nature and scale of the discrepancies which may arise from failing to account for detector non-uniformity. If standard detectors are used at long camera lengths such that the detector is within or near to the bright field region, we find errors in contrast of the order of 10%, sufficiently small for qualitative work but non-trivial as experiments become more quantitative. In cases where the detector has been characterized in advance, we discuss the detector response normalization and how it may be incorporated in simulations.
Effects of nonuniform acceptance in anisotropic flow measurements
Selyuzhenkov, Ilya; Voloshin, Sergei
2008-03-15
The applicability of anisotropic flow measurement techniques and their extension for detectors with nonuniform azimuthal acceptance are discussed. Considering anisotropic flow measurements with two and three (mixed harmonic) azimuthal correlations we introduce a set of observables based on the x and y components of the event flow vector. These observables provide independent measures of anisotropic flow and can be used to test the self-consistency of the analysis. Based on these observables we propose a technique that explicitly takes into account the effects of nonuniform detector acceptance. Within this approach the acceptance corrections, as well as parameters that define the method applicability, can be determined directly from experimental data. For practical purposes a brief summary of the method is provided at the end.
Analytical and numerical models to predict the behavior of unbonded flexible risers under torsion
NASA Astrophysics Data System (ADS)
Ren, Shao-fei; Xue, Hong-xiang; Tang, Wen-yong
2016-04-01
This paper presents analytical and numerical models to predict the behavior of unbonded flexible risers under torsion. The analytical model takes local bending and torsion of tensile armor wires into consideration, and equilibrium equations of forces and displacements of layers are deduced. The numerical model includes lay angle, cross-sectional profiles of carcass, pressure armor layer and contact between layers. Abaqus/Explicit quasi-static simulation and mass scaling are adopted to avoid convergence problem and excessive computation time caused by geometric and contact nonlinearities. Results show that local bending and torsion of helical strips may have great influence on torsional stiffness, but stress related to bending and torsion is negligible; the presentation of anti-friction tapes may have great influence both on torsional stiffness and stress; hysteresis of torsion-twist relationship under cyclic loading is obtained by numerical model, which cannot be predicted by analytical model because of the ignorance of friction between layers.
The Vibrations Of Pre-Twisted Rotating Beams Of General Orthotropy
NASA Astrophysics Data System (ADS)
Chen, L.-W.; Chern, H.-K.
1993-11-01
A study is presented of the coupled bending-bending-torsion vibrations of a pre-twisted rotating cantilever beam of fibre-reinforced material. The free vibration and dynamic stability problems are discussed. The transverse shear deformation and rotary inertia are included. The effect of the pre-twisted angle, fibre orientation and rotation are studied. Numerical results have been calculated by using the finite element method, and they show that the effects mentioned above are more complex for orthotropic beams than for isotropic ones.
Nonlinear damping for vibration isolation of microsystems using shear thickening fluid
NASA Astrophysics Data System (ADS)
Iyer, S. S.; Vedad-Ghavami, R.; Lee, H.; Liger, M.; Kavehpour, H. P.; Candler, R. N.
2013-06-01
This work reports the measurement and analysis of nonlinear damping of micro-scale actuators immersed in shear thickening fluids (STFs). A power-law damping term is added to the linear second-order model to account for the shear-dependent viscosity of the fluid. This nonlinear model is substantiated by measurements of oscillatory motion of a torsional microactuator. At high actuation forces, the vibration velocity amplitude saturates. The model accurately predicts the nonlinear damping characteristics of the STF using a power-law index extracted from independent rheology experiments. This result reveals the potential to use STFs as adaptive, passive dampers for vibration isolation of microelectromechanical systems.
NASA Technical Reports Server (NTRS)
Beecher, L. C.; Williams, F. T.
1970-01-01
Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.
Zhang, Daixian; Wu, Jianjun; Zhang, Rui; Zhang, Hua; He, Zhen
2013-12-01
A sympathetic resonance theory is analyzed and applied in a newly developed torsional pendulum to measure the micro-impulse produced by a μN s-class ablative pulsed plasma thruster. According to theoretical analysis on the dynamical behaviors of a torsional pendulum, the resonance amplification effect of micro-signals is presented. In addition, a new micro-impulse measurement method based on sympathetic resonance theory is proposed as an improvement of the original single pulse measurement method. In contrast with the single pulse measurement method, the advantages of sympathetic resonance method are significant. First, because of the magnification of vibration signals due to resonance processes, measurement precision for the sympathetic resonance method becomes higher especially in reducing reading error. With an increase in peak number, the relative errors induced by readout of voltage signals decrease to approximately ±1.9% for the sympathetic resonance mode, whereas the relative error in single pulse mode is estimated as ±13.4%. Besides, by using the resonance amplification effect the sympathetic resonance method makes it possible to measure an extremely low-impulse beyond the resolution of a thrust stand without redesigning or purchasing a new one. Moreover, because of the simple operational principle and structure the sympathetic resonance method is much more convenient and inexpensive to be implemented than other high-precision methods. Finally, the sympathetic resonance measurement method can also be applied in other thrust stands to improve further the ability to measure the low-impulse bits.
Binary fish passage models for uniform and nonuniform flows
Neary, Vincent S
2011-01-01
Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow
Electrostatic chains driven by nonuniform lower hybrid pump
NASA Astrophysics Data System (ADS)
Vranjes, J.; Jovanovic, D.
1997-01-01
We study the parametric interaction of a nonuniform long-wavelength lower hybrid (LH) wave propagating almost perpendicularly to the magnetic field lines, with low frequency density perturbations. Neglecting perturbations of the strong LH wave acting as a pump, we show that for a specific profile of its amplitude, a LH pump can excite electrostatic vortex chains propagating perpendicularly both to the magnetic field and the direction of the pump gradient.
STUDY OF NON-UNIFORMITY COEFFICIENT CONSIDERING MICROTOPOGRAPHY FOR SEISMIC DESIGN OF WATER PIPELINE
NASA Astrophysics Data System (ADS)
Shichiroumaru, Kazutaka; Miyajima, Masakatsu
This study is focusing on a non-uniformity coefficient of ground in the earthquake-resistant of a water pipeline. A lot of earthquake damage occurs at high non-uniformity ground. Therefore it is necessary to consider non-uniformity at the earthquake-resistant of the underground pipeline. By using a microtopography classification, non-uniformity coefficient in the boundary in the microtopography is studied. As a result, earthquake damage rate of underground pipeline at the boundary of the microtopography tends to be high. Therefore, the non-uniformity at the boundary can be obtained from a kind of microtopography and the boundary condition.
An immersed boundary method for non-uniform Cartesian grids
NASA Astrophysics Data System (ADS)
Jang, Juwon; Lee, Changhoon
2016-11-01
Many kinds of immersed boundary method have been developed, but most of them have been used in uniform grids with discrete Dirac delta functions. Therefore, the distribution of Lagrangian points over the immersed surface is usually made uniformly. However, when any immersed boundary method is to be applied to non-uniform grids, uniform distribution might not be optimum for good performance. Recently, Akiki and Balachandar (2016) proposed a method to distribute the Lagrangian points nonuniformly over the surface of a sphere near the wall, but it cannot not be extended to more general shape of immersed surface. We propose a method that is capable for properly distributing the Lagrangian points over any kind of surface by considering the size of nearby Eulerian grids. Present method first finds intersection points between immersed surface and nonuniform Cartesian grids. Then, the centroid of the intersection points is projected on the immersed surface to be designated by Lagrangian point. This procedure guarantees one Lagrangian point per the Eulerian grid cell. This method is validated for various problems such as flows around a settling sphere, a moving sphere in the near-wall region and a tilted ellipsoid near the wall.
X-ray diffraction from nonuniformly stretched helical molecules.
Prodanovic, Momcilo; Irving, Thomas C; Mijailovich, Srboljub M
2016-06-01
The fibrous proteins in living cells are exposed to mechanical forces interacting with other subcellular structures. X-ray fiber diffraction is often used to assess deformation and movement of these proteins, but the analysis has been limited to the theory for fibrous molecular systems that exhibit helical symmetry. However, this approach cannot adequately interpret X-ray data from fibrous protein assemblies where the local strain varies along the fiber length owing to interactions of its molecular constituents with their binding partners. To resolve this problem a theoretical formulism has been developed for predicting the diffraction from individual helical molecular structures nonuniformly strained along their lengths. This represents a critical first step towards modeling complex dynamical systems consisting of multiple helical structures using spatially explicit, multi-scale Monte Carlo simulations where predictions are compared with experimental data in a 'forward' process to iteratively generate ever more realistic models. Here the effects of nonuniform strains and the helix length on the resulting magnitude and phase of diffraction patterns are quantitatively assessed. Examples of the predicted diffraction patterns of nonuniformly deformed double-stranded DNA and actin filaments in contracting muscle are presented to demonstrate the feasibly of this theoretical approach.
Forced unraveling of chromatin fibers with nonuniform linker DNA lengths
NASA Astrophysics Data System (ADS)
Ozer, Gungor; Collepardo-Guevara, Rosana; Schlick, Tamar
2015-02-01
The chromatin fiber undergoes significant structural changes during the cell's life cycle to modulate DNA accessibility. Detailed mechanisms of such structural transformations of chromatin fibers as affected by various internal and external conditions such as the ionic conditions of the medium, the linker DNA length, and the presence of linker histones, constitute an open challenge. Here we utilize Monte Carlo (MC) simulations of a coarse grained model of chromatin with nonuniform linker DNA lengths as found in vivo to help explain some aspects of this challenge. We investigate the unfolding mechanisms of chromatin fibers with alternating linker lengths of 26-62 bp and 44-79 bp using a series of end-to-end stretching trajectories with and without linker histones and compare results to uniform-linker-length fibers. We find that linker histones increase overall resistance of nonuniform fibers and lead to fiber unfolding with superbeads-on-a-string cluster transitions. Chromatin fibers with nonuniform linker DNA lengths display a more complex, multi-step yet smoother process of unfolding compared to their uniform counterparts, likely due to the existence of a more continuous range of nucleosome-nucleosome interactions. This finding echoes the theme that some heterogeneity in fiber component is biologically advantageous.
Nonuniformity Mitigation of Beam Illumination in Heavy Ion Inertial Fusion
NASA Astrophysics Data System (ADS)
Kawata, Shigeo; Noguchi, K.; Suzuki, T.; Kurosaki, T.; Barada, D.; Ma, Y. Y.; Ogoyski, A. I.
2013-10-01
In heavy ion inertial fusion wobbling heavy ion beam (HIB) illumination was proposed to realize a uniform implosion. The wobbling HIB axis oscillation is precisely controlled. The oscillating frequency may be several 100 MHz ~ 1 GHz. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space on a HIF target. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs' illumination nonuniformity. Three-dimensional HIBs illumination computations presented here show that the few percent wobbling HIBs illumination nonuniformity oscillates with the same wobbling HIBs frequency. In general a perturbation of physical quantity would feature the instability onset. Normally the perturbation phase is unknown so that the instability growth is discussed with the growth rate. However, if the perturbation phase is known, the instability growth can be controlled by a superposition of perturbations; the well-known mechanism is a feedback control to compensate the displacement of physical quantity. If the perturbation is induced by, for example, a HIB axis wobbling, the perturbation phase could be controlled and the instability growth is mitigated by the superposition of the growing perturbations. Partly supported by JSPS, MEXT, CORE, ASHULA, Japan / US Cooperation program and ILE/Osaka University.
Non-Uniform Electromagnetic Fields in the SAMURAI TPC
NASA Astrophysics Data System (ADS)
Estee, J.; Barney, J.; Chajecki, Z.; Chan, C. F.; Dunn, J. W.; Gilbert, J.; Lu, F.; Lynch, W. G.; Shane, R.; Tsang, M. B.; McIntosh, A. B.; Yennello, S. J.; Famiano, M.; Isobe, T.; Sakurai, H.; Taketani, A.; Murakami, T.; Samurai-Tpc Collaboration
2011-10-01
A Time Projection Chamber (TPC) is being developed for the SAMURAI dipole magnet at RIKEN. The main scientific objective for the TPC is to provide constraints on the nuclear symmetry at supra-saturation density. The poster presentation will discuss the design of the TPC field cage and the external electrodes that shape the high electric fields near the cathode. Garfield calculations of the electric field as well as TOSCA calculations of the magnetic field of the SAMURAI dipole will be shown and the impact of the non-uniformity of both fields on electron transport will be discussed. These non-uniformities can introduce components into the electron drift velocity in directions other than the expected vertical direction. This poster presentation will discuss the initial design of a laser calibration system, which will be used to calibrate away the influence of these non-uniformities in the electric and magnetic fields. This work is supported by the DOE under Grant DE-SC0004835.
Tunable Passive Vibration Suppressor
NASA Technical Reports Server (NTRS)
Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)
2016-01-01
An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.
Hermetically sealed vibration damper
NASA Technical Reports Server (NTRS)
Wheatley, D. G.
1969-01-01
Simple fluidic vibration damper for installation at each pivotal mounting between gimbals isolates inertial measuring units from external vibration and other disruptive forces. Installation between each of the three gimbal axes can dampen vibration and shock in any direction while permitting free rotation of the gimbals.
Hougen, J.T.
1993-12-01
The goal of this project is to use spectroscopic techniques to investigate in detail phenomena involving the vibrational quasi-continuum in a simple physical system. Acetaldehyde was chosen for the study because: (i) methyl groups have been suggested to be important promotors of intramolecular vibrational relaxation, (ii) the internal rotation of a methyl group is an easily describle large-amplitude motion, which should retain its simple character even at high levels of excitation, and (iii) the aldehyde carbonyl group offers the possibility of both vibrational and electronic probing. The present investigation of the ground electronic state has three parts: (1) understanding the {open_quotes}isolated{close_quotes} internal-rotation motion below, at, and above the top of the torsional barrier, (2) understanding in detail traditional (bond stretching and bending) vibrational fundamental and overtone states, and (3) understanding interactions involving states with multiquantum excitations of at least one of these two kinds of motion.
Rotor Vibration Reduction Using Multi-Element Multi-Path Design
NASA Astrophysics Data System (ADS)
Su, Keye
Multi-Element Multi-Path (MEMP) structural design is a new concept for rotor vibration reduction. This thesis explores the possibility of applying MEMP design to helicopter rotor blades. A conceptual design is developed to investigate the MEMP blade's vibration reduction performance. In the design, the rotor blade is characterized by two centrifugally loaded beams which are connected to each other through linear and torsional springs. A computer program is built to simulate the behavior of such structures. Detailed parametric studies are conducted. The main challenges in this thesis involve the blade hub load vibration analysis, the blade thickness constraint and the blade parameter selection. The results show substantial vibration reduction for the MEMP design but the large relative deflection between the two beams, conceptualized as an internal spar and airfoil shell, remains a problem for further study.
Torsion-Rotation Effects in the ν_{20}, 2ν_{21}, 2ν_{13} and ν_{21} + ν_{13} States of CH_3CH_2CN
NASA Astrophysics Data System (ADS)
Daly, Adam M.; Pearson, John C.; Yu, Shanshan; Drouin, Brian J.; Bermudez, C.; Alonso, J. L.
2013-06-01
Ethyl cyanide, CH_3CH_2CN, is a highly abundant molecule in hot cores associated with massive star formation where temperatures often approach 200K. Astrophysicists would like to use the many thousands of observed lines to evaluate thermal equilibrium, temperature distributions, heating sources, and radiative pumping effects. In spite of a recent partial success in characterizing the ν_{20} and ν_{12} vibrational states, many aspects of the spectroscopy of the ν_{20} state are not adequately characterized. Torsional splittings in the b-type spectrum of ν_{20} are typically a few MHz and many a-type transitions also show resolved torsional splittings, both are incompatible with the expected 1200 cm^{-1} barrier to internal rotation in a v_t=0 state. Additionally all K values above 2 show some obvious perturbations. The three states that lie just above ν_{20} are 2ν_{21}, 2ν_{13} and ν_{21} + ν_{13}. It has been determined that ν_{20} interacts weakly with both 2ν_{21} and 2ν_{13} and that 2ν_{21} interacts weakly with 2ν_{13}, in spite of their common symmetry and very close proximity. However, all the interactions of ν_{21} + ν_{13} appear to be very strong, making assignments of the combination band particularly problematic. The numerous interactions result in wide spread anomalous torsional splittings. These splittings provide valuable insight into the nature of the interactions, however without a reasonable model, assignment of A or E to a torsional component is far from obvious. There remains no reasonable quantum mechanical description of how to proceed with a torsion-rotation-vibration analysis involving large and small amplitude motions. Regardless, everything that can be assigned in the laboratory spectrum can be securely identified in the astronomical spectrum of several sources, suggesting that a solution to this problem is needed. We present what is known and unknown in this quartet of CH_3CH_2CN states. Daly, Bermúdez, Lopez, Tercero
Composite Bending Box Section Modal Vibration Fault Detection
NASA Technical Reports Server (NTRS)
Werlink, Rudy
2002-01-01
One of the primary concerns with Composite construction in critical structures such as wings and stabilizers is that hidden faults and cracks can develop operationally. In the real world, catastrophic sudden failure can result from these undetected faults in composite structures. Vibration data incorporating a broad frequency modal approach, could detect significant changes prior to failure. The purpose of this report is to investigate the usefulness of frequency mode testing before and after bending and torsion loading on a composite bending Box Test section. This test article is representative of construction techniques being developed for the recent NASA Blended Wing Body Low Speed Vehicle Project. The Box section represents the construction technique on the proposed blended wing aircraft. Modal testing using an impact hammer provides an frequency fingerprint before and after bending and torsional loading. If a significant structural discontinuity develops, the vibration response is expected to change. The limitations of the data will be evaluated for future use as a non-destructive in-situ method of assessing hidden damage in similarly constructed composite wing assemblies. Modal vibration fault detection sensitivity to band-width, location and axis will be investigated. Do the sensor accelerometers need to be near the fault and or in the same axis? The response data used in this report was recorded at 17 locations using tri-axial accelerometers. The modal tests were conducted following 5 independent loading conditions before load to failure and 2 following load to failure over a period of 6 weeks. Redundant data was used to minimize effects from uncontrolled variables which could lead to incorrect interpretations. It will be shown that vibrational modes detected failure at many locations when skin de-bonding failures occurred near the center section. Important considerations are the axis selected and frequency range.
Low thermal conductance rigidizer for reducing torsional oscillations in cryogenic Dewars
NASA Technical Reports Server (NTRS)
Harper, D. A.; Moseley, S. H.
1981-01-01
A rigidizer, which provides greater rigidity against torsional oscillations, is highly resistant to radial motions, and has low thermal conductivity, has been developed to decrease vibrational levels affecting infrared detectors operated in cryostats (e.g., HD-3L Dewar) in aircraft such as NASA's Kuiper Airborne Observatory. The rigidizer is composed of two triangular elements and an intermediate support structure which joins them at the centers of their sides. The reentrant design provides a long heat path, while the triangular truss structure provides high rigidity in the horizontal plane. The structure is relatively compliant in the vertical direction, a desirable feature since the internal structure of the Dewar contracts as it cools. Rigidity in the vertical direction is provided by the neck tube. The support structure is quite compact. Several variants of the rigidizer have been fabricated, using flat sheets of G-10 fiberglass epoxy in thicknesses between 0.75-1.5 mm for the upper and lower truss assemblies, and either G-10 or stainless steel for the intermediate structure.
Molecular Mechanics of the α-Actinin Rod Domain: Bending, Torsional, and Extensional Behavior
Golji, Javad; Collins, Robert; Mofrad, Mohammad R. K.
2009-01-01
α-Actinin is an actin crosslinking molecule that can serve as a scaffold and maintain dynamic actin filament networks. As a crosslinker in the stressed cytoskeleton, α-actinin can retain conformation, function, and strength. α-Actinin has an actin binding domain and a calmodulin homology domain separated by a long rod domain. Using molecular dynamics and normal mode analysis, we suggest that the α-actinin rod domain has flexible terminal regions which can twist and extend under mechanical stress, yet has a highly rigid interior region stabilized by aromatic packing within each spectrin repeat, by electrostatic interactions between the spectrin repeats, and by strong salt bridges between its two anti-parallel monomers. By exploring the natural vibrations of the α-actinin rod domain and by conducting bending molecular dynamics simulations we also predict that bending of the rod domain is possible with minimal force. We introduce computational methods for analyzing the torsional strain of molecules using rotating constraints. Molecular dynamics extension of the α-actinin rod is also performed, demonstrating transduction of the unfolding forces across salt bridges to the associated monomer of the α-actinin rod domain. PMID:19436721
Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W
2015-03-01
For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered.
The Torsion of Members Having Sections Common in Aircraft Construction
NASA Technical Reports Server (NTRS)
Trayer, George W; March, H W
1930-01-01
Within recent years a great variety of approximate torsion formulas and drafting-room processes have been advocated. In some of these, especially where mathematical considerations are involved, the results are extremely complex and are not generally intelligible to engineers. The principal object of this investigation was to determine by experiment and theoretical investigation how accurate the more common of these formulas are and on what assumptions they are founded and, if none of the proposed methods proved to be reasonable accurate in practice, to produce simple, practical formulas from reasonably correct assumptions, backed by experiment. A second object was to collect in readily accessible form the most useful of known results for the more common sections. Formulas for all the important solid sections that have yielded to mathematical treatment are listed. Then follows a discussion of the torsion of tubular rods with formulas both rigorous and approximate.
MAGNETOSEISMOLOGY: EIGENMODES OF TORSIONAL ALFVEN WAVES IN STRATIFIED SOLAR WAVEGUIDES
Verth, G.; Goossens, M.; Erdelyi, R. E-mail: Marcel.Goossens@wis.kuleuven.b
2010-05-10
There have recently been significant claims of Alfven wave observation in the solar chromosphere and corona. We investigate how the radial and longitudinal plasma structuring affects the observational properties of torsional Alfven waves in magnetic flux tubes for the purposes of solar magnetoseismology. The governing magnetohydrodynamic equations of these waves in axisymmetric flux tubes of arbitrary radial and axial plasma structuring are derived and we study their observable properties for various equilibria in both thin and finite-width magnetic flux tubes. For thin flux tubes, it is demonstrated that observation of the eigenmodes of torsional Alfven waves can provide temperature diagnostics of both the internal and surrounding plasma. In the finite-width flux tube regime, it is shown that these waves are the ideal magnetoseismological tool for probing radial plasma inhomogeneity in solar waveguides.
Omental torsion in a captive polar bear (Ursus maritimus).
Mendez-Angulo, Jose L; Funes, Francisco J; Trent, Ava M; Willette, Michelle; Woodhouse, Kerry; Renier, Anna C
2014-03-01
This is the first case report of an omental torsion in a polar bear (Ursus maritimus). A captive, 23-yr-old, 250-kg, intact female polar bear presented to the University of Minnesota Veterinary Medical Center with a 2-day history of lethargy, depression, and vomiting. Abdominal ultrasound identified large amounts of hyperechoic free peritoneal fluid. Ultrasound-guided abdominocentesis was performed and yielded thick serosanguinous fluid compatible with a hemoabdomen. An exploratory laparotomy revealed a large amount of malodorous, serosanguineous fluid and multiple necrotic blood clots associated with a torsion of the greater omentum and rupture of a branch of the omental artery. A partial omentectomy was performed to remove the necrotic tissue and the abdomen was copiously lavaged. The polar bear recovered successfully and is reported to be clinically well 6 mo later. This condition should be considered as a differential in bears with clinical signs of intestinal obstruction and hemoabdomen.
Bending and Torsion Load Alleviator With Automatic Reset
NASA Technical Reports Server (NTRS)
delaFuente, Horacio M. (Inventor); Eubanks, Michael C. (Inventor); Dao, Anthony X. (Inventor)
1996-01-01
A force transmitting load alleviator apparatus and method are provided for rotatably and pivotally driving a member to be protected against overload torsional and bending (moment) forces. The load alleviator includes at least one bias spring to resiliently bias cam followers and cam surfaces together and to maintain them in locked engagement unless a predetermined load is exceeded whereupon a center housing is pivotal or rotational with respect to a crown assembly. This pivotal and rotational movement results in frictional dissipation of the overload force by an energy dissipator. The energy dissipator can be provided to dissipate substantially more energy from the overload force than from the bias force that automatically resets the center housing and crown assembly to the normally fixed centered alignment. The torsional and bending (moment) overload levels can designed independently of each other.
Torsional Newton-Cartan geometry from the Noether procedure
NASA Astrophysics Data System (ADS)
Festuccia, Guido; Hansen, Dennis; Hartong, Jelle; Obers, Niels A.
2016-11-01
We apply the Noether procedure for gauging space-time symmetries to theories with Galilean symmetries, analyzing both massless and massive (Bargmann) realizations. It is shown that at the linearized level the Noether procedure gives rise to (linearized) torsional Newton-Cartan geometry. In the case of Bargmann theories the Newton-Cartan form Mμ couples to the conserved mass current. We show that even in the case of theories with massless Galilean symmetries it is necessary to introduce the form Mμ and that it couples to a topological current. Further, we show that the Noether procedure naturally gives rise to a distinguished affine (Christoffel type) connection that is linear in Mμ and torsionful. As an application of these techniques we study the coupling of Galilean electrodynamics to TNC geometry at the linearized level.
Torsion of a Wandering Spleen Presenting as Acute Abdomen
Chauhan, Narvir Singh; Kumar, Satish
2016-01-01
Summary Background Wandering spleen is a rare condition which if uncorrected, can result in torsion and infarction. Clinical presentation of a wandering spleen can vary from asymptomatic abdominal mass to acute abdominal pain. Radiological investigations play a pivotal role in diagnosis as the clinical diagnosis is usually impossible. Case Report We present a case of wandering spleen with torsion and complete infarction that occurred in a 32-year-old multiparous female. The diagnosis was established preoperatively on colour Doppler and CT of the abdomen with subsequent confirmation on surgery. Conclusions Wandering spleen is a rare clinical condition which can present as acute abdomen. An increased awareness of this entity together with the timely use of ultrasound and CT of the abdomen can play an important role in preoperative diagnosis and surgical management. PMID:27057261
Wandering spleen with chronic torsion in a patient with thalassaemia
Ho, Chi Long
2014-01-01
Wandering spleen or splenoptosis is an uncommon entity and often an asymptomatic finding of acute abdomen in the emergency department. A high index of suspicion for splenic torsion is required, particularly in patients with known splenomegaly, as this condition could potentially lead to splenic infarction. Recognition of this condition can help avoid potential confusion with acute abdomen of other aetiologies. Herein, we present a unique case of wandering spleen with chronic torsion, which, to the best of our knowledge, has never been described in an elderly patient with haemoglobin H thalassaemia. We also review the literature for the aetiology and pathogenesis of wandering spleen, and discuss the relevant diagnostic modalities and treatment options. PMID:25630326
Torsion, parity-odd response, and anomalies in topological states
NASA Astrophysics Data System (ADS)
Parrikar, Onkar; Hughes, Taylor L.; Leigh, Robert G.
2014-11-01
We study the response of a class of topological systems to electromagnetic and gravitational sources, including torsion and curvature. By using the technology of anomaly polynomials, we derive the parity-odd response of a massive Dirac fermion in d =2 +1 and d =4 +1 , which provides a simple model for a topological insulator. We discuss the covariant anomalies of the corresponding edge states, from a Callan-Harvey anomaly inflow, as well as a Hamiltonian spectral flow point of view. We also discuss the applicability of our results to other systems such as Weyl semimetals. Finally, using dimensional reduction from d =4 +1 , we derive the effective action for a d =3 +1 time-reversal invariant topological insulator in the presence of torsion and curvature, and discuss its various physical consequences.
Exact solutions in 3D gravity with torsion
NASA Astrophysics Data System (ADS)
González, P. A.; Vásquez, Yerko
2011-08-01
We study the three-dimensional gravity with torsion given by the Mielke-Baekler (MB) model coupled to gravitational Chern-Simons term, and that possess electric charge described by Maxwell-Chern-Simons electrodynamics. We find and discuss this theory's charged black holes solutions and uncharged solutions. We find that for vanishing torsion our solutions by means of a coordinate transformation can be written as three-dimensional Chern-Simons black holes. We also discuss a special case of this theory, Topologically Massive Gravity (TMG) at chiral point, and we show that the logarithmic solution of TMG is also a solution of the MB model at a fixed point in the space of parameters. Furthermore, we show that our solutions generalize Gödel type solutions in a particular case. Also, we recover BTZ black hole in Riemann-Cartan spacetime for vanishing charge.
The Ground and First Excited Torsional States of Acetic Acid.
Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.; Podnos, S. V.; Kleiner, I.; Margulès, L.; Wlodarczak, G.; Demaison, J.; Cosléou, J.; Maté, B.; Karyakin, E. N.; Golubiatnikov, G. Yu.; Fraser, G. T.; Suenram, R. D.; Hougen, J. T.
2001-02-01
A global fit of microwave and millimeter-wave rotational transitions in the ground and first excited torsional states (v(t) = 0 and 1) of acetic acid (CH(3)COOH) is reported, which combines older measurements from the literature with new measurements from Kharkov, Lille, and NIST. The fit uses a model developed initially for acetaldehyde and methanol-type internal rotor molecules. It requires 34 parameters to achieve a unitless weighted standard deviation of 0.84 for a total of 2518 data and includes A- and E-species transitions with J torsional interval is available. Copyright 2001 Academic Press.
Modified teleparallel gravity with higher-derivative torsion terms
NASA Astrophysics Data System (ADS)
Otalora, Giovanni; Saridakis, Emmanuel N.
2016-10-01
We construct F (T ,(∇T) 2,□T ) gravitational modifications, which are novel classes of modified theories arising from higher-derivative torsional terms in the action and are different than their curvature analogue. Applying them in a cosmological framework, we obtain an effective dark energy sector comprised of the novel torsional contributions. We perform a detailed dynamical analysis for two specific examples, extracting the stable late-time solutions and calculating the corresponding observables. We show that the thermal history of the Universe can be reproduced, and it can result in a dark-energy-dominated, accelerating universe, where the dark-energy equation-of-state parameter lies in the quintessence regime, or may exhibit the phantom-divide crossing during the cosmological evolution. Finally, the scale factor behaves asymptotically, either as a power law or as an exponential, in agreement with observations.
Frame junction vibration transmission with a modified frame deformation model.
Moore, J A
1990-12-01
A previous paper dealt with vibration transmission through junctions of connected frame members where the allowed frame deformations included bending, torsion, and longitudinal motions [J.A. Moore, J. Acoust. Soc. Am. 88, 2766-2776 (1990)]. In helicopter and aircraft structures the skin panels can constitute a high impedance connection along the length of the frames that effectively prohibits in-plane motion at the elevation of the skin panels. This has the effect of coupling in-plane bending and torsional motions within the frame. This paper discusses the transmission behavior through frame junctions that accounts for the in-plane constraint in idealized form by assuming that the attached skin panels completely prohibit inplane motion in the frames. Also, transverse shear deformation is accounted for in describing the relatively deep web frame constructions common in aircraft structures. Longitudinal motion in the frames is not included in the model. Transmission coefficient predictions again show the importance of out-of-plane bending deformation to the transmission of vibratory energy in an aircraft structure. Comparisons are shown with measured vibration transmission data along the framing in the overhead of a helicopter airframe, with good agreement. The frame junction description has been implemented within a general purpose statistical energy analysis (SEA) computer code in modeling the entire airframe structure including skin panels.
Genetic and clinical features of primary torsion dystonia
Ozelius, Laurie J.; Bressman, Susan B.
2011-01-01
Primary torsion dystonia (PTD) is defined as a syndrome in which dystonia is the only clinical sign (except for tremor), and there is no evidence of neuronal degeneration or an acquired cause by history or routine laboratory assessment. Seven different loci have been recognized for PTD but only two of the genes have been identified. In this review we will described the phenotypes associated with these loci and discuss the responsible gene. PMID:21168499
Microstructure and texture analyses of polycrystalline ice during hot torsion
NASA Astrophysics Data System (ADS)
Journaux, B.; Montagnat, M.; Gest, L.; Barou, F.; Chauve, T.
2015-12-01
Water ice Ih is a material with very high plastic anisotropy where deformation is mainly accommodated by dislocation glide on the (0001) plane. This anisotropy gives rise to strong strain incompatibilities between grains during deformation, and therefore impacts texture and microstructure evolution. Accurate understanding of ice mechanical properties is significant for several areas of research such as glaciology, planetary sciences, but also in geosciences and metallurgy as ice can be seen as a model material with easier experimental handling at near melting temperatures. In the present study, we used torsion experiments to study non-coaxial shear strain (γ), very common in natural environments, up to very high values of γ. Numerous studies determined microstructure and texture evolution in polycrystalline assemblage submitted to torsion (metallic alloys and geological materials) but a very limited number focused on polycrystalline ice. Full cylinders of randomly oriented polycrystalline ice (grain size ~ 1 mm) were placed in a torsion apparatus and deformed under ductile regime under constant imposed torque at 266K (0.97 Tf). Macroscopic shear was monitored using a LVDT device or a rotary encoder. Several torsion tests with maximal shear strain up to γmax = 1 were performed. Tangent and axial sections were analyzed ex-situ using Automatic Ice Texture Analyzer (AITA) and Electron BackScatter Diffraction (EBSD). We were able to confirm the previously observed bimodal preferred orientation of the basal slip plane. Macroscopic strain evolution γ(t) displays a weakening after γmax = 0.04 (ɛmax ≃ 2 %), due to the beginning of dynamic recrystallization (DRX) processes. EBSD data provide novel informations on the microstructure that suggest very efficient grain boundary migration processes. In particular, we were able to measure differences of intra-granular misorientations density between the two ODF maxima populations that can highlight the role of DRX
Torsional Elastic Property Measurements of Selected Orthodontic Archwires.
1987-01-01
replacing gold in the middle of the century. If the orthodontist wished to have lighter forces over a greater range, he had two choices. First, he...length. The orthodontist was forced to make torque adjustments in small increments with a large, torsionally stiff, stainless steel wire. The concept...slot, respectively) were measured with strain gauges. The expected linear relationship between the torque magnitude and the activation angle was verified
Upright Perception and Ocular Torsion Change Independently during Head Tilt
Otero-Millan, Jorge; Kheradmand, Amir
2016-01-01
We maintain a stable perception of the visual world despite continuous movements of our eyes, head and body. Perception of upright is a key aspect of such orientation constancy. Here we investigated whether changes in upright perception during sustained head tilt were related to simultaneous changes in torsional position of the eyes. We used a subjective visual vertical (SVV) task, modified to track changes in upright perception over time, and a custom video method to measure ocular torsion simultaneously. We tested 12 subjects in upright position, during prolonged (~15 min) lateral head tilts of 20 degrees, and also after the head returned to upright position. While the head was tilted, SVV drifted in the same direction as the head tilt (left tilt: −5.4 ± 1.4° and right tilt: +2.2 ± 2.1°). After the head returned to upright position, there was an SVV aftereffect with respect to the pre-tilt baseline, which was also in the same direction as the head tilt (left tilt: −3.9 ± 0.6° and right tilt: +2.55 ± 1.0°). Neither the SVV drift nor the SVV aftereffect were correlated with the changes in ocular torsion. Using the Bayesian spatial-perception model we show that the pattern of SVV drift and aftereffect in our results could be explained by a drift and an adaptation in sensory inputs that encode head orientation. The fact that ocular torsion (mainly driven by the otoliths) could not account for the perceptual changes suggests that neck proprioception could be the primary source of drift in upright perception during head tilt, and subsequently the aftereffect in upright position. PMID:27909402
35. VERTICAL AND TORSIONAL MOTION FROM EAST TOWER SHOWING ANGULAR ...
35. VERTICAL AND TORSIONAL MOTION FROM EAST TOWER SHOWING ANGULAR DISTORTION APPROACHING 45 DEGREES WITH LAMP POSTS APPEARING TO BE AT EIGHT ANGLES, 7 NOVEMBER 1940, FROM 16MN FILM SHOT BY PROFESSOR F.B. FARQUHARSON, UNIVERSITY OF WASHINGTON. (LABORATORY STUDIES ON THE TACOMA NARROWS BRIDGE, AT UNIVERSITY OF WASHINGTON SEATTLE: UNIVERSITY OF WASHINGTON, DEPARTMENT OF CIVIL ENGINEERING, 1941) - Tacoma Narrows Bridge, Spanning Narrows at State Route 16, Tacoma, Pierce County, WA
Metatarsal torsion in monkeys, apes, humans and australopiths.
Drapeau, Michelle S M; Harmon, Elizabeth H
2013-01-01
This paper presents an analysis of metatarsal torsion in apes, cercopithecoids and humans, compares australopiths with these species, and discusses their inferred foot morphology and function relative to prehensility, arboreality and the presence or absence of a longitudinal arch. Our results show that locomotor modes are reflected in metatarsal torsion values. Apes, which climb vertically with their foot inverted, have hallucal metatarsal heads that are turned toward the other toes and lateral toes that are inverted. Cercopithecoids, which tend to orient their feet in an axis more parallel to the line of motion, present signs of prehensility by having inverted 2nd metatarsals that oppose the hallux, while their two lateral-most metatarsals are strongly everted. Humans, with their rigid feet and longitudinal arches, have all toes that present their plantar surface toward the ground, resulting in hallucal and 2nd metatarsals that are relatively untwisted and the others that are strongly everted. Humans are different from all taxa only for the 2nd and 3rd metatarsal. It is hypothesized that the untwisted 2nd metatarsal reflects the lack of digit opposability of the medial foot and the strongly everted 3rd metatarsal reflects the longitudinal arch. Australopithecus afarensis was characterized by an everted lateral foot, the prerequisite for the development, but not necessarily an indicator, of a longitudinal arch. In Australopithecus africanus, torsion of fragmentary and complete 1st, 2nd, 3rd and 5th metatarsals suggest that the species did not have a foot with monkey- or ape-like prehensile capabilities and did not have a human-like longitudinal arch. In the Swartkrans remains, torsion is consistent with an unprehensile foot. The morphology of the fossils indicates that there was strong selection to orient the plantar surface of the toes facing the ground at the expense of a grasping foot and inversion ability.
Propagation and Reflection of Diffusionless Torsional Waves in a Sphere
NASA Astrophysics Data System (ADS)
Maffei, S.; Jackson, A.
2015-12-01
The magnetohydrodynamics of stars and planetary cores is usually dominated by the overwhelming importance of rotation compared to other forces. Under these conditions the fluid motions are characterized by a strong invariance along the rotation axis. In the presence of a background magnetic field, magnetohydrodynamic oscillations can be triggered. Among these, of particular interest are the torsional waves, azimuthal perturbations of the fluid that are axisymmetric and invariant along the vertical direction. Their periods depend solely on the intensity of the magnetic field component aligned with the radial direction of propagation. As the detection of the fundamental period could constrain the magnetic field intensity in the Earth's outer core there is a long history of attempted detection of torsional waves from geomagnetic data. There is however a fundamental lack of knowledge concerning the propagation and reflection properties of these waves, as observational studies suggests behaviors that are different from theoretical expectations. In particular, recent findings (Gillet et al., 2011) suggest the lack of reflection at the equator and at the rotation axis. Through numerical simulation and analytical techniques we analyze the temporal evolution of diffusionless torsional waves in spherical geometry, with particular attention on the reflection at the equator and the pseudo-reflection at the rotation axis. We develop a novel analytical solution to the torsional wave eigenvalue problem whose behavior at the boundaries helps us to illustrate the meaning of the boundary conditions. Furthermore we find that for any acceptable magnetic background field, reflections at both boundaries are allowed and we illustrate how the WKBJ approximation is an efficient tool for investigating them.
Stability of Thin-Walled Tubes Under Torsion
NASA Technical Reports Server (NTRS)
Donnell, L H
1935-01-01
In this report a theoretical solution is developed for the torsion on a round thin-walled tube for which the walls become unstable. The results of this theory are given by a few simple formulas and curves which cover all cases. The differential equations of equilibrium are derived in a simpler form than previously found, it being shown that many items can be neglected.
Testicular conditions in athletes: torsion, tumors, and epididymitis.
Sandella, Bradley; Hartmann, Brett; Berkson, David; Hong, Eugene
2012-01-01
Individuals involved in sports are at risk for sustaining various injuries. In addition to musculoskeletal complaints, male athletes are at risk of incurring testicular injuries. These issues can range from an acute emergency such as testicular torsion to indolent testicular tumors. In contrast, epididymitis can present in stages. Presentation and management of testicular complaints can vary depending on the condition. Physicians who provide medical care to athletes need to be competent in diagnosing and managing testicular injuries.
Self-accelerating universe in modified gravity with dynamical torsion
NASA Astrophysics Data System (ADS)
Nikiforova, V.; Randjbar-Daemi, S.; Rubakov, V.
2017-01-01
We consider a model belonging to the class of gravities with dynamical torsion. The model is free of ghosts and gradient instabilities about Minkowski and torsionless Einstein backgrounds. We find that at zero cosmological constant, the model admits a self-accelerating solution with a non-Riemannian connection. Small value of the effective cosmological constant is obtained at the expense of the hierarchy between the dimensionless couplings.
Torsion of the greater omentum: treatment by laparoscopy.
Sánchez, Javier; Rosado, Rafael; Ramírez, Diego; Medina, Pedro; Mezquita, Susana; Gallardo, Andrés
2002-12-01
Four new cases of necrosis of the omentum secondary to torsion are reported. We review the associated signs and symptoms, which are usually those of an acute inflammatory condition in the right lower quadrant (RLQ), very similar to acute appendicitis. Because of acute abdominal pain in the RLQ, along with an uncertain diagnosis, laparoscopic surgery was performed in these cases. Laparoscopy demonstrated the existence of the omental infarction and allowed for complete treatment of the condition without the need for laparotomy.
Intravitreal Phacoemulsification Using Torsional Handpiece for Retained Lens Fragments
Kumar, Vinod; Takkar, Brijesh
2016-01-01
Purpose: To evaluate the results of intravitreal phacoemulsification with torsional hand piece in eyes with posteriorly dislocated lens fragments. Methods: In this prospective, interventional case series, 15 eyes with retained lens fragments following phacoemulsification were included. All patients underwent standard three-port pars plana vitrectomy and intravitreal phacoemulsification using sleeveless, torsional hand piece (OZiL™, Alcon's Infiniti Vision System). Patients were followed up for a minimum of six months to evaluate the visual outcomes and complications. Results: The preoperative best-corrected visual acuity (BCVA) ranged from light perception to 0.3. No complications such as thermal burns of the scleral wound, retinal damage due to flying lens fragments, or difficult lens aspiration occurred during intravitreal phacoemulsification. Mean post-operative BCVA at the final follow-up was 0.5. Two eyes developed cystoid macular edema, which was managed medically. No retinal detachment was noted. Conclusion: Intravitreal phacoemulsification using torsional hand piece is a safe and effective alternative to conventional longitudinal phacofragmentation. PMID:27621783
Friction and shear fracture of an adhesive contact under torsion
NASA Astrophysics Data System (ADS)
Chateauminois, Antoine; Fretigny, Christian; Olanier, Ludovic
2010-02-01
The shear failure or stiction of an adhesive contact between a poly(dimethylsiloxane) (PDMS) rubber and a glass lens has been investigated using a torsional contact configuration. As compared to linear sliding, torsion presents the advantage of inducing a shear failure under a pure mode III condition, while preserving the cylindrical symmetry of the contact. The surface of the transparent PDMS substrate was marked using a network of dots in order to monitor continuously the in-plane surface displacements during the stiction process. Using a previously developed inversion procedure (A. Chateauminois and C. Fretigny, Eur. Phys. J. E 27, 221 (2008)), the corresponding surface shear stress distributions were obtained from the displacement fields. Stiction was found to involve the progressive shrinkage of a central adhesive zone surrounded by an annular microslip region. Adhesion effects were especially evidenced from a stress overshoot at the boundary of the adhesive zone. The experimental data were analysis using an extension to torsional contact of the Maugis-Dugdale approach’s to adhesive contacts which takes into account frictional effects. This model allowed to extract an effective adhesion energy in the presence of friction, which dependence on kinetics effect is briefly discussed.
Oligothiophene wires: impact of torsional conformation on the electronic structure.
Kislitsyn, D A; Taber, B N; Gervasi, C F; Zhang, L; Mannsfeld, S C B; Prell, J S; Briseno, A L; Nazin, G V
2016-02-14
Charge transport in polymer- and oligomer-based semiconductor materials depends strongly on the structural ordering of the constituent molecules. Variations in molecular conformations influence the electronic structures of polymers and oligomers, and thus impact their charge-transport properties. In this study, we used Scanning Tunneling Microscopy and Spectroscopy (STM/STS) to investigate the electronic structures of different alkyl-substituted oligothiophenes displaying varied torsional conformations on the Au(111) surface. STM imaging showed that on Au(111), oligothiophenes self-assemble into chain-like structures, binding to each other via interdigitated alkyl ligands. The molecules adopted distinct planar conformations with alkyl ligands forming cis- or trans- mutual orientations. For each molecule, by using STS mapping, we identify a progression of particle-in-a-box-like states corresponding to the LUMO, LUMO+1 and LUMO+2 orbitals. Analysis of STS data revealed very similar unoccupied molecular orbital energies for different possible molecular conformations. By using density functional theory calculations, we show that the lack of variation in molecular orbital energies among the different oligothiophene conformers implies that the effect of the Au-oligothiophene interaction on molecular orbital energies is nearly identical for all studied torsional conformations. Our results suggest that cis-trans torsional disorder may not be a significant source of electronic disorder and charge carrier trapping in organic semiconductor devices based on oligothiophenes.
Development of a torsion balance for adhesion measurements
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Maeda, Chikayoshi; Masuo, Ryuichi
1988-01-01
A new torsion balance for study of adhesion in ceramics is discussed. A torsion wire and a linear variable differential transformer are used to monitor load and to measure pull-off force (adhesion force). The investigation suggests that this torsion balance is valuable in studying the interfacial properties of ceramics in controlled environments such as in ultrahigh vacuum. The pull-off forces measured in dry, moist, and saturated nitrogen atmosphere demonstrate that the adhesion of silicon nitride contacts remains low at humidities below 80 percent but rises rapidly above that. The adhesion at saturation is 10 times or more greater than that below 80 percent relative humidity. The adhesion in a saturated atmosphere arises primarily from the surface tension effects of a thin film of water adsorbed on the surface. The surface tension of the water film was 58 x 10 to the minus 5 to 65 x 10 to the minus 5 power. The accepted value for water is 72.7 x 10 to the minus 5 power N/cm. Adhesion characteristics of silicon nitride in contact with metals, like the friction characteristics of silicon carbide to metal contacts, can be related to the relative chemical activity of metals in ultrahigh vacuum. The more active the metal, the higher the adhesion.
Shape sensing for torsionally compliant concentric-tube robots
NASA Astrophysics Data System (ADS)
Xu, Ran; Yurkewich, Aaron; Patel, Rajni V.
2016-03-01
Concentric-tube robots (CTR) consist of a series of pre-curved flexible tubes that make up the robot structure and provide the high dexterity required for performing surgical tasks in constrained environments. This special design introduces new challenges in shape sensing as large twisting is experienced by the torsionally compliant structure. In the literature, fiber Bragg grating (FBG) sensors are attached to needle-sized continuum robots for curvature sensing, but they are limited to obtaining bending curvatures since a straight sensor layout is utilized. For a CTR, in addition to bending curvatures, the torsion along the robots shaft should be determined to calculate the shape and pose of the robot accurately. To solve this problem, in our earlier work, we proposed embedding FBG sensors in a helical pattern into the tube wall. The strain readings are converted to bending curvatures and torsion by a strain-curvature model. In this paper, a modified strain-curvature model is proposed that can be used in conjunction with standard shape reconstruction algorithms for shape and pose calculation. This sensing technology is evaluated for its accuracy and resolution using three FBG sensors with 1 mm sensing segments that are bonded into the helical grooves of a pre-curved Nitinol tube. The results show that this sensorized robot can obtain accurate measurements: resolutions of 0.02 rad/m with a 100 Hz sampling rate. Further, the repeatability of the obtained measurements during loading and unloading conditions are presented and analyzed.
A Rare Emergency: Testicular Torsion in the Inguinal Canal
Şener, Nevzat Can; Bas, Okan; Yesil, Suleyman; Zengin, Kursad; Imamoglu, Abdurrahim
2015-01-01
Objectives. To report our experience and present the largest series of testicular torsion cases in the inguinal canal. Material and Methods. The clinical data of 13 patients with testicular torsion in the inguinal canal treated between 2005 and 2013 were reviewed. Recorded patient age, whether the testes were palpable or not, side of the affected testes, the presence of hernia, ischemia time, and operation outcomes were assessed. Results. Patient age ranged from 8 to 70 months (29.15 ± 20.22). Mean ischemia time was 16.5 ± 21.3 hours. Accompanying inguinal hernia was present in 92% of the cases (12/13). Four of the thirteen patients (30.8%) were treated by orchiectomy because the necrosis was present after prolonged ischemia time. Nine patients (69.2%) were treated by single session orchidopexy. Conclusion. Torsion of testes in the inguinal canal is a rare disease, but with rapid diagnosis, affected testes can be salvaged, but the key factor is to keep this condition in mind. PMID:25654093
Design of a smart superstructure FBG torsion sensor
NASA Astrophysics Data System (ADS)
Miclos, Sorin; Savastru, Dan; Savastru, Roxana; Lancranjan, Ion I.
2015-05-01
The paper presents the results obtained in simulation of a Superstructure Fiber Bragg Grating (SFBG) torsion sensor. The SFBG sensor simulation points to an improved smart composite or metallic parts design to be operated under torsion loads in various applications. SFBG sensor simulation consists of correlating the fiber deformation under applied mechanical loads with the modified FBG characteristic reflection spectrum considering the polarization mode variations. The analyzed SFBG is developed by the selective deposition of on-fiber periodic metal thin films on regular FBGs. The torsion mechanical loads induced shifts in the characteristic reflection spectrum of Bragg wavelength and side bands are analyzed. For obtaining information about an optimal structure of SFBG sensor, simulation is performed for four commercially available photosensitive single mode silica optical fibers having different geometric and optical characteristics, mainly core and clad refractive index values. It is considered that, by using an UV writing technique, Brag gratings are induced into the simulated SFBG. Simulations are performed considering different geometric characteristics of the shaft used as mechanical mount of SFBG. The simulation results are in fairly good agreement with the experimental ones reported in literature.
Optical diagnosis of testicular torsion: feasibility and methodology
NASA Astrophysics Data System (ADS)
Shadgan, Babak; Macnab, Andrew; Stothers, Lynn; Kajbafzadeh, A. M.
2014-03-01
Background: Torsion of the testis compromises blood flow through the spermatic cord; testicular ischemia results which if not diagnosed promptly and corrected surgically irrevocably damages the testis. Current diagnostic modalities aimed at rationalizing surgical exploration by demonstrating interruption of spermatic cord blood flow or testicular ischemia have limited applicability. Near infrared spectroscopy (NIRS) offers a non-invasive optical method for detection of ischemia; continuous wave and frequency domain devices have been used experimentally; no device customized for clinical use has been designed. Methods: A miniature spatially resolved NIRS device with light emitting diode light source was applied over the right and left spermatic cord and the difference in oxygen saturation between the two sides measured. Results: In a 14-month old boy with a history of unilateral testicular pain color Doppler ultrasonography was equivocal but the NIRS-derived tissue oxygen saturation index (TSI) was significantly reduced on the left side. Confirmation of torsion of the left testicle was made surgically. Conclusions: Spatially resolved NIRS monitoring of spermatic cord oxygen saturation is feasible in children, adding to prior studies of testicular oxygen saturation in adults. Customized device design and further clinical trials would enhance the applicability of NIRS as a diagnostic entity for torsion.
Torsional Buckling and Writhing Dynamics of Elastic Cables and DNA
Goyal, S; Perkins, N C; Lee, C L
2003-02-14
Marine cables under low tension and torsion on the sea floor can undergo a dynamic buckling process during which torsional strain energy is converted to bending strain energy. The resulting three-dimensional cable geometries can be highly contorted and include loops and tangles. Similar geometries are known to exist for supercoiled DNA and these also arise from the conversion of torsional strain energy to bending strain energy or, kinematically, a conversion of twist to writhe. A dynamic form of Kirchhoff rod theory is presented herein that captures these nonlinear dynamic processes. The resulting theory is discretized using the generalized-method for finite differencing in both space and time. The important kinematics of cross-section rotation are described using an incremental rotation ''vector'' as opposed to traditional Euler angles or Euler parameters. Numerical solutions are presented for an example system of a cable subjected to increasing twist at one end. The solutions show the dynamic evolution of the cable from an initially straight element, through a buckled element in the approximate form of a helix, and through the dynamic collapse of this helix through a looped form.
Torsional stiffness degradation and aerostatic divergence of suspension bridge decks
NASA Astrophysics Data System (ADS)
Zhang, Z. T.; Ge, Y. J.; Yang, Y. X.
2013-07-01
The mechanism of aerostatic torsional divergence (ATD) of long-span suspension bridges is investigated. A theoretical analysis on the basis of a generalized model is presented, showing that the vertical motion of a bridge deck is crucial to the torsional stiffness of the whole suspended system, and that the vertical motion of either cable with a magnitude beyond a certain threshold could result in a sudden degradation of the torsional stiffness of the system. This vertical motion-induced degradation of stiffness is recognized as the main reason for the ATD. Long-span suspension bridges are susceptible to such a type of divergence, especially when they are immersed in turbulent wind fields. The divergences that occur in turbulent wind fields differ significantly from those in smooth wind fields, and the difference is well explained by the generalized model that the loosening of any one cable could result in the vanishing of the part of stiffness provided by the whole cable system. The mechanism revealed in this paper leads to a definition of the critical wind speed of the ATD in a turbulent flow; that is, the one resulting in a vertical motion so large as to loosen either cable to a stressless state. Numerical results from the nonlinear finite-element (FE) analysis of the Xihoumen suspension bridge, in conjunction with observations from wind tunnel tests on an aero-elastic full bridge model, are in support of the viewpoint presented in this study.
LISA technology development using the UF precision torsion pendulum
NASA Astrophysics Data System (ADS)
Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo; Ciani, Giacomo; Mueller, Guido; Conklin, John
2015-04-01
LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the fall of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements that may improve the performance and/or reduce the cost of the LISA GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.
Ocular torsion before and after 1 hour centrifugation.
Groen, E; De Graaf, B; Bles, W; Bos, J E
1996-01-01
To assess a possible otolith contribution to effects observed following prolonged exposure to hypergravity, we used video oculography to measure ocular torsion during static and dynamic conditions of lateral body tilt (roll) before and after 1 h of centrifugation with a Gx-load of 3 G. Static tilt (from 0 to 57 degrees to either side) showed a 10% decrease in otolith-induced ocular torsion after centrifugation. This implies a reduced gain of the otolith function. The dynamic condition consisted of sinusoidal body roll (frequency 0.25 Hz, amplitude 45 degrees) about an earth horizontal and about an earth vertical axis (respectively, "with" and "without" otolith stimulation). Before centrifugation the gain of the slow component velocity (SCV) was significantly lower "with" otolith stimulation than "without" otolith stimulation. Apparently, the contribution of the otoliths counteracts the ocular torsion response generated by the semicircular canals. Therefore, the observed increase in SCV gain in the condition "with" otolith stimulation after centrifugation, seems in correspondence with the decreased otolith gain in the static condition.
NASA Astrophysics Data System (ADS)
Nakae, T.; Ryu, T.; Matsuzaki, K.; Rosbi, S.; Sueoka, A.; Takikawa, Y.; Ooi, Y.
2016-09-01
In the torque converter, the damper of the lock-up clutch is used to effectively absorb the torsional vibration. The damper is designed using a piecewise-linear spring with three stiffness stages. However, a nonlinear vibration, referred to as a subharmonic vibration of order 1/2, occurred around the switching point in the piecewise-linear restoring torque characteristics because of the nonlinearity. In the present study, we analyze vibration reduction for subharmonic vibration. The model used herein includes the torque converter, the gear train, and the differential gear. The damper is modeled by a nonlinear rotational spring of the piecewise-linear spring. We focus on the optimum design of the spring characteristics of the damper in order to suppress the subharmonic vibration. A piecewise-linear spring with five stiffness stages is proposed, and the effect of the distance between switching points on the subharmonic vibration is investigated. The results of our analysis indicate that the subharmonic vibration can be suppressed by designing a damper with five stiffness stages to have a small spring constant ratio between the neighboring springs. The distances between switching points must be designed to be large enough that the amplitude of the main frequency component of the systems does not reach the neighboring switching point.
NASA Astrophysics Data System (ADS)
Sun, Shuaishuai; Yang, Jian; Li, Weihua; Deng, Huaxia; Du, Haiping; Alici, Gursel; Yan, Tianhong
2016-05-01
A new design of adaptive tuned vibration absorber was proposed in this study for vibration reduction. The innovation of the new absorber is the adoption of the eccentric mass on the top of the multilayered magnetorheological elastomer (MRE) structure so that this proposed absorber has two vibration modes: one in the torsional direction and the other in translational direction. This property enables the absorber to expand its effective bandwidth and to be more capable of reducing the vibrations especially dealing with those vibrations with multi-frequencies. The innovative MRE absorber was designed and tested on a horizontal vibration table. The test results illustrate that the MRE absorber realized double natural frequencies, both of which are controllable. Inertia’s influence on the dynamic behavior of the absorber is also investigated in order to guide the design of the innovative MRE absorber. Additionally, the experimentally obtained natural frequencies coincide with the theoretical data, which sufficiently verifies the feasibility of this new design. The last part in terms of the vibration absorption ability also proves that both of these two natural frequencies play a great role in absorbing vibration energy.
Influence of non-uniform intensity distribution of deformed pellicle for N7 patterning
NASA Astrophysics Data System (ADS)
Kim, In-Seon; Kim, Guk-Jin; Yeung, Michael; Barouch, Eytan; Kim, Min-Su; Park, Jin-Goo; Oh, Hye-Keun
2016-09-01
For protecting mask from debris, EUV pellicle is considered as a most effective solution. EUV pellicle can avoid contamination on mask by covering mask. Usage of EUV pellicle can reduce mask damage caused by contamination but the pellicle involves transmission loss due to absorption of EUV light. To get high transmission, pellicle made with thin thickness but it can be deformed easily due to weak structure. Deformation of pellicle such as wrinkle leads transmission non-uniformity and transmission non-uniformity will involve CD non-uniformity. For real-application at lithography process, the optical study of deformed pellicle is required to avoid degradation of CD uniformity. In this paper, we discuss transmission non-uniformity with various off-axis-illumination (OAI) conditions. Then we studied CD nonuniformity caused by wrinkled pellicle with various patterns. By increasing spatial coherence, transmission nonuniformity is decrease at small wrinkle region. However, transmission non-uniformity variation is independent with illumination conditions at large wrinkle which has large period. Not only wrinkled pellicle imaging but also CD variation caused by non-uniform transmission is also dependent on illumination conditions. In contrast with transmission nonuniformity, CD non-uniformity with high coherent light is smaller than the result with low coherent light. With all of results, we find that the allowable local tilt angle is varied with wrinkle size and illumination conditions and smallest size of allowable local tilt angle is about 250 mrad for both illuminations.
NASA Astrophysics Data System (ADS)
Procházka, Ivan; Čížek, Jakub; Melikhova, Oksana; Barnovská, Zuzana; Janeček, Miloš; Srba, Ondřej; Kužel, Radomír; Dobatkin, Sergej V.
A defect study of ultra-fine grained (UFG) Cu prepared by high-pressure torsion (HPT) will be reported. Conventional positron annihilation spectroscopy (PAS) including positron lifetime (PLT) and Doppler broadening (DB) techniques was employed as the main experimental tool. PAS was combined with transmission electron microscopy, X-ray diffraction and Vickers microhardness (HV) measurements. First, lattice defects introduced by HPT were characterized. A very high concentration of defects created during HPT deformation was observed and the two kinds of defects could be identified: dislocations and small vacancy clusters (microvoids). Further investigations were focused on (i) the radial distributions of defects and (ii) the evolution of microstructure during HPT processing. The results of the present study are consistent with an increase of shear strain from the sample centre toward its periphery. Extended lateral mapping of microstructure was performed using HV and DB techniques. The latter one reveals a significant non-uniformity of defect distribution which was less pronounced in the HV measurements.
Virgo, Edwina A.; Gascooke, Jason R.; Lawrance, Warren D.
2014-04-21
determined from analysis of the high resolution, rotationally resolved m{sup ″} = 0 → m{sup ′} = 3a{sub 1}{sup ″} spectrum overestimates the 3a{sub 2}{sup ″}–3a{sub 1}{sup ″} separation by 0.6 cm{sup −1}. We postulate that this may be due to torsion-vibration coupling. The observed toluene torsion-rotation contours have been modeled to provide estimates of the rotational constants for several of the torsional states.
Transport of dendritic microtubules establishes their nonuniform polarity orientation
1995-01-01
The immature processes that give rise to both axons and dendrites contain microtubules (MTs) that are uniformly oriented with their plus- ends distal to the cell body, and this pattern is preserved in the developing axon. In contrast, developing dendrites gradually acquire nonuniform MT polarity orientation due to the addition of a subpopulation of oppositely oriented MTs (Baas, P. W., M. M. Black, and G. A. Banker. 1989. J. Cell Biol. 109:3085-3094). In theory, these minus-end-distal MTs could be locally nucleated and assembled within the dendrite itself, or could be transported into the dendrite after their nucleation within the cell body. To distinguish between these possibilities, we exposed cultured hippocampal neurons to nanomolar levels of vinblastine after one of the immature processes had developed into the axon but before the others had become dendrites. At these levels, vinblastine acts as a kinetic stabilizer of MTs, inhibiting further assembly while not substantially depolymerizing existing MTs. This treatment did not abolish dendritic differentiation, which occurred in timely fashion over the next two to three days. The resulting dendrites were flatter and shorter than controls, but were identifiable by their ultrastructure, chemical composition, and thickened tapering morphology. The growth of these dendrites was accompanied by a diminution of MTs from the cell body, indicating a net transfer of MTs from one compartment into the other. During this time, minus-end-distal microtubules arose in the experimental dendrites, indicating that new MT assembly is not required for the acquisition of nonuniform MT polarity orientation in the dendrite. Minus-end-distal microtubules predominated in the more proximal region of experimental dendrites, indicating that most of the MTs at this stage of development are transported into the dendrite with their minus-ends leading. These observations indicate that transport of MTs from the cell body is an essential feature
Wave modeling in a cylindrical non-uniform helicon discharge
Chang, L.; Hole, M. J.; Caneses, J. F.; Blackwell, B. D.; Corr, C. S.; Chen, G.
2012-08-15
A radio frequency field solver based on Maxwell's equations and a cold plasma dielectric tensor is employed to describe wave phenomena observed in a cylindrical non-uniform helicon discharge. The experiment is carried out on a recently built linear plasma-material interaction machine: The magnetized plasma interaction experiment [Blackwell et al., Plasma Sources Sci. Technol. (submitted)], in which both plasma density and static magnetic field are functions of axial position. The field strength increases by a factor of 15 from source to target plate, and the plasma density and electron temperature are radially non-uniform. With an enhancement factor of 9.5 to the electron-ion Coulomb collision frequency, a 12% reduction in the antenna radius, and the same other conditions as employed in the experiment, the solver produces axial and radial profiles of wave amplitude and phase that are consistent with measurements. A numerical study on the effects of axial gradient in plasma density and static magnetic field on wave propagations is performed, revealing that the helicon wave has weaker attenuation away from the antenna in a focused field compared to a uniform field. This may be consistent with observations of increased ionization efficiency and plasma production in a non-uniform field. We find that the relationship between plasma density, static magnetic field strength, and axial wavelength agrees well with a simple theory developed previously. A numerical scan of the enhancement factor to the electron-ion Coulomb collision frequency from 1 to 15 shows that the wave amplitude is lowered and the power deposited into the core plasma decreases as the enhancement factor increases, possibly due to the stronger edge heating for higher collision frequencies.
Rotational Energies in Various Torsional Levels of CH_2DOH
NASA Astrophysics Data System (ADS)
Coudert, L. H.; Hilali, A. El; Margulès, L.; Motiyenko, R. A.; Klee, S.
2012-06-01
Using an approach accounting for the hindered internal rotation of a monodeuterated methyl group, an analysis of the torsional spectrum of the monodeuterated species of methanol CH_2DOH has been carried out recently and led to the assignment of 76 torsional subbands in its microwave, FIR, and IR spectra. Although this approach also allowed us to account for subband centers, the rotational structure of the torsional subbands is not well understood yet. In this paper, we will deal with the rotational energies of CH_2DOH. Analyses of the rotational structure of the available subbands^b have been performed using the polynomial-type expansion introduced in the case of the normal species of methanol. For each subband, FIR or IR transitions and a-type microwave lines, within the lower torsional level, were fitted. The frequencies of the latters were taken from previous investigations or from new measurements carried out from 50 to 950 GHz with the submillimeterwave solid state spectrometer in Lille. Subbands involving lower levels with v_t=0 and K ≥ 3 could be satisfactorily analyzed. For levels characterized by lower K-values, the expansion fails. In the case of the K=1, v_t=1 level, the frequencies of a-type microwave transitions involving the lower member of the K-type doublet cannot be well reproduced. For K=0 levels with v_t=1 and 2, a large number of terms is needed in the expansion. We will try to understand why the rotational energies of these levels cannot be reproduced. The results of the analyses will be compared to those obtained with a global approach based on the rotation-torsion Hamiltonian of the molecule. [2] El Hilali, Coudert, Konov, and Klee, J. Chem. Phys. 135 (2011) 194309. [3] Ioli, Moruzzi, Riminucci, Strumia, Moraes, Winnewisser, and Winnewisser, J. Mol. Spec. 171 (1995) 130. [4] Quade and Suenram, J. Chem. Phys. 73 (1980) 1127; and Su and Quade, J. Mol. Spec. 134 (1989) 290. [5] Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spec. 256 (2009
Optical guiding of laser beam in nonuniform plasma
NASA Astrophysics Data System (ADS)
Singh Gill, Tarsem
2000-11-01
A plasma channel produced by a short ionising laser pulse is axially nonuniform resulting from the self-defocusing. Through such preformed plasma channel, when a delayed pulse propagates, the phenomena of diffraction, refraction and self-phase modulation come into play. We have solved the nonlinear parabolic partial differential equation governing the propagation characteristics for an approximate analytical solution using variational approach. Results are compared with the theoretical model of Liu and Tripathi ( Phys. Plasmas, 1, 3100 (1994)) based on paraxial ray approximation. Particular emphasis is on both beam width and longitudinal phase delay which are crucial to many applications.}
Non-uniform impact excitation of a cylindrical bar
NASA Astrophysics Data System (ADS)
Karp, Baruch; Dorogoy, Avraham; Wang, Zonggang
2009-06-01
An experimental and numerical study of a non-uniform impact excitation of a circular bar is reported. In experiments, nine strikers with different contact area were accelerated against a circular bar. Axial surface strain of the impacted bar was measured at several distances from the impinged end to include the near and the far fields. The same experimental conditions were solved numerically using a commercial finite element code. It was demonstrated that the far-field response is insensitive to both the size and the form of the striker's colliding end. The distance at which such insensitivity is set is estimated to be approximately one and a half bar diameters.
Non-uniform projection angle processing in computed tomography
NASA Astrophysics Data System (ADS)
Simo, Yanic; Tayag, Tristan J.
In this paper, we present a novel approach for the collection of computed tomography data. Non-uniform increments in projection angle may be used to reduce data acquisition time with minimal reduction in the accuracy of the reconstructed profile. The key is to exploit those projection angles which correspond to regions where the object contains few high spatial frequency components. This technique is applicable to optical phase computed tomography, as well as X-ray computed tomography. We present simulation results on intraocular lenses used in cataract surgery.
Ionization coefficient approach to modeling breakdown in nonuniform geometries.
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Nicolaysen, Scott D.
2003-11-01
This report summarizes the work on breakdown modeling in nonuniform geometries by the ionization coefficient approach. Included are: (1) fits to primary and secondary ionization coefficients used in the modeling; (2) analytical test cases for sphere-to-sphere, wire-to-wire, corner, coaxial, and rod-to-plane geometries; a compilation of experimental data with source references; comparisons between code results, test case results, and experimental data. A simple criterion is proposed to differentiate between corona and spark. The effect of a dielectric surface on avalanche growth is examined by means of Monte Carlo simulations. The presence of a clean dry surface does not appear to enhance growth.
Accuracy of schemes with nonuniform meshes for compressible fluid flows
NASA Technical Reports Server (NTRS)
Turkel, E.
1985-01-01
The accuracy of the space discretization for time-dependent problems when a nonuniform mesh is used is considered. Many schemes reduce to first-order accuracy while a popular finite volume scheme is even inconsistent for general grids. This accuracy is based on physical variables. However, when accuracy is measured in computational variables then second-order accuracy can be obtained. This is meaningful only if the mesh accurately reflects the properties of the solution. In addition, the stability properties of some improved accurate schemes are analyzed and it can be shown that they also allow for larger time steps when Runge-Kutta type methods are used to advance in time.
Torsion sensors of high sensitivity and wide dynamic range based on a graphene woven structure.
Yang, Tingting; Wang, Yan; Li, Xinming; Zhang, Yangyang; Li, Xiao; Wang, Kunlin; Wu, Dehai; Jin, Hu; Li, Zhihong; Zhu, Hongwei
2014-11-07
Due to its unique electromechanical properties, nanomaterial has become a promising material for use in the sensing elements of strain sensors. Tensile strain is the type of deformation most intensively studied. Torsion is another deformation occurring in everyday life, but is less well understood. In the present study a torsion sensor was prepared by wrapping woven graphene fabrics (GWFs) around a polymer rod at a specific winding angle. The GWF sensor showed an ultra-high sensitivity with a detection limit as low as 0.3 rad m(-1), indicating its potential application in the precise measurement of low torsions. The GWFs were pre-strained before wrapping on polydimethylsiloxane (PDMS) to improve the tolerance of the sensor to high torsion. The microstructure of the GWFs at different torsion levels was monitored using an optical microscope. The results demonstrated the formation of GWF waves and cracks under high torsion, a critical factor in determining the electromechanical properties of a GWF sensor.
Kurita, Yoshihisa; Wada, Hiroshi
2011-10-23
Gastropods are characterized by their asymmetric bodyplan, which develops through a unique ontogenetic process called 'torsion'. Despite several intensive studies, the driving force of torsion remains to be determined. Although torsion was traditionally believed to be driven by contraction of the retractor muscle connecting the foot and the shell, some recent reports cast doubt on that idea. Here, we report that torsion is accompanied by left-right asymmetric cell proliferation in the mantle epithelium in the limpet Nipponacmea fuscoviridis. Furthermore, we found that pharmacological inhibition of the transforming growth factor-β (TGF-β) signalling pathway, including that of Nodal, blocked torsion. We confirmed that the blocking was brought about through failure of the activation of cell proliferation in the right-hand side of the mantle epithelium, while the retractor muscle apparently developed normally. These results suggest that limpet torsion is driven by left-right asymmetric cell proliferation in the mantle epithelium, induced by the TGF-β pathway.
Improving the sensitivity of a torsion pendulum by using an optical spring method
Wang Qinglan; Yeh Hsienchi; Zhou Zebing; Luo Jun
2009-10-15
We present a scheme aiming at improving the sensitivity of a torsion pendulum by means of radiation-pressure-induced optical spring. Two partial-reflective mirrors are installed on the opposite sides of a torsion pendulum, and one high-reflective mirror is mounted at the end of the torsion beam so that two identical Fabry-Perot cavities can be formed and aligned in series. Due to the antisymmetric radiation pressures acting on the opposite sides of the torsion beam, a negative restoring coefficient can be generated within a certain dynamic range, such that both the resultant torsional rigidity and the resonant frequency of the torsion pendulum are reduced, and the minimum detectable response torque in high-frequency region can be reduced accordingly.
Axial and torsional fatigue behavior of a cobalt-base alloy
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1991-01-01
In order to develop elevated temperature multiaxial fatigue life prediction models for the wrought cobalt-base alloy, Haynes 188, a multiaxial fatigue data base is required. To satisfy this need, an elevated temperature experimental program on Haynes 188 consisting of axial, torsional, inphase and out of phase axial-torsional fatigue experiments was designed. Elevated temperature axial and torsional fatigue experiments were conducted under strain control on thin wall tubular specimens of Haynes 188 in air. Test results are given.
Torsion Tests of 24S-T Aluminum-alloy Noncircular Bar and Tubing
NASA Technical Reports Server (NTRS)
Moore, R L; Paul, D A
1943-01-01
Tests of 24S-T aluminum alloy have been made to determine the yield and ultimate strengths in torsion of noncircular bar and tubing. An approximate basis for predicting these torsional strength characteristics has been indicated. The results show that the torsional stiffness and maximum shearing stresses within the elastic range may be computed quite closely by means of existing formulas based on mathematical analysis and the membrane analogy.
Gilroy, Richard; Johnson, Philip
2013-01-01
Inferior vena cava (IVC) stenosis and torsion are well-described rare complications following orthotopic liver transplantation (OLT). We present a case of inferior vena cava intermittent torsion and stenosis complicated by compressive regional ascites. To the best of our knowledge, this is the second case of post-OLT regional ascites related compressive IVC stenosis reported and the first reported case of torsion complicated by regional ascites compression. PMID:24386585