Sample records for nopaline synthase terminator

  1. A screening method for the detection of the 35S promoter and the nopaline synthase terminator in genetically modified organisms in a real-time multiplex polymerase chain reaction using high-resolution melting-curve analysis.

    PubMed

    Akiyama, Hiroshi; Nakamura, Fumi; Yamada, Chihiro; Nakamura, Kosuke; Nakajima, Osamu; Kawakami, Hiroshi; Harikai, Naoki; Furui, Satoshi; Kitta, Kazumi; Teshima, Reiko

    2009-11-01

    To screen for unauthorized genetically modified organisms (GMO) in the various crops, we developed a multiplex real-time polymerase chain reaction high-resolution melting-curve analysis method for the simultaneous qualitative detection of 35S promoter sequence of cauliflower mosaic virus (35SP) and the nopaline synthase terminator (NOST) in several crops. We selected suitable primer sets for the simultaneous detection of 35SP and NOST and designed the primer set for the detection of spiked ColE1 plasmid to evaluate the validity of the polymerase chain reaction (PCR) analyses. In addition, we optimized the multiplex PCR conditions using the designed primer sets and EvaGreen as an intercalating dye. The contamination of unauthorized GMO with single copy similar to NK603 maize can be detected as low as 0.1% in a maize sample. Furthermore, we showed that the present method would be applicable in identifying GMO in various crops and foods like authorized GM soybean, authorized GM potato, the biscuit which is contaminated with GM soybeans and the rice which is contaminated with unauthorized GM rice. We consider this method to be a simple and reliable assay for screening for unauthorized GMO in crops and the processing food products.

  2. The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells.

    PubMed

    Nagaya, Shingo; Kawamura, Kazue; Shinmyo, Atsuhiko; Kato, Ko

    2010-02-01

    To express a foreign gene in plants effectively, a good expression system is required. Here we describe the identification of a transcriptional terminator that supports increased levels of expression. The terminators of several Arabidopsis genes were examined in transfected Arabidopsis T87 protoplasts. The heat shock protein 18.2 (HSP) terminator was the most effective in supporting increased levels of expression. The HSP terminator increases mRNA levels of both transiently and stably expressed transgenes approximately 2-fold more than the NOS (nopaline synthase) terminator. When combined with the HSP terminator, a translational enhancer increased gene expression levels approximately 60- to 100-fold in transgenic plants.

  3. Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2015-11-20

    During Agrobacterium-mediated genetic transformation of plants, several bacterial virulence (Vir) proteins are translocated into the host cell to facilitate infection. One of the most important of such translocated factors is VirF, an F-box protein produced by octopine strains of Agrobacterium, which presumably facilitates proteasomal uncoating of the invading T-DNA from its associated proteins. The presence of VirF also is thought to be involved in differences in host specificity between octopine and nopaline strains of Agrobacterium, with the current dogma being that no functional VirF is encoded by nopaline strains. Here, we show that a protein with homology to octopine VirF is encoded by the Ti plasmid of the nopaline C58 strain of Agrobacterium. This protein, C58VirF, possesses the hallmarks of functional F-box proteins: it contains an active F-box domain and specifically interacts, via its F-box domain, with SKP1-like (ASK) protein components of the plant ubiquitin/proteasome system. Thus, our data suggest that nopaline strains of Agrobacterium have evolved to encode a functional F-box protein VirF.

  4. High-level accumulation of recombinant miraculin protein in transgenic tomatoes expressing a synthetic miraculin gene with optimized codon usage terminated by the native miraculin terminator.

    PubMed

    Hiwasa-Tanase, Kyoko; Nyarubona, Mpanja; Hirai, Tadayoshi; Kato, Kazuhisa; Ichikawa, Takanari; Ezura, Hiroshi

    2011-01-01

    In our previous study, a transgenic tomato line that expressed the MIR gene under control of the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator (tNOS) produced the taste-modifying protein miraculin (MIR). However, the concentration of MIR in the tomatoes was lower than that in the MIR gene's native miracle fruit. To increase MIR production, the native MIR terminator (tMIR) was used and a synthetic gene encoding MIR protein (sMIR) was designed to optimize its codon usage for tomato. Four different combinations of these genes and terminators (MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR) were constructed and used for transformation. The average MIR concentrations in MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR fruits were 131, 197, 128 and 287 μg/g fresh weight, respectively. The MIR concentrations using tMIR were higher than those using tNOS. The highest MIR accumulation was detected in sMIR-tMIR fruits. On the other hand, the MIR concentration was largely unaffected by sMIR-tNOS. The expression levels of both MIR and sMIR mRNAs terminated by tMIR tended to be higher than those terminated by tNOS. Read-through mRNA transcripts terminated by tNOS were much longer than those terminated by tMIR. These results suggest that tMIR enhances mRNA expression and permits the multiplier effect of optimized codon usage.

  5. Terminal Olefin Profiles and Phylogenetic Analyses of Olefin Synthases of Diverse Cyanobacterial Species.

    PubMed

    Zhu, Tao; Scalvenzi, Thibault; Sassoon, Nathalie; Lu, Xuefeng; Gugger, Muriel

    2018-07-01

    Cyanobacteria can synthesize alkanes and alkenes, which are considered to be infrastructure-compatible biofuels. In terms of physiological function, cyanobacterial hydrocarbons are thought to be essential for membrane flexibility for cell division, size, and growth. The genetic basis for the biosynthesis of terminal olefins (1-alkenes) is a modular type I polyketide synthase (PKS) termed olefin synthase (Ols). The modular architectures of Ols and structural characteristics of alkenes have been investigated only in a few species of the small percentage (approximately 10%) of cyanobacteria that harbor putative Ols pathways. In this study, investigations of the domains, modular architectures, and phylogenies of Ols in 28 cyanobacterial strains suggested distinctive pathway evolution. Structural feature analyses revealed 1-alkenes with three carbon chain lengths (C 15 , C 17 , and C 19 ). In addition, the total cellular fatty acid profile revealed the diversity of the carbon chain lengths, while the fatty acid feeding assay indicated substrate carbon chain length specificity of cyanobacterial Ols enzymes. Finally, in silico analyses suggested that the N terminus of the modular Ols enzyme exhibited characteristics typical of a fatty acyl-adenylate ligase (FAAL), suggesting a mechanism of fatty acid activation via the formation of acyl-adenylates. Our results shed new light on the diversity of cyanobacterial terminal olefins and a mechanism for substrate activation in the biosynthesis of these olefins. IMPORTANCE Cyanobacterial terminal olefins are hydrocarbons with promising applications as advanced biofuels. Despite the basic understanding of the genetic basis of olefin biosynthesis, the structural diversity and phylogeny of the key modular olefin synthase (Ols) have been poorly explored. An overview of the chemical structural traits of terminal olefins in cyanobacteria is provided in this study. In addition, we demonstrated by in vivo fatty acid feeding assays that

  6. Unprecedented enhancement of transient gene expression from minimal cassettes using a double terminator.

    PubMed

    Beyene, Getu; Buenrostro-Nava, Marco T; Damaj, Mona B; Gao, San-Ji; Molina, Joe; Mirkov, T Erik

    2011-01-01

    The potential of using vector-free minimal gene cassettes (MGCs) with a double terminator for the enhancement and stabilization of transgene expression was tested in sugarcane biolistic transformation. The MGC system used consisted of the enhanced yellow fluorescent protein (EYFP) reporter gene driven by the maize ubiquitin-1 (Ubi) promoter and a single or double terminator from nopaline synthase (Tnos) or/and Cauliflower mosaic virus 35S (35ST). Transient EYFP expression from Tnos or 35ST single terminator MGC was very low and unstable, typically peaking early (8-16 h) and diminishing rapidly (48-72 h) after bombardment. Addition of a ~260 bp vector sequence (VS) to the single MGC downstream of Tnos (Tnos + VS) or 35ST (35ST + VS) enhanced EYFP expression by 1.25- to 25-fold. However, a much more significant increase in EYFP expression was achieved when the VS in 35ST + VS was replaced by Tnos to generate a 35ST-Tnos double terminator MGC, reaching its maximum at 24 h post-bombardment. The enhanced EYFP expression from the double terminator MGC was maintained for a long period of time (168 h), resulting in an overall increase of 5- to 65-fold and 10- to 160-fold as compared to the 35ST and Tnos single terminator MGCs, respectively. The efficiency of the double terminator MGC in enhancing EYFP expression was also demonstrated in sorghum and tobacco, suggesting that the underlying mechanism is highly conserved among monocots and dicots. Our results also suggest the involvement of posttranscriptional gene silencing in the reduced and unstable transgene expression from single terminator MGCs in plants.

  7. Recombinase Polymerase Amplification (RPA) of CaMV-35S Promoter and nos Terminator for Rapid Detection of Genetically Modified Crops

    PubMed Central

    Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong

    2014-01-01

    Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37–42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15–25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops. PMID:25310647

  8. Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops.

    PubMed

    Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong

    2014-10-10

    Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37-42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15-25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops.

  9. Evolutionary analysis of a novel zinc ribbon in the N-terminal region of threonine synthase.

    PubMed

    Kaur, Gurmeet; Subramanian, Srikrishna

    2017-10-18

    Threonine synthase (TS) catalyzes the terminal reaction in the biosynthetic pathway of threonine and requires pyridoxal phosphate as a cofactor. TSs share a common catalytic domain with other fold type II PALP dependent enzymes. TSs are broadly grouped into two classes based on their sequence, quaternary structure, and enzyme regulation. We report the presence of a novel zinc ribbon domain in the N-terminal region preceding the catalytic core in TS. The zinc ribbon domain is present in TSs belonging to both classes. Our sequence analysis reveals that archaeal TSs possess all zinc chelating residues to bind a metal ion that are lacking in the structurally characterized homologs. Phylogenetic analysis suggests that TSs with an N-terminal zinc ribbon likely represents the ancestral state of the enzyme while TSs without a zinc ribbon must have diverged later in specific lineages. The zinc ribbon and its N- and C-terminal extensions are important for enzyme stability, activity and regulation. It is likely that the zinc ribbon domain is involved in higher order oligomerization or mediating interactions with other biomolecules leading to formation of larger metabolic complexes.

  10. The reversed terminator of octopine synthase gene on the Agrobacterium Ti plasmid has a weak promoter activity in prokaryotes.

    PubMed

    Shao, Jun-Li; Long, Yue-Sheng; Chen, Gu; Xie, Jun; Xu, Zeng-Fu

    2010-06-01

    Agrobacterium tumefaciens transfers DNA from its Ti plasmid to plant host cells. The genes located within the transferred DNA of Ti plasmid including the octopine synthase gene (OCS) are expressed in plant host cells. The 3'-flanking region of OCS gene, known as OCS terminator, is widely used as a transcriptional terminator of the transgenes in plant expression vectors. In this study, we found the reversed OCS terminator (3'-OCS-r) could drive expression of hygromycin phosphotransferase II gene (hpt II) and beta-glucuronidase gene in Escherichia coli, and expression of hpt II in A. tumefaciens. Furthermore, reverse transcription-polymerase chain reaction analysis revealed that an open reading frame (ORF12) that is located downstream to the 3'-OCS-r was transcribed in A. tumefaciens, which overlaps in reverse with the coding region of the OCS gene in octopine Ti plasmid.

  11. Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003–2004)

    PubMed Central

    Ortiz-García, S.; Ezcurra, E.; Schoel, B.; Acevedo, F.; Soberón, J.; Snow, A. A.

    2005-01-01

    In 2000, transgenes were detected in local maize varieties (landraces) in the mountains of Oaxaca, Mexico [Quist, D. & Chapela, I. H. (2001) Nature 414, 541–543]. This region is part of the Mesoamerican center of origin for maize (Zea mays L.), and the genetic diversity that is maintained in open-pollinated landraces is recognized as an important genetic resource of great cultural value. The presence of transgenes in landraces was significant because transgenic maize has never been approved for cultivation in Mexico. Here we provide a systematic survey of the frequency of transgenes in currently grown landraces. We sampled maize seeds from 870 plants in 125 fields and 18 localities in the state of Oaxaca during 2003 and 2004. We then screened 153,746 sampled seeds for the presence of two transgene elements from the 35S promoter of the cauliflower mosaic virus and the nopaline synthase gene (nopaline synthase terminator) from Agrobacterium tumefaciens. One or both of these transgene elements are present in all transgenic commercial varieties of maize. No transgenic sequences were detected with highly sensitive PCR-based markers, appropriate positive and negative controls, and duplicate samples for DNA extraction. We conclude that transgenic maize seeds were absent or extremely rare in the sampled fields. This study provides a much-needed preliminary baseline for understanding the biological, socioeconomic, and ethical implications of the inadvertent dispersal of transgenes from the United States and elsewhere to local landraces of maize in Mexico. PMID:16093316

  12. Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003-2004).

    PubMed

    Ortiz-García, S; Ezcurra, E; Schoel, B; Acevedo, F; Soberón, J; Snow, A A

    2005-08-30

    In 2000, transgenes were detected in local maize varieties (landraces) in the mountains of Oaxaca, Mexico [Quist, D. & Chapela, I. H. (2001) Nature 414, 541-543]. This region is part of the Mesoamerican center of origin for maize (Zea mays L.), and the genetic diversity that is maintained in open-pollinated landraces is recognized as an important genetic resource of great cultural value. The presence of transgenes in landraces was significant because transgenic maize has never been approved for cultivation in Mexico. Here we provide a systematic survey of the frequency of transgenes in currently grown landraces. We sampled maize seeds from 870 plants in 125 fields and 18 localities in the state of Oaxaca during 2003 and 2004. We then screened 153,746 sampled seeds for the presence of two transgene elements from the 35S promoter of the cauliflower mosaic virus and the nopaline synthase gene (nopaline synthase terminator) from Agrobacterium tumefaciens. One or both of these transgene elements are present in all transgenic commercial varieties of maize. No transgenic sequences were detected with highly sensitive PCR-based markers, appropriate positive and negative controls, and duplicate samples for DNA extraction. We conclude that transgenic maize seeds were absent or extremely rare in the sampled fields. This study provides a much-needed preliminary baseline for understanding the biological, socioeconomic, and ethical implications of the inadvertent dispersal of transgenes from the United States and elsewhere to local landraces of maize in Mexico.

  13. Assembly of the stator in Escherichia coli ATP synthase. Complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha

    PubMed Central

    Senior, Alan E.; Muharemagi, Alma; Wilke-Mounts, Susan

    2008-01-01

    Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, competent in nucleotide binding, and had normal N-terminal sequence. In F1-subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiment showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming, and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector. PMID:17176112

  14. Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified delta-endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud.

    PubMed

    Tang, Wei; Tian, Yingchuan

    2003-02-01

    A synthetic version of the CRY1Ac gene of Bacillus thuringiensis has been used for the transformation of loblolly pine (Pinus taeda L.) using particle bombardment. Mature zygotic embryos were used to be bombarded and to generate organogenic callus and transgenic regenerated plants. Expression vector pB48.215 DNA contained a synthetic Bacillus thuringiensis (B.t.) CRY1Ac coding sequence flanked by the double cauliflower mosaic virus (CaMV) 35S promoter and nopaline synthase (NOS) terminator sequences, and the neomycin phosphotransferase II (NPTII) gene controlled by the promoter of the nopaline synthase gene was introduced into loblolly pine tissues by particle bombardment. The transformed tissues were proliferated and selected on media with kanamycin. Shoot regeneration was induced from the kanamycin-resistant calli, and transgenic plantlets were then produced. More than 60 transformed plants from independent transformation events were obtained for each loblolly pine genotype tested. The integration and expression of the introduced genes in the transgenic loblolly pine plants was confirmed by polymerase chain reactions (PCR) analysis, by Southern hybridization, by Northern blot analysis, and by Western blot analysis. Effective resistance of transgenic plants against Dendrolimus punctatus Walker and Crypyothelea formosicola Staud was verified in feeding bioassays with the insects. The transgenic plants recovered could represent a good opportunity to analyse the impact of genetic engineering of pine for sustainable resistance to pests using a B. thuringiensis insecticidal protein. This protocol enabled the routine transformation of loblolly pine plants that were previously difficult to transform.

  15. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Fang; Yep, Alejandra; Feng, Lei

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of themore » enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.« less

  16. Domain analysis of 3 Keto Acyl-CoA synthase for structural variations in Vitis vinifera and Oryza brachyantha using comparative modelling.

    PubMed

    Sagar, Mamta; Pandey, Neetesh; Qamar, Naseha; Singh, Brijendra; Shukla, Akanksha

    2015-03-01

    The long chain fatty acids incorporated into plant lipids are derived from the iterative addition of C2 units which is provided by malonyl-CoA to an acyl-CoA after interactions with 3-ketoacyl-CoA synthase (KCS), found in several plants. This study provides functional characterization of three 3 ketoacyl CoA synthase like proteins in Vitis vinifera (one) and Oryza brachyantha (two proteins). Sequence analysis reveals that protein of Oryza brachyantha shows 96% similarity to a hypothetical protein in Sorghum bicolor; total 11 homologs were predicted in Sorghum bicolor. Conserved domain prediction confirm the presence of FAE1/Type III polyketide synthase-like protein, Thiolase-like, subgroup; Thiolase-like and 3-Oxoacyl-ACP synthase III, C-terminal and chalcone synthase like domain but very long chain 3-keto acyl CoA domain is absent. All three proteins were found to have Chalcone and stilbene synthases C terminal domain which is similar to domain of thiolase and β keto acyl synthase. Its N terminal domain is absent in J3M9Z7 protein of Oryza brachyantha and F6HH63 protein of Vitis vinifera. Differences in N-terminal domain is responsible for distinguish activity. The J3MF16 protein of Oryza brachyantha contains N terminal domain and C terminal domain and characterized using annotation of these domains. Domains Gcs (streptomyces coelicolor) and Chalcone-stilbene synthases (KAS) in 2-pyrone synthase (Gerbera hybrid) and chalcone synthase 2 (Medicago sativa) were found to be present in three proteins. This similarity points toward anthocyanin biosynthetic process. Similarity to chalcone synthase 2 reveals its possible role in Naringenine and Chalcone synthase like activity. In 3 keto acyl CoA synthase of Oryza brachyantha. Active site residues C-240, H-407, N-447 are present in J3MF16 protein that are common in these three protein at different positions. Structural variations among dimer interface, product binding site, malonyl-CoA binding sites, were predicted in

  17. Neurospora tryptophan synthase: N-terminal analysis and the sequence of the pyridoxal phosphate active site peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, M.L.; Hsu, P.Y.; DeMoss, J.A.

    1986-05-01

    Tryptophan synthase (TS), which catalyzes the final step of tryptophan biosynthesis, is a multifunctional protein requiring pyridoxal phosphate (B6P) for two of its three distinct enzyme activities. TS from Neurospora has a blocked N-terminal, is a homodimer of 150 KDa and binds one mole of B6P per mole of subunit. The authors shown the N-terminal residue to be acyl-serine. The B6P-active site of holoenzyme was labelled by reduction of the B6P-Schiff base with (/sup 3/H)-NaBH/sub 4/, and resulted in a proportionate loss of activity in the two B6P-requiring reactions. SDS-polyacrylamide gel electrophoresis of CNBr-generated peptides showed the labelled, active sitemore » peptide to be 6 KDa. The sequence of this peptide, purified to apparent homogeneity by a combination of C-18 reversed phase and TSK gel filtration HPLC is: gly-arg-pro-gly-gln-leu-his-lys-ala-glu-arg-leu-thr-glu-tyr-ala-gly-gly-ala-gln-ile-xxx-leu-lys-arg-glu-asp-leu-asn-his-xxx-gly-xxx-his-/sub ***/-ile-asn-asn-ala-leu. Although four residues (xxx, /sub ***/) are unidentified, this peptide is minimally 78% homologous with the corresponding peptide from yeast TS, in which residue (/sub ***/) is the lysine that binds B6P.« less

  18. New multiplex PCR methods for rapid screening of genetically modified organisms in foods

    PubMed Central

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products. PMID:26257724

  19. New multiplex PCR methods for rapid screening of genetically modified organisms in foods.

    PubMed

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  20. Construction and application of novel feedback-resistant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthases by engineering the N-terminal domain for L-phenylalanine synthesis.

    PubMed

    Zhang, Chuanzhi; Kang, Zhen; Zhang, Junli; Du, Guocheng; Chen, Jian; Yu, Xiaobin

    2014-04-01

    3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHP synthase) encoded by aroF is the first enzyme of the shikimate pathway. In the present study, an AroF variant with a deficiency in residue Ile11 (named AroF*) was shown to be insensitive to l-tyrosine. According to three-dimensional structure analysis, nine AroF variants were constructed with truncation of different N-terminal fragments, and overexpression of the variants AroF(Δ(1-9)) , AroF(Δ(1-10)) , AroF(Δ(1-12)) and, in particular, AroF(Δ(1-11)) significantly increased the accumulation of l-phenylalanine (l-Phe). However, the AroG and AroH variants with similar truncations of the N-terminal fragments decreased the production of l-Phe. By co-overexpressing AroF(Δ(1-11)) and PheA(fbr) , the production of l-Phe was increased from 2.36 ± 0.07 g L(-1) (co-overexpression of the wild-type AroF and PheA(fbr) ) to 4.29 ± 0.06 g L(-1) . The novel variant AroF(Δ(1-11)) showed great potential for the production of aromatic amino acids and their derivatives. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Preferential recognition of undisruptable dimers of inducible nitric oxide synthase by a monoclonal antibody directed against an N-terminal epitope.

    PubMed

    Mazumdar, Tuhina; Eissa, N Tony

    2005-02-15

    Overproduction of NO by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer in which the subunits align in a head-to-head manner, with the N-terminal oxygenase domains forming the dimer interface and a zinc metal center stabilizing the dimer. Thus, dimerization represents a critical locus for therapeutic interventions for regulation of NO synthesis. We have recently shown that intracellular iNOS forms dimers that are "undisruptable (UD)" by heat, SDS, strong denaturants, and/or reducing agents. Our data further suggest that the zinc metal center plays a role in forming and/or stabilizing iNOS undisruptable dimers (UD-dimers). In this study, we show that a mAb directed against a unique epitope at the oxygenase domain of human iNOS preferentially recognizes UD-dimers. This observation has implications for the mechanism of formation and regulation of dimer formation of iNOS. Our data suggest that UD-dimers of iNOS, in spite of SDS-PAGE denaturation, still maintain features of the quaternary structure of iNOS particularly at its N-terminal end and including head-to-head contact of the oxygenase domains.

  2. Heat-inducible hygromycin resistance in transgenic tobacco.

    PubMed

    Severin, K; Schöffl, F

    1990-12-01

    We have constructed a chimaeric gene consisting of the promoter of the soybean heat shock (hs) gene Gmhsp17, 6-L, the coding region of a hygromycin phosphotransferase (hpt) gene, and the termination sequence of the nopaline synthase (nos) gene. This gene fusion was introduced into tobacco by Agrobacterium-mediated gene transfer. Heat-inducible synthesis of mRNA was shown by northern hybridization, and translation of this RNA into a functional protein was indicated by plant growth on hygromycin-containing media in a temperature-dependent fashion. One hour incubation at 40 degrees C per day, applied for several weeks, was sufficient to express the resistant phenotype in transgenic plants containing the chimaeric hs-hpt gene. These data suggest that the hygromycin resistance gene is functional and faithfully controlled by the soybean hs promoter. The suitability of these transgenic plants for selection of mutations that alter the hs response is discussed.

  3. The N-terminal Part of Arabidopsis thaliana Starch Synthase 4 Determines the Localization and Activity of the Enzyme.

    PubMed

    Raynaud, Sandy; Ragel, Paula; Rojas, Tomás; Mérida, Ángel

    2016-05-13

    Starch synthase 4 (SS4) plays a specific role in starch synthesis because it controls the number of starch granules synthesized in the chloroplast and is involved in the initiation of the starch granule. We showed previously that SS4 interacts with fibrillins 1 and is associated with plastoglobules, suborganelle compartments physically attached to the thylakoid membrane in chloroplasts. Both SS4 localization and its interaction with fibrillins 1 were mediated by the N-terminal part of SS4. Here we show that the coiled-coil region within the N-terminal portion of SS4 is involved in both processes. Elimination of this region prevents SS4 from binding to fibrillins 1 and alters SS4 localization in the chloroplast. We also show that SS4 forms dimers, which depends on a region located between the coiled-coil region and the glycosyltransferase domain of SS4. This region is highly conserved between all SS4 enzymes sequenced to date. We show that the dimerization seems to be necessary for the activity of the enzyme. Both dimerization and the functionality of the coiled-coil region are conserved among SS4 proteins from phylogenetically distant species, such as Arabidopsis and Brachypodium This finding suggests that the mechanism of action of SS4 is conserved among different plant species. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. A new assay based on terminal restriction fragment length polymorphism of homocitrate synthase gene fragments for Candida species identification.

    PubMed

    Szemiako, Kasjan; Śledzińska, Anna; Krawczyk, Beata

    2017-08-01

    Candida sp. have been responsible for an increasing number of infections, especially in patients with immunodeficiency. Species-specific differentiation of Candida sp. is difficult in routine diagnosis. This identification can have a highly significant association in therapy and prophylaxis. This work has shown a new application of the terminal restriction fragment length polymorphism (t-RFLP) method in the molecular identification of six species of Candida, which are the most common causes of fungal infections. Specific for fungi homocitrate synthase gene was chosen as a molecular target for amplification. The use of three restriction enzymes, DraI, RsaI, and BglII, for amplicon digestion can generate species-specific fluorescence labeled DNA fragment profiles, which can be used to determine the diagnostic algorithm. The designed method can be a cost-efficient high-throughput molecular technique for the identification of six clinically important Candida species.

  5. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemazanyy, Ivan; Panasyuk, Ganna; Breus, Oksana

    2006-03-24

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy {beta} and originally identified CoA synthase, CoASy {alpha}. The transcript specific for CoASy {beta} was identified by electronic screening and by RT-PCR analysismore » of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy {beta}. In contrast to CoASy {alpha}, which shows ubiquitous expression, CoASy {beta} is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation.« less

  6. A temperature-tolerant multiplex elements and genes screening system for genetically modified organisms based on dual priming oligonucleotide primers and capillary electrophoresis.

    PubMed

    Fu, Wei; Wei, Shuang; Wang, Chenguang; Du, Zhixin; Zhu, Pengyu; Wu, Xiyang; Wu, Gang; Zhu, Shuifang

    2017-08-15

    High throughput screening systems are the preferred solution to meet the urgent requirement of increasing number of genetically modified organisms (GMOs). In this study, we have successfully developed a multiplex GMO element screening system with dual priming oligonucleotide (DPO) primers. This system can detect the cauliflower mosaic virus 35S (CaMV 35S), terminator of nopaline synthase gene (NOS), figwort mosaic virus 35S (FMV 35S) promoter, neomycin phosphotransferaseII (NPTII), Bt Cry 1Ab, phosphinothricin acetyltransferase genes (bar) and Streptomyces viridochromogenes (pat) simultaneously, which covers more than 90% of all authorized GMO species worldwide. This system exhibits a high tolerance to annealing temperatures, high specificity and a limit of detection equal to conventional PCR. A total of 214 samples from markets, national entry-exit agencies, the Institute for Reference Materials and Measurement (IRMM) and the American Oil Chemists' Society (AOCS) were also tested for applicability. This screening system is therefore suitable for GMO screening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    PubMed Central

    Engprasert, Surang; Taura, Futoshi; Kawamukai, Makoto; Shoyama, Yukihiro

    2004-01-01

    Background Isopentenyl diphosphate (IPP), a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP) synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots. PMID:15550168

  8. Galactinol synthase from kidney bean cotyledon and zucchini leaf. Purification and N-terminal sequences.

    PubMed Central

    Liu, J J; Odegard, W; de Lumen, B O

    1995-01-01

    Galactinol synthase (GS) was purified 1591-fold with a 3.9% recovery from the cotyledon of kidney bean (Phaseolus vulgaris) by a novel scheme consisting of ammonium sulfate fractionation followed by diethylaminoethyl, Affi-Gel Blue, and UDP-hexanolamine affinity chromatography. The purified enzyme had a specific activity of 8.75 mumol mg-1 min-1, a pH optimum of 7.0, and requirements for manganese ion and DTT. The enzyme exhibited a Km = 0.4 mM for UDP-galactose and a Km = 4.5 mM for myo-inositol. It was identified as a 38-kD peptide that co-purified with a 41- and a 43-kD peptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Purification to homogeneity was achieved by isolating the 38-kD peptide from the SDS-PAGE gel. To clarify conflicting reports in the literature about the relative molecular mass of purified GS from zucchini leaf (Cucurbita pepo), a similar scheme with modified eluting conditions was used to purify GS from this source. Zucchini leaf GS was purified to homogeneity and identified as a 36-kD peptide on SDS-PAGE. Partial N-terminal sequences of the 38-kD peptide from kidney bean cotyledon and the 36-kD peptide from zucchini leaf were obtained. To facilitate identification of GS during the purification, an assay utilizing thin-layer chromatography and an isotopic analytic imaging scanner was developed. PMID:7480343

  9. A novel reference plasmid for the qualitative detection of genetically modified rice in food and feed.

    PubMed

    Li, Liang; Dong, Mei; An, Na; Liang, Lixia; Wan, Yusong; Jin, Wujun

    2015-01-01

    Rice is one of the most important food crops in the world. Genetically modified (GM) technology has been used in rice to confer herbicide tolerance and pathogen or insect resistance. China invests heavily in research on GM rice. By the end of 2014, at least 250 transgenic rice lines had been developed in China. To monitor the presence of GM rice in food and feed, we collected information on foreign elements from 250 transgenic rice lines and found 5 elements, including the Agrobacterium tumefaciens nopaline synthase terminator (T-NOS), the cauliflower mosaic virus 35S promoter (CaMV35S), the ubiquitin gene (Ubi), the bar gene, and the hygromycin phosphotransferase gene (Hpt), that are commonly present in GM rice. Therefore, we constructed a novel plasmid (pBJGMM001) that contains fragments of these elements and two endogenous reference genes (the sucrose phosphate synthase gene, SPS, and the phosphoenolpyruvate carboxylase gene, PEPC). pBJGMM001 can serve as a standard for detecting 96% of GM rice lines in China. The primers, amplicons, reaction mixture, and PCR program were developed based on Chinese National Standards. The protocol was validated and determined to be suitable for practical use in monitoring and identifying GM rice.

  10. A Novel Reference Plasmid for the Qualitative Detection of Genetically Modified Rice in Food and Feed

    PubMed Central

    Dong, Mei; An, Na; Liang, Lixia; Wan, Yusong

    2015-01-01

    Rice is one of the most important food crops in the world. Genetically modified (GM) technology has been used in rice to confer herbicide tolerance and pathogen or insect resistance. China invests heavily in research on GM rice. By the end of 2014, at least 250 transgenic rice lines had been developed in China. To monitor the presence of GM rice in food and feed, we collected information on foreign elements from 250 transgenic rice lines and found 5 elements, including the Agrobacterium tumefaciens nopaline synthase terminator (T-NOS), the cauliflower mosaic virus 35S promoter (CaMV35S), the ubiquitin gene (Ubi), the bar gene, and the hygromycin phosphotransferase gene (Hpt), that are commonly present in GM rice. Therefore, we constructed a novel plasmid (pBJGMM001) that contains fragments of these elements and two endogenous reference genes (the sucrose phosphate synthase gene, SPS, and the phosphoenolpyruvate carboxylase gene, PEPC). pBJGMM001 can serve as a standard for detecting 96% of GM rice lines in China. The primers, amplicons, reaction mixture, and PCR program were developed based on Chinese National Standards. The protocol was validated and determined to be suitable for practical use in monitoring and identifying GM rice. PMID:26495318

  11. Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum.

    PubMed

    Flynn, Christopher M; Schmidt-Dannert, Claudia

    2018-06-01

    The wood-rotting mushroom Stereum hirsutum is a known producer of a large number of namesake hirsutenoids, many with important bioactivities. Hirsutenoids form a structurally diverse and distinct class of sesquiterpenoids. No genes involved in hirsutenoid biosynthesis have yet been identified or their enzymes characterized. Here, we describe the cloning and functional characterization of a hirsutene synthase as an unexpected fusion protein of a sesquiterpene synthase (STS) with a C-terminal 3-hydroxy-3-methylglutaryl-coenzyme A (3-hydroxy-3-methylglutaryl-CoA) synthase (HMGS) domain. Both the full-length fusion protein and truncated STS domain are highly product-specific 1,11-cyclizing STS enzymes with kinetic properties typical of STSs. Complementation studies in Saccharomyces cerevisiae confirmed that the HMGS domain is also functional in vivo Phylogenetic analysis shows that the hirsutene synthase domain does not form a clade with other previously characterized sesquiterpene synthases from Basidiomycota. Comparative gene structure analysis of this hirsutene synthase with characterized fungal enzymes reveals a significantly higher intron density, suggesting that this enzyme may be acquired by horizontal gene transfer. In contrast, the HMGS domain is clearly related to other fungal homologs. This STS-HMGS fusion protein is part of a biosynthetic gene cluster that includes P450s and oxidases that are expressed and could be cloned from cDNA. Finally, this unusual fusion of a terpene synthase to an HMGS domain, which is not generally recognized as a key regulatory enzyme of the mevalonate isoprenoid precursor pathway, led to the identification of additional HMGS duplications in many fungal genomes, including the localization of HMGSs in other predicted sesquiterpenoid biosynthetic gene clusters. IMPORTANCE Hirsutenoids represent a structurally diverse class of bioactive sesquiterpenoids isolated from fungi. Identification of their biosynthetic pathways will provide

  12. Identification of critical residues of subunit H in its interaction with subunit E of the A-ATP synthase from Methanocaldococcus jannaschii.

    PubMed

    Gayen, Shovanlal; Balakrishna, Asha M; Biuković, Goran; Yulei, Wu; Hunke, Cornelia; Grüber, Gerhard

    2008-04-01

    The boomerang-like H subunit of A(1)A(0) ATP synthase forms one of the peripheral stalks connecting the A(1) and A(0) sections. Structural analyses of the N-terminal part (H1-47) of subunit H of the A(1)A(0) ATP synthase from Methanocaldococcus jannaschii have been performed by NMR spectroscopy. Our initial NMR structural calculations for H1-47 indicate that amino acid residues 7-44 fold into a single alpha-helical structure. Using the purified N- (E1-100) and C-terminal domains (E101-206) of subunit E, NMR titration experiments revealed that the N-terminal residues Met1-6, Lys10, Glu11, Ala15, Val20 and Glu24 of H1-47 interact specifically with the N-terminal domain E1-100 of subunit E. A more detailed picture regarding the residues of E1-100 involved in this association was obtained by titration studies using the N-terminal peptides E1-20, E21-40 and E41-60. These data indicate that the N-terminal tail E41-60 interacts with the N-terminal amino acids of H1-47, and this has been confirmed by fluorescence correlation spectroscopy results. Analysis of (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra of the central stalk subunit F in the presence and absence of E101-206 show no obvious interaction between the C-terminal domain of E and subunit F. The data presented provide, for the first time, structural insights into the interaction of subunits E and H, and their arrangement within A(1)A(0) ATP synthase.

  13. Domain organization and crystal structure of the catalytic domain of E.coli RluF, a pseudouridine synthase that acts on 23S rRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunita,S.; Zhenxing, H.; Swaathi, J.

    2006-01-01

    Pseudouridine synthases catalyze the isomerization of uridine to pseudouridine ({psi}) in rRNA and tRNA. The pseudouridine synthase RluF from Escherichia coli (E.C. 4.2.1.70) modifies U2604 in 23S rRNA, and belongs to a large family of pseudouridine synthases present in all kingdoms of life. Here we report the domain architecture and crystal structure of the catalytic domain of E. coli RluF at 2.6 Angstroms resolution. Limited proteolysis, mass spectrometry and N-terminal sequencing indicate that RluF has a distinct domain architecture, with the catalytic domain flanked at the N and C termini by additional domains connected to it by flexible linkers. Themore » structure of the catalytic domain of RluF is similar to those of RsuA and TruB. RluF is a member of the RsuA sequence family of {psi}-synthases, along with RluB and RluE. Structural comparison of RluF with its closest structural homologues, RsuA and TruB, suggests possible functional roles for the N-terminal and C-terminal domains of RluF.« less

  14. Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with Alpha-Alpha Domain Architecture that Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence

    PubMed Central

    Harris, Golda G.; Lombardi, Patrick M.; Pemberton, Travis A.; Matsui, Tsutomu; Weiss, Thomas M.; Cole, Kathryn E.; Köksal, Mustafa; Murphy, Frank V.; Vedula, L. Sangeetha; Chou, Wayne K.W.; Cane, David E.; Christianson, David W.

    2015-01-01

    Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg2+ for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with 3 Mg2+ ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed based on ~36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis. PMID:26598179

  15. The First Prokaryotic Trehalose Synthase Complex Identified in the Hyperthermophilic Crenarchaeon Thermoproteus tenax

    PubMed Central

    Bräsen, Christopher; Hensel, Reinhard; Lupas, Andrei N.; Brinkmann, Henner; Siebers, Bettina

    2013-01-01

    The role of the disaccharide trehalose, its biosynthesis pathways and their regulation in Archaea are still ambiguous. In Thermoproteus tenax a fused trehalose-6-phosphate synthase/phosphatase (TPSP), consisting of an N-terminal trehalose-6-phosphate synthase (TPS) and a C-terminal trehalose-6-phosphate phosphatase (TPP) domain, was identified. The tpsp gene is organized in an operon with a putative glycosyltransferase (GT) and a putative mechanosensitive channel (MSC). The T. tenax TPSP exhibits high phosphatase activity, but requires activation by the co-expressed GT for bifunctional synthase-phosphatase activity. The GT mediated activation of TPS activity relies on the fusion of both, TPS and TPP domain, in the TPSP enzyme. Activation is mediated by complex-formation in vivo as indicated by yeast two-hybrid and crude extract analysis. In combination with first evidence for MSC activity the results suggest a sophisticated stress response involving TPSP, GT and MSC in T. tenax and probably in other Thermoproteales species. The monophyletic prokaryotic TPSP proteins likely originated via a single fusion event in the Bacteroidetes with subsequent horizontal gene transfers to other Bacteria and Archaea. Furthermore, evidence for the origin of eukaryotic TPSP fusions via HGT from prokaryotes and therefore a monophyletic origin of eukaryotic and prokaryotic fused TPSPs is presented. This is the first report of a prokaryotic, archaeal trehalose synthase complex exhibiting a much more simple composition than the eukaryotic complex described in yeast. Thus, complex formation and a complex-associated regulatory potential might represent a more general feature of trehalose synthesizing proteins. PMID:23626675

  16. Potential involvement of N-terminal acetylation in the quantitative regulation of the ε subunit of chloroplast ATP synthase under drought stress.

    PubMed

    Hoshiyasu, Saki; Kohzuma, Kaori; Yoshida, Kazuo; Fujiwara, Masayuki; Fukao, Yoichiro; Yokota, Akiho; Akashi, Kinya

    2013-01-01

    In plants, modulation of photosynthetic energy conversion in varying environments is often accompanied by adjustment of the abundance of photosynthetic components. In wild watermelon (Citrullus lanatus L.), proteome analysis revealed that the ε subunit of chloroplast ATP synthase occurs as two distinct isoforms with largely-different isoelectric points, although encoded by a single gene. Mass spectrometry (MS) analysis of the ε isoforms indicated that the structural difference between the ε isoforms lies in the presence or absence of an acetyl group at the N-terminus. The protein level of the non-acetylated ε isoform preferentially decreased in drought, whereas the abundance of the acetylated ε isoform was unchanged. Moreover, metalloprotease activity that decomposed the ε subunit was detected in a leaf extract from drought-stressed plants. Furthermore, in vitro assay suggested that the non-acetylated ε subunit was more susceptible to degradation by metalloaminopeptidase. We propose a model in which quantitative regulation of the ε subunit involves N-terminal acetylation and stress-induced proteases.

  17. Isoprene synthase genes form a monophyletic clade of acyclic terpene synthases in the TPS-B terpene synthase family.

    PubMed

    Sharkey, Thomas D; Gray, Dennis W; Pell, Heather K; Breneman, Steven R; Topper, Lauren

    2013-04-01

    Many plants emit significant amounts of isoprene, which is hypothesized to help leaves tolerate short episodes of high temperature. Isoprene emission is found in all major groups of land plants including mosses, ferns, gymnosperms, and angiosperms; however, within these groups isoprene emission is variable. The patchy distribution of isoprene emission implies an evolutionary pattern characterized by many origins or many losses. To better understand the evolution of isoprene emission, we examine the phylogenetic relationships among isoprene synthase and monoterpene synthase genes in the angiosperms. In this study we identify nine new isoprene synthases within the rosid angiosperms. We also document the capacity of a myrcene synthase in Humulus lupulus to produce isoprene. Isoprene synthases and (E)-β-ocimene synthases form a monophyletic group within the Tps-b clade of terpene synthases. No asterid genes fall within this clade. The chemistry of isoprene synthase and ocimene synthase is similar and likely affects the apparent relationships among Tps-b enzymes. The chronology of rosid evolution suggests a Cretaceous origin followed by many losses of isoprene synthase over the course of evolutionary history. The phylogenetic pattern of Tps-b genes indicates that isoprene emission from non-rosid angiosperms likely arose independently. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  18. Highly Sensitive GMO Detection Using Real-Time PCR with a Large Amount of DNA Template: Single-Laboratory Validation.

    PubMed

    Mano, Junichi; Hatano, Shuko; Nagatomi, Yasuaki; Futo, Satoshi; Takabatake, Reona; Kitta, Kazumi

    2018-03-01

    Current genetically modified organism (GMO) detection methods allow for sensitive detection. However, a further increase in sensitivity will enable more efficient testing for large grain samples and reliable testing for processed foods. In this study, we investigated real-time PCR-based GMO detection methods using a large amount of DNA template. We selected target sequences that are commonly introduced into many kinds of GM crops, i.e., 35S promoter and nopaline synthase (NOS) terminator. This makes the newly developed method applicable to a wide range of GMOs, including some unauthorized ones. The estimated LOD of the new method was 0.005% of GM maize events; to the best of our knowledge, this method is the most sensitive among the GM maize detection methods for which the LOD was evaluated in terms of GMO content. A 10-fold increase in the DNA amount as compared with the amount used under common testing conditions gave an approximately 10-fold reduction in the LOD without PCR inhibition. Our method is applicable to various analytical samples, including processed foods. The use of other primers and fluorescence probes would permit highly sensitive detection of various recombinant DNA sequences besides the 35S promoter and NOS terminator.

  19. Transgenic fertile Scoparia dulcis L., a folk medicinal plant, conferred with a herbicide-resistant trait using an Ri binary vector.

    PubMed

    Yamazaki, M; Son, L; Hayashi, T; Morita, N; Asamizu, T; Mourakoshi, I; Saito, K

    1996-01-01

    Transgenic herbicide-resistant Scoparia dulcis plants were obtained by using an Ri binary vector system. The chimeric bar gene encoding phosphinothricin acetyltransferase flanked by the promoter for cauliflower mosaic virus 35S RNA and the terminal sequence for nopaline synthase was introduced in the plant genome by Agrobacterium-mediated transformation by means of scratching young plants. Hairy roots resistant to bialaphos were selected and plantlets (R0) were regenerated. Progenies (S1) were obtained by self-fertilization. The transgenic state was confirmed by DNA-blot hybridization and assaying of neomycin phosphotransferase II. Expression of the bar gene in the transgenic R0 and S1 progenies was indicated by the activity of phosphinothricin acetyltransferase. Transgenic plants accumulated scopadulcic acid B, a specific secondary metabolite of S. dulcis, in amounts of 15-60% compared with that in normal plants. The transgenic plants and progenies showed resistant trait towards bialaphos and phosphinothricin. These results suggest that an Ri binary system is one of the useful tools for the transformation of medicinal plants for which a regeneration protocol has not been established.

  20. Identification and Characterization of Daurichromenic Acid Synthase Active in Anti-HIV Biosynthesis.

    PubMed

    Iijima, Miu; Munakata, Ryosuke; Takahashi, Hironobu; Kenmoku, Hiromichi; Nakagawa, Ryuichi; Kodama, Takeshi; Asakawa, Yoshinori; Abe, Ikuro; Yazaki, Kazufumi; Kurosaki, Fumiya; Taura, Futoshi

    2017-08-01

    Daurichromenic acid (DCA) synthase catalyzes the oxidative cyclization of grifolic acid to produce DCA, an anti-HIV meroterpenoid isolated from Rhododendron dauricum We identified a novel cDNA encoding DCA synthase by transcriptome-based screening from young leaves of R. dauricum The gene coded for a 533-amino acid polypeptide with moderate homologies to flavin adenine dinucleotide oxidases from other plants. The primary structure contained an amino-terminal signal peptide and conserved amino acid residues to form bicovalent linkage to the flavin adenine dinucleotide isoalloxazine ring at histidine-112 and cysteine-175. In addition, the recombinant DCA synthase, purified from the culture supernatant of transgenic Pichia pastoris , exhibited structural and functional properties as a flavoprotein. The reaction mechanism of DCA synthase characterized herein partly shares a similarity with those of cannabinoid synthases from Cannabis sativa , whereas DCA synthase catalyzes a novel cyclization reaction of the farnesyl moiety of a meroterpenoid natural product of plant origin. Moreover, in this study, we present evidence that DCA is biosynthesized and accumulated specifically in the glandular scales, on the surface of R. dauricum plants, based on various analytical studies at the chemical, biochemical, and molecular levels. The extracellular localization of DCA also was confirmed by a confocal microscopic analysis of its autofluorescence. These data highlight the unique feature of DCA: the final step of biosynthesis is completed in apoplastic space, and it is highly accumulated outside the scale cells. © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. In Planta Recapitulation of Isoprene Synthase Evolution from Ocimene Synthases

    PubMed Central

    Li, Mingai; Xu, Jia; Algarra Alarcon, Alberto; Carlin, Silvia; Barbaro, Enrico; Cappellin, Luca; Velikova, Violeta; Vrhovsek, Urska; Loreto, Francesco; Varotto, Claudio

    2017-01-01

    Abstract Isoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated. We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L., Poaceae). Phylogenetic reconstruction indicates that AdoIspS and dicots isoprene synthases most likely originated by parallel evolution from TPS-b monoterpene synthases. Site-directed mutagenesis demonstrated invivo the functional and evolutionary relevance of the residues considered diagnostic for IspS function. One of these positions was identified by saturating mutagenesis as a major determinant of substrate specificity in AdoIspS able to cause invivo a dramatic change in total volatile emission from hemi- to monoterpenes and supporting evolution of isoprene synthases from ocimene synthases. The mechanism responsible for IspS neofunctionalization by active site size modulation by a single amino acid mutation demonstrated in this study might be general, as the very same amino acidic position is implicated in the parallel evolution of different short-chain terpene synthases from both angiosperms and gymnosperms. Based on these results, we present a model reconciling in a unified conceptual framework the apparently contrasting patterns previously observed for isoprene synthase evolution in plants. These results indicate that parallel evolution may be driven by relatively simple biophysical constraints, and illustrate the intimate molecular evolutionary links between the structural and functional bases of traits with global relevance. PMID:28637270

  2. In Planta Recapitulation of Isoprene Synthase Evolution from Ocimene Synthases.

    PubMed

    Li, Mingai; Xu, Jia; Algarra Alarcon, Alberto; Carlin, Silvia; Barbaro, Enrico; Cappellin, Luca; Velikova, Violeta; Vrhovsek, Urska; Loreto, Francesco; Varotto, Claudio

    2017-10-01

    Isoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated. We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L., Poaceae). Phylogenetic reconstruction indicates that AdoIspS and dicots isoprene synthases most likely originated by parallel evolution from TPS-b monoterpene synthases. Site-directed mutagenesis demonstrated invivo the functional and evolutionary relevance of the residues considered diagnostic for IspS function. One of these positions was identified by saturating mutagenesis as a major determinant of substrate specificity in AdoIspS able to cause invivo a dramatic change in total volatile emission from hemi- to monoterpenes and supporting evolution of isoprene synthases from ocimene synthases. The mechanism responsible for IspS neofunctionalization by active site size modulation by a single amino acid mutation demonstrated in this study might be general, as the very same amino acidic position is implicated in the parallel evolution of different short-chain terpene synthases from both angiosperms and gymnosperms. Based on these results, we present a model reconciling in a unified conceptual framework the apparently contrasting patterns previously observed for isoprene synthase evolution in plants. These results indicate that parallel evolution may be driven by relatively simple biophysical constraints, and illustrate the intimate molecular evolutionary links between the structural and functional bases of traits with global relevance. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. β-Glucoside Activators of Mung Bean UDP-Glucose: β-Glucan Synthase 1

    PubMed Central

    Callaghan, Theresa; Ross, Peter; Weinberger-Ohana, Patricia; Benziman, Moshe

    1988-01-01

    n-Alkyl (C6-C12) β-d-monoglucopyranosides have been found to be highly potent activators of mung bean β-glucan synthase in vitro, increasing the Vmax of the enzyme as much as 60-fold and with Ka values as low as 10 micromolar. Activation is highly specific for the β-linked terminal glucose residue; other alkyl glycosides such as, octyl-α-glucoside, dodecyl β-maltoside, 6-lauryl sucrose, 6-lauryl glucose, which lack this structure, are ineffective as activators. Based on the similarities in their structure and effects on β-glucan synthesis under a variety of conditions, it is proposed that the alkyl β-glucosides are structural analogs of the native glucolipid activator of β-glucan synthase isolated from mung bean extracts. PMID:16666039

  4. HAEM SYNTHASE AND COBALT PORPHYRIN SYNTHASE IN VARIOUS MICRO-ORGANISMS.

    PubMed

    PORRA, R J; ROSS, B D

    1965-03-01

    1. The preparation of a crude extract of Clostridium tetanomorphum containing cobalt porphyrin synthase but little haem-synthase activity is described. 2. The properties of cobalt porphyrin synthase in the clostridial extracts is compared with the properties of a haem synthase present in crude extracts of the yeast Torulopsis utilis. 3. Cobalt porphyrin synthase in extracts of C. tetanomorphum inserts Co(2+) ions into the following dicarboxylic porphyrins in descending order of rate of insertion: meso-, deutero- and proto-porphyrins. Esterification renders meso- and deutero-porphyrins inactive as substrates. Neither the tetracarboxylic (coproporphyrin III) nor the octacarboxylic (uroporphyrin III) compounds are converted into cobalt porphyrins by the extract, but the non-enzymic incorporation of Co(2+) ions into these two porphyrins is rapid. These extracts are unable to insert Mn(2+), Zn(2+), Mg(2+) or Cu(2+) ions into mesoporphyrin. 4. Crude extracts of T. utilis readily insert both Co(2+) and Fe(2+) ions into deutero-, meso, and proto-porphyrins. Unlike the extracts of C. tetanomorphum, these preparations catalyse the insertion of Co(2+) ions into deuteroporphyrin more rapidly than into mesoporphyrin. This parallels the formation of haems by the T. utilis extract. 5. Cobalt porphyrin synthase is present in the particulate fraction of the extracts of C. tetanomorphum but requires a heat-stable factor present in the soluble fraction. This soluble factor can be replaced by GSH. 6. Cobalt porphyrin synthase in the clostridial extract is inhibited by iodoacetamide and to a smaller extent by p-chloromercuribenzoate and N-ethylmaleimide. The haem synthases of T. utilis and Micrococcus denitrificans are also inhibited by various thiol reagents.

  5. Sandalwood Fragrance Biosynthesis Involves Sesquiterpene Synthases of Both the Terpene Synthase (TPS)-a and TPS-b Subfamilies, including Santalene Synthases*

    PubMed Central

    Jones, Christopher G.; Moniodis, Jessie; Zulak, Katherine G.; Scaffidi, Adrian; Plummer, Julie A.; Ghisalberti, Emilio L.; Barbour, Elizabeth L.; Bohlmann, Jörg

    2011-01-01

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. PMID:21454632

  6. Distribution of Callose Synthase, Cellulose Synthase, and Sucrose Synthase in Tobacco Pollen Tube Is Controlled in Dissimilar Ways by Actin Filaments and Microtubules1[W

    PubMed Central

    Cai, Giampiero; Faleri, Claudia; Del Casino, Cecilia; Emons, Anne Mie C.; Cresti, Mauro

    2011-01-01

    Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules. PMID:21205616

  7. Genetic-deletion of Cyclooxygenase-2 Downstream Prostacyclin Synthase Suppresses Inflammatory Reactions but Facilitates Carcinogenesis, unlike Deletion of Microsomal Prostaglandin E Synthase-1.

    PubMed

    Sasaki, Yuka; Kamiyama, Shuhei; Kamiyama, Azusa; Matsumoto, Konomi; Akatsu, Moe; Nakatani, Yoshihito; Kuwata, Hiroshi; Ishikawa, Yukio; Ishii, Toshiharu; Yokoyama, Chieko; Hara, Shuntaro

    2015-11-27

    Prostacyclin synthase (PGIS) and microsomal prostaglandin E synthase-1 (mPGES-1) are prostaglandin (PG) terminal synthases that function downstream of inducible cyclooxygenase (COX)-2 in the PGI2 and PGE2 biosynthetic pathways, respectively. mPGES-1 has been shown to be involved in various COX-2-related diseases such as inflammatory diseases and cancers, but it is not yet known how PGIS is involved in these COX-2-related diseases. Here, to clarify the pathophysiological role of PGIS, we investigated the phenotypes of PGIS and mPGES-1 individual knockout (KO) or double KO (DKO) mice. The results indicate that a thioglycollate-induced exudation of leukocytes into the peritoneal cavity was suppressed by the genetic-deletion of PGIS. In the PGIS KO mice, lipopolysaccharide-primed pain nociception (as assessed by the acetic acid-induced writhing reaction) was also reduced. Both of these reactions were suppressed more effectively in the PGIS/mPGES-1 DKO mice than in the PGIS KO mice. On the other hand, unlike mPGES-1 deficiency (which suppressed azoxymethane-induced colon carcinogenesis), PGIS deficiency up-regulated both aberrant crypt foci formation at the early stage of carcinogenesis and polyp formation at the late stage. These results indicate that PGIS and mPGES-1 cooperatively exacerbate inflammatory reactions but have opposing effects on carcinogenesis, and that PGIS-derived PGI2 has anti-carcinogenic effects.

  8. Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases.

    PubMed

    Jones, Christopher G; Moniodis, Jessie; Zulak, Katherine G; Scaffidi, Adrian; Plummer, Julie A; Ghisalberti, Emilio L; Barbour, Elizabeth L; Bohlmann, Jörg

    2011-05-20

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Evaluation of real-time PCR detection methods for detecting rice products contaminated by rice genetically modified with a CpTI-KDEL-T-nos transgenic construct.

    PubMed

    Nakamura, Kosuke; Akiyama, Hiroshi; Kawano, Noriaki; Kobayashi, Tomoko; Yoshimatsu, Kayo; Mano, Junichi; Kitta, Kazumi; Ohmori, Kiyomi; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko

    2013-12-01

    Genetically modified (GM) rice (Oryza sativa) lines, such as insecticidal Kefeng and Kemingdao, have been developed and found unauthorised in processed rice products in many countries. Therefore, qualitative detection methods for the GM rice are required for the GM food regulation. A transgenic construct for expressing cowpea (Vigna unguiculata) trypsin inhibitor (CpTI) was detected in some imported processed rice products contaminated with Kemingdao. The 3' terminal sequence of the identified transgenic construct for expression of CpTI included an endoplasmic reticulum retention signal coding sequence (KDEL) and nopaline synthase terminator (T-nos). The sequence was identical to that in a report on Kefeng. A novel construct-specific real-time polymerase chain reaction (PCR) detection method for detecting the junction region sequence between the CpTI-KDEL and T-nos was developed. The imported processed rice products were evaluated for the contamination of the GM rice using the developed construct-specific real-time PCR methods, and detection frequency was compared with five event-specific detection methods. The construct-specific detection methods detected the GM rice at higher frequency than the event-specific detection methods. Therefore, we propose that the construct-specific detection method is a beneficial tool for screening the contamination of GM rice lines, such as Kefeng, in processed rice products for the GM food regulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localisation of polycystin-2 in vivo and in vitro

    PubMed Central

    Streets, Andrew J; Moon, David J; Kane, Michelle E; Obara, Tomoko; Ong, Albert CM

    2008-01-01

    PKD2 is mutated in 15% of patients with autosomal dominant polycystic kidney disease (ADPKD). Polycystin-2 (PC2), the PKD2 protein, is a nonselective Ca2+-permeable cation channel which may function at the cell surface and ER. Nevertheless, the factors that regulate the dynamic translocation of PC2 between the ER and other compartments are not well understood. Constitutive phosphorylation of PC2 at a single C-terminal site (Ser812) has been previously reported. Since we were unable to abolish phospholabelling of PC2 in HEK293 cells by site-directed mutagenesis of Ser812 or all 5 predicted phosphorylation sites in the C-terminus, we hypothesised that PC2 could also be phosphorylated at the N-terminus. In this paper, we report the identification of a new phosphorylation site for PC2 within its N-terminal domain (Ser76) and demonstrate that this residue is phosphorylated by glycogen synthase kinase 3 (GSK-3). The consensus recognition sequence for GSK-3 (Ser76/Ser80) is evolutionarily conserved down to lower vertebrates. In the presence of specific GSK-3 inhibitors, the lateral plasma membrane pool of endogenous PC2 redistributes into an intracellular compartment in MDCK cells without a change in primary cilia localization. Finally, co-injection of wild-type but not a S76A/S80A mutant PKD2 capped mRNA could rescue the cystic phenotype induced by an antisense morpholino oligonucleotide to pkd2 in zebrafish pronephric kidney. We conclude that surface localization of PC2 is regulated by phosphorylation at a unique GSK-3 site in its N-terminal domain in vivo and in vitro. This site is functionally significant for the maintenance of normal glomerular and tubular morphology. PMID:16551655

  11. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  12. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  13. Functional analysis of (4 S)-limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase

    DOE PAGES

    Srividya, Narayanan; Davis, Edward M.; Croteau, Rodney B.; ...

    2015-03-02

    We used crystal structural data for (4S)-limonene synthase [(4S)-LS] of spearmint (Mentha spicata L.) to infer which amino acid residues are in close proximity to the substrate and carbocation intermediates of the enzymatic reaction. Alanine-scanning mutagenesis of 48 amino acids combined with enzyme fidelity analysis [percentage of (-)-limonene produced] indicated which residues are most likely to constitute the active site. Furthermore, the mutation of residues W324 and H579 caused a significant drop in enzyme activity and formation of products (myrcene, linalool, and terpineol) characteristic of a premature termination of the reaction. A double mutant (W324A/H579A) had no detectable enzyme activity,more » indicating that either substrate binding or the terminating reaction was impaired. Exchanges to other aromatic residues (W324H, W324F, W324Y, H579F, H579Y, and H579W) resulted in enzyme catalysts with significantly reduced activity. Sequence comparisons across the angiosperm lineage provided evidence that W324 is a conserved residue, whereas the position equivalent to H579 is occupied by aromatic residues (H, F, or Y). Our results are consistent with a critical role of W324 and H579 in the stabilization of carbocation intermediates. Finally, the potential of these residues to serve as the catalytic base facilitating the terminal deprotonation reaction is discussed.« less

  14. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  15. Riboflavin accumulation and characterization of cDNAs encoding lumazine synthase and riboflavin synthase in bitter melon (Momordica charantia).

    PubMed

    Tuan, Pham Anh; Kim, Jae Kwang; Lee, Sanghyun; Chae, Soo Cheon; Park, Sang Un

    2012-12-05

    Riboflavin (vitamin B2) is the universal precursor of the coenzymes flavin mononucleotide and flavin adenine dinucleotide--cofactors that are essential for the activity of a wide variety of metabolic enzymes in animals, plants, and microbes. Using the RACE PCR approach, cDNAs encoding lumazine synthase (McLS) and riboflavin synthase (McRS), which catalyze the last two steps in the riboflavin biosynthetic pathway, were cloned from bitter melon (Momordica charantia), a popular vegetable crop in Asia. Amino acid sequence alignments indicated that McLS and McRS share high sequence identity with other orthologous genes and carry an N-terminal extension, which is reported to be a plastid-targeting sequence. Organ expression analysis using quantitative real-time RT PCR showed that McLS and McRS were constitutively expressed in M. charantia, with the strongest expression levels observed during the last stage of fruit ripening (stage 6). This correlated with the highest level of riboflavin content, which was detected during ripening stage 6 by HPLC analysis. McLS and McRS were highly expressed in the young leaves and flowers, whereas roots exhibited the highest accumulation of riboflavin. The cloning and characterization of McLS and McRS from M. charantia may aid the metabolic engineering of vitamin B2 in crops.

  16. The detection of T-Nos, a genetic element present in GMOs, by cross-priming isothermal amplification with real-time fluorescence.

    PubMed

    Zhang, Fang; Wang, Liu; Fan, Kai; Wu, Jian; Ying, Yibin

    2014-05-01

    An isothermal cross-priming amplification (CPA) assay for Agrobacterium tumefaciens nopaline synthase terminator (T-Nos) was established and investigated in this work. A set of six specific primers, recognizing eight distinct regions on the T-Nos sequence, was designed. The CPA assay was performed at a constant temperature, 63 °C, and detected by real-time fluorescence. The results indicated that real-time fluorescent CPA had high specificity, and the limit of detection was 1.06 × 10(3) copies of rice genomic DNA, which could be detected in 40 min. Comparison of real-time fluorescent CPA and conventional polymerase chain reaction (PCR) was also performed. Results revealed that real-time fluorescent CPA had a comparable sensitivity to conventional real-time PCR and had taken a shorter time. In addition, different contents of genetically modified (GM)-contaminated rice seed powder samples were detected for practical application. The result showed real-time fluorescent CPA could detect 0.5 % GM-contaminated samples at least, and the whole reaction could be finished in 35 min. Real-time fluorescent CPA is sensitive enough to monitor labeling systems and provides an attractive method for the detection of GMO.

  17. Molecular cloning and functional characterization of psoralen synthase, the first committed monooxygenase of furanocoumarin biosynthesis.

    PubMed

    Larbat, Romain; Kellner, Sandra; Specker, Silvia; Hehn, Alain; Gontier, Eric; Hans, Joachim; Bourgaud, Frederic; Matern, Ulrich

    2007-01-05

    Ammi majus L. accumulates linear furanocoumarins by cytochrome P450 (CYP)-dependent conversion of 6-prenylumbelliferone via (+)-marmesin to psoralen. Relevant activities, i.e. psoralen synthase, are induced rapidly from negligible background levels upon elicitation of A. majus cultures with transient maxima at 9-10 h and were recovered in labile microsomes. Expressed sequence tags were cloned from elicited Ammi cells by a nested DD-RT-PCR strategy with CYP-specific primers, and full-size cDNAs were generated from those fragments correlated in abundance with the induction profile of furanocoumarin-specific activities. One of these cDNAs representing a transcript of maximal abundance at 4 h of elicitation was assigned CYP71AJ1. Functional expression in Escherichia coli or yeast cells initially failed but was accomplished eventually in yeast cells after swapping the N-terminal membrane anchor domain with that of CYP73A1. The recombinant enzyme was identified as psoralen synthase with narrow substrate specificity for (+)-marmesin. Psoralen synthase catalyzes a unique carbon-chain cleavage reaction concomitantly releasing acetone by syn-elimination. Related plants, i.e. Heracleum mantegazzianum, are known to produce both linear and angular furanocoumarins by analogous conversion of 8-prenylumbelliferone via (+)-columbianetin to angelicin, and it was suggested that angelicin synthase has evolved from psoralen synthase. However, (+)-columbianetin failed as substrate but competitively inhibited psoralen synthase activity. Analogy modeling and docked solutions defined the conditions for high affinity substrate binding and predicted the minimal requirements to accommodate (+)-columbianetin in the active site cavity. The studies suggested that several point mutations are necessary to pave the road toward angelicin synthase evolution.

  18. Aromatic Polyketide Synthases (Purification, Characterization, and Antibody Development to Benzalacetone Synthase from Raspberry Fruits).

    PubMed Central

    Borejsza-Wysocki, W.; Hrazdina, G.

    1996-01-01

    p-Hydroxyphenylbutan-2-one, the characteristic aroma compound of raspberries (Rubus idaeus L.), is synthesized from p-coumaryl-coenzyme A and malonyl-coenzyme A in a two-step reaction sequence that is catalyzed by benzalacetone synthase and benzalacetone reductase (W. Borejsza-Wysocki and G. Hrazdina [1994] Phytochemistry 35: 623-628). Benzalacetone synthase condenses one malonate with p-coumarate to form the pathway intermediate p-hydroxyphenylbut-3-ene-2-one (p-hydroxybenzalacetone) in a reaction that is similar to those catalyzed by chalcone and stilbene synthases. We have obtained an enzyme preparation from ripe raspberries that was preferentially enriched in benzalacetone synthase (approximately 170-fold) over chalcone synthase (approximately 14-fold) activity. This preparation was used to characterize benzalacetone synthase and to develop polyclonal antibodies in rabbits. Benzalacetone synthase showed similarity in its molecular properties to chalcone synthase but differed distinctly in its substrate specificity, response to 2-mercaptoethanol and ethylene glycol, and induction in cell-suspension cultures. The product of the enzyme, p-hydroxybenzalacetone, inhibited mycelial growth of the raspberry pathogen Phytophthora fragariae var rubi at 250 [mu]M. We do not know whether the dual activity in the benzalacetone synthase preparation is the result of a bifunctional enzyme or is caused by contamination with chalcone synthase that was also present. The rapid induction of the enzyme in cell-suspension cultures upon addition of yeast extract and the toxicity of its product, p-hydroxybenzalacetone, to phytopathogenic fungi also suggest that the pathway may be part of a plant defense response. PMID:12226219

  19. Multiple Glycogen-binding Sites in Eukaryotic Glycogen Synthase Are Required for High Catalytic Efficiency toward Glycogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskaran, Sulochanadevi; Chikwana, Vimbai M.; Contreras, Christopher J.

    2012-12-10

    Glycogen synthase is a rate-limiting enzyme in the biosynthesis of glycogen and has an essential role in glucose homeostasis. The three-dimensional structures of yeast glycogen synthase (Gsy2p) complexed with maltooctaose identified four conserved maltodextrin-binding sites distributed across the surface of the enzyme. Site-1 is positioned on the N-terminal domain, site-2 and site-3 are present on the C-terminal domain, and site-4 is located in an interdomain cleft adjacent to the active site. Mutation of these surface sites decreased glycogen binding and catalytic efficiency toward glycogen. Mutations within site-1 and site-2 reduced the V{sub max}/S{sub 0.5} for glycogen by 40- and 70-fold,more » respectively. Combined mutation of site-1 and site-2 decreased the V{sub max}/S{sub 0.5} for glycogen by >3000-fold. Consistent with the in vitro data, glycogen accumulation in glycogen synthase-deficient yeast cells ({Delta}gsy1-gsy2) transformed with the site-1, site-2, combined site-1/site-2, or site-4 mutant form of Gsy2p was decreased by up to 40-fold. In contrast to the glycogen results, the ability to utilize maltooctaose as an in vitro substrate was unaffected in the site-2 mutant, moderately affected in the site-1 mutant, and almost completely abolished in the site-4 mutant. These data show that the ability to utilize maltooctaose as a substrate can be independent of the ability to utilize glycogen. Our data support the hypothesis that site-1 and site-2 provide a 'toehold mechanism,' keeping glycogen synthase tightly associated with the glycogen particle, whereas site-4 is more closely associated with positioning of the nonreducing end during catalysis.« less

  20. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.

    PubMed

    Brown, Breann L; Kardon, Julia R; Sauer, Robert T; Baker, Tania A

    2018-04-03

    5-Aminolevulinic acid synthase (ALAS) catalyzes the first step in heme biosynthesis. We present the crystal structure of a eukaryotic ALAS from Saccharomyces cerevisiae. In this homodimeric structure, one ALAS subunit contains covalently bound cofactor, pyridoxal 5'-phosphate (PLP), whereas the second is PLP free. Comparison between the subunits reveals PLP-coupled reordering of the active site and of additional regions to achieve the active conformation of the enzyme. The eukaryotic C-terminal extension, a region altered in multiple human disease alleles, wraps around the dimer and contacts active-site-proximal residues. Mutational analysis demonstrates that this C-terminal region that engages the active site is important for ALAS activity. Our discovery of structural elements that change conformation upon PLP binding and of direct contact between the C-terminal extension and the active site thus provides a structural basis for investigation of disruptions in the first step of heme biosynthesis and resulting human disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. [Advances in isoprene synthase research].

    PubMed

    Gou, Yan; Liu, Zhongchuan; Wang, Ganggang

    2017-11-25

    Isoprene emission can lead to significant consequence for atmospheric chemistry. In addition, isoprene is a chemical compound for various industrial applications. In the organisms, isoprene is produced by isoprene synthase that eliminates the pyrophosphate from the dimethylallyl diphosphate. As a key enzyme of isoprene formation, isoprene synthase plays an important role in the process of natural emission and artificial synthesis of isoprene. So far, isoprene synthase has been found in various plants. Isoprene synthases from different sources are of conservative structural and similar biochemical properties. In this review, the biochemical and structural characteristics of isoprene synthases from different sources were compared, the catalytic mechanism of isoprene synthase was discussed, and the perspective application of the enzyme in bioengineering was proposed.

  2. Cellulose synthase (CesA) genes in the green alga Mesotaenium caldariorum.

    PubMed

    Roberts, Alison W; Roberts, Eric M; Delmer, Deborah P

    2002-12-01

    Cellulose, a microfibrillar polysaccharide consisting of bundles of beta-1,4-glucan chains, is a major component of plant and most algal cell walls and is also synthesized by some prokaryotes. Seed plants and bacteria differ in the structures of their membrane terminal complexes that make cellulose and, in turn, control the dimensions of the microfibrils produced. They also differ in the domain structures of their CesA gene products (the catalytic subunit of cellulose synthase), which have been localized to terminal complexes and appear to help maintain terminal complex structure. Terminal complex structures in algae range from rosettes (plant-like) to linear forms (bacterium-like). Thus, algal CesA genes may reveal domains that control terminal complex assembly and microfibril structure. The CesA genes from the alga Mesotaenium caldariorum, a member of the order Zygnematales, which have rosette terminal complexes, are remarkably similar to seed plant CesAs, with deduced amino acid sequence identities of up to 59%. In addition to the putative transmembrane helices and the D-D-D-QXXRW motif shared by all known CesA gene products, M. caldariorum and seed plant CesAs share a region conserved among plants, an N-terminal zinc-binding domain, and a variable or class-specific region. This indicates that the domains that characterize seed plant CesAs arose prior to the evolution of land plants and may play a role in maintaining the structures of rosette terminal complexes. The CesA genes identified in M. caldariorum are the first reported for any eukaryotic alga and will provide a basis for analyzing the CesA genes of algae with different types of terminal complexes.

  3. Bifunctional cis-Abienol Synthase from Abies balsamea Discovered by Transcriptome Sequencing and Its Implications for Diterpenoid Fragrance Production*

    PubMed Central

    Zerbe, Philipp; Chiang, Angela; Yuen, Macaire; Hamberger, Björn; Hamberger, Britta; Draper, Jason A.; Britton, Robert; Bohlmann, Jörg

    2012-01-01

    The labdanoid diterpene alcohol cis-abienol is a major component of the aromatic oleoresin of balsam fir (Abies balsamea) and serves as a valuable bioproduct material for the fragrance industry. Using high-throughput 454 transcriptome sequencing and metabolite profiling of balsam fir bark tissue, we identified candidate diterpene synthase sequences for full-length cDNA cloning and functional characterization. We discovered a bifunctional class I/II cis-abienol synthase (AbCAS), along with the paralogous levopimaradiene/abietadiene synthase and isopimaradiene synthase, all of which are members of the gymnosperm-specific TPS-d subfamily. The AbCAS-catalyzed formation of cis-abienol proceeds via cyclization and hydroxylation at carbon C-8 of a postulated carbocation intermediate in the class II active site, followed by cleavage of the diphosphate group and termination of the reaction sequence without further cyclization in the class I active site. This reaction mechanism is distinct from that of synthases of the isopimaradiene- or levopimaradiene/abietadiene synthase type, which employ deprotonation reactions in the class II active site and secondary cyclizations in the class I active site, leading to tricyclic diterpenes. Comparative homology modeling suggested the active site residues Asp-348, Leu-617, Phe-696, and Gly-723 as potentially important for the specificity of AbCAS. As a class I/II bifunctional enzyme, AbCAS is a promising target for metabolic engineering of cis-abienol production. PMID:22337889

  4. In human pseudouridine synthase 1 (hPus1), a C-terminal helical insert blocks tRNA from binding in the same orientation as in the Pus1 bacterial homologue TruA, consistent with their different target selectivities.

    PubMed

    Czudnochowski, Nadine; Wang, Amy Liya; Finer-Moore, Janet; Stroud, Robert M

    2013-10-23

    Human pseudouridine (Ψ) synthase Pus1 (hPus1) modifies specific uridine residues in several non-coding RNAs: tRNA, U2 spliceosomal RNA, and steroid receptor activator RNA. We report three structures of the catalytic core domain of hPus1 from two crystal forms, at 1.8Å resolution. The structures are the first of a mammalian Ψ synthase from the set of five Ψ synthase families common to all kingdoms of life. hPus1 adopts a fold similar to bacterial Ψ synthases, with a central antiparallel β-sheet flanked by helices and loops. A flexible hinge at the base of the sheet allows the enzyme to open and close around an electropositive active-site cleft. In one crystal form, a molecule of Mes [2-(N-morpholino)ethane sulfonic acid] mimics the target uridine of an RNA substrate. A positively charged electrostatic surface extends from the active site towards the N-terminus of the catalytic domain, suggesting an extensive binding site specific for target RNAs. Two α-helices C-terminal to the core domain, but unique to hPus1, extend along the back and top of the central β-sheet and form the walls of the RNA binding surface. Docking of tRNA to hPus1 in a productive orientation requires only minor conformational changes to enzyme and tRNA. The docked tRNA is bound by the electropositive surface of the protein employing a completely different binding mode than that seen for the tRNA complex of the Escherichia coli homologue TruA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Geranylgeranyl diphosphate synthase from Scoparia dulcis and Croton sublyratus. Plastid localization and conversion to a farnesyl diphosphate synthase by mutagenesis.

    PubMed

    Sitthithaworn, W; Kojima, N; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Noji, M; Saito, K; Niwa, Y; Sankawa, U

    2001-02-01

    cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene-producing plants, Scoparia dulcis and Croton sublyratus, have been isolated using the homology-based polymerase chain reaction (PCR) method. Both clones contained highly conserved aspartate-rich motifs (DDXX(XX)D) and their N-terminal residues exhibited the characteristics of chloroplast targeting sequence. When expressed in Escherichia coli, both the full-length and truncated proteins in which the putative targeting sequence was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to produce geranylgeranyl diphosphate (GGPP). The structural factors determining the product length in plant GGPPSs were investigated by constructing S. dulcis GGPPS mutants on the basis of sequence comparison with the first aspartate-rich motif (FARM) of plant farnesyl diphosphate synthase. The result indicated that in plant GGPPSs small amino acids, Met and Ser, at the fourth and fifth positions before FARM and Pro and Cys insertion in FARM play essential roles in determination of product length. Further, when a chimeric gene comprised of the putative transit peptide of the S. dulcis GGPPS gene and a green fluorescent protein was introduced into Arabidopsis leaves by particle gun bombardment, the chimeric protein was localized in chloroplasts, indicating that the cloned S. dulcis GGPPS is a chloroplast protein.

  6. Biochemical Characterization and Homology Modeling of Methylbutenol Synthase and Implications for Understanding Hemiterpene Synthase Evolution in Plants*

    PubMed Central

    Gray, Dennis W.; Breneman, Steven R.; Topper, Lauren A.; Sharkey, Thomas D.

    2011-01-01

    2-Methyl-3-buten-2-ol (MBO) is a five-carbon alcohol produced and emitted in large quantities by many species of pine native to western North America. MBO is structurally and biosynthetically related to isoprene and can have an important impact on regional atmospheric chemistry. The gene for MBO synthase was identified from Pinus sabiniana, and the protein encoded was functionally characterized. MBO synthase is a bifunctional enzyme that produces both MBO and isoprene in a ratio of ∼90:1. Divalent cations are required for activity, whereas monovalent cations are not. MBO production is enhanced by K+, whereas isoprene production is inhibited by K+ such that, at physiologically relevant [K+], little or no isoprene emission should be detected from MBO-emitting trees. The Km of MBO synthase for dimethylallyl diphosphate (20 mm) is comparable with that observed for angiosperm isoprene synthases and 3 orders of magnitude higher than that observed for monoterpene and sesquiterpene synthases. Phylogenetic analysis showed that MBO synthase falls into the TPS-d1 group (gymnosperm monoterpene synthases) and is most closely related to linalool synthase from Picea abies. Structural modeling showed that up to three phenylalanine residues restrict the size of the active site and may be responsible for making this a hemiterpene synthase rather than a monoterpene synthase. One of these residues is homologous to a Phe residue found in the active site of isoprene synthases. The remaining two Phe residues do not have homologs in isoprene synthases but occupy the same space as a second Phe residue that closes off the isoprene synthase active site. PMID:21504898

  7. Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel that Evolved by Gene Duplication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejcha, Robert; Ludwig, Martha L.

    2010-03-08

    Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two ({beta}{alpha}){sub 8} barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domainmore » evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys){sub 3}Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E {center_dot} Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.« less

  8. The crystal structure of human GDP-L-fucose synthase.

    PubMed

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  9. Terminally Truncated Isopenicillin N Synthase Generates a Dithioester Product: Evidence for a Thioaldehyde Intermediate during Catalysis and a New Mode of Reaction for Non‐Heme Iron Oxidases

    PubMed Central

    McNeill, Luke A.; Brown, Toby J. N.; Sami, Malkit; Clifton, Ian J.; Burzlaff, Nicolai I.; Claridge, Timothy D. W.; Adlington, Robert M.; Baldwin, Jack E.

    2017-01-01

    Abstract Isopenicillin N synthase (IPNS) catalyses the four‐electron oxidation of a tripeptide, l‐δ‐(α‐aminoadipoyl)‐l‐cysteinyl‐d‐valine (ACV), to give isopenicillin N (IPN), the first‐formed β‐lactam in penicillin and cephalosporin biosynthesis. IPNS catalysis is dependent upon an iron(II) cofactor and oxygen as a co‐substrate. In the absence of substrate, the carbonyl oxygen of the side‐chain amide of the penultimate residue, Gln330, co‐ordinates to the active‐site metal iron. Substrate binding ablates the interaction between Gln330 and the metal, triggering rearrangement of seven C‐terminal residues, which move to take up a conformation that extends the final α‐helix and encloses ACV in the active site. Mutagenesis studies are reported, which probe the role of the C‐terminal and other aspects of the substrate binding pocket in IPNS. The hydrophobic nature of amino acid side‐chains around the ACV binding pocket is important in catalysis. Deletion of seven C‐terminal residues exposes the active site and leads to formation of a new type of thiol oxidation product. The isolated product is shown by LC‐MS and NMR analyses to be the ene‐thiol tautomer of a dithioester, made up from two molecules of ACV linked between the thiol sulfur of one tripeptide and the oxidised cysteinyl β‐carbon of the other. A mechanism for its formation is proposed, supported by an X‐ray crystal structure, which shows the substrate ACV bound at the active site, its cysteinyl β‐carbon exposed to attack by a second molecule of substrate, adjacent. Formation of this product constitutes a new mode of reaction for IPNS and non‐heme iron oxidases in general. PMID:28703303

  10. Terminally Truncated Isopenicillin N Synthase Generates a Dithioester Product: Evidence for a Thioaldehyde Intermediate during Catalysis and a New Mode of Reaction for Non-Heme Iron Oxidases.

    PubMed

    McNeill, Luke A; Brown, Toby J N; Sami, Malkit; Clifton, Ian J; Burzlaff, Nicolai I; Claridge, Timothy D W; Adlington, Robert M; Baldwin, Jack E; Rutledge, Peter J; Schofield, Christopher J

    2017-09-18

    Isopenicillin N synthase (IPNS) catalyses the four-electron oxidation of a tripeptide, l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV), to give isopenicillin N (IPN), the first-formed β-lactam in penicillin and cephalosporin biosynthesis. IPNS catalysis is dependent upon an iron(II) cofactor and oxygen as a co-substrate. In the absence of substrate, the carbonyl oxygen of the side-chain amide of the penultimate residue, Gln330, co-ordinates to the active-site metal iron. Substrate binding ablates the interaction between Gln330 and the metal, triggering rearrangement of seven C-terminal residues, which move to take up a conformation that extends the final α-helix and encloses ACV in the active site. Mutagenesis studies are reported, which probe the role of the C-terminal and other aspects of the substrate binding pocket in IPNS. The hydrophobic nature of amino acid side-chains around the ACV binding pocket is important in catalysis. Deletion of seven C-terminal residues exposes the active site and leads to formation of a new type of thiol oxidation product. The isolated product is shown by LC-MS and NMR analyses to be the ene-thiol tautomer of a dithioester, made up from two molecules of ACV linked between the thiol sulfur of one tripeptide and the oxidised cysteinyl β-carbon of the other. A mechanism for its formation is proposed, supported by an X-ray crystal structure, which shows the substrate ACV bound at the active site, its cysteinyl β-carbon exposed to attack by a second molecule of substrate, adjacent. Formation of this product constitutes a new mode of reaction for IPNS and non-heme iron oxidases in general. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Lysophosphatidylcholine up-regulates human endothelial nitric oxide synthase gene transactivity by c-Jun N-terminal kinase signalling pathway

    PubMed Central

    Xing, Feiyue; Liu, Jing; Mo, Yongyan; Liu, Zhifeng; Qin, Qinghe; Wang, Jingzhen; Fan, Zhenhua; Long, Yutian; Liu, Na; Zhao, Kesen; Jiang, Yong

    2009-01-01

    Human endothelial nitric oxide synthase (eNOS) plays a pivotal role in maintaining blood pressure homeostasis and vascular integrity. It has recently been reported that mitogen-activated protein kinases (MAPKs) are intimately implicated in expression of eNOS. However detailed mechanism mediated by them remains to be clarified. In this study, eNOS gene transactivity in human umbilical vein endothelial cells was up-regulated by stimulation of lysophosphatidylcholine (LPC). The stimulation of LPC highly activated both extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), with differences in the dynamic processes of activation between them. Unexpectedly, p38 MAPK could not be activated by the stimulation of LPC. The activation of JNK signalling pathway by overexpression of JNK or its upstream kinase active mutant up-regulated the transactivity of eNOS significantly, but the activation of p38 signalling pathway down-regulated it largely. The inhibition of either ERK1/2 or JNK signalling pathway by kinase-selective inhibitors could markedly block the induction of the transactivity by LPC. It was observed by electrophoretic mobility shift assay that LPC stimulated both SP1 and AP1 DNA binding activity to go up. Additionally using decoy oligonucleotides proved that SP1 was necessary for maintaining the basal or stimulated transactivity, whereas AP1 contributed mainly to the increase of the stimulated transactivity. These findings indicate that the up-regulation of the eNOS gene transactivity by LPC involves the enhancement of SP1 transcription factor by the activation of JNK and ERK1/2 signalling pathways and AP1 transcription factor by the activation of JNK signalling pathway. PMID:18624763

  12. The role of prostacyclin synthase and thromboxane synthase signaling in the development and progression of cancer.

    PubMed

    Cathcart, Mary-Clare; Reynolds, John V; O'Byrne, Kenneth J; Pidgeon, Graham P

    2010-04-01

    Prostacyclin synthase and thromboxane synthase signaling via arachidonic acid metabolism affects a number of tumor cell survival pathways such as cell proliferation, apoptosis, tumor cell invasion and metastasis, and angiogenesis. However, the effects of these respective synthases differ considerably with respect to the pathways described. While prostacyclin synthase is generally believed to be anti-tumor, a pro-carcinogenic role for thromboxane synthase has been demonstrated in a variety of cancers. The balance of oppositely-acting COX-derived prostanoids influences many processes throughout the body, such as blood pressure regulation, clotting, and inflammation. The PGI(2)/TXA(2) ratio is of particular interest in-vivo, with the corresponding synthases shown to be differentially regulated in a variety of disease states. Pharmacological inhibition of thromboxane synthase has been shown to significantly inhibit tumor cell growth, invasion, metastasis and angiogenesis in a range of experimental models. In direct contrast, prostacyclin synthase overexpression has been shown to be chemopreventive in a murine model of the disease, suggesting that the expression and activity of this enzyme may protect against tumor development. In this review, we discuss the aberrant expression and known functions of both prostacyclin synthase and thromboxane synthase in cancer. We discuss the effects of these enzymes on a range of tumor cell survival pathways, such as tumor cell proliferation, induction of apoptosis, invasion and metastasis, and tumor cell angiogenesis. As downstream signaling pathways of these enzymes have also been implicated in cancer states, we examine the role of downstream effectors of PGIS and TXS activity in tumor growth and progression. Finally, we discuss current therapeutic strategies aimed at targeting these enzymes for the prevention/treatment of cancer.

  13. ATP synthase.

    PubMed

    Junge, Wolfgang; Nelson, Nathan

    2015-01-01

    Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.

  14. Identification and characterization of a class III chitin synthase gene of Moniliophthora perniciosa, the fungus that causes witches' broom disease of cacao.

    PubMed

    Souza, Catiane S; Oliveira, Bruno M; Costa, Gustavo G L; Schriefer, Albert; Selbach-Schnadelbach, Alessandra; Uetanabaro, Ana Paula T; Pirovani, Carlos P; Pereira, Gonçalo A G; Taranto, Alex G; Cascardo, Júlio Cézar de M; Góes-Neto, Aristóteles

    2009-08-01

    Chitin synthase (CHS) is a glucosyltransferase that converts UDP-N-acetylglucosamine into chitin, one of the main components of fungal cell wall. Class III chitin synthases act directly in the formation of the cell wall. They catalyze the conversion of the immediate precursor of chitin and are responsible for the majority of chitin synthesis in fungi. As such, they are highly specific molecular targets for drugs that can inhibit the growth and development of fungal pathogens. In this work, we have identified and characterized a chitin synthase gene of Moniliophthora perniciosa (Mopchs) by primer walking. The complete gene sequence is 3,443 bp, interrupted by 13 small introns, and comprises a cDNA with an ORF with 2,739 bp, whose terminal region was experimentally determined, encoding a protein with 913 aa that harbors all the motifs and domains typically found in class III chitin synthases. This is the first report on the characterization of a chitin synthase gene, its mature transcription product, and its putative protein in basidioma and secondary mycelium stages of M. perniciosa, a basidiomycotan fungus that causes witches' broom disease of cacao.

  15. Crystal Structure of Toxoplasma gondii Porphobilinogen Synthase

    PubMed Central

    Jaffe, Eileen K.; Shanmugam, Dhanasekaran; Gardberg, Anna; Dieterich, Shellie; Sankaran, Banumathi; Stewart, Lance J.; Myler, Peter J.; Roos, David S.

    2011-01-01

    Porphobilinogen synthase (PBGS) is essential for heme biosynthesis, but the enzyme of the protozoan parasite Toxoplasma gondii (TgPBGS) differs from that of its human host in several important respects, including subcellular localization, metal ion dependence, and quaternary structural dynamics. We have solved the crystal structure of TgPBGS, which contains an octamer in the crystallographic asymmetric unit. Crystallized in the presence of substrate, each active site contains one molecule of the product porphobilinogen. Unlike prior structures containing a substrate-derived heterocycle directly bound to an active site zinc ion, the product-bound TgPBGS active site contains neither zinc nor magnesium, placing in question the common notion that all PBGS enzymes require an active site metal ion. Unlike human PBGS, the TgPBGS octamer contains magnesium ions at the intersections between pro-octamer dimers, which are presumed to function in allosteric regulation. TgPBGS includes N- and C-terminal regions that differ considerably from previously solved crystal structures. In particular, the C-terminal extension found in all apicomplexan PBGS enzymes forms an intersubunit β-sheet, stabilizing a pro-octamer dimer and preventing formation of hexamers that can form in human PBGS. The TgPBGS structure suggests strategies for the development of parasite-selective PBGS inhibitors. PMID:21383008

  16. Polyester synthases: natural catalysts for plastics.

    PubMed Central

    Rehm, Bernd H A

    2003-01-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with

  17. Crystallization and preliminary crystallographic analysis of mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sá-Moura, Bebiana; Albuquerque, Luciana; Empadinhas, Nuno

    2008-08-01

    The enzyme mannosyl-3-phosphoglycerate synthase from R. xylanophilus has been expressed, purified and crystallized. The crystals belong to the hexagonal space group P6{sub 5}22 and diffract to 2.2 Å resolution. Rubrobacter xylanophilus is the only Gram-positive bacterium known to synthesize the compatible solute mannosylglycerate (MG), which is commonly found in hyperthermophilic archaea and some thermophilic bacteria. Unlike the salt-dependent pattern of accumulation observed in (hyper)thermophiles, in R. xylanophilus MG accumulates constitutively. The synthesis of MG in R. xylanophilus was tracked from GDP-mannose and 3-phosphoglycerate, but the genome sequence of the organism failed to reveal any of the genes known to bemore » involved in this pathway. The native enzyme was purified and its N-terminal sequence was used to identify the corresponding gene (mpgS) in the genome of R. xylanophilus. The gene encodes a highly divergent mannosyl-3-phosphoglycerate synthase (MpgS) without relevant sequence homology to known mannosylphosphoglycerate synthases. In order to understand the specificity and enzymatic mechanism of this novel enzyme, it was expressed in Escherichia coli, purified and crystallized. The crystals thus obtained belonged to the hexagonal space group P6{sub 5}22 and contained two protein molecules per asymmetric unit. The structure was solved by SIRAS using a mercury derivative.« less

  18. Molecular docking studies to map the binding site of squalene synthase inhibitors on dehydrosqualene synthase of Staphylococcus aureus.

    PubMed

    Kahlon, Amandeep Kaur; Roy, Sudeep; Sharma, Ashok

    2010-10-01

    Dehydrosqualene synthase of Staphylococcus aureus is involved in the synthesis of golden carotenoid pigment staphyloxanthin. This pigment of S. aureus provides the antioxidant property to this bacterium to survive inside the host cell. Dehydrosqualene synthase (CrtM) is having structural similarity with the human squalene synthase enzyme which is involved in the cholesterol synthesis pathway in humans (Liu et al., 2008). Cholesterol lowering drugs were found to have inhibitory effect on dehydrosqualene synthase enzyme of S. aureus. The present study attempts to focus on squalene synthase inhibitors, lapaquistat acetate and squalestatins reported as cholesterol lowering agents in vitro and in vivo but not studied in context to dehydrosqualene synthase of S. aureus. Mode of binding of lapaquistat acetate and squalestatin analogs on dehydrosqualene synthase (CrtM) enzyme of S. aureus was identified by performing docking analysis with Scigress Explorer Ultra 7.7 docking software. Based on the molecular docking analysis, it was found that the His18, Arg45, Asp48, Asp52, Tyr129, Gln165, Asn168 and Asp172 residues interacted with comparatively high frequency with the inhibitors studied. Comparative docking study with Discovery studio 2.0 also confirmed the involvement of these residues of dehydrosqualene synthase enzyme with the inhibitors studied. This further confirms the importance of these residues in the enzyme function. In silico ADMET analysis was done to predict the ADMET properties of the standard drugs and test compounds. This might provide insights to develop new drugs to target the virulence factor, dehydrosqualene synthase of S. aureus.

  19. Analysis of polyhydroxyalkanoate (PHA) synthase gene and PHA-producing bacteria in activated sludge that produces PHA containing 3-hydroxydodecanoate.

    PubMed

    Yang, Chao; Zhang, Wei; Liu, Ruihua; Zhang, Chi; Gong, Ting; Li, Qiang; Wang, Shufang; Song, Cunjiang

    2013-09-01

    Activated sludge is an alternative to pure cultures for polyhydroxyalkanoate (PHA) production due to the presence of many PHA-producing bacteria in activated sludge community. In this study, activated sludge was submitted to aerobic dynamic feeding in a sequencing batch reactor. During domestication, the changes of bacterial community structure were observed by terminal restriction fragment length polymorphism analysis. Furthermore, some potential PHA-producing bacteria, such as Thauera, Acinetobacter and Pseudomonas, were identified by denaturing gradient gel electrophoresis analysis. The constructed PHA synthase gene library was analyzed by DNA sequencing. Of the 80 phaC genes obtained, 76 belonged to the Class I PHA synthase, and four to the Class II PHA synthase. Gas chromatography-mass spectrometry analysis showed that PHA produced by activated sludge was composed of three types of monomers: 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxydodecanoate (3HDD). This is the first report of production of medium-chain-length PHAs (PHAMCL ) containing 3HDD by activated sludge. Further studies suggested that a Pseudomonas strain may play an important role in the production of PHAMCL containing 3HDD. Moreover, a Class II PHA synthase was found to have a correlation with the production of 3HDD-containing PHAMCL . © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution

    DOE PAGES

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; ...

    2016-05-23

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsDmore » in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 angstrom for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. Furthermore, the results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation

  1. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution

    PubMed Central

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B. Tracy

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the

  2. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsDmore » in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 angstrom for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. Furthermore, the results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation

  3. c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Chieko; Lemasters, John J.; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425

    Acetaminophen (APAP) overdose, which causes liver injury in animals and humans, activates c-jun N-terminal kinase (JNK). Although it was shown that the JNK inhibitor SP600125 effectively reduced APAP hepatotoxicity, the mechanisms of protection remain unclear. C57Bl/6 mice were treated with 10 mg/kg SP600125 or vehicle (8% dimethylsulfoxide) 1 h before 600 mg/kg APAP administration. APAP time-dependently induced JNK activation (detected by JNK phosphorylation). SP600125, but not the vehicle, reduced JNK activation, attenuated mitochondrial Bax translocation and prevented the mitochondrial release of apoptosis-inducing factor at 4-12 h. Nuclear DNA fragmentation, nitrotyrosine staining, tissue GSSG levels and liver injury (plasma ALT releasemore » and necrosis) were partially attenuated by the vehicle (- 65%) and completely eliminated by SP600125 (- 98%) at 6 and 12 h. Furthermore, SP600125 attenuated the increase of inducible nitric oxide synthase (iNOS) mRNA and protein. However, APAP did not enhance plasma nitrite + nitrate levels (NO formation); SP600125 had no effect on this parameter. The iNOS inhibitor L-NIL did not reduce NO formation or injury after APAP but prevented NO formation caused by endotoxin. Since SP600125 completely eliminated the increase in hepatic GSSG levels, an indicator of mitochondrial oxidant stress, it is concluded that the inhibition of peroxynitrite was mainly caused by reduced superoxide formation. Our data suggest that the JNK inhibitor SP600125 protects against APAP-induced liver injury in part by attenuation of mitochondrial Bax translocation but mainly by preventing mitochondrial oxidant stress and peroxynitrite formation and thereby preventing the mitochondrial permeability transition pore opening, a key event in APAP-induced cell necrosis.« less

  4. Converting S-limonene synthase to pinene or phellandrene synthases reveals the plasticity of the active site.

    PubMed

    Xu, Jinkun; Ai, Ying; Wang, Jianhui; Xu, Jingwei; Zhang, Yongkang; Yang, Dong

    2017-05-01

    S-limonene synthase is a model monoterpene synthase that cyclizes geranyl pyrophosphate (GPP) to form S-limonene. It is a relatively specific enzyme as the majority of its products are composed of limonene. In this study, we converted it to pinene or phellandrene synthases after introducing N345A/L423A/S454A or N345I mutations. Further studies on N345 suggest the polarity of this residue plays a critical role in limonene production by stabilizing the terpinyl cation intermediate. If it is mutated to a non-polar residue, further cyclization or hydride shifts occurs so the carbocation migrates towards the pyrophosphate, leading to the production of pinene or phellandrene. On the other hand, mutant enzymes that still possess a polar residue at this position produce limonene as the major product. N345 is not the only polar residue that may stabilize the terpinyl cation because it is not strictly conserved among limonene synthases across species and there are also several other polar residues in this area. These residues could form a "polar pocket" that may collectively play this stabilizing role. Our study provides important insights into the catalytic mechanism of limonene synthases. Furthermore, it also has wider implications on the evolution of terpene synthases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The structure of subunit E of the Pyrococcus horikoshii OT3 A-ATP synthase gives insight into the elasticity of the peripheral stalk.

    PubMed

    Balakrishna, Asha Manikkoth; Hunke, Cornelia; Grüber, Gerhard

    2012-07-13

    A(1)A(O) ATP synthases are the major energy converters of archaea. They are composed of an A(1) region that synthesizes ATP and an integral part A(O) that conducts ions. Subunit E is a component of the peripheral stalk that links the A(1) with the A(O) part of the A-ATP synthase. We have determined the crystal structure of the entire subunit E (PhE) of the Pyrococcus horikoshii OT3 A-ATP synthase at 3.6 Å resolution. The structure reveals an extended S-shaped N-terminal α-helix with 112.29 Å in length, followed by a globular head group. The S-shaped feature, common in elastic connectors and spacers, would facilitate the storage of transient elastic energy during rotary motion in the enzyme. The structure has been superimposed into the asymmetric peripheral stalks of the three-dimensional reconstruction of the Pyrococcus furiosus enzyme, revealing that the S-shaped subunit PhE fits well into the bent peripheral stalk, whereas the previously solved E subunit structure (3.1 Å resolution) of Thermus thermophilus A-ATP synthase is well accommodated in the density of the straight stator domain. The different features of the two stalk subunits are discussed in light of a novel coupling mechanism in A-ATP synthases proposed to differ from the Wankel engine of F-ATP synthases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  7. The role of glycogen synthase kinase 3 beta in brain injury induced by myocardial ischemia/reperfusion injury in a rat model of diabetes mellitus.

    PubMed

    Zhao, Bo; Gao, Wen-Wei; Liu, Ya-Jing; Jiang, Meng; Liu, Lian; Yuan, Quan; Hou, Jia-Bao; Xia, Zhong-Yuan

    2017-10-01

    Myocardial ischemia/reperfusion injury can lead to severe brain injury. Glycogen synthase kinase 3 beta is known to be involved in myo-cardial ischemia/reperfusion injury and diabetes mellitus. However, the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear. In this study, we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats. Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin. Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery. Post-conditioning comprised three cycles of ischemia/reperfusion. Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion, the structure of the brain was seriously damaged in the experimental rats compared with normal controls. Expression of Bax, interleukin-6, interleukin-8, terminal deoxynucleotidyl transferase dUTP nick end labeling, and cleaved caspase-3 in the brain was significantly increased, while expression of Bcl-2, interleukin-10, and phospho-glycogen synthase kinase 3 beta was decreased. Diabetes mellitus can aggravate inflammatory reactions and apoptosis. Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes. Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glyco-gen synthase kinase 3 beta. According to these results, glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury.

  8. Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein.

    PubMed

    Banerjee, Ruma; Zou, Cheng-Gang

    2005-01-01

    Cystathionine beta-synthase in mammals lies at a pivotal crossroad in methionine metabolism directing flux toward cysteine synthesis and catabolism. The enzyme exhibits a modular organization and complex regulation. It catalyzes the beta-replacement of the hydroxyl group of serine with the thiolate of homocysteine and is unique in being the only known pyridoxal phosphate-dependent enzyme that also contains heme b as a cofactor. The heme functions as a sensor and modulates enzyme activity in response to redox change and to CO binding. Mutations in this enzyme are the single most common cause of hereditary hyperhomocysteinemia. Elucidation of the crystal structure of a truncated and highly active form of the human enzyme containing the heme- and pyridoxal phosphate binding domains has afforded a structural perspective on mechanistic and mutation analysis studies. The C-terminal regulatory domain containing two CBS motifs exerts intrasteric regulation and binds the allosteric activator, S-adenosylmethionine. Studies with mammalian cells in culture as well as with animal models have unraveled multiple layers of regulation of cystathionine beta-synthase in response to redox perturbations and reveal the important role of this enzyme in glutathione-dependent redox homestasis. This review discusses the recent advances in our understanding of the structure, mechanism, and regulation of cystathionine beta-synthase from the perspective of its physiological function, focusing on the clinically relevant human enzyme.

  9. Inhibition of glycogen-synthase kinase 3 stimulates glycogen synthase and glucose transport by distinct mechanisms in 3T3-L1 adipocytes.

    PubMed

    Oreña, S J; Torchia, A J; Garofalo, R S

    2000-05-26

    The role of glycogen-synthase kinase 3 (GSK3) in insulin-stimulated glucose transport and glycogen synthase activation was investigated in 3T3-L1 adipocytes. GSK3 protein was clearly present in adipocytes and was found to be more abundant than in muscle and liver cell lines. The selective GSK3 inhibitor, LiCl, stimulated glucose transport and glycogen synthase activity (20 and 65%, respectively, of the maximal (1 microm) insulin response) and potentiated the responses to a submaximal concentration (1 nm) of insulin. LiCl- and insulin-stimulated glucose transport were abolished by the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, wortmannin; however, LiCl stimulation of glycogen synthase was not. In contrast to the rapid stimulation of glucose transport by insulin, transport stimulated by LiCl increased gradually over 3-5 h reaching 40% of the maximal insulin-stimulated level. Both LiCl- and insulin-stimulated glycogen synthase activity were maximal at 25 min. However, insulin-stimulated glycogen synthase activity returned to basal after 2 h, coincident with reactivation of GSK3. After a 2-h exposure to insulin, glycogen synthase was refractory to restimulation with insulin, indicating selective desensitization of this pathway. However, LiCl could partially stimulate glycogen synthase in desensitized cells. Furthermore, coincubation with LiCl during the 2 h exposure to insulin completely blocked desensitization of glycogen synthase activity. In summary, inhibition of GSK3 by LiCl: 1) stimulated glycogen synthase activity directly and independently of PI3-kinase, 2) stimulated glucose transport at a point upstream of PI3-kinase, 3) stimulated glycogen synthase activity in desensitized cells, and 4) prevented desensitization of glycogen synthase due to chronic insulin treatment. These data are consistent with GSK3 playing a central role in the regulation of glycogen synthase activity and a contributing factor in the regulation of glucose transport in 3T3-L1

  10. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence.

    PubMed Central

    DeWitt, D L; Smith, W L

    1988-01-01

    Prostaglandin G/H synthase (8,11,14-icosatrienoate, hydrogen-donor:oxygen oxidoreductase, EC 1.14.99.1) catalyzes the first step in the formation of prostaglandins and thromboxanes, the conversion of arachidonic acid to prostaglandin endoperoxides G and H. This enzyme is the site of action of nonsteroidal anti-inflammatory drugs. We have isolated a 2.7-kilobase complementary DNA (cDNA) encompassing the entire coding region of prostaglandin G/H synthase from sheep vesicular glands. This cDNA, cloned from a lambda gt 10 library prepared from poly(A)+ RNA of vesicular glands, hybridizes with a single 2.75-kilobase mRNA species. The cDNA clone was selected using oligonucleotide probes modeled from amino acid sequences of tryptic peptides prepared from the purified enzyme. The full-length cDNA encodes a protein of 600 amino acids, including a signal sequence of 24 amino acids. Identification of the cDNA as coding for prostaglandin G/H synthase is based on comparison of amino acid sequences of seven peptides comprising 103 amino acids with the amino acid sequence deduced from the nucleotide sequence of the cDNA. The molecular weight of the unglycosylated enzyme lacking the signal peptide is 65,621. The synthase is a glycoprotein, and there are three potential sites for N-glycosylation, two of them in the amino-terminal half of the molecule. The serine reported to be acetylated by aspirin is at position 530, near the carboxyl terminus. There is no significant similarity between the sequence of the synthase and that of any other protein in amino acid or nucleotide sequence libraries, and a heme binding site(s) is not apparent from the amino acid sequence. The availability of a full-length cDNA clone coding for prostaglandin G/H synthase should facilitate studies of the regulation of expression of this enzyme and the structural features important for catalysis and for interaction with anti-inflammatory drugs. Images PMID:3125548

  11. Intersubunit structure within heterodimers of medium-chain prenyl diphosphate synthases. Formation of a hybrid-type heptaprenyl diphosphate synthase.

    PubMed

    Koike-Takeshita, A; Koyama, T; Ogura, K

    1998-10-01

    Among prenyltransferases that catalyze the sequential condensation of isopentenyl diphosphate with allylic diphosphate to produce prenyl diphosphates with various chain lengths and stereochemistries, medium-chain prenyl diphosphate synthases are exceptional in that they comprise two dissociable heteromeric protein components. These components exist without binding with each other under physiological conditions, and neither of them has any prenyltransferase activity by itself. In order to elucidate the precise molecular mechanism underlying expression of the catalytic function by such a unique two-component system, we examined the possibility of forming a hybrid between two of the components of three different medium-chain prenyl diphosphate synthases, components I and II of heptaprenyl diphosphate synthase from Bacillus subtilis, components I' and II' of heptaprenyl diphosphate synthase from Bacillus stearothermophilus, and components A and B of hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26. As a result, only the hybrid-type combination of component I and component II' gave distinct prenyltransferase activity. The hybrid-type enzyme catalyzed the synthesis of heptaprenyl diphosphate and showed moderate heat stability, which lay between those of the natural enzymes from B. subtilis and B. stearothermophilus. There is no possibility of forming a hybrid between the heptaprenyl and hexaprenyl diphosphate synthases.

  12. Glycogen synthase activation by sugars in isolated hepatocytes.

    PubMed

    Ciudad, C J; Carabaza, A; Bosch, F; Gòmez I Foix, A M; Guinovart, J J

    1988-07-01

    We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.

  13. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis.

    PubMed

    Omadjela, Okako; Narahari, Adishesh; Strumillo, Joanna; Mélida, Hugo; Mazur, Olga; Bulone, Vincent; Zimmer, Jochen

    2013-10-29

    Cellulose is a linear extracellular polysaccharide. It is synthesized by membrane-embedded glycosyltransferases that processively polymerize UDP-activated glucose. Polymer synthesis is coupled to membrane translocation through a channel formed by the cellulose synthase. Although eukaryotic cellulose synthases function in macromolecular complexes containing several different enzyme isoforms, prokaryotic synthases associate with additional subunits to bridge the periplasm and the outer membrane. In bacteria, cellulose synthesis and translocation is catalyzed by the inner membrane-associated bacterial cellulose synthase (Bcs)A and BcsB subunits. Similar to alginate and poly-β-1,6 N-acetylglucosamine, bacterial cellulose is implicated in the formation of sessile bacterial communities, termed biofilms, and its synthesis is likewise stimulated by cyclic-di-GMP. Biochemical studies of exopolysaccharide synthesis are hampered by difficulties in purifying and reconstituting functional enzymes. We demonstrate robust in vitro cellulose synthesis reconstituted from purified BcsA and BcsB proteins from Rhodobacter sphaeroides. Although BcsA is the catalytically active subunit, the membrane-anchored BcsB subunit is essential for catalysis. The purified BcsA-B complex produces cellulose chains of a degree of polymerization in the range 200-300. Catalytic activity critically depends on the presence of the allosteric activator cyclic-di-GMP, but is independent of lipid-linked reactants. Our data reveal feedback inhibition of cellulose synthase by UDP but not by the accumulating cellulose polymer and highlight the strict substrate specificity of cellulose synthase for UDP-glucose. A truncation analysis of BcsB localizes the region required for activity of BcsA within its C-terminal membrane-associated domain. The reconstituted reaction provides a foundation for the synthesis of biofilm exopolysaccharides, as well as its activation by cyclic-di-GMP.

  14. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis

    PubMed Central

    Omadjela, Okako; Narahari, Adishesh; Strumillo, Joanna; Mélida, Hugo; Mazur, Olga; Bulone, Vincent; Zimmer, Jochen

    2013-01-01

    Cellulose is a linear extracellular polysaccharide. It is synthesized by membrane-embedded glycosyltransferases that processively polymerize UDP-activated glucose. Polymer synthesis is coupled to membrane translocation through a channel formed by the cellulose synthase. Although eukaryotic cellulose synthases function in macromolecular complexes containing several different enzyme isoforms, prokaryotic synthases associate with additional subunits to bridge the periplasm and the outer membrane. In bacteria, cellulose synthesis and translocation is catalyzed by the inner membrane-associated bacterial cellulose synthase (Bcs)A and BcsB subunits. Similar to alginate and poly-β-1,6 N-acetylglucosamine, bacterial cellulose is implicated in the formation of sessile bacterial communities, termed biofilms, and its synthesis is likewise stimulated by cyclic-di-GMP. Biochemical studies of exopolysaccharide synthesis are hampered by difficulties in purifying and reconstituting functional enzymes. We demonstrate robust in vitro cellulose synthesis reconstituted from purified BcsA and BcsB proteins from Rhodobacter sphaeroides. Although BcsA is the catalytically active subunit, the membrane-anchored BcsB subunit is essential for catalysis. The purified BcsA-B complex produces cellulose chains of a degree of polymerization in the range 200–300. Catalytic activity critically depends on the presence of the allosteric activator cyclic-di-GMP, but is independent of lipid-linked reactants. Our data reveal feedback inhibition of cellulose synthase by UDP but not by the accumulating cellulose polymer and highlight the strict substrate specificity of cellulose synthase for UDP-glucose. A truncation analysis of BcsB localizes the region required for activity of BcsA within its C-terminal membrane-associated domain. The reconstituted reaction provides a foundation for the synthesis of biofilm exopolysaccharides, as well as its activation by cyclic-di-GMP. PMID:24127606

  15. Complementary DNA cloning of the pear 1-aminocyclopropane-1-carboxylic acid oxidase gene and agrobacterium-mediated anti-sense genetic transformation.

    PubMed

    Qi, Jing; Dong, Zhen; Zhang, Yu-Xing

    2015-12-01

    The aim of the present study was to genetically modify plantlets of the Chinese yali pear to reduce their expression of ripening-associated 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and therefore increase the shelf-life of the fruit. Primers were designed with selectivity for the conserved regions of published ACO gene sequences, and yali complementary DNA (cDNA) cloning was performed by reverse transcription quantitative polymerase chain reaction (PCR). The obtained cDNA fragment contained 831 base pairs, encoding 276 amino acid residues, and shared no less than 94% nucleotide sequence identity with other published ACO genes. The cDNA fragment was inversely inserted into a pBI121 expression vector, between the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator, in order to construct the anti‑sense expression vector of the ACO gene; it was transfected into cultured yali plants using Agrobacterium LBA4404. Four independent transgenic lines of pear plantlets were obtained and validated by PCR analysis. A Southern blot assay revealed that there were three transgenic lines containing a single copy of exogenous gene and one line with double copies. The present study provided germplasm resources for the cultivation of novel storage varieties of pears, therefore providing a reference for further applications of anti‑sense RNA technology in the genetic improvement of pears and other fruit.

  16. Comparison of three DNA extraction methods for the detection and quantification of GMO in Ecuadorian manufactured food.

    PubMed

    Pacheco Coello, Ricardo; Pestana Justo, Jorge; Factos Mendoza, Andrés; Santos Ordoñez, Efrén

    2017-12-20

    In Ecuador, food products need to be labeled if exceeded 0.9% of transgenic content in whole products. For the detection of genetically modified organisms (GMOs), three DNA extraction methods were tested in 35 food products commercialized in Ecuador. Samples with positive amplification of endogenous genes were screened for the presence of the Cauliflower mosaic virus 35S-promoter (P35S) and the nopaline synthase-terminator (Tnos). TaqMan™ probes were used for determination of transgenic content of the GTS 40-3-2 and MON810 events through quantitative PCR (qPCR). Twenty-six processed food samples were positive for the P35S alone and eight samples for the Tnos and P35S. Absolute qPCR results indicated that eleven samples were positive for GTS 40-3-2 specific event and two for MON810 specific event. A total of nine samples for events GTS 40-3-2 and MON810 exceeded the umbral allowed of transgenic content in the whole food product with the specific events. Different food products may require different DNA extraction protocols for GMO detection through PCR. Among the three methods tested, the DNeasy mericon food kit DNA extraction method obtained higher proportion of amplified endogenous genes through PCR. Finally, event-specific GMOs were detected in food products in Ecuador.

  17. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Ke-Mian; State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193; Chang, Chia-Chun

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthasemore » 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.« less

  18. Plasticity and evolution of (+)-3-carene synthase and (-)-sabinene synthase functions of a sitka spruce monoterpene synthase gene family associated with weevil resistance.

    PubMed

    Roach, Christopher R; Hall, Dawn E; Zerbe, Philipp; Bohlmann, Jörg

    2014-08-22

    The monoterpene (+)-3-carene is associated with resistance of Sitka spruce against white pine weevil, a major North American forest insect pest of pine and spruce. High and low levels of (+)-3-carene in, respectively, resistant and susceptible Sitka spruce genotypes are due to variation of (+)-3-carene synthase gene copy number, transcript and protein expression levels, enzyme product profiles, and enzyme catalytic efficiency. A family of multiproduct (+)-3-carene synthase-like genes of Sitka spruce include the three (+)-3-carene synthases, PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and the (-)-sabinene synthase PsTPS-sab. Of these, PsTPS-3car2 is responsible for the relatively higher levels of (+)-3-carene in weevil-resistant trees. Here, we identified features of the PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and PsTPS-sab proteins that determine different product profiles. A series of domain swap and site-directed mutations, supported by structural comparisons, identified the amino acid in position 596 as critical for product profiles dominated by (+)-3-carene in PsTPS-3car1, PsTPS-3car2, and PsTPS-3car3, or (-)-sabinene in PsTPS-sab. A leucine in this position promotes formation of (+)-3-carene, whereas phenylalanine promotes (-)-sabinene. Homology modeling predicts that position 596 directs product profiles through differential stabilization of the reaction intermediate. Kinetic analysis revealed position 596 also plays a role in catalytic efficiency. Mutations of position 596 with different side chain properties resulted in a series of enzymes with different product profiles, further highlighting the inherent plasticity and potential for evolution of alternative product profiles of these monoterpene synthases of conifer defense against insects. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Molecular architectures of benzoic acid-specific type III polyketide synthases

    PubMed Central

    Stewart, Charles; Woods, Kate; Macias, Greg; Allan, Andrew C.; Noel, Joseph P.

    2017-01-01

    Biphenyl synthase and benzophenone synthase constitute an evolutionarily distinct clade of type III polyketide synthases (PKSs) that use benzoic acid-derived substrates to produce defense metabolites in plants. The use of benzoyl-CoA as an endogenous substrate is unusual for type III PKSs. Moreover, sequence analyses indicate that the residues responsible for the functional diversification of type III PKSs are mutated in benzoic acid-specific type III PKSs. In order to gain a better understanding of structure–function relationships within the type III PKS family, the crystal structures of biphenyl synthase from Malus × domestica and benzophenone synthase from Hypericum androsaemum were compared with the structure of an archetypal type III PKS: chalcone synthase from Malus × domestica. Both biphenyl synthase and benzophenone synthase contain mutations that reshape their active-site cavities to prevent the binding of 4-coumaroyl-CoA and to favor the binding of small hydrophobic substrates. The active-site cavities of biphenyl synthase and benzophenone synthase also contain a novel pocket associated with their chain-elongation and cyclization reactions. Collectively, these results illuminate structural determinants of benzoic acid-specific type III PKSs and expand the understanding of the evolution of specialized metabolic pathways in plants. PMID:29199980

  20. Insights Into the Bifunctional Aphidicolan-16-ß-ol Synthase Through Rapid Biomolecular Modeling Approaches.

    PubMed

    Hirte, Max; Meese, Nicolas; Mertz, Michael; Fuchs, Monika; Brück, Thomas B

    2018-01-01

    Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location of

  1. Insights into the bifunctional Aphidicolan-16-ß-ol synthase through rapid biomolecular modelling approaches

    NASA Astrophysics Data System (ADS)

    Hirte, Max; Meese, Nicolas; Mertz, Michael; Fuchs, Monika; Brück, Thomas B.

    2018-04-01

    Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modelling techniques offer an alternative route to study the enzyme’s reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modelling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modelling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789 and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modelling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location

  2. Inhibition of F1-ATPase Rotational Catalysis by the Carboxyl-terminal Domain of the ϵ Subunit*

    PubMed Central

    Nakanishi-Matsui, Mayumi; Sekiya, Mizuki; Yano, Shio; Futai, Masamitsu

    2014-01-01

    Escherichia coli ATP synthase (F0F1) couples catalysis and proton transport through subunit rotation. The ϵ subunit, an endogenous inhibitor, lowers F1-ATPase activity by decreasing the rotation speed and extending the duration of the inhibited state (Sekiya, M., Hosokawa, H., Nakanishi-Matsui, M., Al-Shawi, M. K., Nakamoto, R. K., and Futai, M. (2010) Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. J. Biol. Chem. 285, 42058–42067). In this study, we constructed a series of ϵ subunits truncated successively from the carboxyl-terminal domain (helix 1/loop 2/helix 2) and examined their effects on rotational catalysis (ATPase activity, average rotation rate, and duration of inhibited state). As expected, the ϵ subunit lacking helix 2 caused about ½-fold reduced inhibition, and that without loop 2/helix 2 or helix 1/loop 2/helix 2 showed a further reduced effect. Substitution of ϵSer108 in loop 2 and ϵTyr114 in helix 2, which possibly interact with the β and γ subunits, respectively, decreased the inhibitory effect. These results suggest that the carboxyl-terminal domain of the ϵ subunit plays a pivotal role in the inhibition of F1 rotation through interaction with other subunits. PMID:25228697

  3. A maize spermine synthase 1 PEST sequence fused to the GUS reporter protein facilitates proteolytic degradation.

    PubMed

    Maruri-López, Israel; Rodríguez-Kessler, Margarita; Rodríguez-Hernández, Aída Araceli; Becerra-Flora, Alicia; Olivares-Grajales, Juan Elías; Jiménez-Bremont, Juan Francisco

    2014-05-01

    Polyamines are low molecular weight aliphatic compounds involved in various biochemical, cellular and physiological processes in all organisms. In plants, genes involved in polyamine biosynthesis and catabolism are regulated at transcriptional, translational, and posttranslational level. In this research, we focused on the characterization of a PEST sequence (rich in proline, glutamic acid, serine, and threonine) of the maize spermine synthase 1 (ZmSPMS1). To this aim, 123 bp encoding 40 amino acids of the C-terminal region of the ZmSPMS1 enzyme containing the PEST sequence were fused to the GUS reporter gene. This fusion was evaluated in Arabidopsis thaliana transgenic lines and onion monolayers transient expression system. The ZmSPMS1 PEST sequence leads to specific degradation of the GUS reporter protein. It is suggested that the 26S proteasome may be involved in GUS::PEST fusion degradation in both onion and Arabidopsis. The PEST sequences appear to be present in plant spermine synthases, mainly in monocots. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host.

    PubMed

    Lang, Julien; Vigouroux, Armelle; Planamente, Sara; El Sahili, Abbas; Blin, Pauline; Aumont-Nicaise, Magali; Dessaux, Yves; Moréra, Solange; Faure, Denis

    2014-10-01

    By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour), a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP) NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate) and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (K(D) of 0.6 µM) greater than that for nopaline (KD of 3.7 µM). Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to support the niche

  5. Agrobacterium Uses a Unique Ligand-Binding Mode for Trapping Opines and Acquiring A Competitive Advantage in the Niche Construction on Plant Host

    PubMed Central

    Planamente, Sara; El Sahili, Abbas; Blin, Pauline; Aumont-Nicaise, Magali; Dessaux, Yves; Moréra, Solange; Faure, Denis

    2014-01-01

    By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour), a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP) NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate) and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (KD of 0.6 µM) greater than that for nopaline (KD of 3.7 µM). Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to support the niche

  6. Crystal Structure and Functional Analysis of Homocitrate Synthase, an Essential Enzyme in Lysine Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulfer, Stacie L.; Scott, Erin M.; Couture, Jean-François

    2010-01-12

    Homocitrate synthase (HCS) catalyzes the first and committed step in lysine biosynthesis in many fungi and certain Archaea and is a potential target for antifungal drugs. Here we report the crystal structure of the HCS apoenzyme from Schizosaccharomyces pombe and two distinct structures of the enzyme in complex with the substrate 2-oxoglutarate (2-OG). The structures reveal that HCS forms an intertwined homodimer stabilized by domain-swapping between the N- and C-terminal domains of each monomer. The N-terminal catalytic domain is composed of a TIM barrel fold in which 2-OG binds via hydrogen bonds and coordination to the active site divalent metalmore » ion, whereas the C-terminal domain is composed of mixed {alpha}/{beta} topology. In the structures of the HCS apoenzyme and one of the 2-OG binary complexes, a lid motif from the C-terminal domain occludes the entrance to the active site of the neighboring monomer, whereas in the second 2-OG complex the lid is disordered, suggesting that it regulates substrate access to the active site through its apparent flexibility. Mutations of the active site residues involved in 2-OG binding or implicated in acid-base catalysis impair or abolish activity in vitro and in vivo. Together, these results yield new insights into the structure and catalytic mechanism of HCSs and furnish a platform for developing HCS-selective inhibitors.« less

  7. Unusual features of a recombinant apple alpha-farnesene synthase.

    PubMed

    Green, Sol; Friel, Ellen N; Matich, Adam; Beuning, Lesley L; Cooney, Janine M; Rowan, Daryl D; MacRae, Elspeth

    2007-01-01

    A recombinant alpha-farnesene synthase from apple (Malus x domestica), expressed in Escherichia coli, showed features not previously reported. Activity was enhanced 5-fold by K(+) and all four isomers of alpha-farnesene, as well as beta-farnesene, were produced from an isomeric mixture of farnesyl diphosphate (FDP). Monoterpenes, linalool, (Z)- and (E)-beta-ocimene and beta-myrcene, were synthesised from geranyl diphosphate (GDP), but at 18% of the optimised rate for alpha-farnesene synthesis from FDP. Addition of K(+) reduced monoterpene synthase activity. The enzyme also produced alpha-farnesene by a reaction involving coupling of GDP and isoprenyl diphosphate but at <1% of the rate with FDP. Mutagenesis of active site aspartate residues removed sesquiterpene, monoterpene and prenyltransferase activities suggesting catalysis through the same active site. Phylogenetic analysis clusters this enzyme with isoprene synthases rather than with other sesquiterpene synthases, suggesting that it has evolved differently from other plant sesquiterpene synthases. This is the first demonstration of a sesquiterpene synthase possessing prenyltransferase activity.

  8. Functional Angucycline-Like Antibiotic Gene Cluster in the Terminal Inverted Repeats of the Streptomyces ambofaciens Linear Chromosome

    PubMed Central

    Pang, Xiuhua; Aigle, Bertrand; Girardet, Jean-Michel; Mangenot, Sophie; Pernodet, Jean-Luc; Decaris, Bernard; Leblond, Pierre

    2004-01-01

    Streptomyces ambofaciens has an 8-Mb linear chromosome ending in 200-kb terminal inverted repeats. Analysis of the F6 cosmid overlapping the terminal inverted repeats revealed a locus similar to type II polyketide synthase (PKS) gene clusters. Sequence analysis identified 26 open reading frames, including genes encoding the β-ketoacyl synthase (KS), chain length factor (CLF), and acyl carrier protein (ACP) that make up the minimal PKS. These KS, CLF, and ACP subunits are highly homologous to minimal PKS subunits involved in the biosynthesis of angucycline antibiotics. The genes encoding the KS and ACP subunits are transcribed constitutively but show a remarkable increase in expression after entering transition phase. Five genes, including those encoding the minimal PKS, were replaced by resistance markers to generate single and double mutants (replacement in one and both terminal inverted repeats). Double mutants were unable to produce either diffusible orange pigment or antibacterial activity against Bacillus subtilis. Single mutants showed an intermediate phenotype, suggesting that each copy of the cluster was functional. Transformation of double mutants with a conjugative and integrative form of F6 partially restored both phenotypes. The pigmented and antibacterial compounds were shown to be two distinct molecules produced from the same biosynthetic pathway. High-pressure liquid chromatography analysis of culture extracts from wild-type and double mutants revealed a peak with an associated bioactivity that was absent from the mutants. Two additional genes encoding KS and CLF were present in the cluster. However, disruption of the second KS gene had no effect on either pigment or antibiotic production. PMID:14742212

  9. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  10. Studies of UMP synthase in orotic aciduria fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, M.E.; Jones, M.E.

    UMP synthase catalyzes the final two reactions of de novo pyrimidine biosynthesis in mammals. UMP synthase activities are low in fibroblasts from a patient with hereditary orotic aciduria, but increase 80-100 fold to normal levels when the cells are incubated in the presence of 6-azauridine (6-azaU). Normal fibroblasts exhibit at most a two-fold increase in UMP synthase activities in response to 6-azaU. The increase in mutant cell enzyme activity is accompanied by increased UMP synthase protein in immunoprecipitates from (/sup 3//sub 5/S)-methionine-labeled cell extracts. This 6-azaU-dependent protein is precipitated by several monoclonal antibodies and polyclonal antibody raised against pure humanmore » UMP synthase. UMP synthase from normal and mutant fibroblasts comigrate on SDS gels and are stable for at least 2 1/2 hrs at 37/sup 0/C in the presence of a substrate, OMP. However, in the absence of substrate, at 57/sup 0/C, they have different inactivation patterns. Stability of the enzyme derived from normal cells > that of the enzyme from mutant cells cultured with 6-azaU > that of the enzyme from mutant cells. Southern blots of DNA from normal and mutant cells show identical restriction patterns with five enzymes. These results are consistent with the theory that the low level of UMP synthase in mutant cells reflects an increased susceptibility to proteolytic degradation which can be blocked by administration of 6-azaU to the cells in culture.« less

  11. Clearing the skies over modular polyketide synthases.

    PubMed

    Sherman, David H; Smith, Janet L

    2006-09-19

    Modular polyketide synthases (PKSs) are large multifunctional proteins that synthesize complex polyketide metabolites in microbial cells. A series of recent studies confirm the close protein structural relationship between catalytic domains in the type I mammalian fatty acid synthase (FAS) and the basic synthase unit of the modular PKS. They also establish a remarkable similarity in the overall organization of the type I FAS and the PKS module. This information provides important new conclusions about catalytic domain architecture, function, and molecular recognition that are essential for future efforts to engineer useful polyketide metabolites with valuable biological activities.

  12. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  13. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  14. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  15. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  16. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  17. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia.

    PubMed

    Jullien, Frédéric; Moja, Sandrine; Bony, Aurélie; Legrand, Sylvain; Petit, Cécile; Benabdelkader, Tarek; Poirot, Kévin; Fiorucci, Sébastien; Guitton, Yann; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis

    2014-01-01

    In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender.

  18. A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase.

    PubMed

    Ahmad, Zulfiqar; Hassan, Sherif S; Azim, Sofiya

    2017-11-20

    For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phytochemicals is based on tradition or word of mouth with few evidence-based studies. Moreover, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become pertinent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of dietary phytochemicals are known to inhibit ATP synthase. Structural modifications of phytochemicals have been shown to increase the inhibitory potency and extent of inhibition. Sitedirected mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can result in selective binding and inhibition of microbial ATP synthase. In this review, the therapeutic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective targeting of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase

    PubMed Central

    Ahmad, Zulfiqar; Hassan, Sherif S.; Azim, Sofiya

    2017-01-01

    For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phy-tochemicals is based on tradition or word of mouth with few evidence-based studies. Moreo-ver, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become perti-nent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of die-tary phytochemicals are known to inhibit ATP synthase. Structural modifications of phyto-chemicals have been shown to increase the inhibitory potency and extent of inhibition. Site-directed mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can re-sult in selective binding and inhibition of microbial ATP synthase. In this review, the therapeu-tic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective target-ing of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. PMID:28831918

  20. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A [East Lansing, MI; Itoh, Aya [Tsuruoka, JP

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  1. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  2. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus.

    PubMed

    Tsuge, Takeharu; Hyakutake, Manami; Mizuno, Kouhei

    2015-08-01

    This review highlights the recent investigations of class IV polyhydroxyalkanoate (PHA) synthases, the newest classification of PHA synthases. Class IV synthases are prevalent in organisms of the Bacillus genus and are composed of a catalytic subunit PhaC (approximately 40 kDa), which has a PhaC box sequence ([GS]-X-C-X-[GA]-G) at the active site, and a second subunit PhaR (approximately 20 kDa). The representative PHA-producing Bacillus strains are Bacillus megaterium and Bacillus cereus; the nucleotide sequence of phaC and the genetic organization of the PHA biosynthesis gene locus are somewhat different between these two strains. It is generally considered that class IV synthases favor short-chain-length monomers such as 3-hydroxybutyrate (C4) and 3-hydroxyvalerate (C5) for polymerization, but can polymerize some unusual monomers as minor components. In Escherichia coli expressing PhaRC from B. cereus YB-4, the biosynthesized PHA undergoes synthase-catalyzed alcoholytic cleavage using endogenous and exogenous alcohols. This alcoholysis is thought to be shared among class IV synthases, and this reaction is useful not only for the regulation of PHA molecular weight but also for the modification of the PHA carboxy terminus. The novel properties of class IV synthases will open up the possibility for the design of new PHA materials.

  3. Inhibition of F1-ATPase rotational catalysis by the carboxyl-terminal domain of the ϵ subunit.

    PubMed

    Nakanishi-Matsui, Mayumi; Sekiya, Mizuki; Yano, Shio; Futai, Masamitsu

    2014-10-31

    Escherichia coli ATP synthase (F0F1) couples catalysis and proton transport through subunit rotation. The ϵ subunit, an endogenous inhibitor, lowers F1-ATPase activity by decreasing the rotation speed and extending the duration of the inhibited state (Sekiya, M., Hosokawa, H., Nakanishi-Matsui, M., Al-Shawi, M. K., Nakamoto, R. K., and Futai, M. (2010) Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. J. Biol. Chem. 285, 42058-42067). In this study, we constructed a series of ϵ subunits truncated successively from the carboxyl-terminal domain (helix 1/loop 2/helix 2) and examined their effects on rotational catalysis (ATPase activity, average rotation rate, and duration of inhibited state). As expected, the ϵ subunit lacking helix 2 caused about ½-fold reduced inhibition, and that without loop 2/helix 2 or helix 1/loop 2/helix 2 showed a further reduced effect. Substitution of ϵSer(108) in loop 2 and ϵTyr(114) in helix 2, which possibly interact with the β and γ subunits, respectively, decreased the inhibitory effect. These results suggest that the carboxyl-terminal domain of the ϵ subunit plays a pivotal role in the inhibition of F1 rotation through interaction with other subunits. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha[OPEN

    PubMed Central

    Zhuang, Xun; Jiang, Zuodong; Jia, Qidong; Babbitt, Patricia C.

    2016-01-01

    Marchantia polymorpha is a basal terrestrial land plant, which like most liverworts accumulates structurally diverse terpenes believed to serve in deterring disease and herbivory. Previous studies have suggested that the mevalonate and methylerythritol phosphate pathways, present in evolutionarily diverged plants, are also operative in liverworts. However, the genes and enzymes responsible for the chemical diversity of terpenes have yet to be described. In this study, we resorted to a HMMER search tool to identify 17 putative terpene synthase genes from M. polymorpha transcriptomes. Functional characterization identified four diterpene synthase genes phylogenetically related to those found in diverged plants and nine rather unusual monoterpene and sesquiterpene synthase-like genes. The presence of separate monofunctional diterpene synthases for ent-copalyl diphosphate and ent-kaurene biosynthesis is similar to orthologs found in vascular plants, pushing the date of the underlying gene duplication and neofunctionalization of the ancestral diterpene synthase gene family to >400 million years ago. By contrast, the mono- and sesquiterpene synthases represent a distinct class of enzymes, not related to previously described plant terpene synthases and only distantly so to microbial-type terpene synthases. The absence of a Mg2+ binding, aspartate-rich, DDXXD motif places these enzymes in a noncanonical family of terpene synthases. PMID:27650333

  5. The chloroplast ATP synthase features the characteristic redox regulation machinery.

    PubMed

    Hisabori, Toru; Sunamura, Ei-Ichiro; Kim, Yusung; Konno, Hiroki

    2013-11-20

    Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system.

  6. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    PubMed Central

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays. PMID:28883829

  7. Cellulose in Cyanobacteria. Origin of Vascular Plant Cellulose Synthase?

    PubMed Central

    Nobles, David R.; Romanovicz, Dwight K.; Brown, R. Malcolm

    2001-01-01

    Although cellulose biosynthesis among the cyanobacteria has been suggested previously, we present the first conclusive evidence, to our knowledge, of the presence of cellulose in these organisms. Based on the results of x-ray diffraction, electron microscopy of microfibrils, and cellobiohydrolase I-gold labeling, we report the occurrence of cellulose biosynthesis in nine species representing three of the five sections of cyanobacteria. Sequence analysis of the genomes of four cyanobacteria revealed the presence of multiple amino acid sequences bearing the DDD35QXXRW motif conserved in all cellulose synthases. Pairwise alignments demonstrated that CesAs from plants were more similar to putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and Nostoc punctiforme American Type Culture Collection 29133 than any other cellulose synthases in the database. Multiple alignments of putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and N. punctiforme American Type Culture Collection 29133 with the cellulose synthases of other prokaryotes, Arabidopsis, Gossypium hirsutum, Populus alba × Populus tremula, corn (Zea mays), and Dictyostelium discoideum showed that cyanobacteria share an insertion between conserved regions U1 and U2 found previously only in eukaryotic sequences. Furthermore, phylogenetic analysis indicates that the cyanobacterial cellulose synthases share a common branch with CesAs of vascular plants in a manner similar to the relationship observed with cyanobacterial and chloroplast 16s rRNAs, implying endosymbiotic transfer of CesA from cyanobacteria to plants and an ancient origin for cellulose synthase in eukaryotes. PMID:11598227

  8. Biochemical and structural characterization of a novel family of cystathionine beta-synthase domain proteins fused to a Zn ribbon-like domain.

    PubMed

    Proudfoot, Michael; Sanders, Stephen A; Singer, Alex; Zhang, Rongguang; Brown, Greg; Binkowski, Andrew; Xu, Linda; Lukin, Jonathan A; Murzin, Alexey G; Joachimiak, Andrzej; Arrowsmith, Cheryl H; Edwards, Aled M; Savchenko, Alexei V; Yakunin, Alexander F

    2008-01-04

    We have identified a novel family of proteins, in which the N-terminal cystathionine beta-synthase (CBS) domain is fused to the C-terminal Zn ribbon domain. Four proteins were overexpressed in Escherichia coli and purified: TA0289 from Thermoplasma acidophilum, TV1335 from Thermoplasma volcanium, PF1953 from Pyrococcus furiosus, and PH0267 from Pyrococcus horikoshii. The purified proteins had a red/purple color in solution and an absorption spectrum typical of rubredoxins (Rds). Metal analysis of purified proteins revealed the presence of several metals, with iron and zinc being the most abundant metals (2-67% of iron and 12-74% of zinc). Crystal structures of both mercury- and iron-bound TA0289 (1.5-2.0 A resolution) revealed a dimeric protein whose intersubunit contacts are formed exclusively by the alpha-helices of two cystathionine beta-synthase subdomains, whereas the C-terminal domain has a classical Zn ribbon planar architecture. All proteins were reversibly reduced by chemical reductants (ascorbate or dithionite) or by the general Rd reductase NorW from E. coli in the presence of NADH. Reduced TA0289 was found to be capable of transferring electrons to cytochrome C from horse heart. Likewise, the purified Zn ribbon protein KTI11 from Saccharomyces cerevisiae had a purple color in solution and an Rd-like absorption spectrum, contained both iron and zinc, and was reduced by the Rd reductase NorW from E. coli. Thus, recombinant Zn ribbon domains from archaea and yeast demonstrate an Rd-like electron carrier activity in vitro. We suggest that, in vivo, some Zn ribbon domains might also bind iron and therefore possess an electron carrier activity, adding another physiological role to this large family of important proteins.

  9. Agroinfection as an alternative to insects for infecting plants with beet western yellows luteovirus.

    PubMed Central

    Leiser, R M; Ziegler-Graff, V; Reutenauer, A; Herrbach, E; Lemaire, O; Guilley, H; Richards, K; Jonard, G

    1992-01-01

    Beet western yellows luteovirus, like other luteoviruses, cannot be transmitted to host plants by mechanical inoculation but requires an aphid vector, a feature that has heretofore presented a serious obstacle to the study of such viruses. In this paper we describe use of agroinfection to infect hosts with beet western yellows virus without recourse to aphids. Agroinfection is a procedure for introducing a plant virus into a host via Agrobacterium tumefaciens harboring a Ti plasmid, which can efficiently transfer a portion of the plasmid (T-DNA) to plant cells near a wound. The viral genome must be inserted into the T-DNA in such a way that it can escape and begin autonomous replication, a requirement that has, so far, limited agroinfection to pathogens with a circular genome. We have cloned cDNA corresponding to the complete beet western yellows virus RNA genome between the cauliflower mosaic virus 35S promoter and the nopaline synthase transcription termination signal. In one construct, a self-cleaving (ribozyme) sequence was included so as to produce a transcript in planta with a 3' extremity almost identical to natural viral RNA. When inoculated mechanically to host plants, the naked plasmid DNA was not infectious but, when introduced into T-DNA and agroinfected to plants, both the construct with and without the ribozyme produced an infection. This approach should be applicable to virtually any plant virus with a linear plus-strand RNA genome. Images PMID:1409615

  10. The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases.

    PubMed

    Zarzycki, Jan; Kerfeld, Cheryl A

    2013-11-09

    Malyl-CoA lyase (MCL) is a promiscuous carbon-carbon bond lyase that catalyzes the reversible cleavage of structurally related Coenzyme A (CoA) thioesters. This enzyme plays a crucial, multifunctional role in the 3-hydroxypropionate bi-cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus. A second, phylogenetically distinct MCL from Rhodobacter sphaeroides is involved in the ethylmalonyl-CoA pathway for acetate assimilation. Both MCLs belong to the large superfamily of CitE-like enzymes, which includes the name-giving β-subunit of citrate lyase (CitE), malyl-CoA thioesterases and other enzymes of unknown physiological function. The CitE-like enzyme superfamily also bears sequence and structural resemblance to the malate synthases. All of these different enzymes share highly conserved catalytic residues, although they catalyze distinctly different reactions: C-C bond formation and cleavage, thioester hydrolysis, or both (the malate synthases). Here we report the first crystal structures of MCLs from two different phylogenetic subgroups in apo- and substrate-bound forms. Both the C. aurantiacus and the R. sphaeroides MCL contain elaborations on the canonical β8/α8 TIM barrel fold and form hexameric assemblies. Upon ligand binding, changes in the C-terminal domains of the MCLs result in closing of the active site, with the C-terminal domain of one monomer forming a lid over and contributing side chains to the active site of the adjacent monomer. The distinctive features of the two MCL subgroups were compared to known structures of other CitE-like superfamily enzymes and to malate synthases, providing insight into the structural subtleties that underlie the functional versatility of these enzymes. Although the C. aurantiacus and the R. sphaeroides MCLs have divergent primary structures (~37% identical), their tertiary and quaternary structures are very similar. It can be assumed that the C-C bond formation catalyzed by the MCLs occurs as proposed for

  11. Feedback inhibition of nitric oxide synthase activity by nitric oxide.

    PubMed Central

    Assreuy, J.; Cunha, F. Q.; Liew, F. Y.; Moncada, S.

    1993-01-01

    1. A murine macrophage cell line, J774, expressed nitric oxide (NO) synthase activity in response to interferon-gamma (IFN-gamma, 10 u ml-1) plus lipopolysaccharide (LPS, 10 ng ml-1). The enzyme activity was first detectable 6 h after incubation, peaked at 12 h and became undetectable after 48 h. 2. The decline in the NO synthase activity was not due to inhibition by stable substances secreted by the cells into the culture supernatant. 3. The decline in the NO synthase activity was significantly slowed down in cells cultured in a low L-arginine medium or with added haemoglobin, suggesting that NO may be involved in a feedback inhibitory mechanism. 4. The addition of NO generators, S-nitroso-acetyl-penicillamine (SNAP) or S-nitroso-glutathione (GSNO) markedly inhibited the NO synthase activity in a dose-dependent manner. The effect of NO on the enzyme was not due to the inhibition of de novo protein synthesis. 5. SNAP directly inhibited the inducible NO synthase extracted from activated J774 cells, as well as the constitutive NO synthase extracted from the rat brain. 6. The enzyme activity of J774 cells was not restored after the removal of SNAP by gel filtration, suggesting that NO inhibits NO synthase irreversibly. PMID:7682140

  12. The Tomato Terpene Synthase Gene Family1[W][OA

    PubMed Central

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  13. The Chloroplast ATP Synthase Features the Characteristic Redox Regulation Machinery

    PubMed Central

    Sunamura, Ei-Ichiro; Kim, Yusung; Konno, Hiroki

    2013-01-01

    Abstract Significance: Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. Recent Advances: The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. Critical Issues: Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. Future Directions: The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system. Antioxid. Redox Signal. 19, 1846–1854. PMID:23145525

  14. Isolation and functional effects of monoclonal antibodies binding to thymidylate synthase.

    PubMed

    Jastreboff, M M; Todd, M B; Malech, H L; Bertino, J R

    1985-01-29

    Monoclonal antibodies against electrophoretically pure thymidylate synthase from HeLa cells have been produced. Antibodies (M-TS-4 and M-TS-9) from hybridoma clones were shown by enzyme-linked immunoassay to recognize thymidylate synthase from a variety of human cell lines, but they did not bind to thymidylate synthase from mouse cell lines. The strongest binding of antibodies was observed to enzyme from HeLa cells. These two monoclonal antibodies bind simultaneously to different antigenic sites on thymidylate synthase purified from HeLa cells, as reflected by a high additivity index and results of cross-linked radioimmunoassay. Both monoclonal antibodies inhibit the activity of thymidylate synthase from human cell lines. The strongest inhibition was observed with thymidylate synthase from HeLa cells. Monoclonal antibody M-TS-9 (IgM subclass) decreased the rate of binding of [3H]FdUMP to thymidylate synthase in the presence of 5,10-methylenetetrahydrofolate while M-TS-4 (IgG1) did not change the rate of ternary complex formation. These data indicate that the antibodies recognize different epitopes on the enzyme molecule.

  15. ATP Synthase Diseases of Mitochondrial Genetic Origin

    PubMed Central

    Dautant, Alain; Meier, Thomas; Hahn, Alexander; Tribouillard-Tanvier, Déborah; di Rago, Jean-Paul; Kucharczyk, Roza

    2018-01-01

    Devastating human neuromuscular disorders have been associated to defects in the ATP synthase. This enzyme is found in the inner mitochondrial membrane and catalyzes the last step in oxidative phosphorylation, which provides aerobic eukaryotes with ATP. With the advent of structures of complete ATP synthases, and the availability of genetically approachable systems such as the yeast Saccharomyces cerevisiae, we can begin to understand these molecular machines and their associated defects at the molecular level. In this review, we describe what is known about the clinical syndromes induced by 58 different mutations found in the mitochondrial genes encoding membrane subunits 8 and a of ATP synthase, and evaluate their functional consequences with respect to recently described cryo-EM structures. PMID:29670542

  16. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    PubMed

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. © 2016 Elsevier Inc. All rights reserved.

  17. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    PubMed Central

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  18. The cysteine synthase complex from plants. Mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein-protein interaction.

    PubMed

    Wirtz, M; Berkowitz, O; Droux, M; Hell, R

    2001-02-01

    Serine acetyltransferase (SAT) catalyzes the rate-limiting step of cysteine biosynthesis in bacteria and plants and functions in association with O-acetylserine (thiol) lyase (OAS-TL) in the cysteine synthase complex. Very little is known about the structure and catalysis of SATs except that they share a characteristic C-terminal hexapeptide-repeat domain with a number of enzymatically unrelated acyltransferases. Computational modeling of this domain was performed for the mitochondrial SAT isoform from Arabidopsis thaliana, based on crystal structures of bacterial acyltransferases. The results indicate a left-handed parallel beta-helix consisting of beta-sheets alternating with turns, resulting in a prism-like structure. This model was challenged by site-directed mutagenesis and tested for a suspected dual function of this domain in catalysis and hetero-oligomerization. The bifunctionality of the SAT C-terminus in transferase activity and interaction with OAS-TL is demonstrated and discussed with respect to the putative role of the cysteine synthase complex in regulation of cysteine biosynthesis.

  19. Crystal structures of a halophilic archaeal malate synthase from Haloferax volcanii and comparisons with isoforms A and G

    PubMed Central

    2011-01-01

    Background Malate synthase, one of the two enzymes unique to the glyoxylate cycle, is found in all three domains of life, and is crucial to the utilization of two-carbon compounds for net biosynthetic pathways such as gluconeogenesis. In addition to the main isoforms A and G, so named because of their differential expression in E. coli grown on either acetate or glycolate respectively, a third distinct isoform has been identified. These three isoforms differ considerably in size and sequence conservation. The A isoform (MSA) comprises ~530 residues, the G isoform (MSG) is ~730 residues, and this third isoform (MSH-halophilic) is ~430 residues in length. Both isoforms A and G have been structurally characterized in detail, but no structures have been reported for the H isoform which has been found thus far only in members of the halophilic Archaea. Results We have solved the structure of a malate synthase H (MSH) isoform member from Haloferax volcanii in complex with glyoxylate at 2.51 Å resolution, and also as a ternary complex with acetyl-coenzyme A and pyruvate at 1.95 Å. Like the A and G isoforms, MSH is based on a β8/α8 (TIM) barrel. Unlike previously solved malate synthase structures which are all monomeric, this enzyme is found in the native state as a trimer/hexamer equilibrium. Compared to isoforms A and G, MSH displays deletion of an N-terminal domain and a smaller deletion at the C-terminus. The MSH active site is closely superimposable with those of MSA and MSG, with the ternary complex indicating a nucleophilic attack on pyruvate by the enolate intermediate of acetyl-coenzyme A. Conclusions The reported structures of MSH from Haloferax volcanii allow a detailed analysis and comparison with previously solved structures of isoforms A and G. These structural comparisons provide insight into evolutionary relationships among these isoforms, and also indicate that despite the size and sequence variation, and the truncated C-terminal domain of the H

  20. Inhibition of ATP Hydrolysis by Thermoalkaliphilic F1Fo-ATP Synthase Is Controlled by the C Terminus of the ɛ Subunit

    PubMed Central

    Keis, Stefanie; Stocker, Achim; Dimroth, Peter; Cook, Gregory M.

    2006-01-01

    The F1Fo-ATP synthases of alkaliphilic bacteria exhibit latent ATPase activity, and for the thermoalkaliphile Bacillus sp. strain TA2.A1, this activity is intrinsic to the F1 moiety. To study the mechanism of ATPase inhibition, we developed a heterologous expression system in Escherichia coli to produce TA2F1 complexes from this thermoalkaliphile. Like the native F1Fo-ATP synthase, the recombinant TA2F1 was blocked in ATP hydrolysis activity, and this activity was stimulated by the detergent lauryldimethylamine oxide. To determine if the C-terminal domain of the ɛ subunit acts as an inhibitor of ATPase activity and if an electrostatic interaction plays a role, a TA2F1 mutant with either a truncated ɛ subunit [i.e., TA2F1(ɛΔC)] or substitution of basic residues in the second α-helix of ɛ with nonpolar alanines [i.e., TA2F1(ɛ6A)] was constructed. Both mutants showed ATP hydrolysis activity at low and high concentrations of ATP. Treatment of the purified F1Fo-ATP synthase and TA2F1(ɛWT) complex with proteases revealed that the ɛ subunit was resistant to proteolytic digestion. In contrast, the ɛ subunit of TA2F1(ɛ6A) was completely degraded by trypsin, indicating that the C-terminal arm was in a conformation where it was no longer protected from proteolytic digestion. In addition, ATPase activity was not further activated by protease treatment when compared to the untreated control, supporting the observation that ɛ was responsible for inhibition of ATPase activity. To study the effect of the alanine substitutions in the ɛ subunit in the entire holoenzyme, we reconstituted recombinant TA2F1 complexes with F1-stripped native membranes of strain TA2.A1. The reconstituted TA2FoF1(ɛWT) was blocked in ATP hydrolysis and exhibited low levels of ATP-driven proton pumping consistent with the F1Fo-ATP synthase in native membranes. Reconstituted TA2FoF1(ɛ6A) exhibited ATPase activity that correlated with increased ATP-driven proton pumping, confirming that the

  1. The Structural Enzymology of Iterative Aromatic Polyketide Synthases: A Critical Comparison with Fatty Acid Synthases.

    PubMed

    Tsai, Shiou-Chuan Sheryl

    2018-06-20

    Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.

  2. Glycogen synthase kinase-3 beta inhibition reduces secondary damage in experimental spinal cord trauma.

    PubMed

    Cuzzocrea, Salvatore; Genovese, Tiziana; Mazzon, Emanuela; Crisafulli, Concetta; Di Paola, Rosanna; Muià, Carmelo; Collin, Marika; Esposito, Emanuela; Bramanti, Placido; Thiemermann, Christoph

    2006-07-01

    Glycogen synthase kinase-3 (GSK-3) has recently been identified as an ubiquitous serine-threonine protein kinase that participates in a multitude of cellular processes and plays an important role in the pathophysiology of a number of diseases. The aim of this study was to investigate the effects of GSK-3beta inhibition on the degree of experimental spinal cord trauma induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. Spinal cord injury (SCI) in mice resulted in severe trauma characterized by edema, neutrophil infiltration, production of a range of inflammatory mediators, tissue damage, and apoptosis. Treatment of the mice with 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), a potent and selective GSK-3beta inhibitor, significantly reduced the degree of 1) spinal cord inflammation and tissue injury (histological score); 2) neutrophil infiltration (myeloperoxidase activity); 3) inducible nitric-oxide synthase, nitrotyrosine, and cyclooxygenase-2 expression; and 4) and apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and Bax and Bcl-2 expression). In a separate set of experiments, TDZD-8 significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, our results clearly demonstrate that treatment with TDZD-8 reduces the development of inflammation and tissue injury associated with spinal cord trauma.

  3. Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase.

    PubMed

    Harris, Darby M; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana L; Petti, Carloalberto; Smilgies, Detlef-M; Estevez, José Manuel; Bonetta, Dario; Urbanowicz, Breeanna R; Ehrhardt, David W; Somerville, Chris R; Rose, Jocelyn K C; Hong, Mei; Debolt, Seth

    2012-03-13

    The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1(A903V) and CESA3(T942I) in Arabidopsis thaliana. Using (13)C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1(A903V) and CESA3(T942I) displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1(A903V) and CESA3(T942I) have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.

  4. Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase

    PubMed Central

    Harris, Darby M.; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana L.; Petti, Carloalberto; Smilgies, Detlef-M.; Estevez, José Manuel; Bonetta, Dario; Urbanowicz, Breeanna R.; Ehrhardt, David W.; Somerville, Chris R.; Rose, Jocelyn K. C.; Hong, Mei; DeBolt, Seth

    2012-01-01

    The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1A903V and CESA3T942I in Arabidopsis thaliana. Using 13C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1A903V and CESA3T942I displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1A903V and CESA3T942I have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization. PMID:22375033

  5. Reduced 3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy)-Initiated Oxidative DNA Damage and Neurodegeneration in Prostaglandin H Synthase-1 Knockout Mice

    PubMed Central

    2010-01-01

    The neurodegenerative potential of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and underlying mechanisms are under debate. Here, we show that MDMA is a substrate for CNS prostaglandin H synthase (PHS)-catalyzed bioactivation to a free radical intermediate that causes reactive oxygen species (ROS) formation and neurodegenerative oxidative DNA damage. In vitro PHS-1-catalyzed bioactivation of MDMA stereoselectively produced free radical intermediate formation and oxidative DNA damage that was blocked by the PHS inhibitor eicosatetraynoic acid. In vivo, MDMA stereoselectively caused gender-independent DNA oxidation and dopaminergic nerve terminal degeneration in several brain regions, dependent on regional PHS-1 levels. Conversely, MDMA-initiated striatal DNA oxidation, nerve terminal degeneration, and motor coordination deficits were reduced in PHS-1 +/− and −/− knockout mice in a gene dose-dependent fashion. These results confirm the neurodegenerative potential of MDMA and provide the first direct evidence for a novel molecular mechanism involving PHS-catalyzed formation of a neurotoxic MDMA free radical intermediate. PMID:22778832

  6. Complementation analysis of mutants of nitric oxide synthase reveals that the active site requires two hemes.

    PubMed Central

    Xie, Q W; Leung, M; Fuortes, M; Sassa, S; Nathan, C

    1996-01-01

    For catalytic activity, nitric oxide synthases (NOSs) must be dimeric. Previous work revealed that the requirements for stable dimerization included binding of tetrahydrobiopterin (BH4), arginine, and heme. Here we asked what function is served by dimerization. We assessed the ability of individually inactive mutants of mouse inducible NOS (iNOS; NOS2), each deficient in binding a particular cofactor or cosubstrate, to complement each other by generating NO upon cotransfection into human epithelial cells. The ability of the mutants to homodimerize was gauged by gel filtration and/or PAGE under partially denaturing conditions, both followed by immunoblot. Their ability to heterodimerize was assessed by coimmunoprecipitation. Heterodimers that contained only one COOH-terminal hemimer and only one BH4-binding site could both form and function, even though the NADPH-, FAD-, and FMN-binding domains (in the COOH-terminal hemimer) and the BH4-binding sites (in the NH2-terminal hemimer) were contributed by opposite chains. Heterodimers that contained only one heme-binding site (Cys-194) could also form, either in cis or in trans to the nucleotide-binding domains. However, for NO production, both chains had to bind heme. Thus, NO production by iNOS requires dimerization because the active site requires two hemes. Images Fig. 2 Fig. 3 Fig. 4 Fig. 7 PMID:8643499

  7. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans*

    PubMed Central

    Mohanty, Soumya; Jobichen, Chacko; Chichili, Vishnu Priyanka Reddy; Velázquez-Campoy, Adrián; Low, Boon Chuan; Hogue, Christopher W. V.; Sivaraman, J.

    2015-01-01

    ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase. PMID:26370083

  8. Natural and engineered polyhydroxyalkanoate (PHA) synthase: key enzyme in biopolyester production.

    PubMed

    Zou, Huibin; Shi, Mengxun; Zhang, Tongtong; Li, Lei; Li, Liangzhi; Xian, Mo

    2017-10-01

    With the finite supply of petroleum and increasing concern with environmental issues associated with their harvest and processing, the development of more eco-friendly, sustainable alternative biopolymers that can effectively fill the role of petro-polymers has become a major focus. Polyhydroxyalkanoate (PHA) can be naturally produced by many species of bacteria and the PHA synthase is believed to be key enzyme in this natural pathway. Natural PHA synthases are diverse and can affect the properties of the produced PHAs, such as monomer composition, molecular weights, and material properties. Moreover, recent studies have led to major advances in the searching of PHA synthases that display specific properties, as well as engineering efforts that offer more efficient PHA synthases, increased PHA compound production, or even novel biopolyesters which cannot be naturally produced. In this article, we review the updated information of natural PHA synthases and their engineering strategies for improved performance in polyester production. We also speculate future trends on the development of robust PHA synthases and their application in biopolyester production.

  9. Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.).

    PubMed

    Vickers, Claudia E; Possell, Malcolm; Nicholas Hewitt, C; Mullineaux, Philip M

    2010-07-01

    Isoprene is a volatile 5-carbon hydrocarbon derived from the chloroplastic methylerythritol 2-C-methyl-D: -erythritol 4-phosphate isoprenoid pathway. In plants, isoprene emission is controlled by the enzyme isoprene synthase; however, there is still relatively little known about the genetics and regulation of this enzyme. Isoprene synthase gene structure was analysed in three poplar species. It was found that genes encoding stromal isoprene synthase exist as a small gene family, the members of which encode virtually identical proteins and are differentially regulated. Accumulation of isoprene synthase protein is developmentally regulated, but does not differ between sun and shade leaves and does not increase when heat stress is applied. Our data suggest that, in mature leaves, isoprene emission rates are primarily determined by substrate (dimethylallyl diphosphate, DMADP) availability. In immature leaves, where isoprene synthase levels are variable, emission levels are also influenced by the amount of isoprene synthase protein. No thylakoid isoforms could be identified in Populus alba or in Salix babylonica. Together, these data show that control of isoprene emission at the genetic level is far more complicated than previously assumed.

  10. The First Step of Gibberellin Biosynthesis in Pumpkin Is Catalyzed by at Least Two Copalyl Diphosphate Synthases Encoded by Differentially Regulated Genes

    PubMed Central

    Smith, Maria W.; Yamaguchi, Shinjiro; Ait-Ali, Tahar; Kamiya, Yuji

    1998-01-01

    The first step in gibberellin biosynthesis is catalyzed by copalyl diphosphate synthase (CPS) and ent-kaurene synthase. We have cloned from pumpkin (Cucurbita maxima L.) two cDNAs, CmCPS1 and CmCPS2, that each encode a CPS. Both recombinant fusion CmCPS proteins were active in vitro. CPS are translocated into plastids and processed by cleavage of transit peptides. For CmCPS1 and CmCPS2, the putative transit peptides cannot exceed the first 99 and 107 amino acids, respectively, because longer N-terminal deletions abolished activity. Levels of both CmCPS transcripts were strictly regulated in an organ-specific and developmental manner. Both transcripts were almost undetectable in leaves and were abundant in petioles. CmCPS1 transcript levels were high in young cotyledons and low in roots. In contrast, CmCPS2 transcripts were undetectable in cotyledons but present at significant levels in roots. In hypocotyls, apices, and petioles, CmCPS1 transcript levels decreased with age much more rapidly than those of CmCPS2. We speculate that CmCPS1 expression is correlated with the early stages of organ development, whereas CmCPS2 expression is correlated with subsequent growth. In contrast, C. maxima ent-kaurene synthase transcripts were detected in every organ at almost constant levels. Thus, ent-kaurene biosynthesis may be regulated through control of CPS expression. PMID:9847116

  11. Cloning and Characterization of Inducible Nitric Oxide Synthase from Mouse Macrophages

    NASA Astrophysics Data System (ADS)

    Xie, Qiao-Wen; Cho, Hearn J.; Calaycay, Jimmy; Mumford, Richard A.; Swiderek, Kristine M.; Lee, Terry D.; Ding, Aihao; Troso, Tiffany; Nathan, Carl

    1992-04-01

    Nitric oxide (NO) conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission, and cytotoxicity. In some endothelial cells and neurons, a constitutive NO synthase is activated transiently by agonists that elevate intracellular calcium concentrations and promote the binding of calmodulin. In contrast, in macrophages, NO synthase activity appears slowly after exposure of the cells to cytokines and bacterial products, is sustained, and functions independently of calcium and calmodulin. A monospecific antibody was used to clone complementary DNA that encoded two isoforms of NO synthase from immunologically activated mouse macrophages. Liquid chromatography-mass spectrometry was used to confirm most of the amino acid sequence. Macrophage NO synthase differs extensively from cerebellar NO synthase. The macrophage enzyme is immunologically induced at the transcriptional level and closely resembles the enzyme in cytokine-treated tumor cells and inflammatory neutrophils.

  12. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album

    PubMed Central

    Srivastava, Prabhakar Lal; Daramwar, Pankaj P.; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S. Shiva; Thulasiram, Hirekodathakallu V.

    2015-01-01

    Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems. PMID:25976282

  13. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album.

    PubMed

    Srivastava, Prabhakar Lal; Daramwar, Pankaj P; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S Shiva; Thulasiram, Hirekodathakallu V

    2015-05-15

    Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems.

  14. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    PubMed

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.

  15. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.

    PubMed Central

    Eberhardt, S; Korn, S; Lottspeich, F; Bacher, A

    1997-01-01

    Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria. PMID:9139911

  16. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  17. Oxidation of thymidylate synthase by inorganic compounds.

    PubMed

    Aull, J L; Ivery, T C; Daron, H H

    1984-10-01

    Thymidylate synthase from methotrexate-resistant Lactobacillus casei was rapidly and completely inactivated by low concentrations of permanganate, periodate, or potassium triiodide at 0 degree C. The enzyme was not inactivated to any appreciable extent by iodate, iodide, ferricyanate, iodosobenzoate, or hydrogen peroxide. The inactivation by permanganate was retarded by the substrate 2'-deoxyuridylate and, to a lesser extent, by phosphate. Titration of enzyme activity with permanganate showed that two moles of permanganate were required to completely inactivate one mole of thymidylate synthase.

  18. Identification of a Fungal 1,8-Cineole Synthase from Hypoxylon sp. with Specificity Determinants in Common with the Plant Synthases*

    PubMed Central

    Shaw, Jeffrey J.; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J.; Dunican, Brian F.; Portero, Carolina E.; Narváez-Trujillo, Alexandra; Strobel, Scott A.

    2015-01-01

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  19. Virtual Screening of Novel Glucosamine-6-Phosphate Synthase Inhibitors.

    PubMed

    Lather, Amit; Sharma, Sunil; Khatkar, Anurag

    2018-01-01

    Infections caused by microorganisms are the major cause of death today. The tremendous and improper use of antimicrobial agents leads to antimicrobial resistance. Various currently available antimicrobial drugs are inadequate to control the infections and lead to various adverse drug reactions. Efforts based on computer-aided drug design (CADD) can excavate a large number of databases to generate new, potent hits and minimize the requirement of time as well as money for the discovery of newer antimicrobials. Pharmaceutical sciences also have made development with advances in drug designing concepts. The current research article focuses on the study of various G-6-P synthase inhibitors from literature cited molecular database. Docking analysis was conducted and ADMET data of various molecules was evaluated by Schrodinger Glide and PreADMET software, respectively. Here, the results presented efficacy of various inhibitors towards enzyme G-6-P synthase. Docking scores, binding energy and ADMET data of various molecules showed good inhibitory potential toward G-6-P synthase as compared to standard antibiotics. This novel antimicrobial drug target G-6-P synthase has not so extensively been explored for its application in antimicrobial therapy, so the work done so far proved highly essential. This article has helped the drug researchers and scientists to intensively explore about this wonderful antimicrobial drug target. The Schrodinger, Inc. (New York, USA) software was utilized to carry out the computational calculations and docking studies. The hardware configuration was Intel® core (TM) i5-4210U CPU @ 2.40GHz, RAM memory 4.0 GB under 64-bit window operating system. The ADMET data was calculated by using the PreADMET tool (PreADMET ver. 2.0). All the computational work was completed in the Laboratory for Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D. University, Rohtak, INDIA. Molecular docking studies were carried out to identify the binding

  20. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus

    PubMed Central

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-01-01

    SUMMARY Fungi are a rich source of bioactive secondary metabolites and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared to the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as a α-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes δ-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homolog, but instead was found to catalyze highly specific the synthesis of α-cuprenene. Co-expression of cop6 and the two monooxygenase genes next to it yields oxygenated α-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. PMID:19400802

  1. Characterization of the human gene (TBXAS1) encoding thromboxane synthase.

    PubMed

    Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T

    1994-09-01

    The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.

  2. ATP Synthase: A Molecular Therapeutic Drug Target for Antimicrobial and Antitumor Peptides

    PubMed Central

    Ahmad, Zulfiqar; Okafor, Florence; Azim, Sofiya; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the role of ATP synthase as a molecular drug target for natural and synthetic antimi-crobial/antitumor peptides. We start with an introduction of the universal nature of the ATP synthase enzyme and its role as a biological nanomotor. Significant structural features required for catalytic activity and motor functions of ATP synthase are described. Relevant details regarding the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it a potential drug target with respect to antimicrobial peptides and other inhibitors such as dietary polyphenols, is also reviewed. ATP synthase is known to have about twelve discrete inhibitor binding sites including peptides and other inhibitors located at the interface of α/β subunits on the F1 sector of the enzyme. Molecular interaction of peptides at the β DEELSEED site on ATP synthase is discussed with specific examples. An inhibitory effect of other natural/synthetic inhibitors on ATP is highlighted to explore the therapeutic roles played by peptides and other inhibitors. Lastly, the effect of peptides on the inhibition of the Escherichia coli model system through their action on ATP synthase is presented. PMID:23432591

  3. Sucrose synthase in wild tomato Lycopersicon chmielewskii and tomato fruit sink strength

    Treesearch

    Shi-Jean S. Sung; T. Loboda; S.S. Sung; C.C. Black

    1992-01-01

    Here it is reported that sucrose synthase can be readily measured in growing wild tomato fruits (Lycopersicon chmielewskii) when suitable methods are adopted during fruit extraction. The enzyme also was present in fruit pericarp tissues, in seeds, and in flowers.In mature, nongrowing fruits, sucrose synthase activities approached nil values.Therefore, sucrose synthase...

  4. [Examination of processed vegetable foods for the presence of common DNA sequences of genetically modified tomatoes].

    PubMed

    Kitagawa, Mamiko; Nakamura, Kosuke; Kondo, Kazunari; Ubukata, Shoji; Akiyama, Hiroshi

    2014-01-01

    The contamination of processed vegetable foods with genetically modified tomatoes was investigated by the use of qualitative PCR methods to detect the cauliflower mosaic virus 35S promoter (P35S) and the kanamycin resistance gene (NPTII). DNA fragments of P35S and NPTII were detected in vegetable juice samples, possibly due to contamination with the genomes of cauliflower mosaic virus infecting juice ingredients of Brassica species and soil bacteria, respectively. Therefore, to detect the transformation construct sequences of GM tomatoes, primer pairs were designed for qualitative PCR to specifically detect the border region between P35S and NPTII, and the border region between nopaline synthase gene promoter and NPTII. No amplification of the targeted sequences was observed using genomic DNA purified from the juice ingredients. The developed qualitative PCR method is considered to be a reliable tool to check contamination of products with GM tomatoes.

  5. Functional reconstitution of cellulose synthase in Escherichia coli.

    PubMed

    Imai, Tomoya; Sun, Shi-Jing; Horikawa, Yoshiki; Wada, Masahisa; Sugiyama, Junji

    2014-11-10

    Cellulose is a high molecular weight polysaccharide of β1 → 4-d-glucan widely distributed in nature-from plant cell walls to extracellular polysaccharide in bacteria. Cellulose synthase, together with other auxiliary subunit(s) in the cell membrane, facilitates the fibrillar assembly of cellulose polymer chains into a microfibril. The gene encoding the catalytic subunit of cellulose synthase is cesA and has been identified in many cellulose-producing organisms. Very few studies, however, have shown that recombinant CesA protein synthesizes cellulose polymer, but the mechanism by which CesA protein synthesizes cellulose microfibrils is not known. Here we show that cellulose-synthesizing activity is successfully reconstituted in Escherichia coli by expressing the bacterial cellulose synthase complex of Gluconacetobacter xylinus: CesA and CesB (formerly BcsA and BcsB, respectively). Cellulose synthase activity was, however, only detected when CesA and CesB were coexpressed with diguanyl cyclase (DGC), which synthesizes cyclic-di-GMP (c-di-GMP), which in turn activates cellulose-synthesizing activity in bacteria. Direct observation by electron microscopy revealed extremely thin fibrillar structures outside E. coli cells, which were removed by cellulase treatment. This fiber structure is not likely to be the native crystallographic form of cellulose I, given that it was converted to cellulose II by a chemical treatment milder than ever described. We thus putatively conclude that this fine fiber is an unprecedented structure of cellulose. Despite the inability of the recombinant enzyme to synthesize the native structure of cellulose, the system described in this study, named "CESEC (CEllulose-Synthesizing E. Coli)", represents a useful tool for functional analyses of cellulose synthase and for seeding new nanomaterials.

  6. Fluorescent "on-off-on" switching sensor based on CdTe quantum dots coupled with multiwalled carbon nanotubes@graphene oxide nanoribbons for simultaneous monitoring of dual foreign DNAs in transgenic soybean.

    PubMed

    Li, Yaqi; Sun, Li; Qian, Jing; Long, Lingliang; Li, Henan; Liu, Qian; Cai, Jianrong; Wang, Kun

    2017-06-15

    With the increasing concern of potential health and environmental risk, it is essential to develop reliable methods for transgenic soybean detection. Herein, a simple, sensitive and selective assay was constructed based on homogeneous fluorescence resonance energy transfer (FRET) between CdTe quantum dots (QDs) and multiwalled carbon nanotubes@graphene oxide nanoribbons (MWCNTs@GONRs) to form the fluorescent "on-off-on" switching for simultaneous monitoring dual target DNAs of promoter cauliflower mosaic virus 35s (P35s) and terminator nopaline synthase (TNOS) from transgenic soybean. The capture DNAs were immobilized with corresponding QDs to obtain strong fluorescent signals (turning on). The strong π-π stacking interaction between single-stranded DNA (ssDNA) probes and MWCNTs@GONRs led to minimal background fluorescence due to the FRET process (turning off). The targets of P35s and TNOS were recognized by dual fluorescent probes to form double-stranded DNA (dsDNA) through the specific hybridization between target DNAs and ssDNA probes. And the dsDNA were released from the surface of MWCNTs@GONRs, which leaded the dual fluorescent probes to generate the strong fluorescent emissions (turning on). Therefore, this proposed homogeneous assay can be achieved to detect P35s and TNOS simultaneously by monitoring the relevant fluorescent emissions. Moreover, this assay can distinguish complementary and mismatched nucleic acid sequences with high sensitivity. The constructed approach has the potential to be a tool for daily detection of genetically modified organism with the merits of feasibility and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Isolation and structural determination of squalene synthase inhibitor from Prunus mume fruit.

    PubMed

    Choi, Sung-Won; Hur, Nam-Yoon; Ahn, Soon-Cheol; Kim, Dong-Seob; Lee, Jae-Kwon; Kim, Dae-Ok; Park, Seung-Kook; Kim, Byung-Yong; Baik, Moo-Yeol

    2007-12-01

    Squalene synthase plays an important role in the cholesterol biosynthetic pathway. Inhibiting this enzyme in hypercholesterolemia can lower not only plasma cholesterol but also plasma triglyceride levels. A squalene synthase inhibitor was screened from Prunus mume fruit, and then purified via sequential processes of ethanol extraction, HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, and crystallization. The squalene synthase inhibitor was identified as chlorogenic acid with a molecular mass of 354 Da and a molecular formula of C16H18O9 based on UV spectrophotometry, 1H and 13C NMRs, and mass spectrometry. Chlorogenic acid inhibited the squalene synthase of pig liver with an IC50 level of 100 nM. Since chlorogenic acid was an effective inhibitor against the squalene synthase of an animal source, it may be a potential therapeutic agent for hypercholesterolemia.

  8. Emerging lipid-lowering drugs: squalene synthase inhibitors.

    PubMed

    Elsayed, Raghda K; Evans, Jeffery D

    2008-06-01

    Lapaquistat was the only squalene synthase inhibitor in Phase III clinical trials in Europe and the United States, but was recently discontinued from clinical development. Unlike statins, the inhibition of de novo cholesterol biosynthesis by lapaquistat does not deplete mevalonate, a precursor of isoprenoids. Isoprenoids are critical in cell growth and metabolism. The present review will focus on the chemistry, pharmacology, and lipid-lowering effects of novel squalene synthase inhibitors. A search of Pubmed, IPA, and GoogleScholar for studies (animal and human) and review articles published in English between 1990 and April 2008, using the search terms "squalene synthase inhibitors" or "lapaquistat". All clinical trials identified were then cross-referenced for their citations. All literature identified was then complied for this analysis. Lapaquistat mainly targets LDL-C, but may have some effect on HDL-C and TG. Preliminary reports on Phase II and Phase III associated lapaquistat 100 mg with elevated hepatic enzymes. Hepatotoxicity, possible drug-drug interaction with statins, and the investigation of a statin/coenzyme Q10 combination are among the few challenges that impeded lapaquistat's clinical development.

  9. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204.

    PubMed

    Millet, Caroline; Yamashita, Motozo; Heller, Mary; Yu, Li-Rong; Veenstra, Timothy D; Zhang, Ying E

    2009-07-24

    Through the action of its membrane-bound type I receptor, transforming growth factor-beta (TGF-beta) elicits a wide range of cellular responses that regulate cell proliferation, differentiation, and apo ptosis. Many of these signaling responses are mediated by Smad proteins. As such, controlling Smad activity is crucial for proper signaling by TGF-beta and its related factors. Here, we show that TGF-beta induces phosphorylation at three sites in the Smad3 linker region in addition to the two C-terminal residues, and glycogen synthase kinase 3 is responsible for phosphorylation at one of these sites, namely Ser-204. Alanine substitution at Ser-204 and/or the neighboring Ser-208, the priming site for glycogen synthase kinase 3 in vivo activity, strengthened the affinity of Smad3 to CREB-binding protein, suggesting that linker phosphorylation may be part of a negative feedback loop that modulates Smad3 transcriptional activity. Thus, our findings reveal a novel aspect of the Smad3 signaling mechanism that controls the final amplitude of cellular responses to TGF-beta.

  10. Heterologous expression of an active chitin synthase from Rhizopus oryzae.

    PubMed

    Salgado-Lugo, Holjes; Sánchez-Arreguín, Alejandro; Ruiz-Herrera, José

    2016-12-01

    Chitin synthases are highly important enzymes in nature, where they synthesize structural components in species belonging to different eukaryotic kingdoms, including kingdom Fungi. Unfortunately, their structure and the molecular mechanism of synthesis of their microfibrilar product remain largely unknown, probably because no fungal active chitin synthases have been isolated, possibly due to their extreme hydrophobicity. In this study we have turned to the heterologous expression of the transcript from a small chitin synthase of Rhizopus oryzae (RO3G_00942, Chs1) in Escherichia coli. The enzyme was active, but accumulated mostly in inclusion bodies. High concentrations of arginine or urea solubilized the enzyme, but their dilution led to its denaturation and precipitation. Nevertheless, use of urea permitted the purification of small amounts of the enzyme. The properties of Chs1 (Km, optimum temperature and pH, effect of GlcNAc) were abnormal, probably because it lacks the hydrophobic transmembrane regions characteristic of chitin synthases. The product of the enzyme showed that, contrasting with chitin made by membrane-bound Chs's and chitosomes, was only partially in the form of short microfibrils of low crystallinity. This approach may lead to future developments to obtain active chitin synthases that permit understanding their molecular mechanism of activity, and microfibril assembly. Copyright © 2016. Published by Elsevier Inc.

  11. Hybrid polyketide synthases

    DOEpatents

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  12. Purification and Biochemical Properties of Phytochromobilin Synthase from Etiolated Oat Seedlings1

    PubMed Central

    McDowell, Michael T.; Lagarias, J. Clark

    2001-01-01

    Plant phytochromes are dependent on the covalent attachment of the linear tetrapyrrole chromophore phytochromobilin (PΦB) for photoactivity. In planta, biliverdin IXα (BV) is reduced by the plastid-localized, ferredoxin (Fd)-dependent enzyme PΦB synthase to yield 3Z-PΦB. Here, we describe the >50,000-fold purification of PΦB synthase from etioplasts from dark-grown oat (Avena sativa L. cv Garry) seedlings using traditional column chromatography and preparative electrophoresis. Thus, PΦB synthase is a very low abundance enzyme with a robust turnover rate. We estimate the turnover rate to be >100 s−1, which is similar to that of mammalian NAD(P)H-dependent BV reductase. Oat PΦB synthase is a monomer with a subunit mass of 29 kD. However, two distinct charged forms of the enzymes were identified by native isoelectric focusing. The ability of PΦB synthase to reduce BV is dependent on reduced 2Fe-2S Fds. A Km for spinach (Spinacea oleracea) Fd was determined to be 3 to 4 μm. PΦB synthase has a high affinity for its bilin substrate, with a sub-micromolar Km for BV. PMID:11500553

  13. Discovery of DF-461, a Potent Squalene Synthase Inhibitor

    PubMed Central

    2013-01-01

    We report the development of a new trifluoromethyltriazolobenzoxazepine series of squalene synthase inhibitors. Structure–activity studies and pharmacokinetics optimization on this series led to the identification of compound 23 (DF-461), which exhibited potent squalene synthase inhibitory activity, high hepatic selectivity, excellent rat hepatic cholesterol synthesis inhibitory activity, and plasma lipid lowering efficacy in nonrodent repeated dose studies. PMID:24900587

  14. Inhibition of ATP Synthase by Chlorinated Adenosine Analogue

    PubMed Central

    Chen, Lisa S.; Nowak, Billie J.; Ayres, Mary L.; Krett, Nancy L.; Rosen, Steven T.; Zhang, Shuxing; Gandhi, Varsha

    2009-01-01

    8-Chloroadenosine (8-Cl-Ado) is a ribonucleoside analogue that is currently in clinical trial for chronic lymphocytic leukemia. Based on the decline in cellular ATP pool following 8-Cl-Ado treatment, we hypothesized that 8-Cl-ADP and 8-Cl-ATP may interfere with ATP synthase, a key enzyme in ATP production. Mitochondrial ATP synthase is composed of two major parts; FO intermembrane base and F1 domain, containing α and β subunits. Crystal structures of both α and β subunits that bind to the substrate, ADP, are known in tight binding (αdpβdp) and loose binding (αtpβtp) states. Molecular docking demonstrated that 8-Cl-ADP/8-Cl-ATP occupied similar binding modes as ADP/ATP in the tight and loose binding sites of ATP synthase, respectively, suggesting that the chlorinated nucleotide metabolites may be functional substrates and inhibitors of the enzyme. The computational predictions were consistent with our whole cell biochemical results. Oligomycin, an established pharmacological inhibitor of ATP synthase, decreased both ATP and 8-Cl-ATP formation from exogenous substrates, however, did not affect pyrimidine nucleoside analogue triphosphate accumulation. Synthesis of ATP from ADP was inhibited in cells loaded with 8-Cl-ATP. These biochemical studies are in consent with the computational modeling; in the αtpβtp state 8-Cl-ATP occupies similar binding as ANP, a non-hydrolyzable ATP mimic that is a known inhibitor. Similarly, in the substrate binding site (αdpβdp) 8-Cl-ATP occupies a similar position as ATP mimic ADP-BeF3 −. Collectively, our current work suggests that 8-Cl-ADP may serve as a substrate and the 8-Cl-ATP may be an inhibitor of ATP synthase. PMID:19477165

  15. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation

    PubMed Central

    Teixeira, Felipe K.; Sanchez, Carlos G.; Hurd, Thomas R.; Seifert, Jessica R. K.; Czech, Benjamin; Preall, Jonathan B.; Hannon, Gregory J.; Lehmann, Ruth

    2015-01-01

    The differentiation of stem cells is a tightly regulated process essential for animal development and tissue homeostasis. Through this process, attainment of new identity and function is achieved by marked changes in cellular properties. Intrinsic cellular mechanisms governing stem cell differentiation remain largely unknown, in part because systematic forward genetic approaches to the problem have not been widely used1,2. Analysing genes required for germline stem cell differentiation in the Drosophila ovary, we find that the mitochondrial ATP synthase plays a critical role in this process. Unexpectedly, the ATP synthesizing function of this complex was not necessary for differentiation, as knockdown of other members of the oxidative phosphorylation system did not disrupt the process. Instead, the ATP synthase acted to promote the maturation of mitochondrial cristae during differentiation through dimerization and specific upregulation of the ATP synthase complex. Taken together, our results suggest that ATP synthase-dependent crista maturation is a key developmental process required for differentiation independent of oxidative phosphorylation. PMID:25915123

  16. Use of Limited Proteolysis and Mutagenesis To Identify Folding Domains and Sequence Motifs Critical for Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase Activity

    PubMed Central

    Villa, Juan A.; Cabezas, Matilde; de la Cruz, Fernando

    2014-01-01

    Triacylglycerols and wax esters are synthesized as energy storage molecules by some proteobacteria and actinobacteria under stress. The enzyme responsible for neutral lipid accumulation is the bifunctional wax ester synthase/acyl-coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT). Structural modeling of WS/DGAT suggests that it can adopt an acyl-CoA-dependent acyltransferase fold with the N-terminal and C-terminal domains connected by a helical linker, an architecture demonstrated experimentally by limited proteolysis. Moreover, we found that both domains form an active complex when coexpressed as independent polypeptides. The structural prediction and sequence alignment of different WS/DGAT proteins indicated catalytically important motifs in the enzyme. Their role was probed by measuring the activities of a series of alanine scanning mutants. Our study underscores the structural understanding of this protein family and paves the way for their modification to improve the production of neutral lipids. PMID:24296496

  17. The type I fatty acid and polyketide synthases: a tale of two megasynthases

    PubMed Central

    Tsai, Shiou-Chuan

    2008-01-01

    This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity. PMID:17898897

  18. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase.

    PubMed

    Olteanu, Horatiu; Munson, Troy; Banerjee, Ruma

    2002-11-12

    Methionine synthase reductase (MSR) catalyzes the conversion of the inactive form of human methionine synthase to the active state of the enzyme. This reaction is of paramount physiological importance since methionine synthase is an essential enzyme that plays a key role in the methionine and folate cycles. A common polymorphism in human MSR has been identified (66A --> G) that leads to replacement of isoleucine with methionine at residue 22 and has an allele frequency of 0.5. Another polymorphism is 524C --> T, which leads to the substitution of serine 175 with leucine, but its allele frequency is not known. The I22M polymorphism is a genetic determinant for mild hyperhomocysteinemia, a risk factor for cardiovascular disease. In this study, we have examined the kinetic properties of the M22/S175 and I22/S175 and the I22/L175 and I22/S175 pairs of variants. EPR spectra of the semiquinone forms of variants I22/S175 and M22/S175 are indistinguishable and exhibit an isotropic signal at g = 2.00. In addition, the electronic absorption and reduction stoichiometries with NADPH are identical in these variants. Significantly, the variants activate methionine synthase with the same V(max); however, a 3-4-fold higher ratio of MSR to methionine synthase is required to elicit maximal activity with the M22/S175 and I22/L175 variant versus the I22/S175 enzyme. Differences are also observed between the variants in the efficacies of reduction of the artificial electron acceptors: ferricyanide, 2,6-dichloroindophenol, 3-acetylpyridine adenine dinucleotide phosphate, menadione, and the anticancer drug doxorubicin. These results reveal differences in the interactions between the natural and artificial electron acceptors and MSR variants in vitro, which are predicted to result in less efficient reductive repair of methionine synthase in vivo.

  19. Nitric Oxide Synthase and Neuronal NADPH Diaphorase are Identical in Brain and Peripheral Tissues

    NASA Astrophysics Data System (ADS)

    Dawson, Ted M.; Bredt, David S.; Fotuhi, Majid; Hwang, Paul M.; Snyder, Solomon H.

    1991-09-01

    NADPH diaphorase staining neurons, uniquely resistant to toxic insults and neurodegenerative disorders, have been colocalized with neurons in the brain and peripheral tissue containing nitric oxide synthase (EC 1.14.23.-), which generates nitric oxide (NO), a recently identified neuronal messenger molecule. In the corpus striatum and cerebral cortex, NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in medium to large aspiny neurons. These same neurons colocalize with somatostatin and neuropeptide Y immunoreactivity. NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in the pedunculopontine nucleus with choline acetyltransferase-containing cells and are also colocalized in amacrine cells of the inner nuclear layer and ganglion cells of the retina, myenteric plexus neurons of the intestine, and ganglion cells of the adrenal medulla. Transfection of human kidney cells with NO synthase cDNA elicits NADPH diaphorase staining. The ratio of NO synthase to NADPH diaphorase staining in the transfected cells is the same as in neurons, indicating that NO synthase fully accounts for observed NADPH staining. The identity of neuronal NO synthase and NADPH diaphorase suggests a role for NO in modulating neurotoxicity.

  20. A conserved C-terminal RXG motif in the NgBR subunit of cis-prenyltransferase is critical for prenyltransferase activity.

    PubMed

    Grabińska, Kariona A; Edani, Ban H; Park, Eon Joo; Kraehling, Jan R; Sessa, William C

    2017-10-20

    cis -Prenyltransferases ( cis -PTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. In eukaryotes and archaea, cis -PT is the first enzyme committed to the synthesis of dolichyl phosphate, an obligate lipid carrier in protein glycosylation reactions. The homodimeric bacterial enzyme, undecaprenyl diphosphate synthase, generates 11 isoprene units and has been structurally and mechanistically characterized in great detail. Recently, we discovered that unlike undecaprenyl diphosphate synthase, mammalian cis -PT is a heteromer consisting of NgBR (Nus1) and hCIT (dehydrodolichol diphosphate synthase) subunits, and this composition has been confirmed in plants and fungal cis -PTs. Here, we establish the first purification system for heteromeric cis -PT and show that both NgBR and hCIT subunits function in catalysis and substrate binding. Finally, we identified a critical R X G sequence in the C-terminal tail of NgBR that is conserved and essential for enzyme activity across phyla. In summary, our findings show that eukaryotic cis -PT is composed of the NgBR and hCIT subunits. The strong conservation of the R X G motif among NgBR orthologs indicates that this subunit is critical for the synthesis of polyprenol diphosphates and cellular function. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).

    PubMed

    Grausgruber-Gröger, Sabine; Schmiderer, Corinna; Steinborn, Ralf; Novak, Johannes

    2012-03-01

    Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively). Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Characterization of a monoterpene synthase from Paeonia lactiflora producing α-pinene as its single product.

    PubMed

    Ma, Xiaohui; Guo, Juan; Ma, Ying; Jin, Baolong; Zhan, Zhilai; Yuan, Yuan; Huang, Luqi

    2016-07-01

    To identify a terpene synthase that catalyzes the conversion of geranyl pyrophosphate (GPP) to α-pinene and is involved in the biosynthesis of paeoniflorin. Two new terpene synthase genes were isolated from the transcriptome data of Peaonia lactiflora. Phylogenetic analysis and sequence characterization revealed that one gene, named PlPIN, encoded a monoterpene synthase that might be involved in the biosynthesis of paeoniflorin. In vitro enzyme assay showed that, in contrast to most monoterpene synthases, PlPIN encoded an α-pinene synthase which converted GPP into α-pinene as a single product. This newly identified α-pinene synthase could be used for improving paeoniflorin accumulation by metabolic engineering or for producing α-pinene via synthetic biology.

  3. SbnG, a Citrate Synthase in Staphylococcus aureus

    PubMed Central

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.; Heinrichs, David E.; Murphy, Michael E. P.

    2014-01-01

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production. PMID:25336653

  4. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants.

    PubMed

    Degenhardt, Jörg; Köllner, Tobias G; Gershenzon, Jonathan

    2009-01-01

    The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.

  5. Purification and characterization of caffeine synthase from tea leaves.

    PubMed

    Kato, M; Mizuno, K; Fujimura, T; Iwama, M; Irie, M; Crozier, A; Ashihara, H

    1999-06-01

    Caffeine synthase (CS), the S-adenosylmethionine-dependent N-methyltransferase involved in the last two steps of caffeine biosynthesis, was extracted from young tea (Camellia sinensis) leaves; the CS was purified 520-fold to apparent homogeneity and a final specific activity of 5.7 nkat mg-1 protein by ammonium sulfate fractionation and hydroxyapatite, anion-exchange, adenosine-agarose, and gel-filtration chromatography. The native enzyme was monomeric with an apparent molecular mass of 61 kD as estimated by gel-filtration chromatography and 41 kD as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme displayed a sharp pH optimum of 8.5. The final preparation exhibited 3- and 1-N-methyltransferase activity with a broad substrate specificity, showing high activity toward paraxanthine, 7-methylxanthine, and theobromine and low activity with 3-methylxanthine and 1-methylxanthine. However, the enzyme had no 7-N-methyltransferase activity toward xanthosine and xanthosine 5'-monophosphate. The Km values of CS for paraxanthine, theobromine, 7-methylxanthine, and S-adenosylmethionine were 24, 186, 344, and 21 microM, respectively. The possible role and regulation of CS in purine alkaloid biosynthesis in tea leaves are discussed. The 20-amino acid N-terminal sequence for CS showed little homology with other methyltransferases.

  6. Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase α-subunit (TSA) genes from Polygonum tinctorium.

    PubMed

    Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un

    2016-12-01

    Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.

  7. Bacterial versus human thymidylate synthase: Kinetics and functionality

    PubMed Central

    Strutzenberg, Timothy S.; Ghosh, Ananda K.; Iqbal, Tasnia; Kohen, Amnon

    2018-01-01

    Thymidylate Synthase (TSase) is a highly conserved enzyme that catalyzes the production of the DNA building block thymidylate. Structurally, functionally and mechanistically, bacterial and mammalian TSases share remarkable similarities. Because of this closeness, bacterial enzymes have long been used as model systems for human TSase. Furthermore, while TSase inhibitors have long served as chemotherapeutic drugs, no TSase inhibitor serves as an antibiotic. Despite their high resemblance, the mammalian TSases are distinct in a few known aspects, such as having a N-terminal tail and two insertions in the primary sequence and active/inactive conformations. Here, we aim to comprehensively characterize human (hs) TSase and delineate its contrasts and the similarities to the well-studied Escherichia coli (ec) TSase. We found that, in contrast to ecTSase, Mg2+ does not enhance reaction rates for hsTSase. The temperature dependence of intrinsic kinetic isotope effects (KIEs), on the other hand, suggests that Mg2+ has little or no impact on the transition state of hydride transfer in either enzyme, and that the transition state for the hydride transfer in hsTSase is looser than in ecTSase. Additionally, the substrates’ binding order is strictly ordered for ecTSase but slightly less ordered for hsTSase. The observed kinetic and functional differences between bacterial and human enzymes may aid in the development of antibiotic drugs with reduced toxicity. PMID:29715278

  8. Role of mitochondrial processing peptidase and AAA proteases in processing of the yeast acetohydroxyacid synthase precursor.

    PubMed

    Dasari, Suvarna; Kölling, Ralf

    2016-07-01

    We studied presequence processing of the mitochondrial-matrix targeted acetohydroxyacid synthase (Ilv2). C-terminal 3HA-tagging altered the cleavage pattern from a single step to sequential two-step cleavage, giving rise to two Ilv2-3HA forms (A and B). Both cleavage events were dependent on the mitochondrial processing peptidase (MPP). We present evidence for the involvement of three AAA ATPases, m- and i-AAA proteases, and Mcx1, in Ilv2-3HA processing. Both, precursor to A-form and A-form to B-form cleavage were strongly affected in a ∆yme1 mutant. These defects could be suppressed by overexpression of MPP, suggesting that MPP activity is limiting in the ∆yme1 mutant. Our data suggest that for some substrates AAA ATPases could play an active role in the translocation of matrix-targeted proteins.

  9. Unidirectional regulation of the F1FO-ATP synthase nanomotor by the ζ pawl-ratchet inhibitor protein of Paracoccus denitrificans and related α-proteobacteria.

    PubMed

    Zarco-Zavala, Mariel; Mendoza-Hoffmann, Francisco; García-Trejo, José J

    2018-06-07

    The ATP synthase is a reversible nanomotor that gyrates its central rotor clockwise (CW) to synthesize ATP and in counter clockwise (CCW) direction to hydrolyse it. In bacteria and mitochondria, two natural inhibitor proteins, namely the ε and IF 1 subunits, prevent the wasteful CCW F 1 F O -ATPase activity by blocking γ rotation at the α DP /β DP /γ interface of the F 1 portion. In Paracoccus denitrificans and related α-proteobacteria, we discovered a different natural F 1 -ATPase inhibitor named ζ. Here we revise the functional and structural data showing that this novel ζ subunit, although being different to ε and IF 1 , it also binds to the α DP /β DP /γ interface of the F 1 of P. denitrificans. ζ shifts its N-terminal inhibitory domain from an intrinsically disordered protein region (IDPr) to an α-helix when inserted in the α DP /β DP /γ interface. We showed for the first time the key role of a natural ATP synthase inhibitor by the distinctive phenotype of a Δζ knockout mutant in P. denitrificans. ζ blocks exclusively the CCW F 1 F O -ATPase rotation without affecting the CW-F 1 F O -ATP synthase turnover, confirming that ζ is important for respiratory bacterial growth by working as an unidirectional pawl-ratchet PdF 1 F O -ATPase inhibitor, thus preventing the wasteful consumption of cellular ATP. In summary, ζ is an useful model that mimics mitochondrial IF 1 but in α-proteobacteria. The structural, functional, and endosymbiotic evolutionary implications of this ζ inhibitor are discussed to shed light on the natural control mechanisms of the three natural inhibitor proteins (ε, ζ, and IF 1 ) of this unique ATP synthase nanomotor, essential for life. Copyright © 2018. Published by Elsevier B.V.

  10. Molecular cloning and characterization of a cDNA encoding the gibberellin biosynthetic enzyme ent-kaurene synthase B from pumpkin (Cucurbita maxima L.).

    PubMed

    Yamaguchi, S; Saito, T; Abe, H; Yamane, H; Murofushi, N; Kamiya, Y

    1996-08-01

    The first committed step in the formation of diterpenoids leading to gibberellin (GA) biosynthesis is the conversion of geranylgeranyl diphosphate (GGDP) to ent-kaurene. ent-Kaurene synthase A (KSA) catalyzes the conversion of GGDP to copalyl diphosphate (CDP), which is subsequently converted to ent-kaurene by ent-kaurene synthase B (KSB). A full-length KSB cDNA was isolated from developing cotyledons in immature seeds of pumpkin (Cucurbita maxima L.). Degenerate oligonucleotide primers were designed from the amino acid sequences obtained from the purified protein to amplify a cDNA fragment, which was used for library screening. The isolated full-length cDNA was expressed in Escherichia coli as a fusion protein, which demonstrated the KSB activity to cyclize [3H]CDP to [3H]ent-kaurene. The KSB transcript was most abundant in growing tissues, but was detected in every organ in pumpkin seedlings. The deduced amino acid sequence shares significant homology with other terpene cyclases, including the conserved DDXXD motif, a putative divalent metal ion-diphosphate complex binding site. A putative transit peptide sequence that may target the translated product into the plastids is present in the N-terminal region.

  11. Mitochondrial Genome Integrity Mutations Uncouple the Yeast Saccharomyces cerevisiae ATP Synthase*║

    PubMed Central

    Wang, Yamin; Singh, Usha; Mueller, David M.

    2013-01-01

    The mitochondrial ATP synthase is a molecular motor, which couples the flow of rotons with phosphorylation of ADP. Rotation of the central stalk within the core of ATP synthase effects conformational changes in the active sites driving the synthesis of ATP. Mitochondrial genome integrity (mgi) mutations have been previously identified in the α-, β-, and γ-subunits of ATP synthase in yeast Kluyveromyces lactis and trypanosome Trypanosoma brucei. These mutations reverse the lethality of the loss of mitochondrial DNA in petite negative strains. Introduction of the homologous mutations in Saccharomyces cerevisiae results in yeast strains that lose mitochondrial DNA at a high rate and accompanied decreases in the coupling of the ATP synthase. The structure of yeast F1-ATPase reveals that the mgi residues cluster around the γ-subunit and selectively around the collar region of F1. These results indicate that residues within the mgi complementation group are necessary for efficient coupling of ATP synthase, possibly acting as a support to fix the axis of rotation of the central stalk. PMID:17244612

  12. Purification and Characterization of 1-Aminocyclopropane-1-Carboxylate Synthase from Apple Fruits 1

    PubMed Central

    Yip, Wing-Kin; Dong, Jian-Guo; Yang, Shang Fa

    1991-01-01

    1-Aminocyclopropane-1-carboxylate (ACC) synthase, a key enzyme in ethylene biosynthesis, was isolated and partially purified from apple (Malus sylvestris Mill.) fruits. Unlike ACC synthase isolated from other sources, apple ACC synthase is associated with the pellet fraction and can be solubilized in active form with Triton X-100. Following five purification steps, the solubilized enzyme was purified over 5000-fold to a specific activity of 100 micromoles per milligram protein per hour, and its purity was estimated to be 20 to 30%. Using this preparation, specific monoclonal antibodies were raised. Monoclonal antibodies against ACC synthase immunoglobulin were coupled to protein-A agarose to make an immunoaffinity column, which effectively purified the enzyme from a relatively crude enzyme preparation (100 units per milligram protein). As with the tomato enzyme, apple ACC synthase was inactivated and radiolabeled by its substrate S-adenosyl-l-methionine. Apple ACC synthase was identified to be a 48-kilodalton protein based on the observation that it was specifically bound to immunoaffinity column and it was specifically radiolabeled by its substrate S-adenosyl-l-methionine. Images Figure 4 Figure 6 PMID:16667960

  13. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarlymore » low levels of aspirin inhibited the increased L-({sup 35}S)methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate.« less

  14. Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase.

    PubMed

    Hirooka, Kazutake; Bamba, Takeshi; Fukusaki, Ei-ichiro; Kobayashi, Akio

    2003-03-01

    trans -Long-chain prenyl diphosphate synthases catalyse the sequential condensation of isopentenyl diphosphate (C(5)) units with allylic diphosphate to produce the C(30)-C(50) prenyl diphosphates, which are precursors of the side chains of prenylquinones. Based on the relationship between product specificity and the region around the first aspartate-rich motif in trans -prenyl diphosphate synthases characterized so far, we have isolated the cDNA for a member of trans -long-chain prenyl diphosphate synthases from Arabidopsis thaliana. The cDNA was heterologously expressed in Escherichia coli, and the recombinant His(6)-tagged protein was purified and characterized. Product analysis revealed that the cDNA encodes solanesyl diphosphate (C(45)) synthase (At-SPS). At-SPS utilized farnesyl diphosphate (FPP; C(15)) and geranylgeranyl diphosphate (GGPP; C(20)), but did not accept either the C(5) or the C(10) allylic diphosphate as a primer substrate. The Michaelis constants for FPP and GGPP were 5.73 microM and 1.61 microM respectively. We also performed an analysis of the side chains of prenylquinones extracted from the A. thaliana plant, and showed that its major prenylquinones, i.e. plastoquinone and ubiquinone, contain the C(45) prenyl moiety. This suggests that At-SPS might be devoted to the biosynthesis of either or both of the prenylquinone side chains. This is the first established trans -long-chain prenyl diphosphate synthase from a multicellular organism.

  15. Functional Identification of Valerena-1,10-diene Synthase, a Terpene Synthase Catalyzing a Unique Chemical Cascade in the Biosynthesis of Biologically Active Sesquiterpenes in Valeriana officinalis*

    PubMed Central

    Yeo, Yun-Soo; Nybo, S. Eric; Chittiboyina, Amar G.; Weerasooriya, Aruna D.; Wang, Yan-Hong; Góngora-Castillo, Elsa; Vaillancourt, Brieanne; Buell, C. Robin; DellaPenna, Dean; Celiz, Mary Dawn; Jones, A. Daniel; Wurtele, Eve Syrkin; Ransom, Nick; Dudareva, Natalia; Shaaban, Khaled A.; Tibrewal, Nidhi; Chandra, Suman; Smillie, Troy; Khan, Ikhlas A.; Coates, Robert M.; Watt, David S.; Chappell, Joe

    2013-01-01

    Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [13C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes. PMID:23243312

  16. Functional identification of valerena-1,10-diene synthase, a terpene synthase catalyzing a unique chemical cascade in the biosynthesis of biologically active sesquiterpenes in Valeriana officinalis.

    PubMed

    Yeo, Yun-Soo; Nybo, S Eric; Chittiboyina, Amar G; Weerasooriya, Aruna D; Wang, Yan-Hong; Góngora-Castillo, Elsa; Vaillancourt, Brieanne; Buell, C Robin; DellaPenna, Dean; Celiz, Mary Dawn; Jones, A Daniel; Wurtele, Eve Syrkin; Ransom, Nick; Dudareva, Natalia; Shaaban, Khaled A; Tibrewal, Nidhi; Chandra, Suman; Smillie, Troy; Khan, Ikhlas A; Coates, Robert M; Watt, David S; Chappell, Joe

    2013-02-01

    Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [(13)C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes.

  17. Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase

    PubMed Central

    Ludtmann, Marthe H.R.; Angelova, Plamena R.; Ninkina, Natalia N.; Gandhi, Sonia

    2016-01-01

    Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, β-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance

  18. Fo-driven Rotation in the ATP Synthase Direction against the Force of F1 ATPase in the FoF1 ATP Synthase*

    PubMed Central

    Martin, James; Hudson, Jennifer; Hornung, Tassilo; Frasch, Wayne D.

    2015-01-01

    Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation. PMID:25713065

  19. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily.

    PubMed

    Martin, Diane M; Fäldt, Jenny; Bohlmann, Jörg

    2004-08-01

    Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.

  20. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM.

    PubMed

    Zhou, Anna; Rohou, Alexis; Schep, Daniel G; Bason, John V; Montgomery, Martin G; Walker, John E; Grigorieff, Nikolaus; Rubinstein, John L

    2015-10-06

    Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases.

  1. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM

    PubMed Central

    Zhou, Anna; Rohou, Alexis; Schep, Daniel G; Bason, John V; Montgomery, Martin G; Walker, John E; Grigorieff, Nikolaus; Rubinstein, John L

    2015-01-01

    Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases. DOI: http://dx.doi.org/10.7554/eLife.10180.001 PMID:26439008

  2. An active site–tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Jesse R.; Donini, Stefano; Kappock, T. Joseph, E-mail: kappock@purdue.edu

    2015-09-23

    Citrate synthase from the thermophilic euryarchaeon T. acidophilum fused to a hexahistidine tag was purified and biochemically characterized. The structure of the unliganded enzyme at 2.2 Å resolution contains tail–active site contacts in half of the active sites. Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that ‘close’ the active site play an important role in the assembly of a catalytically competent condensation active site. CS from themore » thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an ‘open’ structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site–tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS.« less

  3. The Role of Light-Dark Regulation of the Chloroplast ATP Synthase.

    PubMed

    Kohzuma, Kaori; Froehlich, John E; Davis, Geoffry A; Temple, Joshua A; Minhas, Deepika; Dhingra, Amit; Cruz, Jeffrey A; Kramer, David M

    2017-01-01

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se . Instead

  4. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    PubMed Central

    Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.; Temple, Joshua A.; Minhas, Deepika; Dhingra, Amit; Cruz, Jeffrey A.; Kramer, David M.

    2017-01-01

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead

  5. Molecular Basis of ADP Inhibition of Vacuolar (V)-type ATPase/Synthase*

    PubMed Central

    Kishikawa, Jun-ichi; Nakanishi, Atsuko; Furuike, Shou; Tamakoshi, Masatada; Yokoyama, Ken

    2014-01-01

    Reduction of ATP hydrolysis activity of vacuolar-type ATPase/synthase (V0V1) as a result of ADP inhibition occurs as part of the normal mechanism of V0V1 of Thermus thermophilus but not V0V1 of Enterococcus hirae or eukaryotes. To investigate the molecular basis for this difference, domain-swapped chimeric V1 consisting of both T. thermophilus and E. hirae enzymes were generated, and their function was analyzed. The data showed that the interaction between the nucleotide binding and C-terminal domains of the catalytic A subunit from E. hirae V1 is central to increasing binding affinity of the chimeric V1 for phosphate, resulting in reduction of the ADP inhibition. These findings together with a comparison of the crystal structures of T. thermophilus V1 with E. hirae V1 strongly suggest that the A subunit adopts a conformation in T. thermophilus V1 different from that in E. hirae V1. This key difference results in ADP inhibition of T. thermophilus V1 by abolishing the binding affinity for phosphate during ATP hydrolysis. PMID:24247239

  6. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia).

    PubMed

    Landmann, Christian; Fink, Barbara; Festner, Maria; Dregus, Márta; Engel, Karl-Heinz; Schwab, Wilfried

    2007-09-15

    The essential oil of lavender (Lavandula angustifolia) is mainly composed of mono- and sesquiterpenes. Using a homology-based PCR strategy, two monoterpene synthases (LaLIMS and LaLINS) and one sesquiterpene synthase (LaBERS) were cloned from lavender leaves and flowers. LaLIMS catalyzed the formation of (R)-(+)-limonene, terpinolene, (1R,5S)-(+)-camphene, (1R,5R)-(+)-alpha-pinene, beta-myrcene and traces of alpha-phellandrene. The proportions of these products changed significantly when Mn(2+) was supplied as the cofactor instead of Mg(2+). The second enzyme LaLINS produced exclusively (R)-(-)-linalool, the main component of lavender essential oil. LaBERS transformed farnesyl diphosphate and represents the first reported trans-alpha-bergamotene synthase. It accepted geranyl diphosphate with higher affinity than farnesyl diphosphate and also produced monoterpenes, albeit at low rates. LaBERS is probably derived from a parental monoterpene synthase by the loss of the plastidial signal peptide and by broadening its substrate acceptance spectrum. The identification and description of the first terpene synthases from L. angustifolia forms the basis for the biotechnological modification of essential oil composition in lavender.

  7. Producing alpha-olefins using polyketide synthases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortman, Jeffrey L.; Katz, Leonard; Steen, Eric J.

    2018-01-02

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an .alpha.-olefin, such as 1-hexene or butadiene. The present invention also provides for a host cell comprising the PKS and when cultured produces the .alpha.-olefin.

  8. CELLULOSE SYNTHASE INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma Membrane in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Lei; Singh, Abhishek; Bashline, Logan

    Plants are constantly subjected to various biotic and abiotic stresses and have evolved complex strategies to cope with these stresses. For example, plant cells endocytose plasma membrane material under stress and subsequently recycle it back when the stress conditions are relieved. Cellulose biosynthesis is a tightly regulated process that is performed by plasma membrane-localized cellulose synthase (CESA) complexes (CSCs). However, the regulatory mechanism of cellulose biosynthesis under abiotic stress has not been well explored. In this study, we show that small CESA compartments (SmaCCs) or microtubule-associated cellulose synthase compartments (MASCs) are critical for fast recovery of CSCs to the plasmamore » membrane after stress is relieved in Arabidopsis thaliana. This SmaCC/MASC-mediated fast recovery of CSCs is dependent on CELLULOSE SYNTHASE INTERACTIVE1 (CSI1), a protein previously known to represent the link between CSCs and cortical microtubules. Independently, AP2M, a core component in clathrin-mediated endocytosis, plays a role in the formation of SmaCCs/MASCs. Together, our study establishes a model in which CSI1-dependent SmaCCs/MASCs are formed through a process that involves endocytosis, which represents an important mechanism for plants to quickly regulate cellulose synthesis under abiotic stress.« less

  9. Construction of a standard reference plasmid containing seven target genes for the detection of transgenic cotton.

    PubMed

    Wang, Xujing; Tang, Qiaoling; Dong, Lei; Dong, Yufeng; Su, Yueyan; Jia, Shirong; Wang, Zhixing

    2014-07-01

    Insect resistance and herbicide tolerance are the dominant traits of commercialized transgenic cotton. In this study, we constructed a general standard reference plasmid for transgenic cotton detection. Target genes, including the cowpea trypsin gene cptI, the insect resistance gene cry1Ab/1Ac, the herbicide tolerance gene cp4-epsps, the Agrobacterium tumefaciens nopaline synthase (Nos) terminator that exists in transgenic cotton and part of the endogenous cotton SadI gene were amplified from plasmids pCPT1, pBT, pCP4 and pBI121 and from DNA of the nontransgenic cotton line K312, respectively. The genes cry1Ab/1Ac and cptI, as well as cp4-epsps and the Nos terminator gene, were ligated together to form the fusion genes cptI-Bt and cp4-Nos, respectively, by overlapping PCR. We checked the validity of genes Sad1, cptI-Bt and cp4-Nos by DNA sequencing. Then, positive clones of cptI-Bt, cp4-Nos and Sad1 were digested with the corresponding restriction enzymes and ligated sequentially into vector pCamBIA2300, which contains the CAMV 35S promoter and nptII gene, to form the reference plasmid pMCS. Qualitative detection showed that pMCS is a good positive control for transgenic cotton detection. Real-time PCR detection efficiencies with pMCS as a calibrator ranged from 94.35% to 98.67% for the standard curves of the target genes (R(2)⩾0.998). The relative standard deviation of the mean value for the known sample was 11.95%. These results indicate that the strategy of using the pMCS plasmid as a reference material is feasible and reliable for the detection of transgenic cotton. Therefore, this plasmid can serve as a useful reference tool for qualitative and quantitative detection of single or stacked trait transgenic cotton, thus paving the way for the identification of various products containing components of transgenic cotton. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    PubMed

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Genetics Home Reference: N-acetylglutamate synthase deficiency

    MedlinePlus

    ... Hyperammonemia due to N-acetylglutamate synthase deficiency Screening, Technology and Research in Genetics Patient Support and Advocacy Resources (4 links) Children Living with Inherited Metabolic Diseases National Organization for ...

  12. The Sucrose Synthase Gene Family in Chinese Pear (Pyrus bretschneideri Rehd.): Structure, Expression, and Evolution.

    PubMed

    Abdullah, Muhammad; Cao, Yungpeng; Cheng, Xi; Meng, Dandan; Chen, Yu; Shakoor, Awais; Gao, Junshan; Cai, Yongping

    2018-05-11

    Sucrose synthase (SS) is a key enzyme involved in sucrose metabolism that is critical in plant growth and development, and particularly quality of the fruit. Sucrose synthase gene families have been identified and characterized in plants various plants such as tobacco, grape, rice, and Arabidopsis . However, there is still lack of detailed information about sucrose synthase gene in pear. In the present study, we performed a systematic analysis of the pear ( Pyrus bretschneideri Rehd.) genome and reported 30 sucrose synthase genes. Subsequently, gene structure, phylogenetic relationship, chromosomal localization, gene duplications, promoter regions, collinearity, RNA-Seq data and qRT-PCR were conducted on these sucrose synthase genes. The transcript analysis revealed that 10 PbSSs genes (30%) were especially expressed in pear fruit development. Additionally, qRT-PCR analysis verified the RNA-seq data and shown that PbSS30 , PbSS24 , and PbSS15 have a potential role in the pear fruit development stages. This study provides important insights into the evolution of sucrose synthase gene family in pear and will provide assistance for further investigation of sucrose synthase genes functions in the process of fruit development, fruit quality and resistance to environmental stresses.

  13. S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics.

    PubMed

    Módis, Katalin; Ju, YoungJun; Ahmad, Akbar; Untereiner, Ashley A; Altaany, Zaid; Wu, Lingyun; Szabo, Csaba; Wang, Rui

    2016-11-01

    Mammalian cells can utilize hydrogen sulfide (H 2 S) to support mitochondrial respiration. The aim of our study was to explore the potential role of S-sulfhydration (a H 2 S-induced posttranslational modification, also known as S-persulfidation) of the mitochondrial inner membrane protein ATP synthase (F1F0 ATP synthase/Complex V) in the regulation of mitochondrial bioenergetics. Using a biotin switch assay, we have detected S-sulfhydration of the α subunit (ATP5A1) of ATP synthase in response to exposure to H 2 S in vitro. The H 2 S generator compound NaHS induced S-sulfhydration of ATP5A1 in HepG2 and HEK293 cell lysates in a concentration-dependent manner (50-300μM). The activity of immunocaptured mitochondrial ATP synthase enzyme isolated from HepG2 and HEK293 cells was stimulated by NaHS at low concentrations (10-100nM). Site-directed mutagenesis of ATP5A1 in HEK293 cells demonstrated that cysteine residues at positions 244 and 294 are subject to S-sulfhydration. The double mutant ATP synthase protein (C244S/C294S) showed a significantly reduced enzyme activity compared to control and the single-cysteine-mutated recombinant proteins (C244S or C294S). To determine whether endogenous H 2 S plays a role in the basal S-sulfhydration of ATP synthase in vivo, we compared liver tissues harvested from wild-type mice and mice deficient in cystathionine-gamma-lyase (CSE, one of the three principal mammalian H 2 S-producing enzymes). Significantly reduced S-sulfhydration of ATP5A1 was observed in liver homogenates of CSE -/- mice, compared to wild-type mice, suggesting a physiological role for CSE-derived endogenous H 2 S production in the S-sulfhydration of ATP synthase. Various forms of critical illness (including burn injury) upregulate H 2 S-producing enzymes and stimulate H 2 S biosynthesis. In liver tissues collected from mice subjected to burn injury, we detected an increased S-sulfhydration of ATP5A1 at the early time points post-burn. At later time points

  14. ESR studies on reactivity of protein-derived tyrosyl radicals formed by prostaglandin H synthase and ribonucleotide reductase.

    PubMed

    Lassmann, G; Curtis, J; Liermann, B; Mason, R P; Eling, T E

    1993-01-01

    Using ESR spectroscopy, the ability of enzyme inhibitors to quench protein-derived tyrosyl radicals was studied in two different enzymes, prostaglandin H synthase and ribonucleotide reductase. The prostaglandin H synthase inhibitors indomethacin, eugenol, and MK-410 effectively prevent the formation of tyrosyl radicals during the oxidation of arachidonic acid by prostaglandin H synthase from ram seminal vesicles. A direct reaction with preformed tyrosyl radicals was observed only with eugenol. The other prostaglandin H synthase inhibitors were ineffective. The ribonucleotide reductase inhibitors hydroxyurea and 4-hydroxyanisole, which effectively inactivate the tyrosyl radical in the active site of ribonucleotide reductase present in tumor cells, exhibit a different reactivity with tyrosyl radicals formed by prostaglandin H synthase. Hydroxyurea quenches preformed tyrosyl radicals in prostaglandin H synthase weakly, whereas 4-hydroxyanisole does not quench tyrosyl radicals in prostaglandin H synthase at all. Eugenol, which quenches preformed prostaglandin H synthase-derived tyrosyl radicals, also quenches the tyrosyl radical in ribonucleotide reductase. The results suggest that the reactivity of protein-linked tyrosyl radicals in ribonucleotide reductase and those formed during prostaglandin H synthase catalysis are very different and have unrelated roles in enzyme catalysis.

  15. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation.

    PubMed

    Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook

    2016-01-01

    Rice ( Oryza sativa ) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species

  16. Purification and Characterization of Caffeine Synthase from Tea Leaves1

    PubMed Central

    Kato, Misako; Mizuno, Kouichi; Fujimura, Tatsuhito; Iwama, Masanori; Irie, Masachika; Crozier, Alan; Ashihara, Hiroshi

    1999-01-01

    Caffeine synthase (CS), the S-adenosylmethionine-dependent N-methyltransferase involved in the last two steps of caffeine biosynthesis, was extracted from young tea (Camellia sinensis) leaves; the CS was purified 520-fold to apparent homogeneity and a final specific activity of 5.7 nkat mg−1 protein by ammonium sulfate fractionation and hydroxyapatite, anion-exchange, adenosine-agarose, and gel-filtration chromatography. The native enzyme was monomeric with an apparent molecular mass of 61 kD as estimated by gel-filtration chromatography and 41 kD as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme displayed a sharp pH optimum of 8.5. The final preparation exhibited 3- and 1-N-methyltransferase activity with a broad substrate specificity, showing high activity toward paraxanthine, 7-methylxanthine, and theobromine and low activity with 3-methylxanthine and 1-methylxanthine. However, the enzyme had no 7-N-methyltransferase activity toward xanthosine and xanthosine 5′-monophosphate. The Km values of CS for paraxanthine, theobromine, 7-methylxanthine, and S-adenosylmethionine were 24, 186, 344, and 21 μm, respectively. The possible role and regulation of CS in purine alkaloid biosynthesis in tea leaves are discussed. The 20-amino acid N-terminal sequence for CS showed little homology with other methyltransferases. PMID:10364410

  17. The Maize Gene terpene synthase 1 Encodes a Sesquiterpene Synthase Catalyzing the Formation of (E)-β-Farnesene, (E)-Nerolidol, and (E,E)-Farnesol after Herbivore Damage1

    PubMed Central

    Schnee, Christiane; Köllner, Tobias G.; Gershenzon, Jonathan; Degenhardt, Jörg

    2002-01-01

    Maize (Zea mays) emits a mixture of volatile compounds upon attack by the Egyptian cotton leafworm (Spodoptera littoralis). These substances, primarily mono- and sesquiterpenes, are used by parasitic wasps to locate the lepidopteran larvae, which are their natural hosts. This interaction among plant, lepidopteran larvae, and hymenopteran parasitoids benefits the plant and has been termed indirect defense. The committed step in the biosynthesis of the different skeletal types of mono- and sesquiterpenes is catalyzed by terpene synthases, a class of enzymes that forms a large variety of mono- and sesquiterpene products from prenyl diphosphate precursors. We isolated a terpene synthase gene, terpene synthase 1 (tps1), from maize that exhibits only a low degree of sequence identity to previously identified terpene synthases. Upon expression in a bacterial system, the encoded enzyme produced the acyclic sesquiterpenes, (E)-β-farnesene, (E,E)-farnesol, and (3R)-(E)-nerolidol, the last an intermediate in the formation of (3E)-4,8-dimethyl-1,3,7-nonatriene. Both (E)-β-farnesene and (3E)-4,8-dimethyl-1,3,7-nonatriene are prominent compounds of the maize volatile blend that is emitted after herbivore damage. The biochemical characteristics of the encoded enzyme are similar to those of terpene synthases from both gymnosperms and dicotyledonous angiosperms, suggesting that catalysis involves a similar electrophilic reaction mechanism. The transcript level of tps1 in the maize cv B73 was elevated after herbivory, mechanical damage, and treatment with elicitors. In contrast, the increase in the transcript level of the tps1 gene or gene homolog in the maize cv Delprim after herbivory was less pronounced, suggesting that the regulation of terpene synthase expression may vary among maize varieties. PMID:12481088

  18. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    DOE PAGES

    Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.; ...

    2017-07-24

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas thosemore » expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Secdependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. But, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Thus, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead

  19. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas thosemore » expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Secdependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. But, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Thus, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead

  20. Interactions of citrate synthases from osmoconforming and osmoregulating animals with salt: possible signs of molecular eco-adaptation?

    PubMed

    Sarkissian, I V

    1977-01-01

    This study considers differential sensitivity of citrate synthase (citrate oxaloacetatelyase [CoA acetylating]) EC 4.1.3.7. from an osmoconforming animal (sea anemone) and an osmoregulating animal (the pig) to salt. Attention is drawn to the fact that the osmoconforming sea anemone is in essence a sessile creature while the pig is readily mobile and able to change its ionic environment at will. It had been shown earlier that citrate synthase from another osmoconformer (oyster) is also not sensitive to ionic strength while citrate synthase from osmoregulating white shrimp is sensitive to increasing levels of salt. However, these enzymes are characteristically regulated by ATP and alpha-ketoglutarate. Both forms of citrate synthase are denatured by 6 M guanidine hydrochloride and are aided by salt levels in their refolding but the rate and extent of refolding of the osmoconformer citrate synthase are greater than those of the osmoregulator citrate synthase. Catalytic activity of both forms of citrate synthase is inhibited by incubation in distilled water; osmoconformer citrate synthase was inhibited completely in 7 h while osmoregulator citrate synthase was inhibited only 60% in this time and 80% after 22 h in distilled water. The eco-adaptive and evolutionary implications of these findings are discussed.

  1. Insights into the surface topology of polyhydroxyalkanoate synthase: self-assembly of functionalized inclusions.

    PubMed

    Hooks, David O; Rehm, Bernd H A

    2015-10-01

    The polyhydroxyalkanoate (PHA) synthase catalyzes the synthesis of PHA and remains attached to the hydrophobic PHA inclusions it creates. Although this feature is actively exploited to generate functionalized biobeads via protein engineering, little is known about the structure of the PHA synthase. Here, the surface topology of Ralstonia eutropha PHA synthase was probed to inform rational protein engineering toward the production of functionalized PHA beads. Surface-exposed residues were detected by conjugating biotin to inclusion-bound PHA synthase and identifying the biotin-conjugated lysine and cysteine residues using peptide fingerprinting analysis. The identified sites (K77, K90, K139, C382, C459, and K518) were investigated as insertion sites for the generation of new protein fusions. Insertions of FLAG epitopes into exposed sites K77, K90, K139, and K518 were tolerated, retaining >65 % of in vivo activity. Sites K90, K139, and K518 were also tested by insertion of the immunoglobulin G (IgG)-binding domain (ZZ), successfully producing PHA inclusions able to bind human IgG in vitro. Although simultaneous insertions of the ZZ domain into two sites was permissive, insertion at all three lysine sites inactivated the synthase. The K90/K139 double ZZ insertion had the optimum IgG-binding capacity of 16 mg IgG/g wet PHA beads and could selectively purify the IgG fraction from human serum. Overall, this study identified surface-exposed flexible regions of the PHA synthase which either tolerate protein/peptide insertions or are critical for protein function. This further elucidates the structure and function of PHA synthase and provides new opportunities for generating functionalized PHA biobeads.

  2. Exploring the Influence of Domain Architecture on the Catalytic Function of Diterpene Synthases.

    PubMed

    Pemberton, Travis A; Chen, Mengbin; Harris, Golda G; Chou, Wayne K W; Duan, Lian; Köksal, Mustafa; Genshaft, Alex S; Cane, David E; Christianson, David W

    2017-04-11

    Terpenoid synthases catalyze isoprenoid cyclization reactions underlying the generation of more than 80,000 natural products. Such dramatic chemodiversity belies the fact that these enzymes generally consist of only three domain folds designated as α, β, and γ. Catalysis by class I terpenoid synthases occurs exclusively in the α domain, which is found with α, αα, αβ, and αβγ domain architectures. Here, we explore the influence of domain architecture on catalysis by taxadiene synthase from Taxus brevifolia (TbTS, αβγ), fusicoccadiene synthase from Phomopsis amygdali (PaFS, (αα) 6 ), and ophiobolin F synthase from Aspergillus clavatus (AcOS, αα). We show that the cyclization fidelity and catalytic efficiency of the α domain of TbTS are severely compromised by deletion of the βγ domains; however, retention of the β domain preserves significant cyclization fidelity. In PaFS, we previously demonstrated that one α domain similarly influences catalysis by the other α domain [ Chen , M. , Chou , W. K. W. , Toyomasu , T. , Cane , D. E. , and Christianson , D. W. ( 2016 ) ACS Chem. Biol. 11 , 889 - 899 ]. Here, we show that the hexameric quaternary structure of PaFS enables cluster channeling. We also show that the α domains of PaFS and AcOS can be swapped so as to make functional chimeric αα synthases. Notably, both cyclization fidelity and catalytic efficiency are altered in all chimeric synthases. Twelve newly formed and uncharacterized C 20 diterpene products and three C 25 sesterterpene products are generated by these chimeras. Thus, engineered αβγ and αα terpenoid cyclases promise to generate chemodiversity in the greater family of terpenoid natural products.

  3. Lessons from 455 Fusarium polyketide synthases

    USDA-ARS?s Scientific Manuscript database

    In fungi, polyketide synthases (PKSs) synthesize a structurally diverse array of secondary metabolites (SMs) with a range of biological activities. The most studied SMs are toxic to animals and/or plants, alter plant growth, have beneficial pharmaceutical activities, and/or are brightly colored pigm...

  4. Bisabosquals, novel squalene synthase inhibitors. I. Taxonomy, fermentation, isolation and biological activities.

    PubMed

    Minagawa, K; Kouzuki, S; Nomura, K; Yamaguchi, T; Kawamura, Y; Matsushima, K; Tani, H; Ishii, K; Tanimoto, T; Kamigauchi, T

    2001-11-01

    In the course of screening for yeast squalene synthase inhibitors, bisabosqual A was isolated from the culture broth of Stachybotrys sp. RF-7260. The related compounds bisabosquals B, C and D were also isolated from Stachybotrys ruwenzoriensis RF-6853. Bisabosquals inhibited squalene synthases. IC50 values of bisabosqual A against the microsomal squalene synthases from Saccharomyces cerevisiae, Candida albicans, HepG2 cell and rat liver were 0.43, 0.25, 0.95 and 2.5 microg/ml, respectively. Bisabosqual C exhibited inhibitory activities similar to bisabosqual A. Bisabosqual A showed broad spectrum antifungal activity in vitro.

  5. Evaluation of synthase and hemisynthase activities of glucosamine-6-phosphate synthase by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Gaucher-Wieczorek, Florence; Guérineau, Vincent; Touboul, David; Thétiot-Laurent, Sophie; Pelissier, Franck; Badet-Denisot, Marie-Ange; Badet, Bernard; Durand, Philippe

    2014-08-01

    Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5'-diphospho-N-acetyl-D-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts D-fructose-6-phosphate (Fru-6P) and L-glutamine (Gln) into D-glucosamine-6-phosphate (GlcN-6P) and L-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. 5-Fluoroindole Resistance Identifies Tryptophan Synthase Beta Subunit Mutants in Arabidopsis Thaliana

    PubMed Central

    Barczak, A. J.; Zhao, J.; Pruitt, K. D.; Last, R. L.

    1995-01-01

    A study of the biochemical genetics of the Arabidopsis thaliana tryptophan synthase beta subunit was initiated by characterization of mutants resistant to the inhibitor 5-fluoroindole. Thirteen recessive mutations were recovered that are allelic to trp2-1, a mutation in the more highly expressed of duplicate tryptophan synthase beta subunit genes (TSB1). Ten of these mutations (trp2-2 through trp2-11) cause a tryptophan requirement (auxotrophs), whereas three (trp2-100 through trp2-102) remain tryptophan prototrophs. The mutations cause a variety of changes in tryptophan synthase beta expression. For example, two mutations (trp2-5 and trp2-8) cause dramatically reduced accumulation of TSB mRNA and immunologically detectable protein, whereas trp2-10 is associated with increased mRNA and protein. A correlation exists between the quantity of mutant beta and wild-type alpha subunit levels in the trp2 mutant plants, suggesting that the synthesis of these proteins is coordinated or that the quantity or structure of the beta subunit influences the stability of the alpha protein. The level of immunologically detectable anthranilate synthase alpha subunit protein is increased in the trp2 mutants, suggesting the possibility of regulation of anthranilate synthase levels in response to tryptophan limitation. PMID:7635295

  7. Resistance Phenotypes Mediated by Aminoacyl-Phosphatidylglycerol Synthases

    PubMed Central

    Arendt, Wiebke; Hebecker, Stefanie; Jäger, Sonja; Nimtz, Manfred

    2012-01-01

    The specific aminoacylation of the phospholipid phosphatidylglycerol (PG) with alanine or with lysine catalyzed by aminoacyl-phosphatidylglycerol synthases (aaPGS) was shown to render various organisms less susceptible to antibacterial agents. This study makes use of Pseudomonas aeruginosa chimeric mutant strains producing lysyl-phosphatidylglycerol (L-PG) instead of the naturally occurring alanyl-phosphatidylglycerol (A-PG) to study the resulting impact on bacterial resistance. Consequences of such artificial phospholipid composition were studied in the presence of an overall of seven antimicrobials (β-lactams, a lipopeptide antibiotic, cationic antimicrobial peptides [CAMPs]) to quantitatively assess the effect of A-PG substitution (with L-PG, L-PG and A-PG, increased A-PG levels). For the employed Gram-negative P. aeruginosa model system, an exclusive charge repulsion mechanism does not explain the attenuated antimicrobial susceptibility due to PG modification. Additionally, the specificity of nine orthologous aaPGS enzymes was experimentally determined. The newly characterized protein sequences allowed for the establishment of a significant group of A-PG synthase sequences which were bioinformatically compared to the related group of L-PG synthesizing enzymes. The analysis revealed a diverse origin for the evolution of A-PG and L-PG synthases, as the specificity of an individual enzyme is not reflected in terms of a characteristic sequence motif. This finding is relevant for future development of potential aaPGS inhibitors. PMID:22267511

  8. Isolation and Characterization of Three New Monoterpene Synthases from Artemisia annua

    PubMed Central

    Ruan, Ju-Xin; Li, Jian-Xu; Fang, Xin; Wang, Ling-Jian; Hu, Wen-Li; Chen, Xiao-Ya; Yang, Chang-Qing

    2016-01-01

    Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography–mass spectrometry detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role of these monoterpene synthases in plant–environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant. PMID:27242840

  9. Fine Mapping Identifies SmFAS Encoding an Anthocyanidin Synthase as a Putative Candidate Gene for Flower Purple Color in Solanum melongena L.

    PubMed Central

    Chen, Mengqiang; Xu, Mengyun; Xiao, Yao; Cui, Dandan; Qin, Yongqiang; Wu, Jiaqi; Wang, Wenyi; Wang, Guoping

    2018-01-01

    Anthocyanins are the main pigments in flowers and fruits. These pigments are responsible for the red, red-purple, violet, and purple color in plants, and act as insect and animal attractants. In this study, phenotypic analysis of the purple flower color in eggplant indicated that the flower color is controlled by a single dominant gene, FAS. Using an F2 mapping population derived from a cross between purple-flowered ‘Blacknite’ and white-flowered ‘Small Round’, Flower Anthocyanidin Synthase (FAS) was fine mapped to an approximately 165.6-kb region between InDel marker Indel8-11 and Cleaved Amplified Polymorphic Sequences (CAPS) marker Efc8-32 on Chromosome 8. On the basis of bioinformatic analysis, 29 genes were subsequently located in the FAS target region, among which were two potential Anthocyanidin Synthase (ANS) gene candidates. Allelic sequence comparison results showed that one ANS gene (Sme2.5_01638.1_g00003.1) was conserved in promoter and coding sequences without any nucleotide change between parents, whereas four single-nucleotide polymorphisms were detected in another ANS gene (Sme2.5_01638.1_g00005.1). Crucially, a single base pair deletion at site 438 resulted in premature termination of FAS, leading to the loss of anthocyanin accumulation. In addition, FAS displayed strong expression in purple flowers compared with white flowers and other tissues. Collectively, our results indicate that Sme2.5_01638.1_g00005.1 is a good candidate gene for FAS, which controls anthocyanidin synthase in eggplant flowers. The present study provides information for further potential facilitate genetic engineering for improvement of anthocyanin levels in plants. PMID:29522465

  10. Molecular cloning and characterization of drimenol synthase from valerian plant (Valeriana officinalis).

    PubMed

    Kwon, Moonhyuk; Cochrane, Stephen A; Vederas, John C; Ro, Dae-Kyun

    2014-12-20

    Drimenol, a sesquiterpene alcohol, and its derivatives display diverse bio-activities in nature. However, a drimenol synthase gene has yet to be identified. We identified a new sesquiterpene synthase cDNA (VoTPS3) in valerian plant (Valeriana officinalis). Purification and NMR analyses of the VoTPS3-produced terpene, and characterization of the VoTPS3 enzyme confirmed that VoTPS3 synthesizes (-)-drimenol. In feeding assays, possible reaction intermediates, farnesol and drimenyl diphosphate, could not be converted to drimenol, suggesting that the intermediate remains tightly bound to VoTPS3 during catalysis. A mechanistic consideration of (-)-drimenol synthesis suggests that drimenol synthase is likely to use a protonation-initiated cyclization, which is rare for sesquiterpene synthases. VoTPS3 can be used to produce (-)-drimenol, from which useful drimane-type terpenes can be synthesized. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Alcoholytic Cleavage of Polyhydroxyalkanoate Chains by Class IV Synthases Induced by Endogenous and Exogenous Ethanol

    PubMed Central

    Hyakutake, Manami; Tomizawa, Satoshi; Mizuno, Kouhei; Abe, Hideki

    2014-01-01

    Polyhydroxyalkanoate (PHA)-producing Bacillus strains express class IV PHA synthase, which is composed of the subunits PhaR and PhaC. Recombinant Escherichia coli expressing PHA synthase from Bacillus cereus strain YB-4 (PhaRCYB-4) showed an unusual reduction of the molecular weight of PHA produced during the stationary phase of growth. Nuclear magnetic resonance analysis of the low-molecular-weight PHA revealed that its carboxy end structure was capped by ethanol, suggesting that the molecular weight reduction was the result of alcoholytic cleavage of PHA chains by PhaRCYB-4 induced by endogenous ethanol. This scission reaction was also induced by exogenous ethanol in both in vivo and in vitro assays. In addition, PhaRCYB-4 was observed to have alcoholysis activity for PHA chains synthesized by other synthases. The PHA synthase from Bacillus megaterium (PhaRCBm) from another subgroup of class IV synthases was also assayed and was shown to have weak alcoholysis activity for PHA chains. These results suggest that class IV synthases may commonly share alcoholysis activity as an inherent feature. PMID:24334666

  12. Testis-specific ATP synthase peripheral stalk subunits required for tissue-specific mitochondrial morphogenesis in Drosophila.

    PubMed

    Sawyer, Eric M; Brunner, Elizabeth C; Hwang, Yihharn; Ivey, Lauren E; Brown, Olivia; Bannon, Megan; Akrobetu, Dennis; Sheaffer, Kelsey E; Morgan, Oshauna; Field, Conroy O; Suresh, Nishita; Gordon, M Grace; Gunnell, E Taylor; Regruto, Lindsay A; Wood, Cricket G; Fuller, Margaret T; Hales, Karen G

    2017-03-23

    In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure. The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits. We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.

  13. Torque generation mechanism of ATP synthase

    NASA Astrophysics Data System (ADS)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  14. Sequences required for transcription termination at the intrinsic lambdatI terminator.

    PubMed

    Martínez-Trujillo, Miguel; Sánchez-Trujillo, Alejandra; Ceja, Víctor; Avila-Moreno, Federico; Bermúdez-Cruz, Rosa María; Court, Donald; Montañez, Cecilia

    2010-02-01

    The lambdatI terminator is located approximately 280 bp beyond the lambdaint gene, and it has a typical structure of an intrinsic terminator. To identify sequences required for lambdatI transcription termination a set of deletion mutants were generated, either from the 5' or the 3' end onto the lambdatI region. The termination efficiency was determined by measuring galactokinase (galK) levels by Northern blot assays and by in vitro transcription termination. The importance of the uridines and the stability of the stem structure in the termination were demonstrated. The nontranscribed DNA beyond the 3' end also affects termination. Additionally, sequences upstream have a small effect on transcription termination. The in vivo RNA termination sites at lambdatI were determined by S1 mapping and were located at 8 different positions. Processing of transcripts from the 3' end confirmed the importance of the hairpin stem in protection against exonuclease.

  15. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... Testing (1 link) Genetic Testing Registry: Amish infantile epilepsy syndrome Other Diagnosis and Management Resources (2 links) ...

  16. Competitive folding of anti-terminator/terminator hairpins monitored by single molecule FRET.

    PubMed

    Clerte, Caroline; Declerck, Nathalie; Margeat, Emmanuel

    2013-02-01

    The control of transcription termination by RNA-binding proteins that modulate RNA-structures is an important regulatory mechanism in bacteria. LicT and SacY from Bacillus subtilis prevent the premature arrest of transcription by binding to an anti-terminator RNA hairpin that overlaps an intrinsic terminator located in the 5'-mRNA leader region of the gene to be regulated. In order to investigate the molecular determinants of this anti-termination/termination balance, we have developed a fluorescence-based nucleic acids system that mimics the competition between the LicT or SacY anti-terminator targets and the overlapping terminators. Using Förster Resonance Energy Transfer on single diffusing RNA hairpins, we could monitor directly their opening or closing state, and thus investigate the effects on this equilibrium of the binding of anti-termination proteins or terminator-mimicking oligonucleotides. We show that the anti-terminator hairpins adopt spontaneously a closed structure and that their structural dynamics is mainly governed by the length of their basal stem. The induced stability of the anti-terminator hairpins determines both the affinity and specificity of the anti-termination protein binding. Finally, we show that stabilization of the anti-terminator hairpin, by an extended basal stem or anti-termination protein binding can efficiently counteract the competing effect of the terminator-mimic.

  17. Competitive folding of anti-terminator/terminator hairpins monitored by single molecule FRET

    PubMed Central

    Clerte, Caroline; Declerck, Nathalie; Margeat, Emmanuel

    2013-01-01

    The control of transcription termination by RNA-binding proteins that modulate RNA-structures is an important regulatory mechanism in bacteria. LicT and SacY from Bacillus subtilis prevent the premature arrest of transcription by binding to an anti-terminator RNA hairpin that overlaps an intrinsic terminator located in the 5′-mRNA leader region of the gene to be regulated. In order to investigate the molecular determinants of this anti-termination/termination balance, we have developed a fluorescence-based nucleic acids system that mimics the competition between the LicT or SacY anti-terminator targets and the overlapping terminators. Using Förster Resonance Energy Transfer on single diffusing RNA hairpins, we could monitor directly their opening or closing state, and thus investigate the effects on this equilibrium of the binding of anti-termination proteins or terminator-mimicking oligonucleotides. We show that the anti-terminator hairpins adopt spontaneously a closed structure and that their structural dynamics is mainly governed by the length of their basal stem. The induced stability of the anti-terminator hairpins determines both the affinity and specificity of the anti-termination protein binding. Finally, we show that stabilization of the anti-terminator hairpin, by an extended basal stem or anti-termination protein binding can efficiently counteract the competing effect of the terminator-mimic. PMID:23303779

  18. Producing dicarboxylic acids using polyketide synthases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  19. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    PubMed

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases.

  20. Medicinal Chemistry of ATP Synthase: A Potential Drug Target of Dietary Polyphenols and Amphibian Antimicrobial Peptides

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the inhibitory effects of dietary polyphenols and amphibian antimicrobial/antitumor peptides on ATP synthase. In the beginning general structural features highlighting catalytic and motor functions of ATP synthase will be described. Some details on the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it an interesting drug target with respect to dietary polyphenols and amphibian antimicrobial peptides will also be reviewed. ATP synthase is known to have distinct polyphenol and peptide binding sites at the interface of α/β subunits. Molecular interaction of polyphenols and peptides with ATP synthase at their respective binding sites will be discussed. Binding and inhibition of other proteins or enzymes will also be covered so as to understand the therapeutic roles of both types of molecules. Lastly, the effects of polyphenols and peptides on the inhibition of Escherichia coli cell growth through their action on ATP synthase will also be presented. PMID:20586714

  1. ATP Synthase, a Target for Dementia and Aging?

    PubMed

    Larrick, James W; Larrick, Jasmine W; Mendelsohn, Andrew R

    2018-02-01

    Advancing age is the biggest risk factor for development for the major life-threatening diseases in industrialized nations accounting for >90% of deaths. Alzheimer's dementia (AD) is among the most devastating. Currently approved therapies fail to slow progression of the disease, providing only modest improvements in memory. Recently reported work describes mechanistic studies of J147, a promising therapeutic molecule previously shown to rescue the severe cognitive deficits exhibited by aged, transgenic AD mice. Apparently, J147 targets the mitochondrial alpha-F1-ATP synthase (ATP5A). Modest inhibition of the ATP synthase modulates intracellular calcium to activate AMP-activated protein kinase to inhibit mammalian target of rapamycin, a known mechanism of lifespan extension from worms to mammals.

  2. Interaction of Constitutive Nitric Oxide Synthases with Cyclooxygenases in Regulation of Bicarbonate Secretion in the Gastric Mucosa.

    PubMed

    Zolotarev, V A; Andreeva, Yu V; Vershinina, E; Khropycheva, R P

    2017-05-01

    Neuronal NO synthase blocker 7-nitroindazole suppressed bicarbonate secretion in rat gastric mucosa induced by mild local irritation with 1 M NaCl (pH 2.0). Non-selective blocker of neuronal and endothelial synthases, Nω-nitro-L-arginine (L-NNA), did not affect HCO 3 - production, but inhibited secretion after pretreatment with omeprazole. Non-selective cyclooxygenase blocker indomethacin inhibited HCO 3 - production under conditions of normal synthase activity and in the presence of L-NNA, but was ineffective when co-administered with 7-nitroindazole. It was concluded that neuronal and endothelial synthases are involved in different mechanisms of regulation of HCO 3 - secretion in the gastric mucosa induced by mild irritation. Activation of neuronal synthase stimulated HCO 3 - production, which is mediated mainly through activation of cyclooxygenase. Theoretically, activation of endothelial synthase should suppress HCO 3 - production. The effect of endothelial synthase depends on acid secretion in the stomach and bicarbonate concentration in the submucosa, as it was demonstrated in experiments with intravenous NaHCO 3 infusion.

  3. Reduced methylation of the thromboxane synthase gene is correlated with its increased vascular expression in preeclampsia.

    PubMed

    Mousa, Ahmad A; Strauss, Jerome F; Walsh, Scott W

    2012-06-01

    Preeclampsia is characterized by increased thromboxane and decreased prostacyclin levels, which predate symptoms, and can explain some of the clinical manifestations of preeclampsia, including hypertension and thrombosis. In this study, we examined DNA methylation of the promoter region of the thromboxane synthase gene (TBXAS1) and the expression of thromboxane synthase in systemic blood vessels of normal pregnant and preeclamptic women. Thromboxane synthase is responsible for the synthesis of thromboxane A(2), a potent vasoconstrictor and activator of platelets. We also examined the effect of experimentally induced DNA hypomethylation on the expression of thromboxane synthase in a neutrophil-like cell line (HL-60 cells) and in cultured vascular smooth muscle and endothelial cells. We found that DNA methylation of the TBXAS1 promoter was decreased and thromboxane synthase expression was increased in omental arteries of preeclamptic women as compared with normal pregnant women. Increased thromboxane synthase expression was observed in vascular smooth muscles cells, endothelial cells, and infiltrating neutrophils. Experimentally induced DNA hypomethylation only increased expression of thromboxane synthase in the neutrophil-like cell line, whereas tumor necrosis factor-α, a neutrophil product, increased its expression in cultured vascular smooth muscle cells. Our study suggests that epigenetic mechanisms and release of tumor necrosis factor-α by infiltrating neutrophils could contribute to the increased expression of thromboxane synthase in maternal systemic blood vessels, contributing to the hypertension and coagulation abnormalities associated with preeclampsia.

  4. The Polyketide Components of Waxes and the Cer-cqu Gene Cluster Encoding a Novel Polyketide Synthase, the β-Diketone Synthase, DKS.

    PubMed

    von Wettstein-Knowles, Penny

    2017-07-10

    The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue-grey color. Identification of the barley Cer-c , -q and -u genes forming the 101 kb Cer-cqu gene cluster encoding a novel polyketide synthase-the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms long, thin crystalline tubes. A pathway branch leads to the formation of esterified alkan-2-ols.

  5. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot1[OPEN

    PubMed Central

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-01-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  6. Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice

    PubMed Central

    Gauba, Esha; Guo, Lan; Du, Heng

    2017-01-01

    Brain aging is the known strongest risk factor for Alzheimer’s disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD. PMID:27834780

  7. Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice.

    PubMed

    Gauba, Esha; Guo, Lan; Du, Heng

    2017-01-01

    Brain aging is the known strongest risk factor for Alzheimer's disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD.

  8. Expression and Activity of Nitric Oxide Synthase Isoforms in Methamphetamine-Induced Striatal Dopamine Toxicity

    PubMed Central

    Friend, Danielle M.; Son, Jong H.; Keefe, Kristen A.

    2013-01-01

    Nitric oxide is implicated in methamphetamine (METH)-induced neurotoxicity; however, the source of the nitric oxide has not been identified. Previous work has also revealed that animals with partial dopamine loss induced by a neurotoxic regimen of methamphetamine fail to exhibit further decreases in striatal dopamine when re-exposed to methamphetamine 7–30 days later. The current study examined nitric oxide synthase expression and activity and protein nitration in striata of animals administered saline or neurotoxic regimens of methamphetamine at postnatal days 60 and/or 90, resulting in four treatment groups: Saline:Saline, METH:Saline, Saline:METH, and METH:METH. Acute administration of methamphetamine on postnatal day 90 (Saline:METH and METH:METH) increased nitric oxide production, as evidenced by increased protein nitration. Methamphetamine did not, however, change the expression of endothelial or inducible isoforms of nitric oxide synthase, nor did it change the number of cells positive for neuronal nitric oxide synthase mRNA expression or the amount of neuronal nitric oxide synthase mRNA per cell. However, nitric oxide synthase activity in striatal interneurons was increased in the Saline:METH and METH:METH animals. These data suggest that increased nitric oxide production after a neurotoxic regimen of methamphetamine results from increased nitric oxide synthase activity, rather than an induction of mRNA, and that constitutively expressed neuronal nitric oxide synthase is the most likely source of nitric oxide after methamphetamine administration. Of interest, animals rendered resistant to further methamphetamine-induced dopamine depletions still show equivalent degrees of methamphetamine-induced nitric oxide production, suggesting that nitric oxide production alone in response to methamphetamine is not sufficient to induce acute neurotoxic injury. PMID:23230214

  9. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase.

    PubMed

    Bunney, T D; van Walraven, H S; de Boer, A H

    2001-03-27

    Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functioning of the synthase has made enormous progress in recent years, our understanding of regulatory mechanisms is still rather preliminary. Here we report a role for 14-3-3 proteins in the regulation of ATP synthases. These 14-3-3 proteins are highly conserved phosphoserine/phosphothreonine-binding proteins that regulate a wide range of enzymes in plants, animals, and yeast. Recently, the presence of 14-3-3 proteins in chloroplasts was illustrated, and we show here that plant mitochondria harbor 14-3-3s within the inner mitochondrial-membrane compartment. There, the 14-3-3 proteins were found to be associated with the ATP synthases, in a phosphorylation-dependent manner, through direct interaction with the F(1) beta-subunit. The activity of the ATP synthases in both organelles is drastically reduced by recombinant 14-3-3. The rapid reduction in chloroplast ATPase activity during dark adaptation was prevented by a phosphopeptide containing the 14-3-3 interaction motif, demonstrating a role for endogenous 14-3-3 in the down-regulation of the CF(o)F(1) activity. We conclude that regulation of the ATP synthases by 14-3-3 represents a mechanism for plant adaptation to environmental changes such as light/dark transitions, anoxia in roots, and fluctuations in nutrient supply.

  10. RNA-Seq in the discovery of a sparsely expressed scent-determining monoterpene synthase in lavender (Lavandula).

    PubMed

    Adal, Ayelign M; Sarker, Lukman S; Malli, Radesh P N; Liang, Ping; Mahmoud, Soheil S

    2018-06-09

    Using RNA-Seq, we cloned and characterized a unique monoterpene synthase responsible for the formation of a scent-determining S-linalool constituent of lavender oils from Lavandula × intermedia. Several species of Lavandula produce essential oils (EOs) consisting mainly of monoterpenes including linalool, one of the most abundant and scent-determining oil constituents. Although R-linalool dominates the EOs of lavenders, varying amounts (depending on the species) of the S-linalool enantiomer can also be found in these plants. Despite its relatively low abundance, S-linalool contributes a sweet, pleasant scent and is an important constituent of lavender EOs. While several terpene synthase genes including R-linalool synthase have been cloned from lavenders many important terpene synthases including S-linalool synthase have not been described from these plants. In this study, we employed RNA-Seq and other complementary sequencing data to clone and functionally characterize the sparsely expressed S-linalool synthase cDNA (LiS-LINS) from Lavandula × intermedia. Recombinant LiS-LINS catalyzed the conversion of the universal monoterpene precursor geranyl diphosphate to S-linalool as the sole product. Intriguingly, LiS-LINS exhibited very low (~ 30%) sequence similarity to other Lavandula terpene synthases, including R-linalool synthase. However, the predicted 3D structure of this protein, including the composition and arrangement of amino acids at the active site, is highly homologous to known terpene synthase proteins. LiS-LINS transcripts were detected in flowers, but were much less abundant than those corresponding to LiR-LINS, paralleling enantiomeric composition of linalool in L. × intermedia oils. These data indicate that production of S-linalool is at least partially controlled at the level of transcription from LiS-LINS. The cloned LiS-LINS cDNA may be used to enhance oil composition in lavenders and other plants through metabolic engineering.

  11. Bacterial Production, Characterization and Protein Modeling of a Novel Monofuctional Isoform of FAD Synthase in Humans: An Emergency Protein?

    PubMed

    Leone, Piero; Galluccio, Michele; Barbiroli, Alberto; Eberini, Ivano; Tolomeo, Maria; Vrenna, Flavia; Gianazza, Elisabetta; Iametti, Stefania; Bonomi, Francesco; Indiveri, Cesare; Barile, Maria

    2018-01-06

    FAD synthase (FADS, EC 2.7.7.2) is the last essential enzyme involved in the pathway of biosynthesis of Flavin cofactors starting from Riboflavin (Rf). Alternative splicing of the human FLAD1 gene generates different isoforms of the enzyme FAD synthase. Besides the well characterized isoform 1 and 2, other FADS isoforms with different catalytic domains have been detected, which are splice variants. We report the characterization of one of these novel isoforms, a 320 amino acid protein, consisting of the sole C-terminal 3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductase domain (named FADS6). This isoform has been previously detected in Riboflavin-Responsive (RR-MADD) and Non-responsive Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) patients with frameshift mutations of FLAD1 gene. To functionally characterize the hFADS6, it has been over-expressed in Escherichia coli and purified with a yield of 25 mg·L -1 of cell culture. The protein has a monomeric form, it binds FAD and is able to catalyze FAD synthesis (k cat about 2.8 min -1 ), as well as FAD pyrophosphorolysis in a strictly Mg 2+ -dependent manner. The synthesis of FAD is inhibited by HgCl₂. The enzyme lacks the ability to hydrolyze FAD. It behaves similarly to PAPS. Combining threading and ab-initio strategy a 3D structural model for such isoform has been built. The relevance to human physio-pathology of this FADS isoform is discussed.

  12. The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng

    2014-10-02

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) hasmore » been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-{angstrom} resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.« less

  13. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films

    PubMed Central

    Liskova, Jana; Babchenko, Oleg; Varga, Marian; Kromka, Alexander; Hadraba, Daniel; Svindrych, Zdenek; Burdikova, Zuzana; Bacakova, Lucie

    2015-01-01

    Nanocrystalline diamond (NCD) films are promising materials for bone implant coatings because of their biocompatibility, chemical resistance, and mechanical hardness. Moreover, NCD wettability can be tailored by grafting specific atoms. The NCD films used in this study were grown on silicon substrates by microwave plasma-enhanced chemical vapor deposition and grafted by hydrogen atoms (H-termination) or oxygen atoms (O-termination). Human osteoblast-like Saos-2 cells were used for biological studies on H-terminated and O-terminated NCD films. The adhesion, growth, and subsequent differentiation of the osteoblasts on NCD films were examined, and the extracellular matrix production and composition were quantified. The osteoblasts that had been cultivated on the O-terminated NCD films exhibited a higher growth rate than those grown on the H-terminated NCD films. The mature collagen fibers were detected in Saos-2 cells on both the H-terminated and O-terminated NCD films; however, the quantity of total collagen in the extracellular matrix was higher on the O-terminated NCD films, as were the amounts of calcium deposition and alkaline phosphatase activity. Nevertheless, the expression of genes for osteogenic markers – type I collagen, alkaline phosphatase, and osteocalcin – was either comparable on the H-terminated and O-terminated films or even lower on the O-terminated films. In conclusion, the higher wettability of the O-terminated NCD films is promising for adhesion and growth of osteoblasts. In addition, the O-terminated surface also seems to support the deposition of extracellular matrix proteins and extracellular matrix mineralization, and this is promising for better osteoconductivity of potential bone implant coatings. PMID:25670900

  14. Identification and characterization of two bisabolene synthases from linear glandular trichomes of sunflower (Helianthus annuus L., Asteraceae).

    PubMed

    Aschenbrenner, Anna-Katharina; Kwon, Moonhyuk; Conrad, Jürgen; Ro, Dae-Kyun; Spring, Otmar

    2016-04-01

    Sunflower is known to produce a variety of bisabolene-type sesquiterpenes and accumulates these substances in trichomes of leaves, stems and flowering parts. A bioinformatics approach was used to identify the enzyme responsible for the initial step in the biosynthesis of these compounds from its precursor farnesyl pyrophosphate. Based on sequence similarity with a known bisabolene synthases from Arabidopsis thaliana AtTPS12, candidate genes of Helianthus were searched in EST-database and used to design specific primers. PCR experiments identified two candidates in the RNA pool of linear glandular trichomes of sunflower. Their sequences contained the typical motifs of sesquiterpene synthases and their expression in yeast functionally characterized them as bisabolene synthases. Spectroscopic analysis identified the stereochemistry of the product of both enzymes as (Z)-γ-bisabolene. The origin of the two sunflower bisabolene synthase genes from the transcripts of linear trichomes indicates that they may be involved in the synthesis of sesquiterpenes produced in these trichomes. Comparison of the amino acid sequences of the sunflower bisabolene synthases showed high similarity with sesquiterpene synthases from other Asteracean species and indicated putative evolutionary origin from a β-farnesene synthase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Inhibition of neuronal nitric oxide synthase in ovine model of acute lung injury*

    PubMed Central

    Enkhbaatar, Perenlei; Connelly, Rhykka; Wang, Jianpu; Nakano, Yoshimitsu; Lange, Matthias; Hamahata, Atsumori; Horvath, Eszter; Szabo, Csaba; Jaroch, Stefan; Hölscher, Peter; Hillmann, Margrit; Traber, Lillian D.; Schmalstieg, Frank C.; Herndon, David N.; Traber, Daniel L.

    2013-01-01

    Objective Acute respiratory distress syndrome/acute lung injury is a serious complication of burn patients with concomitant smoke inhalation injury. Nitric oxide has been shown to play a major role in pulmonary dysfunction from thermal damage. In this study, we have tested the hypothesis that inhibition of neuronal nitric oxide synthase could ameliorate the severity of acute lung injury using our well-established ovine model of cutaneous burn and smoke inhalation. Design Prospective, randomized, controlled, experimental animals study. Setting Investigational intensive care unit at university hospital. Subjects Adult female sheep Interventions Female sheep (n = 16) were surgically prepared for the study. Seven days after surgery, all sheep were randomly allocated into three study groups: sham (noninjured, nontreated, n = 6); control (injured, treated with saline, n = 6); and neuronal nitric oxide synthase (injured, treated with specific neuronal nitric oxide synthase inhibitor, ZK 234238 (n = 4). Control and neuronal nitric oxide synthase groups were given a cutaneous burn (40% of total body surface, third degree) and insufflated with cotton smoke (48 breaths, <40°C) under halothane anesthesia. Animals in sham group received fake injury also under halothane anesthesia. After injury or fake injury procedure, all sheep were placed on ventilators and resuscitated with lactated Ringer's solution. Neuronal nitric oxide synthase group was administered with continuous infusion of ZK 234238 started 1 hr postinjury with a dose of 100 μg/kg/hr. Sham and control groups received same amount of saline. Measurements and Main Results Cardiopulmonary hemodynamics monitored during the 24-hr experimental time period was stable in the sham group. Control sheep developed multiple signs of acute lung injury. This pathophysiology included decreased pulmonary gas exchange and lung compliance, increased pulmonary edema, and inflammatory indices, such as interleukin-8. Treatment of

  16. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica.

    PubMed

    Maluf, Mirian Perez; da Silva, Carla Cristina; de Oliveira, Michelle de Paula Abreu; Tavares, Aline Gomes; Silvarolla, Maria Bernadete; Guerreiro, Oliveiro

    2009-10-01

    In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  17. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    PubMed Central

    2009-01-01

    In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence. PMID:21637458

  18. Isolation and characterization of beta-glucan synthase: A potential biochemical regulator of gravistimulated differential cell wall loosening

    NASA Technical Reports Server (NTRS)

    Kuzmanoff, K. M.

    1984-01-01

    In plants, gravity stimulates differential growth in the upper and lower halves of horizontally oriented organs. Auxin regulation of cell wall loosening and elongation is the basis for most models of this phenomenon. Auxin treatment of pea stem tissue rapidly increases the activity of Golgi-localized Beta-1,4-glucan synthase, an enzyme involved in biosynthesis of wall xyloglucan which apparently constitutes the substrate for the wall loosening process. The primary objective is to determine if auxin induces de novo formation of Golgi glucan synthase and increases the level of this glucan synthase mRNA. This shall be accomplished by (a) preparation of a monoclonal antibody to the synthase, (b) isolation, and characterization of the glucan synthase, and (c) examination for cross reactivity between the antibody and translation products of auxin induced mRNAs in pea tissue. The antibody will also be used to localize the glucan synthase in upper and lower halves of pea stem tissue before, during and after the response to gravity.

  19. Contribution of the C-Terminal Region of a Group II Chaperonin to its Interaction with Prefoldin and Substrate Transfer.

    PubMed

    Zako, Tamotsu; Sahlan, Muhamad; Fujii, Sayaka; Yamamoto, Yohei Y; Tai, Phan The; Sakai, Kotaro; Maeda, Mizuo; Yohda, Masafumi

    2016-06-05

    Prefoldin is a molecular chaperone that captures an unfolded protein substrate and transfers it to a group II chaperonin. Previous studies have shown that the interaction sites for prefoldin are located in the helical protrusions of group II chaperonins. However, it does not exclude the possibility of the existence of other interaction sites. In this study, we constructed C-terminal truncation mutants of a group II chaperonin and examined the effects of these mutations on the chaperone's function and interaction with prefoldin. Whereas the mutants with up to 6 aa truncation from the C-terminus retained more than 90% chaperone activities for protecting citrate synthase from thermal aggregation and refolding of green fluorescent protein and isopropylmalate dehydrogenase, the truncation mutants showed decreased affinities for prefoldin. Consequently, the truncation mutants showed reduced transfer efficiency of the denatured substrate protein from prefoldin and subsequent chaperonin-dependent refolding. The results clearly show that the C-terminal region of group II chaperonins contributes to their interactions with prefoldin, the transfer of the substrate protein from prefoldin and its refolding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family.

    PubMed

    Wilson, Wayne A; Pradhan, Prajakta; Madhan, Nayasha; Gist, Galen C; Brittingham, Andrew

    2017-07-01

    Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. Twisting and subunit rotation in single FOF1-ATP synthase

    PubMed Central

    Sielaff, Hendrik; Börsch, Michael

    2013-01-01

    FOF1-ATP synthases are ubiquitous proton- or ion-powered membrane enzymes providing ATP for all kinds of cellular processes. The mechanochemistry of catalysis is driven by two rotary nanomotors coupled within the enzyme. Their different step sizes have been observed by single-molecule microscopy including videomicroscopy of fluctuating nanobeads attached to single enzymes and single-molecule Förster resonance energy transfer. Here we review recent developments of approaches to monitor the step size of subunit rotation and the transient elastic energy storage mechanism in single FOF1-ATP synthases. PMID:23267178

  2. Multiple defects in muscle glycogen synthase activity contribute to reduced glycogen synthesis in non-insulin dependent diabetes mellitus.

    PubMed Central

    Thorburn, A W; Gumbiner, B; Bulacan, F; Brechtel, G; Henry, R R

    1991-01-01

    To define the mechanisms of impaired muscle glycogen synthase and reduced glycogen formation in non-insulin dependent diabetes mellitus (NIDDM), glycogen synthase activity was kinetically analyzed during the basal state and three glucose clamp studies (insulin approximately equal to 300, 700, and 33,400 pmol/liter) in eight matched nonobese NIDDM and eight control subjects. Muscle glycogen content was measured in the basal state and following clamps at insulin levels of 33,400 pmol/liter. NIDDM subjects had glucose uptake matched to controls in each clamp by raising serum glucose to 15-20 mmol/liter. The insulin concentration required to half-maximally activate glycogen synthase (ED50) was approximately fourfold greater for NIDDM than control subjects (1,004 +/- 264 vs. 257 +/- 110 pmol/liter, P less than 0.02) but the maximal insulin effect was similar. Total glycogen synthase activity was reduced approximately 38% and glycogen content was approximately 30% lower in NIDDM. A positive correlation was present between glycogen content and glycogen synthase activity (r = 0.51, P less than 0.01). In summary, defects in muscle glycogen synthase activity and reduced glycogen content are present in NIDDM. NIDDM subjects also have less total glycogen synthase activity consistent with reduced functional mass of the enzyme. These findings and the correlation between glycogen synthase activity and glycogen content support the theory that multiple defects in glycogen synthase activity combine to cause reduced glycogen formation in NIDDM. PMID:1899428

  3. Crystallization of Δ{sup 1}-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi

    Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase from C. sativa was crystallized. The crystal diffracted to 2.7 Å resolution with sufficient quality for further structure determination. Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 Mmore » sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å{sup 3} Da{sup −1} assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively.« less

  4. Reprogramming the Chemodiversity of Terpenoid Cyclization by Remolding the Active Site Contour of epi-Isozizaene Synthase

    PubMed Central

    2015-01-01

    The class I terpenoid cyclase epi-isozizaene synthase (EIZS) utilizes the universal achiral isoprenoid substrate, farnesyl diphosphate, to generate epi-isozizaene as the predominant sesquiterpene cyclization product and at least five minor sesquiterpene products, making EIZS an ideal platform for the exploration of fidelity and promiscuity in a terpenoid cyclization reaction. The hydrophobic active site contour of EIZS serves as a template that enforces a single substrate conformation, and chaperones subsequently formed carbocation intermediates through a well-defined mechanistic sequence. Here, we have used the crystal structure of EIZS as a guide to systematically remold the hydrophobic active site contour in a library of 26 site-specific mutants. Remolded cyclization templates reprogram the reaction cascade not only by reproportioning products generated by the wild-type enzyme but also by generating completely new products of diverse structure. Specifically, we have tripled the overall number of characterized products generated by EIZS. Moreover, we have converted EIZS into six different sesquiterpene synthases: F96A EIZS is an (E)-β-farnesene synthase, F96W EIZS is a zizaene synthase, F95H EIZS is a β-curcumene synthase, F95M EIZS is a β-acoradiene synthase, F198L EIZS is a β-cedrene synthase, and F96V EIZS and W203F EIZS are (Z)-γ-bisabolene synthases. Active site aromatic residues appear to be hot spots for reprogramming the cyclization cascade by manipulating the stability and conformation of critical carbocation intermediates. A majority of mutant enzymes exhibit only relatively modest 2–100-fold losses of catalytic activity, suggesting that residues responsible for triggering substrate ionization readily tolerate mutations deeper in the active site cavity. PMID:24517311

  5. A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla.

    PubMed

    Sato-Masumoto, Naoko; Ito, Michiho

    2014-06-01

    Geraniol and linalool are acyclic monoterpenes found in plant essential oils that have attracted much attention for their commercial use and in pharmaceutical studies. They are synthesized from geranyl diphosphate (GDP) by geraniol and linalool synthases, respectively. Both synthases are very similar at the amino acid level and share the same substrate; however, the position of the GDP to which they introduce hydroxyl groups is different. In this study, the mechanisms underlying the regiospecific hydroxylation of geraniol and linalool synthases were investigated using a domain swapping approach and site-directed mutagenesis in perilla. Sequences of the synthases were divided into ten domains (domains I to IV-4), and each corresponding domain was exchanged between both enzymes. It was shown that different regions were important for the formation of geraniol and linalool, namely, domains IV-1 and -4 for geraniol, and domains III-b, III-d, and IV-4 for linalool. These results suggested that the conformation of carbocation intermediates and their electron localization were seemingly to be different between geraniol and linalool synthases. Further, five amino acids in domain IV-4 were apparently indispensable for the formation of geraniol and linalool. According to three-dimensional structural models of the synthases, these five residues seemed to be responsible for the different spatial arrangement of the amino acid at H524 in the case of geraniol synthase, while N526 is the corresponding residue in linalool synthase. These results suggested that the side-chains of these five amino acids, in combination with several relevant domains, localized the positive charge in the carbocation intermediate to determine the position of the introduced hydroxyl group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases.

    PubMed

    Cheng, Jiujun; Charles, Trevor C

    2016-09-01

    Bacterially produced biodegradable polyhydroxyalkanoates (PHAs) with versatile properties can be achieved using different PHA synthases (PhaCs). This work aims to expand the diversity of known PhaCs via functional metagenomics and demonstrates the use of these novel enzymes in PHA production. Complementation of a PHA synthesis-deficient Pseudomonas putida strain with a soil metagenomic cosmid library retrieved 27 clones expressing either class I, class II, or unclassified PHA synthases, and many did not have close sequence matches to known PhaCs. The composition of PHA produced by these clones was dependent on both the supplied growth substrates and the nature of the PHA synthase, with various combinations of short-chain-length (SCL) and medium-chain-length (MCL) PHA. These data demonstrate the ability to isolate diverse genes for PHA synthesis by functional metagenomics and their use for the production of a variety of PHA polymer and copolymer mixtures.

  7. Gene cloning and overexpression of a geranylgeranyl diphosphate synthase of an extremely thermophilic bacterium, Thermus thermophilus.

    PubMed

    Ohto, C; Ishida, C; Koike-Takeshita, A; Yokoyama, K; Muramatsu, M; Nishino, T; Obata, S

    1999-02-01

    A geranylgeranyl diphosphate (GGPP) synthase gene of an extremely thermophilic bacterium, Thermus thermophilus, was cloned and sequenced. T. thermophilus GGPP synthase, overexpressed in Escherichia coli cells as a glutathione S-transferase fusion protein, was purified and characterized. The fusion protein, retaining thermostability, formed a homodimer, and showed higher specific activity than did a partially purified thermostable enzyme previously reported. Optimal reaction conditions and kinetic parameters were also examined. The deduced amino acid sequence indicated that T. thermophilus GGPP synthase was excluded from the group of bacterial type GGPP synthases and lacked the insertion amino acid residues in the first aspartate-rich motif as do archaeal and eukaryotic short-chain prenyltransferases.

  8. Evolution of flavone synthase I from parsley flavanone 3beta-hydroxylase by site-directed mutagenesis.

    PubMed

    Gebhardt, Yvonne Helen; Witte, Simone; Steuber, Holger; Matern, Ulrich; Martens, Stefan

    2007-07-01

    Flavanone 3beta-hydroxylase (FHT) and flavone synthase I (FNS I) are 2-oxoglutarate-dependent dioxygenases with 80% sequence identity, which catalyze distinct reactions in flavonoid biosynthesis. However, FNS I has been reported exclusively from a few Apiaceae species, whereas FHTs are more abundant. Domain-swapping experiments joining the N terminus of parsley (Petroselinum crispum) FHT with the C terminus of parsley FNS I and vice versa revealed that the C-terminal portion is not essential for FNS I activity. Sequence alignments identified 26 amino acid substitutions conserved in FHT versus FNS I genes. Homology modeling, based on the related anthocyanidin synthase structure, assigned seven of these amino acids (FHT/FNS I, M106T, I115T, V116I, I131F, D195E, V200I, L215V, and K216R) to the active site. Accordingly, FHT was modified by site-directed mutagenesis, creating mutants encoding from one to seven substitutions, which were expressed in yeast (Saccharomyces cerevisiae) for FNS I and FHT assays. The exchange I131F in combination with either M106T and D195E or L215V and K216R replacements was sufficient to confer some FNS I side activity. Introduction of all seven FNS I substitutions into the FHT sequence, however, caused a nearly complete change in enzyme activity from FHT to FNS I. Both FHT and FNS I were proposed to initially withdraw the beta-face-configured hydrogen from carbon-3 of the naringenin substrate. Our results suggest that the 7-fold substitution affects the orientation of the substrate in the active-site pocket such that this is followed by syn-elimination of hydrogen from carbon-2 (FNS I reaction) rather than the rebound hydroxylation of carbon-3 (FHT reaction).

  9. Characterization of ent-kaurene synthase and kaurene oxidase involved in gibberellin biosynthesis from Scoparia dulcis.

    PubMed

    Yamamura, Yoshimi; Taguchi, Yukari; Ichitani, Kei; Umebara, Io; Ohshita, Ayako; Kurosaki, Fumiya; Lee, Jung-Bum

    2018-03-01

    Gibberellins (GAs) are ubiquitous diterpenoids in higher plants, whereas some higher plants produce unique species-specific diterpenoids. In GA biosynthesis, ent-kaurene synthase (KS) and ent-kaurene oxidase (KO) are key players which catalyze early step(s) of the cyclization and oxidation reactions. We have studied the functional characterization of gene products of a KS (SdKS) and two KOs (SdKO1 and SdKO2) involved in GA biosynthesis in Scoparia dulcis. Using an in vivo heterologous expression system of Escherichia coli, we found that SdKS catalyzed a cyclization reaction from ent-CPP to ent-kaurene and that the SdKOs oxidized ent-kaurene to ent-kaurenoic acid after modification of the N-terminal region for adaptation to the E. coli expression system. The real-time PCR results showed that the SdKS, SdKO1 and SdKO2 genes were mainly expressed in the root and lateral root systems, which are elongating tissues. Based on these results, we suggest that these three genes may be responsible for the metabolism of GAs in S. dulcis.

  10. Characterization of the Sesbania rostrata Phytochelatin Synthase Gene: Alternative Splicing and Function of Four Isoforms

    PubMed Central

    Li, An-Ming; Yu, Bing-Yun; Chen, Fu-Hua; Gan, Hui-Yan; Yuan, Jian-Gang; Qiu, Rongliang; Huang, Jun-Chao; Yang, Zhong-Yi; Xu, Zeng-Fu

    2009-01-01

    Phytochelatins (PCs) play an important role in detoxification of heavy metals in plants. PCs are synthesized from glutathione by phytochelatin synthase (PCS), a dipeptidyltransferase. Sesbania rostrata is a tropical legume plant that can tolerate high concentrations of Cd and Zn. In this study, the S. rostrata PCS gene (SrPCS) and cDNAs were isolated and characterized. Southern blot and sequence analysis revealed that a single copy of the SrPCS gene occurs in the S. rostrata genome, and produces four different SrPCS mRNAs and proteins, SrPCS1–SrPCS4, by alternative splicing of the SrPCS pre-mRNA. The SrPCS1 and SrPCS3 proteins conferred Cd tolerance when expressed in yeast cells, whereas the SrPCS2 and SrPCS4 proteins, which lack the catalytic triad and the N-terminal domains, did not. These results suggested that SrPCS1 and SrPCS3 have potential applications in genetic engineering of plants for enhancing heavy metal tolerance and phytoremediation of contaminated soils. PMID:20111680

  11. Characterization of the Sesbania rostrata phytochelatin synthase gene: alternative splicing and function of four isoforms.

    PubMed

    Li, An-Ming; Yu, Bing-Yun; Chen, Fu-Hua; Gan, Hui-Yan; Yuan, Jian-Gang; Qiu, Rongliang; Huang, Jun-Chao; Yang, Zhong-Yi; Xu, Zeng-Fu

    2009-07-24

    Phytochelatins (PCs) play an important role in detoxification of heavy metals in plants. PCs are synthesized from glutathione by phytochelatin synthase (PCS), a dipeptidyltransferase. Sesbania rostrata is a tropical legume plant that can tolerate high concentrations of Cd and Zn. In this study, the S. rostrata PCS gene (SrPCS) and cDNAs were isolated and characterized. Southern blot and sequence analysis revealed that a single copy of the SrPCS gene occurs in the S. rostrata genome, and produces four different SrPCS mRNAs and proteins, SrPCS1-SrPCS4, by alternative splicing of the SrPCS pre-mRNA. The SrPCS1 and SrPCS3 proteins conferred Cd tolerance when expressed in yeast cells, whereas the SrPCS2 and SrPCS4 proteins, which lack the catalytic triad and the N-terminal domains, did not. These results suggested that SrPCS1 and SrPCS3 have potential applications in genetic engineering of plants for enhancing heavy metal tolerance and phytoremediation of contaminated soils.

  12. Transgene silencing of sucrose synthase in alfalfa stem vascular tissue by a truncated phosphoenolpyruvate carboxylase: sucrose synthase construct

    USDA-ARS?s Scientific Manuscript database

    An important role of sucrose synthase (SUS, EC 2.4.1.13) in plants is to provide UDP-glucose needed for cellulose synthesis in cell walls. We examined if over-expressing SUS in alfalfa (Medicago sativa L.) would increase cellulose content of stem cell walls. Alfalfa plants were transformed with two ...

  13. Sesquiterpene furan compound CJ-01, a novel chitin synthase 2 inhibitor from Chloranthus japonicus SIEB.

    PubMed

    Yim, Nam Hui; Hwang, Eui Il; Yun, Bong Sik; Park, Ki Duk; Moon, Jae Sun; Lee, Sang Han; Sung, Nack Do; Kim, Sung Uk

    2008-05-01

    A novel sesquiterpene furan compound CJ-01 was isolated from the methanol extract of the whole plant of Chloranthus japonicus SIEB. by monitoring the inhibitory activity of chitin synthase 2 from Saccharomyces cerevisiae. Based on spectroscopic analysis, the structure of compound CJ-01 was determined as 3,4,8a-trimethyl-4a,7,8,8a-tetrahydro-4a-naphto[2,3-b]furan-9-one. The compound inhibited chitin synthase 2 of Saccharomyces cerevisiae in a dose-dependent manner with an IC50 of 39.6 microg/ml, whereas it exhibited no inhibitory activities against chitin synthase 1 and 3 of S. cerevisiae up to 280 microg/ml. CJ-01 has 1.7-fold stronger inhibitory activity than polyoxin D (IC50=70 microg/ml), a well-known chitin synthase inhibitor. These results indicate that the compound is a specific inhibitor of chitin synthase 2 from S. cerevisiae. In addition, CJ-01 showed antifungal activities against various human and phytopathogenic fungi. Therefore, the compound might be an interesting lead to develop effective antifungal agents.

  14. Superconducting Cable Termination

    DOEpatents

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  15. Energy transduction in the F1 motor of ATP synthase.

    PubMed

    Wang, H; Oster, G

    1998-11-19

    ATP synthase is the universal enzyme that manufactures ATP from ADP and phosphate by using the energy derived from a transmembrane protonmotive gradient. It can also reverse itself and hydrolyse ATP to pump protons against an electrochemical gradient. ATP synthase carries out both its synthetic and hydrolytic cycles by a rotary mechanism. This has been confirmed in the direction of hydrolysis after isolation of the soluble F1 portion of the protein and visualization of the actual rotation of the central 'shaft' of the enzyme with respect to the rest of the molecule, making ATP synthase the world's smallest rotary engine. Here we present a model for this engine that accounts for its mechanochemical behaviour in both the hydrolysing and synthesizing directions. We conclude that the F1 motor achieves its high mechanical torque and almost 100% efficiency because it converts the free energy of ATP binding into elastic strain, which is then released by a coordinated kinetic and tightly coupled conformational mechanism to create a rotary torque.

  16. Energy transduction in the F1 motor of ATP synthase

    NASA Astrophysics Data System (ADS)

    Wang, Hongyun; Oster, George

    1998-11-01

    ATP synthase is the universal enzyme that manufactures ATP from ADP and phosphate by using the energy derived from a transmembrane protonmotive gradient. It can also reverse itself and hydrolyse ATP to pump protons against an electrochemical gradient. ATP synthase carries out both its synthetic and hydrolytic cycles by a rotary mechanism. This has been confirmed in the direction of hydrolysis, after isolation of the soluble F1 portion of the protein and visualization of the actual rotation of the central `shaft' of the enzyme with respect to the rest of the molecule, making ATP synthase the world's smallest rotary engine. Here we present a model for this engine that accounts for its mechanochemical behaviour in both the hydrolysing and synthesizing directions. We conclude that the F1 motor achieves its high mechanical torque and almost 100% efficiency because it converts the free energy of ATP binding into elastic strain, which is then released by a coordinated kinetic and tightly coupled conformational mechanism to create a rotary torque.

  17. Regulation of expression, activity and localization of fungal chitin synthases

    PubMed Central

    Rogg, Luise E.; Fortwendel, Jarrod R.; Juvvadi, Praveen R.; Steinbach, William J.

    2013-01-01

    The fungal cell wall represents an attractive target for pharmacologic inhibition, as many of the components are fungal-specific. Though targeted inhibition of β-glucan synthesis is effective treatment for certain fungal infections, the ability of the cell wall to dynamically compensate via the cell wall integrity pathway may limit overall efficacy. To date, chitin synthesis inhibitors have not been successfully deployed in the clinical setting. Fungal chitin synthesis is a complex and highly regulated process. Regulation of chitin synthesis occurs on multiple levels, thus targeting of these regulatory pathways may represent an exciting alternative approach. A variety of signaling pathways have been implicated in chitin synthase regulation, at both transcriptional and post-transcriptional levels. Recent research suggests that localization of chitin synthases likely represents a major regulatory mechanism. However, much of the regulatory machinery is not necessarily shared among different chitin synthases. Thus, an in depth understanding of the precise roles of each protein in cell wall maintenance and repair will be essential to identifying the most likely therapeutic targets. PMID:21526913

  18. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    PubMed

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.

  19. Crystal structure of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the ESKAPE pathogen Acinetobacter baumannii

    PubMed Central

    Sutton, Kristin A.; Breen, Jennifer; Russo, Thomas A.; Schultz, L. Wayne; Umland, Timothy C.

    2016-01-01

    The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301–Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate. PMID:26919521

  20. Crystal structure of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the ESKAPE pathogen Acinetobacter baumannii.

    PubMed

    Sutton, Kristin A; Breen, Jennifer; Russo, Thomas A; Schultz, L Wayne; Umland, Timothy C

    2016-03-01

    The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301-Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate.

  1. SUMO-fusion, purification, and characterization of a (+)-zizaene synthase from Chrysopogon zizanioides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartwig, S.; Frister, T.; Alemdar, S.

    2015-03-20

    An uncharacterized plant cDNA coding for a polypeptide presumably having sesquiterpene synthase activity, was expressed in soluble and active form. Two expression strategies were evaluated in Escherichia coli. The enzyme was fused to a highly soluble SUMO domain, in addition to being produced in an unfused form by a cold-shock expression system. Yields up to ∼325 mg/L{sup −1} were achieved in batch cultivations. The 6x-His-tagged enzyme was purified employing an Ni{sup 2+}-IMAC-based procedure. Identity of the protein was established by Western Blot analysis as well as peptide mass fingerprinting. A molecular mass of 64 kDa and an isoelectric point of pImore » 4.95 were determined by 2D gel electrophoresis. Cleavage of the fusion domain was possible by digestion with specific SUMO protease. The synthase was active in Mg{sup 2+} containing buffer and catalyzed the production of (+)-zizaene (syn. khusimene), a precursor of khusimol, from farnesyl diphosphate. Product identity was confirmed by GC–MS and comparison of retention indices. Enzyme kinetics were determined by measuring initial reaction rates for the product, using varying substrate concentrations. By assuming a Michaelis–Menten model, kinetic parameters of K{sub M} = 1.111 μM (±0.113), v{sub max} = 0.3245 μM min{sup −1} (±0.0035), k{sub cat} = 2.95 min{sup −1}, as well as a catalytic efficiency k{sub cat}/K{sub M} = 4.43 × 10{sup 4} M{sup −1} s{sup −1} were calculated. Fusion to a SUMO moiety can substantially increase soluble expression levels of certain hard to express terpene synthases in E. coli. The kinetic data determined for the recombinant synthase are comparable to other described plant sesquiterpene synthases and in the typical range of enzymes belonging to the secondary metabolism. This leaves potential for optimizing catalytic parameters through methods like directed evolution. - Highlights: • Uncharacterized (+)-zizaene synthase from C. zizanoides was

  2. Crystallographic structure of the turbine C-ring from spinach chloroplast F-ATP synthase

    PubMed Central

    Balakrishna, Asha Manikkoth; Seelert, Holger; Marx, Sven-Hendric; Dencher, Norbert A.; Grüber, Gerhard

    2014-01-01

    In eukaryotic and prokaryotic cells, F-ATP synthases provide energy through the synthesis of ATP. The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b’ and c. Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector. Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a=144.420, b=99.295, c=123.51 Å, and β=104.34° and diffracted to 4.5 Å resolution. Each c-ring contains 14 monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å and an inner ring width of 40 Å. PMID:27919036

  3. Bank Terminals

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In the photo, employees of the UAB Bank, Knoxville, Tennessee, are using Teller Transaction Terminals manufactured by SCI Systems, Inc., Huntsville, Alabama, an electronics firm which has worked on a number of space projects under contract with NASA. The terminals are part of an advanced, computerized financial transaction system that offers high efficiency in bank operations. The key to the system's efficiency is a "multiplexing" technique developed for NASA's Space Shuttle. Multiplexing is simultaneous transmission of large amounts of data over a single transmission link at very high rates of speed. In the banking application, a small multiplex "data bus" interconnects all the terminals and a central computer which stores information on clients' accounts. The data bus replaces the maze-of wiring that would be needed to connect each terminal separately and it affords greater speed in recording transactions. The SCI system offers banks real-time data management through constant updating of the central computer. For example, a check is immediately cancelled at the teller's terminal and the computer is simultaneously advised of the transaction; under other methods, the check would be cancelled and the transaction recorded at the close of business. Teller checkout at the end of the day, conventionally a time-consuming matter of processing paper, can be accomplished in minutes by calling up a summary of the day's transactions. SCI manufactures other types of terminals for use in the system, such as an administrative terminal that provides an immediate printout of a client's account, and another for printing and recording savings account deposits and withdrawals. SCI systems have been installed in several banks in Tennessee, Arizona, and Oregon and additional installations are scheduled this year.

  4. Lapaquistat acetate: development of a squalene synthase inhibitor for the treatment of hypercholesterolemia.

    PubMed

    Stein, Evan A; Bays, Harold; O'Brien, Dennis; Pedicano, Jim; Piper, Edward; Spezzi, Andrea

    2011-05-10

    Lapaquistat acetate is a squalene synthase inhibitor investigated for the treatment of hypercholesterolemia. This report summarizes the phase 2 and 3 results from the lapaquistat clinical program, which was halted at an advanced stage as a result of potential hepatic safety issues. Efficacy and safety data were pooled from 12 studies (n=6151). These were 6- to 96-week randomized, double-blind, parallel, placebo- or active-controlled trials with lapaquistat monotherapy or coadministration with other lipid-altering drugs in dyslipidemic patients, including a large (n=2121) 96-week safety study. All studies included lapaquistat 100 mg daily; 5 included 50 mg; and 1 included 25 mg. The main outcome measures were the percent change in low-density lipoprotein cholesterol, secondary lipid/metabolic parameters, and overall safety. Lapaquistat 100 mg significantly decreased low-density lipoprotein cholesterol by 21.6% in monotherapy and by 18.0% in combination with a statin. It also reduced other cardiovascular risk markers, such as C-reactive protein. Total adverse events were higher for lapaquistat than placebo, although individual events were generally similar. At 100 mg, there was an increase in alanine aminotransferase value ≥3 times the upper limit of normal on ≥2 consecutive visits (2.0% versus 0.3% for placebo in the pooled efficacy studies; 2.7% versus 0.7% for low-dose atorvastatin in the long-term study). Two patients receiving lapaquistat 100 mg met the Hy Law criteria of alanine aminotransferase elevation plus increased total bilirubin. Squalene synthase inhibition with lapaquistat acetate, alone or in combination with statins, effectively lowered low-density lipoprotein cholesterol in a dose-dependent manner. Elevations in alanine aminotransferase, combined with a rare increase in bilirubin, presented potential hepatic safety issues, resulting in termination of development. The lapaquistat experience illustrates the current challenges in lipid

  5. Characterization of two trpE genes encoding anthranilate synthase {alpha}-subunit in Azospirillum brasilense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge Shimei; Xie Baoen; Chen Sanfeng

    2006-03-10

    The previous report from our laboratory has recently identified a new trpE gene (termed trpE {sub 2}) which exists independently in Azospirillum brasilense Yu62. In this study, amplification of trpE(G) (termed trpE {sub 1}(G) here) confirmed that there are two copies of trpE gene, one trpE being fused into trpG while the other trpE existed independently. This is First report to suggest that two copies of the trpE gene exist in this bacterium. Comparison of the nucleotide sequence demonstrated that putative leader peptide, terminator, and anti-terminator were found upstream of trpE {sub 1}(G) while these sequence features did not existmore » in front of trpE {sub 2}. The {beta}-galactosidase activity of an A. brasilense strain carrying a trpE {sub 2}-lacZ fusion remained constant at different tryptophan concentrations, but the {beta}-galactosidase activity of the same strain carrying a trpE {sub 1}(G)-lacZ fusion decreased as the tryptophan concentration increased. These data suggest that the expression of trpE {sub 1}(G) is regulated at the transcriptional level by attenuation while trpE {sub 2} is constantly expressed. The anthranilate synthase assays with trpE {sub 1}(G){sup -} and trpE {sub 2} {sup -} mutants demonstrated that TrpE{sub 1}(G) fusion protein is feedback inhibited by tryptophan while TrpE{sub 2} protein is not. We also found that both trpE {sub 1}(G) and trpE {sub 2} gene products were involved in IAA synthesis.« less

  6. Rhizobium meliloti anthranilate synthase gene: cloning, sequence, and expression in Escherichia coli.

    PubMed Central

    Bae, Y M; Holmgren, E; Crawford, I P

    1989-01-01

    We determined the DNA sequence of the Rhizobium meliloti gene encoding anthranilate synthase, the first enzyme of the tryptophan pathway. Sequences similar to those seen for the two subunits of the enzyme as found in all other procaryotic species studied are present in a single open reading frame of 729 codons. This apparent gene fusion joins the C terminus of the large subunit (TrpE) to the N terminus of the small subunit (TrpG) through a short connecting segment. We designate the fused gene trpE(G). The gene is flanked by a typical rho-independent terminator at the 3' end and a complex regulatory region at the 5' end resembling those of operons under transcriptional attenuation control. The location of the promoter was determined by S1 nuclease protection, using Rhizobium mRNA. Although this promoter was inactive in Escherichia coli, mutations eliciting activity were easily obtained. One of these was a C----T change at position -9 in the -10 region. The +1 position of the mRNA is the first base of the initiation codon of the leader peptide, implying that unlike trpE(G), which has a normal Shine-Dalgarno sequence, the leader peptide gene lacks a ribosome-binding site. Images PMID:2656657

  7. Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase from Babesia bovis

    PubMed Central

    Begley, Darren W.; Edwards, Thomas E.; Raymond, Amy C.; Smith, Eric R.; Hartley, Robert C.; Abendroth, Jan; Sankaran, Banumathi; Lorimer, Donald D.; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.

    2011-01-01

    Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase. Although thymidylate synthase is highly conserved across organisms, the bifunctional form of this enzyme is relatively uncommon in nature. The structural characterization of dihydrofolate reductase-thymidylate synthase in Babesia bovis, the causative agent of babesiosis in livestock cattle, is reported here. The apo state is compared with structures that contain dUMP, NADP and two different antifolate inhibitors: pemetrexed and raltitrexed. The complexes reveal modes of binding similar to that seen in drug-resistant malaria strains and point to the utility of applying structural studies with proven cancer chemotherapies towards infectious disease research. PMID:21904052

  8. Channel and terminal description of the ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Abbe, B. S.; Agan, M. J.; Girardey, C. C.; Jedrey, T. C.

    1994-01-01

    The Advanced Communications Technology Satellite (ACTS) Mobile Terminal (AMT) is a proof-of-concept K/Ka-band mobile satellite communications terminal under development by NASA at JPL. Currently the AMT is undergoing systems integration and testing in preparation for a July 1993 ACTS launch and the subsequent commencement of mobile experiments in the fall of 1993. The AMT objectives are presented, followed by a discussion of the AMT communications channel and the mobile terminal's design and performance.

  9. Channel and terminal description of the ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Abbe, B. S.; Agan, M. J.; Girardey, C. C.; Jedrey, T. C.

    1993-01-01

    The Advanced Communications Technology Satellite (ACTS) Mobile Terminal (AMT) is a proof-of-concept K/Ka-band mobile satellite communications terminal under development by NASA at JPL. Currently the AMT is undergoing system integration and test in preparation for a July 1993 ACTS launch and the subsequent commencement of mobile experiments in the fall of 1993. The AMT objectives are presented followed by a discussion of the AMT communications channel and mobile terminal design and performance.

  10. Plac8-dependent and inducible NO synthase-dependent mechanisms clear Chlamydia muridarum infections from the genital tract.

    PubMed

    Johnson, Raymond M; Kerr, Micah S; Slaven, James E

    2012-02-15

    Chlamydia trachomatis urogenital serovars replicate predominantly in genital tract epithelium. This tissue tropism poses a unique challenge for host defense and vaccine development. Studies utilizing the Chlamydia muridarum mouse model have shown that CD4 T cells are critical for clearing genital tract infections. In vitro studies have shown that CD4 T cells terminate infection by upregulating epithelial inducible NO synthase (iNOS) transcription and NO production. However, this mechanism is not critical, as iNOS-deficient mice clear infections normally. We recently showed that a subset of Chlamydia-specific CD4 T cell clones could terminate replication in epithelial cells using an iNOS-independent mechanism requiring T cell degranulation. We advance that work using microarrays to compare iNOS-dependent and iNOS-independent CD4 T cell clones. Plac8 was differentially expressed by clones having the iNOS-independent mechanism. Plac8-deficient mice had delayed clearance of infection, and Plac8-deficient mice treated with the iNOS inhibitor N-monomethyl-l-arginine were largely unable to resolve genital tract infections over 8 wk. These results demonstrate that there are two independent and redundant T cell mechanisms for clearing C. muridarum genital tract infections: one dependent on iNOS, and the other dependent on Plac8. Although T cell subsets are routinely defined by cytokine profiles, there may be important subdivisions by effector function, in this case CD4(Plac8).

  11. Native granule associated short chain length polyhydroxyalkanoate synthase from a marine derived Bacillus sp. NQ-11/A2.

    PubMed

    Prabhu, Nimali N; Santimano, Maria Celisa; Mavinkurve, Suneela; Bhosle, Saroj N; Garg, Sandeep

    2010-01-01

    A rapidly growing marine derived Bacillus sp. strain NQ-11/A2, identified as Bacillus megaterium, accumulated 61% polyhydroxyalkanoate by weight. Diverse carbon sources served as substrates for the accumulation of short chain length polyhydroxyalkanoate. Three to nine granules either single or attached as buds could be isolated intact from each cell. Maximum activity of polyhydroxyalkanoate synthase was associated with the granules. Granule-bound polyhydroxyalkanoate synthase had a K(m) of 7.1 x 10(-5) M for DL-beta-hydroxybutyryl-CoA. Temperature and pH optima for maximum activity were 30 degrees C and 7.0, respectively. Sodium ions were required for granule-bound polyhydroxyalkanoate synthase activity and inhibited by potassium. Granule-bound polyhydroxyalkanoate synthase was apparently covalently bound to the polyhydroxyalkanoate-core of the granules and affected by the chaotropic reagent urea. Detergents inhibited the granule-bound polyhydroxyalkanoate synthase drastically whilst glycerol and bovine serum albumin stabilized the synthase.

  12. Acetohydroxy acid synthase is a target for leucine containing peptide toxicity in Escherichia coli.

    PubMed Central

    Gollop, N; Tavori, H; Barak, Z

    1982-01-01

    Acetohydroxy acid synthase from a mutant resistant to leucine-containing peptides was insensitive to leucine inhibition. It is concluded that acetohydroxy acid synthase is a target for the toxicity of the high concentrations of leucine brought into Escherichia coli K-12 by leucine-containing peptides. PMID:7033214

  13. Expression, crystallization and preliminary crystallographic studies of a novel bifunctional N-­acetylglutamate synthase/kinase from Xanthomonas campestris homologous to vertebrate N-acetylglutamate synthase

    PubMed Central

    Shi, Dashuang; Caldovic, Ljubica; Jin, Zhongmin; Yu, Xiaolin; Qu, Qiuhao; Roth, Lauren; Morizono, Hiroki; Hathout, Yetrib; Allewell, Norma M.; Tuchman, Mendel

    2006-01-01

    A novel N-acetylglutamate synthase/kinase bifunctional enzyme of arginine biosynthesis that was homologous to vertebrate N-acetylglutamate synthases was identified in Xanthomonas campestris. The protein was overexpressed, purified and crystallized. The crystals belong to the hexagonal space group P6222, with unit-cell parameters a = b = 134.60, c = 192.11 Å, and diffract to about 3.0 Å resolution. Selenomethionine-substituted recombinant protein was produced and selenomethionine substitution was verified by mass spectroscopy. Multiple anomalous dispersion (MAD) data were collected at three wavelengths at SER-CAT, Advanced Photon Source, Argonne National Laboratory. Structure determination is under way using the MAD phasing method. PMID:17142901

  14. In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning.

    PubMed

    Formentini, Laura; Pereira, Marta P; Sánchez-Cenizo, Laura; Santacatterina, Fulvio; Lucas, José J; Navarro, Carmen; Martínez-Serrano, Alberto; Cuezva, José M

    2014-04-01

    A key transducer in energy conservation and signaling cell death is the mitochondrial H(+)-ATP synthase. The expression of the ATPase inhibitory factor 1 (IF1) is a strategy used by cancer cells to inhibit the activity of the H(+)-ATP synthase to generate a ROS signal that switches on cellular programs of survival. We have generated a mouse model expressing a mutant of human IF1 in brain neurons to assess the role of the H(+)-ATP synthase in cell death in vivo. The expression of hIF1 inhibits the activity of oxidative phosphorylation and mediates the shift of neurons to an enhanced aerobic glycolysis. Metabolic reprogramming induces brain preconditioning affording protection against quinolinic acid-induced excitotoxicity. Mechanistically, preconditioning involves the activation of the Akt/p70S6K and PARP repair pathways and Bcl-xL protection from cell death. Overall, our findings provide the first in vivo evidence highlighting the H(+)-ATP synthase as a target to prevent neuronal cell death.

  15. Acute electroacupuncture inhibits nitric oxide synthase expression in the spinal cord of neuropathic rats.

    PubMed

    Cha, Myeoung Hoon; Bai, Sun Joon; Lee, Kyung Hee; Cho, Zang Hee; Kim, Young-Bo; Lee, Hye-Jung; Lee, Bae Hwan

    2010-02-01

    To examine the effects of electroacupuncture stimulation on behavioral changes and neuronal nitric oxide synthase expression in the rat spinal cord after nerve injury. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to neuropathic surgery by tightly ligating and cutting the left tibial and sural nerves. Behavioral responses to mechanical stimulation were tested for 2 weeks post-operatively. At the end of behavioral testing, electroacupuncture stimulation was applied to ST36 (Choksamni) and SP9 (Eumleungcheon) acupoints. Immunocytochemical staining was performed to investigate changes in the expression of neuronal nitric oxide synthase-immunoreactive neurons in the L4-5 spinal cord. Mechanical allodynia was observed by nerve injury. The mechanical allodynia was decreased after electroacupuncture stimulation. Neuronal nitric oxide synthase expression was also decreased in L4-5 spinal cord by electroacupuncture treatment. These results suggest that electroacupuncture relieves mechanical allodynia in the neuropathic rats possibly by the inhibition of neuronal nitric oxide synthase expression in the spinal cord.

  16. The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase.

    PubMed

    Demissie, Zerihun A; Erland, Lauren A E; Rheault, Mark R; Mahmoud, Soheil S

    2013-03-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s(-1), respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering.

  17. Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium.

    PubMed

    d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Esposito, Davide; Donnarumma, Erminia; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2015-01-01

    Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity.

  18. Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium

    PubMed Central

    d’Emmanuele di Villa Bianca, Roberta; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2015-01-01

    Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity. PMID:26368121

  19. 29 CFR 4043.24 - Termination or partial termination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... REPORTABLE EVENTS AND CERTAIN OTHER NOTIFICATION REQUIREMENTS Post-Event Notice of Reportable Events § 4043.24 Termination or partial termination. (a) Reportable event. A reportable event occurs when the... within the meaning of section 411(d)(3) of the Code. (b) Waivers. Notice is waived for this event. ...

  20. 29 CFR 4043.24 - Termination or partial termination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... REPORTABLE EVENTS AND CERTAIN OTHER NOTIFICATION REQUIREMENTS Post-Event Notice of Reportable Events § 4043.24 Termination or partial termination. (a) Reportable event. A reportable event occurs when the... within the meaning of section 411(d)(3) of the Code. (b) Waivers. Notice is waived for this event. ...

  1. 29 CFR 4043.24 - Termination or partial termination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REPORTABLE EVENTS AND CERTAIN OTHER NOTIFICATION REQUIREMENTS Post-Event Notice of Reportable Events § 4043.24 Termination or partial termination. (a) Reportable event. A reportable event occurs when the... within the meaning of section 411(d)(3) of the Code. (b) Waivers. Notice is waived for this event. ...

  2. 29 CFR 4043.24 - Termination or partial termination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... REPORTABLE EVENTS AND CERTAIN OTHER NOTIFICATION REQUIREMENTS Post-Event Notice of Reportable Events § 4043.24 Termination or partial termination. (a) Reportable event. A reportable event occurs when the... within the meaning of section 411(d)(3) of the Code. (b) Waivers. Notice is waived for this event. ...

  3. 29 CFR 4043.24 - Termination or partial termination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REPORTABLE EVENTS AND CERTAIN OTHER NOTIFICATION REQUIREMENTS Post-Event Notice of Reportable Events § 4043.24 Termination or partial termination. (a) Reportable event. A reportable event occurs when the... within the meaning of section 411(d)(3) of the Code. (b) Waivers. Notice is waived for this event. ...

  4. (-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: Potential role of endothelial nitric oxide synthase.

    PubMed

    Ramírez-Sánchez, Israel; Rodríguez, Alonso; Moreno-Ulloa, Aldo; Ceballos, Guillermo; Villarreal, Francisco

    2016-05-01

    (-)-Epicatechin increases indicators associated with mitochondrial biogenesis in endothelial cells and myocardium. We investigated endothelial nitric oxide synthase involvement on (-)-epicatechin-induced increases in indicators associated with mitochondrial biogenesis in human coronary artery endothelial cells cultured in normal-glucose and high-glucose media, as well as to restore indicators of cardiac mitochondria from the effects of simulated diabetes. Here, we demonstrate the role of endothelial nitric oxide synthase on (-)-epicatechin-induced increases in mitochondrial proteins, transcription factors and sirtuin 1 under normal-glucose conditions. In simulated diabetes endothelial nitric oxide synthase function, mitochondrial function-associated and biogenesis-associated indicators were adversely impacted by high glucose, effects that were reverted by (-)-epicatechin. As an animal model of type 2 diabetes, 2-month old C57BL/6 mice were fed a high-fat diet for 16 weeks. Fasting and fed blood glucose levels were increased and NO plasma levels decreased. High-fat-diet-fed mice myocardium revealed endothelial nitric oxide synthase dysfunction, reduced mitochondrial activity and markers of mitochondrial biogenesis. The administration of 1 mg/kg (-)-epicatechin for 15 days by oral gavage shifted these endpoints towards control mice values. Results suggest that endothelial nitric oxide synthase mediates (-)-epicatechin-induced increases of indicators associated with mitochondrial biogenesis in endothelial cells. (-)-Epicatechin also counteracts the negative effects that high glucose or simulated type 2 diabetes has on endothelial nitric oxide synthase function. © The Author(s) 2016.

  5. Protein modelling of triterpene synthase genes from mangrove plants using Phyre2 and Swiss-model

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wati, R.; Sulistiyono, N.; Hayati, R.; Sumardi; Oku, H.; Baba, S.; Sagami, H.

    2018-03-01

    Molecular cloning of five oxidosqualene cyclases (OSC) genes from Bruguiera gymnorrhiza, Kandelia candel, and Rhizophora stylosa had previously been cloned, characterized, and encoded mono and -multi triterpene synthases. The present study analyzed protein modelling of triterpene synthase genes from mangrove using Phyre2 and Swiss-model. The diversity was noted within protein modelling of triterpene synthases using Phyre2 from sequence identity (38-43%) and residue (696-703). RsM2 was distinguishable from others for template structure; it used lanosterol synthase as a template (PDB ID: w6j.1.A). By contrast, other genes used human lanosterol synthase (1w6k.1.A). The predicted bind sites were correlated with the product of triterpene synthase, the product of BgbAS was β-amyrin, while RsM1 contained a significant amount of β-amyrin. Similarly BgLUS and KcMS, both main products was lupeol, on the other hand, RsM2 with the outcome of taraxerol. Homology modelling revealed that 696 residues of BgbAS, BgLUS, RsM1, and RsM2 (91-92% of the amino acid sequence) had been modelled with 100% confidence by the single highest scoring template using Phyre2. This coverage was higher than Swiss-model (85-90%). The present study suggested that molecular cloning of triterpene genes provides useful tools for studying the protein modelling related regulation of isoprenoids biosynthesis in mangrove forests.

  6. The role of NO synthase isoforms in PDT-induced injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Berezhnaya, E. V.; Uzdensky, A. B.

    2015-03-01

    Nitric oxide (NO) is an important second messenger, involved in the implementation of various cell functions. It regulates various physiological and pathological processes such as neurotransmission, cell responses to stress, and neurodegeneration. NO synthase is a family of enzymes that synthesize NO from L-arginine. The activity of different NOS isoforms depends both on endogenous and exogenous factors. In particular, it is modulated by oxidative stress, induced by photodynamic therapy (PDT). We have studied the possible role of NOS in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Antinecrotic and proapoptotic effects of NO on the glial cells were found using inhibitory analysis. We have shown the role of inducible NO synthase in photoinduced apoptosis and involvement of neuronal NO synthase in photoinduced necrosis of glial cells in the isolated crayfish stretch receptor. The activation of NO synthase was evaluated using NADPH-diaphorase histochemistry, a marker of neurons expressing the enzyme. The activation of NO synthase in the isolated crayfish stretch receptor was evaluated as a function of time after PDT. Photodynamic treatment induced transient increase in NO synthase activity and then slowly inhibited this enzyme.

  7. The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode†

    PubMed Central

    Caner, Sami; Nguyen, Nham; Aguda, Adeleke; Zhang, Ran; Pan, Yuan T; Withers, Stephen G; Brayer, Gary D

    2013-01-01

    Trehalose synthase (TreS) catalyzes the reversible conversion of maltose into trehalose in mycobacteria as one of three biosynthetic pathways to this nonreducing disaccharide. Given the importance of trehalose to survival of mycobacteria, there has been considerable interest in understanding the enzymes involved in its production; indeed the structures of the key enzymes in the other two pathways have already been determined. Herein, we present the first structure of TreS from Mycobacterium smegmatis, thereby providing insights into the catalytic machinery involved in this intriguing intramolecular reaction. This structure, which is of interest both mechanistically and as a potential pharmaceutical target, reveals a narrow and enclosed active site pocket within which intramolecular substrate rearrangements can occur. We also present the structure of a complex of TreS with acarbose, revealing a hitherto unsuspected oligosaccharide-binding site within the C-terminal domain. This may well provide an anchor point for the association of TreS with glycogen, thereby enhancing its role in glycogen biosynthesis and degradation. PMID:23735230

  8. Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms (GMOs).

    PubMed

    Dörries, Hans-Henno; Remus, Ivonne; Grönewald, Astrid; Grönewald, Cordt; Berghof-Jäger, Kornelia

    2010-03-01

    The number of commercially available genetically modified organisms (GMOs) and therefore the diversity of possible target sequences for molecular detection techniques are constantly increasing. As a result, GMO laboratories and the food production industry currently are forced to apply many different methods to reliably test raw material and complex processed food products. Screening methods have become more and more relevant to minimize the analytical effort and to make a preselection for further analysis (e.g., specific identification or quantification of the GMO). A multiplex real-time PCR kit was developed to detect the 35S promoter of the cauliflower mosaic virus, the terminator of the nopaline synthase gene of Agrobacterium tumefaciens, the 35S promoter from the figwort mosaic virus, and the bar gene of the soil bacterium Streptomyces hygroscopicus as the most widely used sequences in GMOs. The kit contains a second assay for the detection of plant-derived DNA to control the quality of the often processed and refined sample material. Additionally, the plant-specific assay comprises a homologous internal amplification control for inhibition control. The determined limits of detection for the five assays were 10 target copies/reaction. No amplification products were observed with DNAs of 26 bacterial species, 25 yeasts, 13 molds, and 41 not genetically modified plants. The specificity of the assays was further demonstrated to be 100% by the specific amplification of DNA derived from reference material from 22 genetically modified crops. The applicability of the kit in routine laboratory use was verified by testing of 50 spiked and unspiked food products. The herein described kit represents a simple and sensitive GMO screening method for the reliable detection of multiple GMO-specific target sequences in a multiplex real-time PCR reaction.

  9. Homocysteine threshold value based on cystathionine beta synthase and paraoxonase 1 activities in mice.

    PubMed

    Hamelet, J; Aït-Yahya-Graison, E; Matulewicz, E; Noll, C; Badel-Chagnon, A; Camproux, A-C; Demuth, K; Paul, J-L; Delabar, J M; Janel, N

    2007-12-01

    Hyperhomocysteinaemia is a metabolic disorder associated with the development of premature atherosclerosis. Among the determinants which predispose to premature thromboembolic and atherothrombotic events, serum activity of paraoxonase 1, mainly synthesized in the liver, has been shown to be a predictor of cardiovascular disease and to be negatively correlated with serum homocysteine levels in human. Even though treatments of hyperhomocysteinaemic patients ongoing cardiovascular complications are commonly used, it still remains unclear above which homocysteine level a preventive therapy should be started. In order to establish a threshold of plasma homocysteine concentration we have analyzed the hepatic cystathionine beta synthase and paraoxonase 1 activities in a moderate to intermediate murine model of hyperhomocysteinaemia. Using wild type and heterozygous cystathionine beta synthase deficient mice fed a methionine enriched diet or a control diet, we first studied the link between cystathionine beta synthase and paraoxonase 1 activities and plasma homocysteine concentration. Among the animals used in this study, we observed a negative correlation between plasma homocysteine level and cystathionine beta synthase activity (rho=-0.52, P=0.0008) or paraoxonase 1 activity (rho=-0.49, P=0.002). Starting from these results, a homocysteine cut-off value of 15 microm has been found for both cystathionine beta synthase (P=0.0003) and paraoxonase 1 (P=0.0007) activities. Our results suggest that both cystathionine beta synthase and paraoxonase 1 activities are significantly decreased in mice with a plasma homocysteine value greater than 15 microm. In an attempt to set up preventive treatment for cardiovascular disease our results indicate that treatments should be started from 15 microm of plasma homocysteine.

  10. Genetic construction and functional analysis of hybrid polyketide synthases containing heterologous acyl carrier proteins.

    PubMed Central

    Khosla, C; McDaniel, R; Ebert-Khosla, S; Torres, R; Sherman, D H; Bibb, M J; Hopwood, D A

    1993-01-01

    The gene that encodes the acyl carrier protein (ACP) of the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor A3(2) was replaced with homologs from the granaticin, oxytetracycline, tetracenomycin, and putative frenolicin polyketide synthase gene clusters. All of the replacements led to expression of functional synthases, and the recombinants synthesized aromatic polyketides similar in chromatographic properties to actinorhodin or to shunt products produced by mutants defective in the actinorhodin pathway. Some regions within the ACP were also shown to be interchangeable and allow production of a functional hybrid ACP. Structural analysis of the most abundant polyketide product of one of the recombinants by electrospray mass spectrometry suggested that it is identical to mutactin, a previously characterized shunt product of an actVII mutant (deficient in cyclase and dehydrase activities). Quantitative differences in the product profiles of strains that express the various hybrid synthases were observed. These can be explained, at least in part, by differences in ribosome-binding sites upstream of each ACP gene, implying either that the ACP concentration in some strains is rate limiting to overall PKS activity or that the level of ACP expression also influences the expression of another enzyme(s) encoded by a downstream gene(s) in the same operon as the actinorhodin ACP gene. These results reaffirm the idea that construction of hybrid polyketide synthases will be a useful approach for dissecting the molecular basis of the specificity of PKS-catalyzed reactions. However, they also point to the need for reducing the chemical complexity of the approach by minimizing the diversity of polyketide products synthesized in strains that produce recombinant polyketide synthases. Images PMID:8468280

  11. Biochemical identification of residues that discriminate between 3,4-dihydroxyphenylalanine decarboxylase and 3,4-dihydroxyphenylacetaldehyde synthase-mediated reactions.

    PubMed

    Liang, Jing; Han, Qian; Ding, Haizhen; Li, Jianyong

    2017-12-01

    In available insect genomes, there are several L-3,4-dihydroxyphenylalanine (L-dopa) decarboxylase (DDC)-like or aromatic amino acid decarboxylase (AAAD) sequences. This contrasts to those of mammals whose genomes contain only one DDC. Our previous experiments established that two DDC-like proteins from Drosophila actually mediate a complicated decarboxylation-oxidative deamination process of dopa in the presence of oxygen, leading to the formation of 3,4-dihydroxyphenylacetaldehyde (DHPA), CO 2 , NH 3, and H 2 O 2 . This contrasts to the typical DDC-catalyzed reaction, which produces CO 2 and dopamine. These DDC-like proteins were arbitrarily named DHPA synthases based on their critical role in insect soft cuticle formation. Establishment of reactions catalyzed by these AAAD-like proteins solved a puzzle that perplexed researchers for years, but to tell a true DHPA synthase from a DDC in the insect AAAD family remains problematic due to high sequence similarity. In this study, we performed extensive structural and biochemical comparisons between DHPA synthase and DDC. These comparisons identified several target residues potentially dictating DDC-catalyzed and DHPA synthase-catalyzed reactions, respectively. Comparison of DHPA synthase homology models with crystal structures of typical DDC proteins, particularly residues in the active sites, provided further insights for the roles these identified target residues play. Subsequent site-directed mutagenesis of the tentative target residues and activity evaluations of their corresponding mutants determined that active site His192 and Asn192 are essential signature residues for DDC- and DHPA synthase-catalyzed reactions, respectively. Oxygen is required in DHPA synthase-mediated process and this oxidizing agent is reduced to H 2 O 2 in the process. Biochemical assessment established that H 2 O 2 , formed in DHPA synthase-mediated process, can be reused as oxidizing agent and this active oxygen species is reduced to H 2

  12. Post-Translational Modification of Constitutive Nitric Oxide Synthase in the Penis

    PubMed Central

    Musicki, Biljana; Ross, Ashley E.; Champion, Hunter C.; Burnett, Arthur L.; Bivalacqua, Trinity J.

    2009-01-01

    Erectile dysfunction (ED) is a common men's health problem characterized by the consistent inability to sustain an erection sufficient for sexual intercourse. Basic science research on erectile physiology has been devoted to investigating the pathogenesis of ED and has led to the conclusion that ED is predominately a disease of vascular origin and/or neurogenic dysfunction. The constitutive forms of nitric oxide synthase [NOS; endothelial NOS (eNOS) and neuronal NOS (nNOS)] are important enzymes involved in the production of nitric oxide (NO) and thus regulate penile vascular homeostasis. Given the impact of endothelial- and neuronal-derived NO in penile vascular biology, a great deal of research over the past decade has focused on the role of NO synthesis from the endothelium and nitrergic nerve terminal in normal erectile physiology as well as in disease states. Loss of the functional integrity of the endothelium and subsequent endothelial dysfunction plays an integral role in the occurrence of ED. Therefore, molecular mechanisms involved in dysregulation of these NOS isoforms in the development of ED are essential to discovering the pathogenesis of ED in various disease states. This communication reviews the role of eNOS and nNOS in erectile physiology and discusses the alterations in eNOS and nNOS via post-translation modification in various vascular diseases of the penis. PMID:19342700

  13. Regulation of mouse brain glycogen synthase kinase-3 by atypical antipsychotics.

    PubMed

    Li, Xiaohua; Rosborough, Kelley M; Friedman, Ari B; Zhu, Wawa; Roth, Kevin A

    2007-02-01

    Glycogen synthase kinase-3 (GSK3) has been recognized as an important enzyme that modulates many aspects of neuronal function. Accumulating evidence implicates abnormal activity of GSK3 in mood disorders and schizophrenia, and GSK3 is a potential protein kinase target for psychotropics used in these disorders. We previously reported that serotonin, a major neurotransmitter involved in mood disorders, regulates GSK3 by acutely increasing its N-terminal serine phosphorylation. The present study was undertaken to further determine if atypical antipsychotics, which have therapeutic effects in both mood disorders and schizophrenia, can regulate phospho-Ser-GSK3 and inhibit its activity. The results showed that acute treatment of mice with risperidone rapidly increased the level of brain phospho-Ser-GSK3 in the cortex, hippocampus, striatum, and cerebellum in a dose-dependent manner. Regulation of phospho-Ser-GSK3 was a shared effect among several atypical antipsychotics, including olanzapine, clozapine, quetiapine, and ziprasidone. In addition, combination treatment of mice with risperidone and a monoamine reuptake inhibitor antidepressant imipramine or fluoxetine elicited larger increases in brain phospho-Ser-GSK3 than each agent alone. Taken together, these results provide new information suggesting that atypical antipsychotics, in addition to mood stabilizers and antidepressants, can inhibit the activity of GSK3. These findings may support the pharmacological mechanisms of atypical antipsychotics in the treatment of mood disorders.

  14. CUTIN SYNTHASE 2 Maintains Progressively Developing Cuticular Ridges in Arabidopsis Sepals.

    PubMed

    Hong, Lilan; Brown, Joel; Segerson, Nicholas A; Rose, Jocelyn K C; Roeder, Adrienne H K

    2017-04-03

    The cuticle is a crucial barrier on the aerial surfaces of land plants. In many plants, including Arabidopsis, the sepals and petals form distinctive nanoridges in their cuticles. However, little is known about how the formation and maintenance of these nanostructures is coordinated with the growth and development of the underlying cells. Here we report the characterization of the Arabidopsis cutin synthase 2 (cus2) mutant, which causes a great reduction in cuticular ridges on the mature sepal epidermis, but only a moderate effect on petal cone cell ridges. Using scanning electron microscopy and confocal live imaging combined with quantification of cellular growth, we find that cuticular ridge formation progresses down the sepal from tip to base as the sepal grows. pCUS2::GFP-GUS reporter expression coincides with cuticular ridge formation, descending the sepal from tip to base. Ridge formation also coincides with the reduction in growth rate and termination of cell division of the underlying epidermal cells. Surprisingly, cuticular ridges at first form normally in the cus2 mutant, but are lost progressively at later stages of sepal development, indicating that CUS2 is crucial for the maintenance of cuticular ridges after they are formed. Our results reveal the dynamics of both ridge formation and maintenance as the sepal grows. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  15. 14 CFR 1260.161 - Termination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Hospitals, and Other Non-Profit Organizations Termination and Enforcement § 1260.161 Termination. (a) Awards... termination conditions, including the effective date and, in the case of partial termination, the portion to... reasons for such termination, the effective date, and, in the case of partial termination, the portion to...

  16. Binding Isotope Effects for para-Aminobenzoic Acid with Dihydropteroate Synthase from Staphylococcus aureus and Plasmodium falciparum.

    PubMed

    Stratton, Christopher F; Namanja-Magliano, Hilda A; Cameron, Scott A; Schramm, Vern L

    2015-10-16

    Dihydropteroate synthase is a key enzyme in folate biosynthesis and is the target of the sulfonamide class of antimicrobials. Equilibrium binding isotope effects and density functional theory calculations indicate that the substrate binding sites for para-aminobenzoic acid on the dihydropteroate synthase enzymes from Staphylococcus aureus and Plasmodium falciparum present distinct chemical environments. Specifically, we show that para-aminobenzoic acid occupies a more sterically constrained vibrational environment when bound to dihydropteroate synthase from P. falciparum relative to that of S. aureus. Deletion of a nonhomologous, parasite-specific insert from the plasmodial dihydropteroate synthase abrogated the binding of para-aminobenzoic acid. The loop specific to P. falciparum is important for effective substrate binding and therefore plays a role in modulating the chemical environment at the substrate binding site.

  17. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    PubMed

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Impact of drought stress on specialised metabolism: Biosynthesis and the expression of monoterpene synthases in sage (Salvia officinalis).

    PubMed

    Radwan, Alzahraa; Kleinwächter, Maik; Selmar, Dirk

    2017-09-01

    In previous experiments, we demonstrated that the amount of monoterpenes in sage is increased massively by drought stress. Our current study is aimed to elucidate whether this increase is due, at least in part, to elevated activity of the monoterpene synthases responsible for the biosynthesis of essential oils in sage. Accordingly, the transcription rates of the monoterpene synthases were analyzed. Salvia officinalis plants were cultivated under moderate drought stress. The concentrations of monoterpenes as well as the expression of the monoterpene synthases were analyzed. The amount of monoterpenes massively increased in response to drought stress; it doubled after just two days of drought stress. The observed changes in monoterpene content mostly match with the patterns of monoterpene synthase expressions. The expression of bornyl diphosphate synthase was strongly up-regulated; its maximum level was reached after two days. Sabinene synthase increased gradually and reached a maximum after two weeks. In contrast, the transcript level of cineole synthase continuously declined. This study revealed that the stress related increase of biosynthesis is not only due to a "passive" shift caused by the stress related over-reduced status, but also is due - at least in part-to an "active" up-regulation of the enzymes involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa)

    USDA-ARS?s Scientific Manuscript database

    In cereal seeds mutations in one or more starch synthases lead to decreased amylopectin and increased amylose content. Here, the impact of starch synthase IIa (SSIIa or SGP-1) mutations upon durum starch was investigated. A screen of durum accessions identified two lines lacking SGP-A1, the A geno...

  20. Arginine mediated purification of trehalose-6-phosphate synthase (TPS) from Candida utilis: Its characterization and regulation.

    PubMed

    Sengupta, Shinjinee; Lahiri, Sagar; Banerjee, Shakri; Bashistha, Bipasha; Ghosh, Anil K

    2011-12-01

    Trehalose is the most important multifunctional, non-reducing disaccharide found in nature. It is synthesized in yeast by an enzyme complex: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). In the present study TPS is purified using a new methodology from Candida utilis cells by inclusion of 100mM l-arginine during cell lysis and in the mobile phase of high performance gel filtration liquid chromatography (HPGFLC). An electrophoretically homogenous TPS that was purified was a 60 kDa protein with 22.1 fold purification having a specific activity of 2.03 U/mg. Alignment of the N-terminal sequence with TPS from Saccharomyces cerevisiae confirmed the 60 kDa protein to be TPS. Optimum activity of TPS was observed at a protein concentration of 1 μg, at a temperature of 37°C and pH 8.5. Aggregation mediated enzyme regulation was indicated. Metal cofactors, especially MnCl₂, MgCl₂ and ZnSO₄, acted as stimulators. Metal chelators like CDTA and EGTA stimulated enzyme activity. Among the four glucosyl donors, the highest V(max) and lowest K(m) values were calculated as 2.96 U/mg and 1.36 mM when adenosine di phosphate synthase (ADPG) was used as substrate. Among the glucosyl acceptors, glucose-6-phosphate (G-6-P) showed maximum activity followed by fructose-6-phosphate (F-6-P). Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity with different glucosyl donors. Substrate specificity, V(max) and K(m) values provided an insight into an altered trehalose metabolic pathway in the C. utilis strain where ADPG is the preferred substrate rather than the usual substrate uridine diphosphaphate glucose (UDPG). The present work employs a new purification strategy as well as highlights an altered pathway in C. utilis. 2011 Elsevier B.V. All rights reserved.

  1. Cytosolic localization of acetohydroxyacid synthase Ilv2 and its impact on diacetyl formation during beer fermentation.

    PubMed

    Dasari, Suvarna; Kölling, Ralf

    2011-02-01

    Diacetyl (2,3-butanedione) imparts an unpleasant "butterscotch-like" flavor to alcoholic beverages such as beer, and therefore its concentration needs to be reduced below the sensory threshold before packaging. We examined the mechanisms that lead to highly elevated diacetyl formation in petite mutants of Saccharomyces cerevisiae during beer fermentations. We present evidence that elevated diacetyl formation is tightly connected to the mitochondrial import of acetohydroxyacid synthase (Ilv2), the key enzyme in the production of diacetyl. Our data suggest that accumulation of the matrix-targeted Ilv2 preprotein in the cytosol is responsible for the observed high diacetyl levels. We could show that the Ilv2 preprotein accumulates in the cytosol of petite yeasts. Furthermore, expression of an Ilv2 variant that lacks the N-terminal mitochondrial targeting sequence and thus cannot be imported into mitochondria led to highly elevated diacetyl levels comparable to a petite strain. We further show that expression of a mutant allele of the γ-subunit of the F(1)-ATPase (ATP3-5) could be an attractive way to reduce diacetyl formation by petite strains.

  2. Squalene synthase inhibition: a novel target for the management of dyslipidemia.

    PubMed

    Davidson, Michael H

    2007-01-01

    A new class of compounds, known as squalene synthase inhibitors, has recently reached phase III clinical trials and may provide another therapeutic option for clinicians to improve risk management of low-density lipoprotein cholesterol (LDL-C). The clinical need for another LDL-C-lowering therapy is evident by the inability to achieve an LDL-C target of less than 70 mg/dL in the majority of very high-risk patients on statin monotherapy. Human clinical trial data with TAK-475, a novel and potent inhibitor of squalene synthase, have not yet been published.

  3. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenitzer, Veronika; Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg; Eichner, Norbert

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report themore » heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.« less

  4. Dephosphorylation of the Core Clock Protein KaiC in the Cyanobacterial KaiABC Circadian Oscillator Proceeds via an ATP Synthase Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egli, Martin; Mori, Tetsuya; Pattanayek, Rekha

    The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro from three proteins, KaiA, KaiB, and KaiC in the presence of ATP, to tick in a temperature-compensated manner. KaiC, the central cog of this oscillator, forms a homohexamer with 12 ATP molecules bound between its N- and C-terminal domains and exhibits unusual properties. Both the N-terminal (CI) and C-terminal (CII) domains harbor ATPase activity, and the subunit interfaces between CII domains are the sites of autokinase and autophosphatase activities. Hydrolysis of ATP correlates with phosphorylation at threonine and serine sites across subunits in an orchestrated manner, suchmore » that first T432 and then S431 are phosphorylated, followed by dephosphorylation of these residues in the same order. Although structural work has provided insight into the mechanisms of ATPase and kinase, the location and mechanism of the phosphatase have remained enigmatic. From the available experimental data based on a range of approaches, including KaiC crystal structures and small-angle X-ray scattering models, metal ion dependence, site-directed mutagenesis (i.e., E318, the general base), and measurements of the associated clock periods, phosphorylation patterns, and dephosphorylation courses as well as a lack of sequence motifs in KaiC that are typically associated with known phosphatases, we hypothesized that KaiCII makes use of the same active site for phosphorylation and dephosphorlyation. We observed that wild-type KaiC (wt-KaiC) exhibits an ATP synthase activity that is significantly reduced in the T432A/S431A mutant. We interpret the first observation as evidence that KaiCII is a phosphotransferase instead of a phosphatase and the second that the enzyme is capable of generating ATP, both from ADP and P{sub i} (in a reversal of the ATPase reaction) and from ADP and P-T432/P-S431 (dephosphorylation). This new concept regarding the mechanism of dephosphorylation is also supported

  5. A Plasma Display Terminal.

    ERIC Educational Resources Information Center

    Stifle, Jack

    A graphics terminal designed for use as a remote computer input/output terminal is described. Although the terminal is intended for use in teaching applications, it has several features which make it useful in many other computer terminal applications. These features include: a 10-inch square plasma display panel, permanent storage of information…

  6. Nitric oxide synthase immunoreactivity in the nematode Trichinella britovi. Evidence for nitric oxide production by the parasite.

    PubMed

    Masetti, Massimo; Locci, Teresa; Cecchettini, Antonella; Lucchesi, Paolo; Magi, Marta; Malvaldi, Gino; Bruschi, Fabrizio

    2004-05-01

    Nitric oxide has been extensively studied as an effector molecule of the host immune response against both protozoa and helminths, but parasites can also produce this molecule, through the action of nitric oxide (NO) synthases or NO synthases-like enzymes. The aim of this study was to verify the possible production of NO by Trichinella britovi L(1) larvae and the enzymes involved in this process. The NO synthase immunoreactivity and putative nitric oxide synthase-activity was analysed using antibodies to mammalian NO synthase III and to nitrotyrosine with immunohistochemistry, gold immunocytochemistry and immunoblot analysis and NADPH-diaphorase histochemistry. Our results show that T. britovi L(1) larvae possess an enzymatic activity capable of producing NO. The localisation of this activity, according to the NADPH-diaphorase histochemistry, is both at the cuticular and the internal level. This localisation is confirmed by nitrotyrosine immunohistochemistry both under optical and electron microscopy. Using the NO synthase III antibody, a similar pattern of labelling was found: in particular, electron microscopy showed a localisation of this immunoreactivity in the cuticle and in the stichocytes, where only the alpha2 granules contained gold particles, mainly concentrated at their periphery. Four polypeptides reacting to the NO synthase III antibody are revealed by Western blotting. Their molecular weight ranged from 38 to 50 kDa. A significant reaction of the anti-nitrotyrosine antibody to polypeptides 95, 60, 48 and 39 kDa from the same sample suggested the presence of different nitrosylated proteins.

  7. Insights into the reactivation of cobalamin-dependent methionine synthase

    PubMed Central

    Koutmos, Markos; Datta, Supratim; Pattridge, Katherine A.; Smith, Janet L.; Matthews, Rowena G.

    2009-01-01

    Cobalamin-dependent methionine synthase (MetH) is a modular protein that catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine to produce methionine and tetrahydrofolate. The cobalamin cofactor, which serves as both acceptor and donor of the methyl group, is oxidized once every ≈2,000 catalytic cycles and must be reactivated by the uptake of an electron from reduced flavodoxin and a methyl group from S-adenosyl-L-methionine (AdoMet). Previous structures of a C-terminal fragment of MetH (MetHCT) revealed a reactivation conformation that juxtaposes the cobalamin- and AdoMet-binding domains. Here we describe 2 structures of a disulfide stabilized MetHCT (s-sMetHCT) that offer further insight into the reactivation of MetH. The structure of s-sMetHCT with cob(II)alamin and S-adenosyl-L-homocysteine represents the enzyme in the reactivation step preceding electron transfer from flavodoxin. The structure supports earlier suggestions that the enzyme acts to lower the reduction potential of the Co(II)/Co(I) couple by elongating the bond between the cobalt and its upper axial water ligand, effectively making the cobalt 4-coordinate, and illuminates the role of Tyr-1139 in the stabilization of this 4-coordinate state. The structure of s-sMetHCT with aquocobalamin may represent a transient state at the end of reactivation as the newly remethylated 5-coordinate methylcobalamin returns to the 6-coordinate state, triggering the rearrangement to a catalytic conformation. PMID:19846791

  8. Communications terminal breadboard

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A baseline design is presented of a digital communications link between an advanced manned spacecraft (AMS) and an earth terminal via an Intelsat 4 type communications satellite used as a geosynchronous orbiting relay station. The fabrication, integration, and testing of terminal elements at each end of the link are discussed. In the baseline link design, the information carrying capacity of the link was estimated for both the forward direction (earth terminal to AMS) and the return direction, based upon orbital geometry, relay satellite characteristics, terminal characteristics, and the improvement that can be achieved by the use of convolutional coding/Viterbi decoding techniques.

  9. Development of intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase for discriminating Curcuma species.

    PubMed

    Kita, Tomoko; Komatsu, Katsuko; Zhu, Shu; Iida, Osamu; Sugimura, Koji; Kawahara, Nobuo; Taguchi, Hiromu; Masamura, Noriya; Cai, Shao-Qing

    2016-03-01

    Various Curcuma rhizomes have been used as medicines or spices in Asia since ancient times. It is very difficult to distinguish them morphologically, especially when they are boiled and dried, which causes misidentification leading to a loss of efficacy. We developed a method for discriminating Curcuma species by intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase. This method could apply to identification of not only fresh plants but also samples of crude drugs or edible spices. By applying this method to Curcuma specimens and samples, and constructing a dendrogram based on these markers, seven Curcuma species were clearly distinguishable. Moreover, Curcuma longa specimens were geographically distinguishable. On the other hand, Curcuma kwangsiensis (gl type) specimens also showed intraspecies polymorphism, which may have occurred as a result of hybridization with other Curcuma species. The molecular method we developed is a potential tool for global classification of the genus Curcuma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR.

    PubMed

    Chin, Randall M; Fu, Xudong; Pai, Melody Y; Vergnes, Laurent; Hwang, Heejun; Deng, Gang; Diep, Simon; Lomenick, Brett; Meli, Vijaykumar S; Monsalve, Gabriela C; Hu, Eileen; Whelan, Stephen A; Wang, Jennifer X; Jung, Gwanghyun; Solis, Gregory M; Fazlollahi, Farbod; Kaweeteerawat, Chitrada; Quach, Austin; Nili, Mahta; Krall, Abby S; Godwin, Hilary A; Chang, Helena R; Faull, Kym F; Guo, Feng; Jiang, Meisheng; Trauger, Sunia A; Saghatelian, Alan; Braas, Daniel; Christofk, Heather R; Clarke, Catherine F; Teitell, Michael A; Petrascheck, Michael; Reue, Karen; Jung, Michael E; Frand, Alison R; Huang, Jing

    2014-06-19

    Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit β is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit β and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing

  11. The NMR solution structure of Mycobacterium tuberculosis F-ATP synthase subunit ε provides new insight into energy coupling inside the rotary engine.

    PubMed

    Joon, Shin; Ragunathan, Priya; Sundararaman, Lavanya; Nartey, Wilson; Kundu, Subhashri; Manimekalai, Malathy S S; Bogdanović, Nebojša; Dick, Thomas; Grüber, Gerhard

    2018-03-01

    Mycobacterium tuberculosis (Mt) F 1 F 0 ATP synthase (α 3 :β 3 :γ:δ:ε:a:b:b':c 9 ) is essential for the viability of growing and nongrowing persister cells of the pathogen. Here, we present the first NMR solution structure of Mtε, revealing an N-terminal β-barrel domain (NTD) and a C-terminal domain (CTD) composed of a helix-loop-helix with helix 1 and -2 being shorter compared to their counterparts in other bacteria. The C-terminal amino acids are oriented toward the NTD, forming a domain-domain interface between the NTD and CTD. The Mtε structure provides a novel mechanistic model of coupling c-ring- and ε rotation via a patch of hydrophobic residues in the NTD and residues of the CTD to the bottom of the catalytic α 3 β 3 -headpiece. To test our model, genome site-directed mutagenesis was employed to introduce amino acid changes in these two parts of the epsilon subunit. Inverted vesicle assays show that these mutations caused an increase in ATP hydrolysis activity and a reduction in ATP synthesis. The structural and enzymatic data are discussed in light of the transition mechanism of a compact and extended state of Mtε, which provides the inhibitory effects of this coupling subunit inside the rotary engine. Finally, the employment of these data with molecular docking shed light into the second binding site of the drug Bedaquiline. Structural data are available in the PDB under the accession number 5YIO. © 2018 Federation of European Biochemical Societies.

  12. Studies on the Expression of Sesquiterpene Synthases Using Promoter-β-Glucuronidase Fusions in Transgenic Artemisia annua L

    PubMed Central

    Wang, Hongzhen; Han, Junli; Kanagarajan, Selvaraju; Lundgren, Anneli; Brodelius, Peter E.

    2013-01-01

    In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS), epi-cedrol (ECS) and β-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production. PMID:24278301

  13. Orotic aciduria and uridine monophosphate synthase: a reappraisal.

    PubMed

    Bailey, C J

    2009-12-01

    Three subtypes of hereditary orotic aciduria are described in the literature, all related to deficiencies in uridine monophosphate synthase, the multifunctional enzyme that contains both orotate: pyrophosphoryl transferase and orotidine monophosphate decarboxylase activities. The type of enzyme defect present in the subtypes has been re-examined by steady-state modelling of the relative outputs of the three enzymic products, uridine monophosphate, urinary orotic acid and urinary orotidine. It is shown that the ratio of urinary outputs of orotidine to orotate provides a means of testing for particular forms of enzyme defect. It is confirmed that the type I defect is caused by loss of uridine monophosphate synthase activity. Cells and tissue of type I cases have a residual amount of activity that is qualitatively unchanged: the relative rates of the transferase and decarboxylase do not differ from those of wild-type enzyme. The single claimed case of type II, thought to be due to specific inactivation of orotidine monophosphate decarboxylase, is shown to have a product spectrum inconsistent with that claim. It is proposed that this type II form does not differ sufficiently to be accepted as separate from type I. The third subtype, hereditary orotic aciduria without megaloblastic anaemia, occurs in two cases. It has the product spectrum expected of a defect in orotidine monophosphate decarboxylase. This form is the only one that appears to have a qualitatively different uridine monophosphate synthase. The possibility that orotidine monophosphate may control flux through the pyrimidine biosynthesis pathway in hereditary orotic aciduria is discussed.

  14. Crystallization of Δ1-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    PubMed Central

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi; Tamada, Taro; Adachi, Motoyasu; Kuroki, Ryota; Shoyama, Yukihiro; Morimoto, Satoshi

    2005-01-01

    Δ1-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å3 Da−1 assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively. PMID:16511162

  15. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene

    PubMed Central

    Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; De Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.

    2016-01-01

    Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65–74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase. PMID:27874020

  16. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene

    NASA Astrophysics Data System (ADS)

    Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; de Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.

    2016-11-01

    Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65-74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase.

  17. 76 FR 22120 - Credit Watch Termination Initiative; Termination of Origination Approval Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR- 5511-N-01] Credit Watch Termination Initiative; Termination of Origination Approval Agreements AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  18. 75 FR 67387 - Credit Watch Termination Initiative Termination of Origination Approval Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-4211-N-05] Credit Watch Termination Initiative Termination of Origination Approval Agreements AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  19. 77 FR 38818 - Credit Watch Termination Initiative; Termination of Origination Approval Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5644-N-01] Credit Watch Termination Initiative; Termination of Origination Approval Agreements AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  20. 76 FR 38406 - Credit Watch Termination Initiative; Termination of Origination Approval Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5511-N-03] Credit Watch Termination Initiative; Termination of Origination Approval Agreements AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  1. 76 FR 4126 - Credit Watch Termination Initiative Termination of Origination Approval Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR- 5411-N-07] Credit Watch Termination Initiative Termination of Origination Approval Agreements AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  2. 77 FR 5263 - Credit Watch Termination Initiative Termination of Origination Approval Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5511-N-06] Credit Watch Termination Initiative Termination of Origination Approval Agreements AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  3. 75 FR 61164 - Credit Watch Termination Initiative Termination of Origination Approval Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5411-N-03] Credit Watch Termination Initiative Termination of Origination Approval Agreements AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  4. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase

    PubMed Central

    2016-01-01

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs. PMID:27490479

  5. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase.

    PubMed

    Rudolf, Jeffrey D; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2016-08-31

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg(2+)-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.

  6. Sucrose Synthase Expression during Cold Acclimation in Wheat 1

    PubMed Central

    Crespi, Martin D.; Zabaleta, Eduardo J.; Pontis, Horacio G.; Salerno, Graciela L.

    1991-01-01

    When wheat (Triticum aestivum) seedlings are exposed to a cold temperature (2-4°C) above 0°C, sucrose accumulates and sucrose synthase activity increases. The effect of a cold period on the level of sucrose synthase (SS) was investigated. Using antibodies against wheat germ SS, Western blots studies showed that the amount of the SS peptide increased during 14 days in the cold, when plants were moved from 23°C to 4°C. The level of SS diminished when plants were moved back to 23°C. Northern blots of poly(A)+ RNA, confirmed a five- to sixfold induction of SS in wheat leaves during cold acclimation. These results indicate that SS is involved in the plant response to a chilling stress. ImagesFigure 1Figure 2Figure 3 PMID:16668270

  7. Cloning and heterologous expression of a novel subgroup of class IV polyhydroxyalkanoate synthase genes from the genus Bacillus.

    PubMed

    Mizuno, Kouhei; Kihara, Takahiro; Tsuge, Takeharu; Lundgren, Benjamin R; Sarwar, Zaara; Pinto, Atahualpa; Nomura, Christopher T

    2017-01-01

    Many microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase. The newly discovered PhaRC synthase was demonstrated to produce PHAs in recombinant Escherichia coli.

  8. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.

    PubMed

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ(5)-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis.

  9. Hypotensive effect of agmatine, arginine metabolite, is affected by NO synthase.

    PubMed

    Gerová, M; Török, J

    2004-01-01

    The metabolites of arginine were recently shown to be involved in cardiovascular control. The study addresses the general cardiovascular response of anaesthetized rats to agmatine, a decarboxylated arginine. The relation between two arginine metabolic pathways governed by arginine decarboxylase and nitric oxide synthase was investigated. Intravenous administration of agmatine 30 and 60 microM/0.1 ml saline elicited remarkable hypotension of 42.6+/-4.6 and 70.9+/-6.5 mm Hg, respectively. The hypotension was characterized by long duration with half-time of return 171.6+/-2.9 and 229.2+/-3.8 s, respectively. The time of total blood pressure BP recovery was about 10 min. Dose-dependent relaxation to agmatine was also found in aorta rings in vitro. Both doses of agmatine administered 60-180 min after NO synthase inhibition L-NAME 40 mg/kg i.v. caused greater hypotension 59.0+/-7.6 and 95.8 8.8 mm Hg P<0.01 both compared to animals with intact NO synthase, but this was accompanied by a significant shortening of the half-time of BP return. If agmatine was administered to hypertensive NO-deficient rats treated with 40 mg/kg/day L-NAME for 4 weeks, similar significant enhancement of hypotension was observed at both agmatine doses, again with a significant shortening of half-time of BP return. It can be summarized that the long-lasting hypotension elicited by agmatine was amplified after acute or chronic NO synthase inhibition, indicating a feedback relation between the two metabolic pathways of arginine.

  10. Interrogation of Benzomalvin Biosynthesis Using Fungal Artificial Chromosomes with Metabolomic Scoring (FAC-MS): Discovery of a Benzodiazepine Synthase Activity.

    PubMed

    Clevenger, Kenneth D; Ye, Rosa; Bok, Jin Woo; Thomas, Paul M; Islam, Md Nurul; Miley, Galen P; Robey, Matthew T; Chen, Cynthia; Yang, KaHoua; Swyers, Michael; Wu, Edward; Gao, Peng; Wu, Chengcang C; Keller, Nancy P; Kelleher, Neil L

    2018-03-20

    The benzodiazepine benzomalvin A/D is a fungally derived specialized metabolite and inhibitor of the substance P receptor NK1, biosynthesized by a three-gene nonribosomal peptide synthetase cluster. Here, we utilize fungal artificial chromosomes with metabolomic scoring (FAC-MS) to perform molecular genetic pathway dissection and targeted metabolomics analysis to assign the in vivo role of each domain in the benzomalvin biosynthetic pathway. The use of FAC-MS identified the terminal cyclizing condensation domain as BenY-C T and the internal C-domains as BenZ-C 1 and BenZ-C 2 . Unexpectedly, we also uncovered evidence suggesting BenY-C T or a yet to be identified protein mediates benzodiazepine formation, representing the first reported benzodiazepine synthase enzymatic activity. This work informs understanding of what defines a fungal C T domain and shows how the FAC-MS platform can be used as a tool for in vivo analyses of specialized metabolite biosynthesis and for the discovery and dissection of new enzyme activities.

  11. Structural Characteristics and Function of a New Kind of Thermostable Trehalose Synthase from Thermobaculum terrenum.

    PubMed

    Wang, Junqing; Ren, Xudong; Wang, Ruiming; Su, Jing; Wang, Feng

    2017-09-06

    Trehalose has important applications in the food industry and pharmaceutical manufacturing. The thermostable enzyme trehalose synthase from Thermobaculum terrenum (TtTS) catalyzes the reversible interconversion of maltose and trehalose. Here, we investigated the structural characteristics of TtTS in complex with the inhibitor TriS. TtTS exhibits the typical three domain glycoside hydrolase family 13 structure. The catalytic cleft consists of Asp202-Glu244-Asp310 and various conserved substrate-binding residues. However, among trehalose synthases, TtTS demonstrates obvious thermal stability. TtTS has more polar (charged) amino acids distributed on its protein structure surface and more aromatic amino acids buried within than other mesophilic trehalose synthases. Furthermore, TtTS structural analysis revealed four potential metal ion-binding sites rather than the two in a homologous structure. These factors may render TtTS relatively more thermostable among mesophilic trehalose synthases. The detailed thermophilic enzyme structure provided herein may provide guidance for further protein engineering in the design of stabilized enzymes.

  12. Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2010-07-01

    An acyclic diterpene alcohol, (E,E,E)-geranylgeraniol (GGOH), is one of the important compounds used as perfume and pharmacological agents. A deficiency of squalene (SQ) synthase activity allows yeasts to accumulate an acyclic sesquiterpene alcohol, (E,E)-farnesol, in their cells. Since sterols are essential for the growth of yeasts, a deficiency of SQ synthase activity makes the addition of supplemental sterols to the culture media necessary. To develop a GGOH production method not requiring any supplemental sterols, we overexpressed HMG1 encoding hydroxymethylglutaryl-CoA reductase and the genes of two prenyl diphosphate synthases, ERG20 and BTS1, in Saccharomyces cerevisiae. A prototrophic diploid coexpressing HMG1 and the ERG20-BTS1 fusion accumulated GGOH with neither disruption of the SQ synthase gene nor the addition of any supplemental sterols. The GGOH content on the diploid cultivation in a 5-l jar fermenter reached 138.8 mg/l under optimal conditions.

  13. 10 CFR 600.161 - Termination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Nonprofit Organizations Post-Award Requirements § 600.161 Termination. (a) Awards may be terminated in whole... effective date and, in the case of partial termination, the portion to be terminated. (3) By the recipient upon sending to DOE written notification setting forth the reasons for such termination, the effective...

  14. 10 CFR 600.161 - Termination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Nonprofit Organizations Post-Award Requirements § 600.161 Termination. (a) Awards may be terminated in whole... effective date and, in the case of partial termination, the portion to be terminated. (3) By the recipient upon sending to DOE written notification setting forth the reasons for such termination, the effective...

  15. Regulation of the Interaction between Glycogen Synthase Kinase 3 and the Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen

    PubMed Central

    Fujimuro, Masahiro; Liu, Jianyong; Zhu, Jian; Yokosawa, Hideyoshi; Hayward, S. Diane

    2005-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein stabilizes β-catenin by the novel mechanism of binding to the negative regulator, glycogen synthase kinase 3 (GSK-3), and depleting cytoplasmic GSK-3 levels. The two domains of LANA required for interaction with GSK-3 were further characterized. Evidence for similarity between the C-terminal LANA interaction domain and the axin GSK-3 interaction domain was obtained using GSK-3 and LANA mutants. GSK-3(F291L), which does not interact with axin, also failed to bind to LANA, and a mutation in the axin homology domain of LANA, L1132P, destroyed binding to GSK-3. The N-terminal LANA interaction domain was found to mediate interaction by acting as a substrate for GSK-3. GSK-3(R96A), a priming pocket mutant, did not bind to LANA, suggesting that LANA was a primed GSK-3 substrate. Phosphorylation of endogenous LANA precipitated from primary effusion lymphoma cells was inhibited by the GSK-3 inhibitor LiCl. GST-LANA(1-340) was phosphorylated by GSK-3, and mitogen-activated protein kinase (MAPK) and casein kinase I functioned as priming kinases in vitro. Mutation of consensus GSK-3 sites revealed that sites between LANA amino acids 219 and 268 were important for GSK-3 phosphorylation. Immunoprecipitation assays revealed that loss of GSK-3 phosphorylation of this N-terminal domain correlated with loss of GSK-3 interaction. Although LANA-associated GSK-3 actively phosphorylated LANA, GSK-3 coprecipitated with LANA was unable to phosphorylate an exogenous peptide substrate. LANA sequestration of GSK-3 may explain the ability of KSHV-infected cells to tolerate increased levels of nuclear GSK-3. PMID:16051835

  16. Producing biofuels using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  17. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOEpatents

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  18. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, Chris R.; Scieble, Wolf

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS genemore » can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.« less

  19. Co-expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants.

    PubMed

    Yin, Jun-Lin; Wong, Woon-Seng; Jang, In-Cheol; Chua, Nam-Hai

    2017-02-01

    Monoterpenes are important for plant survival and useful to humans. In addition to their function in plant defense, monoterpenes are also used as flavors, fragrances and medicines. Several metabolic engineering strategies have been explored to produce monoterpene in tobacco but only trace amounts of monoterpenes have been detected. We investigated the effects of Solanum lycopersicum 1-deoxy-d-xylulose-5-phosphate synthase (SlDXS), Arabidopsis thaliana geranyl diphosphate synthase 1 (AtGPS) and Mentha × piperita geranyl diphosphate synthase small subunit (MpGPS.SSU) on production of monoterpene and geranylgeranyl diphosphate (GGPP) diversities, and plant morphology by transient expression in Nicotiana benthamiana and overexpression in transgenic Nicotiana tabacum. We showed that MpGPS.SSU could enhance the production of various monoterpenes such as (-)-limonene, (-)-linalool, (-)-α-pinene/β-pinene or myrcene, in transgenic tobacco by elevating geranyl diphosphate synthase (GPS) activity. In addition, overexpression of MpGPS.SSU in tobacco caused early flowering phenotype and increased shoot branching by elevating contents of GA 3 and cytokinins due to upregulated transcript levels of several plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway genes, geranylgeranyl diphosphate synthases 3 (GGPPS3) and GGPPS4. Our method would allow the identification of new monoterpene synthase genes using transient expression in N. benthamiana and the improvement of monoterpene production in transgenic tobacco plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Overexpression of an archaeal geranylgeranyl diphosphate synthase in Escherichia coli cells.

    PubMed

    Ohto, C; Nakane, H; Hemmi, H; Ohnuma, S; Obata, S; Nishino, T

    1998-06-01

    An archaeal geranylgeranyl diphosphate synthase was overexpressed in Escherichia coli cells as fusion proteins. These fusion proteins retained their thermostability and had higher specific activity than did a partially purified native enzyme Previously reported. We purified 24.3 mg of MBP (maltose-binding protein)-fusion protein and 5.4 mg of GST (glutathione S-transferase)-fusion protein from a one-liter culture of E. coli. The MBP-fusion proteins existed in dimer, tetramer, octamer, or dodecamer form, and their product specificities were altered according to the oligomerization. The MBP-fusion protein has protease-sensitive sites in the portion corresponding to geranylgeranyl diphosphate synthase.

  1. Biosynthesis of Lipoic Acid in Arabidopsis: Cloning and Characterization of the cDNA for Lipoic Acid Synthase1

    PubMed Central

    Yasuno, Rie; Wada, Hajime

    1998-01-01

    Lipoic acid is a coenzyme that is essential for the activity of enzyme complexes such as those of pyruvate dehydrogenase and glycine decarboxylase. We report here the isolation and characterization of LIP1 cDNA for lipoic acid synthase of Arabidopsis. The Arabidopsis LIP1 cDNA was isolated using an expressed sequence tag homologous to the lipoic acid synthase of Escherichia coli. This cDNA was shown to code for Arabidopsis lipoic acid synthase by its ability to complement a lipA mutant of E. coli defective in lipoic acid synthase. DNA-sequence analysis of the LIP1 cDNA revealed an open reading frame predicting a protein of 374 amino acids. Comparisons of the deduced amino acid sequence with those of E. coli and yeast lipoic acid synthase homologs showed a high degree of sequence similarity and the presence of a leader sequence presumably required for import into the mitochondria. Southern-hybridization analysis suggested that LIP1 is a single-copy gene in Arabidopsis. Western analysis with an antibody against lipoic acid synthase demonstrated that this enzyme is located in the mitochondrial compartment in Arabidopsis cells as a 43-kD polypeptide. PMID:9808738

  2. Effect of inhibition of glycogen synthase kinase-3 on cardiac hypertrophy during acute pressure overload.

    PubMed

    Tateishi, Atsushi; Matsushita, Masayuki; Asai, Tomohiro; Masuda, Zenichi; Kuriyama, Mitsuhito; Kanki, Kazushige; Ishino, Kozo; Kawada, Masaaki; Sano, Shunji; Matsui, Hideki

    2010-06-01

    A large number of diverse signaling molecules in cell and animal models participate in the stimulus-response pathway through which the hypertrophic growth of the myocardium is controlled. However, the mechanisms of signaling pathway including the influence of lithium, which is known as an inhibitor of glycogen synthase kinase-3beta, in pressure overload hypertrophy remain unclear. The aim of our study was to determine whether glycogen synthase kinase-3beta inhibition by lithium has acute effects on the myocyte growth mechanism in a pressure overload rat model. First, we created a rat model of acute pressure overload cardiac hypertrophy by abdominal aortic banding. Protein expression time courses for beta-catenin, glycogen synthase kinase-3beta, and phosphoserine9-glycogen synthase kinase-3beta were then examined. The rats were divided into four groups: normal rats with or without lithium administration and pressure-overloaded rats with or without lithium administration. Two days after surgery, Western blot analysis of beta-catenin, echo-cardiographic evaluation, left ventricular (LV) weight, and LV atrial natriuretic peptide mRNA levels were evaluated. We observed an increase in the level of glycogen synthase kinase-3beta phosphorylation on Ser 9. A significant enhancement of LV heart weight (P < 0.05) and interventricular septum and posterior wall thickness (P < 0.05) with pressure-overloaded hypertrophy in animals treated with lithium were also observed. Atrial natriuretic peptide mRNA levels were significantly increased with pressure overload hypertrophy in animals treated with lithium. We have shown in an animal model that inhibition of glycogen synthase kinase-3beta by lithium has an additive effect on pressure overload cardiac hypertrophy.

  3. Promotion of beta-glucan synthase activity in corn microsomal membranes by calcium and protein phosphorylation

    NASA Technical Reports Server (NTRS)

    Paliyath, G.; Poovaiah, B. W.

    1988-01-01

    Regulation of the activity of beta-glucan synthase was studied using microsomal preparations from corn coleoptiles. The specific activity as measured by the incorporation of glucose from uridine diphospho-D-[U-14C]glucose varied between 5 to 15 pmol (mg protein)-1 min-1. Calcium promoted beta-glucan synthase activity and the promotion was observed at free calcium concentrations as low as 1 micromole. Kinetic analysis of substrate-velocity curve showed an apparent Km of 1.92 x 10(-4) M for UDPG. Calcium increased the Vmax from 5.88 x 10(-7) mol liter-1 min-1 in the absence of calcium to 9.52 x 10(-7) mol liter-1 min-1 and 1.66 x 10(-6) mol liter-1 min-1 in the presence of 0.5 mM and 1 mM calcium, respectively. The Km values remained the same under these conditions. Addition of ATP further increased the activity above the calcium-promoted level. Sodium fluoride, a phosphoprotein phosphatase inhibitor, promoted glucan synthase activity indicating that phosphorylation and dephosphorylation are involved in the regulation of the enzyme activity. Increasing the concentration of sodium fluoride from 0.25 mM to 10 mM increased glucan synthase activity five-fold over the + calcium + ATP control. Phosphorylation of membrane proteins also showed a similar increase under these conditions. Calmodulin, in the presence of calcium and ATP stimulated glucan synthase activity substantially, indicating that calmodulin could be involved in the calcium-dependent phosphorylation and promotion of beta-glucan synthase activity. The role of calcium in mediating auxin action is discussed.

  4. Glyphosate Inhibition of 5-Enolpyruvylshikimate 3-Phosphate Synthase from Suspension-Cultured Cells of Nicotiana silvestris.

    PubMed

    Rubin, J L; Gaines, C G; Jensen, R A

    1984-07-01

    Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg. et Comes with glyphosate (N-[phosphonomethyl]glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatase activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pK(a) values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COO(-)CH(2)NH(2) (+)CH(2)PO(3) (2-), and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (K(i) = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (K(i)' = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an [enzyme:shikimate-3-P] complex and ultimately forms the dead-end complex of [enzyme:shikimate-3-P:glyphosate].

  5. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata.

    PubMed

    Misra, Rajesh Chandra; Garg, Anchal; Roy, Sudeep; Chanotiya, Chandan Singh; Vasudev, Prema G; Ghosh, Sumit

    2015-11-01

    Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa.

    PubMed

    Morita, Hiroyuki; Wanibuchi, Kiyofumi; Nii, Hirohiko; Kato, Ryohei; Sugio, Shigetoshi; Abe, Ikuro

    2010-11-16

    Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C(6)-C(7)-C(6) diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C(6)-C(3) coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H(2)O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C(6)-C(7)-C(6) scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes.

  7. Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa

    PubMed Central

    Morita, Hiroyuki; Wanibuchi, Kiyofumi; Nii, Hirohiko; Kato, Ryohei; Sugio, Shigetoshi; Abe, Ikuro

    2010-01-01

    Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C6-C7-C6 diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C6-C3 coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H2O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C6-C7-C6 scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes. PMID:21041675

  8. Crystal structures of the catalytic domains of pseudouridine synthases RluC and RluD from Escherichia coli.

    PubMed

    Mizutani, Kenji; Machida, Yoshitaka; Unzai, Satoru; Park, Sam-Yong; Tame, Jeremy R H

    2004-04-20

    The most frequent modification of RNA, the conversion of uridine bases to pseudouridines, is found in all living organisms and often in highly conserved locations in ribosomal and transfer RNA. RluC and RluD are homologous enzymes which each convert three specific uridine bases in Escherichia coli ribosomal 23S RNA to pseudouridine: bases 955, 2504, and 2580 in the case of RluC and 1911, 1915, and 1917 in the case of RluD. Both have an N-terminal S4 RNA binding domain. While the loss of RluC has little phenotypic effect, loss of RluD results in a much reduced growth rate. We have determined the crystal structures of the catalytic domain of RluC, and full-length RluD. The S4 domain of RluD appears to be highly flexible or unfolded and is completely invisible in the electron density map. Despite the conserved topology shared by the two proteins, the surface shape and charge distribution are very different. The models suggest significant differences in substrate binding by different pseudouridine synthases.

  9. Cloning and characterization of chsD, a chitin synthase-like gene of Aspergillus fumigatus.

    PubMed

    Mellado, E; Specht, C A; Robbins, P W; Holden, D W

    1996-09-15

    A chitin synthase-like gene (chsD) was isolated from an Aspergillus fumigatus genomic DNA library. Comparisons with the predicted amino acid sequence from chsD reveals low but significant similarity to chitin synthases, to other N-acetylglucosaminyltransferases (NodC from Rhizopus spp., HasA from Streptococcus spp. and DG42 from vertebrates. A chsD- mutant strain constructed by gene disruption has a 20% reduction in total mycelial chitin content; however, no differences between the wild-type strain and the chsD- strain were found with respect to morphology, chitin synthase activity or virulence in a neutropenic murine model of aspergillosis. The results show that the chsD product has an important but inessential role in the synthesis of chitin in A. fumigatus.

  10. Frontalin pheromone biosynthesis in the mountain pine beetle, Dendroctonus ponderosae, and the role of isoprenyl diphosphate synthases

    PubMed Central

    Keeling, Christopher I.; Chiu, Christine C.; Aw, Tidiane; Li, Maria; Henderson, Hannah; Tittiger, Claus; Weng, Hong-Biao; Blomquist, Gary J.; Bohlmann, Joerg

    2013-01-01

    The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most destructive pest of western North American pine forests. Adult males produce frontalin, an eight-carbon antiaggregation pheromone, via the mevalonate pathway, as part of several pheromones that initiate and modulate the mass attack of host trees. Frontalin acts as a pheromone, attractant, or kairomone in most Dendroctonus species, other insects, and even elephants. 6-Methylhept-6-en-2-one, a frontalin precursor, is hypothesized to originate from 10-carbon geranyl diphosphate (GPP), 15-carbon farnesyl diphosphate (FPP), or 20-carbon geranylgeranyl diphosphate (GGPP) via a dioxygenase- or cytochrome P450-mediated carbon–carbon bond cleavage. To investigate the role of isoprenyl diphosphate synthases in pheromone biosynthesis, we characterized a bifunctional GPP/FPP synthase and a GGPP synthase in the mountain pine beetle. The ratio of GPP to FPP produced by the GPP/FPP synthase was highly dependent on the ratio of the substrates isopentenyl diphosphate and dimethylallyl diphosphate used in the assay. Transcript levels in various tissues and life stages suggested that GGPP rather than GPP or FPP is used as a precursor to frontalin. Reduction of transcript levels by RNA interference of the isoprenyl diphosphate synthases identified GGPP synthase as having the largest effect on frontalin production, suggesting that frontalin is derived from a 20-carbon isoprenoid precursor rather than from the 10- or 15-carbon precursors. PMID:24167290

  11. Mitochondrial F1Fo-ATP synthase translocates to cell surface in hepatocytes and has high activity in tumor-like acidic and hypoxic environment.

    PubMed

    Ma, Zhan; Cao, Manlin; Liu, Yiwen; He, Yiqing; Wang, Yingzhi; Yang, Cuixia; Wang, Wenjuan; Du, Yan; Zhou, Muqing; Gao, Feng

    2010-08-01

    F1Fo-ATP synthase was originally thought to exclusively locate in the inner membrane of the mitochondria. However, recent studies prove the existence of ectopic F1Fo-ATP synthase on the outside of the cell membrane. Ectopic ATP synthase was proposed as a marker for tumor target therapy. Nevertheless, the protein transport mechanism of the ectopic ATP synthase is still unclear. The specificity of the ectopic ATP synthase, with regard to tumors, is questioned because of its widespread expression. In the current study, we constructed green fluorescent protein-ATP5B fusion protein and introduced it into HepG2 cells to study the localization of the ATP synthase. The expression of ATP5B was analyzed in six cell lines with different 'malignancies'. These cells were cultured in both normal and tumor-like acidic and hypoxic conditions. The results suggested that the ectopic expression of ATP synthase is a consequence of translocation from the mitochondria. The expression and catalytic activity of ectopic ATP synthase were similar on the surface of malignant cells as on the surface of less malignant cells. Interestingly, the expression of ectopic ATP synthase was not up-regulated in tumor-like acidic and hypoxic microenvironments. However, the catalytic activity of ectopic ATP synthase was up-regulated in tumor-like microenvironments. Therefore, the specificity of ectopic ATP synthase for tumor target therapy relies on the high level of catalytic activity that is observed in acidic and hypoxic microenvironments in tumor tissues.

  12. Umchs5, a gene coding for a class IV chitin synthase in Ustilago maydis.

    PubMed

    Xoconostle-Cázares, B; Specht, C A; Robbins, P W; Liu, Y; León, C; Ruiz-Herrera, J

    1997-12-01

    A fragment corresponding to a conserved region of a fifth gene coding for chitin synthase in the plant pathogenic fungus Ustilago maydis was amplified by means of the polymerase chain reaction (PCR). The amplified fragment was utilized as a probe for the identification of the whole gene in a genomic library of the fungus. The predicted gene product of Umchs5 has highest similarity with class IV chitin synthases encoded by the CHS3 genes from Saccharomyces cerevisiae and Candida albicans, chs-4 from Neurospora crassa, and chsE from Aspergillus nidulans. Umchs5 null mutants were constructed by substitution of most of the coding sequence with the hygromycin B resistance cassette. Mutants displayed significant reduction in growth rate, chitin content, and chitin synthase activity, specially in the mycelial form. Virulence to corn plantules was also reduced in the mutants. PCR was also used to obtain a fragment of a sixth chitin synthase, Umchs6. It is suggested that multigenic control of chitin synthesis in U. maydis operates as a protection mechanism for fungal viability in which the loss of one activity is partially compensated by the remaining enzymes. Copyright 1997 Academic Press.

  13. The LINKS motif zippers trans-acyltransferase polyketide synthase assembly lines into a biosynthetic megacomplex

    PubMed Central

    Gay, Darren C.; Wagner, Drew T.; Meinke, Jessica L.; Zogzas, Charles E.; Gay, Glen R.; Keatinge-Clay, Adrian T.

    2016-01-01

    Polyketides such as the clinically-valuable antibacterial agent mupirocin are constructed by architecturally-sophisticated assembly lines known as trans-acyltransferase polyketide synthases. Organelle-sized megacomplexes composed of several copies of trans-acyltransferase polyketide synthase assembly lines have been observed by others through transmission electron microscopy to be located at the Bacillus subtilis plasma membrane, where the synthesis and export of the antibacterial polyketide bacillaene takes place. In this work we analyze ten crystal structures of trans-acyltransferase polyketide synthases ketosynthase domains, seven of which are reported here for the first time, to characterize a motif capable of zippering assembly lines into a megacomplex. While each of the three-helix LINKS (Laterally-INteracting Ketosynthase Sequence) motifs is observed to similarly dock with a spatially-reversed copy of itself through hydrophobic and ionic interactions, the amino acid sequences of this motif are not conserved. Such a code is appropriate for mediating homotypic contacts between assembly lines to ensure the ordered self-assembly of a noncovalent, yet tightly-knit, enzymatic network. LINKS-mediated lateral interactions would also have the effect of bolstering the vertical association of the polypeptides that comprise a polyketide synthase assembly line. PMID:26724270

  14. Intrathecal oxotremorine affects formalin-induced behavior and spinal nitric oxide synthase immunoreactivity in rats.

    PubMed

    Przewlocka, B; Mika, J; Capone, F; Machelska, H; Pavone, F

    1999-03-01

    The present research was undertaken to investigate, by behavioral and immunohistochemical methods, the effects of intrathecal (i.th.) injection of the muscarinic agonist oxotremorine on the response to the long-lasting nociceptive stimulus induced by injection of formalin into the rat hind paw. Formalin injection induced a biphasic, pain-induced behavioral response (paw jerks), as well as an increase in the number of nitric oxide (NO) synthase-labeled neurons in laminae I-III, IV, and X, but not in laminae V-VI. Oxotremorine (0.1-10 ng, i.th.) inhibited paw-jerk frequency in both phases of formalin-induced behavior. The immunohistochemical results showed that i.th.-injected oxotremorine differently affected the level of NO synthase in lumbar part of the spinal cord: no change or increase after the dose of 1 ng, and a significant reduction of nitric oxide synthase neurons after the higher dose (10 ng). These results evidenced a role of cholinergic system in the modulation of tonic pain and in nitric oxide synthase expression at the spinal cord level, which further suggests that these two systems could be involved in phenomena induced by long-lasting nociceptive stimulation.

  15. Structure of the ent -Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudolf, Jeffrey D.; Dong, Liao-Bin; Cao, Hongnan

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three alpha-helical domains (alpha beta gamma), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (alpha) and type II TSs (beta gamma). Type II DTSs of bacterialmore » origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtnaT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 angstrom, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.« less

  16. Macromolecular organization of ATP synthase and complex I in whole mitochondria

    PubMed Central

    Davies, Karen M.; Strauss, Mike; Daum, Bertram; Kief, Jan H.; Osiewacz, Heinz D.; Rycovska, Adriana; Zickermann, Volker; Kühlbrandt, Werner

    2011-01-01

    We used electron cryotomography to study the molecular arrangement of large respiratory chain complexes in mitochondria from bovine heart, potato, and three types of fungi. Long rows of ATP synthase dimers were observed in intact mitochondria and cristae membrane fragments of all species that were examined. The dimer rows were found exclusively on tightly curved cristae edges. The distance between dimers along the rows varied, but within the dimer the distance between F1 heads was constant. The angle between monomers in the dimer was 70° or above. Complex I appeared as L-shaped densities in tomograms of reconstituted proteoliposomes. Similar densities were observed in flat membrane regions of mitochondrial membranes from all species except Saccharomyces cerevisiae and identified as complex I by quantum-dot labeling. The arrangement of respiratory chain proton pumps on flat cristae membranes and ATP synthase dimer rows along cristae edges was conserved in all species investigated. We propose that the supramolecular organization of respiratory chain complexes as proton sources and ATP synthase rows as proton sinks in the mitochondrial cristae ensures optimal conditions for efficient ATP synthesis. PMID:21836051

  17. 40 CFR 174.533 - Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Glycine max Herbicide-Resistant... Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from the requirement of a tolerance. Residues of Glycine max herbicide-resistant acetolactate synthase (GM-HRA) enzyme...

  18. 40 CFR 174.533 - Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Glycine max Herbicide-Resistant... Glycine max Herbicide-Resistant Acetolactate Synthase (GM-HRA) inert ingredient; exemption from the requirement of a tolerance. Residues of Glycine max herbicide-resistant acetolactate synthase (GM-HRA) enzyme...

  19. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols.

    PubMed

    Gupta, Dinesh; Ip, Tina; Summers, Michael L; Basu, Chhandak

    2015-01-01

    Phytol is a diterpene alcohol of medicinal importance and it also has potential to be used as biofuel. We found over production of phytol in Nostoc punctiforme by expressing a 2-Methyl-3-buten-2-ol (MBO) synthase gene. MBO synthase catalyzes the conversion of dimethylallyl pyrophosphate (DMAPP) into MBO, a volatile hemiterpene alcohol, in Pinus sabiniana. The result of enhanced phytol production in N. punctiforme, instead of MBO, could be explained by one of the 2 models: either the presence of a native prenyltransferase enzyme with a broad substrate specificity, or appropriation of a MBO synthase metabolic intermediate by a native geranyl diphosphate (GDP) synthase. In this work, an expression vector with an indigenous petE promoter for gene expression in the cyanobacterium N. punctiforme was constructed and MBO synthase gene expression was successfully shown using reverse transcriptase (RT)-PCR and SDS-PAGE. Gas chromatography--mass spectrophotometry (GC-MS) was performed to confirm phytol production from the transgenic N. punctiforme strains. We conclude that the expression of MBO synthase in N. punctiforme leads to overproduction of an economically important compound, phytol. This study provides insights about metabolic channeling of isoprenoids in cyanobacteria and also illustrates the challenges of bioengineering non-native hosts to produce economically important compounds.

  20. Contribution of extracellular ATP on the cell-surface F1F0-ATP synthase-mediated intracellular triacylglycerol accumulation.

    PubMed

    Kita, Toshiyuki; Arakaki, Naokatu

    2015-01-01

    Cell-surface F1F0-ATP synthase was involved in the cell signaling mediating various biological functions. Recently, we found that cell-surface F1F0-ATP synthase plays a role on intracellular triacylglycerol accumulation in adipocytes, and yet, the underlying mechanisms remained largely unknown. In this study, we investigated the role of extracellular ATP on the intracellular triacylglycerol accumulation. We demonstrated that significant amounts of ATP were produced extracellularly by cultured 3T3-L1 adipocytes and that the antibodies against α and β subunits of F1F0-ATP synthase inhibited the extracellular ATP production. Piceatannol, a F1F0-ATP synthase inhibitor, and apyrase, an enzyme which degrades extracellular ATP, suppressed triacylglycerol accumulation. The selective P2Y1 receptor antagonist MRS2500 significantly inhibited triacylglycerol accumulation, whereas the selective P2X receptor antagonist NF279 has less effect. The present results indicate that cell-surface F1F0-ATP synthase on adipocytes is functional in extracellular ATP production and that the extracellular ATP produced contributes, at least in part, to the cell-surface F1F0-ATP synthase-mediated intracellular triacylglycerol accumulation in adipocytes through P2Y1 receptor.

  1. Protective effects of grape seed extract on cadmium-induced testicular damage, apoptosis, and endothelial nitric oxide synthases expression in rats.

    PubMed

    Sönmez, Mehmet Fatih; Tascioglu, Simge

    2016-08-01

    This study aims to evaluate the protective effect of grape seed proanthocyanidin extract (GSPE) on cadmium (Cd)-induced testicular apoptosis, endothelial nitric oxide synthases (eNOS) expression, and toxicity in rats. A total of 24 male Wistar rats were divided into four groups, namely, control, Cd (2.5 mg/kg), Cd + GSPE (100 mg/kg/day), and GSPE. Spermatogenesis and mean seminiferous tubule diameter were significantly decreased in the Cd groups. Furthermore, the GSPE-treated animals showed an improved histological appearance in the Cd group. The immunoreactivity of eNOS and the number of apoptotic cells were increased in Cd group. Our data indicate a significant reduction of terminal deoxynucleotide transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end-labeling staining and a decrease in the expression of eNOS in the testes tissue of the Cd group treated with GSPE therapy. Therefore, our results suggest that GSPE acts as a potent protective agent against Cd-induced testicular toxicity in rats. © The Author(s) 2015.

  2. An unusual plant triterpene synthase with predominant α-amyrin-producing activity identified by characterizing oxidosqualene cyclases from Malus × domestica.

    PubMed

    Brendolise, Cyril; Yauk, Yar-Khing; Eberhard, Ellen D; Wang, Mindy; Chagne, David; Andre, Christelle; Greenwood, David R; Beuning, Lesley L

    2011-07-01

    The pentacyclic triterpenes, in particular ursolic acid and oleanolic acid and their derivatives, exist abundantly in the plant kingdom, where they are well known for their anti-inflammatory, antitumour and antimicrobial properties. α-Amyrin and β-amyrin are the precursors of ursolic and oleanolic acids, respectively, formed by concerted cyclization of squalene epoxide by a complex synthase reaction. We identified three full-length expressed sequence tag sequences in cDNA libraries constructed from apple (Malus × domestica 'Royal Gala') that were likely to encode triterpene synthases. Two of these expressed sequence tag sequences were essentially identical (> 99% amino acid similarity; MdOSC1 and MdOSC3). MdOSC1 and MdOSC2 were expressed by transient expression in Nicotiana benthamiana leaves and by expression in the yeast Pichia methanolica. The resulting products were analysed by GC and GC-MS. MdOSC1 was shown to be a mixed amyrin synthase (a 5 : 1 ratio of α-amyrin to β-amyrin). MdOSC1 is the only triterpene synthase so far identified in which the level of α-amyrin produced is > 80% of the total product and is, therefore, primarily an α-amyrin synthase. No product was evident for MdOSC2 when expressed either transiently or in yeast, suggesting that this putative triterpene synthase is either encoded by a pseudogene or does not express well in these systems. Transcript expression analysis in Royal Gala indicated that the genes are mostly expressed in apple peel, and that the MdOSC2 expression level was much lower than that of MdOSC1 and MdOSC3 in all the tissues tested. Amyrin content analysis was undertaken by LC-MS, and demonstrated that levels and ratios differ between tissues, but that the true consequence of synthase activity is reflected in the ursolic/oleanolic acid content and in further triterpenoids derived from them. Phylogenetic analysis placed the three triterpene synthase sequences with other triterpene synthases that encoded either

  3. Adaptive responses of GLUT-4 and citrate synthase in fast-twitch muscle of voluntary running rats

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Halseth, A. E.

    1995-01-01

    Glucose transporter (GLUT-4) protein, hexokinase, and citrate synthase (proteins involved in oxidative energy production from blood glucose catabolism) increase in response to chronically elevated neuromuscular activity. It is currently unclear whether these proteins increase in a coordinated manner in response to this stimulus. Therefore, voluntary wheel running (WR) was used to chronically overload the fast-twitch rat plantaris muscle and the myocardium, and the early time courses of adaptative responses of GLUT-4 protein and the activities of hexokinase and citrate synthase were characterized and compared. Plantaris hexokinase activity increased 51% after just 1 wk of WR, whereas GLUT-4 and citrate synthase were increased by 51 and 40%, respectively, only after 2 wk of WR. All three variables remained comparably elevated (+50-64%) through 4 wk of WR. Despite the overload of the myocardium with this protocol, no substantial elevations in these variables were observed. These findings are consistent with a coordinated upregulation of GLUT-4 and citrate synthase in the fast-twitch plantaris, but not in the myocardium, in response to this increased neuromuscular activity. Regulation of hexokinase in fast-twitch muscle appears to be uncoupled from regulation of GLUT-4 and citrate synthase, as increases in the former are detectable well before increases in the latter.

  4. The anisotropy1 D604N mutation in the Arabidopsis cellulose synthase1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes.

    PubMed

    Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T; Galway, Moira E; Mansfield, Shawn D; Hocart, Charles H; Wasteneys, Geoffrey O

    2013-05-01

    Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1's permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature.

  5. 76 FR 22119 - Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5511-N-02] Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  6. 76 FR 53148 - Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5511-N-05] Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  7. 77 FR 5262 - Credit Watch Termination Initiative Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5511-N-07] Credit Watch Termination Initiative Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  8. 77 FR 38817 - Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5644-N-02] Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  9. 76 FR 38407 - Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5511-N-04] Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  10. 75 FR 61165 - Credit Watch Termination Initiative Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5411-N-04] Credit Watch Termination Initiative Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  11. 76 FR 4364 - Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5411-N-08] Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  12. 75 FR 67388 - Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5411-N-06] Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  13. Saccharomyces cerevisiae RNA Polymerase I Terminates Transcription at the Reb1 Terminator In Vivo

    PubMed Central

    Reeder, Ronald H.; Guevara, Palmira; Roan, Judith G.

    1999-01-01

    We have mapped transcription termination sites for RNA polymerase I in the yeast Saccharomyces cerevisiae. S1 nuclease mapping shows that the primary terminator is the Reb1p terminator located at +93 downstream of the 3′ end of 25S rRNA. Reverse transcription coupled with quantitative PCR shows that approximately 90% of all transcripts terminate at this site. Transcripts which read through the +93 site quantitatively terminate at a fail-safe terminator located further downstream at +250. Inactivation of Rnt1p (an RNase III involved in processing the 3′ end of 25S rRNA) greatly stabilizes transcripts extending to both sites and increases readthrough at the +93 site. In vivo assay of mutants of the Reb1p terminator shows that this site operates in vivo by the same mechanism as has previously been delineated through in vitro studies. PMID:10523625

  14. Graphics Software For VT Terminals

    NASA Technical Reports Server (NTRS)

    Wang, Caroline

    1991-01-01

    VTGRAPH graphics software tool for DEC/VT computer terminal or terminals compatible with it, widely used by government and industry. Callable in FORTRAN or C language, library program enabling user to cope with many computer environments in which VT terminals used for window management and graphic systems. Provides PLOT10-like package plus color or shade capability for VT240, VT241, and VT300 terminals. User can easily design more-friendly user-interface programs and design PLOT10 programs on VT terminals with different computer systems. Requires ReGis graphics set terminal and FORTRAN compiler.

  15. Structural Asymmetry of the Terminal Catalytic Complex in Selenocysteine Synthesis*

    PubMed Central

    French, Rachel L.; Gupta, Nirupama; Copeland, Paul R.; Simonović, Miljan

    2014-01-01

    Selenocysteine (Sec), the 21st amino acid, is synthesized from a serine precursor in a series of reactions that require selenocysteine tRNA (tRNASec). In archaea and eukaryotes, O-phosphoseryl-tRNASec:selenocysteinyl-tRNASec synthase (SepSecS) catalyzes the terminal synthetic reaction during which the phosphoseryl intermediate is converted into the selenocysteinyl moiety while being attached to tRNASec. We have previously shown that only the SepSecS tetramer is capable of binding to and recognizing the distinct fold of tRNASec. Because only two of the four tRNA-binding sites were occupied in the crystal form, a question was raised regarding whether the observed arrangement and architecture faithfully recapitulated the physiologically relevant ribonucleoprotein complex important for selenoprotein formation. Herein, we determined the stoichiometry of the human terminal synthetic complex of selenocysteine by using small angle x-ray scattering, multi-angle light scattering, and analytical ultracentrifugation. In addition, we provided the first estimate of the ratio between SepSecS and tRNASec in vivo. We show that SepSecS preferentially binds one or two tRNASec molecules at a time and that the enzyme is present in large molar excess over the substrate tRNA in vivo. Moreover, we show that in a complex between SepSecS and two tRNAs, one enzyme homodimer plays a role of the noncatalytic unit that positions CCA ends of two tRNASec molecules into the active site grooves of the other, catalytic, homodimer. Finally, our results demonstrate that the previously determined crystal structure represents the physiologically and catalytically relevant complex and suggest that allosteric regulation of SepSecS might play an important role in regulation of selenocysteine and selenoprotein synthesis. PMID:25190812

  16. Insights into the reactivation of cobalamin-dependent methionine synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koutmos, Markos; Datta, Supratim; Pattridge, Katherine A.

    2009-12-10

    Cobalamin-dependent methionine synthase (MetH) is a modular protein that catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine to produce methionine and tetrahydrofolate. The cobalamin cofactor, which serves as both acceptor and donor of the methyl group, is oxidized once every {approx}2,000 catalytic cycles and must be reactivated by the uptake of an electron from reduced flavodoxin and a methyl group from S-adenosyl-L-methionine (AdoMet). Previous structures of a C-terminal fragment of MetH (MetH{sup CT}) revealed a reactivation conformation that juxtaposes the cobalamin- and AdoMet-binding domains. Here we describe 2 structures of a disulfide stabilized MetH{sup CT} ({sub s-s}MetH{supmore » CT}) that offer further insight into the reactivation of MetH. The structure of {sub s-s}MetH{sup CT} with cob(II)alamin and S-adenosyl-L-homocysteine represents the enzyme in the reactivation step preceding electron transfer from flavodoxin. The structure supports earlier suggestions that the enzyme acts to lower the reduction potential of the Co(II)/Co(I) couple by elongating the bond between the cobalt and its upper axial water ligand, effectively making the cobalt 4-coordinate, and illuminates the role of Tyr-1139 in the stabilization of this 4-coordinate state. The structure of {sub s-s}MetH{sub CT} with aquocobalamin may represent a transient state at the end of reactivation as the newly remethylated 5-coordinate methylcobalamin returns to the 6-coordinate state, triggering the rearrangement to a catalytic conformation.« less

  17. 7 CFR 947.71 - Termination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Effective Time and Termination § 947.71 Termination. (a) The Secretary may at any time terminate the... of such potatoes produced for market; but such termination shall be effective only if announced on or...

  18. Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria×ananassa)

    PubMed Central

    Hanhineva, Kati; Kokko, Harri; Siljanen, Henri; Rogachev, Ilana; Aharoni, Asaph; Kärenlampi, Sirpa O.

    2009-01-01

    The gene encoding stilbene synthase is frequently used to modify plant secondary metabolism with the aim of producing the self-defence phytoalexin resveratrol. In this study, strawberry (Fragaria×ananassa) was transformed with the NS-Vitis3 gene encoding stilbene synthase from frost grape (Vitis riparia) under the control of the cauliflower mosaic virus 35S and the floral filament-specific fil1 promoters. Changes in leaf metabolites were investigated with UPLC-qTOF-MS (ultra performance liquid chromatography-quadrupole time of flight mass spectrometry) profiling, and increased accumulation of cinnamate, coumarate, and ferulate derivatives concomitantly with a decrease in the levels of flavonols was observed, while the anticipated resveratrol or its derivatives were not detected. The changed metabolite profile suggested that chalcone synthase was down-regulated by the genetic modification; this was verified by decreased chalcone synthase transcript levels. Changes in the levels of phenolic compounds led to increased susceptibility of the transgenic strawberry to grey mould fungus. PMID:19443619

  19. Characterization of a recombinant type II 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Helicobacter pylori.

    PubMed

    Webby, Celia J; Patchett, Mark L; Parker, Emily J

    2005-08-15

    DAH7P (3-Deoxy-D-arabino-heptulosonate 7-phosphate) synthase catalyses the condensation reaction between phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P) as the first committed step in the biosynthesis of aromatic compounds in plants and micro-organisms. Previous work has identified two families of DAH7P synthases based on sequence similarity and molecular mass, with the majority of the mechanistic and structural studies being carried out on the type I paralogues from Escherichia coli. Whereas a number of organisms possess genes encoding both type I and type II DAH7P synthases, the pathogen Helicobacter pylori has only a single, type II, enzyme. Recombinant DAH7P synthase from H. pylori was partially solubilized by co-expression with chaperonins GroEL/GroES in E. coli, and purified to homogeneity. The enzyme reaction follows an ordered sequential mechanism with the following kinetic parameters: K(m) (PEP), 3 microM; K(m) (E4P), 6 microM; and kcat, 3.3 s(-1). The enzyme reaction involves interaction of the si face of PEP with the re face of E4P. H. pylori DAH7P synthase is not inhibited by phenylalanine, tyrosine, tryptophan or chorismate. EDTA inactivates the enzyme, and activity is restored by a range of bivalent metal ions, including (in order of decreasing effectiveness) Co2+, Mn2+, Ca2+, Mg2+, Cu2+ and Zn2+. Analysis of type II DAH7P synthase sequences reveals several highly conserved motifs, and comparison with the type I enzymes suggests that catalysis by these two enzyme types occurs on a similar active-site scaffold and that the two DAH7P synthase families may indeed be distantly related.

  20. Molecular cloning and functional characterization of three terpene synthases from unripe fruit of black pepper (Piper nigrum).

    PubMed

    Jin, Zhehao; Kwon, Moonhyuk; Lee, Ah-Reum; Ro, Dae-Kyun; Wungsintaweekul, Juraithip; Kim, Soo-Un

    2018-01-15

    To identify terpene synthases (TPS) responsible for the biosynthesis of the sesquiterpenes that contribute to the characteristic flavors of black pepper (Piper nigrum), unripe peppercorn was subjected to the Illumina transcriptome sequencing. The BLAST analysis using amorpha-4,11-diene synthase as a query identified 19 sesquiterpene synthases (sesqui-TPSs), of which three full-length cDNAs (PnTPS1 through 3) were cloned. These sesqui-TPS cDNAs were expressed in E. coli to produce recombinant enzymes for in vitro assays, and also expressed in the engineered yeast strain to assess their catalytic activities in vivo. PnTPS1 produced β-caryophyllene as a main product and humulene as a minor compound, and thus was named caryophyllene synthase (PnCPS). Likewise, PnTPS2 and PnTPS3 were, respectively, named cadinol/cadinene synthase (PnCO/CDS) and germacrene D synthase (PnGDS). PnGDS expression in yeast yielded β-cadinene and α-copaene, the rearrangement products of germacrene D. Their k cat /K m values (20-37.7 s -1  mM -1 ) were comparable to those of other sesqui-TPSs. Among three PnTPSs, the transcript level of PnCPS was the highest, correlating with the predominant β-caryophyllene biosynthesis in the peppercorn. The products and rearranged products of three PnTPSs could account for about a half of the sesquiterpenes in number found in unripe peppercorn. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Studies on identifying the binding sites of folate and its derivatives in Lactobacillus casei thymidylate synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maley, F.; Maley, G.F.

    1983-01-01

    It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A preventsmore » the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates. To determine the region of the synthase involved in the binding of the glutamate residues, Pte(/sup 14/C)GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH/sub 2/H/sub 4/PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two /sup 14/C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47-61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.« less

  2. Dynamics of meso and thermo citrate synthases with implicit solvation

    NASA Astrophysics Data System (ADS)

    Cordeiro, J. M. M.

    The dynamics of hydration of meso and thermo citrate synthases has been investigated using the EEF1 methodology implemented with the CHARMM program. The native enzymes are composed of two identical subunits, each divided into a small and large domain. The dynamics behavior of both enzymes at 30°C and 60°C has been compared. The results of simulations show that during the hydration process, each subunit follows a different pathway of hydration, in spite of the identical sequence. The hydrated structures were compared with the crystalline structure, and the root mean square deviation (RMSD) of each residue along the trajectory was calculated. The regions with larger and smaller mobility were identified. In particular, helices belonging to the small domain are more mobile than those of the large domain. In contrast, the residues that constitute the active site show a much lower displacement compared with the crystalline structure. Hydration free energy calculations point out that Thermoplasma acidophilum citrate synthase (TCS) is more stable than chicken citrate synthase (CCS), at high temperatures. Such result has been ascribed to the higher number of superficial charges in the thermophilic homologue, which stabilizes the enzyme, while the mesophilic homologue denatures. These results are in accord with the experimental found that TCS keeps activity at temperatures farther apart from the catalysis regular temperature than the CCS.

  3. Terminating Devices in Spoken French.

    ERIC Educational Resources Information Center

    Andrews, Barry J.

    1989-01-01

    A study examines the way in which one group of discourse connectors, terminators, function in contemporary spoken French. Three types of terminators, elements used at the end of an utterance or section to indicate its completion, are investigated, including utterance terminators, interrogative tags, and terminal tags. (Author/MSE)

  4. 20 CFR 435.61 - Termination.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, OTHER NON-PROFIT ORGANIZATIONS, AND COMMERCIAL ORGANIZATIONS Post... the effective date and, in the case of partial termination, the portion to be terminated. (3) By the... effective date, and, in the case of partial termination, the portion to be terminated. However, if SSA...

  5. Redox Switch for the Inhibited State of Yeast Glycogen Synthase Mimics Regulation by Phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahalingan, Krishna K.; Baskaran, Sulochanadevi; DePaoli-Roach, Anna A.

    Glycogen synthase (GS) is the rate limiting enzyme in the synthesis of glycogen. Eukaryotic GS is negatively regulated by covalent phosphorylation and allosterically activated by glucose-6-phosphate (G-6-P). To gain structural insights into the inhibited state of the enzyme, we solved the crystal structure of yGsy2-R589A/R592A to a resolution of 3.3 Å. The double mutant has an activity ratio similar to the phosphorylated enzyme and also retains the ability to be activated by G-6-P. When compared to the 2.88 Å structure of the wild-type G-6-P activated enzyme, the crystal structure of the low-activity mutant showed that the N-terminal domain of themore » inhibited state is tightly held against the dimer-related interface thereby hindering acceptor access to the catalytic cleft. On the basis of these two structural observations, we developed a reversible redox regulatory feature in yeast GS by substituting cysteine residues for two highly conserved arginine residues. When oxidized, the cysteine mutant enzyme exhibits activity levels similar to the phosphorylated enzyme but cannot be activated by G-6-P. Upon reduction, the cysteine mutant enzyme regains normal activity levels and regulatory response to G-6-P activation.« less

  6. Heterogeneous distribution of type I nitric oxide synthase in pulmonary vasculature of ovine fetus.

    PubMed

    Tzao, C; Nickerson, P A; Russell, J A; Noble, B K; Steinhorn, R H

    2000-11-01

    The nitric oxide/guanosine 3',5'-cyclic monophosphate pathway plays an essential role in mediating pulmonary vasodilation at birth. Small resistance arteries in the fetal lung are vessels of major significance in the regulation of pulmonary vascular tone. The present study is to determine that type I nitric oxide synthase (NOS-I) is present in ovine fetal pulmonary vasculature and that NOS-I is distributed heterogeneously in ovine fetal pulmonary circulation. We used reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry and NOS-I immunohistochemistry to localize NOS-I in fetal sheep lungs and showed a colocalization for NADPH-d activity with NOS-I immunoreactivity. Strong NOS-I immunoreactivity was observed exclusively in the endothelium of the terminal bronchiole and respiratory bronchiole-associated arteries. As a comparison, adult sheep lung did not show positive immunoreactivity in the pulmonary endothelium. NOS-I was absent in the umbilical or systemic arteries from the ovine fetus, whereas abundant NOS-III immunoreactivity was present in these arteries. We conclude that NOS-I is present uniquely in the ovine fetal pulmonary circulation as opposed to the adult pulmonary or the fetal systemic circulation. NOS-I is distributed heterogeneously in the ovine pulmonary vasculature. We speculate that NOS-I plays an active role in the regulation of perinatal pulmonary circulation.

  7. 43 CFR 12.961 - Termination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Institutions of Higher Education, Hospitals, and Other Non-Profit Organizations Post-Award Requirements § 12..., including the effective date and, in the case of partial termination, the portion to be terminated. (3) By... reasons for such termination, the effective date, and, in the case of partial termination, the portion to...

  8. Neuronal nitric oxide synthase immunopositive neurons in cat claustrum--a light and electron microscopic study.

    PubMed

    Hinova-Palova, Dimka; Edelstein, Lawrence; Paloff, Adrian; Hristov, Stanislav; Papantchev, Vassil; Ovtscharoff, Wladimir

    2008-08-01

    Nitric oxide is a unique neurotransmitter, which participates in many physiological and pathological processes in the organism. Nevertheless there are little data about the neuronal Nitric Oxide Synthase immunoreactive (nNOS-ir) neurons and fibers in the dorsal claustrum (DC) of a cat. In this respect the aims of this study were: (1) to demonstrate nNOS-ir in the neurons and fibers of the DC; (2) to describe their light microscopic morphology and distribution; (3) to investigate and analyze the ultrastructure of the nNOS-ir neurons, fibers and synaptic terminals; (4) to verify whether the nNOS-ir neurons consist a specific subpopulation of claustral neurons; (5) to verify whether the nNOS-ir neurons have a specific pattern of organization throughout the DC. For demonstration of the nNOS-ir the Avidin-Biotin-Peroxidase Complex method was applied. Immunopositive for nNOS neurons and fibers were present in all parts of DC. On the light microscope level nNOS-ir neurons were different in shape and size. According to the latter they were divided into three groups-small (with diameter under 15 microm), medium-sized (with diameter from 16 to 20 microm) and large (with diameter over 21 microm). Some of nNOS-ir neurons were lightly-stained while others were darkly-stained. On the electron microscope level the immunoproduct was observed in neurons, dendrites and terminal boutons. Different types of nNOS-ir neurons differ according to their ultrastructural features. Three types of nNOS-ir synaptic boutons were found. As a conclusion we hope that the present study will contribute to a better understanding of the functioning of the DC in cat and that some of the data presented could be extrapolated to other mammals, including human.

  9. Evolution of Flavone Synthase I from Parsley Flavanone 3β-Hydroxylase by Site-Directed Mutagenesis1[W][OA

    PubMed Central

    Gebhardt, Yvonne Helen; Witte, Simone; Steuber, Holger; Matern, Ulrich; Martens, Stefan

    2007-01-01

    Flavanone 3β-hydroxylase (FHT) and flavone synthase I (FNS I) are 2-oxoglutarate-dependent dioxygenases with 80% sequence identity, which catalyze distinct reactions in flavonoid biosynthesis. However, FNS I has been reported exclusively from a few Apiaceae species, whereas FHTs are more abundant. Domain-swapping experiments joining the N terminus of parsley (Petroselinum crispum) FHT with the C terminus of parsley FNS I and vice versa revealed that the C-terminal portion is not essential for FNS I activity. Sequence alignments identified 26 amino acid substitutions conserved in FHT versus FNS I genes. Homology modeling, based on the related anthocyanidin synthase structure, assigned seven of these amino acids (FHT/FNS I, M106T, I115T, V116I, I131F, D195E, V200I, L215V, and K216R) to the active site. Accordingly, FHT was modified by site-directed mutagenesis, creating mutants encoding from one to seven substitutions, which were expressed in yeast (Saccharomyces cerevisiae) for FNS I and FHT assays. The exchange I131F in combination with either M106T and D195E or L215V and K216R replacements was sufficient to confer some FNS I side activity. Introduction of all seven FNS I substitutions into the FHT sequence, however, caused a nearly complete change in enzyme activity from FHT to FNS I. Both FHT and FNS I were proposed to initially withdraw the β-face-configured hydrogen from carbon-3 of the naringenin substrate. Our results suggest that the 7-fold substitution affects the orientation of the substrate in the active-site pocket such that this is followed by syn-elimination of hydrogen from carbon-2 (FNS I reaction) rather than the rebound hydroxylation of carbon-3 (FHT reaction). PMID:17535823

  10. Incorporation of phosphate into glycogen by glycogen synthase.

    PubMed

    Contreras, Christopher J; Segvich, Dyann M; Mahalingan, Krishna; Chikwana, Vimbai M; Kirley, Terence L; Hurley, Thomas D; DePaoli-Roach, Anna A; Roach, Peter J

    2016-05-01

    The storage polymer glycogen normally contains small amounts of covalently attached phosphate as phosphomonoesters at C2, C3 and C6 atoms of glucose residues. In the absence of the laforin phosphatase, as in the rare childhood epilepsy Lafora disease, the phosphorylation level is elevated and is associated with abnormal glycogen structure that contributes to the pathology. Laforin therefore likely functions in vivo as a glycogen phosphatase. The mechanism of glycogen phosphorylation is less well-understood. We have reported that glycogen synthase incorporates phosphate into glycogen via a rare side reaction in which glucose-phosphate rather than glucose is transferred to a growing polyglucose chain (Tagliabracci et al. (2011) Cell Metab13, 274-282). We proposed a mechanism to account for phosphorylation at C2 and possibly at C3. Our results have since been challenged (Nitschke et al. (2013) Cell Metab17, 756-767). Here we extend the evidence supporting our conclusion, validating the assay used for the detection of glycogen phosphorylation, measurement of the transfer of (32)P from [β-(32)P]UDP-glucose to glycogen by glycogen synthase. The (32)P associated with the glycogen fraction was stable to ethanol precipitation, SDS-PAGE and gel filtration on Sephadex G50. The (32)P-signal was not affected by inclusion of excess unlabeled UDP before analysis or by treatment with a UDPase, arguing against the signal being due to contaminating [β-(32)P]UDP generated in the reaction. Furthermore, [(32)P]UDP did not bind non-covalently to glycogen. The (32)P associated with glycogen was released by laforin treatment, suggesting that it was present as a phosphomonoester. The conclusion is that glycogen synthase can mediate the introduction of phosphate into glycogen, thereby providing a possible mechanism for C2, and perhaps C3, phosphorylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. INCORPORATION OF PHOSPHATE INTO GLYCOGEN BY GLYCOGEN SYNTHASE

    PubMed Central

    Contreras, Christopher J.; Segvich, Dyann M.; Mahalingan, Krishna; Chikwana, Vimbai M.; Kirley, Terence L.; Hurley, Thomas D.; DePaoli-Roach, Anna A.; Roach, Peter J.

    2016-01-01

    The storage polymer glycogen normally contains small amounts of covalently attached phosphate as phosphomonoesters at C2, C3 and C6 atoms of glucose residues. In the absence of the laforin phosphatase, as in the rare childhood epilepsy Lafora disease, the phosphorylation level is elevated and is associated with abnormal glycogen structure that contributes to the pathology. Laforin therefore likely functions in vivo as a glycogen phosphatase. The mechanism of glycogen phosphorylation is less well-understood. We have reported that glycogen synthase incorporates phosphate into glycogen via a rare side reaction in which glucose-phosphate rather than glucose is transferred to a growing polyglucose chain (Tagliabracci et al. (2011) Cell Metab 13, 274-282). We proposed a mechanism to account for phosphorylation at C2 and possibly at C3. Our results have since been challenged (Nitschke et al. (2013) Cell Metab 17, 756-767). Here we extend the evidence supporting our conclusion, validating the assay used for the detection of glycogen phosphorylation, measurement of the transfer of 32P from [β-32P]UDP-glucose to glycogen by glycogen synthase. The 32P associated with the glycogen fraction was stable to ethanol precipitation, SDS-PAGE and gel filtration on Sephadex G50. The 32P-signal was not affected by inclusion of excess unlabeled UDP before analysis or by treatment with a UDPase, arguing against the signal being due to contaminating [β-32P]UDP generated in the reaction. Furthermore, [32P]UDP did not bind non-covalently to glycogen. The 32P associated with glycogen was released by laforin treatment, suggesting that it was present as a phosphomonoester. The conclusion is that glycogen synthase can mediate the introduction of phosphate into glycogen, thereby providing a possible mechanism for C2, perhaps C3, phosphorylation. PMID:27036853

  12. Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit.

    PubMed

    Rühmann, Susanne; Treutter, Dieter; Fritsche, Steffi; Briviba, Karlis; Szankowski, Iris

    2006-06-28

    A stilbene synthase gene along with the selectable marker gene bar for herbicide resistance was transferred via Agrobacterium tumefaciens mediated transformation into apple (Malus domesticaBorkh.) cvs. 'Elstar' and 'Holsteiner Cox'. The stilbene synthase catalyzes the conversion of 1 molecule of p-coumaroyl-CoA and 3 molecules of malonyl-CoA into 3,4',5-trihydroxystilbene, commonly known as resveratrol. This phytoalexin has implications in both phytopathology and human health. Greenhouse-grown transgenic and nontransformed control plants were grafted onto dwarfing rootstock M27. Flowering and fruiting occurred within the following years, offering the opportunity to analyze transgenic apple fruit and fertility of transgenic plants as well as inheritance of the transgenes into the seedling progeny. Molecular analysis revealed that the stilbene synthase is expressed in transgenic plants and in the skin and flesh of transgenic apple fruit. After formation, resveratrol is modified by the addition of a hexose sugar. The resulting component was characterized as piceid. With the aim of characterizing the influence of the novel biosynthetic pathway on the accumulation of other phenolic compounds naturally present in apple fruit, the amounts of flavanols, flavonols, phloretin derivatives and hydroxycinnamic acids in wild type and transgenic fruit were determined by HPLC. In all investigated transformed lines that accumulated piceid, no negative correlation between levels of piceid and the above-mentioned compounds was observed, except for the flavonol contents, which slightly decreased. Inheritance of the transgenes was confirmed in the seedling progeny, which were obtained after pollination of transgenic plants with nontransgenic pollen and vice versa after pollination of nontransgenic plants with pollen obtained from transgenic plants. The fertility of stilbene synthase transgenic plants was demonstrated. To the authors' knowledge this is the first time that data are

  13. Identification of novel isoprene synthases through genome mining and expression in Escherichia coli.

    PubMed

    Ilmén, Marja; Oja, Merja; Huuskonen, Anne; Lee, Sangmin; Ruohonen, Laura; Jung, Simon

    2015-09-01

    Isoprene is a naturally produced hydrocarbon emitted into the atmosphere by green plants. It is also a constituent of synthetic rubber and a potential biofuel. Microbial production of isoprene can become a sustainable alternative to the prevailing chemical production of isoprene from petroleum. In this work, sequence homology searches were conducted to find novel isoprene synthases. Candidate sequences were functionally expressed in Escherichia coli and the desired enzymes were identified based on an isoprene production assay. The activity of three enzymes was shown for the first time: expression of the candidate genes from Ipomoea batatas, Mangifera indica, and Elaeocarpus photiniifolius resulted in isoprene formation. The Ipomoea batatas isoprene synthase produced the highest amounts of isoprene in all experiments, exceeding the isoprene levels obtained by the previously known Populus alba and Pueraria montana isoprene synthases that were studied in parallel as controls. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Glucose induces the translocation and the aggregation of glycogen synthase in rat hepatocytes.

    PubMed Central

    Fernández-Novell, J M; Ariño, J; Vilaró, S; Guinovart, J J

    1992-01-01

    Incubation of rat hepatocytes with glucose results in a decrease in the amount of glycogen synthase activity found in supernatants obtained after centrifugation of cell homogenates at 9200 g. The enzymic activity was quantitatively recovered in the sediments. This effect of translocation was dose- and time-dependent and correlated with the amount of immunoreactive enzyme determined by immunoblotting in both fractions. Hydrolysis by alpha-amylase of glycogen accumulated upon incubation with the sugar did not affect the translocation pattern. Translocation was also observed when cells were incubated with 2-deoxyglucose, which did not result in accumulation of glycogen. Immunocytochemical evidence indicates that glucose induces the aggregation of glycogen synthase molecules into clusters which are recovered in the sediments. These results indicate that glucose, in addition to activating glycogen synthase, may trigger changes in the localization of the enzyme in the cell. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. PMID:1736893

  15. 14 CFR 1214.108 - Termination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NASA. (1) The termination fee for dedicated flights will be computed as a percentage of the Shuttle... Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.108 Termination... termination occurs Termination fee, percent of Shuttle standard flight price 18 or more 10 17 or more but less...

  16. 14 CFR 1214.108 - Termination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NASA. (1) The termination fee for dedicated flights will be computed as a percentage of the Shuttle... Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.108 Termination... termination occurs Termination fee, percent of Shuttle standard flight price 18 or more 10 17 or more but less...

  17. 14 CFR 1214.108 - Termination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NASA. (1) The termination fee for dedicated flights will be computed as a percentage of the Shuttle... Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.108 Termination... termination occurs Termination fee, percent of Shuttle standard flight price 18 or more 10 17 or more but less...

  18. 14 CFR 1214.108 - Termination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NASA. (1) The termination fee for dedicated flights will be computed as a percentage of the Shuttle... Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.108 Termination... termination occurs Termination fee, percent of Shuttle standard flight price 18 or more 10 17 or more but less...

  19. Molecular biological effects of selective neuronal nitric oxide synthase inhibition in ovine lung injury

    PubMed Central

    Westphal, Martin; Enkhbaatar, Perenlei; Wang, Jianpu; Pazdrak, Konrad; Nakano, Yoshimitsu; Hamahata, Atsumori; Jonkam, Collette C.; Lange, Matthias; Connelly, Rhykka L.; Kulp, Gabriela A.; Cox, Robert A.; Hawkins, Hal K.; Schmalstieg, Frank C.; Horvath, Eszter; Szabo, Csaba; Traber, Lillian D.; Whorton, Elbert; Herndon, David N.; Traber, Daniel L.

    2010-01-01

    Neuronal nitric oxide synthase is critically involved in the pathogenesis of acute lung injury resulting from combined burn and smoke inhalation injury. We hypothesized that 7-nitroindazole, a selective neuronal nitric oxide synthase inhibitor, blocks central molecular mechanisms involved in the pathophysiology of this double-hit insult. Twenty-five adult ewes were surgically prepared and randomly allocated to 1) an uninjured, untreated sham group (n = 7), 2) an injured control group with no treatment (n = 7), 3) an injury group treated with 7-nitroindazole from 1-h postinjury to the remainder of the 24-h study period (n = 7), or 4) a sham-operated group subjected only to 7-nitroindazole to judge the effects in health. The combination injury was associated with twofold increased activity of neuronal nitric oxide synthase and oxidative/nitrosative stress, as indicated by significant increases in plasma nitrate/nitrite concentrations, 3-nitrotyrosine (an indicator of peroxynitrite formation), and malondialdehyde lung tissue content. The presence of systemic inflammation was evidenced by twofold, sixfold, and threefold increases in poly(ADP-ribose) polymerase, IL-8, and myeloperoxidase lung tissue concentrations, respectively (each P < 0.05 vs. sham). These molecular changes were linked to tissue damage, airway obstruction, and pulmonary shunting with deteriorated gas exchange. 7-Nitroindazole blocked, or at least attenuated, all these pathological changes. Our findings suggest 1) that nitric oxide formation derived from increased neuronal nitric oxide synthase activity represents a pivotal reactive agent in the patho-physiology of combined burn and smoke inhalation injury and 2) that selective neuronal nitric oxide synthase inhibition represents a goal-directed approach to attenuate the degree of injury. PMID:19965980

  20. Molecular and biochemical characterization of caffeine synthase and purine alkaloid concentration in guarana fruit.

    PubMed

    Schimpl, Flávia Camila; Kiyota, Eduardo; Mayer, Juliana Lischka Sampaio; Gonçalves, José Francisco de Carvalho; da Silva, José Ferreira; Mazzafera, Paulo

    2014-09-01

    Guarana seeds have the highest caffeine concentration among plants accumulating purine alkaloids, but in contrast with coffee and tea, practically nothing is known about caffeine metabolism in this Amazonian plant. In this study, the levels of purine alkaloids in tissues of five guarana cultivars were determined. Theobromine was the main alkaloid that accumulated in leaves, stems, inflorescences and pericarps of fruit, while caffeine accumulated in the seeds and reached levels from 3.3% to 5.8%. In all tissues analysed, the alkaloid concentration, whether theobromine or caffeine, was higher in young/immature tissues, then decreasing with plant development/maturation. Caffeine synthase activity was highest in seeds of immature fruit. A nucleotide sequence (PcCS) was assembled with sequences retrieved from the EST database REALGENE using sequences of caffeine synthase from coffee and tea, whose expression was also highest in seeds from immature fruit. The PcCS has 1083bp and the protein sequence has greater similarity and identity with the caffeine synthase from cocoa (BTS1) and tea (TCS1). A recombinant PcCS allowed functional characterization of the enzyme as a bifunctional CS, able to catalyse the methylation of 7-methylxanthine to theobromine (3,7-dimethylxanthine), and theobromine to caffeine (1,3,7-trimethylxanthine), respectively. Among several substrates tested, PcCS showed higher affinity for theobromine, differing from all other caffeine synthases described so far, which have higher affinity for paraxanthine. When compared to previous knowledge on the protein structure of coffee caffeine synthase, the unique substrate affinity of PcCS is probably explained by the amino acid residues found in the active site of the predicted protein. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effect of Combined Stress on Morphological Changes and Expression of NO Synthases in Rat Ventral Hippocampus.

    PubMed

    Smirnov, A V; Tyurenkov, I N; Shmidt, M V; Ekova, M R; Mednikov, D S; Borodin, D D

    2015-11-01

    Adult rats were subjected to 7-day combined stress with stochastic changes of stressors of different modalities (noise, vibration, pulsating bright light) along with mobility restriction and elevated temperature in the chamber during stress exposures (daily 30-min sessions). Circulatory disorders, inhibition of endothelial NO-synthase expression in endothelial cells of the microcirculatory bed, perivascular edema, pronounced degenerative changes, and enhanced expression of inducible NO synthase in CA3 pyramidal neurons in the ventral hippocampus of stressed 12-month-old rats were observed. These findings can attest to the involvement NOdependent mechanisms and different contribution of NO synthase isoforms into the formation of hippocampal neuronal damage.

  2. The LINKS motif zippers trans-acyltransferase polyketide synthase assembly lines into a biosynthetic megacomplex.

    PubMed

    Gay, Darren C; Wagner, Drew T; Meinke, Jessica L; Zogzas, Charles E; Gay, Glen R; Keatinge-Clay, Adrian T

    2016-03-01

    Polyketides such as the clinically-valuable antibacterial agent mupirocin are constructed by architecturally-sophisticated assembly lines known as trans-acyltransferase polyketide synthases. Organelle-sized megacomplexes composed of several copies of trans-acyltransferase polyketide synthase assembly lines have been observed by others through transmission electron microscopy to be located at the Bacillus subtilis plasma membrane, where the synthesis and export of the antibacterial polyketide bacillaene takes place. In this work we analyze ten crystal structures of trans-acyltransferase polyketide synthases ketosynthase domains, seven of which are reported here for the first time, to characterize a motif capable of zippering assembly lines into a megacomplex. While each of the three-helix LINKS (Laterally-INteracting Ketosynthase Sequence) motifs is observed to similarly dock with a spatially-reversed copy of itself through hydrophobic and ionic interactions, the amino acid sequences of this motif are not conserved. Such a code is appropriate for mediating homotypic contacts between assembly lines to ensure the ordered self-assembly of a noncovalent, yet tightly-knit, enzymatic network. LINKS-mediated lateral interactions would also have the effect of bolstering the vertical association of the polypeptides that comprise a polyketide synthase assembly line. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with μ-Opioid Agonist Activity.

    PubMed

    Renton, Paul; Green, Brenda; Maddaford, Shawn; Rakhit, Suman; Andrews, John S

    2012-03-08

    A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the μ-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the μ-opioid GPCR was predicated on the modulatory role of nitric oxide on μ-opioid receptor function. Structure-activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 μM), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent μ-opioid binding affinity, K i = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 μM). This work represents a novel approach in the development of new analgesics for the treatment of pain.

  4. 46 CFR 525.2 - Terminal schedules.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... scrap, new assembled motor vehicles, waste paper and paper waste in terminal schedules. (2) Marine... MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE MARINE TERMINAL OPERATOR SCHEDULES § 525.2 Terminal schedules. (a) Marine terminal operator schedules. A marine terminal operator, at...

  5. 46 CFR 525.2 - Terminal schedules.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... scrap, new assembled motor vehicles, waste paper and paper waste in terminal schedules. (2) Marine... MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE MARINE TERMINAL OPERATOR SCHEDULES § 525.2 Terminal schedules. (a) Marine terminal operator schedules. A marine terminal operator, at...

  6. Identification of Cannabis sativa L. using the 1-kbTHCA synthase-fluorescence in situ hybridization probe.

    PubMed

    Jeangkhwoa, Pattraporn; Bandhaya, Achirapa; Umpunjun, Puangpaka; Chuenboonngarm, Ngarmnij; Panvisavas, Nathinee

    2017-03-01

    This study reports a successful application of fluorescence in situ hybridization (FISH) technique in the identification of Cannabis sativa L. cells recovered from fresh and dried powdered plant materials. Two biotin-16-dUTP-labeled FISH probes were designed from the Cannabis-specific tetrahydrocannabinolic acid synthase (THCAS) gene and the ITS region of the 45S rRNA gene. Specificity of probe-target hybridization was tested against the target and 4 non-target plant species, i.e., Humulus lupulus, Mitragyna speciosa, Papaver sp., and Nicotiana tabacum. The 1-kb THCA synthase hybridization probe gave Cannabis-specific hybridization signals, unlike the 700-bp Cannabis-ITS hybridization probe. Probe-target hybridization was also confirmed against 20 individual Cannabis plant samples. The 1-kb THCA synthase and 700-bp Cannabis-ITS hybridization probes clearly showed 2 hybridization signals per cell with reproducibility. The 1-kb THCA synthase probe did not give any FISH signal when tested against H. lupulus, its closely related member of the Canabaceae family. It was also showed that 1-kb THCA synthase FISH probe can be applied to identify small amount of dried powdered Cannabis material with an addition of rehydration step prior to the experimental process. This study provided an alternative identification method for Cannabis trace. Copyright © 2016. Published by Elsevier B.V.

  7. Differentiation of Cannabis subspecies by THCA synthase gene analysis using RFLP.

    PubMed

    Cirovic, Natasa; Kecmanovic, Miljana; Keckarevic, Dusan; Keckarevic Markovic, Milica

    2017-10-01

    Cannabis sativa subspecies, known as industrial hemp (C. sativa sativa) and marijuana (C. sativa indica) show no evident morphological distinctions, but they contain different levels of psychoactive Δ-9-tetrahidrocanabinol (THC), with considerably higher concentration in marijuana than in hemp. C. sativa subspecies differ in sequence of tetrahydrocannabinolic acid (THCA) synthase gene, responsible for THC production, and only one active copy of the gene, distinctive for marijuana, is capable of producing THC in concentration more then 0,3% in dried plants, usually punishable by the law. Twenty different samples of marijuana that contain THC in concentration more then 0,3% and three varieties of industrial hemp were analyzed for presence of an active copy of THCA synthase gene using in-house developed restriction fragment length polymorphism (RFLP) method All twenty samples of marijuana were positive for the active copy of THCA synthase gene, 16 of them heterozygous. All three varieties of industrial hemp were homozygous for inactive copy. An algorithm for the fast and accurate forensic analysis of samples suspected to be marijuana was constructed, answering the question if an analyzed sample is capable of producing THC in concentrations higher than 0.3%. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  8. Analysis of GD2/GM2 synthase mRNA as a biomarker for small cell lung cancer.

    PubMed

    Chen, Lin-Chi; Brown, Andrew B; Cheung, Irene Y; Cheung, Nai-Kong V; Kris, Mark G; Krug, Lee M

    2010-02-01

    GD2/GM2 synthase is a key enzyme in the synthesis of GD2 and GM2 gangliosides found on the surface of neuroblastoma and small cell lung carcinoma (SCLC) cells. In neuroblastoma, persistent levels of GD2/GM2 synthase RNA in bone marrow (BM) following therapy portend poorer progression-free and overall survival. We conducted this study to determine if GD2/GM2 synthase RNA could be detected in SCLC cell lines and human tissues, and whether mRNA transcript levels corresponded with disease status. Initially, a pilot study enrolled patients with SCLC to determine the rate of GD2 expression at various points in the patients' disease course. Peripheral blood (PB), bone marrow and tumor tissues were used to measure GD2/GM2 synthase levels. In addition, SCLC cell lines were analyzed for GD2/GM2 synthase expression. Based on data from that initial analysis, a prospective trial was developed enrolling patients with newly diagnosed SCLC and following them serially. GD2/GM2 synthase transcript was determined by a sensitive quantitative reverse transcription-PCR (qRT-PCR) assay and normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Six SCLC cell lines were assayed for expression of GD2/GM2 synthase, and high expression was detected in all. GD2/GM2 synthase transcript levels were obtained from tumor tissue, BM, or PB of 29 patients in the pilot study. 6/10 (60%) tumor tissues or BM samples were positive (median 332.7 units; range 13-2323 units); 8/19 (42%) untreated patients were GD2/GM2 synthase positive in their PB prior to beginning therapy (median 10.2; range 5.1-32.2); 3/4 (75%) patients who were first tested when they developed recurrent disease were positive in their PB (median 16.1; range 8.5-19.9). The fourth patient had an initial value of 2.0 (negative), which increased to 8.4 (positive) within 1 month without treatment. Seven of 12 patients with baseline positive GD2/GM2 synthase values had post-treatment levels measured, all of which were

  9. Nonleaking battery terminals.

    NASA Technical Reports Server (NTRS)

    Snider, W. E.; Nagle, W. J.

    1972-01-01

    Three different terminals were designed for usage in a 40 ampere/hour silver zinc battery which has a 45% KOH by weight electrolyte in a plastic battery case. Life tests, including thermal cycling, electrical charge and discharge for up to three years duration, were conducted on these three different terminal designs. Tests for creep rate and tensile strength were conducted on the polyphenylene oxide plastic battery cases. Some cases were unused and others containing KOH electrolyte were placed on life tests. The design and testing of nonleaking battery terminals for use with a KOH electrolyte in a plastic case are considered.

  10. SIRT3 Deacetylates ATP Synthase F1 Complex Proteins in Response to Nutrient- and Exercise-Induced Stress

    PubMed Central

    Vassilopoulos, Athanassios; Pennington, J. Daniel; Andresson, Thorkell; Rees, David M.; Bosley, Allen D.; Fearnley, Ian M.; Ham, Amy; Flynn, Charles Robb; Hill, Salisha; Rose, Kristie Lindsey; Kim, Hyun-Seok; Walker, John E.

    2014-01-01

    Abstract Aims: Adenosine triphosphate (ATP) synthase uses chemiosmotic energy across the inner mitochondrial membrane to convert adenosine diphosphate and orthophosphate into ATP, whereas genetic deletion of Sirt3 decreases mitochondrial ATP levels. Here, we investigate the mechanistic connection between SIRT3 and energy homeostasis. Results: By using both in vitro and in vivo experiments, we demonstrate that ATP synthase F1 proteins alpha, beta, gamma, and Oligomycin sensitivity-conferring protein (OSCP) contain SIRT3-specific reversible acetyl-lysines that are evolutionarily conserved and bind to SIRT3. OSCP was further investigated and lysine 139 is a nutrient-sensitive SIRT3-dependent deacetylation target. Site directed mutants demonstrate that OSCPK139 directs, at least in part, mitochondrial ATP production and mice lacking Sirt3 exhibit decreased ATP muscle levels, increased ATP synthase protein acetylation, and an exercise-induced stress-deficient phenotype. Innovation: This work connects the aging and nutrient response, via SIRT3 direction of the mitochondrial acetylome, to the regulation of mitochondrial energy homeostasis under nutrient-stress conditions by deacetylating ATP synthase proteins. Conclusion: Our data suggest that acetylome signaling contributes to mitochondrial energy homeostasis by SIRT3-mediated deacetylation of ATP synthase proteins. Antioxid. Redox Signal. 21, 551–564. PMID:24252090

  11. Stachyose synthesis in seeds of adzuki bean (Vigna angularis): molecular cloning and functional expression of stachyose synthase.

    PubMed

    Peterbauer, T; Mucha, J; Mayer, U; Popp, M; Glössl, J; Richter, A

    1999-12-01

    Stachyose is the major soluble carbohydrate in seeds of a number of important crop species. It is synthesized from raffinose and galactinol by the action of stachyose synthase (EC 2.4.1.67). We report here on the identification of a cDNA encoding stachyose synthase from seeds of adzuki bean (Vigna angularis Ohwi et Ohashi). Based on internal amino acid sequences of the enzyme purified from adzuki bean, oligonucleotides were designed and used to amplify corresponding sequences from adzuki bean cDNA by RT-PCR, followed by rapid amplification of cDNA ends (RACE-PCR). The complete cDNA sequence comprised 3046 nucleotides and included an open reading frame which encoded a polypeptide of 857 amino acid residues. The entire coding region was amplified by PCR, engineered into the baculovirus expression vector pVL1393 and introduced into Spodoptera frugiperda (Sf21) insect cells for heterologous expression. The recombinant protein was immunologically reactive with polyclonal antibodies raised against stachyose synthase purified from adzuki bean and was shown to be a functional stachyose synthase with the same catalytic properties as its native counterpart. High levels of stachyose synthase mRNA were transiently accumulated midway through seed development, and the enzyme was also present in mature seeds and during germination.

  12. Effects of cooperation between translating ribosome and RNA polymerase on termination efficiency of the Rho-independent terminator

    PubMed Central

    Li, Rui; Zhang, Qing; Li, Junbai; Shi, Hualin

    2016-01-01

    An experimental system was designed to measure in vivo termination efficiency (TE) of the Rho-independent terminator and position–function relations were quantified for the terminator tR2 in Escherichia coli. The terminator function was almost completely repressed when tR2 was located several base pairs downstream from the gene, and TE gradually increased to maximum values with the increasing distance between the gene and terminator. This TE–distance relation reflected a stochastic coupling of the ribosome and RNA polymerase (RNAP). Terminators located in the first 100 bp of the coding region can function efficiently. However, functional repression was observed when the terminator was located in the latter part of the coding region, and the degree of repression was determined by transcriptional and translational dynamics. These results may help to elucidate mechanisms of Rho-independent termination and reveal genomic locations of terminators and functions of the sequence that precedes terminators. These observations may have important applications in synthetic biology. PMID:26602687

  13. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality.

    PubMed

    Despinasse, Yolande; Fiorucci, Sébastien; Antonczak, Serge; Moja, Sandrine; Bony, Aurélie; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis; Jullien, Frédéric

    2017-05-01

    Lavender essential oils (EOs) of higher quality are produced by a few Lavandula angustifolia cultivars and mainly used in the perfume industry. Undesirable compounds such as camphor and borneol are also synthesized by lavender leading to a depreciated EO. Here, we report the cloning of bornyl diphosphate synthase of lavender (LaBPPS), an enzyme that catalyzes the production of bornyl diphosphate (BPP) and then by-products such as borneol or camphor, from an EST library. Compared to the BPPS of Salvia officinalis, the functional characterization of LaBPPS showed several differences in amino acid sequence, and the distribution of catalyzed products. Molecular modeling of the enzyme's active site suggests that the carbocation intermediates are more stable in LaBPPS than in SoBPPS leading probably to a lower efficiency of LaBPPS to convert GPP into BPP. Quantitative RT-PCR performed from leaves and flowers at different development stages of L. angustifolia samples show a clear correlation between transcript level of LaBPPS and accumulation of borneol/camphor, suggesting that LaBPPS is mainly responsible of in vivo biosynthesis of borneol/camphor in fine lavender. A phylogenetic analysis of terpene synthases (TPS) pointed out the basal position of LaBPPS in the TPSb clade, suggesting that LaBPPS could be an ancestor of others lavender TPSb. Finally, borneol could be one of the first monoterpenes to be synthesized in the Lavandula subgenus. Knowledge gained from these experiments will facilitate future studies to improve the lavender oils through metabolic engineering or plant breeding. Accession numbers: LaBPPS: KM015221. Copyright © 2017. Published by Elsevier Ltd.

  14. [Role of NO-synthase in stimulation of opiate receptors and kidney oxidative stress resistance].

    PubMed

    Orlova, E A; Komarevtseva, I A

    2004-01-01

    It was established that dalarginum injection before ARI (acute renal insufficiency) formation prevented an increases of proteolysis, decrease of SOD (superoxide dismutase), increase of NO2-/NO3- content in kidney tissue. Antioxidant effect of opiate receptor agonist was completely abolished by preliminary injection of OR antagonist--naloxone. Aminoguanidine nitrate (inducible NO-synthase inhibitor) injection removed positive effect of OR stimulation too. Thus OR stimulation increases kidney oxidative stress resistance due to NO-synthase and SOD activation.

  15. Development of a Plant Transformation Selection System Based on Expression of Genes Encoding Gentamicin Acetyltransferases

    PubMed Central

    Hayford, Maria B.; Medford, June I.; Hoffman, Nancy L.; Rogers, Stephen G.; Klee, Harry J.

    1988-01-01

    The development of selectable markers for transformation has been a major factor in the successful genetic manipulation of plants. A new selectable marker system has been developed based on bacterial gentamicin-3-N-acetyltransferases [AAC(3)]. These enzymes inactivate aminoglycoside antibiotics by acetylation. Two examples of AAC(3) enzymes have been manipulated to be expressed in plants. Chimeric AAC(3)-III and AAC(3)-IV genes were assembled using the constitutively expressed cauliflower mosaic virus 35S promoter and the nopaline synthase 3′ nontranslated region. These chimeric genes were engineered into vectors for Agrobacterium-mediated plant transformation. Petunia hybrida and Arabidopsis thaliana tissue transformed with these vectors grew in the presence of normally lethal levels of gentamicin. The transformed nature of regenerated Arabidopsis plants was confirmed by DNA hybridization analysis and inheritance of the selectable phenotype in progeny. The chimeric AAC(3)-IV gene has also been used to select transformants in several additional plant species. These results show that the bacterial AAC(3) genes will serve as useful selectable markers in plant tissue culture. Images Fig. 3 Fig. 4 Fig. 5 PMID:16666057

  16. Efficient Production of Active Polyhydroxyalkanoate Synthase in Escherichia coli by Coexpression of Molecular Chaperones

    PubMed Central

    Thomson, Nicholas M.; Saika, Azusa; Ushimaru, Kazunori; Sangiambut, Smith; Tsuge, Takeharu; Summers, David K.

    2013-01-01

    The type I polyhydroxyalkanoate synthase from Cupriavidus necator was heterologously expressed in Escherichia coli with simultaneous overexpression of chaperone proteins. Compared to expression of synthase alone (14.55 mg liter−1), coexpression with chaperones resulted in the production of larger total quantities of enzyme, including a larger proportion in the soluble fraction. The largest increase was seen when the GroEL/GroES system was coexpressed, resulting in approximately 6-fold-greater enzyme yields (82.37 mg liter−1) than in the absence of coexpressed chaperones. The specific activity of the purified enzyme was unaffected by coexpression with chaperones. Therefore, the increase in yield was attributed to an enhanced soluble fraction of synthase. Chaperones were also coexpressed with a polyhydroxyalkanoate production operon, resulting in the production of polymers with generally reduced molecular weights. This suggests a potential use for chaperones to control the physical properties of the polymer. PMID:23335776

  17. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with μ-Opioid Agonist Activity

    PubMed Central

    2012-01-01

    A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the μ-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the μ-opioid GPCR was predicated on the modulatory role of nitric oxide on μ-opioid receptor function. Structure–activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 μM), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent μ-opioid binding affinity, Ki = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 μM). This work represents a novel approach in the development of new analgesics for the treatment of pain. PMID:24900459

  18. Trigger loop dynamics can explain stimulation of intrinsic termination by bacterial RNA polymerase without terminator hairpin contact.

    PubMed

    Ray-Soni, Ananya; Mooney, Rachel A; Landick, Robert

    2017-10-31

    In bacteria, intrinsic termination signals cause disassembly of the highly stable elongating transcription complex (EC) over windows of two to three nucleotides after kilobases of RNA synthesis. Intrinsic termination is caused by the formation of a nascent RNA hairpin adjacent to a weak RNA-DNA hybrid within RNA polymerase (RNAP). Although the contributions of RNA and DNA sequences to termination are largely understood, the roles of conformational changes in RNAP are less well described. The polymorphous trigger loop (TL), which folds into the trigger helices to promote nucleotide addition, also is proposed to drive termination by folding into the trigger helices and contacting the terminator hairpin after invasion of the hairpin in the RNAP main cleft [Epshtein V, Cardinale CJ, Ruckenstein AE, Borukhov S, Nudler E (2007) Mol Cell 28:991-1001]. To investigate the contribution of the TL to intrinsic termination, we developed a kinetic assay that distinguishes effects of TL alterations on the rate at which ECs terminate from effects of the TL on the nucleotide addition rate that indirectly affect termination efficiency by altering the time window in which termination can occur. We confirmed that the TL stimulates termination rate, but found that stabilizing either the folded or unfolded TL conformation decreased termination rate. We propose that conformational fluctuations of the TL (TL dynamics), not TL-hairpin contact, aid termination by increasing EC conformational diversity and thus access to favorable termination pathways. We also report that the TL and the TL sequence insertion (SI3) increase overall termination efficiency by stimulating pausing, which increases the flux of ECs into the termination pathway. Published under the PNAS license.

  19. Trigger loop dynamics can explain stimulation of intrinsic termination by bacterial RNA polymerase without terminator hairpin contact

    PubMed Central

    Ray-Soni, Ananya; Mooney, Rachel A.; Landick, Robert

    2017-01-01

    In bacteria, intrinsic termination signals cause disassembly of the highly stable elongating transcription complex (EC) over windows of two to three nucleotides after kilobases of RNA synthesis. Intrinsic termination is caused by the formation of a nascent RNA hairpin adjacent to a weak RNA−DNA hybrid within RNA polymerase (RNAP). Although the contributions of RNA and DNA sequences to termination are largely understood, the roles of conformational changes in RNAP are less well described. The polymorphous trigger loop (TL), which folds into the trigger helices to promote nucleotide addition, also is proposed to drive termination by folding into the trigger helices and contacting the terminator hairpin after invasion of the hairpin in the RNAP main cleft [Epshtein V, Cardinale CJ, Ruckenstein AE, Borukhov S, Nudler E (2007) Mol Cell 28:991–1001]. To investigate the contribution of the TL to intrinsic termination, we developed a kinetic assay that distinguishes effects of TL alterations on the rate at which ECs terminate from effects of the TL on the nucleotide addition rate that indirectly affect termination efficiency by altering the time window in which termination can occur. We confirmed that the TL stimulates termination rate, but found that stabilizing either the folded or unfolded TL conformation decreased termination rate. We propose that conformational fluctuations of the TL (TL dynamics), not TL-hairpin contact, aid termination by increasing EC conformational diversity and thus access to favorable termination pathways. We also report that the TL and the TL sequence insertion (SI3) increase overall termination efficiency by stimulating pausing, which increases the flux of ECs into the termination pathway. PMID:29078293

  20. Chitin synthases are required for survival, fecundity and egg-hatch in the red flour beetle, Tribolium castaneum

    USDA-ARS?s Scientific Manuscript database

    The synthesis of chitin, the Beta-1,4-linked polymer of N-acetylglucosamine, is catalyzed by chitin synthase (CHS). Chitin is essential for the structural integrity of the exoskeletal cuticle and midgut peritrophic membrane (PM) of insects. To study the functions of the two chitin synthase genes, ...

  1. Structural analysis of a 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase with an N-terminal chorismate mutase-like regulatory domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Light, Samuel H.; Halavaty, Andrei S.; Minasov, George

    2012-06-27

    3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) catalyzes the first step in the biosynthesis of a number of aromatic metabolites. Likely because this reaction is situated at a pivotal biosynthetic gateway, several DAHPS classes distinguished by distinct mechanisms of allosteric regulation have independently evolved. One class of DAHPSs contains a regulatory domain with sequence homology to chorismate mutase - an enzyme further downstream of DAHPS that catalyzes the first committed step in tyrosine/phenylalanine biosynthesis - and is inhibited by chorismate mutase substrate (chorismate) and product (prephenate). Described in this work, structures of the Listeria monocytogenes chorismate/prephenate regulated DAHPS in complex with Mn{sup 2+}more » and Mn{sup 2+} + phosphoenolpyruvate reveal an unusual quaternary architecture: DAHPS domains assemble as a tetramer, from either side of which chorismate mutase-like (CML) regulatory domains asymmetrically emerge to form a pair of dimers. This domain organization suggests that chorismate/prephenate binding promotes a stable interaction between the discrete regulatory and catalytic domains and supports a mechanism of allosteric inhibition similar to tyrosine/phenylalanine control of a related DAHPS class. We argue that the structural similarity of chorismate mutase enzyme and CML regulatory domain provides a unique opportunity for the design of a multitarget antibacterial.« less

  2. Discovery of a new polyhydroxyalkanoate synthase from limestone soil through metagenomic approach.

    PubMed

    Tai, Yen Teng; Foong, Choon Pin; Najimudin, Nazalan; Sudesh, Kumar

    2016-04-01

    PHA synthase (PhaC) is the key enzyme in the production of biodegradable plastics known as polyhydroxyalkanoate (PHA). Nevertheless, most of these enzymes are isolated from cultivable bacteria using traditional isolation method. Most of the microorganisms found in nature could not be successfully cultivated due to the lack of knowledge on their growth conditions. In this study, a culture-independent approach was applied. The presence of phaC genes in limestone soil was screened using primers targeting the class I and II PHA synthases. Based on the partial gene sequences, a total of 19 gene clusters have been identified and 7 clones were selected for full length amplification through genome walking. The complete phaC gene sequence of one of the clones (SC8) was obtained and it revealed 81% nucleotide identity to the PHA synthase gene of Chromobacterium violaceum ATCC 12472. This gene obtained from uncultured bacterium was successfully cloned and expressed in a Cupriavidus necator PHB(-)4 PHA-negative mutant resulting in the accumulation of significant amount of PHA. The PHA synthase activity of this transformant was 64 ± 12 U/g proteins. This paper presents a pioneering study on the discovery of phaC in a limestone area using metagenomic approach. Through this study, a new functional phaC was discovered from uncultured bacterium. Phylogenetic classification for all the phaCs isolated from this study has revealed that limestone hill harbors a great diversity of PhaCs with activities that have not yet been investigated. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Consequences of the pathogenic T9176C mutation of human mitochondrial DNA on yeast mitochondrial ATP synthase

    PubMed Central

    Kucharczyk, Roza; Ezkurdia, Nahia; Couplan, Elodie; Procaccio, Vincent; Ackerman, Sharon H.; Blondel, Marc; di Rago, Jean-Paul

    2010-01-01

    Summary Several human neurological disorders have been associated with various mutations affecting mitochondrial enzymes involved in cellular ATP production. One of these mutations, T9176C in the mitochondrial DNA (mtDNA), changes a highly conserved leucine residue into proline at position 217 of the mitochondrially encoded Atp6p (or a) subunit of the F1FO-ATP synthase. The consequences of this mutation on the mitochondrial ATP synthase are still poorly defined. To gain insight into the primary pathogenic mechanisms induced by T9176C, we have investigated the consequences of this mutation on the ATP synthase of yeast where Atp6p is also encoded by the mtDNA. In vitro, yeast atp6-T9176C mitochondria showed a 30% decrease in the rate of ATP synthesis. When forcing the F1FO complex to work in the reverse mode, i.e. F1-catalyzed hydrolysis of ATP coupled to proton transport out of the mitochondrial matrix, the mutant showed a normal proton-pumping activity and this activity was fully sensitive to oligomycin, an inhibitor of the ATP synthase proton channel. However, under conditions of maximal ATP hydrolytic activity, using non-osmotically protected mitochondria, the mutant ATPase activity was less efficiently inhibited by oligomycin (60% inhibition versus 85% for the wild type control). BN-PAGE analyses revealed that atp6-T9176C yeast accumulated rather good levels of fully assembled ATP synthase complexes. However, a number of subcomplexes (F1, Atp9p-ring, unassembled α-F1 subunits) could be detected as well, presumably because of a decreased stability of Atp6p within the ATP synthase. Although the oxidative phosphorylation capacity was reduced in atp6-T9176C yeast, the number of ATP molecules synthesized per electron transferred to oxygen was similar compared with wild type yeast. It can therefore be inferred that the coupling efficiency within the ATP synthase was mostly unaffected and that the T9176C mutation did not increase the proton permeability of the

  4. ATP Synthase and the Actions of Inhibitors Utilized To Study Its Roles in Human Health, Disease, and Other Scientific Areas

    PubMed Central

    Hong, Sangjin; Pedersen, Peter L.

    2008-01-01

    Summary: ATP synthase, a double-motor enzyme, plays various roles in the cell, participating not only in ATP synthesis but in ATP hydrolysis-dependent processes and in the regulation of a proton gradient across some membrane-dependent systems. Recent studies of ATP synthase as a potential molecular target for the treatment of some human diseases have displayed promising results, and this enzyme is now emerging as an attractive molecular target for the development of new therapies for a variety of diseases. Significantly, ATP synthase, because of its complex structure, is inhibited by a number of different inhibitors and provides diverse possibilities in the development of new ATP synthase-directed agents. In this review, we classify over 250 natural and synthetic inhibitors of ATP synthase reported to date and present their inhibitory sites and their known or proposed modes of action. The rich source of ATP synthase inhibitors and their known or purported sites of action presented in this review should provide valuable insights into their applications as potential scaffolds for new therapeutics for human and animal diseases as well as for the discovery of new pesticides and herbicides to help protect the world's food supply. Finally, as ATP synthase is now known to consist of two unique nanomotors involved in making ATP from ADP and Pi, the information provided in this review may greatly assist those investigators entering the emerging field of nanotechnology. PMID:19052322

  5. TALEN mediated targeted editing of GM2/GD2-synthase gene modulates anchorage independent growth by reducing anoikis resistance in mouse tumor cells.

    PubMed

    Mahata, Barun; Banerjee, Avisek; Kundu, Manjari; Bandyopadhyay, Uday; Biswas, Kaushik

    2015-03-12

    Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics.

  6. Cloning and Functional Characterization of a Gene for Capsanthin-Capsorubin Synthase from Tiger Lily (Lilium lancifolium Thunb. ‘Splendens’)

    PubMed Central

    Chen, Tony H.H.

    2012-01-01

    The orange color of tiger lily (Lolium lancifolium ‘Splendens’) flowers is due, primarily, to the accumulation of two κ-xanthophylls, capsanthin and capsorubin. An enzyme, known as capsanthin-capsorubin synthase (CCS), catalyzes the conversion of antheraxanthin and violaxanthin into capsanthin and capsorubin, respectively. We cloned the gene for capsanthin-capsorubin synthase (Llccs) from flower tepals of L. lancifolium by the rapid amplification of cDNA ends (RACE) with a heterologous non-degenerate primer that was based on the sequence of a gene for lycopene β-cyclase (lcyB). The full-length cDNA of Llccs was 1,785 bp long and contained an open reading frame of 1,425 bp that encoded a polypeptide of 474 amino acids with a predicted N-terminal plastid-targeting sequence. Analysis by reverse transcription–PCR (RT–PCR) revealed that expression of Llccs was spatially and temporally regulated, with expression in flower buds and flowers of L. lancifolium but not in vegetative tissues. Stable overexpression of the Llccs gene in callus tissue of Iris germanica, which accumulates several xanthophylls including violaxanthin, the precursor of capsorubin, resulted in transgenic callus whose color had changed from its normal yellow to red-orange. This novel red-orange coloration was due to the accumulation of two non-native κ-xanthophylls, capsanthin and capsorubin, as confirmed by HPLC and ultraperformance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) analysis with authentic standards. Cloning of the Llccs gene should advance our understanding of the molecular and genetic mechanisms of the biosynthesis of κ-carotenoids in general and in the genus Lilium in particular, and will facilitate transgenic alterations of the colors of flowers and fruits of many plant species. PMID:23008421

  7. Bacterial Diterpene Synthases: New Opportunities for Mechanistic Enzymology and Engineered Biosynthesis

    PubMed Central

    Smanski, Michael J.; Peterson, Ryan M.; Huang, Sheng-Xiong; Shen, Ben

    2012-01-01

    Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to make significant contributions to our understanding of terpenoid biosynthesis. Here we will first survey diterpenoid natural products of bacterial origin and briefly review their biosynthesis with emphasis on diterpene synthases (DTSs) that channel geranylgeranyl diphosphate to various diterpenoid scaffolds. We will then highlight differences of DTSs of bacterial and higher organism origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by discussing new opportunities for DTS mechanistic enzymology and applications of bacterial DTS in biocatalysis and metabolic pathway engineering. PMID:22445175

  8. [Oxidative stress promotes hepatocyte apoptosis mediated by glycogen synthase kinase 3β].

    PubMed

    Zhang, Xiangying; Guo, Yuanyuan; Zhang, Li; Wen, Tao; Piao, Zhengfu; Shi, Hongbo; Chen, Dexi; Duan, Zhongping; Ren, Feng

    2015-01-01

    To analyze the role of glycogen synthase kinase 3β (GSK3β) in hepatocyte apoptosis induced by oxidative stress. Human HL-7702 hepatoma cells were induced by H₂O₂/antimycin A to establish oxidative stress-induced cell apoptosis models. SB216763, a specific inhibitor of GSK3β, was given to the cells two hours before H₂O₂/antimycin A induction. Cell survival was observed using calcein acetoxymethyl ester/propidium iodide (PI) double staining, and cell apoptosis was detected using annexin V-FITC/PI staining combined with flow cytometry. In the meanwhile, the cell culture supernatant was subjected to lactate dehydrogenase (LDH) assay to evaluate the extent of cell death. The expressions of p-GSK3β, GSK3β, caspase-3, cleaved caspase-3, c-Jun N-terminal kinase (JNK) and cytochrome C (CytC) proteins were examined using Western blotting. Oxidative stress triggered by H₂O₂/antimycin A promoted GSK3β activity; inhibition of GSK3β activity by SB216763 relieved oxidative stress and reduced cell apoptosis induced by oxidative stress. Compared with the model groups, SB216763 intervened group showed that the cell apoptosis rate and the level of LDH were reduced significantly, and that the expressions of cleaved caspase-3, JNK, CytC proteins decreased. GSK3β is an important signaling molecule in the apoptosis pathway induced by oxidative stress. The inhibition on GSK3β may alleviate the oxidative stress-induced hepatocyte apoptosis.

  9. Effects of cooperation between translating ribosome and RNA polymerase on termination efficiency of the Rho-independent terminator.

    PubMed

    Li, Rui; Zhang, Qing; Li, Junbai; Shi, Hualin

    2016-04-07

    An experimental system was designed to measure in vivo termination efficiency (TE) of the Rho-independent terminator and position-function relations were quantified for the terminator tR2 in Escherichia coli The terminator function was almost completely repressed when tR2 was located several base pairs downstream from the gene, and TE gradually increased to maximum values with the increasing distance between the gene and terminator. This TE-distance relation reflected a stochastic coupling of the ribosome and RNA polymerase (RNAP). Terminators located in the first 100 bp of the coding region can function efficiently. However, functional repression was observed when the terminator was located in the latter part of the coding region, and the degree of repression was determined by transcriptional and translational dynamics. These results may help to elucidate mechanisms of Rho-independent termination and reveal genomic locations of terminators and functions of the sequence that precedes terminators. These observations may have important applications in synthetic biology. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Nonleaking battery terminals

    NASA Technical Reports Server (NTRS)

    Snider, W. E.; Nagle, W. J.

    1972-01-01

    Three different terminals were designed for usage in a 40 ampere/hour silver zinc battery which has a 45 percent KOH by weight electrolyte in a plastic battery case. Life tests, including thermal cycling, electrical charge and discharge for up to three years duration, were conducted on these three different terminal designs. Tests for creep rate and tensile strength were conducted on the polyphenylene oxide (PPO) plastic battery cases. Some cases were unused and others containing KOH electrolyte were placed on life tests. The design and testing of nonleaking battery terminals for use with a potassium hydroxide (KOH) electrolyte in a plastic case are discussed.

  11. Modulation of inherent dynamical tendencies of the bisabolyl cation via preorganization in epi-isozizaene synthase.

    PubMed

    Pemberton, Ryan P; Ho, Krystina C; Tantillo, Dean J

    2015-04-01

    The relative importance of preorganization, selective transition state stabilization and inherent reactivity are assessed through quantum chemical and docking calculations for a sesquiterpene synthase ( epi -isozizaene synthase, EIZS). Inherent reactivity of the bisabolyl cation, both static and dynamic, appears to determine the pathway to product, although preorganization and selective binding of the final transition state structure in the multi-step carbocation cascade that forms epi -isozizaene appear to play important roles.

  12. An active site–tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase

    PubMed Central

    Murphy, Jesse R.; Donini, Stefano; Kappock, T. Joseph

    2015-01-01

    Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that ‘close’ the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an ‘open’ structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site–tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS. PMID:26457521

  13. An active site-tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase

    DOE PAGES

    Murphy, Jesse R.; Donini, Stefano; Kappock, T. Joseph

    2015-10-01

    Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that `close' the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an `open'more » structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. In conclusion, as a polar but almost neutral ligand, the active site-tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS.« less

  14. An active site-tail interaction in the structure of hexahistidine-tagged Thermoplasma acidophilum citrate synthase.

    PubMed

    Murphy, Jesse R; Donini, Stefano; Kappock, T Joseph

    2015-10-01

    Citrate synthase (CS) plays a central metabolic role in aerobes and many other organisms. The CS reaction comprises two half-reactions: a Claisen aldol condensation of acetyl-CoA (AcCoA) and oxaloacetate (OAA) that forms citryl-CoA (CitCoA), and CitCoA hydrolysis. Protein conformational changes that `close' the active site play an important role in the assembly of a catalytically competent condensation active site. CS from the thermoacidophile Thermoplasma acidophilum (TpCS) possesses an endogenous Trp fluorophore that can be used to monitor the condensation reaction. The 2.2 Å resolution crystal structure of TpCS fused to a C-terminal hexahistidine tag (TpCSH6) reported here is an `open' structure that, when compared with several liganded TpCS structures, helps to define a complete path for active-site closure. One active site in each dimer binds a neighboring His tag, the first nonsubstrate ligand known to occupy both the AcCoA and OAA binding sites. Solution data collectively suggest that this fortuitous interaction is stabilized by the crystalline lattice. As a polar but almost neutral ligand, the active site-tail interaction provides a new starting point for the design of bisubstrate-analog inhibitors of CS.

  15. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling

    PubMed Central

    Förstermann, Ulrich; Li, Huige

    2011-01-01

    Nitric oxide (NO) produced by the endothelium is an important protective molecule in the vasculature. It is generated by the enzyme endothelial NO synthase (eNOS). Similar to all NOS isoforms, functional eNOS transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH), via the flavins flavin adenine dinucleotide and flavin mononucleotide in the carboxy-terminal reductase domain, to the heme in the amino-terminal oxygenase domain. Here, the substrate L-arginine is oxidized to L-citrulline and NO. Cardiovascular risk factors such as diabetes mellitus, hypertension, hypercholesterolaemia or cigarette smoking reduce bioactive NO. These risk factors lead to an enhanced production of reactive oxygen species (ROS) in the vessel wall. NADPH oxidases represent major sources of this ROS and have been found upregulated in the presence of cardiovascular risk factors. NADPH-oxidase-derived superoxide avidly reacts with eNOS-derived NO to form peroxynitrite (ONOO-). The essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH4) is highly sensitive to oxidation by this ONOO-. In BH4 deficiency, oxygen reduction uncouples from NO synthesis, thereby converting NOS to a superoxide-producing enzyme. Among conventional drugs, compounds interfering with the renin-angiotensin-aldosterone system and statins can reduce vascular oxidative stress and increase bioactive NO. In recent years, we have identified a number of small molecules that have the potential to prevent eNOS uncoupling and, at the same time, enhance eNOS expression. These include the protein kinase C inhibitor midostaurin, the pentacyclic triterpenoids ursolic acid and betulinic acid, the eNOS enhancing compounds AVE9488 and AVE3085, and the polyphenolic phytoalexin trans-resveratrol. Such compounds enhance NO production from eNOS also under pathophysiological conditions and may thus have therapeutic potential. PMID:21198553

  16. ATP synthase--a marvellous rotary engine of the cell.

    PubMed

    Yoshida, M; Muneyuki, E; Hisabori, T

    2001-09-01

    ATP synthase can be thought of as a complex of two motors--the ATP-driven F1 motor and the proton-driven Fo motor--that rotate in opposite directions. The mechanisms by which rotation and catalysis are coupled in the working enzyme are now being unravelled on a molecular scale.

  17. 29 CFR 95.61 - Termination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-PROFIT ORGANIZATIONS, AND WITH COMMERCIAL ORGANIZATIONS, FOREIGN GOVERNMENTS, ORGANIZATIONS UNDER THE JURISDICTION OF FOREIGN GOVERNMENTS, AND INTERNATIONAL ORGANIZATIONS Post-Award Requirements Termination and... effective date and, in the case of partial termination, the portion to be terminated. (3) By the recipient...

  18. 29 CFR 95.61 - Termination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-PROFIT ORGANIZATIONS, AND WITH COMMERCIAL ORGANIZATIONS, FOREIGN GOVERNMENTS, ORGANIZATIONS UNDER THE JURISDICTION OF FOREIGN GOVERNMENTS, AND INTERNATIONAL ORGANIZATIONS Post-Award Requirements Termination and... effective date and, in the case of partial termination, the portion to be terminated. (3) By the recipient...

  19. Transcriptional activation of a geranylgeranyl diphosphate synthase gene, GGPPS2, isolated from Scoparia dulcis by treatment with methyl jasmonate and yeast extract.

    PubMed

    Yamamura, Y; Mizuguchi, Y; Taura, F; Kurosaki, F

    2014-10-01

    A cDNA clone, designated SdGGPPS2, was isolated from young seedlings of Scoparia dulcis. The putative amino acid sequence of the translate of the gene showed high homology with geranylgeranyl diphosphate synthase (GGPPS) from various plant sources, and the N-terminal residues exhibited the characteristics of chloroplast targeting sequence. An appreciable increase in the transcriptional level of SdGGPPS2 was observed by exposure of the leaf tissues of S. dulcis to methyl jasmonate, yeast extract or Ca(2+) ionophore A23187. In contrast, SdGGPPS1, a homologous GGPPS gene of the plant, showed no or only negligible change in the expression level upon treatment with these stimuli. The truncated protein heterologously expressed in Escherichia coli in which the putative targeting domain was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to liberate geranylgeranyl diphosphate. These results suggested that SdGGPPS2 plays physiological roles in methyl jasmonate and yeast extract-induced metabolism in the chloroplast of S. dulcis cells.

  20. Tripeptidyl peptidase I, the late infantile neuronal ceroid lipofuscinosis gene product, initiates the lysosomal degradation of subunit c of ATP synthase.

    PubMed

    Ezaki, J; Takeda-Ezaki, M; Kominami, E

    2000-09-01

    The specific accumulation of a hydrophobic protein, subunit c of ATP synthase, in lysosomes from the cells of patients with the late infantile form of NCL (LINCL) is caused by a defect in the CLN2 gene product, tripeptidyl peptidase I (TPP-I). The data here show that TPP-I is involved in the initial degradation of subunit c in lysosomes and suggest that its absence leads directly to the lysosomal accumulation of subunit c. The inclusion of a specific inhibitor of TPP-I, Ala-Ala-Phe-chloromethylketone (AAF-CMK), in the culture medium of normal fibroblasts induced the lysosomal accumulation of subunit c. In an in vitro incubation experiment the addition of AAF-CMK to mitochondrial-lysosomal fractions from normal cells inhibited the proteolysis of subunit c, but not the b-subunit of ATP synthase. The use of two antibodies that recognize the aminoterminal and the middle portion of subunit c revealed that the subunit underwent aminoterminal proteolysis, when TPP-I, purified from rat spleen, was added to the mitochondrial fractions. The addition of both purified TPP-I and the soluble lysosomal fractions, which contain various proteinases, to the mitochondrial fractions resulted in rapid degradation of the entire molecule of subunit c, whereas the degradation of subunit c was markedly delayed through the specific inhibition of TPP-I in lysosomal extracts by AAF-CMK. The stable subunit c in the mitochondrial-lysosomal fractions from cells of a patient with LINCL was degraded on incubation with purified TPP-I. The presence of TPP-I led to the sequential cleavage of tripeptides from the N-terminus of the peptide corresponding to the amino terminal sequence of subunit c.

  1. Glycogen Synthase Kinase 3 Inhibition Promotes Lysosomal Biogenesis and Autophagic Degradation of the Amyloid-β Precursor Protein

    PubMed Central

    Parr, Callum; Carzaniga, Raffaela; Gentleman, Steve M.; Van Leuven, Fred; Walter, Jochen

    2012-01-01

    Alzheimer's disease (AD) has been associated with altered activity of glycogen synthase kinase 3 (GSK3) isozymes, which are proposed to contribute to both neurofibrillary tangles and amyloid plaque formation. However, the molecular basis by which GSK3 affects the formation of Aβ remains unknown. Our aim was to identify the underlying mechanisms of GSK3-dependent effects on the processing of amyloid precursor protein (APP). For this purpose, N2a cells stably expressing APP carrying the Swedish mutation were treated with specific GSK3 inhibitors or transfected with GSK3α/β short interfering RNA. We show that inhibition of GSK3 leads to decreased expression of APP by enhancing its degradation via an increase in the number of lysosomes. This induction of the lysosomal/autophagy pathway was associated with nuclear translocation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis. Our data indicate that GSK3 inhibition reduces Aβ through an increase of the degradation of APP and its carboxy-terminal fragment (CTF) by activation of the lysosomal/autophagy pathway. These results suggest that an increased propensity toward autophagic/lysosomal alterations in AD patients could have consequences for neuronal function. PMID:22927642

  2. Measurement and modeling of intrinsic transcription terminators

    PubMed Central

    Cambray, Guillaume; Guimaraes, Joao C.; Mutalik, Vivek K.; Lam, Colin; Mai, Quynh-Anh; Thimmaiah, Tim; Carothers, James M.; Arkin, Adam P.; Endy, Drew

    2013-01-01

    The reliable forward engineering of genetic systems remains limited by the ad hoc reuse of many types of basic genetic elements. Although a few intrinsic prokaryotic transcription terminators are used routinely, termination efficiencies have not been studied systematically. Here, we developed and validated a genetic architecture that enables reliable measurement of termination efficiencies. We then assembled a collection of 61 natural and synthetic terminators that collectively encode termination efficiencies across an ∼800-fold dynamic range within Escherichia coli. We simulated co-transcriptional RNA folding dynamics to identify competing secondary structures that might interfere with terminator folding kinetics or impact termination activity. We found that structures extending beyond the core terminator stem are likely to increase terminator activity. By excluding terminators encoding such context-confounding elements, we were able to develop a linear sequence-function model that can be used to estimate termination efficiencies (r = 0.9, n = 31) better than models trained on all terminators (r = 0.67, n = 54). The resulting systematically measured collection of terminators should improve the engineering of synthetic genetic systems and also advance quantitative modeling of transcription termination. PMID:23511967

  3. Termination unit

    DOEpatents

    Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann

    2016-05-03

    Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.

  4. Molecular coevolution of mammalian ribosomal gene terminator sequences and the transcription termination factor TTF-I.

    PubMed Central

    Evers, R; Grummt, I

    1995-01-01

    Both the DNA elements and the nuclear factors that direct termination of ribosomal gene transcription exhibit species-specific differences. Even between mammals--e.g., human and mouse--the termination signals are not identical and the respective transcription termination factors (TTFs) which bind to the terminator sequence are not fully interchangeable. To elucidate the molecular basis for this species-specificity, we have cloned TTF-I from human and mouse cells and compared their structural and functional properties. Recombinant TTF-I exhibits species-specific DNA binding and terminates transcription both in cell-free transcription assays and in transfection experiments. Chimeric constructs of mouse TTF-I and human TTF-I reveal that the major determinant for species-specific DNA binding resides within the C terminus of TTF-I. Replacing 31 C-terminal amino acids of mouse TTF-I with the homologous human sequences relaxes the DNA-binding specificity and, as a consequence, allows the chimeric factor to bind the human terminator sequence and to specifically stop rDNA transcription. Images Fig. 2 Fig. 3 Fig. 4 PMID:7597036

  5. Cloning and characterization of the Schizosaccharomyces pombe tRNA:pseudouridine synthase Pus1p

    PubMed Central

    Hellmuth, Klaus; Grosjean, Henri; Motorin, Yuri; Deinert, Karina; Hurt, Ed; Simos, George

    2000-01-01

    Saccharomyces cerevisiae cells that carry deletions in both the LOS1 (a tRNA export receptor) and the PUS1 (a tRNA:pseudouridine synthase) genes exhibit a thermosensitive growth defect. A Schizosaccharomyces pombe gene, named spPUS1, was cloned from a cDNA library by complementation of this conditional lethal phenotype. The corresponding protein, spPus1p, shows sequence similarity to S.cerevisiae and murine Pus1p as well as other known members of the pseudouridine synthase family. Accordingly, recombinant spPus1p can catalyze in vitro the formation of pseudouridines at positions 27, 28, 34, 35 and 36 of yeast tRNA transcripts. The sequence and functional conservation of the Pus1p proteins in fungi and mammalian species and their notable absence from prokaryotes suggest that this family of pseudouridine synthases is required for a eukaryote-specific step of tRNA biogenesis, such as nuclear export. PMID:11095668

  6. Cloning and characterization of the Schizosaccharomyces pombe tRNA:pseudouridine synthase Pus1p.

    PubMed

    Hellmuth, K; Grosjean, H; Motorin, Y; Deinert, K; Hurt, E; Simos, G

    2000-12-01

    Saccharomyces cerevisiae cells that carry deletions in both the LOS1 (a tRNA export receptor) and the PUS1 (a tRNA:pseudouridine synthase) genes exhibit a thermosensitive growth defect. A Schizosaccharomyces pombe gene, named spPUS1, was cloned from a cDNA library by complementation of this conditional lethal phenotype. The corresponding protein, spPus1p, shows sequence similarity to S. cerevisiae and murine Pus1p as well as other known members of the pseudouridine synthase family. Accordingly, recombinant spPus1p can catalyze in vitro the formation of pseudouridines at positions 27, 28, 34, 35 and 36 of yeast tRNA transcripts. The sequence and functional conservation of the Pus1p proteins in fungi and mammalian species and their notable absence from prokaryotes suggest that this family of pseudouridine synthases is required for a eukaryote-specific step of tRNA biogenesis, such as nuclear export.

  7. Cardioprotective Effect of Danshensu against Ischemic/Reperfusion Injury via c-Subunit of ATP Synthase Inhibition

    PubMed Central

    Zhao, JingYi; Fan, Zixuan; Bao, Jiadi; Sun, Dawei; Sun, Chun

    2017-01-01

    Mitochondrial permeability transition pore (MPTP) opening is the main culprit of ischemic/reperfusion (IR) injury. It is reported that c-subunit of ATP synthase is the core component of MPTP. Danshensu (DSS), a monomer isolated from the traditional Chinese herb Danshen, has showed cardioprotective effect against IR injury through unknown mechanism. In this study, rat hearts were suspended in Langendorff instrument and perfused with Krebs-Henseleit (KH) buffer containing DSS for 60 minutes, followed by 30 minutes of global ischemia. Parameters including heart rate, left ventricular developed pressure, and the rate of left ventricle diastolic pressure change were recorded to assess their cardiac function. All these indexes were improved in DSS group. The rate of cardiomyocytes apoptosis and MPTP opening were both inhibited in DSS group. In addition, DSS administration leads to downregulation of c-subunit of ATP synthase in both mRNA and protein levels. Consistently, when c-subunit of ATP synthase was overexpressed in H9C2 cells through pcDNA3/5G1 plasmid transfection, MPTP opening was enhanced when the cardioprotective effect of DSS also tapers. In conclusion, DSS could alleviate cardiac IR injury via inhibiting c-subunit of ATP synthase expression. PMID:29250127

  8. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leavesmore » and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.« less

  9. 45 CFR 74.61 - Termination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND SUBAWARDS TO INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, OTHER NONPROFIT ORGANIZATIONS, AND COMMERCIAL ORGANIZATIONS Post-Award Requirements Termination and Enforcement § 74.61 Termination. (a) Awards... two parties shall agree upon the termination conditions, including the effective date and, in the case...

  10. 7 CFR 1206.22 - Terminate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Terminate. 1206.22 Section 1206.22 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.22 Terminate. Terminate means...

  11. chs-4, a class IV chitin synthase gene from Neurospora crassa.

    PubMed

    Din, A B; Specht, C A; Robbins, P W; Yarden, O

    1996-02-05

    In Saccharomyces cerevisiae, most of the cellular chitin is produced by chitin synthase III, which requires the product encoded by the CSD2/CAL1/DIT101/KT12 gene. We have identified, isolated and structurally characterized as CSD2/CAL1/DIT101/KT12 homologue in the filamentous ascomycete Neurospora crassa and have used a "reverse genetics" approach to determine its role in vivo. The yeast gene was used as a heterologous probe for the isolation of a N. crassa gene(designated chs-4) encoding a polypeptide belonging to a class of chitin synthases which we have designated class IV. The predicted polypeptide encoded by this gene is highly similar to those of S. cerevisiae and Candida albicans. N. crassa strains in which chs-4 had been inactivated by the Repeat-Induced point mutation (RIP) process grew and developed in a normal manner under standard growth conditions. However, when grown in the presence of sorbose (a carbon source which induces morphological changes accompanied by elevated chitin content), chitin levels in the chs-4RIP strain were significantly lower than those observed in the wild type. We suggest that CHS4 may serve as an auxiliary enzyme in N. crassa and that, in contrast to yeasts, it is possible that filamentous fungi may have more than one class IV chitin synthase.

  12. Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase.

    PubMed

    Michel, J B; Feron, O; Sase, K; Prabhakar, P; Michel, T

    1997-10-10

    Nitric oxide is synthesized in diverse mammalian tissues by a family of calmodulin-dependent nitric oxide synthases. The endothelial isoform of nitric oxide synthase (eNOS) is targeted to the specialized signal-transducing membrane domains termed plasmalemmal caveolae. Caveolin, the principal structural protein in caveolae, interacts with eNOS and leads to enzyme inhibition in a reversible process modulated by Ca2+-calmodulin (Michel, J. B., Feron, O., Sacks, D., and Michel, T. (1997) J. Biol. Chem. 272, 15583-15586). Caveolin also interacts with other structurally distinct signaling proteins via a specific region identified within the caveolin sequence (amino acids 82-101) that appears to subserve the role of a "scaffolding domain." We now report that the co-immunoprecipitation of eNOS with caveolin is completely and specifically blocked by an oligopeptide corresponding to the caveolin scaffolding domain. Peptides corresponding to this domain markedly inhibit nitric oxide synthase activity in endothelial membranes and interact directly with the enzyme to inhibit activity of purified recombinant eNOS expressed in Escherichia coli. The inhibition of purified eNOS by the caveolin scaffolding domain peptide is competitive and completely reversed by Ca2+-calmodulin. These studies establish that caveolin, via its scaffolding domain, directly forms an inhibitory complex with eNOS and suggest that caveolin inhibits eNOS by abrogating the enzyme's activation by calmodulin.

  13. Site-specific Phosphorylation Protects Glycogen Synthase Kinase-3β from Calpain-mediated Truncation of Its N and C Termini*

    PubMed Central

    Ma, Shanshan; Liu, Shaojun; Huang, Qiaoying; Xie, Bo; Lai, Bingquan; Wang, Chong; Song, Bin; Li, Mingtao

    2012-01-01

    Glycogen synthase kinase-3β (GSK-3β), a key regulator of neuronal apoptosis, is inhibited by the phosphorylation of Ser-9/Ser-389 and was recently shown to be cleaved by calpain at the N terminus, leading to its subsequent activation. In this study calpain was found to cleave GSK-3β not only at the N terminus but also at the C terminus, and cleavage sites were identified at residues Thr-38–Thr-39 and Ile-384–Gln-385. Furthermore, the cleavage of GSK-3β occurred in tandem with Ser-9 dephosphorylation during cerebellar granule neuron apoptosis. Increasing Ser-9 phosphorylation of GSK-3β by inhibiting phosphatase 1/2A or pretreating with purified active Akt inhibited calpain-mediated cleavage of GSK-3β at both N and C termini, whereas non-phosphorylatable mutant GSK-3β S9A facilitated its cleavage. In contrast, Ser-389 phosphorylation selectively inhibited the cleavage of GSK-3β at the C terminus but not the N terminus. Calpain-mediated cleavage resulted in three truncated products, all of which contained an intact kinase domain: ΔN-GSK-3β (amino acids 39–420), ΔC-GSK-3β (amino acids 1–384), and ΔN/ΔC-GSK-3β (amino acids 39–384). All three truncated products showed increased kinase and pro-apoptotic activity, with ΔN/ΔC-GSK-3β being the most active form. This observation suggests that the GSK-3β C terminus acts as an autoinhibitory domain similar to the N terminus. Taken together, these findings demonstrate that calpain-mediated cleavage activates GSK-3β by removing its N- and C-terminal autoinhibitory domains and that Ser-9 phosphorylation inhibits the cleavage of GSK-3β at both termini. In contrast, Ser-389 phosphorylation inhibits only C-terminal cleavage but not N-terminal cleavage. These findings also identify a mechanism by which site-specific phosphorylation and calpain-mediated cleavage operate in concert to regulate GSK-3β activity. PMID:22496446

  14. Site-specific phosphorylation protects glycogen synthase kinase-3β from calpain-mediated truncation of its N and C termini.

    PubMed

    Ma, Shanshan; Liu, Shaojun; Huang, Qiaoying; Xie, Bo; Lai, Bingquan; Wang, Chong; Song, Bin; Li, Mingtao

    2012-06-29

    Glycogen synthase kinase-3β (GSK-3β), a key regulator of neuronal apoptosis, is inhibited by the phosphorylation of Ser-9/Ser-389 and was recently shown to be cleaved by calpain at the N terminus, leading to its subsequent activation. In this study calpain was found to cleave GSK-3β not only at the N terminus but also at the C terminus, and cleavage sites were identified at residues Thr-38-Thr-39 and Ile-384-Gln-385. Furthermore, the cleavage of GSK-3β occurred in tandem with Ser-9 dephosphorylation during cerebellar granule neuron apoptosis. Increasing Ser-9 phosphorylation of GSK-3β by inhibiting phosphatase 1/2A or pretreating with purified active Akt inhibited calpain-mediated cleavage of GSK-3β at both N and C termini, whereas non-phosphorylatable mutant GSK-3β S9A facilitated its cleavage. In contrast, Ser-389 phosphorylation selectively inhibited the cleavage of GSK-3β at the C terminus but not the N terminus. Calpain-mediated cleavage resulted in three truncated products, all of which contained an intact kinase domain: ΔN-GSK-3β (amino acids 39-420), ΔC-GSK-3β (amino acids 1-384), and ΔN/ΔC-GSK-3β (amino acids 39-384). All three truncated products showed increased kinase and pro-apoptotic activity, with ΔN/ΔC-GSK-3β being the most active form. This observation suggests that the GSK-3β C terminus acts as an autoinhibitory domain similar to the N terminus. Taken together, these findings demonstrate that calpain-mediated cleavage activates GSK-3β by removing its N- and C-terminal autoinhibitory domains and that Ser-9 phosphorylation inhibits the cleavage of GSK-3β at both termini. In contrast, Ser-389 phosphorylation inhibits only C-terminal cleavage but not N-terminal cleavage. These findings also identify a mechanism by which site-specific phosphorylation and calpain-mediated cleavage operate in concert to regulate GSK-3β activity.

  15. Isolation and bacterial expression of a sesquiterpene synthase CDNA clone from peppermint(mentha .chi. piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Crock, John E.

    1999-01-01

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-farnesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-farnesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  16. 48 CFR 49.105 - Duties of termination contracting officer after issuance of notice of termination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TERMINATION OF CONTRACTS General Principles 49.105 Duties of termination contracting officer after issuance of notice of termination. (a... principles relating to the settlement of any settlement proposal, including obligations of the contractor...

  17. Three 1-Aminocyclopropane-1-Carboxylate Synthase Genes Regulated by Primary and Secondary Pollination Signals in Orchid Flowers1

    PubMed Central

    Bui, Anhthu Q.; Neill, Sharman D. O'

    1998-01-01

    The temporal and spatial expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes were investigated in pollinated orchid (Phalaenopsis spp.) flowers. Pollination signals initiate a cascade of development events in multiple floral organs, including the induction of ethylene biosynthesis, which coordinates several postpollination developmental responses. The initiation and propagation of ethylene biosynthesis is regulated by the coordinated expression of three distinct ACC synthase genes in orchid flowers. One ACC synthase gene (Phal-ACS1) is regulated by ethylene and participates in amplification and interorgan transmission of the pollination signal, as we have previously described in a related orchid genus. Two additional ACC synthase genes (Phal-ACS2 and Phal-ACS3) are expressed primarily in the stigma and ovary of pollinated orchid flowers. Phal-ACS2 mRNA accumulated in the stigma within 1 h after pollination, whereas Phal-ACS1 mRNA was not detected until 6 h after pollination. Similar to the expression of Phal-ACS2, the Phal-ACS3 gene was expressed within 2 h after pollination in the ovary. Exogenous application of auxin, but not ACC, mimicked pollination by stimulating a rapid increase in ACC synthase activity in the stigma and ovary and inducing Phal-ACS2 and Phal-ACS3 mRNA accumulation in the stigma and ovary, respectively. These results provide the basis for an expanded model of interorgan regulation of three ACC synthase genes that respond to both primary (Phal-ACS2 and Phal-ACS3) and secondary (Phal-ACS1) pollination signals. PMID:9449850

  18. 7 CFR 953.66 - Termination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Termination. 953.66 Section 953.66 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... STATES Order Regulating Handling Effective Time and Termination § 953.66 Termination. (a) The Secretary...

  19. TALEN mediated targeted editing of GM2/GD2-synthase gene modulates anchorage independent growth by reducing anoikis resistance in mouse tumor cells

    PubMed Central

    Mahata, Barun; Banerjee, Avisek; Kundu, Manjari; Bandyopadhyay, Uday; Biswas, Kaushik

    2015-01-01

    Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics. PMID:25762467

  20. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction

    PubMed Central

    2012-01-01

    Background Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. Method We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate), and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min) and endothelial permeability. Results In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA), a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS), decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc). This increase disappeared after administration of 1400 W. Conclusion Hypercapnia with and without acidosis increased HPV during

  1. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction.

    PubMed

    Ketabchi, Farzaneh; Ghofrani, Hossein A; Schermuly, Ralph T; Seeger, Werner; Grimminger, Friedrich; Egemnazarov, Bakytbek; Shid-Moosavi, S Mostafa; Dehghani, Gholam A; Weissmann, Norbert; Sommer, Natascha

    2012-01-31

    Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate), and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min) and endothelial permeability. In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA), a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS), decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc). This increase disappeared after administration of 1400 W. Hypercapnia with and without acidosis increased HPV during conditions of sustained hypoxia. The

  2. UVB light upregulates prostaglandin synthases and prostaglandin receptors in mouse keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.

    Prostaglandins belong to a class of cyclic lipid-derived mediators synthesized from arachidonic acid via COX-1, COX-2 and various prostaglandin synthases. Members of this family include prostaglandins such as PGE{sub 2}, PGF{sub 2{alpha}}, PGD{sub 2} and PGI{sub 2} (prostacyclin) as well as thromboxane. In the present studies we analyzed the effects of UVB on prostaglandin production and prostaglandin synthase expression in primary cultures of undifferentiated and calcium-differentiated mouse keratinocytes. Both cell types were found to constitutively synthesize PGE{sub 2}, PGD{sub 2} and the PGD{sub 2} metabolite PGJ{sub 2}. Twenty-four hours after treatment with UVB (25 mJ/cm{sup 2}), production of PGE{sub 2}more » and PGJ{sub 2} increased, while PGD{sub 2} production decreased. This was associated with increased expression of COX-2 mRNA and protein. UVB (2.5-25 mJ/cm{sup 2}) also caused marked increases in mRNA expression for the prostanoid synthases PGDS, mPGES-1, mPGES-2, PGFS and PGIS, as well as expression of receptors for PGE{sub 2} (EP1 and EP2), PGD{sub 2} (DP and CRTH2) and prostacyclin (IP). UVB was more effective in inducing COX-2 and DP in differentiated cells and EP1 and IP in undifferentiated cells. UVB readily activated keratinocyte PI-3-kinase (PI3K)/Akt, JNK and p38 MAP signaling pathways which are known to regulate COX-2 expression. While inhibition of PI3K suppressed UVB-induced mPGES-1 and CRTH2 expression, JNK inhibition suppressed mPGES-1, PGIS, EP2 and CRTH2, and p38 kinase inhibition only suppressed EP1 and EP2. These data indicate that UVB modulates expression of prostaglandin synthases and receptors by distinct mechanisms. Moreover, both the capacity of keratinocytes to generate prostaglandins and their ability to respond to these lipid mediators are stimulated by exposure to UVB.« less

  3. Two Bacterial Diterpene Synthases from Allokutzneria albata for Bonnadiene and for Phomopsene and Allokutznerene.

    PubMed

    Lauterbach, Lukas; Rinkel, Jan; Dickschat, Jeroen Sidney

    2018-05-14

    Two diterpene synthases from Allokutzneria albata were studied for their products, resulting in the identification of the new compound bonnadiene from the first enzyme. Although phylogenetically unrelated to fungal phomopsene synthase, the second enzyme produced a mixture of phomopsene and a biosynthetically linked new compound, allokutznerene, besides spiroviolene. Both enzymes were deeply studied for their mechanisms by isotopic labelling experiments, metal cofactor variation and site-directed mutagenesis. Oxidation products of phomopsene and allokutznerene are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Crystallization of the c14-rotor of the chloroplast ATP synthase reveals that it contains pigments

    PubMed Central

    Varco-Merth, Benjamin; Fromme, Raimund; Wang, Meitian; Fromme, Petra

    2012-01-01

    The ATP synthase is one of the most important enzymes on earth as it couples the transmembrane electrochemical potential of protons to the synthesis of ATP from ADP and inorganic phosphate, providing the main ATP source of almost all higher life on earth. During ATP synthesis, stepwise protonation of a conserved carboxylate on each protein subunit of an oligomeric ring of 10–15 c-subunits is commonly thought to drive rotation of the rotor moiety (c10–14γε) relative to stator moiety (α3β3δab2). Here we report the isolation and crystallization of the c14-ring of subunit c from the spinach chloroplast enzyme diffracting as far as 2.8 Å. Though ATP synthase was not previously known to contain any pigments, the crystals of the c-subunit possessed a strong yellow color. The pigment analysis revealed that they contain 1 chlorophyll and 2 carotenoids, thereby showing for the first time that the chloroplast ATP synthase contains cofactors, leading to the question of the possible roles of the functions of the pigments in the chloroplast ATP synthase. PMID:18515064

  5. 22 CFR 518.61 - Termination.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements... conditions, including the effective date and, in the case of partial termination, the portion to be... forth the reasons for such termination, the effective date, and, in the case of partial termination, the...

  6. 22 CFR 145.61 - Termination.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Termination and Enforcement § 145.61... parties shall agree upon the termination conditions, including the effective date and, in the case of... written notification setting forth the reasons for such termination, the effective date, and, in the case...

  7. 36 CFR 1210.61 - Termination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Termination and Enforcement § 1210.61... agree upon the termination conditions, including the effective date and, in the case of partial... setting forth the reasons for such termination, the effective date, and, in the case of partial...

  8. 28 CFR 70.61 - Termination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (INCLUDING SUBAWARDS) WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS AND OTHER NON-PROFIT ORGANIZATIONS... conditions, including the effective date and, in the case of partial termination, the portion to be... reasons for such termination, the effective date, and, in the case of partial termination, the portion to...

  9. 22 CFR 518.61 - Termination.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements... conditions, including the effective date and, in the case of partial termination, the portion to be... forth the reasons for such termination, the effective date, and, in the case of partial termination, the...

  10. 22 CFR 145.61 - Termination.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Termination and Enforcement § 145.61... parties shall agree upon the termination conditions, including the effective date and, in the case of... written notification setting forth the reasons for such termination, the effective date, and, in the case...

  11. 33 CFR 159.79 - Terminals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Terminals. 159.79 Section 159.79 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.79 Terminals. Terminals must be solderless lugs...

  12. 42 CFR 66.109 - Termination.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Termination. 66.109 Section 66.109 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL RESEARCH SERVICE AWARDS Direct Awards § 66.109 Termination. (a) The Secretary may terminate an...

  13. 42 CFR 66.109 - Termination.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Termination. 66.109 Section 66.109 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL RESEARCH SERVICE AWARDS Direct Awards § 66.109 Termination. (a) The Secretary may terminate an...

  14. 42 CFR 66.109 - Termination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Termination. 66.109 Section 66.109 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL RESEARCH SERVICE AWARDS Direct Awards § 66.109 Termination. (a) The Secretary may terminate an...

  15. 42 CFR 66.109 - Termination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Termination. 66.109 Section 66.109 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL RESEARCH SERVICE AWARDS Direct Awards § 66.109 Termination. (a) The Secretary may terminate an...

  16. 42 CFR 66.109 - Termination.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Termination. 66.109 Section 66.109 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL RESEARCH SERVICE AWARDS Direct Awards § 66.109 Termination. (a) The Secretary may terminate an...

  17. Phylogenomic and Domain Analysis of Iterative Polyketide Synthases in Aspergillus Species

    PubMed Central

    Lin, Shu-Hsi; Yoshimoto, Miwa; Lyu, Ping-Chiang; Tang, Chuan-Yi; Arita, Masanori

    2012-01-01

    Aspergillus species are industrially and agriculturally important as fermentors and as producers of various secondary metabolites. Among them, fungal polyketides such as lovastatin and melanin are considered a gold mine for bioactive compounds. We used a phylogenomic approach to investigate the distribution of iterative polyketide synthases (PKS) in eight sequenced Aspergilli and classified over 250 fungal genes. Their genealogy by the conserved ketosynthase (KS) domain revealed three large groups of nonreducing PKS, one group inside bacterial PKS, and more than 9 small groups of reducing PKS. Polyphyly of nonribosomal peptide synthase (NRPS)-PKS genes raised questions regarding the recruitment of the elegant conjugation machinery. High rates of gene duplication and divergence were frequent. All data are accessible through our web database at http://metabolomics.jp/wiki/Category:PK. PMID:22844193

  18. The anisotropy1 D604N Mutation in the Arabidopsis Cellulose Synthase1 Catalytic Domain Reduces Cell Wall Crystallinity and the Velocity of Cellulose Synthase Complexes1[W][OA

    PubMed Central

    Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T.; Galway, Moira E.; Mansfield, Shawn D.; Hocart, Charles H.; Wasteneys, Geoffrey O.

    2013-01-01

    Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1’s permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature. PMID:23532584

  19. Genetic Analysis of Comamonas acidovorans Polyhydroxyalkanoate Synthase and Factors Affecting the Incorporation of 4-Hydroxybutyrate Monomer

    PubMed Central

    Sudesh, Kumar; Fukui, Toshiaki; Doi, Yoshiharu

    1998-01-01

    The polyhydroxyalkanoate (PHA) synthase gene of Comamonas acidovorans DS-17 (phaCCa) was cloned by using the synthase gene of Alcaligenes eutrophus as a heterologous hybridization probe. Complete sequencing of a 4.0-kbp SmaI-HindIII (SH40) subfragment revealed the presence of a 1,893-bp PHA synthase coding region which was followed by a 1,182-bp β-ketothiolase gene (phaACa). Both the translated products of these genes showed significant identity, 51.1 and 74.2%, respectively, to the primary structures of the products of the corresponding genes in A. eutrophus. The arrangement of PHA biosynthesis genes in C. acidovorans was also similar to that in A. eutrophus except that the third gene, phaB, coding for acetoacetyl-coenzyme A reductase, was not found in the region downstream of phaACa. The cloned fragment complemented a PHA-negative mutant of A. eutrophus, PHB−4, resulting in poly-3-hydroxybutyrate accumulation of up to 73% of the dry cell weight when fructose was the carbon source. The heterologous expression enabled the incorporation of 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate monomers. The PHA synthase of C. acidovorans does not appear to show any preference for 4-hydroxybutyryl-coenzyme A as a substrate. This leads to the suggestion that in C. acidovorans, it is the metabolic pathway, and not the specificity of the organism’s PHA synthase, that drives the incorporation of 4HB monomers, resulting in the efficient accumulation of PHA with a high 4HB content. PMID:9726894

  20. Muscle-Specific Deletion of Rictor Impairs Insulin-Stimulated Glucose Transport and Enhances Basal Glycogen Synthase Activity▿

    PubMed Central

    Kumar, Anil; Harris, Thurl E.; Keller, Susanna R.; Choi, Kin M.; Magnuson, Mark A.; Lawrence, John C.

    2008-01-01

    Rictor is an essential component of mTOR (mammalian target of rapamycin) complex 2 (mTORC2), a kinase complex that phosphorylates Akt at Ser473 upon activation of phosphatidylinositol 3-kinase (PI-3 kinase). Since little is known about the role of either rictor or mTORC2 in PI-3 kinase-mediated physiological processes in adult animals, we generated muscle-specific rictor knockout mice. Muscle from male rictor knockout mice exhibited decreased insulin-stimulated glucose uptake, and the mice showed glucose intolerance. In muscle lacking rictor, the phosphorylation of Akt at Ser473 was reduced dramatically in response to insulin. Furthermore, insulin-stimulated phosphorylation of the Akt substrate AS160 at Thr642 was reduced in rictor knockout muscle, indicating a defect in insulin signaling to stimulate glucose transport. However, the phosphorylation of Akt at Thr308 was normal and sufficient to mediate the phosphorylation of glycogen synthase kinase 3 (GSK-3). Basal glycogen synthase activity in muscle lacking rictor was increased to that of insulin-stimulated controls. Consistent with this, we observed a decrease in basal levels of phosphorylated glycogen synthase at a GSK-3/protein phosphatase 1 (PP1)-regulated site in rictor knockout muscle. This change in glycogen synthase phosphorylation was associated with an increase in the catalytic activity of glycogen-associated PP1 but not increased GSK-3 inactivation. Thus, rictor in muscle tissue contributes to glucose homeostasis by positively regulating insulin-stimulated glucose uptake and negatively regulating basal glycogen synthase activity. PMID:17967879