Science.gov

Sample records for norepinephrine transporter reduction

  1. Reserpine-induced reduction in norepinephrine transporter function requires catecholamine storage vesicles.

    PubMed

    Mandela, Prashant; Chandley, Michelle; Xu, Yao-Yu; Zhu, Meng-Yang; Ordway, Gregory A

    2010-01-01

    Treatment of rats with reserpine, an inhibitor of the vesicular monoamine transporter (VMAT), depletes norepinephrine (NE) and regulates NE transporter (NET) expression. The present study examined the molecular mechanisms involved in regulation of the NET by reserpine using cultured cells. Exposure of rat PC12 cells to reserpine for a period as short as 5min decreased [(3)H]NE uptake capacity, an effect characterized by a robust decrease in the V(max) of the transport of [(3)H]NE. As expected, reserpine did not displace the binding of [(3)H]nisoxetine from the NET in membrane homogenates. The potency of reserpine for reducing [(3)H]NE uptake was dramatically lower in SK-N-SH cells that have reduced storage capacity for catecholamines. Reserpine had no effect on [(3)H]NE uptake in HEK-293 cells transfected with the rat NET (293-hNET), cells that lack catecholamine storage vesicles. NET regulation by reserpine was independent of trafficking of the NET from the cell surface. Pre-exposure of cells to inhibitors of several intracellular signaling cascades known to regulate the NET, including Ca(2+)/Ca(2+)-calmodulin dependent kinase and protein kinases A, C and G, did not affect the ability of reserpine to reduce [(3)H]NE uptake. Treatment of PC12 cells with the catecholamine depleting agent, alpha-methyl-p-tyrosine, increased [(3)H]NE uptake and eliminated the inhibitory effects of reserpine on [(3)H]NE uptake. Reserpine non-competitively inhibits NET activity through a Ca(2+)-independent process that requires catecholamine storage vesicles, revealing a novel pharmacological method to modify NET function. Further characterization of the molecular nature of reserpine's action could lead to the development of alternative therapeutic strategies for treating disorders known to be benefitted by treatment with traditional competitive NET inhibitors.

  2. Familial orthostatic tachycardia due to norepinephrine transporter deficiency

    NASA Technical Reports Server (NTRS)

    Robertson, D.; Flattem, N.; Tellioglu, T.; Carson, R.; Garland, E.; Shannon, J. R.; Jordan, J.; Jacob, G.; Blakely, R. D.; Biaggioni, I.

    2001-01-01

    Orthostatic intolerance (OI) or postural tachycardia syndrome (POTS) is a syndrome primarily affecting young females, and is characterized by lightheadedness, palpitations, fatigue, altered mentation, and syncope primarily occurring with upright posture and being relieved by lying down. There is typically tachycardia and raised plasma norepinephrine levels on upright posture, but little or no orthostatic hypotension. The pathophysiology of OI is believed to be very heterogeneous. Most studies of the syndrome have focused on abnormalities in norepinephrine release. Here the hypothesis that abnormal norepinephrine transporter (NET) function might contribute to the pathophysiology in some patients with OI was tested. In a proband with significant orthostatic symptoms and tachycardia, disproportionately elevated plasma norepinephrine with standing, impaired systemic, and local clearance of infused tritiated norepinephrine, impaired tyramine responsiveness, and a dissociation between stimulated plasma norepinephrine and DHPG elevation were found. Studies of NET gene structure in the proband revealed a coding mutation that converts a highly conserved transmembrane domain Ala residue to Pro. Analysis of the protein produced by the mutant cDNA in transfected cells demonstrated greater than 98% reduction in activity relative to normal. NE, DHPG/NE, and heart rate correlated with the mutant allele in this family. CONCLUSION: These results represent the first identification of a specific genetic defect in OI and the first disease linked to a coding alteration in a Na+/Cl(-)-dependent neurotransmitter transporter. Identification of this mechanism may facilitate our understanding of genetic causes of OI and lead to the development of more effective therapeutic modalities.

  3. Norepinephrine transporter heterozygous knockout mice exhibit altered transport and behavior.

    PubMed

    Fentress, H M; Klar, R; Krueger, J J; Sabb, T; Redmon, S N; Wallace, N M; Shirey-Rice, J K; Hahn, M K

    2013-11-01

    The norepinephrine (NE) transporter (NET) regulates synaptic NE availability for noradrenergic signaling in the brain and sympathetic nervous system. Although genetic variation leading to a loss of NET expression has been implicated in psychiatric and cardiovascular disorders, complete NET deficiency has not been found in people, limiting the utility of NET knockout mice as a model for genetically driven NET dysfunction. Here, we investigate NET expression in NET heterozygous knockout male mice (NET(+/-) ), demonstrating that they display an approximately 50% reduction in NET protein levels. Surprisingly, these mice display no significant deficit in NET activity assessed in hippocampal and cortical synaptosomes. We found that this compensation in NET activity was due to enhanced activity of surface-resident transporters, as opposed to surface recruitment of NET protein or compensation through other transport mechanisms, including serotonin, dopamine or organic cation transporters. We hypothesize that loss of NET protein in the NET(+/-) mouse establishes an activated state of existing surface NET proteins. The NET(+/-) mice exhibit increased anxiety in the open field and light-dark box and display deficits in reversal learning in the Morris water maze. These data suggest that recovery of near basal activity in NET(+/-) mice appears to be insufficient to limit anxiety responses or support cognitive performance that might involve noradrenergic neurotransmission. The NET(+/-) mice represent a unique model to study the loss and resultant compensatory changes in NET that may be relevant to behavior and physiology in human NET deficiency disorders.

  4. Norepinephrine Transporter Heterozygous Knockout Mice Exhibit Altered Transport and Behavior

    PubMed Central

    Fentress, HM; Klar, R; Krueger, JK; Sabb, T; Redmon, SN; Wallace, NM; Shirey-Rice, JK; Hahn, MK

    2013-01-01

    The norepinephrine (NE) transporter (NET) regulates synaptic NE availability for noradrenergic signaling in the brain and sympathetic nervous system. Although genetic variation leading to a loss of NET expression has been implicated in psychiatric and cardiovascular disorders, complete NET deficiency has not been found in people, limiting the utility of NET knockout mice as a model for genetically-driven NET dysfunction. Here, we investigate NET expression in NET heterozygous knockout male mice (NET+/−), demonstrating that they display an ~50% reduction in NET protein levels. Surprisingly, these mice display no significant deficit in NET activity, assessed in hippocampal and cortical synaptosomes. We found that this compensation in NET activity was due to enhanced activity of surface-resident transporters, as opposed to surface recruitment of NET protein or compensation through other transport mechanisms, including serotonin, dopamine or organic cation transporters. We hypothesize that loss of NET protein in the NET+/− mouse establishes an activated state of existing, surface NET proteins. NET+/− mice exhibit increased anxiety in the open field and light-dark box and display deficits in reversal learning in the Morris Water Maze. These data suggest recovery of near basal activity in NET+/− mice appears to be insufficient to limit anxiety responses or support cognitive performance that might involve noradrenergic neurotransmission. The NET+/− mice represent a unique model to study the loss and resultant compensatory changes in NET that may be relevant to behavior and physiology in human NET deficiency disorders. PMID:24102798

  5. Norepinephrine transporter function and desipramine: residual drug effects versus short-term regulation.

    PubMed

    Ordway, Gregory A; Jia, Weihong; Li, Jing; Zhu, Meng-Yang; Mandela, Prashant; Pan, Jun

    2005-04-30

    Previous research has shown that exposure of norepinephrine transporter (NET)-expressing cells to desipramine (DMI) downregulates the norepinephrine transporter, although changes in the several transporter parameters do not demonstrate the same time course. Exposures to desipramine for <1 day reduces only radioligand binding and uptake capacity while transporter-immunoreactivity is unaffected. Recent demonstration of persistent drug retention in cells following desipramine exposures raises the possibility that previous reported changes in the norepinephrine transporter may be partly accountable by residual drug. In this study, potential effects of residual desipramine on norepinephrine transporter binding and uptake were re-evaluated following exposures of PC12 cells to desipramine using different methods to remove residual drug. Using a method that minimizes residual drug, exposure of intact PC12 cells to desipramine for 4h had no effect on uptake capacity or [(3)H]nisoxetine binding to the norepinephrine transporter, while exposures for > or =16 h reduced uptake capacity. Desipramine-induced reductions in binding to the transporter required >24 h or greater periods of desipramine exposure. This study confirms that uptake capacity of the norepinephrine transporter is reduced earlier than changes in radioligand binding, but with a different time course than originally shown. Special pre-incubation procedures are required to abolish effects of residual transporter inhibitor when studying inhibitor-induced transporter regulation.

  6. Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency

    NASA Technical Reports Server (NTRS)

    Shannon, J. R.; Flattem, N. L.; Jordan, J.; Jacob, G.; Black, B. K.; Biaggioni, I.; Blakely, R. D.; Robertson, D.

    2000-01-01

    BACKGROUND: Orthostatic intolerance is a syndrome characterized by lightheadedness, fatigue, altered mentation, and syncope and associated with postural tachycardia and plasma norepinephrine concentrations that are disproportionately high in relation to sympathetic outflow. We tested the hypothesis that impaired functioning of the norepinephrine transporter contributes to the pathophysiologic mechanism of orthostatic intolerance. METHODS: In a patient with orthostatic intolerance and her relatives, we measured postural blood pressure, heart rate, plasma catecholamines, and systemic norepinephrine spillover and clearance, and we sequenced the norepinephrine-transporter gene and evaluated its function. RESULTS: The patient had a high mean plasma norepinephrine concentration while standing, as compared with the mean (+/-SD) concentration in normal subjects (923 vs. 439+/-129 pg per milliliter [5.46 vs. 2.59+/-0.76 nmol per liter]), reduced systemic norepinephrine clearance (1.56 vs. 2.42+/-0.71 liters per minute), impairment in the increase in the plasma norepinephrine concentration after the administration of tyramine (12 vs. 56+/-63 pg per milliliter [0.07 vs. 0.33+/-0.37 pmol per liter]), and a disproportionate increase in the concentration of plasma norepinephrine relative to that of dihydroxyphenylglycol. Analysis of the norepinephrine-transporter gene revealed that the proband was heterozygous for a mutation in exon 9 (encoding a change from guanine to cytosine at position 237) that resulted in more than a 98 percent loss of function as compared with that of the wild-type gene. Impairment of synaptic norepinephrine clearance may result in a syndrome characterized by excessive sympathetic activation in response to physiologic stimuli. The mutant allele in the proband's family segregated with the postural heart rate and abnormal plasma catecholamine homeostasis. CONCLUSIONS: Genetic or acquired deficits in norepinephrine inactivation may underlie hyperadrenergic

  7. Aldosterone augments Na+-induced reduction of cardiac norepinephrine reuptake.

    PubMed

    Kreusser, Michael M; Lehmann, Lorenz H; Riffel, Johannes H; Haass, Markus; Maser-Gluth, Christiane; Backs, Johannes; Katus, Hugo A; Buss, Sebastian J

    2014-10-15

    Impairment of the cardiac norepinephrine (NE) reuptake by the neuronal NE transporter contributes to enhanced cardiac NE net release in congestive heart failure. Elevated plasma levels of aldosterone (AL) promote sympathetic overstimulation in failing hearts by unclear mechanisms. Our aim was to evaluate if elevated AL and/or alterations in Na(+) intake regulate cardiac NE reuptake. To test the effects of AL and Na(+) on cardiac NE reuptake, Wistar rats were fed a normal-salt (NS) diet (0.2% NaCl), a low-salt (LS) diet (0.015% NaCl), or a high-salt (HS) diet (8% NaCl). Another group of animals received AL infusion alone (0.75 μg/h) or AL infusion plus HS diet. Specific cardiac [(3)H]NE uptake via the NE transporter in a Langendorff preparation and AL plasma levels were measured at different time points between 5 and 42 days of treatment. To compare these findings from healthy animals with a disease model, Dahl salt-sensitive rats were investigated as a model of congestive heart failure with endogenously elevated AL. In summary, neither exogenous nor endogenous elevations of AL alone were sufficient to reduce cardiac NE reuptake. Only the HS diet induced a reduction of NE reuptake by 26%; additional infusion of AL augmented this effect to a further reduction of NE reuptake by 36%. In concordance, Dahl salt-sensitive rats treated with a HS diet displayed elevated AL and a marked reduction of NE reuptake. We conclude that exogenous or endogenous AL elevations alone do not reduce cardiac NE reuptake, but AL serves as an additional factor that negatively regulates cardiac NE reuptake in concert with HS intake.

  8. Effects of various pharmacological agents on the function of norepinephrine transporter.

    PubMed

    Satoh, Noriaki; Toyohira, Yumiko; Takahashi, Keita; Yanagihara, Nobuyuki

    2015-03-01

    The norepinephrine transporter is selectively expressed in noradrenergic nerve terminals, where it can exert spatial and temporal control over the action of norepinephrine. The norepinephrine transporter mediates the termination of neurotransmission via the reuptake of norepinephrine released into the extracellular milieu. In the present brief review, we report our recent studies about the effects of various pharmacological agents such as fasudil, nicotine, pentazocine, ketamine and genistein on norepinephrine transporter function.

  9. Extracellular Norepinephrine Clearance by the Norepinephrine Transporter Is Required for Skeletal Homeostasis*

    PubMed Central

    Ma, Yun; Krueger, Jessica J.; Redmon, Sara N.; Uppuganti, Sasidhar; Nyman, Jeffry S.; Hahn, Maureen K.; Elefteriou, Florent

    2013-01-01

    Changes in bone remodeling induced by pharmacological and genetic manipulation of β-adrenergic receptor (βAR) signaling in osteoblasts support a role of sympathetic nerves in the regulation of bone remodeling. However, the contribution of endogenous sympathetic outflow and nerve-derived norepinephrine (NE) to bone remodeling under pathophysiological conditions remains unclear. We show here that differentiated osteoblasts, like neurons, express the norepinephrine transporter (NET), exhibit specific NE uptake activity via NET and can catabolize, but not generate, NE. Pharmacological blockade of NE transport by reboxetine induced bone loss in WT mice. Similarly, lack of NE reuptake in norepinephrine transporter (Net)-deficient mice led to reduced bone formation and increased bone resorption, resulting in suboptimal peak bone mass and mechanical properties associated with low sympathetic outflow and high plasma NE levels. Last, daily sympathetic activation induced by mild chronic stress was unable to induce bone loss, unless NET activity was blocked. These findings indicate that the control of endogenous NE release and reuptake by presynaptic neurons and osteoblasts is an important component of the complex homeostatic machinery by which the sympathetic nervous system controls bone remodeling. These findings also suggest that drugs antagonizing NET activity, used for the treatment of hyperactivity disorders, may have deleterious effects on bone accrual. PMID:24005671

  10. Extracellular norepinephrine clearance by the norepinephrine transporter is required for skeletal homeostasis.

    PubMed

    Ma, Yun; Krueger, Jessica J; Redmon, Sara N; Uppuganti, Sasidhar; Nyman, Jeffry S; Hahn, Maureen K; Elefteriou, Florent

    2013-10-18

    Changes in bone remodeling induced by pharmacological and genetic manipulation of β-adrenergic receptor (βAR) signaling in osteoblasts support a role of sympathetic nerves in the regulation of bone remodeling. However, the contribution of endogenous sympathetic outflow and nerve-derived norepinephrine (NE) to bone remodeling under pathophysiological conditions remains unclear. We show here that differentiated osteoblasts, like neurons, express the norepinephrine transporter (NET), exhibit specific NE uptake activity via NET and can catabolize, but not generate, NE. Pharmacological blockade of NE transport by reboxetine induced bone loss in WT mice. Similarly, lack of NE reuptake in norepinephrine transporter (Net)-deficient mice led to reduced bone formation and increased bone resorption, resulting in suboptimal peak bone mass and mechanical properties associated with low sympathetic outflow and high plasma NE levels. Last, daily sympathetic activation induced by mild chronic stress was unable to induce bone loss, unless NET activity was blocked. These findings indicate that the control of endogenous NE release and reuptake by presynaptic neurons and osteoblasts is an important component of the complex homeostatic machinery by which the sympathetic nervous system controls bone remodeling. These findings also suggest that drugs antagonizing NET activity, used for the treatment of hyperactivity disorders, may have deleterious effects on bone accrual.

  11. Association of Norepinephrine Transporter Gene with Methylphenidate Response.

    ERIC Educational Resources Information Center

    Yang, Li; Wang, Yu-Feng; Li, Jun; Faraone, Stephen V.

    2004-01-01

    Objective: This study aimed to explore the association between alleles of the norepinephrine transporter gene and the methylphenidate response. Method: Chinese Han youths with attention-deficit/hyperactivity disorder recruited in the Outpatient Department of the Institute of Mental Health from 2001 to 2004 were treated with methylphenidate in…

  12. Norepinephrines effect on adenosine transport in the proximal straight tubule

    SciTech Connect

    Barfuss, D.W.; McCann, W.P.; Katholi, R.E.

    1986-03-01

    The effect of norepinephrine on C/sup 14/-adenosine transport in the rabbit proximal tubule (S/sub 2/) was studied. The transepithelial transport of adenosine (0.02 mM0 from lumin to bathing solution was measured by its rate of appearance (J/sub A/) in the bathing solution and by its disappearances (J/sub D/) from the luminal fluid. Norepinephrine (0.24 ..mu..M) was added to the bathing solution after a control flux period. After three samples from the experiment period the tubules were quickly harvested and the cellular concentration of C/sup 14/-adenosine was determined. The high cellular adenosine concentration and th marked difference in adenosine appearance rate in the bathing solution compared to the luminal disappearance rate indicates the absorbed adenosine is trapped in the cells. This trapping may be due to adenosine metabolism or difficulty of crossing the basolateral membrane. Whichever is the case, norepinephrine appears to stimulate movement of adenosine or its metabolites into the bathing solution across the basolateral membrane.

  13. Altered Reward Circuitry in the Norepinephrine Transporter Knockout Mouse

    PubMed Central

    Hall, F. Scott; Uhl, George R.; Bearer, Elaine L.; Jacobs, Russell E.

    2013-01-01

    Synaptic levels of the monoamine neurotransmitters dopamine, serotonin, and norepinephrine are modulated by their respective plasma membrane transporters, albeit with a few exceptions. Monoamine transporters remove monoamines from the synaptic cleft and thus influence the degree and duration of signaling. Abnormal concentrations of these neuronal transmitters are implicated in a number of neurological and psychiatric disorders, including addiction, depression, and attention deficit/hyperactivity disorder. This work concentrates on the norepinephrine transporter (NET), using a battery of in vivo magnetic resonance imaging techniques and histological correlates to probe the effects of genetic deletion of the norepinephrine transporter on brain metabolism, anatomy and functional connectivity. MRS recorded in the striatum of NET knockout mice indicated a lower concentration of NAA that correlates with histological observations of subtle dysmorphisms in the striatum and internal capsule. As with DAT and SERT knockout mice, we detected minimal structural alterations in NET knockout mice by tensor-based morphometric analysis. In contrast, longitudinal imaging after stereotaxic prefrontal cortical injection of manganese, an established neuronal circuitry tracer, revealed that the reward circuit in the NET knockout mouse is biased toward anterior portions of the brain. This is similar to previous results observed for the dopamine transporter (DAT) knockout mouse, but dissimilar from work with serotonin transporter (SERT) knockout mice where Mn2+ tracings extended to more posterior structures than in wildtype animals. These observations correlate with behavioral studies indicating that SERT knockout mice display anxiety-like phenotypes, while NET knockouts and to a lesser extent DAT knockout mice display antidepressant-like phenotypic features. Thus, the mainly anterior activity detected with manganese-enhanced MRI in the DAT and NET knockout mice is likely indicative of

  14. KCl stimulation increases norepinephrine transporter function in PC12 cells.

    PubMed

    Mandela, Prashant; Ordway, Gregory A

    2006-09-01

    The norepinephrine transporter (NET) plays a pivotal role in terminating noradrenergic signaling and conserving norepinephrine (NE) through the process of re-uptake. Recent evidence suggests a close association between NE release and regulation of NET function. The present study evaluated the relationship between release and uptake, and the cellular mechanisms that govern these processes. KCl stimulation of PC12 cells robustly increased [3H]NE uptake via the NET and simultaneously increased [3H]NE release. KCl-stimulated increases in uptake and release were dependent on Ca2+. Treatment of cells with phorbol-12-myristate-13-acetate (PMA) or okadaic acid decreased [3H]NE uptake but did not block KCl-stimulated increases in [3H]NE uptake. In contrast, PMA increased [3H]NE release and augmented KCl-stimulated release, while okadaic acid had no effects on release. Inhibition of Ca2+-activated signaling cascades with KN93 (a Ca2+ calmodulin-dependent kinase inhibitor), or ML7 and ML9 (myosin light chain kinase inhibitors), reduced [3H]NE uptake and blocked KCl-stimulated increases in uptake. In contrast, KN93, ML7 and ML9 had no effect on KCl-stimulated [3H]NE release. KCl-stimulated increases in [3H]NE uptake were independent of transporter trafficking to the plasma membrane. While increases in both NE release and uptake mediated by KCl stimulation require Ca2+, different intracellular mechanisms mediate these two events.

  15. Reward dependence is related to norepinephrine transporter T-182C gene polymorphism in a Korean population.

    PubMed

    Ham, Byung-Joo; Choi, Myoung-Jin; Lee, Heon-Jeong; Kang, Rhee-Hun; Lee, Min-Soo

    2005-06-01

    It is well established that approximately 50% of the variance in personality traits is genetic. The goal of this study was to investigate a relationship between personality traits and the T-182C polymorphism in the norepinephrine transporter gene. The participants included 115 healthy adults with no history of psychiatric disorders and other physical illness during the past 6 months. All participants were tested with the Temperament and Character Inventory and genotyped norepinephrine transporter gene polymorphism. Differences on the Temperament and Character Inventory dimensions among three groups were examined with one-way analysis of variance. Our study suggests that the norepinephrine transporter T-182C gene polymorphism is associated with reward dependence in Koreans, but the small number of study participants and their sex and age heterogeneity limits generalization of our results. Further studies are necessary with a larger number of homogeneous participants to confirm whether the norepinephrine transporter gene is related to personality traits.

  16. Radiotracers for Cardiac Sympathetic Innervation: Transport Kinetics and Binding Affinities for the Human Norepinephrine Transporter

    PubMed Central

    Raffel, David M.; Chen, Wei; Jung, Yong-Woon; Jang, Keun Sam; Gu, Guie; Cozzi, Nicholas V.

    2013-01-01

    Introduction Most radiotracers for imaging of cardiac sympathetic innervation are substrates of the norepinephrine transporter (NET). The goal of this study was to characterize the NET transport kinetics and binding affinities of several sympathetic nerve radiotracers, including [11C]-(−)-meta-hydroxyephedrine, [11C]-(−)-epinephrine, and a series of [11C]-labeled phenethylguanidines under development in our laboratory. For comparison, the NET transport kinetics and binding affinities of some [3H]-labeled biogenic amines were also determined. Methods Transport kinetics studies were performed using rat C6 glioma cells stably transfected with the human norepinephrine transporter (C6-hNET cells). For each radiolabeled NET substrate, saturation transport assays with C6-hNET cells measured the Michaelis-Menten transport constants Km and Vmax for NET transport. Competitive inhibition binding assays with homogenized C6-hNET cells and [3H]mazindol provided estimates of binding affinities (KI) for NET. Results Km, Vmax and KI values were determined for each NET substrate with a high degree of reproducibility. Interestingly, C6-hNET transport rates for ‘tracer concentrations’ of substrate, given by the ratio Vmax/Km, were found to be highly correlated with neuronal transport rates measured previously in isolated rat hearts (r2 = 0.96). This suggests that the transport constants Km and Vmax measured using the C6-hNET cells accurately reflect in vivo transport kinetics. Conclusion The results of these studies show how structural changes in NET substrates influence NET binding and transport constants, providing valuable insights that can be used in the design of new tracers with more optimal kinetics for quantifying regional sympathetic nerve density. PMID:23306137

  17. Functional mutations in mouse norepinephrine transporter reduce sensitivity to cocaine inhibition

    PubMed Central

    Wei, Hua; Hill, Erik R; Gu, Howard H.

    2009-01-01

    Summary The transporters of dopamine, norepinephrine and serotonin are molecular targets of cocaine, amphetamine, and therapeutic antidepressants. The residues involved in binding these drugs are unknown. We have performed several rounds of random and site-directed mutagenesis in the mouse norepinephrine transporter and screened for mutants with altered sensitivity to cocaine inhibition of substrate uptake. We have identified a triple mutation that retains close to wild-type transport function but displays a 37-fold decrease in cocaine sensitivity and 24-fold decrease in desipramine sensitivity. In contrast, the mutant’s sensitivities to amphetamine, methamphetamine, and methylphenidate are only slightly changed. Our data reveal critical residues contributing to the potent uptake inhibitions by these important drugs. Furthermore, this drug-resistant triple mutant can be used to generate a unique knock-in mouse line to study the role of norepinephrine transporter in the addictive effects of cocaine and the therapeutic effects of desipramine. PMID:18824182

  18. 2'-Substitution of cocaine selectively enhances dopamine and norepinephrine transporter binding.

    PubMed

    Seale, T W; Avor, K; Singh, S; Hall, N; Chan, H M; Basmadjian, G P

    1997-11-10

    Few studies have characterized the effect of substituents at the 2'-position of cocaine on transporter binding potency and selectivity. We synthesized 2'-OH-, 2'-F- and 2'-acetoxy-cocaines and compared their binding potencies for rat dopamine, norepinephrine and 5-hydroxytryptamine transporters to cocaine, 3'-OH-, 4'-OH-, 2'-OH,4'-I-cocaine derivatives, and to the transporter selective ligands WIN 35,428, nisoxetine and paroxetine. Unlike most substitutions, 2'-OH- and 2'-acetoxy-groups increased cocaine's binding potency for the dopamine transporter (10- and 4-fold, respectively). These substituents also enhanced binding to the norepinephrine transporter (52- and 35-fold, respectively) but had less effect on 5-hydroxytryptamine transporter binding. 2'-Hydroxylation also enhanced binding of 4'-I cocaine, an analog with low DA binding potency. The ability of 2'-substituents to substantially increase cocaine binding potency and to alter selectivity for brain transporters indicates the potential importance of the 2'-position in transporter binding.

  19. Depletion of cardiac catecholamine stores impairs cardiac norepinephrine re-uptake by downregulation of the norepinephrine transporter

    PubMed Central

    Kreusser, Michael M.; Lehmann, Lorenz H.; Haass, Markus; Buss, Sebastian J.; Katus, Hugo A.; Lossnitzer, Dirk

    2017-01-01

    In heart failure (HF), a disturbed cardiac norepinephrine (NE) homeostasis is characterized by depleted cardiac NE stores, impairment of the cardiac NE re-uptake by the neuronal norepinephrine transporter (NET) and enhanced cardiac NE net release. Reduced cardiac NE content appears to be caused by enhanced cardiac NE net release from sympathetic neurons in HF, triggered by neurohumoral activation. However, it remains unclear whether reduced NE itself has an impact on cardiac NE re-uptake, independent of neurohumoral activation. Here, we evaluated whether depletion of cardiac NE stores alone can regulate cardiac NE re-uptake. Treatment of Wistar rats with reserpine (5 mg/kg/d) for one (1d) or five days (5d) resulted in markedly reduced cardiac NE content, comparable to NE stores in experimental HF due to pressure overload. In order to assess cardiac NE re-uptake, the specific cardiac [3H]-NE uptake via the NET in a Langendorff preparation was measured. Reserpine treatment led to decreased NE re-uptake at 1d and 5d compared to saline treatment. Expression of tyrosine hydroxylase (TH), the rate-limiting enzyme of the NE synthesis, was elevated in left stellate ganglia after reserpine. Mechanistically, measurement of NET mRNA expression in left stellate ganglia and myocardial NET density revealed a post-transcriptional downregulation of the NET by reserpine. In summary, present data demonstrate that depletion of cardiac NE stores alone is sufficient to impair cardiac NE re-uptake via downregulation of the NET, independent of systemic neurohumoral activation. Knowledge about the regulation of the cardiac NE homeostasis may offer novel therapeutic strategies in HF. PMID:28282374

  20. Cocaine up-regulates norepinephrine transporter binding in the rat placenta.

    PubMed

    Shearman, L P; Meyer, J S

    1999-12-10

    We investigated the influence of 3 days of continuous cocaine exposure on norepinephrine transporter binding in the rat placenta. On gestational day 17, pregnant rats were implanted subcutaneously with two cocaine-containing Silastic capsules. There were two control groups, one that received capsules with vehicle only and was pair-fed to the cocaine-treated females, and a second group that was untreated and fed ad libitum. Placentas and fetal brains were harvested and frozen on gestational day 20, and subsequently subjected to saturation analyses for norepinephrine transporter binding using the selective ligand [3H]nisoxetine. There was a marked increase in the density (B(max)) of norepinephrine transporter binding sites in the placentas of the cocaine-treated animals compared to both control groups, but no change in the fetal brain. The mechanism underlying this up-regulation of the placental norepinephrine transporter is not yet known, but it could involve a beta-adrenoceptor- and cAMP-mediated induction of transporter gene expression.

  1. Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET

    PubMed Central

    Schlessinger, Avner; Geier, Ethan; Fan, Hao; Irwin, John J.; Shoichet, Brian K.; Giacomini, Kathleen M.; Sali, Andrej

    2011-01-01

    The norepinephrine transporter (NET) transports norepinephrine from the synapse into presynaptic neurons, where norepinephrine regulates signaling pathways associated with cardiovascular effects and behavioral traits via binding to various receptors (e.g., β2-adrenergic receptor). NET is a known target for a variety of prescription drugs, including antidepressants and psychostimulants, and may mediate off-target effects of other prescription drugs. Here, we identify prescription drugs that bind NET, using virtual ligand screening followed by experimental validation of predicted ligands. We began by constructing a comparative structural model of NET based on its alignment to the atomic structure of a prokaryotic NET homolog, the leucine transporter LeuT. The modeled binding site was validated by confirming that known NET ligands can be docked favorably compared to nonbinding molecules. We then computationally screened 6,436 drugs from the Kyoto Encyclopedia of Genes and Genomes (KEGG DRUG) against the NET model. Ten of the 18 high-scoring drugs tested experimentally were found to be NET inhibitors; five of these were chemically novel ligands of NET. These results may rationalize the efficacy of several sympathetic (tuaminoheptane) and antidepressant (tranylcypromine) drugs, as well as side effects of diabetes (phenformin) and Alzheimer’s (talsaclidine) drugs. The observations highlight the utility of virtual screening against a comparative model, even when the target shares less than 30% sequence identity with its template structure and no known ligands in the primary binding site. PMID:21885739

  2. Extracellular norepinephrine, norepinephrine receptor and transporter protein and mRNA levels are differentially altered in the developing rat brain due to dietary iron deficiency and manganese exposure.

    PubMed

    Anderson, Joel G; Fordahl, Steven C; Cooney, Paula T; Weaver, Tara L; Colyer, Christa L; Erikson, Keith M

    2009-07-24

    Manganese (Mn) is an essential trace element, but overexposure is characterized by Parkinson's like symptoms in extreme cases. Previous studies have shown that Mn accumulation is exacerbated by dietary iron deficiency (ID) and disturbances in norepinephrine (NE) have been reported. Because behaviors associated with Mn neurotoxicity are complex, the goal of this study was to examine the effects of Mn exposure and ID-associated Mn accumulation on NE uptake in synaptosomes, extracellular NE concentrations, and expression of NE transport and receptor proteins. Sprague-Dawley rats were assigned to four dietary groups: control (CN; 35 mg Fe/kg diet), iron-deficient (ID; 6 mg Fe/kg diet), CN with Mn exposure (via the drinking water; 1 g Mn/L) (CNMn), and ID with Mn (IDMn). (3)H-NE uptake decreased significantly (R=-0.753, p=0.001) with increased Mn concentration in the locus coeruleus, while decreased Fe was associated with decreased uptake of (3)H-NE in the caudate putamen (R=0.436, p=0.033) and locus coeruleus (R=0.86; p<0.001). Extracellular concentrations of NE in the caudate putamen were significantly decreased in response to Mn exposure and ID (p<0.001). A diverse response of Mn exposure and ID was observed on mRNA and protein expression of NE transporter (NET) and alpha(2) adrenergic receptor. For example, elevated brain Mn and decreased Fe caused an approximate 50% decrease in NET and alpha(2) adrenergic receptor protein expression in several brain regions, with reductions in mRNA expression also observed. These data suggest that Mn exposure results in a decrease in NE uptake and extracellular NE concentrations via altered expression of transport and receptor proteins.

  3. Assignment of the norepinephrine transporter protein (NET1) locus to chromosome 16

    SciTech Connect

    Gelernter, J.; Kruger, S. ); Kidd, K.K.; Pakstis, A.J.; Pacholczyk, T. ); Sparkes, R.S. ); Amara, S. )

    1993-12-01

    The norepinephrine transporter protein (NET) is the presynaptic reuptake site for norepinephrine and a site of action for several drugs with CNS effects, some of which are therapeutically useful and some of which are drugs of abuse. The authors used PCR with a somatic cell hybrid panel to obtain a provisional assignment to chromosome 16. They then typed a genetic polymorphism at the NET1 locus in three large multigenerational families and used linkage analysis to confirm the preliminary assignment and to refine the localization to 16q, near the HP locus. Finally, they typed the NET1 RFLP, on the CEPH families and the additional linkage data localized NET1 to 16q13-q21, flanked by D16S71 (centromerically) and HP (telomerically). 11 refs., 2 tabs.

  4. Norepinephrine transporter knock-out alters expression of the genes connected with antidepressant drugs action.

    PubMed

    Solich, Joanna; Kolasa, Magdalena; Kusmider, Maciej; Faron-Gorecka, Agata; Pabian, Paulina; Zurawek, Dariusz; Szafran-Pilch, Kinga; Dziedzicka-Wasylewska, Marta

    2015-01-12

    Norepinephrine transporter knock-out mice (NET-KO) exhibit depression-resistant phenotypes. They manifest significantly shorter immobility times in both the forced swim test and the tail suspension test. Moreover, biochemical studies have revealed the up-regulation of other monoamine transporters (dopamine and serotonin) in the brains of NET-KO mice, similar to the phenomenon observed after the chronic pharmacological blockade of norepinephrine transporter by desipramine in wild-type (WT) animals. NET-KO mice are also resistant to stress, as we demonstrated previously by measuring plasma corticosterone concentration. In the present study, we used a microdissection technique to separate target brain regions and the TaqMan Low Density Array approach to test the expression of a group of genes in the NET-KO mice compared with WT animals. A group of genes with altered expression were identified in four brain structures (frontal and cingulate cortices, dentate gyrus of hippocampus and basal-lateral amygdala) of NET-KO mice compared with WT mice. These genes are known to be altered by antidepressant drugs administration. The most interesting gene is Crh-bp, which modulates the activity of corticotrophin--releasing hormone (CRH) and several CRH-family members. Generally, genetic disturbances within noradrenergic neurons result in biological changes, such as in signal transduction and intercellular communication, and may be linked to changes in noradrenaline levels in the brains of NET-KO mice.

  5. Epigenomic changes associated with impaired norepinephrine transporter function in postural tachycardia syndrome.

    PubMed

    Khan, Abdul Waheed; Corcoran, Susan J; Esler, Murray; El-Osta, Assam

    2017-03-01

    The postural tachycardia syndrome (POTS) is characterised clinically by symptoms of light-headedness, palpitations, fatigue and exercise intolerance occurring with standing and relieved by lying down. Symptoms occur in association with an inappropriate rise in heart rate in the absence of a fall in blood pressure with the assumption of standing. The pathophysiology of POTS is complicated and poorly understood. Plasma norepinephrine (NE) is often elevated in patients with POTS, resulting in consideration of dysfunction of the norepinephrine transporter (NET) encoded by SLC6A2 gene. Whilst some studies have implicated a defect in the SLC6A2 gene, the cause of reduced SLC6A2 expression and function remains unclear. The search to explain the molecular mechanism of NET dysfunction has focused on genetic variation in the SLC6A2 gene and remains inconclusive. More recent studies show epigenetic mechanisms implicated in the regulation of SLC6A2 expression. In this article, we discuss the epigenetic mechanisms involved in SLC6A2 repression and highlight the potential therapeutic application of targeting these mechanisms in POTS.

  6. CALCIUM-DEPENDENT INTERACTIONS OF THE HUMAN NOREPINEPHRINE TRANSPORTER WITH SYNTAXIN 1A

    PubMed Central

    Sung, Uhna; Blakely, Randy D.

    2007-01-01

    The norepinephrine (NE) transporter (NET) terminates noradrenergic signaling by clearing released NE at synapses. The activity of NET can be rapidly regulated by depolarization and receptor activation via Ca2+ and kinase/phosphatase linked pathways. The SNARE protein syntaxin 1A (SYN1A) interacts with NET and influences transporter surface trafficking and catalytic activity. In this study, we establish a link between changes in intracellular Ca2+ and SYN1A/NET interactions. SYN1A influenced NE transport only in the presence of Ca2+ in brain cortical synaptosomes. Although NET/SYN1A associations were sensitive to manipulations of Ca2+ in CHO cells, in vitro binding experiments using purified NET and SYN1A fusion proteins demonstrated a lack of direct Ca2+ sensitivity. Disruption of NET/SYN1A interaction abolished inhibition of NE transport by phorbol ester (PMA) to activate protein kinase C (PKC), but had no effect on transport inhibition by the Ca2+ calmodulin kinase (CaMK) inhibitor KN93. Furthermore, PMA enhanced Ca2+ dependent modulation of NE transport in synaptosomes. Our data reveal roles for SYN1A in the Ca2+-dependent regulation of NET, likely reliant on regulation by PKC signaling, but independent of CaMK. PMID:17188889

  7. Norepinephrine transporter function and tolerance to hypergravitational stress: A pilot study

    NASA Astrophysics Data System (ADS)

    Schroeder, Christoph; Strempel, Sebastian; Boese, Andrea; Hemmersbach, Ruth; Tank, Jens; Luft, Friedrich C.; Jordan, Jens

    Pharmacological norepinephrine transporter (NET) inhibition improves orthostatic tolerance on a tilt table while increasing heart rate. We tested the cardiovascular response to NET inhibition during a graded human centrifuge run in seven healthy men. g-Load was increased in 0.5 g steps with 3 g maximal g-load. On two separate days, patients were tested after selective NET inhibition with reboxetine or with placebo in a double-blind, randomized, crossover fashion. Resting diastolic blood pressure increased moderately with NET inhibition. Resting heart rate was profoundly increased by NET inhibition. NET inhibition augmented the heart rate response while attenuating the increase in blood pressure during hypergravitation. NET inhibition could be tested for its potential to improve cardiovascular g-tolerance.

  8. The norepinephrine transporter gene is associated with the retardation symptoms of major depressive disorder in the Han Chinese population.

    PubMed

    Li, Xinrong; Sun, Ning; Xu, Yong; Wang, Yanfang; Li, Suping; Du, Qiaorong; Peng, Juyi; Luo, Jinxiu; Zhang, Kerang

    2012-09-05

    The norepinephrine transporter plays an important role in the pathophysiology and pharmacological treatment of major depressive disorder. Consequently, the norepinephrine transporter gene is an attractive candidate in major depressive disorder research. In the present study, we evaluated the depression symptoms of subjects with major depressive disorder, who were all from the North of China and of Han Chinese origin, using the Hamilton Depression Scale. We examined the relationship between two single nucleotide polymorphisms in the norepinephrine transporter, rs2242446 and rs5569, and the retardation symptoms of major depressive disorder using quantitative trait testing with the UNPHASED program. rs5569 was associated with depressed mood, and the GG genotype may be a risk factor for this; rs2242446 was associated with work and interest, and the TT genotype may be a risk factor for loss of interest. Our findings suggest that rs2242446 and rs5569 in the norepinephrine transporter gene are associated with the retardation symptoms of depression in the Han Chinese population.

  9. Luminal angiotensin II stimulates rat medullary thick ascending limb chloride transport in the presence of basolateral norepinephrine.

    PubMed

    Baum, Michel

    2016-02-15

    Angiotensin II (ANG II) is secreted by the proximal tubule resulting in a luminal concentration that is 100- to 1,000-fold greater than that in the blood. Luminal ANG II has been shown to stimulate sodium transport in the proximal tubule and distal nephron. Surprisingly, luminal ANG II inhibits NaCl transport in the medullary thick ascending limb (mTAL), a nephron segment responsible for a significant amount of NaCl absorption from the glomerular ultrafiltrate. We confirmed that addition of 10(-8) M ANG II to the lumen inhibited mTAL chloride transport (220 ± 19 to 165 ± 25 pmol·mm(-1)·min(-1), P < 0.01) and examined whether an interaction with basolateral norepinephrine existed to simulate the in vivo condition of an innervated tubule. We found that in the presence of a 10(-6) M norepinephrine bath, luminal ANG II stimulated mTAL chloride transport from 298 ± 18 to 364 ± 42 pmol·mm(-1)·min(-1) (P < 0.05). Stimulation of chloride transport by luminal ANG II was also observed with 10(-3) M bath dibutyryl cAMP in the bathing solution and bath isoproterenol. A bath of 10(-5) H-89 blocked the stimulation of chloride transport by norepinephrine and prevented the effect of luminal ANG II to either stimulate or inhibit chloride transport. Bath phentolamine, an α-adrenergic agonist, also prevented the decrease in mTAL chloride transport by luminal ANG II. Thus luminal ANG II increases chloride transport with basolateral norepinephrine; an effect likely mediated by stimulation of cAMP. Alpha-1 adrenergic stimulation prevents the inhibition of chloride transport by luminal ANG II.

  10. Regulation of the norepinephrine transporter by endothelins: a potential therapeutic target.

    PubMed

    Vatta, Marcelo S; Bianciotti, Liliana G; Guil, María J; Hope, Sandra I

    2015-01-01

    Neuronal norepinephrine (NE) uptake is a crucial step in noradrenergic neurotransmission that regulates NE concentration in the synaptic cleft. It is a key mechanism mediated by the NE transporter (NET) which takes the neurotransmitter into the presynaptic neuron terminal or the adrenal medulla chromaffin cell. The activity of NET is short and long terms modulated by phosphorylation mediated by protein kinases A, C, and G and calcium-calmodulin-dependent protein kinase, whereas the transporter availability at the cell surface is regulated by glycosylation. Several neuropeptides like angiotensins II, III, and 1-7, bradykinin, natriuretic peptides, as well as endothelins (ETs) regulate a wide variety of biological effects, including noradrenergic transmission and in particular neuronal NE uptake. Diverse reports, including studies from our laboratory, show that ETs differentially modulate the activity and expression of NET not only in normal conditions but also in diverse cardiovascular diseases such as congestive heart failure and hypertension. Current literature supports a key role for the interaction between ETs and NE in maintaining neurotransmission homeostasis and further suggests that this interaction may represent a potential therapeutic target for various diseases, particularly hypertension.

  11. Life-long norepinephrine transporter (NET) knock-out leads to the increase in the NET mRNA in brain regions rich in norepinephrine terminals.

    PubMed

    Solich, Joanna; Kolasa, Magdalena; Kusmider, Maciej; Pabian, Paulina; Faron-Gorecka, Agata; Zurawek, Dariusz; Szafran-Pilch, Kinga; Kedracka-Krok, Sylwia; Jankowska, Urszula; Swiderska, Bianka; Dziedzicka-Wasylewska, Marta

    2015-08-01

    These studies aimed to identify the genes differentially expressed in the frontal cortex of mice bearing a life-long norepinephrine transporter knock-out (NET-KO) and wild-type animals (WT). Differences in gene expression in the mouse frontal cortex were studied using a whole-genome microarray approach. Using an alternative approach, i.e. RT-PCR (reverse transcription polymerase chain reaction) with primers complementary to various exons of the NET gene, as well as TaqMan arrays, the level of mRNA encoding the NET in other brain regions of the NET-KO mice was also examined. The analyses revealed a group of 92 transcripts (27 genes) that differentiated the NET-KO mice from the WT mice. Surprisingly, the studies have shown that the mRNA encoding NET accumulated in the brain regions rich in norepinephrine nerve endings in the NET-KO mice. Because there is no other source of NET mRNA besides the noradrenergic terminals in the brain regions studied, these results might speak in favor of the presence of mRNA in axon terminals. RNA-Binding Protein Immunoprecipitation approach indicated that mRNA encoding NET was detected in the Ago2 protein/mRNA complex. In addition, the amount of Ago2 protein in the frontal cortex was significantly higher in NET-KO mice as compared with that of the WT animals. These results are important for further characterization of the NET-KO mice, which - besides other merits - might serve as a good model to study the fate of truncated mRNA in neurons.

  12. Upregulation of norepinephrine transporter function by prolonged exposure to nicotine in cultured bovine adrenal medullary cells.

    PubMed

    Itoh, Hideaki; Toyohira, Yumiko; Ueno, Susumu; Saeki, Satoru; Zhang, Han; Furuno, Yumi; Takahashi, Kojiro; Tsutsui, Masato; Hachisuka, Kenji; Yanagihara, Nobuyuki

    2010-09-01

    Nicotine acts on nicotinic acetylcholine receptors in the adrenal medulla and brain, thereby stimulating the release of monoamines such as norepinephrine (NE). In the present study, we examined the effects of prolonged exposure to nicotine on NE transporter (NET) activity in cultured bovine adrenal medullary cells. Treatment of adrenal medullary cells with nicotine increased [(3)H]NE uptake in both a time- (1-5 days) and concentration-dependent (0.1-10 muM) manner. Kinetic analysis showed that nicotine induced an increase in the V (max) of [(3)H]NE uptake with little change in K (m). This increase in NET activity was blocked by cycloheximide, an inhibitor of ribosomal protein synthesis, but not by actinomycin D, a DNA-dependent RNA polymerase inhibitor. [(3)H]NE uptake induced by nicotine was strongly inhibited by hexamethonium and mecamylamine but not by alpha-bungarotoxin, and was abolished by elimination of Ca(2+) from the culture medium. KN-93, an inhibitor of Ca(2+)/calmodulin-dependent protein kinase II, attenuated not only nicotine-induced [(3)H]NE uptake but also (45)Ca(2+) influx in the cells. The present findings suggest that long-term exposure to nicotine increases NET activity through a Ca(2+)-dependent post-transcriptional process in the adrenal medulla.

  13. Effects of duloxetine on norepinephrine and serotonin transporter activity in healthy subjects.

    PubMed

    Chappell, Jill C; Eisenhofer, Graeme; Owens, Michael J; Haber, Harry; Lachno, D Richard; Dean, Robert A; Knadler, Mary Pat; Nemeroff, Charles B; Mitchell, Malcolm I; Detke, Michael J; Iyengar, Smriti; Pangallo, Beth; Lobo, Evelyn D

    2014-02-01

    Duloxetine selectively inhibits the serotonin (5-HT) and norepinephrine (NE) transporters (5-HTT and NET, respectively), as demonstrated in vitro and in preclinical studies; however, transporter inhibition has not been fully assessed in vivo at the approved dose of 60 mg/d. Here, the in vivo effects of dosing with duloxetine 60 mg once daily for 11 days in healthy subjects were assessed in 2 studies: (1) centrally (n = 11), by measuring concentrations of 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylglycol (DHPG), and NE in cerebrospinal fluid, and (2) versus escitalopram 20 mg/d (n = 32) in a 2-period crossover study by assessing the ΔDHPG/ΔNE ratio in plasma during orthostatic testing and by pharmacokinetic/pharmacodynamic modeling of reuptake inhibition using subjects' serum in cell lines expressing cloned human 5-HTT or NET. At steady state, duloxetine significantly reduced concentrations of DHPG and 5-hydroxyindoleacetic acid (P < 0.05), but not NE, in cerebrospinal fluid; DHPG was also decreased in plasma and urine. The ΔDHPG/ΔNE ratio in plasma decreased significantly more with duloxetine than escitalopram (65% and 21%, respectively; P < 0.0001). Ex vivo reuptake inhibition of 5-HTT was comparable (EC50 = 44.5 nM) for duloxetine and escitalopram, but duloxetine inhibited NET more potently (EC50 = 116 nM and 1044 nM, respectively). Maximal predicted reuptake inhibition for 5-HTT was 84% for duloxetine and 80% for escitalopram, and that for NET was 67% and 14%, respectively. In summary, duloxetine significantly affected 5-HT and NE turnover in the central nervous system and periphery; these effects presumably occurred via inhibition of reuptake by the 5-HTT and NET, as indicated by effects on functional reuptake inhibition ex vivo.

  14. Organic cation transporter 3 contributes to norepinephrine uptake into perivascular adipose tissue.

    PubMed

    Ayala-Lopez, Nadia; Jackson, William F; Burnett, Robert; Wilson, James N; Thompson, Janice M; Watts, Stephanie W

    2015-12-01

    Perivascular adipose tissue (PVAT) reduces vasoconstriction to norepinephrine (NE). A mechanism by which PVAT could function to reduce vascular contraction is by decreasing the amount of NE to which the vessel is exposed. PVATs from male Sprague-Dawley rats were used to test the hypothesis that PVAT has a NE uptake mechanism. NE was detected by HPLC in mesenteric PVAT and isolated adipocytes. Uptake of NE (10 μM) in mesenteric PVAT was reduced by the NE transporter (NET) inhibitor nisoxetine (1 μM, 73.68 ± 7.62%, all values reported as percentages of vehicle), the 5-hydroxytryptamine transporter (SERT) inhibitor citalopram (100 nM) with the organic cation transporter 3 (OCT3) inhibitor corticosterone (100 μM, 56.18 ± 5.21%), and the NET inhibitor desipramine (10 μM) with corticosterone (100 μM, 61.18 ± 6.82%). Aortic PVAT NE uptake was reduced by corticosterone (100 μM, 53.01 ± 10.96%). Confocal imaging of mesenteric PVAT stained with 4-[4-(dimethylamino)-styrl]-N-methylpyridinium iodide (ASP(+)), a fluorescent substrate of cationic transporters, detected ASP(+) uptake into adipocytes. ASP(+) (2 μM) uptake was reduced by citalopram (100 nM, 66.68 ± 6.43%), corticosterone (100 μM, 43.49 ± 10.17%), nisoxetine (100 nM, 84.12 ± 4.24%), citalopram with corticosterone (100 nM and 100 μM, respectively, 35.75 ± 4.21%), and desipramine with corticosterone (10 and 100 μM, respectively, 50.47 ± 5.78%). NET protein was not detected in mesenteric PVAT adipocytes. Expression of Slc22a3 (OCT3 gene) mRNA and protein in PVAT adipocytes was detected by RT-PCR and immunocytochemistry, respectively. These end points support the presence of a transporter-mediated NE uptake system within PVAT with a potential mediator being OCT3.

  15. Relative contributions of norepinephrine and serotonin transporters to antinociceptive synergy between monoamine reuptake inhibitors and morphine in the rat formalin model.

    PubMed

    Shen, Fei; Tsuruda, Pamela R; Smith, Jacqueline A M; Obedencio, Glenmar P; Martin, William J

    2013-01-01

    Multimodal analgesia is designed to optimize pain relief by coadministering drugs with distinct mechanisms of action or by combining multiple pharmacologies within a single molecule. In clinical settings, combinations of monoamine reuptake inhibitors and opioid receptor agonists have been explored and one currently available analgesic, tapentadol, functions as both a µ-opioid receptor agonist and a norepinephrine transporter inhibitor. However, it is unclear whether the combination of selective norepinephrine reuptake inhibition and µ-receptor agonism achieves an optimal antinociceptive synergy. In this study, we assessed the pharmacodynamic interactions between morphine and monoamine reuptake inhibitors that possess different affinities and selectivities for norepinephrine and serotonin transporters. Using the rat formalin model, in conjunction with measurements of ex vivo transporter occupancy, we show that neither the norepinephrine-selective inhibitor, esreboxetine, nor the serotonin-selective reuptake inhibitor, fluoxetine, produce antinociceptive synergy with morphine. Atomoxetine, a monoamine reuptake inhibitor that achieves higher levels of norepinephrine than serotonin transporter occupancy, exhibited robust antinociceptive synergy with morphine. Similarly, a fixed-dose combination of esreboxetine and fluoxetine which achieves comparable levels of transporter occupancy potentiated the antinociceptive response to morphine. By contrast, duloxetine, a monoamine reuptake inhibitor that achieves higher serotonin than norepinephrine transporter occupancy, failed to potentiate the antinociceptive response to morphine. However, when duloxetine was coadministered with the 5-HT3 receptor antagonist, ondansetron, potentiation of the antinociceptive response to morphine was revealed. These results support the notion that inhibition of both serotonin and norepinephrine transporters is required for monoamine reuptake inhibitor and opioid-mediated antinociceptive

  16. A polymorphism in the norepinephrine transporter gene alters promoter activity and is associated with attention-deficit hyperactivity disorder

    PubMed Central

    Kim, Chun-Hyung; Hahn, Maureen K.; Joung, Yoosook; Anderson, Susan L.; Steele, Angela H.; Mazei-Robinson, Michelle S.; Gizer, Ian; Teicher, Martin H.; Cohen, Bruce M.; Robertson, David; Waldman, Irwin D.; Blakely, Randy D.; Kim, Kwang-Soo

    2006-01-01

    The norepinephrine transporter critically regulates both neurotransmission and homeostasis of norepinephrine in the nervous system. In this study, we report a previously uncharacterized and common A/T polymorphism at −3081 upstream of the transcription initiation site of the human norepinephrine transporter gene [solute carrier family 6, member 2 (SLC6A2)]. Using both homologous and heterologous promoter-reporter constructs, we found that the −3081(T) allele significantly decreases promoter function compared with the A allele. Interestingly, this T allele creates a new palindromic E2-box motif that interacts with Slug and Scratch, neural-expressed transcriptional repressors binding to the E2-box motif. We also found that both Slug and Scratch repress the SLC6A2 promoter activity only when it contains the T allele. Finally, we observed a significant association between the −3081(A/T) polymorphism and attention-deficit hyperactivity disorder (ADHD), suggesting that anomalous transcription factor-based repression of SLC6A2 may increase risk for the development of attention-deficit hyperactivity disorder and other neuropsychiatric diseases. PMID:17146058

  17. Nothing but NET: A review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy

    PubMed Central

    Streby, Keri A; Shah, Nilay; Ranalli, Mark A; Kunkler, Anne; Cripe, Timothy P

    2015-01-01

    Neuroblastoma is unique amongst common pediatric cancers for its expression of the norepinephrine transporter (NET), enabling tumor-selective imaging and therapy with radioactive analogues of norepinephrine. The majority of neuroblastoma tumors are avid for 123I-metaiodobenzaguanidine (mIBG) on imaging, yet the therapeutic response to 131I-mIBG is only 30% in clinical trials, and off-target effects cause short- and long-term morbidity. We review the contemporary understanding of the tumor-selective uptake, retention, and efflux of meta-iodobenzylguanidine (mIBG) and strategies currently in development for improving its efficacy. Combination treatment strategies aimed at enhancing NET are likely necessary to reach the full potential of 131I-mIBG therapy. PMID:25175627

  18. Ethylenedioxy homologs of N-methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA) and its corresponding cathinone analog methylenedioxymethcathinone: Interactions with transporters for serotonin, dopamine, and norepinephrine.

    PubMed

    Del Bello, Fabio; Sakloth, Farhana; Partilla, John S; Baumann, Michael H; Glennon, Richard A

    2015-09-01

    N-Methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA; 'Ecstasy'; 1) and its β-keto analog methylone (MDMC; 2) are popular drugs of abuse. Little is known about their ring-expanded ethylenedioxy homologs. Here, we prepared N-methyl-(3,4-ethylenedioxyphenyl)-2-aminopropane (EDMA; 3), both of its optical isomers, and β-keto EDMA (i.e., EDMC; 4) to examine their effects at transporters for serotonin (SERT), dopamine (DAT), and norepinephrine (NET). In general, ring-expansion of the methylenedioxy group led to a several-fold reduction in potency at all three transporters. With respect to EDMA (3), S(+)3 was 6-fold, 50-fold, and 8-fold more potent than its R(-) enantiomer at SERT, DAT, and NET, respectively. Overall, in the absence of a β-carbonyl group, the ethylenedioxy (i.e., 1,4-dioxane) substituent seems better accommodated at SERT than at DAT and NET.

  19. Binding site residues control inhibitor selectivity in the human norepinephrine transporter but not in the human dopamine transporter.

    PubMed

    Andersen, Jacob; Ringsted, Kristoffer B; Bang-Andersen, Benny; Strømgaard, Kristian; Kristensen, Anders S

    2015-10-27

    The transporters for norepinephrine and dopamine (NET and DAT, respectively) constitute the molecular targets for recreational drugs and therapeutics used in the treatment of psychiatric disorders. Despite a strikingly similar amino acid sequence and predicted topology between these transporters, some inhibitors display a high degree of selectivity between NET and DAT. Here, a systematic mutational analysis of non-conserved residues within the extracellular entry pathway and the high affinity binding site in NET and DAT was performed to examine their role for selective inhibitor recognition. Changing the six diverging residues in the central binding site of NET to the complementary residues in DAT transferred a DAT-like pharmacology to NET, showing that non-conserved binding site residues in NET are critical determinants for inhibitor selectivity. In contrast, changing the equivalent residues in the central site of DAT to the corresponding residues in NET had modest effects on the same inhibitors, suggesting that non-conserved binding site residues in DAT play a minor role for selective inhibitor recognition. Our data points towards distinct structural determinants governing inhibitor selectivity in NET and DAT, and provide important new insight into the molecular basis for NET/DAT selectivity of therapeutic and recreational drugs.

  20. Binding site residues control inhibitor selectivity in the human norepinephrine transporter but not in the human dopamine transporter

    PubMed Central

    Andersen, Jacob; Ringsted, Kristoffer B.; Bang-Andersen, Benny; Strømgaard, Kristian; Kristensen, Anders S.

    2015-01-01

    The transporters for norepinephrine and dopamine (NET and DAT, respectively) constitute the molecular targets for recreational drugs and therapeutics used in the treatment of psychiatric disorders. Despite a strikingly similar amino acid sequence and predicted topology between these transporters, some inhibitors display a high degree of selectivity between NET and DAT. Here, a systematic mutational analysis of non-conserved residues within the extracellular entry pathway and the high affinity binding site in NET and DAT was performed to examine their role for selective inhibitor recognition. Changing the six diverging residues in the central binding site of NET to the complementary residues in DAT transferred a DAT-like pharmacology to NET, showing that non-conserved binding site residues in NET are critical determinants for inhibitor selectivity. In contrast, changing the equivalent residues in the central site of DAT to the corresponding residues in NET had modest effects on the same inhibitors, suggesting that non-conserved binding site residues in DAT play a minor role for selective inhibitor recognition. Our data points towards distinct structural determinants governing inhibitor selectivity in NET and DAT, and provide important new insight into the molecular basis for NET/DAT selectivity of therapeutic and recreational drugs. PMID:26503701

  1. Preclinical to Clinical Translation of CNS Transporter Occupancy of TD-9855, a Novel Norepinephrine and Serotonin Reuptake Inhibitor

    PubMed Central

    Patil, DL; Daniels, OT; Ding, Y-S; Gallezot, J-D; Henry, S; Kim, KHS; Kshirsagar, S; Martin, WJ; Obedencio, GP; Stangeland, E; Tsuruda, PR; Williams, W; Carson, RE; Patil, ST

    2015-01-01

    Background: Monoamine reuptake inhibitors exhibit unique clinical profiles that reflect distinct engagement of the central nervous system (CNS) transporters. Methods: We used a translational strategy, including rodent pharmacokinetic/pharmacodynamic modeling and positron emission tomography (PET) imaging in humans, to establish the transporter profile of TD-9855, a novel norepinephrine and serotonin reuptake inhibitor. Results: TD-9855 was a potent inhibitor of norepinephrine (NE) and serotonin 5-HT uptake in vitro with an inhibitory selectivity of 4- to 10-fold for NE at human and rat transporters. TD-9855 engaged norepinephrine transporters (NET) and serotonin transporters (SERT) in rat spinal cord, with a plasma EC50 of 11.7ng/mL and 50.8ng/mL, respectively, consistent with modest selectivity for NET in vivo. Accounting for species differences in protein binding, the projected human NET and SERT plasma EC50 values were 5.5ng/mL and 23.9ng/mL, respectively. A single-dose, open-label PET study (4–20mg TD-9855, oral) was conducted in eight healthy males using the radiotracers [11C]-3-amino-4- [2-[(di(methyl)amino)methyl]phenyl]sulfanylbenzonitrile for SERT and [11C]-(S,S)-methylreboxetine for NET. The long pharmacokinetic half-life (30–40h) of TD-9855 allowed for sequential assessment of SERT and NET occupancy in the same subject. The plasma EC50 for NET was estimated to be 1.21ng/mL, and at doses of greater than 4mg the projected steady-state NET occupancy is high (>75%). After a single oral dose of 20mg, SERT occupancy was 25 (±8)% at a plasma level of 6.35ng/mL. Conclusions: These data establish the CNS penetration and transporter profile of TD-9855 and inform the selection of potential doses for future clinical evaluation. PMID:25522383

  2. Targeting presynaptic norepinephrine transporter in brown adipose tissue: a novel imaging approach and potential treatment for diabetes and obesity.

    PubMed

    Mirbolooki, M Reza; Constantinescu, Cristian C; Pan, Min-Liang; Mukherjee, Jogeshwar

    2013-02-01

    Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for (18)F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous (18)F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before (18)F-FDG administration. To confirm the β-adrenergic effects, propranolol (β-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In (18)F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the (18)F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average (18)F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of (18)F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β(3)-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β(3)-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by (18)F-FDG PET/CT.

  3. Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions.

    PubMed

    Perona, Maria T G; Waters, Shonna; Hall, Frank Scott; Sora, Ichiro; Lesch, Klaus-Peter; Murphy, Dennis L; Caron, Marc; Uhl, George R

    2008-09-01

    Antidepressant drugs produce therapeutic actions and many of their side effects via blockade of the plasma membrane transporters for serotonin (SERT/SLC6A2), norepinephrine (NET/SLC6A1), and dopamine (DAT/SLC6A3). Many antidepressants block several of these transporters; some are more selective. Mouse gene knockouts of these transporters provide interesting models for possible effects of chronic antidepressant treatments. To examine the role of monoamine transporters in models of depression DAT, NET, and SERT knockout (KO) mice and wild-type littermates were studied in the forced swim test (FST), the tail suspension test, and for sucrose consumption. To dissociate general activity from potential antidepressant effects three types of behavior were assessed in the FST: immobility, climbing, and swimming. In confirmation of earlier reports, both DAT KO and NET KO mice exhibited less immobility than wild-type littermates whereas SERT KO mice did not. Effects of DAT deletion were not simply because of hyperactivity, as decreased immobility was observed in DAT+/- mice that were not hyperactive as well as in DAT-/- mice that displayed profound hyperactivity. Climbing was increased, whereas swimming was almost eliminated in DAT-/- mice, and a modest but similar effect was seen in NET KO mice, which showed a modest decrease in locomotor activity. Combined increases in climbing and decreases in immobility are characteristic of FST results in antidepressant animal models, whereas selective effects on swimming are associated with the effects of stimulant drugs. Therefore, an effect on climbing is thought to more specifically reflect antidepressant effects, as has been observed in several other proposed animal models of reduced depressive phenotypes. A similar profile was observed in the tail suspension test, where DAT, NET, and SERT knockouts were all found to reduce immobility, but much greater effects were observed in DAT KO mice. However, to further determine whether

  4. Differential Internalization Rates and Postendocytic Sorting of the Norepinephrine and Dopamine Transporters Are Controlled by Structural Elements in the N Termini*

    PubMed Central

    Vuorenpää, Anne; Jørgensen, Trine N.; Newman, Amy H.; Madsen, Kenneth L.; Scheinin, Mika

    2016-01-01

    The norepinephrine transporter (NET) mediates reuptake of synaptically released norepinephrine in central and peripheral noradrenergic neurons. The molecular processes governing availability of NET in the plasma membrane are poorly understood. Here we use the fluorescent cocaine analogue JHC 1-64, as well as several other approaches, to investigate the trafficking itinerary of NET in live noradrenergic neurons. Confocal imaging revealed extensive constitutive internalization of JHC 1-64-labeled NET in the neuronal somata, proximal extensions and presynaptic boutons. Phorbol 12-myristate 13-acetate increased intracellular accumulation of JHC 1-64-labeled NET and caused a parallel reduction in uptake capacity. Internalized NET strongly colocalized with the “long loop” recycling marker Rab11, whereas less overlap was seen with the “short loop” recycling marker Rab4 and the late endosomal marker Rab7. Moreover, mitigating Rab11 function by overexpression of dominant negative Rab11 impaired NET function. Sorting of NET to the Rab11 recycling compartment was further supported by confocal imaging and reversible biotinylation experiments in transfected differentiated CATH.a cells. In contrast to NET, the dopamine transporter displayed markedly less constitutive internalization and limited sorting to the Rab11 recycling compartment in the differentiated CATH.a cells. Exchange of domains between the two homologous transporters revealed that this difference was determined by non-conserved structural elements in the intracellular N terminus. We conclude that NET displays a distinct trafficking itinerary characterized by continuous shuffling between the plasma membrane and the Rab11 recycling compartment and that the functional integrity of the Rab11 compartment is critical for maintaining proper presynaptic NET function. PMID:26786096

  5. Differential Internalization Rates and Postendocytic Sorting of the Norepinephrine and Dopamine Transporters Are Controlled by Structural Elements in the N Termini.

    PubMed

    Vuorenpää, Anne; Jørgensen, Trine N; Newman, Amy H; Madsen, Kenneth L; Scheinin, Mika; Gether, Ulrik

    2016-03-11

    The norepinephrine transporter (NET) mediates reuptake of synaptically released norepinephrine in central and peripheral noradrenergic neurons. The molecular processes governing availability of NET in the plasma membrane are poorly understood. Here we use the fluorescent cocaine analogue JHC 1-64, as well as several other approaches, to investigate the trafficking itinerary of NET in live noradrenergic neurons. Confocal imaging revealed extensive constitutive internalization of JHC 1-64-labeled NET in the neuronal somata, proximal extensions and presynaptic boutons. Phorbol 12-myristate 13-acetate increased intracellular accumulation of JHC 1-64-labeled NET and caused a parallel reduction in uptake capacity. Internalized NET strongly colocalized with the "long loop" recycling marker Rab11, whereas less overlap was seen with the "short loop" recycling marker Rab4 and the late endosomal marker Rab7. Moreover, mitigating Rab11 function by overexpression of dominant negative Rab11 impaired NET function. Sorting of NET to the Rab11 recycling compartment was further supported by confocal imaging and reversible biotinylation experiments in transfected differentiated CATH.a cells. In contrast to NET, the dopamine transporter displayed markedly less constitutive internalization and limited sorting to the Rab11 recycling compartment in the differentiated CATH.a cells. Exchange of domains between the two homologous transporters revealed that this difference was determined by non-conserved structural elements in the intracellular N terminus. We conclude that NET displays a distinct trafficking itinerary characterized by continuous shuffling between the plasma membrane and the Rab11 recycling compartment and that the functional integrity of the Rab11 compartment is critical for maintaining proper presynaptic NET function.

  6. Alpha adrenergic modulation on effects of norepinephrine transporter inhibitor reboxetine in five-choice serial reaction time task

    PubMed Central

    Liu, Yia-Ping; Lin, Yu-Lung; Chuang, Chia-Hsin; Kao, Yu-Cheng; Chang, Shang-Tang; Tung, Che-Se

    2009-01-01

    The study examined the effects of a norepinephrine transporter (NET) inhibitor reboxetine (RBX) on an attentional performance test. Adult SD rats trained with five-choice serial reaction time task (5-CSRTT) were administered with RBX (0, 3.0 and 10 mg/kg) in the testing day. Alpha-1 adrenergic receptor antagonist PRA and alpha-2 adrenergic receptor antagonist RX821002 were used to clarify the RBX effect. Results revealed that rat received RBX at 10 mg/kg had an increase in the percentage of the correct response and decreases in the numbers of premature response. Alpha-1 adrenergic receptor antagonist Prazosin (PRA) at 0.1 mg/kg reversed the RBX augmented correct responding rate. However, alpha-2 adrenergic receptor antagonist RX821002 at 0.05 and 0.1 mg/kg dose dependently reversed the RBX reduced impulsive responding. Our results suggested that RBX as a norepinephrine transporter inhibitor can be beneficial in both attentional accuracy and response control and alpha-1 and alpha-2 adrenergic receptors might be involved differently. PMID:19678962

  7. Norepinephrine transporter variant A457P knock-in mice display key features of human postural orthostatic tachycardia syndrome.

    PubMed

    Shirey-Rice, Jana K; Klar, Rebecca; Fentress, Hugh M; Redmon, Sarah N; Sabb, Tiffany R; Krueger, Jessica J; Wallace, Nathan M; Appalsamy, Martin; Finney, Charlene; Lonce, Suzanna; Diedrich, André; Hahn, Maureen K

    2013-07-01

    Postural orthostatic tachycardia syndrome (POTS) is a common autonomic disorder of largely unknown etiology that presents with sustained tachycardia on standing, syncope and elevated norepinephrine spillover. Some individuals with POTS experience anxiety, depression and cognitive dysfunction. Previously, we identified a mutation, A457P, in the norepinephrine (NE; also known as noradrenaline) transporter (NET; encoded by SLC6A2) in POTS patients. NET is expressed at presynaptic sites in NE neurons and plays a crucial role in regulating NE signaling and homeostasis through NE reuptake into noradrenergic nerve terminals. Our in vitro studies demonstrate that A457P reduces both NET surface trafficking and NE transport and exerts a dominant-negative impact on wild-type NET proteins. Here we report the generation and characterization of NET A457P mice, demonstrating the ability of A457P to drive the POTS phenotype and behaviors that are consistent with reported comorbidities. Mice carrying one A457P allele (NET(+/P)) exhibited reduced brain and sympathetic NE transport levels compared with wild-type (NET(+/+)) mice, whereas transport activity in mice carrying two A457P alleles (NET(P/P)) was nearly abolished. NET(+/P) and NET(P/P) mice exhibited elevations in plasma and urine NE levels, reduced 3,4-dihydroxyphenylglycol (DHPG), and reduced DHPG:NE ratios, consistent with a decrease in sympathetic nerve terminal NE reuptake. Radiotelemetry in unanesthetized mice revealed tachycardia in NET(+/P) mice without a change in blood pressure or baroreceptor sensitivity, consistent with studies of human NET A457P carriers. NET(+/P) mice also demonstrated behavioral changes consistent with CNS NET dysfunction. Our findings support that NET dysfunction is sufficient to produce a POTS phenotype and introduces the first genetic model suitable for more detailed mechanistic studies of the disorder and its comorbidities.

  8. Transport suppression by shear reduction

    NASA Astrophysics Data System (ADS)

    Martinell, Julio; Del-Castillo-Negrete, Diego

    2009-11-01

    The relationship between transport and shear is a problem of considerable interest to magnetically confined plasmas. It is well known that there are cases in which an increase of flow shear can lead to a reduction of turbulent transport. However, this is not a generic result, and there are transport problems in which the opposite is the case. In particular, as originally discussed in Ref. footnotetextdel-Castillo-Negrete and Morrison, Phys. Fluids A 5, 948 (1993), barriers to chaotic transport typically form in regions of vanishing shear. This property, which is generic to the so-called non-twist Hamiltonian systems footnotetextdel-Castillo-Negrete, Greene, and Morrison, Physica D 91, 1 (1996), explains the observed resilience of transport barriers in non-monotonic zonal flows in plasmas and fluids and the robustness of shearless magnetic surfaces in reverse shear configurations. Here we study the role of finite Larmor radius (FLR) effects on the suppression of chaotic transport by shear reduction in a simplified model. Following Ref. footnotetextdel-Castillo-Negrete, Phys. Plasmas, 7, 1702 (2000) we consider a model consisting of a superposition of drift waves and a non-monotonic zonal flow. The FLR effects are incorporated by gyroaveraging the E xB velocity, and transport is studied by following the evolution of ensembles of test particles.

  9. PET quantification of the norepinephrine transporter in human brain with (S,S)-18F-FMeNER-D2.

    PubMed

    Moriguchi, Sho; Kimura, Yasuyuki; Ichise, Masanori; Arakawa, Ryosuke; Takano, Harumasa; Seki, Chie; Ikoma, Yoko; Takahata, Keisuke; Nagashima, Tomohisa; Yamada, Makiko; Mimura, Masaru; Suhara, Tetsuya

    2016-12-15

    Norepinephrine transporter (NET) in the brain plays important roles in human cognition and the pathophysiology of psychiatric disorders. Two radioligands, (S,S)-(11)C-MRB and (S,S)-(18)F-FMeNER-D2, have been used for imaging NETs in the thalamus and midbrain (including locus coeruleus) using positron emission topography (PET) in humans. However, NET density in the equally important cerebral cortex has not been well quantified because of unfavorable kinetics with (S,S)-(11)C-MRB and defluorination with (S,S)-(18)F-FMeNER-D2, which can complicate NET quantification in the cerebral cortex adjacent to the skull containing defluorinated (18)F radioactivity. In this study, we have established analysis methods of quantification of NET density in the brain including cerebral cortex using (S,S)-(18)F-FMeNER-D2 PET.

  10. [Role of the sympathetic nervous system in vasovagal syncope and rationale for beta-blockers and norepinephrine transporter inhibitors].

    PubMed

    Márquez, Manlio F; Gómez-Flores, Jorge Rafael; González-Hermosillo, Jesús A; Ruíz-Siller, Teresita de Jesús; Cárdenas, Manuel

    2016-12-29

    Vasovagal or neurocardiogenic syncope is a common clinical situation and, as with other entities associated with orthostatic intolerance, the underlying condition is a dysfunction of the autonomic nervous system. This article reviews various aspects of vasovagal syncope, including its relationship with orthostatic intolerance and the role of the autonomic nervous system in it. A brief history of the problem is given, as well as a description of how the names and associated concepts have evolved. The response of the sympathetic system to orthostatic stress, the physiology of the baroreflex system and the neurohumoral changes that occur with standing are analyzed. Evidence is presented of the involvement of the autonomic nervous system, including studies of heart rate variability, microneurography, cardiac innervation, and molecular genetic studies. Finally, we describe different studies on the use of beta-blockers and norepinephrine transporter inhibitors (sibutramine, reboxetine) and the rationality of their use to prevent this type of syncope.

  11. Norepinephrine transporter expression is inversely associated with glycaemic indices: a pilot study in metabolically diverse persons with overweight and obesity

    PubMed Central

    Guo, L.; Corcoran, S. J.; Esler, M. D.; Phillips, S. E.; Sari, C. I.; Grima, M. T.; Karapanagiotidis, S.; Wong, C. Y.; Eikelis, N.; Mariani, J. A.; Kobayashi, D.; Dixon, J. B.; Lambert, G. W.; Lambert, E. A.

    2016-01-01

    Summary Objective The objective of this study was to examine the cross‐sectional relationship between the expression of norepinephrine transporter (NET), the protein responsible for neuronal uptake‐1, and indices of glycaemia and hyperinsulinaemia, in overweight and obese individuals. Methods Thirteen non‐medicated, non‐smoking subjects, aged 58 ± 1 years (mean ± standard error of the mean), body mass index (BMI) 31.4 ± 1.0 kg m−2, with wide‐ranging plasma glucose and haemoglobin A1c (HbA1c, range 5.1% to 6.5%) participated. They underwent forearm vein biopsy to access sympathetic nerves for the quantification of NET by Western blot, oral glucose tolerance test (OGTT), euglycaemic hyperinsulinaemic clamp, echocardiography and assessments of whole‐body norepinephrine kinetics and muscle sympathetic nerve activity. Results Norepinephrine transporter expression was inversely associated with fasting plasma glucose (r = −0.62, P = 0.02), glucose area under the curve during OGTT (AUC0–120, r = −0.65, P = 0.02) and HbA1c (r = −0.67, P = 0.01), and positively associated with steady‐state glucose utilization during euglycaemic clamp (r = 0.58, P = 0.04). Moreover, NET expression was inversely related to left ventricular posterior wall dimensions (r = −0.64, P = 0.02) and heart rate (r = −0.55, P = 0.05). Indices of hyperinsulinaemia were not associated with NET expression. In stepwise linear regression analysis adjusted for age, body mass index and blood pressure, HbA1c was an independent inverse predictor of NET expression, explaining 45% of its variance. Conclusions Hyperglycaemia is associated with reduced peripheral NET expression. Further studies are required to identify the direction of causality. PMID:27812376

  12. Norepinephrine transporter inhibition with desipramine exacerbates L-DOPA-induced dyskinesia: role for synaptic dopamine regulation in denervated nigrostriatal terminals.

    PubMed

    Chotibut, Tanya; Fields, Victoria; Salvatore, Michael F

    2014-12-01

    Pharmacological dopamine (DA) replacement with Levodopa [L-dihydroxyphenylalanine (L-DOPA)] is the gold standard treatment of Parkinson's disease (PD). However, long-term L-DOPA treatment is complicated by eventual debilitating abnormal involuntary movements termed L-DOPA-induced dyskinesia (LID), a clinically significant obstacle for the majority of patients who rely on L-DOPA to alleviate PD-related motor symptoms. The manifestation of LID may in part be driven by excessive extracellular DA derived from L-DOPA, but potential involvement of DA reuptake in LID severity or expression is unknown. We recently reported that in 6-hydroxydopamine (6-OHDA)-lesioned striatum, norepinephrine transporter (NET) expression increases and may play a significant role in DA transport. Furthermore, L-DOPA preferentially inhibits DA uptake in lesioned striatum. Therefore, we hypothesized that desipramine (DMI), a NET antagonist, could affect the severity of LID in an established LID model. Whereas DMI alone elicited no dyskinetic effects in lesioned rats, DMI + L-DOPA-treated rats gradually expressed more severe dyskinesia compared with L-DOPA alone over time. At the conclusion of the study, we observed reduced NET expression and norepinephrine-mediated inhibition of DA uptake in the DMI + L-DOPA group compared with L-DOPA-alone group in lesioned striatum. LID severity positively correlated with striatal extracellular signal-regulated protein kinase phosphorylation among the three treatment groups, with increased ppERK1/2 in DMI + L-DOPA group compared with the L-DOPA- and DMI-alone groups. Taken together, these results indicate that the combination of chronic L-DOPA and NET-mediated DA reuptake in lesioned nigrostriatal terminals may have a role in LID severity in experimental Parkinsonism.

  13. Effect of methylphenidate treatment during adolescence on norepinephrine transporter function in orbitofrontal cortex in a rat model of attention deficit hyperactivity disorder.

    PubMed

    Somkuwar, Sucharita S; Kantak, Kathleen M; Dwoskin, Linda P

    2015-08-30

    Attention deficit hyperactivity disorder (ADHD) is associated with hypofunctional medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC). Methylphenidate (MPH) remediates ADHD, in part, by inhibiting the norepinephrine transporter (NET). MPH also reduces ADHD-like symptoms in spontaneously hypertensive rats (SHRs), a model of ADHD. However, effects of chronic MPH treatment on NET function in mPFC and OFC in SHR have not been reported. In the current study, long-term effects of repeated treatment with a therapeutically relevant oral dose of MPH during adolescence on NET function in subregions of mPFC (cingulate gyrus, prelimbic cortex and infralimbic cortex) and in the OFC of adult SHR, Wistar-Kyoto (WKY, inbred control) and Wistar (WIS, outbred control) rats were determined using in vivo voltammetry. Following local ejection of norepinephrine (NE), uptake rate was determined as peak amplitude (Amax)× first-order rate constant (k-1). In mPFC subregions, no strain or treatment effects were found in NE uptake rate. In OFC, NE uptake rate in vehicle-treated adult SHR was greater than in adult WKY and WIS administered vehicle. MPH treatment during adolescence normalized NE uptake rate in OFC in SHR. Thus, the current study implicates increased NET function in OFC as an underlying mechanism for reduced noradrenergic transmission in OFC, and consequently, the behavioral deficits associated with ADHD. MPH treatment during adolescence normalized NET function in OFC in adulthood, suggesting that the therapeutic action of MPH persists long after treatment cessation and may contribute to lasting reductions in deficits associated with ADHD.

  14. Effect of methylphenidate treatment during adolescence on norepinephrine transporter function in orbitofrontal cortex in a rat model of Attention Deficit Hyperactivity Disorder

    PubMed Central

    Somkuwar, Sucharita S.; Kantak, Kathleen M.; Dwoskin, Linda P.

    2015-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is associated with hypofunctional medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC). Methylphenidate (MPH) remediates ADHD, in part, by inhibiting the norepinephrine transporter (NET). MPH also reduces ADHD-like symptoms in Spontaneously Hypertensive Rats (SHRs), a model of ADHD. However, effects of chronic MPH treatment on NET function in mPFC and OFC in SHR have not been reported. In the current study, long-term effects of repeated treatment with a therapeutically relevant oral dose of MPH during adolescence on NET function in subregions of mPFC (cingulate gyrus, prelimbic cortex and infralimbic cortex) and in the OFC of adult SHR, Wistar-Kyoto (WKY, inbred control) and Wistar (WIS, outbred control) rats were determined using in vivo voltammetry. Following local ejection of norepinephrine (NE), uptake rate was determined as peak amplitude (Amax) x first-order rate constant (k-1). In mPFC subregions, no strain or treatment effects were found in NE uptake rate. In OFC, NE uptake rate in vehicle-treated adult SHR was greater than in adult WKY and WIS administered vehicle. MPH treatment during adolescence normalized NE uptake rate in OFC in SHR. Thus, the current study implicates increased NET function in OFC as an underlying mechanism for reduced noradrenergic transmission in OFC, and consequently, the behavioral deficits associated with ADHD. MPH treatment during adolescence normalized NET function in OFC in adulthood, suggesting that the therapeutic action of MPH persists long after treatment cessation and may contribute to lasting reductions in deficits associated with ADHD. PMID:25680322

  15. Analysis of Association between Norepinephrine Transporter Gene Polymorphisms and Personality Traits of NEO-FFI in a Japanese Population

    PubMed Central

    Narita, Shin; Nagahori, Kenta; Numajiri, Maki; Yoshihara, Eiji; Ohtani, Nobuyo; Ishigooka, Jun

    2015-01-01

    Objective Norepinephrine is an important chemical messenger that is involved in mood and stress in humans, and is reabsorbed by the norepinephrine transporter (NET). According to Cloninger's theory, the noradrenergic system mediates the personality trait of reward dependence. Thus far, although association studies on NET gene polymorphisms and Cloninger's personality traits have been reported, they yielded inconsistent results. Therefore, in the present study we investigated whether or not the 1287G/A, -182T/C and -3081A/T polymorphisms of the NET gene (SLC6A2) are associated with reward dependence-related traits, as assessed by the five-factor model. Methods After written informed consent was obtained from participants, the three NET gene polymorphisms were analyzed by polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP), and personality was assessed by the Neuroticism Extraversion Openness-Five Factor Inventory (NEO-FFI) in 270 Japanese university students. Results A significant relation was found between the -3081A/T functional promoter polymorphism and NEO-FFI scores: those with the T allele exhibited a lower extraversion (E) score than those without the T allele (Mann-Whitney U-test: z=-3.861, p<0.001). However, there was no correlation between the other NET gene polymorphisms and E score, and no association with other dimensions and these three polymorphisms. Conclusion We conclude that the -3081A/T functional polymorphism in the NET gene may affect the extraversion of reward dependence-related traits, as measured by NEO-FFI. However, we used only the shortened version of NEO-PI-R in this study. Further investigations are necessary using the full version of self-rating personality questionnaires. PMID:26207133

  16. [In vitro tests for the reduction of high norepinephrine, barbiturate and bromide concentrations in blood by hemofiltration (author's transl)].

    PubMed

    Beer, H; Franken, W; Greuer, W

    1978-01-01

    In vitro tests have shown that a treatment of blood according to the principle of hemofiltration is suitable both for the normalisation of excessive norepinephrine plasma level, e.g. following severe burns, and also for the elimination of toxic quantities of barbiturate and bromide resulting from poisoning by sedatives.

  17. Role of calcium in phosphoinositide metabolism and inhibition of norepinephrine transport into synaptic vesicles by amphetamine analogs

    SciTech Connect

    Knepper, S.M.

    1985-01-01

    Norepinephrine-(NE) and calcium ionophore A23187-stimulated phosphoinositide (PIn) metabolism in rat brain slices was studied under varying calcium conditions. Tissue was labelled with /sup 3/H-myo-inositol and /sup 3/H-inositol phosphates (IPn), products of PIn metabolism were measured. In the absence of media calcium the response to NE was decreased while that to A23187 was little affected A23187 can release calcium from intracellular stores. Basal and stimulated accumulation of /sup 3/H-IPn was reversibly antagonized with EGTA by addition of calcium. Using calcium buffers, approximately 10/sup -7/ M free calcium was required to support hydrolysis. Free intracellular calcium is maintained at approximately this level. Thus calcium is required for PIn hydrolysis but appears to play a permissive role, basal levels being sufficient to support metabolism. Conformationally-defined (rigid) and -restricted (semi-rigid) analogs of the most stable conformations of amphetamine, antiperiplanar (exo) and gauche (endo), were utilized to probe the conformational requirements of vesicular NE transport. Analogs tested were 2-aminotetralin (2AT), 3-methyltetrahydroisoquinoline, anti- and syn-9-aminobenzobicyclo(2.2.1)heptene, and endo and exo conformers of 2-aminobenzobicyclo(2.2.1)heptene and 2-aminobenzobicyclo(2.2.2)octene.

  18. Diminished conditioned responding to the nicotine stimulus by antidepressant drugs with differing specificity for the serotonin and norepinephrine transporter.

    PubMed

    Dion, Amanda M; Sanderson, Scott C; Murrin, L Charles; Bevins, Rick A

    2012-01-01

    People diagnosed with depression also tend to have a co-morbid nicotine addiction. Thus, there is interest in whether medications used to treat depression alter the effects of nicotine. This study assessed whether the antidepressant drugs citalopram, imipramine, and reboxetine, with differing specificity for the serotonin and norepinephrine transporter, altered responding controlled by the conditional stimulus (CS) effects of nicotine. Rats received intermixed 20-min nicotine (0.4 mg base/kg, SC) and saline sessions. On nicotine sessions, rats had intermittent access to sucrose; no sucrose was available on saline sessions. After discrimination performance stabilized and a nicotine generalization curve (0.025-0.4 mg/kg) was established, the antidepressant drugs were assessed. In these tests, rats were pretreated with citalopram (1-17 mg/kg), imipramine (1-17 mg/kg), or reboxetine (1-30 mg/kg) before the training dose of nicotine and placement in a chamber for a 4-min extinction test. At the higher doses, all three antidepressant drugs blocked responding evoked by the nicotine CS and decreased nicotine-induced hyperactivity. When these higher doses of citalopram, imipramine, and reboxetine were tested alone (no nicotine), they decreased chamber activity and/or dipper entries. Nevertheless, all three drugs produced partial or complete blockade of the CS effects of nicotine at doses that produced no effect on dipper entries or chamber entries. This finding suggests that both neurotransmitters play a role in the CS effects of nicotine and that modifications in these systems by antidepressants may be clinically relevant.

  19. Effects of norepinephrine transporter gene variants on NET binding in ADHD and healthy controls investigated by PET.

    PubMed

    Sigurdardottir, Helen L; Kranz, Georg S; Rami-Mark, Christina; James, Gregory M; Vanicek, Thomas; Gryglewski, Gregor; Kautzky, Alexander; Hienert, Marius; Traub-Weidinger, Tatjana; Mitterhauser, Markus; Wadsak, Wolfgang; Hacker, Marcus; Rujescu, Dan; Kasper, Siegfried; Lanzenberger, Rupert

    2016-03-01

    Attention deficit hyperactivity disorder (ADHD) is a heterogeneous disorder with a strong genetic component. The norepinephrine transporter (NET) is a key target for ADHD treatment and the NET gene has been of high interest as a possible modulator of ADHD pathophysiology. Therefore, we conducted an imaging genetics study to examine possible effects of single nucleotide polymorphisms (SNPs) within the NET gene on NET nondisplaceable binding potential (BPND ) in patients with ADHD and healthy controls (HCs). Twenty adult patients with ADHD and 20 HCs underwent (S,S)-[18F]FMeNER-D2 positron emission tomography (PET) and were genotyped on a MassARRAY MALDI-TOF platform using the Sequenom iPLEX assay. Linear mixed models analyses revealed a genotype-dependent difference in NET BPND between groups in the thalamus and cerebellum. In the thalamus, a functional promoter SNP (-3081 A/T) and a 5'-untranslated region (5'UTR) SNP (-182 T/C), showed higher binding in ADHD patients compared to HCs depending on the major allele. Furthermore, we detected an effect of genotype in HCs, with major allele carriers having lower binding. In contrast, for two 3'UTR SNPs (*269 T/C, *417 A/T), ADHD subjects had lower binding in the cerebellum compared to HCs depending on the major allele. Additionally, symptoms of hyperactivity and impulsivity correlated with NET BPND in the cerebellum depending on genotype. Symptoms correlated positively with cerebellar NET BPND for the major allele, while symptoms correlated negatively to NET BPND in minor allele carriers. Our findings support the role of genetic influence of the NE system on NET binding to be pertubated in ADHD.

  20. Effects of norepinephrine transporter gene variants on NET binding in ADHD and healthy controls investigated by PET

    PubMed Central

    Sigurdardottir, Helen L.; Kranz, Georg S.; Rami‐Mark, Christina; James, Gregory M.; Vanicek, Thomas; Gryglewski, Gregor; Kautzky, Alexander; Hienert, Marius; Traub‐Weidinger, Tatjana; Mitterhauser, Markus; Wadsak, Wolfgang; Hacker, Marcus; Rujescu, Dan; Kasper, Siegfried

    2016-01-01

    Abstract Attention deficit hyperactivity disorder (ADHD) is a heterogeneous disorder with a strong genetic component. The norepinephrine transporter (NET) is a key target for ADHD treatment and the NET gene has been of high interest as a possible modulator of ADHD pathophysiology. Therefore, we conducted an imaging genetics study to examine possible effects of single nucleotide polymorphisms (SNPs) within the NET gene on NET nondisplaceable binding potential (BPND) in patients with ADHD and healthy controls (HCs). Twenty adult patients with ADHD and 20 HCs underwent (S,S)‐[18F]FMeNER‐D2 positron emission tomography (PET) and were genotyped on a MassARRAY MALDI‐TOF platform using the Sequenom iPLEX assay. Linear mixed models analyses revealed a genotype‐dependent difference in NET BPND between groups in the thalamus and cerebellum. In the thalamus, a functional promoter SNP (−3081 A/T) and a 5′‐untranslated region (5′UTR) SNP (−182 T/C), showed higher binding in ADHD patients compared to HCs depending on the major allele. Furthermore, we detected an effect of genotype in HCs, with major allele carriers having lower binding. In contrast, for two 3′UTR SNPs (*269 T/C, *417 A/T), ADHD subjects had lower binding in the cerebellum compared to HCs depending on the major allele. Additionally, symptoms of hyperactivity and impulsivity correlated with NET BPND in the cerebellum depending on genotype. Symptoms correlated positively with cerebellar NET BPND for the major allele, while symptoms correlated negatively to NET BPND in minor allele carriers. Our findings support the role of genetic influence of the NE system on NET binding to be pertubated in ADHD. Hum Brain Mapp 37:884–895, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26678348

  1. Imaging human brown adipose tissue under room temperature conditions with 11C-MRB, a selective norepinephrine transporter PET ligand

    PubMed Central

    Hwang, Janice J.; Yeckel, Catherine W.; Gallezot, Jean-Dominique; Aguiar, Renata Belfort-De; Ersahin, Devrim; Gao, Hong; Kapinos, Michael; Nabulsi, Nabeel; Huang, Yiyun; Cheng, David; Carson, Richard E.; Sherwin, Robert; Ding, Yu-Shin

    2015-01-01

    Introduction Brown adipose tissue (BAT) plays a critical role in adaptive thermogenesis and is tightly regulated by the sympathetic nervous system (SNS). However, current BAT imaging modalities require cold stimulation and are often unreliable to detect BAT in the basal state, at room temperature (RT). We have shown previously that BAT can be detected in rodents under both RT and cold conditions with 11C-MRB ((S,S)-11C-O-methylreboxetine), a highly selective ligand for the norepinephrine transporter (NET). Here, we evaluate this novel approach for BAT detection in adult humans under RT conditions. Methods Ten healthy, Caucasian subjects (5 M: age 24.6±2.6, BMI 21.6±2.7 kg/m2; 5 F: age 25.4±2.1, BMI 22.1±1.0 kg/m2) underwent 11C-MRB PET-CT imaging for cervical/supraclavicular BAT under RT and cold-stimulated conditions (RPCM Cool vest; enthalpy 15°C) compared to 18F-FDG PET-CT imaging. Uptake of 11C-MRB, was quantified as the distribution volume ratio (DVR) using the occipital cortex as a low NET density reference region. Total body fat and lean body mass were assessed via bioelectrical impedance analysis. Results As expected, 18F-FDG uptake in BAT was difficult to identify at RT but easily detected with cold stimulation (p=0.01). In contrast, BAT 11C-MRB uptake (also normalized for muscle) was equally evident under both RT and cold conditions (BAT DVR: RT 1.0±0.3 vs. cold 1.1±0.3, p=0.31; BAT/muscle DVR: RT 2.3±0.7 vs. cold 2.5±0.5, p=0.61). Importantly, BAT DVR and BAT/muscle DVR of 11C-MRB at RT correlated positively with core body temperature (r=0.76, p=0.05 and r=0.92, p=0.004, respectively), a relationship not observed with 18F-FDG (p=0.63). Furthermore, there were gender differences in 11C-MRB uptake in response to cold (p=0.03), which reflected significant differences in the change in 11C-MRB as a function of both body composition and body temperature. Conclusions Unlike 18F-FDG, the uptake of 11C-MRB in BAT offers a unique opportunity to

  2. Discovery of novel conformationally constrained tropane-based biaryl and arylacetylene ligands as potent and selective norepinephrine transporter inhibitors and potential antidepressants.

    PubMed

    Zhou, Jia; Kläss, Thomas; Johnson, Kenneth M; Giberson, Kelly M; Kozikowski, Alan P

    2005-05-16

    To further explore the structure-activity relationships of conformationally constrained tropanes, a number of new biaryl and arylacetylene analogs were designed and synthesized. Some of these compounds such as 3a-b, 3d, 3f-h, 5b, and 7g were found to be highly potent and selective or mixed norepinephrine transporter (NET) inhibitors with Ki values of 0.8-9.4 nM. Moreover, all of these compounds display weak to extremely weak muscarinic receptor binding affinity, indicating that as potential antidepressants, they may overcome certain side effects that are of concern with other antidepressants, which are thought to be mediated by their anticholinergic properties.

  3. Corticotropin releasing factor up-regulates the expression and function of norepinephrine transporter in SK-N-BE (2) M17 cells.

    PubMed

    Huang, Jingjing; Tufan, Turan; Deng, Maoxian; Wright, Gary; Zhu, Meng-Yang

    2015-10-01

    Corticotropin releasing factor (CRF) has been implicated to act as a neurotransmitter or modulator in central nervous activation during stress. In this study, we examined the regulatory effect of CRF on the expression and function of the norepinephrine transporter (NET) in vitro. SK-N-BE (2) M17 cells were exposed to different concentrations of CRF for different periods. Results showed that exposure of cells to CRF significantly increased mRNA and protein levels of NET in a concentration- and time-dependent manner. The CRF-induced increase in NET expression was mimicked by agonists of either CRF receptor 1 or 2. Furthermore, similar CRF treatments induced a parallel increase in the uptake of [(3) H] norepinephrine. Both increased expression and function of NET caused by CRF were abolished by simultaneous administration of CRF receptor antagonists, indicating a mediation by CRF receptors. However, there was no additive effect for the combination of both receptor antagonists. Chromatin immunoprecipitation assays confirm an increased acetylation of histone H3 on the NET promoter following treatment with CRF. Taken together, this study demonstrates that CRF up-regulates the expression and function of NET in vitro. This regulation is mediated through CRF receptors and an epigenetic mechanism related to histone acetylation may be involved. This CRF-induced regulation on NET expression and function may play a role in development of stress-related depression and anxiety. This study demonstrated that corticotropin release factor (CRF) up-regulated the expression and function of norepinephrine transporter (NET) in a concentration- and time-dependent manner, through activation of CRF receptors and possible histone acetylation in NET promoter. The results indicate that their interaction may play an important role in stress-related physiological and pathological status.

  4. (R)-N-Methyl-3-(3-125I-pyridin-2-yloxy)-3-phenylpropan-1-amine ([125I]PYINXT) : a novel probe for norepinephrine transporters (NET)

    PubMed Central

    Lakshmi, B.; Kung, M-P.; Lieberman, B.; Zhao, J.; Waterhouse, R.; H.F.Kung

    2008-01-01

    Alterations in the serotonin and norepinephrine neuronal functions have been observed in patients with major depression. Several antidepressants bind to both serotonin transporters (SERT) and norepinephrine transporters (NET). The ability to image NET in the human brain would be a useful step toward understanding how alterations in NET relate to disease. In this study, we report the synthesis and characterization of a new series of derivatives of iodo-nisoxetine (INXT), a known radioiodinated probe. The most promising, (R)-N-methyl-3-(3-iodopyridin-2-yloxy)-3-phenylpropylamine (PYINXT) 9, displayed a high and saturable binding to NET with a Kd value of 0.53 ± 0.03 nM. Biodistribution studies of [125I]PYINXT in rats showed moderate initial brain uptake (0.54 %dose/organ at 2 min) with a relatively fast washout from the brain (0.16 %dose/organ at 2 hr) as compared to [125I]INXT, 7. The hypothalamus (a NET rich region) to striatum (a region devoid of NET) ratio was found to be 2.14 at 4 hr post i.v. injection. The preliminary results suggest that this improved iodinated ligand, when labeled with 123I, may be useful for mapping NET binding sites with SPECT in the living human brain. PMID:18158942

  5. NASA's Subsonic Jet Transport Noise Reduction Research

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Preisser, John S.

    2000-01-01

    Although new jet transport airplanes in today s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3-8% growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions.

  6. In vitro reduction of antibacterial activity of tigecycline against multidrug-resistant Acinetobacter baumannii with host stress hormone norepinephrine.

    PubMed

    Inaba, Masato; Matsuda, Naoyuki; Banno, Hirotsugu; Jin, Wanchun; Wachino, Jun-Ichi; Yamada, Keiko; Kimura, Kouji; Arakawa, Yoshichika

    2016-12-01

    The host stress hormone norepinephrine (NE), also called noradrenaline, is reported to augment bacterial growth and pathogenicity, but few studies have focused on the effect of NE on the activity of antimicrobials. The aim of this study was to clarify whether NE affects antimicrobial activity against multidrug-resistant Acinetobacter baumannii (MDR-AB). Time-kill studies of tigecycline (TIG) and colistin (COL) against MDR-AB as well as assays for factors contributing to antibiotic resistance were performed using MDR-AB clinical strains both in the presence and absence of 10 µM NE. In addition, expression of three efflux pump genes (adeB, adeJ and adeG) in the presence and absence of NE was analysed by quantitative reverse transcription PCR. Viable bacterial cell counts in TIG-supplemented medium containing NE were significantly increased compared with those in medium without NE. In contrast, NE had little influence on viable bacterial cell counts in the presence of COL. NE-supplemented medium resulted in an ca. 2 log increase in growth and in bacterial cell numbers adhering on polyurethane, silicone and polyvinylchloride surfaces. Amounts of biofilm in the presence of NE were ca. 3-fold higher than without NE. Expression of the adeG gene was upregulated 4-6-fold in the presence of NE. In conclusion, NE augmented factors contributing to antibiotic resistance and markedly reduced the in vitro antibacterial activity of TIG against MDR-AB. These findings suggest that NE treatment may contribute to the failure of TIG therapy in patients with MDR-AB infections.

  7. Drag Reduction Tests on Supersonic Transport Design

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Langley researchers recently completed supersonic tests in the Unitary Plan Wind Tunnel on a nonlinear design for a supersonic transport. Although the drag reduction measured during the tests was not as great as that predicted using computational methods, significant drag reductions were achieved. Future tests will be conducted at a higher Reynolds number, which will be more representative of flight conditions. These tests will be used to identify a supersonic transport configuration that provides maximum drag reduction. Reducing drag decreases operating cost by improving fuel consumption and lowering aircraft weight. As a result, this research has the potential to help make a future high-speed civil transport (HSCT) an affordable means of travel for the flying public.

  8. Histamine H3-receptor-induced attenuation of norepinephrine exocytosis: a decreased protein kinase a activity mediates a reduction in intracellular calcium.

    PubMed

    Seyedi, Nahid; Mackins, Christina J; Machida, Takuji; Reid, Alicia C; Silver, Randi B; Levi, Roberto

    2005-01-01

    We had reported that activation of presynaptic histamine H(3)-receptors inhibits norepinephrine exocytosis from depolarized cardiac sympathetic nerve endings, an action associated with a marked decrease in intraneuronal Ca(2+) that we ascribed to a decreased Ca(2+) influx. An H(3)-receptor-mediated inhibition of cAMP-dependent phosphorylation of Ca(2+) channels could cause a sequential attenuation of Ca(2+) influx, intraneuronal Ca(2+) and norepinephrine exocytosis. We tested this hypothesis in sympathetic nerve endings (cardiac synaptosomes) expressing native H(3)-receptors and in human neuroblastoma SH-SY5Y cells transfected with H(3)-receptors. Norepinephrine exocytosis was elicited by K(+) or by stimulation of adenylyl cyclase with forskolin. H(3)-receptor activation markedly attenuated the K(+)- and forskolin-induced norepinephrine exocytosis; pretreatment with pertussis toxin prevented this effect. Similar to forskolin, 8-bromo-cAMP elicited norepinephrine exocytosis but, unlike forskolin, it was unaffected by H(3)-receptor activation, demonstrating that inhibition of adenylyl cyclase is a pivotal step in the H(3)-receptor transductional cascade. Indeed, we found that H(3)-receptor activation attenuated norepinephrine exocytosis concomitantly with a decrease in intracellular cAMP and PKA activity in SH-SY5Y-H(3) cells. Moreover, pharmacological PKA inhibition acted synergistically with H(3)-receptor activation to reduce K(+)-induced peak intracellular Ca(2+) in SH-SY5Y-H(3) cells and norepinephrine exocytosis in cardiac synaptosomes. Furthermore, H(3)-receptor activation synergized with N- and L-type Ca(2+) channel blockers to reduce norepinephrine exocytosis in cardiac synaptosomes. Our findings suggest that the H(3)-receptor-mediated inhibition of norepinephrine exocytosis from cardiac sympathetic nerves results sequentially from H(3)-receptor-G(i)/G(o) coupling, inhibition of adenylyl cyclase activity, and decreased cAMP formation, leading to diminished

  9. Further structure-activity relationship studies of piperidine-based monoamine transporter inhibitors: effects of piperidine ring stereochemistry on potency. Identification of norepinephrine transporter selective ligands and broad-spectrum transporter inhibitors.

    PubMed

    He, Rong; Kurome, Toru; Giberson, Kelly M; Johnson, Kenneth M; Kozikowski, Alan P

    2005-12-15

    4-(4-Chlorophenyl)piperidine analogues each bearing a thioacetamide side chain appendage similar to that found in the wake-promoting drug modafinil have been synthesized. The transporter inhibitory activity of both the cis and trans isomers of these 3,4-disubstituted piperidines in both their (+)- and (-)-enantiomeric forms was determined. These studies reveal that the (-)-cis analogues exhibit dopamine transporter/norepinephrine transporter (DAT/NET) selectivity as was previously reported for the (+)-trans analogues. On the other hand, the (-)-trans and the (+)-cis isomers show serotonin transporter (SERT) or SERT/NET selectivity. Among them, (+)-cis-5b shows a low nanomolar Ki for the NET with 39-fold and 321-fold lower potency at the DAT and SERT, respectively, thus making it a useful pharmacological research tool for exploring NET-associated behavioral signatures. On the other hand, several of the compounds described herein, such as (+)-trans-5c, show comparable activity at all three transporters. Because broad-spectrum transporter inhibitors have been hypothesized to exhibit a more rapid onset of action and/or a greater efficacy as antidepressant agents than those selective for SERT or SERT + NET, some of the present compounds will be valuable to study in animal models of depression.

  10. Norepinephrine potentiates proinflammatory responses of human vaginal epithelial cells.

    PubMed

    Brosnahan, Amanda J; Vulchanova, Lucy; Witta, Samantha R; Dai, Yuying; Jones, Bryan J; Brown, David R

    2013-06-15

    The vaginal epithelium provides a barrier to pathogens and recruits immune defenses through the secretion of cytokines and chemokines. Several studies have shown that mucosal sites are innervated by norepinephrine-containing nerve fibers. Here we report that norepinephrine potentiates the proinflammatory response of human vaginal epithelial cells to products produced by Staphylococcus aureus, a pathogen that causes menstrual toxic shock syndrome. The cells exhibit immunoreactivity for catecholamine synthesis enzymes and the norepinephrine transporter. Moreover, the cells secrete norepinephrine and dopamine at low concentrations. These results indicate that norepinephrine may serve as an autocrine modulator of proinflammatory responses in the vaginal epithelium.

  11. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    SciTech Connect

    Sung, Uhna; Jennings, Jennifer L.; Link, Andrew J.; Blakely, Randy D.; E-mail: andy.blakely@vanderbilt.edu

    2005-08-05

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH{sub 2}-terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking.

  12. Pharmacological and Behavioral Characterization of D-473, an Orally Active Triple Reuptake Inhibitor Targeting Dopamine, Serotonin and Norepinephrine Transporters

    PubMed Central

    Dutta, Aloke K.; Santra, Soumava; Sharma, Horrick; Voshavar, Chandrashekhar; Xu, Liping; Mabrouk, Omar; Antonio, Tamara; Reith, Maarten E. A.

    2014-01-01

    Major depressive disorder (MDD) is a debilitating disease affecting a wide cross section of people around the world. The current therapy for depression is less than adequate and there is a considerable unmet need for more efficacious treatment. Dopamine has been shown to play a significant role in depression including production of anhedonia which has been one of the untreated symptoms in MDD. It has been hypothesized that drugs acting at all three monoamine transporters including dopamine transporter should provide more efficacious antidepressants activity. This has led to the development of triple reuptake inhibitor D-473 which is a novel pyran based molecule and interacts with all three monoamine transporters. The monoamine uptake inhibition activity in the cloned human transporters expressed in HEK-293 cells (70.4, 9.18 and 39.7 for DAT, SERT and NET, respectively) indicates a serotonin preferring triple reuptake inhibition profile for this drug. The drug D-473 exhibited good brain penetration and produced efficacious activity in rat forced swim test under oral administration. The optimal efficacy dose did not produce any locomotor activation. Microdialysis experiment demonstrated that systemic administration of D-473 elevated extracellular level of the three monoamines DA, 5-HT, and NE efficaciously in the dorsal lateral striatum (DLS) and the medial prefrontal cortex (mPFC) area, indicating in vivo blockade of all three monoamine transporters by D-473. Thus, the current biological data from D-473 indicate potent antidepressant activity of the molecule. PMID:25427177

  13. Effects of Electroacupuncture on Pain Threshold of Laboring Rats and the Expression of Norepinephrine Transporter and α2 Adrenergic Receptor in the Central Nervous System

    PubMed Central

    Lin, Shike; Feng, Yuanyuan; Zhang, Qi; Wang, Meili; Wang, Yu

    2016-01-01

    To observe the effects of electroacupuncture on pain threshold of laboring rats and the expression of norepinephrine transporter and α2 adrenergic receptor in the central nervous system to determine the mechanism of the analgesic effect of labor. 120 pregnant rats were divided into 6 groups: a control group, 4 electroacupuncture groups, and a meperidine group. After interventions, the warm water tail-flick test was used to observe pain threshold. NE levels in serum, NET, and α2AR mRNA and protein expression levels in the central nervous system were measured. No difference in pain threshold was observed between the 6 groups before intervention. After intervention, increased pain thresholds were observed in all groups except the control group with a higher threshold seen in the electroacupuncture groups. Serum NE levels decreased in the electroacupuncture and MP groups. Increases in NET and α2AR expression in the cerebral cortex and decreases in enlarged segments of the spinal cord were seen. Acupuncture increases uptake of NE via cerebral NET and decreases its uptake by spinal NET. The levels of α2AR are also increased and decreased, respectively, in both tissues. This results in a decrease in systemic NE levels and may be the mechanism for its analgesic effects. PMID:27547232

  14. Three-dimensional quantitative structure-activity relationship (3D QSAR) and pharmacophore elucidation of tetrahydropyran derivatives as serotonin and norepinephrine transporter inhibitors

    NASA Astrophysics Data System (ADS)

    Kharkar, Prashant S.; Reith, Maarten E. A.; Dutta, Aloke K.

    2008-01-01

    Three-dimensional quantitative structure-activity relationship (3D QSAR) using comparative molecular field analysis (CoMFA) was performed on a series of substituted tetrahydropyran (THP) derivatives possessing serotonin (SERT) and norepinephrine (NET) transporter inhibitory activities. The study aimed to rationalize the potency of these inhibitors for SERT and NET as well as the observed selectivity differences for NET over SERT. The dataset consisted of 29 molecules, of which 23 molecules were used as the training set for deriving CoMFA models for SERT and NET uptake inhibitory activities. Superimpositions were performed using atom-based fitting and 3-point pharmacophore-based alignment. Two charge calculation methods, Gasteiger-Hückel and semiempirical PM3, were tried. Both alignment methods were analyzed in terms of their predictive abilities and produced comparable results with high internal and external predictivities. The models obtained using the 3-point pharmacophore-based alignment outperformed the models with atom-based fitting in terms of relevant statistics and interpretability of the generated contour maps. Steric fields dominated electrostatic fields in terms of contribution. The selectivity analysis (NET over SERT), though yielded models with good internal predictivity, showed very poor external test set predictions. The analysis was repeated with 24 molecules after systematically excluding so-called outliers (5 out of 29) from the model derivation process. The resulting CoMFA model using the atom-based fitting exhibited good statistics and was able to explain most of the selectivity (NET over SERT)-discriminating factors. The presence of -OH substituent on the THP ring was found to be one of the most important factors governing the NET selectivity over SERT. Thus, a 4-point NET-selective pharmacophore, after introducing this newly found H-bond donor/acceptor feature in addition to the initial 3-point pharmacophore, was proposed.

  15. Radiation-induced reductions in transporter mRNA levels parallel reductions in intestinal sugar transport

    PubMed Central

    Roche, Marjolaine; Neti, Prasad V. S. V.; Kemp, Francis W.; Agrawal, Amit; Attanasio, Alicia; Douard, Véronique; Muduli, Anjali; Azzam, Edouard I.; Norkus, Edward; Brimacombe, Michael; Howell, Roger W.

    2010-01-01

    More than a century ago, ionizing radiation was observed to damage the radiosensitive small intestine. Although a large number of studies has since shown that radiation reduces rates of intestinal digestion and absorption of nutrients, no study has determined whether radiation affects mRNA expression and dietary regulation of nutrient transporters. Since radiation generates free radicals and disrupts DNA replication, we tested the hypotheses that at doses known to reduce sugar absorption, radiation decreases the mRNA abundance of sugar transporters SGLT1 and GLUT5, prevents substrate regulation of sugar transporter expression, and causes reductions in sugar absorption that can be prevented by consumption of the antioxidant vitamin A, previously shown by us to radioprotect the testes. Mice were acutely irradiated with 137Cs gamma rays at doses of 0, 7, 8.5, or 10 Gy over the whole body. Mice were fed with vitamin A-supplemented diet (100× the control diet) for 5 days prior to irradiation after which the diet was continued until death. Intestinal sugar transport was studied at days 2, 5, 8, and 14 postirradiation. By day 8, d-glucose uptake decreased by ∼10–20% and d-fructose uptake by 25–85%. With increasing radiation dose, the quantity of heterogeneous nuclear RNA increased for both transporters, whereas mRNA levels decreased, paralleling reductions in transport. Enterocytes of mice fed the vitamin A supplement had ≥ 6-fold retinol concentrations than those of mice fed control diets, confirming considerable intestinal vitamin A uptake. However, vitamin A supplementation had no effect on clinical or transport parameters and afforded no protection against radiation-induced changes in intestinal sugar transport. Radiation markedly reduced GLUT5 activity and mRNA abundance, but high-d-fructose diets enhanced GLUT5 activity and mRNA expression in both unirradiated and irradiated mice. In conclusion, the effect of radiation may be posttranscriptional, and

  16. Reduction in renal blood flow following administration of norepinephrine and phenylephrine in septic rats treated with Kir6.1 ATP-sensitive and KCa1.1 calcium-activated K+ channel blockers.

    PubMed

    da Rosa Maggi Sant'Helena, Bruna; Guarido, Karla L; de Souza, Priscila; Crestani, Sandra; da Silva-Santos, J Eduardo

    2015-10-15

    We evaluated the effects of K+ channel blockers in the vascular reactivity of in vitro perfused kidneys, as well as on the influence of vasoactive agents in the renal blood flow of rats subjected to the cecal ligation and puncture (CLP) model of sepsis. Both norepinephrine and phenylephrine had the ability to increase the vascular perfusion pressure reduced in kidneys of rats subjected to CLP at 18 h and 36 h before the experiments. The non-selective K+ channel blocker tetraethylammonium, but not the Kir6.1 blocker glibenclamide, normalized the effects of phenylephrine in kidneys from the CLP 18 h group. Systemic administration of tetraethylammonium, glibenclamide, or the KCa1.1 blocker iberiotoxin, did not change the renal blood flow in control or septic rats. Norepinephrine or phenylephrine also had no influence on the renal blood flow of septic animals, but its injection in rats from the CLP 18 h group previously treated with either glibenclamide or iberiotoxin resulted in an exacerbated reduction in the renal blood flow. These results suggest an abnormal functionality of K+ channels in the renal vascular bed in sepsis, and that the blockage of different subtypes of K+ channels may be deleterious for blood perfusion in kidneys, mainly when associated with vasoactive drugs.

  17. Guam Transportation Petroleum-Use Reduction Plan

    SciTech Connect

    Johnson, C.

    2013-04-01

    The island of Guam has set a goal to reduce petroleum use 20% by 2020. Because transportation is responsible for one-third of on-island petroleum use, the Guam Energy Task Force (GETF), a collaboration between the U.S. Department of Energy and numerous Guam-based agencies and organizations, devised a specific plan by which to meet the 20% goal within the transportation sector. This report lays out GETF's plan.

  18. TRANSPORT AND REDUCTION POSSIBILITIES DURING TPBAR EXTRACTION

    SciTech Connect

    Korinko, P

    2008-05-19

    In light of the discovery of the activated zinc 65 in the TEF process piping, a discussion of potential sources and mechanisms for the production of this species has been initiated. A suspected source is the presence of Cu as a contaminant in many of the alloy components that comprise the TPBARs and the presence of Zn as a contaminant in the aluminide coating. These two sources are expected to produce metallic transmutation products that could be mobile and be extracted from the metallic components of the TPBARs. Another potential source is the presence of ZnO that is present as part of the crud on the external surfaces of the TPBARs. In addition, it is conceivable to have ZnO within the TPBARs from transmutation products and subsequent oxidation reactions with water. This memo does not attempt to address all of the possible sources, nor does it derive the most likely scenarios as to how Zn or ZnO may be present in the TPBARs it merely posits that it is present as a transmutation product and if present, elementally, it may be mobile under high vacuum conditions at high temperatures as indicated by the pressure temperature curve shown in Fig. 1. Further, this document shows that it is thermodynamically feasible to reduce ZnO to Zn by solid state reactions of the ZnO with other metallic components in the TPBARs. However, for these reactions to occur, the ZnO must be in contact with the more active metal so that the chemical reactions can occur. The proposed reactions are based on equilibrium thermodynamics. For simplicity, they do not take into account the quantities of the various materials, the compositions, the effect of alloying, or other technical issues, they are intended only to provide feasibility for the reduction reactions. A more complete thermodynamic model can be developed, but it will require actual contents and be much more complicated with little value added.

  19. Extracellular norepinephrine reduces neuronal uptake of norepinephrine by oxidative stress in PC12 cells.

    PubMed

    Mao, Weike; Qin, Fuzhong; Iwai, Chikao; Vulapalli, Raju; Keng, Peter C; Liang, Chang-seng

    2004-07-01

    Cardiac norepinephrine (NE) uptake activity is reduced in congestive heart failure. Our studies in intact animals suggest that this effect on the cardiac sympathetic nerve endings is caused by oxidative stress and/or NE toxic metabolites derived from NE. In this study, we investigated the direct effects of NE on neuronal NE uptake activity and NE transporter (NET), using undifferentiated PC12 cells. Cells were incubated with NE (1-500 microM) either alone or in combination of Cu(2+) sulfate (1 microM), which promotes free radical formation by Fenton reaction for 24 h. NE uptake activity was measured using [(3)H]NE. Cell viability was determined with the use of Trypan blue exclusion and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay, and cellular oxidative stress by dichlorodihydrofluorescein fluorescence and the GSH/GSSG ratio. Cell viability was reduced by NE >100 microM. At lower doses, NE produced oxidative stress and a dose-dependent reduction of NE uptake activity without affecting cell viability significantly. Cu(2+), which has no direct effect on NE uptake activity, potentiated oxidative stress and reduction of NE uptake activity produced by NE. This decrease of NE uptake activity was associated with reductions of NE uptake binding sites and NET protein expression by using the radioligand assay and Western blot analysis, but no changes in NET gene expression. In addition, the free-radical scavenger mannitol, and antioxidant enzymes superoxide dismutase and catalase, reduced oxidative stress and attenuated the reductions of NE uptake activity and NET protein produced by NE/Cu. Thus our results support a functional role of oxidative stress in mediating the neuronal NE uptake reducing effect of NE and that this effect of NE on NET is a posttranscriptional event.

  20. Occupancy of serotonin and norepinephrine transporter by milnacipran in patients with major depressive disorder: a positron emission tomography study with [(11)C]DASB and (S,S)-[(18)F]FMeNER-D(2).

    PubMed

    Nogami, Tsuyoshi; Takano, Harumasa; Arakawa, Ryosuke; Ichimiya, Tetsuya; Fujiwara, Hironobu; Kimura, Yasuyuki; Kodaka, Fumitoshi; Sasaki, Takeshi; Takahata, Keisuke; Suzuki, Masayuki; Nagashima, Tomohisa; Mori, Takaaki; Shimada, Hitoshi; Fukuda, Hajime; Sekine, Mizuho; Tateno, Amane; Takahashi, Hidehiko; Ito, Hiroshi; Okubo, Yoshiro; Suhara, Tetsuya

    2013-06-01

    Antidepressants used for treatment of depression exert their efficacy by blocking reuptake at serotonin transporters (5-HTT) and/or norepinephrine transporters (NET). Recent studies suggest that serotonin and norepinephrine reuptake inhibitors that block both 5-HTT and NET have better tolerability than tricyclic antidepressants and may have higher efficacy compared to selective serotonin reuptake inhibitors. Previous positron emission tomography (PET) studies have reported >80% 5-HTT occupancy with clinical doses of antidepressants, but there has been no report of NET occupancy in patients treated with antidepressants. In the present study, we investigated both 5-HTT and NET occupancies by PET using radioligands [(11)C]DASB and (S,S)-[(18)F]FMeNER-D(2), in six patients, each with major depressive disorder (MDD), using various doses of milnacipran. Our data show that mean 5-HTT occupancy in the thalamus was 33.0% at 50 mg, 38.6% at 100 mg, 60.0% at 150 mg and 61.5% at 200 mg. Mean NET occupancy in the thalamus was 25.3% at 25 mg, 40.0% at 100 mg, 47.3% at 125 mg and 49.9% at 200 mg. Estimated ED(50) was 122.5 mg with the dose for 5-HTT and 149.9 mg for NET. Both 5-HTT and NET occupancies were observed in a dose-dependent manner. Both 5-HTT and NET occupancies were about 40% by milnacipran at 100 mg, the dose most commonly administered to MDD patients.

  1. U.S. Virgin Islands Transportation Petroleum Reduction Plan

    SciTech Connect

    Johnson, C.

    2011-09-01

    This NREL technical report determines a way for USVI to meet its petroleum reduction goal in the transportation sector. It does so first by estimating current petroleum use and key statistics and characteristics of USVI transportation. It then breaks the goal down into subordinate goals and estimates the petroleum impacts of these goals with a wedge analysis. These goals focus on reducing vehicle miles, improving fuel economy, improving traffic flow, using electric vehicles, using biodiesel and renewable diesel, and using 10% ethanol in gasoline. The final section of the report suggests specific projects to achieve the goals, and ranks the projects according to cost, petroleum reduction, time frame, and popularity.

  2. Future developments in transport aircraft noise reduction technology

    SciTech Connect

    Pendley, R.E.

    1982-01-01

    During the past 13 years, important advances in the technology of aircraft noise control have resulted from industry and government research programs. Quieter commercial transport airplanes have entered the fleet and additional new designs now committed to production will begin service in a few years. This paper indicates the noise reductions that will be achieved by the quieter transports that will replace the older designs and remarks on the outlook for still quieter designs.

  3. Campus Sustainability: Climate Change, Transport and Paper Reduction

    ERIC Educational Resources Information Center

    Atherton, Alison; Giurco, Damien

    2011-01-01

    Purpose: This paper aims to detail the design of a campus climate change strategy, transport strategy and paper reduction strategy at the University of Technology, Sydney (Australia). Design/methodology/approach: The approach to strategy development used desktop research and staff/student consultation to inform the development of objectives,…

  4. Light and electron microscopic analysis of enkephalin-like immunoreactivity in the basolateral amygdala, including evidence for convergence of enkephalin-containing axon terminals and norepinephrine transporter-containing axon terminals onto common targets

    PubMed Central

    Zhang, Jingyi; McDonald, Alexander J.

    2016-01-01

    Modulatory interactions of opioids and norepinephrine (NE) in the anterior subdivision of the basolateral nucleus of the amygdala (BLa) are critical for the consolidation of memories of emotionally arousing experiences. Although there have been several studies of the noradrenergic system in the amygdalar basolateral nuclear complex (BLC), little is known about the chemical neuroanatomy of opioid systems in this region. To address this knowledge gap the present study first examined the distribution of met-enkephalin-like immunoreactivity (ENK-ir) in the BLC at the light microscopic level, and then utilized dual-labeling immunocytochemistry combined with electron microscopy to investigate the extent of convergence of NE and ENK terminals onto common structures in the BLa. Antibodies to ENK and the norepinephrine transporter (NET) were used in these studies. Light microscopic examination revealed that a subpopulation of small nonpyramidal neurons expressed ENK-ir in all nuclei of the BLC. In addition, the somata of some pyramidal cells exhibited light to moderate ENK-ir. ENK+ axon terminals were also observed. Ultrastructural analysis confined to the BLa revealed that most ENK+ axon terminals formed asymmetrical synapses that mainly contacted spines and shafts of thin dendrites. ENK+ terminals forming symmetrical synapses mainly contacted dendritic shafts. Approximately 20% of NET+ terminals contacted a structure that was also contacted by an ENK+ terminal and 6% of NET+ terminals contacted an ENK+ terminal. These findings suggest that ENK and NE terminals in the BLa may interact by targeting common dendrites and by direct interactions between the two types of terminals. PMID:26835559

  5. Reductive dissolution and metal transport in lake coeur d alenesediments

    SciTech Connect

    Sengor, Sevinc.S.; Spycher, Nicolas.F.; Ginn, Timothy.R.; Moberly, James; Peyton, B.; Sani, Rajesh.K.

    2007-04-27

    The benthic sediments in Lake Coeur d Alene, northern Idaho,have been contaminated by metals (primarily Zn, Pb, and Cu) from decadesof upstream mining activities. As part of ongoing research on thebiogeo-chemical cycling of metals in this area, a diffusivereactive-transport model has been developed to simulate metal transportin the lake sediments. The model includes 1-D inorganic diffusivetransport coupled to a biotic reaction network with multiple terminalelectron acceptors under redox disequilibrium conditions. Here, the modelis applied to evaluate the competing effects of heavy-metal mobilizationthrough biotic reductive dissolution of Fe(III) (hydr)oxides, andimmobilization as biogenic sulfide minerals. Results indicate that therelative rates of Fe and sulfate reduction could play an important rolein metal transport through the envi-ronment, and that the formation of(bi)sulfide complexes could significantly enhance metal solubility, aswell as desorption from Fe hydroxides.

  6. NASA Noise Reduction Program for Advanced Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Stephens, David G.; Cazier, F. W., Jr.

    1995-01-01

    Aircraft noise is an important byproduct of the world's air transportation system. Because of growing public interest and sensitivity to noise, noise reduction technology is becoming increasingly important to the unconstrained growth and utilization of the air transportation system. Unless noise technology keeps pace with public demands, noise restrictions at the international, national and/or local levels may unduly constrain the growth and capacity of the system to serve the public. In recognition of the importance of noise technology to the future of air transportation as well as the viability and competitiveness of the aircraft that operate within the system, NASA, the FAA and the industry have developed noise reduction technology programs having application to virtually all classes of subsonic and supersonic aircraft envisioned to operate far into the 21st century. The purpose of this paper is to describe the scope and focus of the Advanced Subsonic Technology Noise Reduction program with emphasis on the advanced technologies that form the foundation of the program.

  7. Discovery of a Potent, Dual Serotonin and Norepinephrine Reuptake Inhibitor

    PubMed Central

    2013-01-01

    The objective of the described research effort was to identify a novel serotonin and norepinephrine reuptake inhibitor (SNRI) with improved norepinephrine transporter activity and acceptable metabolic stability and exhibiting minimal drug–drug interaction. We describe herein the discovery of a series of 3-substituted pyrrolidines, exemplified by compound 1. Compound 1 is a selective SNRI in vitro and in vivo, has favorable ADME properties, and retains inhibitory activity in the formalin model of pain behavior. Compound 1 thus represents a potential new probe to explore utility of SNRIs in central nervous system disorders, including chronic pain conditions. PMID:24900709

  8. Polymorphism of rs3813034 in Serotonin Transporter Gene SLC6A4 Is Associated With the Selective Serotonin and Serotonin-Norepinephrine Reuptake Inhibitor Response in Depressive Disorder: Sequencing Analysis of SLC6A4.

    PubMed

    Nonen, Shinpei; Kato, Masaki; Takekita, Yoshiteru; Wakeno, Masataka; Sakai, Shiho; Serretti, Alessandro; Kinoshita, Toshihiko

    2016-02-01

    Selective serotonin and serotonin-norepinephrine reuptake inhibitors (SSRI/SNRI) are commonly used for treating major depression. Regretfully, significant heterogeneity exists regarding the benefits of SSRI/SNRI in individual cases. We previously reported that a polymorphism located in the serotonin transporter linked promoter region (5-HTT LPR) is associated with an interindividual difference in SSRI treatment efficacy. However, this explains only a small part of the variation of this complex phenotype. Other 5-HTT variants in the coding regions, 3' untranslated region (3' UTR), and introns adjacent to each exon could also contribute to treatment response. Therefore, we performed a sequencing analysis of the SLC6A4 gene (coding for 5-HTT) and investigated the association between variants detected in this study and the antidepressant response to SSRI/SNRI in 201 Japanese depressive patients. Seventeen novel mutations were identified by sequencing analysis. We found that the polymorphism G2563T (rs3813034) as a tag single-nucleotide polymorphism of IVS9 A-90G (rs140701), G2356T (rs1042173), and A3641C (rs7224199) is associated with interindividual variability of SSRI/SNRI efficacy at week 6, independent from clinical variables and effect of 5-HTT LPR (P < 0.001 by multiple regression analysis). This polymorphism could help determine individualized SSRI/SNRI treatments for depressive patients in combination with 5-HTT LPR.

  9. A Prospective Study of Serotonin and Norepinephrine Transporter Genes and the Response to Desvenlafaxine Over 8 Weeks in Major Depressive Disorder.

    PubMed

    Ng, C H; Bousman, C; Smith, D J; Dowling, N; Byron, K; King, J; Sarris, J

    2016-09-01

    No studies to date have evaluated SLC6A2 and SLC6A4 genetic polymorphisms influencing antidepressant response to desvenlafaxine. We conducted an 8-week, open-label, prospective pilot study in 35 patients with major depressive disorder to assess the effects of genetic variations in SLC6A2 and SLC6A4 on both efficacy and side effect profile of desvenlafaxine. Results revealed that homozygotes for the SLC6A4 HTTLPR S allele showed a 33% HDRS reduction compared to a 58% reduction for L allele carriers (p=0.037). No results survived adjustments for covariates or multiple comparisons. While these results need to be interpreted cautiously, they provide preliminary support for the SLC6A4 HTTLPR polymorphism as potential modifier of desvenlafaxine efficacy.

  10. Inhibition of the Serotonin Transporter Is Altered by Metabolites of Selective Serotonin and Norepinephrine Reuptake Inhibitors and Represents a Caution to Acute or Chronic Treatment Paradigms.

    PubMed

    Krout, Danielle; Rodriquez, Meghan; Brose, Stephen A; Golovko, Mikhail Y; Henry, L Keith; Thompson, Brent J

    2016-12-28

    Previous studies of transgenic mice carrying a single isoleucine to methionine substitution (I172M) in the serotonin transporter (SERT) demonstrated a loss of sensitivity to multiple antidepressants (ADs) at SERT. However, the ability of AD metabolites to antagonize SERT was not assessed. Here, we evaluated the selectivity and potency of these metabolites for inhibition of SERT in mouse brain-derived synaptosomes and blood platelets from wild-type (I172 mSERT) and the antidepressant-insensitive mouse M172 mSERT. The metabolites norfluoxetine and desmethylsertraline lost the selectivity demonstrated by the parent compounds for inhibition of wild-type mSERT over M172 mSERT, whereas desvenlafaxine and desmethylcitalopram retained selectivity. Furthermore, we show that the metabolite desmethylcitalopram accumulates in the brain and that the metabolites desmethylcitalopram, norfluoxetine, and desvenlafaxine inhibit serotonin uptake in wild-type mSERT at potencies similar to those of their parent compounds, suggesting that metabolites may play a role in effects observed following AD administration in wild-type and M172 mice.

  11. Cardiac norepinephrine kinetics in hypertrophic cardiomyopathy

    SciTech Connect

    Brush, J.E. Jr.; Eisenhofer, G.; Garty, M.; Stull, R.; Maron, B.J.; Cannon, R.O. III; Panza, J.A.; Epstein, S.E.; Goldstein, D.S.

    1989-04-01

    We examined the uptake and release of norepinephrine in the cardiac circulation and other regional vascular beds in 11 patients with hypertrophic cardiomyopathy (HCM) and in 10 control subjects during simultaneous infusion of tracer-labeled norepinephrine and isoproterenol. Cardiac neuronal uptake of norepinephrine was assessed by comparing regional removal of tracer-labeled norepinephrine with that of tracer-labeled isoproterenol (which is not a substrate for neuronal uptake) and by the relation between production of dihydroxyphenylglycol (DHPG), an exclusively intraneuronal metabolite of norepinephrine, and regional spillover of norepinephrine. Cardiac extraction of norepinephrine averaged 59 +/- 17% in the patients with HCM, significantly less than in the control subjects (79 +/- 13%, p less than 0.05), whereas cardiac extraction of isoproterenol was similar in the two groups (13 +/- 23% versus 13 +/- 14%), indicating that neuronal uptake of norepinephrine was decreased in the patients with HCM. The cardiac arteriovenous difference in norepinephrine was significantly larger in the patients with HCM than in the control subjects (73 +/- 77 versus 13 +/- 50 pg/ml, p less than 0.05), as was the product of the arteriovenous difference in norepinephrine and coronary blood flow (7.3 +/- 7.3 versus 0.8 +/- 3.0 ng/min, p less than 0.05).

  12. Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to norepinephrine.

    PubMed

    Oneal, Michael J; Schafer, Erin R; Madsen, Melissa L; Minion, F Chris

    2008-09-01

    Mycoplasma hyopneumoniae, a component of the porcine respiratory disease complex, colonizes the respiratory tract of swine by binding to the cilia of the bronchial epithelial cells. Mechanisms of pathogenesis are poorly understood for M. hyopneumoniae, but previous work has indicated that it responds to the environmental stressors heat shock, iron deprivation and oxidative compounds. For successful infection, M. hyopneumoniae must effectively resist host responses to the colonization of the respiratory tract. Among these are changes in hormonal levels in the mucosal secretions. Recent work in the stress responses of other bacteria has included the response to the catecholamine norepinephrine. The idea that M. hyopneumoniae can respond to a host hormone, however, is novel and has not previously been demonstrated. To test this, organisms in the early exponential phase of growth were exposed to 100 muM norepinephrine for 4 h, and RNA samples from these cultures were collected and compared to RNA samples from control cultures using two-colour PCR-based M. hyopneumoniae microarrays. The M. hyopneumoniae response included slowed growth and changes in mRNA transcript levels of 84 genes, 53 of which were upregulated in response to norepinephrine. A larger proportion of the genes upregulated than those downregulated were involved with transcription and translation. The downregulated genes were mostly involved with metabolism, which correlated with the reduction in growth of the mycoplasma. Approximately 51 % of the genes were hypothetical with no known function. Thus, in response to norepinephrine, M. hyopneumoniae appears to upregulate protein expression while downregulating general metabolism.

  13. A perhaps unexpected role of norepinephrine in actions of MDMA.

    PubMed

    Newton, T F

    2011-08-01

    In this issue, Hysek and colleagues present new data describing the impact of treatment with reboxetine on the effects produced by 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") in human volunteers. They demonstrate that several effects of MDMA are mediated by reboxetine's actions on norepinephrine (NE) transporters, an unexpected finding. Building on earlier work, their new data provide new insights into the pharmacodynamics of MDMA and other monoamine-releasing agents.

  14. Effect of low dose intra-arterial reserpine on vascular wall norepinephrine content.

    PubMed Central

    Porter, J M; Reiney, C G

    1975-01-01

    A number of reports in recent years have indicated that the administration of low dose intra-arterial reserpine has resulted in significant clinical improvement in patients with symptomatic vasospasm, with the benefits presumably resulting from regional vascular wall norepinephrine depletion with resultant vasodilatation. However, to date, there has been no evidence that such low dose reserpine actually alters vascular wall norepinephrine content. This study was performed to determine both regional and systemic effects of low dose intra-arterial reserpine on vascular-wall norepinephrine content, and the duration of any alterations. Twenty-four mongrel dogs had vascular segments excised and assayed for norepinephrine content, before and for up to 4 weeks following a single injection of reserpine, 0.01 mgm/kg, into one femoral artery. The results indicate a pronounced norepinephrine depletion in the injected femoral arterial system, with the reduction persisting for 2-4 weeks, at which time complete norepinephrine recovery occurred. The visceral vessels sampled also showed considerable norepinephrine depletion, indicating systemic spill-over of the drug from the injected peripheral arterial tree. The visceral vessels, however, showed maximal depletion at 24 hours, with recovery by 7 days. Images Fig. 1a. Fig. 1b. Fig. 1c. PMID:1147709

  15. Genetic moderation of child maltreatment effects on depression and internalizing symptoms by serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter (NET), and corticotropin releasing hormone receptor 1 (CRHR1) genes in African American children.

    PubMed

    Cicchetti, Dante; Rogosch, Fred A

    2014-11-01

    Genetic moderation of the effects of child maltreatment on depression and internalizing symptoms was investigated in a sample of low-income maltreated and nonmaltreated African American children (N = 1,096). Lifetime child maltreatment experiences were independently coded from Child Protective Services records and maternal report. Child depression and internalizing problems were assessed in the context of a summer research camp by self-report on the Children's Depression Inventory and adult counselor report on the Teacher Report Form. DNA was obtained from buccal cell or saliva samples and genotyped for polymorphisms of the following genes: serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter, and corticotropin releasing hormone receptor 1. Analyses of covariance with age and gender as covariates were conducted, with maltreatment status and respective polymorphism as main effects and their Gene × Environment (G × E) interactions. Maltreatment consistently was associated with higher Children's Depression Inventory and Teacher Report Form symptoms. The results for child self-report symptoms indicated a G × E interaction for BDNF and maltreatment. In addition, BDNF and triallelic 5-HTTLPR interacted with child maltreatment in a G × G × E interaction. Analyses for counselor report of child anxiety/depression symptoms on the Teacher Report Form indicated moderation of child maltreatment effects by triallelic 5-HTTLPR. These effects were elaborated based on variation in developmental timing of maltreatment experiences. Norepinephrine transporter was found to further moderate the G × E interaction of 5-HTTLPR and maltreatment status, revealing a G × G × E interaction. This G × G × E was extended by consideration of variation in maltreatment subtype experiences. Finally, G × G × E effects were observed for the co-action of BDNF and the corticotropin releasing hormone receptor 1

  16. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  17. MASS TRANSPORT EFFECTS ON THE KINETICS OF NITROBENZENE REDUCTION BY IRON METAL. (R827117)

    EPA Science Inventory

    To evaluate the importance of external mass transport on the overall rates of
    contaminant reduction by iron metal (Fe0), we have compared measured
    rates of surface reaction for nitrobenzene (ArNO2) to estimated rates
    of external mass transport...

  18. Staggering reductions in atmospheric nitrogen dioxide across Canada in response to legislated transportation emissions reductions

    NASA Astrophysics Data System (ADS)

    Reid, Holly; Aherne, Julian

    2016-12-01

    It is well established that atmospheric nitrogen dioxide (NO2), associated mainly with emissions from transportation and industry, can have adverse effects on both human and ecosystem health. Specifically, atmospheric NO2 plays a role in the formation of ozone, and in acidic and nutrient deposition. As such, international agreements and national legislation, such as the On-Road Vehicle and Engine Emission Regulations (SOR/2003-2), and the Federal Agenda on Cleaner Vehicles, Engines and Fuel have been put into place to regulate and limit oxidized nitrogen emissions. The objective of this study was to assess the response of ambient air concentrations of NO2 across Canada to emissions regulations. Current NO2 levels across Canada were examined at 137 monitoring sites, and long-term annual and quarterly trends were evaluated for 63 continuous monitoring stations that had at least 10 years of data during the period 1988-2013. A non-parametric Mann-Kendall test (Z values) and Sen's slope estimate were used to determine monotonic trends; further changepoint analysis was used to determine periods with significant changes in NO2 air concentration and emissions time-series data. Current annual average NO2 levels in Canada range between 1.16 and 14.96 ppb, with the national average being 8.43 ppb. Provincially, average NO2 ranges between 3.77 and 9.25 ppb, with Ontario and British Columbia having the highest ambient levels of NO2. Long-term tend analysis indicated that the annual average NO2 air concentration decreased significantly at 87% of the stations (55 of 63), and decreased non-significantly at 10% (5 of 63) during the period 1998-2013. Concentrations increased (non-significantly) at only 3% (2 of 63) of the sites. Quarterly long-term trends showed similar results; significant decreases occurred at 84% (January-March), 88% (April-June), 83% (July-September), and 81% (October-December) of the sites. Declines in transportation emissions had the most influence on NO2 air

  19. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    SciTech Connect

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  20. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    SciTech Connect

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  1. Serotonin and norepinephrine reuptake inhibition and eating behavior.

    PubMed

    Hainer, Vojtech; Kabrnova, Karolina; Aldhoon, Bashar; Kunesova, Marie; Wagenknecht, Martin

    2006-11-01

    Brain neurotransmitters, serotonin and norepinephrine, play an important role in the central nervous control of energy balance and are involved in symptomatology related to both obesity and depression. Therefore both serotonin and norepinephrine neural pathways have been paid a special attention as targets for the antiobesity drugs, antidepressants, and drugs used in the treatment of eating disorders. Selective serotonin reuptake inhibitors (SSRI) have been used in the treatment of depression and eating disorders but have failed to achieve sustained weight loss in the treatment of obesity. Sibutramine, a serotonin and norepinephrine reuptake inhibitor, which induces satiety and prevents decline in metabolic rate associated with a hypocaloric diet, is currently the sole centrally acting drug indicated for the long-term treatment of obesity. Depression, dietary disinhibition (evaluated by the Eating Inventory [EI]), and stress are associated with the accumulation of abdominal fat and the development of metabolic syndrome and related diseases. Subjects with abdominal obesity demonstrate neuroendocrine abnormalities which result in disturbances in hypothalamo-pituitary-adrenal (HPA) function. Treatment with SSRI might interrupt the vicious circle which leads to endocrine abnormalities and the accumulation of abdominal fat. Obesity treatment with sibutramine results, not only in significant weight loss, but also in reduction of abdominal fat and in the improvement of health risks associated with metabolic syndrome (lipid profile, blood glucose, insulin, HbA1c, and uric acid), as well as in the decline in disinhibition score of the EI. In a 1-year sibutramine trial, only a decrease in the disinhibition score remained a significant correlate of weight loss among the psychobehavioral and nutritional factors which were taken into account.

  2. Metrology delay time reduction in lithography via small-lot wafer transport

    NASA Astrophysics Data System (ADS)

    Shah, Vinay K.; Englhardt, Eric A.; Koshti, Sushant; Armer, Helen R.

    2006-03-01

    A small lot Automated Material Handling System (AMHS) is presented as a method to reduce the time between wafer exposure at a photolithography tool and collection of metrology / inspection data. A new AMHS system that is capable of the move rates required by small lot wafer transport is described, its implementation in a photolithography bay is explained, and the resulting reduction in metrology delay time is quantified. In addition, a phased implementation approach is described in which some, but not all, components of the new AMHS would be installed in existing fabs to enhance the move rate capability of traditional overhead transport (OHT) AMHS systems. This partial implementation would enable a partial lot size reduction and corresponding metrology delay time reduction of 60-70%. The full AMHS solution would be installed in new fabs and enable true small lot manufacturing in the litho area and would result in the maximum delay time reduction of 75-85%.

  3. NOREPINEPHRINE: NOT TOO MUCH, TOO LONG.

    PubMed

    Martin, Claude; Medam, Sophie; Antonini, François; Alingrin, Julie; Haddam, Malik; Hammad, Emmanuelle; Meyssignac, Bertrand; Vigne, Coralie; Zieleskiewicz, Laurent; Leone, Marc

    2015-10-01

    The study was designed to assess whether high dosages of norepinephrine are associated with increased death rate and to determine the dosage of norepinephrine associated with an intensive care unit (ICU) death rate greater than 90%. We conducted a retrospective, noninterventional, observational study in a single ICU (15 beds) of an academic hospital. From January 2009 to May 2013, data of all patients with a diagnosis of septic shock were extracted from our database. Data were collected at the time of the admission in ICU, at the onset of septic shock, and when the maximal posology of norepinephrine was reached. Mortality was assessed in ICU, in hospital, and at day 90. Among the 324 patients with septic shock, the death rate was 48%. The death rate reached 90% for the quantile of patients receiving more than 1 μg/kg per minute of norepinephrine. In our cohort, four independent factors associated with mortality were identified: age (odds ratio, 1.02 [95% confidence interval, 1.00-1.04]; P = 0.02), thrombocytopenia (odds ratio, 3.8 [95% confidence interval, 1.8-8.5]; P < 0.001), urine output less than 500 mL (odds ratio, 8.7 [95% confidence interval, 3.6-25]; P < 0.001), and dosage of norepinephrine greater than 1 μg/kg per minute (odds ratio, 9.7 [95% confidence interval, 4.5-23]; P < 0.001). However, because of the study's design, unmeasured confounding factors should be taken into account in our findings.

  4. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  5. Integrated risk reduction framework to improve railway hazardous materials transportation safety.

    PubMed

    Liu, Xiang; Saat, M Rapik; Barkan, Christopher P L

    2013-09-15

    Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation.

  6. Effects of optimal initial errors on predicting the seasonal reduction of the upstream Kuroshio transport

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Wang, Qiang; Mu, Mu; Liang, Peng

    2016-10-01

    With the Regional Ocean Modeling System (ROMS), we realistically simulated the transport variations of the upstream Kuroshio (referring to the Kuroshio from its origin to the south of Taiwan), particularly for the seasonal transport reduction. Then, we investigated the effects of the optimal initial errors estimated by the conditional nonlinear optimal perturbation (CNOP) approach on predicting the seasonal transport reduction. Two transport reduction events (denoted as Event 1 and Event 2) were chosen, and CNOP1 and CNOP2 were obtained for each event. By examining the spatial structures of the two types of CNOPs, we found that the dominant amplitudes are located around (128°E, 17°N) horizontally and in the upper 1000 m vertically. For each event, the two CNOPs caused large prediction errors. Specifically, at the prediction time, CNOP1 (CNOP2) develops into an anticyclonic (cyclonic) eddy-like structure centered around 124°E, leading to the increase (decrease) of the upstream Kuroshio transport. By investigating the time evolution of the CNOPs in Event 1, we found that the eddy-like structures originating from east of Luzon gradually grow and simultaneously propagate westward. The eddy-energetic analysis indicated that the errors obtain energy from the background state through barotropic and baroclinic instabilities and that the latter plays a more important role. These results suggest that improving the initial conditions in east of Luzon could lead to better prediction of the upstream Kuroshio transport variation.

  7. Chronoamperometry to determine differential reductions in uptake in brain synaptosomes from serotonin transporter knockout mice.

    PubMed

    Perez, Xiomara A; Andrews, Anne M

    2005-02-01

    The serotonin transporter (SERT) is a neuronal plasma membrane protein whose primary function is to take up the neurotransmitter serotonin from the extracellular space, thereby controlling the spatial and temporal aspects of serotonergic signaling in the brain. In humans, a commonly expressed genetic variant of the serotonin transporter gene results in 40% reductions in SERT expression that have been linked to increases in anxiety-related personality traits and susceptibility to stress-associated depression. Mice have been engineered to express similar reductions in SERT expression to investigate transporter-mediated control of serotonin neurotransmission and behavior. We employed carbon fiber microelectrode voltammetry (chronoamperometry) to examine serotonin clearance rates in brain liposomes (synaptosomes) prepared from mice with 50% (SERT(+/)(-)) or complete (SERT(-)(/)(-)) loss of SERT expression. Initial characterization of uptake showed that transport of serotonin was enhanced in the presence of oxygen and abolished when synaptosomes were stirred. Additionally, uptake was prevented by inclusion of the serotonin-selective reuptake inhibiting drug paroxetine in the incubation medium. Most notably, unlike prior studies using established radiochemical methods in synaptosomes, we determined 60% reductions in serotonin uptake rates in SERT(+/)(-) mice in two different brain regions-striatum and frontal cortex. Serotonin uptake was not detected in either brain region in SERT(-)(/)(-) mice. Thus, electroanalytical methods offer distinct advantages stemming from excellent temporal resolution for determining transporter kinetics. Moreover, these appear necessary for delineating moderate but biologically important changes in neurotransmitter transporter function.

  8. Anaerobic Fe(III) reduction by Shewanella putrefaciens: Analysis of the electron transport chain

    SciTech Connect

    Daad Saffarini

    2004-01-20

    The goals of the project were to isolate mutants that are deficient in metal reduction, identify components of the electron transport chain that are involved in this process, and purify some of these proteins for biochemical analyses. In the 3-year period since the start of the project, we have accomplished many of these goals. We have isolated several new S. oneidensis mutants that are deficient in metal reduction, and have initiated the development of vectors for the overexpression of cytochromes and other proteins in S. oneidensis. We have also overexpressed CymA, one of the c cytochromes that are involved in metal reduction.

  9. Azepines and Piperidines with Dual Norepinephrine Dopamine Uptake Inhibition and Antidepressant Activity

    PubMed Central

    2012-01-01

    Herein, we describe the discovery of inhibitors of norepinephrine (NET) and dopamine (DAT) transporters with reduced activity relative to serotonin transporters (SERT). Two compounds, 8b and 21a, along with nomifensine were tested in a rodent receptor occupancy study and demonstrated dose-dependent displacement of radiolabeled NET and DAT ligands. These compounds were efficacious in a rat forced swim assay (model of depression) and also had activity in rat spontaneous locomotion assay. PMID:24900562

  10. Enthalpy/entropy compensation phenomena in the reduction thermodynamics of electron transport metalloproteins.

    PubMed

    Battistuzzi, Gianantonio; Borsari, Marco; Di Rocco, Giulia; Ranieri, Antonio; Sola, Marco

    2004-01-01

    Compensation phenomena between the enthalpy and entropy changes of the reduction reaction for all classes of electron transport metalloproteins, namely cytochromes, iron-sulfur, and blue copper proteins, are brought to light. This is the first comprehensive report on such effects for biological redox reactions. Following Grunwald's approach for the interpretation of H/ S compensation for solution reactions, it is concluded that reduction-induced solvent reorganization effects involving the hydration shell of the molecule dominate the reduction thermodynamics in these species, although they have no net effect on the E degrees values, owing to exact compensation. Thus the reduction potentials of these species are primarily determined by the selective enthalpic stabilization of one of the two oxidation states due to ligand binding interactions and electrostatics at the metal site and by the entropic effects of reduction-induced changes in protein flexibility.

  11. Modeling hexavalent chromium reduction in groundwater in field-scale transport and laboratory batch experiments

    USGS Publications Warehouse

    Friedly, J.C.; Davis, J.A.; Kent, D.B.

    1995-01-01

    A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical conditions. The data exhibit three distinct timescales. Fast reduction occurs in well-stirred batch reactors in times much less than 1 hour and is followed by slow reduction over a timescale of the order of 2 days. In the field, reduction occurs on a timescale of the order of 8 days. The model is based on the following hypotheses. The chemical reduction reaction occurs very fast, and the longer timescales are caused by diffusion resistance. Diffusion into the secondary porosity of grains causes the apparent slow reduction rate in batch experiments. In the model of the field experiments, the reducing agent, heavy Fe(II)-bearing minerals, is heterogeneously distributed in thin strata located between larger nonreducing sand lenses that comprise the bulk of the aquifer solids. It is found that reducing strata of the order of centimeters thick are sufficient to contribute enough diffusion resistance to cause the observed longest timescale in the field. A one-dimensional advection/dispersion model is formulated that describes the major experimental trends. Diffusion rates are estimated in terms of an elementary physical picture of flow through a stratified medium containing identically sized spherical grains. Both reduction and sorption reactions are included. Batch simulation results are sensitive to the fraction of reductant located at or near the surface of grains, which controls the amount of rapid reduction, and the secondary porosity, which controls the rate of slow reduction observed in batch experiments. Results of Cr(VI) transport simulations are sensitive to the thickness and relative size of the reducing stratum. Transport simulation results suggest that nearly all of the reductant must be

  12. Norepinephrine stimulates the epithelial Na+ channel in cortical collecting duct cells via α2-adrenoceptors.

    PubMed

    Mansley, Morag K; Neuhuber, Winfried; Korbmacher, Christoph; Bertog, Marko

    2015-03-01

    There is good evidence for a causal link between excessive sympathetic drive to the kidney and hypertension. We hypothesized that sympathetic regulation of tubular Na(+) absorption may occur in the aldosterone-sensitive distal nephron, where the fine tuning of renal Na(+) excretion takes place. Here, the appropriate regulation of transepithelial Na(+) transport, mediated by the amiloride-sensitive epithelial Na(+) channel (ENaC), is critical for blood pressure control. To explore a possible effect of the sympathetic transmitter norepinephrine on ENaC-mediated Na(+) transport, we performed short-circuit current (Isc) measurements on confluent mCCDcl1 murine cortical collecting duct cells. Norepinephrine caused a complex Isc response with a sustained increase of amiloride-sensitive Isc by ∼44%. This effect was concentration dependent and mediated via basolateral α2-adrenoceptors. In cells pretreated with aldosterone, the stimulatory effect of norepinephrine was reduced. Finally, we demonstrated that noradrenergic nerve fibers are present in close proximity to ENaC-expressing cells in murine kidney slices. We conclude that the sustained stimulatory effect of locally elevated norepinephrine on ENaC-mediated Na(+) absorption may contribute to the hypertensive effect of increased renal sympathetic activity.

  13. Fatigue-related impairments in oculomotor control are prevented by norepinephrine-dopamine reuptake inhibition

    PubMed Central

    Connell, Charlotte J. W.; Thompson, Benjamin; Turuwhenua, Jason; Srzich, Alexa; Gant, Nicholas

    2017-01-01

    Fatigue-induced reductions in saccade velocity have been reported following acute, prolonged exercise. Interestingly, the detrimental impact of fatigue on oculomotor control can be prevented by a moderate dose of caffeine. This effect may be related to central catecholamine upregulation via caffeine’s action as an adenosine antagonist. To test this hypothesis, we compared the protective effect of caffeine on oculomotor control post-exercise to that of a norepinephrine-dopamine reuptake inhibitor. Within a placebo-controlled crossover design, 12 cyclists consumed placebo, caffeine or a norepinephrine-dopamine reuptake inhibitor (bupropion) during 180 minutes of stationary cycling. Saccades, smooth pursuit and optokinetic nystagmus were measured using infrared oculography. Exercise fatigue was associated with an 8 ± 11% reduction in the peak velocity of prosaccades, and a 10 ± 11% decrement in antisaccade peak velocity. Optokinetic nystagmus quick phases decreased in velocity by 15 ± 17%. These differences were statistically significant (p < 0.05). Norepinephrine-dopamine reuptake inhibition and caffeine prevented fatigue-related decrements in eye movement velocity. Pursuit eye movements and visual attention were unaffected. These findings show that norepinephrine-dopamine reuptake inhibition protects oculomotor function during exercise fatigue. Caffeine’s fatigue-reversing effects on eye movements appear to be mediated, at least in part, via modulation of central catecholamines. PMID:28198465

  14. Evaluation of simultaneous reduction and transport of selenium in saturated soil columns

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Frankenberger, William T.; Jury, William A.

    1999-03-01

    Speciation plays an important role in determining the overall leachability of selenium in soil. In this study we present a mathematical model and results of miscible displacement experiments that were conducted to evaluate simultaneous reduction and transport of selenate in saturated soil columns. The experiments were carried out in organic amended (compost manure or gluten) or unamended soil, with O2-sparged or nonsparged influent solution. In all columns, reduction of selenate was fast enough to produce selenite flux in the effluent and elemental Se in the soil profile during a mean residence time of ˜30 hours. Reduction was accelerated in the presence of organic amendments and under low O2 concentrations, resulting in an increased retardation of selenium transport as a whole. The results of our experiments show that although selenate does not sorb to solid surfaces during transport, it reduces rapidly to forms that are strongly retarded. On the basis of simulation with the consecutive reaction and transport model using parameters derived from this study, selenium is expected to be retained near the soil surface, even under extreme leaching conditions.

  15. Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants*

    PubMed Central

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-01

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled 55Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds. PMID:24347170

  16. Turbulence and transport reduction with innovative plasma shapes in TCV -- correlation ECE measurement and gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Pochelon, Antoine

    2010-11-01

    Due to turbulence, core energy transport in tokamaks generally exceeds collisional transport by at least an order of magnitude. It is therefore crucial to understand the instabilities driving the turbulent state and to find ways to control them. Shaping the plasma is one of these fundamental tools. In low collisionality plasmas, such as in a reactor, changing triangularity from positive (delta=+0.4) to negative triangularity (delta=-0.4) is shown on TCV to reduce the energy transport by a factor two. This opens the possibility of having H-mode-like confinement time within an L-mode edge, or reduced ELMs. An optimum triangularity can be sought between steep edge barriers (delta>0), plagued by large ELMs, and improved core confinement (delta<0). Recent correlation ECE measurements show that the reduction of transport at negative delta is reflected in a reduction by a factor of two of both the amplitude of temperature fluctuations in the broadband frequency range 30-150 kHz, and the fluctuation correlation length, measured at mid-radius. In addition, the fluctuations amplitude is reduced with increasing collisionality, consistent with a reduction of the Trapped Electron Modes (TEM) drive. The effect of negative triangularity on turbulence and transport is compared to gyrokinetic code results: First, global linear simulations predict shorter radial TEM wavelength, consistent with the shorter radial turbulence correlation length observed. Second, at least close to the strongly shaped plasma boundary, local nonlinear simulations predict lower TEM induced transport with decreased triangularity. Calculations are now being extended to global nonlinear simulations.

  17. The selective norepinephrine reuptake inhibitor antidepressant reboxetine: pharmacological and clinical profile.

    PubMed

    Hajós, Mihály; Fleishaker, Joseph C; Filipiak-Reisner, Jacqueline K; Brown, Mark T; Wong, Erik H F

    2004-01-01

    Reboxetine is the first commercially available norepinephrine reuptake inhibitor developed specifically as a first line therapy for major depressive disorder. In vitro and in vivo pharmacological studies indicated that reboxetine methanesulphonate has high affinity and selectivity for the human norepinephrine transporter over the serotonin and dopamine transporters. Pharmacological specificity is further demonstrated by the absence of affinity for 45 transmitter receptors and CNS targets. Pharmacokinetic studies demonstrated that reboxetine is suitable for twice daily administration (8-10 mg/day) and that it exhibits minimal drug-drug interactions. The starting dose of reboxetine should be reduced in the elderly, in patients with renal or hepatic impairment, or in patients receiving potent CYP3A inhibitors. A total of 20 phase II/III clinical studies comprising placebo-controlled, active comparator-controlled and open-label uncontrolled studies in both short-term and long-term treatment of major depression have been conducted. In the treatment of major depression, reboxetine was superior to placebo in 5 of 12 short- or long-term placebo-controlled studies and was comparable in efficacy to active comparators in 3 out of 3 active-controlled studies. Unlike conventional tricyclic antidepressants (TCAs), reboxetine had only minimal sedative and cardiovascular liabilities, probably due to increased pharmacological specificity of reboxetine as compared with TCAs. Unlike serotonin reuptake inhibitors, this selective and specific norepinephrine reuptake inhibitor demonstrated a distinct side-effect profile with diminishing sexual dysfunction and GI side effects. The availability of this agent has afforded patients suffering from major depressive disorder a new class of agents to combat the debilitating consequence of this psychiatric disease. The demonstrated pharmacological specificity of this compound has provided the psychopharmacology community with a tool to elucidate

  18. Transport and reduction of nitrate in clayey till underneath forest and arable land

    NASA Astrophysics Data System (ADS)

    Jørgensen, Peter R.; Urup, Johanne; Helstrup, Tina; Jensen, Marina B.; Eiland, Finn; Vinther, Finn P.

    2004-09-01

    Transport and reduction of nitrate in a typically macroporous clayey till were examined at variable flow rate and nitrate flux. The experiments were carried out using saturated, large diameter (0.5 m), undisturbed soil columns (LUC), from a forest and nearby agricultural sites. Transport of nitrate was controlled by flow along the macropores (fractures and biopores) in the columns. Nitrate reduction (denitrification) determined under active flow mainly followed first order reactions with half-lives ( t1/2) increasing with depth (1.5-3.5 m) from 7 to 35 days at the forest site and 1-7 h at the agricultural site. Nitrate reduction was likely due to microbial degradation of accumulated organic matter coupled with successive consumption of O 2 and NO 3- in the macropore water followed by reductive dissolution of Fe and Mn from minerals along the macropores. Concentrations of total organic carbon measured in soil samples were near identical at the two study sites and consequently not useful as indicator for the observed differences in nitrate reduction. Instead the high reduction rates at the agricultural site were positively correlated with elevated concentration of water-soluble organic carbon and nitrate-removing bacteria relative to the forest site. After high concentrations of water-soluble organic carbon in the columns from the agricultural site were leached they lost their elevated reduction rates, which, however, was successfully re-established by infiltration of new reactive organics represented by pesticides. Simulations using a calibrated discrete fracture matrix diffusion (DFMD) model could reasonably reproduce the denitrification and resulting flux of nitrate observed during variable flow rate from the columns.

  19. Reduction of fuel consumption and exhaust pollutant using intelligent transport systems.

    PubMed

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M A; Masum, B M

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NO x ). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  20. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    PubMed Central

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M. A.; Masum, B. M.

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment. PMID:25032239

  1. Solutions and reductions for radiative energy transport in laser-heated plasma

    SciTech Connect

    Broadbridge, P.; Ivanova, N. M.

    2015-01-15

    A full symmetry classification is given for models of energy transport in radiant plasma when the mass density is spatially variable and the diffusivity is nonlinear. A systematic search for conservation laws also leads to some potential symmetries and to an integrable nonlinear model. Classical point symmetries, potential symmetries, and nonclassical symmetries are used to effect variable reductions and exact solutions. The simplest time-dependent solution is shown to be stable and relevant to a closed system.

  2. A Dual Model-Reduction Approach to Groundwater Flow and Solute Transport Simulations.

    NASA Astrophysics Data System (ADS)

    Stanko, Z.; Boyce, S. E.; Yeh, W. W. G.

    2014-12-01

    Mathematical-model reduction using singular value decomposition (SVD) has been shown to be an effective method for reducing the computer runtime of linear and nonlinear groundwater-flow models without sacrificing accuracy. The discrete empirical interpolation method (DEIM) is an alternate method of model reduction better suited for nonlinear systems. In this research, both methods are applied simultaneously to reduce the dimensionality of a 3-D unconfined groundwater-flow model: SVD to reduce the column space and DEIM to reduce the row space. The results of the dimensional reduction can approach several orders of magnitude, resulting in significantly faster simulation runtimes. The implementation and benefit of SVD/DEIM model reduction is demonstrated through its application to a synthetic, groundwater-flow and solute-transport model with groundwater extraction wells that influence of seawater intrusion. The developed methodology identifies the dominant locations (i.e. the discrete points) of the model that have the most influence on the water levels and saltwater concentrations. The result is a reduced model constructed from fewer equations (row dimension) and is projected into a reduced subspace (column dimension). The methodology first independently constructs the reduced flow and transport models such that their errors are minimized for a flow-only model and transport-only model, respectively. Once the two reduced models have been established, a density-dependent flow simulation is preformed by iterating between the flow and transport models for each time step. Further analysis of the SVD/DEIM method illustrates the tradeoff between magnitude of the reduced dimension and corresponding errors in model output, with respect to the unreduced and independently reduced models. The application of this method shows that runtime can be significantly decreased for models of this type while still maintaining control of desired model accuracy.

  3. VEGF-induced antidepressant effects involve modulation of norepinephrine and serotonin systems.

    PubMed

    Udo, Hiroshi; Hamasu, Kousuke; Furuse, Mitsuhiro; Sugiyama, Hiroyuki

    2014-12-15

    Throughout life, we are exposed to a variety of stresses, which may be inevitable and noxious sometimes. During evolution, animals must have acquired some physiological means to counteract stress. Vascular endothelial growth factor (VEGF) is an angiogenic and neurogenic factor, which has been shown to elicit antidepressant-like effects in response to different external stimuli, potentially functioning as an anti-stress molecule. However, it remains largely unknown how VEGF modulates mood-related behaviors. To investigate molecular correlates, we analyzed monoaminergic systems of VEGF transgenic mice that display antidepressant-like behavior. Immunostaining showed that overall morphologies of monoaminergic nuclei and their processes were normal. However, we found imbalances in brain monoamine contents, in which the levels of norepinephrine and serotonin, but not dopamine, were decreased exclusively in the regions where VEGF was expressed. The turnover of norepinephrine showed a marked increase and serotonin turnover showed a modest reduction, whereas dopamine turnover was not affected. The protein levels of tyrosine hydroxylase and tryptophan hydroxylase, the rate-limiting enzymes of catecholamine and serotonin synthesis, remained constant. The mRNA levels of monoamine receptors were generally similar but adrenergic receptors of ADRα1A and ADRβ1 were down-regulated. Behavioral tests showed that serotonin- or norepinephrine-selective antidepressant drugs failed to additively enhance antidepressant-like behaviors, whereas monoamine depleting drugs attenuated VEGF-mediated antidepressant-like effect. These data suggest that VEGF-induced antidepressant-like effects involve modulation of norepinephrine and serotonin systems.

  4. Risk reduction in road and rail LPG transportation by passive fire protection.

    PubMed

    Paltrinieri, Nicola; Landucci, Gabriele; Molag, Menso; Bonvicini, Sarah; Spadoni, Gigliola; Cozzani, Valerio

    2009-08-15

    The potential reduction of risk in LPG (Liquefied Petroleum Gas) road transport due to the adoption of passive fire protections was investigated. Experimental data available for small scale vessels fully engulfed by a fire were extended to real scale road and rail tankers through a finite elements model. The results of mathematical simulations of real scale fire engulfment scenarios that may follow accidents involving LPG tankers proved the effectiveness of the thermal protections in preventing the "fired" BLEVE (Boiling Liquid Expanding Vapour Explosion) scenario. The presence of a thermal coating greatly increases the "time to failure", providing a time lapse that in the European experience may be considered sufficient to allow the start of effective mitigation actions by fire brigades. The results obtained were used to calculate the expected reduction of individual and societal risk due to LPG transportation in real case scenarios. The analysis confirmed that the introduction of passive fire protections turns out in a significant reduction of risk, up to an order of magnitude in the case of individual risk and of about 50% if the expectation value is considered. Thus, the adoption of passive fire protections, not compulsory in European regulations, may be an effective technical measure for risk reduction, and may contribute to achieve the control of "major accidents hazards" cited by the European legislation.

  5. Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β

    PubMed Central

    Xu, Jordan C.; Fomenko, Vira; Miyamoto, Takashi; Suberbielle, Elsa; Knox, Joseph A.; Ho, Kaitlyn; Kim, Daniel H.; Yu, Gui-Qiu

    2015-01-01

    Axonal transport deficits in Alzheimer’s disease (AD) are attributed to amyloid β (Aβ) peptides and pathological forms of the microtubule-associated protein tau. Genetic ablation of tau prevents neuronal overexcitation and axonal transport deficits caused by recombinant Aβ oligomers. Relevance of these findings to naturally secreted Aβ and mechanisms underlying tau’s enabling effect are unknown. Here we demonstrate deficits in anterograde axonal transport of mitochondria in primary neurons from transgenic mice expressing familial AD-linked forms of human amyloid precursor protein. We show that these deficits depend on Aβ1–42 production and are prevented by tau reduction. The copathogenic effect of tau did not depend on its microtubule binding, interactions with Fyn, or potential role in neuronal development. Inhibition of neuronal activity, N-methyl-d-aspartate receptor function, or glycogen synthase kinase 3β (GSK3β) activity or expression also abolished Aβ-induced transport deficits. Tau ablation prevented Aβ-induced GSK3β activation. Thus, tau allows Aβ oligomers to inhibit axonal transport through activation of GSK3β, possibly by facilitating aberrant neuronal activity. PMID:25963821

  6. Preadipocyte proliferation is affected by norepinephrine

    SciTech Connect

    Jones, D.D.; Hausman, G.J.; Martin, R.J.

    1986-03-01

    Beta-adrenergic stimulators are known to alter body composition profiles in experimental animals. The most prominent in vivo adaptations to beta-agonists are a decreased adipose tissue and concurrent increased muscle mass. Our lab has previously reported that norepinephrine - a beta/sub 1/-agonist - compromised preadipocyte growth in a primary cell culture system. Accordingly, this study continued to examine the effect of norepinephrine (NE) on in vitro preadipocyte proliferation. Stromalvascular cells, obtained from the inguinal pad of 4-5 week old Sprague-Dawley rats, were grown in culture for two weeks. Cells were treated with NE (1 ..mu..M) during the proliferative growth phase and labelled with /sup 3/H-thymidine on day 2 of culture. Following exponential growth, all cells were placed on a differentiation promoting media. Adipocytes (including differentiated preadipocytes) and stromal cells were separated using a density gradient, and /sup 3/H-thymidine was determined for both cell types. NE exposure for 2 or 4 days significantly reduced preadipocyte /sup 3/H-thymidine uptake, indicating an inhibition of mitotic growth. Future experiments will examine possible mechanism(s) involved in the catecholamine induced suppression of preadipocyte proliferation.

  7. Phenylephrine versus norepinephrine for initial hemodynamic support of patients with septic shock: a randomized, controlled trial

    PubMed Central

    Morelli, Andrea; Ertmer, Christian; Rehberg, Sebastian; Lange, Matthias; Orecchioni, Alessandra; Laderchi, Amalia; Bachetoni, Alessandra; D'Alessandro, Mariadomenica; Van Aken, Hugo; Pietropaoli, Paolo; Westphal, Martin

    2008-01-01

    Introduction Previous findings suggest that a delayed administration of phenylephrine replacing norepinephrine in septic shock patients causes a more pronounced hepatosplanchnic vasoconstriction as compared with norepinephrine. Nevertheless, a direct comparison between the two study drugs has not yet been performed. The aim of the present study was, therefore, to investigate the effects of a first-line therapy with either phenylephrine or norepinephrine on systemic and regional hemodynamics in patients with septic shock. Methods We performed a prospective, randomized, controlled trial in a multidisciplinary intensive care unit in a university hospital. We enrolled septic shock patients (n = 32) with a mean arterial pressure below 65 mmHg despite adequate volume resuscitation. Patients were randomly allocated to treatment with either norepinephrine or phenylephrine infusion (n = 16 each) titrated to achieve a mean arterial pressure between 65 and 75 mmHg. Data from right heart catheterization, a thermodye dilution catheter, gastric tonometry, acid-base homeostasis, as well as creatinine clearance and cardiac troponin were obtained at baseline and after 12 hours. Differences within and between groups were analyzed using a two-way analysis of variance for repeated measurements with group and time as factors. Time-independent variables were compared with one-way analysis of variance. Results No differences were found in any of the investigated parameters. Conclusions The present study suggests there are no differences in terms of cardiopulmonary performance, global oxygen transport, and regional hemodynamics when phenylephrine was administered instead of norepinephrine in the initial hemodynamic support of septic shock. Trial registration ClinicalTrial.gov NCT00639015 PMID:19017409

  8. Purinergic modulation of norepinephrine release and uptake in rat brain cortex: contribution of glial cells.

    PubMed

    Pinho, Diana; Quintas, Clara; Sardo, Filipa; Cardoso, Teresa Magalhães; Queiroz, Glória

    2013-12-01

    The pathogenesis of psychiatric and neurodegenerative diseases is often associated with a deregulation of noradrenergic transmission. Considering the potential involvement of purinergic signaling in the modulation of noradrenergic transmission in the brain cortex, this study aimed to identify the P2Y receptor subtypes involved in the modulation of neuronal release and neuronal/glial uptake of norepinephrine. Electrical stimulation (100 pulses at 5 Hz) of rat cortical slices induced norepinephrine release that was inhibited by ATP and ADP (0.01-1 mM), adenosine 5'-O-(2-thiodiphosphate) (ADPβS, 0.03-0.3 mM), and UDP (0.1-1 mM). The effect of ADPβS was mediated by P2Y1 receptors and possibly by A1/P2Y1 heterodimers since it was attenuated by the A1 receptor antagonist DPCPX and by the P2Y1 receptor antagonist MRS 2500 but was resistant to the effect of adenosine deaminase (ADA). UDP inhibited norepinephrine release through activation of P2Y6 receptors, an effect that was abolished by the P2Y6 receptor antagonist MRS 2578 and by DPCPX, indicating that it depends on the formation and/or release of adenosine and activation of A1 receptors. Supporting this hypothesis, the inhibitory effect of UDP was also prevented by inhibition of ectonucleotidases, by ADA and was attenuated by the inhibitor of nucleoside transporter 6-[(4-nitrobenzyl)thio]-9-β-d-ribofuranosylpurine (NBTI). Additionally, the inhibitory effect of UDP was attenuated when norepinephrine uptake 1 or 2 was inhibited. In astroglial cultures, ADPβS and UDP increased norepinephrine uptake mainly by activation of P2Y1 and P2Y6 receptors, respectively. The results indicate that neuronal and glial P2Y1 and P2Y6 receptors may represent new targets of intervention to regulate noradrenergic transmission in CNS diseases.

  9. Intrarenal and urinary oxygenation during norepinephrine resuscitation in ovine septic acute kidney injury.

    PubMed

    Lankadeva, Yugeesh R; Kosaka, Junko; Evans, Roger G; Bailey, Simon R; Bellomo, Rinaldo; May, Clive N

    2016-07-01

    Norepinephrine is the principal vasopressor used to restore blood pressure in sepsis, but its effects on intrarenal oxygenation are unknown. To clarify this, we examined renal cortical, medullary, and urinary oxygenation in ovine septic acute kidney injury and the response to resuscitation with norepinephrine. A renal artery flow probe and fiberoptic probes were placed in the cortex and medulla of sheep to measure tissue perfusion and oxygenation. A probe in the bladder catheter measured urinary oxygenation. Sepsis was induced in conscious sheep by infusion of Escherichia coli for 32 hours. At 24 to 30 hours of sepsis, either norepinephrine, to restore mean arterial pressure to preseptic levels or vehicle-saline was infused (8 sheep per group). Septic acute kidney injury was characterized by a reduction in blood pressure of ∼12 mm Hg, renal hyperperfusion, and oliguria. Sepsis reduced medullary perfusion (from an average of 1289 to 628 blood perfusion units), medullary oxygenation (from 32 to 16 mm Hg), and urinary oxygenation (from 36 to 24 mm Hg). Restoring blood pressure with norepinephrine further reduced medullary perfusion to an average of 331 blood perfusion units, medullary oxygenation to 8 mm Hg and urinary oxygenation to 18 mm Hg. Cortical perfusion and oxygenation were preserved. Thus, renal medullary hypoxia caused by intrarenal blood flow redistribution may contribute to the development of septic acute kidney injury, and resuscitation of blood pressure with norepinephrine exacerbates medullary hypoxia. The parallel changes in medullary and urinary oxygenation suggest that urinary oxygenation may be a useful real-time biomarker for risk of acute kidney injury.

  10. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite.

    PubMed

    Zhang, Changyong; Liu, Chongxuan; Shi, Zhi

    2013-05-07

    Reductive dissolution of hematite in porous media was investigated using a micromodel (8.1 × 4.5 × 0.028 mm) with realistic pore network structures that include distinctive advection domain, macropores and micropores created in silicon substrate. The micromodel pore surface was sputter deposited with a thin layer (230 nm) of hematite. The hematite in the micromodel was reduced by injecting pH-varying solutions (pH 5.0, 6.0, 7.0) containing a reduced form of flavin mononucleotide (FMNH2, 100 μM), a biogenic soluble electron transfer mediator produced by Shewanella species. The reduction kinetics was determined by measuring effluent Fe(II) (aq) concentration and by spectroscopically monitoring the hematite dissolution front in the micromodel. Batch experiment was also performed to estimate the hematite reduction rate under the well-mixed condition. Results showed significant spatial variation in local redox reaction rate that was controlled by the coupled transport and reaction. The overall rate of the redox reaction in the micromodel required a three-domain numerical model to effectively describe reaction kinetics either with distinctive apparent rate parameters or mass transfer coefficients in different pore domains. Results from this study demonstrated the feasibility of a domain-based modeling approach for scaling reaction rates from batch to porous media systems where reactions may be significantly limited by transport.

  11. Organization of the locus coeruleus-norepinephrine system.

    PubMed

    Schwarz, Lindsay A; Luo, Liqun

    2015-11-02

    The release of the neurotransmitter norepinephrine throughout the mammalian brain is important for modulating attention, arousal, and cognition during many behaviors. Furthermore, disruption of norepinephrine-mediated signaling is strongly associated with several psychiatric and neurodegenerative disorders in humans, emphasizing the clinical importance of this system. Most of the norepinephrine released in the brain is supplied by a very small, bilateral nucleus in the brainstem called the locus coeruleus. The goal of this minireview is to emphasize the complexity of the locus coeruleus beyond its primary definition as a norepinephrine-producing nucleus. Several recent studies utilizing innovative technologies highlight how the locus coeruleus-norepinephrine system can now be targeted with increased accuracy and resolution, in order to better understand its role in modulating diverse behaviors.

  12. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters.

    PubMed

    Nour-Eldin, Hussam Hassan; Madsen, Svend Roesen; Engelen, Steven; Jørgensen, Morten Egevang; Olsen, Carl Erik; Andersen, Jonathan Sonne; Seynnaeve, David; Verhoye, Thalia; Fulawka, Rudy; Denolf, Peter; Halkier, Barbara Ann

    2017-03-13

    The nutritional value of Brassica seed meals is reduced by the presence of glucosinolates, which are toxic compounds involved in plant defense. Mutation of the genes encoding two glucosinolate transporters (GTRs) eliminated glucosinolates from Arabidopsis thaliana seeds, but translation of loss-of-function phenotypes into Brassica crops is challenging because Brassica is polyploid. We mutated one of seven and four of 12 GTR orthologs and reduced glucosinolate levels in seeds by 60-70% in two different Brassica species (Brassica rapa and Brassica juncea). Reduction in seed glucosinolates was stably inherited over multiple generations and maintained in field trials of two mutant populations at three locations. Successful translation of the gtr loss-of-function phenotype from model plant to two Brassica crops suggests that our transport engineering approach could be broadly applied to reduce seed glucosinolate content in other oilseed crops, such as Camelina sativa or Crambe abyssinica.

  13. Proper orthogonal decomposition methods for noise reduction in particle-based transport calculations

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, D.; Spong, D. A.; Hirshman, S. P.

    2008-09-01

    Proper orthogonal decomposition techniques to reduce noise in the reconstruction of the distribution function in particle-based transport calculations are explored. For two-dimensional steady-state problems, the method is based on low rank truncations of the singular value decomposition of a coarse-grained representation of the particle distribution function. For time-dependent two-dimensional problems or three-dimensional time-independent problems, the use of a generalized low-rank approximation of matrices technique is proposed. The methods are illustrated and tested with Monte Carlo particle simulation data of plasma collisional relaxation and guiding-center transport with collisions in a magnetically confined plasma in toroidal geometry. It is observed that the proposed noise reduction methods achieve high levels of smoothness in the particle distribution function by using significantly fewer particles in the computations.

  14. An approximate framework for quantum transport calculation with model order reduction

    SciTech Connect

    Chen, Quan; Li, Jun; Yam, Chiyung; Zhang, Yu; Wong, Ngai; Chen, Guanhua

    2015-04-01

    A new approximate computational framework is proposed for computing the non-equilibrium charge density in the context of the non-equilibrium Green's function (NEGF) method for quantum mechanical transport problems. The framework consists of a new formulation, called the X-formulation, for single-energy density calculation based on the solution of sparse linear systems, and a projection-based nonlinear model order reduction (MOR) approach to address the large number of energy points required for large applied biases. The advantages of the new methods are confirmed by numerical experiments.

  15. Reduction of glucose uptake through inhibition of hexose transporters and enhancement of their endocytosis by methylglyoxal in Saccharomyces cerevisiae.

    PubMed

    Yoshida, Aya; Wei, Dandan; Nomura, Wataru; Izawa, Shingo; Inoue, Yoshiharu

    2012-01-02

    Diabetes mellitus is characterized by an impairment of glucose uptake even though blood glucose levels are increased. Methylglyoxal is derived from glycolysis and has been implicated in the development of diabetes mellitus, because methylglyoxal levels in blood and tissues are higher in diabetic patients than in healthy individuals. However, it remains to be elucidated whether such factors are a cause, or consequence, of diabetes. Here, we show that methylglyoxal inhibits the activity of mammalian glucose transporters using recombinant Saccharomyces cerevisiae cells genetically lacking all hexose transporters but carrying cDNA for human GLUT1 or rat GLUT4. We found that methylglyoxal inhibits yeast hexose transporters also. Glucose uptake was reduced in a stepwise manner following treatment with methylglyoxal, i.e. a rapid reduction within 5 min, followed by a slow and gradual reduction. The rapid reduction was due to the inhibitory effect of methylglyoxal on hexose transporters, whereas the slow and gradual reduction seemed due to endocytosis, which leads to a decrease in the amount of hexose transporters on the plasma membrane. We found that Rsp5, a HECT-type ubiquitin ligase, is responsible for the ubiquitination of hexose transporters. Intriguingly, Plc1 (phospholipase C) negatively regulated the endocytosis of hexose transporters in an Rsp5-dependent manner, although the methylglyoxal-induced endocytosis of hexose transporters occurred irrespective of Plc1. Meanwhile, the internalization of hexose transporters following treatment with methylglyoxal was delayed in a mutant defective in protein kinase C.

  16. Reactive Transport Modeling of Microbially-Mediated Chromate Reduction in 1-D Soil Columns

    NASA Astrophysics Data System (ADS)

    Qiu, H.; Viamajala, S.; Alam, M. M.; Peyton, B. M.; Petersen, J. N.; Yonge, D. R.

    2002-12-01

    Cr(VI) reduction tests were performed with the well known metal reducing bacterium Shewanella oneidensis MR-1 in liquid phase batch reactors and continuous flow soil columns under anaerobic conditions. In the batch tests, the cultures were grown with fumarate as the terminal electron acceptor and lactate as the electron donor in a simulated groundwater medium to determine yield coefficients and specific growth rates. The bench-scale soil column experiments were carried out with MR-1 to test the hypothesis that the kinetic parameters obtained in batch studies, combined with microbial attachment /detachment processes, will accurately predict reactive transport of Cr(VI) during bacterial Cr(VI) reduction in a soil matrix. Cr(VI)-free simulated groundwater media containing fumarate as the limiting substrate and lactate was supplied to a 2.1cm (ID) x 15 cm soil column inoculated with MR-1 for a duration of 9 residence times to allow for biomass to build-up in the column. Thereafter the column was supplied with both Cr(VI) and substrate. The concentrations of effluent substrate, biomass and Cr(VI) were monitored on a periodic basis and attached biomass in the column was measured in the termination of each column test. A reactive transport model was developed in which 6 governing equations deal with Cr(VI) bioreaction, fumarate (as electron donor) consumption, aqueous biomass growth and transport, solid biomass detachment and attachment kinetics, aqueous and solid phase enzyme reaction and transport, respectively. The model incorporating the enzyme reaction kinetics for Cr(VI) reduction, Monod kinetic expressions for substrate depletion, nonlinear attachment and detachment kinetics for aqueous and solid phase microorganism concentration, was solved by a fully implicit, finite-difference procedure using RT3D (A Modular Computer Code for Reactive Multi-species Transport in 3-Dimensional Groundwater Systems) platform in one dimension. Cr(VI)-free column data was used to

  17. Regulation of glycogen content in rat pineal gland by norepinephrine.

    PubMed

    Eugenín, E A; Sáez, C G; Garcés, G; Sáez, J C

    1997-06-20

    In the rat pineal gland the glycogen stores were cytochemically localized in astrocytes and pinealocytes. Moreover, it was found that norepinephrine (NE) induced a time- and concentration-dependent reduction in pineal glycogen content and yielded lactic acid. The NE effect was prevented by blocking alpha1- but not alpha2 or beta-adrenoceptors. Activation of alpha2-adrenoceptors induced a small decrease in glycogen levels that could have pre- and postsynaptic components. Activation of beta-adrenoceptors with 10(-12)-10(-3) M isoproterenol (ISO) induced a bell shape concentration-response curve, presumably due to desensitization, since the response induced by 10(-4) M ISO was greater with shorter period of stimulation. On the other hand, activation of alpha1-adrenoceptors with 10(-12)-10(-3) M phenylephrine (PHN) induced a hyperbolic concentration-response curve with a maximum at concentrations above 10(-8) M. Moreover, treatment with ISO drastically reduced the response induced by PHN concentrations lower but not higher than 10(-6) M, favoring a concentration-dependent response between 10(-6) and 10(-4) M PHN, similar to that induced by equimolar NE concentrations. Thus, the NE-induced reduction in glycogen content of the rat pineal gland is mainly mediated by alpha1-adrenoceptors and modulated by intracellular mechanisms activated by beta-adrenoceptors.

  18. Prostacyclin effects on the blood pressure responses to norepinephrine in rats treated with aspirin or indomethacin.

    PubMed

    Carmignani, M; Marchetti, P; Caprino, L

    1980-01-01

    The atherosclerotic condition is associated with a reduction of PGI2 synthesis; moreover, in the presence of elevated serum cholesterol levels, pressor responses to norepinephrine are potentiated. In order to verify if a complete inhibition of PGI2 production affects the vascular reactivity, it was assayed two cycloxygenase inhibitors (lysine acetylsalicylate and indomethacin) in rats. The two drugs significantly potentiated the blood pressure responses to norepinephrine, and completely inhibited PGI2-like substances production by arterial rings. The prostacyclin infusion (15 ng/kg/min, i.v.) completely reversed such potentiation, without any major modification in the basal blood pressure values. These results show that PGI2 production is responsible for vascular tone modulation and may partially explain the altered vascular reactivity in the atherosclerotic condition.

  19. Micromodel Investigation of Transport Effect on the Kinetics of Reductive Dissolution of Hematite

    SciTech Connect

    Zhang, Changyong; Liu, Chongxuan; Shi, Zhi

    2013-03-13

    Reductive dissolution of hematite in porous media was investigated using a micromodel with realistic pore network structures that include distinctive advection domain, macro-pores and micro-pores created in silicon substrate. The micromodel pore surface was sputter deposited with a thin layer (230 nm) of hematite. The hematite in the micromodel was reduced by injecting pH-varying solutions containing a reduced form of flavin mononucleotide (FMNH2), a biogenic soluble electron transfer mediator produced by Shewanella species. The reduction kinetics was determined by measuring effluent Fe(II) concentration and by spectroscopically monitoring the hematite dissolution front in the micromodel. Batch experiment was also performed to estimate the hematite reduction rate under the well-mixed condition. The results showed a significant spatial variation in local redox reaction rate that was controlled by the coupled diffusion and reaction. The overall rate of the redox reaction in the micromodel required a three-domain numerical model to effectively describe with distinctive rate parameters in different pore domains. Results from this study demonstrated the important scaling effect when extrapolating geochemical or biogeochemical reaction rate from batch reactor to porous media and indicated a significant control of physical transport mechanisms on the reaction rate scaling.

  20. Norepinephrine metabolism in neuronal cultures is increased by angiotensin II

    SciTech Connect

    Sumners, C.; Shalit, S.L.; Kalberg, C.J.; Raizada, M.K.

    1987-06-01

    In this study the authors have examined the actions of angiotensin II (ANG II) on catecholamine metabolism in neuronal brain cell cultures prepared from the hypothalamus and brain stem. Neuronal cultures prepared from the brains of 1-day-old Sprague-Dawley rats exhibit specific neuronal uptake mechanisms for both norepinephrine (NE) and dopamine (DA), and also monoamine oxidase (MAO) and catechol O-methyltransferase (COMT) activity. Separate neuronal uptake sites for NE and DA were identified by using specific neuronal uptake inhibitors for each amine. In previous studies, they determined that ANG II (10 nM-1 ..mu..M) stimulates increased neuronal (/sup 3/H)NE uptake by acting as specific receptors. They have confirmed these results here and in addition have shown that ANG II has not significant effects on neuronal (/sup 3/H)DA uptake. These results suggest that the actions of ANG II are restricted to the NE transporter in neuronal cultures. It is possible that ANG II stimulates the intraneuronal metabolism of at least part of the NE that is taken up, because the peptide stimulates MAO activity, an effect mediated by specific ANG II receptors. ANG II had no effect on COMT activity in neuronal cultures. Therefore, the use of neuronal cultures of hypothalamus and brain stem they have determined that ANG II can specifically alter NE metabolism in these areas, while apparently not altering DA metabolism.

  1. Perivascular Adipose Tissue's Impact on Norepinephrine-Induced Contraction of Mesenteric Resistance Arteries

    PubMed Central

    Ayala-Lopez, Nadia; Thompson, Janice M.; Watts, Stephanie W.

    2017-01-01

    Background: Perivascular adipose tissue (PVAT) can decrease vascular contraction to NE. We tested the hypothesis that metabolism and/or uptake of vasoactive amines by mesenteric PVAT (MPVAT) could affect NE-induced contraction of the mesenteric resistance arteries. Methods: Mesenteric resistance vessels (MRV) and MPVAT from male Sprague-Dawley rats were used. RT-PCR and Western blots were performed to detect amine metabolizing enzymes. The Amplex® Red Assay was used to quantify oxidase activity by detecting the oxidase reaction product H2O2 and the contribution of PVAT on the mesenteric arteries' contraction to NE was measured by myography. Results: Semicarbazide sensitive amine oxidase (SSAO) and monoamine oxidase A (MAO-A) were detected in MRV and MPVAT by Western blot. Addition of the amine oxidase substrates tyramine or benzylamine (1 mM) resulted in higher amine oxidase activity in the MRV, MPVAT, MPVAT's adipocyte fraction (AF), and the stromal vascular fraction (SVF). Inhibiting SSAO with semicarbazide (1 mM) decreased amine oxidase activity in the MPVAT and AF. Benzylamine-driven, but not tyramine-driven, oxidase activity in the MRV was reduced by semicarbazide. By contrast, no reduction in oxidase activity in all sample types was observed with use of the monoamine oxidase inhibitors clorgyline (1 μM) or pargyline (1 μM). Inhibition of MAO-A/B or SSAO individually did not alter contraction to NE. However, inhibition of both MAO and SSAO increased the potency of NE at mesenteric arteries with PVAT. Addition of MAO and SSAO inhibitors along with the H2O2 scavenger catalase reduced PVAT's anti-contractile effect to NE. Inhibition of the norepinephrine transporter (NET) with nisoxetine also reduced PVAT's anti-contractile effect to NE. Conclusions: PVAT's uptake and metabolism of NE may contribute to the anti-contractile effect of PVAT. MPVAT and adipocytes within MPVAT are a source of SSAO. PMID:28228728

  2. Central sympathoplegic and norepinephrine-depleting effects of antioxidants

    SciTech Connect

    Chester, A.E.; Meyers, F.H.

    1988-01-01

    Carbon disulfide (CS/sub 2/), tetraethyl lead (TEL), tetraethyl tin (TeET), dithiothreitol (DTT), and gossypol acetic acid (GAA) significantly decreased brain norepinephrine (NE) in rats. The central dopamine (DA) increased after ip administration of CS/sub 2/, TEL, and DTT, but decreased after TeET and GAA. The brain serotonin decreased only after TeET. Two doses of DTT decreased the NE longer than one dose (24 vs 2 hr) but did not increase DA. L-DOPA, given SC with DTT, delayed the decrease in NE by 24 hr. The similar behavioral and autonomic effects of each of these compounds suggest a central sympatholytic effect and an antipsychotic type of sedation and rigidity. A possible mechanism is reversible inhibition of dopamine ..beta..-hydroxylase through the reduction of the copper ion of the enzyme. Each of these reducing agents, together with the boranes previously studied, has similar behavioral and autonomic effects and a common effect on NE concentration, suggesting that the agents act through a physicochemical property rather than by combination with a cellular component. These data have applications to the toxicity of the single agents. They also provide an index of activity, previously lacking, of systemic antoxidant effect.

  3. The Design, Synthesis and Structure-Activity Relationship of Mixed Serotonin, Norepinephrine and Dopamine Uptake Inhibitors

    NASA Astrophysics Data System (ADS)

    Chen, Zhengming; Yang, Ji; Skolnick, Phil

    The evolution of antidepressants over the past four decades has involved the replacement of drugs with a multiplicity of effects (e.g., TCAs) by those with selective actions (i.e., SSRIs). This strategy was employed to reduce the adverse effects of TCAs, largely by eliminating interactions with certain neurotransmitters or receptors. Although these more selective compounds may be better tolerated by patients, selective drugs, specifically SSRIs, are not superior to older drugs in treating depressed patients as measured by response and remission rates. It may be an advantage to increase synaptic levels of both serotonin and norepinephrine, as in the case of dual uptake inhibitors like duloxetine and venlafaxine. An important recent development has been the emergence of the triple-uptake inhibitors (TUIs/SNDRIs), which inhibit the uptake of the three neurotransmitters most closely linked to depression: serotonin, norepinephrine, and dopamine. Preclinical studies and clinical trials indicate that a drug inhibiting the reuptake of all three of these neurotransmitters could produce more rapid onset of action and greater efficacy than traditional antidepressants. This review will detail the medicinal chemistry involved in the design, synthesis and discovery of mixed serotonin, norepinephrine and dopamine transporter uptake inhibitors.

  4. Relationships of Whole Blood Serotonin and Plasma Norepinephrine within Families.

    ERIC Educational Resources Information Center

    Leventhal, Bennett L.; And Others

    1990-01-01

    This study of 47 families of autistic probands found that whole blood serotonin was positively correlated between autistic children and their mothers, fathers, and siblings, but plasma norepinephrine levels were not. (Author/JDD)

  5. Norepinephrine-induced diuresis in chronically ethanol-treated rats

    SciTech Connect

    Pohorecky, L.A. )

    1989-01-01

    Previous research from this laboratory indicated that noradrenergic mechanisms might mediate ethanol diuresis. Experiments described here examined changes in sensitivity of noradrenergic mechanisms in animals chronically treated with ethanol. Norepinephrine hydrochloride (0-12 ug intracerebroventricularly) produced dose-dependent diuresis in control and ethanol treated rats on the first day of treatment. Tolerance to ethanol diuresis was present after 10 day of ethanol treatment. Lack of responsiveness to norepinephrine-induced diuresis was evident only on the 20th day of treatment in both the ethanol and dextrin-maltose groups of rats. These results indicate a temporal dissociation between the tolerance to ethanol-induced and norepinephrine-induced diuresis and suggest that norepinephrine may not play a primary role in the development of tolerance to the diuretic action of ethanol.

  6. Differentiating Siblings: The Case of Dopamine and Norepinephrine.

    PubMed

    Nakatsuka, Nako; Andrews, Anne M

    2017-02-15

    Monitoring dopamine and norepinephrine (or other structurally similar neurotransmitters) in the same brain region necessitates selective sensing. In this Viewpoint, we highlight electrochemical and optical strategies for advancing simultaneous real-time measurements of dopamine and norepinephrine transmission. The potential for DNA aptamers as recognition elements in the context of field-effect transistor sensing for selective and simultaneous neurotransmitter monitoring in vivo is also discussed.

  7. Systematic Dimensionality Reduction for Quantum Walks: Optimal Spatial Search and Transport on Non-Regular Graphs

    NASA Astrophysics Data System (ADS)

    Novo, Leonardo; Chakraborty, Shantanav; Mohseni, Masoud; Neven, Hartmut; Omar, Yasser

    2015-09-01

    Continuous time quantum walks provide an important framework for designing new algorithms and modelling quantum transport and state transfer problems. Often, the graph representing the structure of a problem contains certain symmetries that confine the dynamics to a smaller subspace of the full Hilbert space. In this work, we use invariant subspace methods, that can be computed systematically using the Lanczos algorithm, to obtain the reduced set of states that encompass the dynamics of the problem at hand without the specific knowledge of underlying symmetries. First, we apply this method to obtain new instances of graphs where the spatial quantum search algorithm is optimal: complete graphs with broken links and complete bipartite graphs, in particular, the star graph. These examples show that regularity and high-connectivity are not needed to achieve optimal spatial search. We also show that this method considerably simplifies the calculation of quantum transport efficiencies. Furthermore, we observe improved efficiencies by removing a few links from highly symmetric graphs. Finally, we show that this reduction method also allows us to obtain an upper bound for the fidelity of a single qubit transfer on an XY spin network.

  8. Proper orthogonal decomposition and wavelet methods for noise reduction in particle-based transport calculations

    NASA Astrophysics Data System (ADS)

    Nguyen van Ye, Romain; Del-Castillo-Negrete, Diego; Spong, D.; Hirshman, S.; Farge, M.

    2008-11-01

    A limitation of particle-based transport calculations is the noise due to limited statistical sampling. Thus, a key element for the success of these calculations is the development of efficient denoising methods. Here we discuss denoising techniques based on Proper Orthogonal Decomposition (POD) and Wavelet Decomposition (WD). The goal is the reconstruction of smooth (denoised) particle distribution functions from discrete particle data obtained from Monte Carlo simulations. In 2-D, the POD method is based on low rank truncations of the singular value decomposition of the data. For 3-D we propose the use of a generalized low rank approximation of matrices technique. The WD denoising is based on the thresholding of empirical wavelet coefficients [Donoho et al., 1996]. The methods are illustrated and tested with Monte-Carlo particle simulation data of plasma collisional relaxation including pitch angle and energy scattering. As an application we consider guiding-center transport with collisions in a magnetically confined plasma in toroidal geometry. The proposed noise reduction methods allow to achieve high levels of smoothness in the particle distribution function using significantly less particles in the computations.

  9. Systematic Dimensionality Reduction for Quantum Walks: Optimal Spatial Search and Transport on Non-Regular Graphs

    PubMed Central

    Novo, Leonardo; Chakraborty, Shantanav; Mohseni, Masoud; Neven, Hartmut; Omar, Yasser

    2015-01-01

    Continuous time quantum walks provide an important framework for designing new algorithms and modelling quantum transport and state transfer problems. Often, the graph representing the structure of a problem contains certain symmetries that confine the dynamics to a smaller subspace of the full Hilbert space. In this work, we use invariant subspace methods, that can be computed systematically using the Lanczos algorithm, to obtain the reduced set of states that encompass the dynamics of the problem at hand without the specific knowledge of underlying symmetries. First, we apply this method to obtain new instances of graphs where the spatial quantum search algorithm is optimal: complete graphs with broken links and complete bipartite graphs, in particular, the star graph. These examples show that regularity and high-connectivity are not needed to achieve optimal spatial search. We also show that this method considerably simplifies the calculation of quantum transport efficiencies. Furthermore, we observe improved efficiencies by removing a few links from highly symmetric graphs. Finally, we show that this reduction method also allows us to obtain an upper bound for the fidelity of a single qubit transfer on an XY spin network. PMID:26330082

  10. Electrification of the transportation sector offers limited country-wide greenhouse gas reductions

    NASA Astrophysics Data System (ADS)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2014-03-01

    Compared with conventional propulsion, plugin and hybrid vehicles may offer reductions in greenhouse gas (GHG) emissions, regional air/noise pollution, petroleum dependence, and ownership cost. Comparing only plugins and hybrids amongst themselves, and focusing on GHG, relative merits of different options have been shown to be more nuanced, depending on grid-carbon-intensity, range and thus battery manufacturing and weight, and trip patterns. We present a life-cycle framework to compare GHG emissions for three drivetrains (plugin-electricity-only, gasoline-only-hybrid, and plugin-hybrid) across driving ranges and grid-carbon-intensities, for passenger cars, vans, buses, or trucks (well-to-wheel plus storage manufacturing). Parameter and model uncertainties are quantified via sensitivity analyses. We find that owing to the interplay of range, GHG/km, and portions of country-wide kms accessible to electrification, GHG reductions achievable from plugins (whether electricity-only or hybrids) are limited even when assuming low-carbon future grids. Furthermore, for policy makers considering GHG from electricity and transportation sectors combined, plugin technology may in fact increase GHG compared to gasoline-only-hybrids, regardless of grid-carbon-intensity.

  11. 34S/32S fractionation during sulfate reduction in groundwater treatment systems: reactive transport modeling.

    PubMed

    Gibson, Blair D; Amos, Richard T; Blowes, David W

    2011-04-01

    Isotope ratio measurements provide a tool for indicating the relative significance of biogeochemical reactions and for constraining estimates of the extent and rate of reactions in passive treatment systems. In this paper, the reactive transport model MIN3P is used to evaluate sulfur isotope fractionation in column experiments designed to simulate treatment of contaminated water by microbially mediated sulfate reduction occurring within organic carbon-based and iron and carbon-based permeable reactive barriers. A mass dependent fractionation model was used to determine reaction rates for 32S and 34S compounds during reduction, precipitation, and dissolution reactions and to track isotope-dependent mass transfer during SO4 removal. The δ34S values obtained from the MIN3P model were similar to those obtained from the Rayleigh equation, indicating that there was not a significant difference between the conceptual models. Differences between the MIN3P derived α value and the Rayleigh equation derived value were attributed to minor changes in the dissolution and precipitation rate of gypsum and mathematical differences in the fitting models. The results indicated that the prediction of δ34S was fairly insensitive to differences in the fractionation factor at the concentration ranges measured in the current study. However, more significant differences would be expected at low sulfate conditions.

  12. Norepinephrine and Dopamine as Learning Signals

    PubMed Central

    Harley, Carolyn W.

    2004-01-01

    The present review focuses on the hypothesis that norepinephrine (NE) and dopamine (DA) act as learning signals. Both NE and DA are broadly distributed in areas concerned with the representation of the world and with the conjunction of sensory inputs and motor outputs. Both are released at times of novelty and uncertainty, providing plausible signal events for updating representations and associations. These catecholamines activate intracellular machinery postulated to serve as a memory-formation cascade. Yet, despite the plausibility of an NE and DA role in vertebrate learning and memory, most evidence that they provide a learning signal is circumstantial. The major weakness of the data available is the lack of a specific description of how the neural circuit modulated by NE or DA participates in the learning being analyzed. Identifying a conditioned stimuli (CS) representation would facilitate the identification of a learning signal role for NE or DA. Describing how the CS representation comes to relate to learned behavior, either through sensory-sensory associations, in which the CS acquires the motivational significance of reward or punishment, thus driving appropriate behavior, or through direct sensory-motor associations is necessary to identify how NE and DA participate in memory creation. As described here, evidence consistent with a direct learning signal role for NE and DA is seen in the changing of sensory circuits in odor preference learning (NE), defensive conditioning (NE), and auditory cortex remodeling in adult rats (DA). Evidence that NE and DA contribute to normal learning through unspecified mechanisms is extensive, but the details of that support role are lacking. PMID:15656268

  13. Analysis of acidity production during enhanced reductive dechlorination using a simplified reactive transport model

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Barry, D. A.; Robinson, C.; Gerhard, J. I.

    2012-07-01

    Build-up of fermentation products and hydrochloric acid at a contaminated site undergoing enhanced reductive dechlorination can result in groundwater acidification. Sub-optimal pH conditions can inhibit microbial activity and lead to reduced dechlorination rates. The extent of acidification likely to occur is site-specific and depends primarily on the extent of fermentation and dechlorination, the geochemical composition of soil and groundwater, and the pH-sensitivity of the active microbial populations. Here, the key chemical and physical mechanisms that control the extent of groundwater acidification in a contaminated site were examined, and the extent to which the remediation efficiency was affected by variations in groundwater pH was evaluated using a simplified process-based reactive-transport model. This model was applied successfully to a well-documented field site and was then employed in a sensitivity analysis to identify the processes likely to significantly influence acidity production and subsequent microbial inhibition. The accumulation of organic acids produced from the fermentation of the injected substrate was the main cause of the pH change. The concentration of dissolved sulphates controlled substrate utilisation efficiency because sulphate-reducing biomass competed with halo-respiring biomass for the fermentation products. It was shown further that increased groundwater velocity increases dilution and reduces the accumulation of acidic products. As a consequence, the flow rate corresponding to the highest remediation efficiency depends on the fermentation and dechlorination rates. The model enables investigation and forecasting of the extent and areal distribution of pH change, providing a means to optimise the application of reductive dechlorination for site remediation.

  14. Reduction of cerebral edema after traumatic brain injury using an osmotic transport device.

    PubMed

    McBride, Devin W; Szu, Jenny I; Hale, Chris; Hsu, Mike S; Rodgers, Victor G J; Binder, Devin K

    2014-12-01

    Traumatic brain injury (TBI) is significant, from a public health standpoint, because it is a major cause of the morbidity and mortality of young people. Cerebral edema after a TBI, if untreated, can lead to devastating damage of the remaining tissue. The current therapies of severe TBI (sTBI), as outlined by the Brain Trauma Foundation, are often ineffective, thus a new method for the treatment of sTBI is necessary. Herein, the reduction of cerebral edema, after TBI, using an osmotic transport device (OTD) was evaluated. Controlled cortical impact (CCI) was performed on adult female CD-1 mice, and cerebral edema was allowed to form for 3 h, followed by 2 h of treatment. The treatment groups were craniectomy only, craniectomy with a hydrogel, OTD without bovine serum albumin (BSA), and OTD. After CCI, brain water content was significantly higher for animals treated with a craniectomy only, craniectomy with a hydrogel, and OTD without BSA, compared to that of control animals. However, when TBI animals were treated with an OTD, brain water content was not significantly higher than that of controls. Further, brain water content of TBI animals treated with an OTD was significantly reduced, compared to that of untreated TBI animals, TBI animals treated with a craniectomy and a hydrogel, and TBI animals treated with an OTD without BSA. Here, we demonstrate the successful reduction of cerebral edema, as determined by brain water content, after TBI using an OTD. These results demonstrate proof of principle for direct water extraction from edematous brain tissue by direct osmotherapy using an OTD.

  15. Can a reduction in mass transport occur at invariant segmental time?

    NASA Astrophysics Data System (ADS)

    Napolitano, Simone; Sferrazza, Michele

    2015-03-01

    The glassy dynamics of polymer melts adsorbed onto solid substrates shows a peculiar confinement effect: a severe reduction in mass transport occurs without a corresponding increase in segmental relaxation time. This phenomenon provides a ``negative violation'' of the Stokes-Einstein (SE) relation, not observed in bulk melts or confined water. Explaining those findings in analogy to the large drop of thermal expansion reported in polymers under 1D confinement, we considered the presence of an interfacial dead layer where tracer diffusivity assumes negligible values. To verify this hypothesis, we performed an extensive investigation of the diffusion of styrene oligomers, acting as tracers, into matrices of high molecular weight polystyrene, irreversibly adsorbed onto aluminum oxide. We demonstrate that the reduced interfacial diffusion is due to larger residence times of the tracers inside the dead layer, tDL. In particular, we show that tDL is directly proportional to the amount of irreversibly adsorbed monomers, a quantity limiting the available space for diffusion. We thus discuss of a dynamic dead layer evolving within the adsorbed layer, and of its role on the dynamics of glassy polymers under confinement and the ``negative violation'' the SE relation.

  16. Thromboxane agonist (U46619) potentiates norepinephrine efflux from adrenergic nerves

    SciTech Connect

    Trachte, G.J.

    1986-05-01

    The effect of the synthetic thromboxane/prostaglandin (PG) H2 agonist U46619 on the electrically stimulated rabbit isolated vas deferens was examined to test for thromboxane influences on adrenergic nerves. U46619 effects on force generation, (/sup 3/H) norepinephrine release and norepinephrine-induced contractions were assessed to determine the mechanism of action. U46619 maximally enhanced adrenergic force generation 135 +/- 24% at a concentration of 100 nM. U46619 potentiated maximal contractile effects of exogenously administered norepinephrine 16 +/- 4% and augmented (/sup 3/H)norepinephrine release from electrically stimulated preparations 142 +/- 44%. A competitive thromboxane/PGH2 receptor antagonist, SQ29548, significantly shifted the concentration-response curve for U46619 to the right in a concentration-dependent manner and blocked U46619-induced tritium release. Thus, U46619 appears to potentiate neurotransmitter release by interacting with thromboxane/PGH2 receptors. Because SQ29548 did not prevent the potentiation of norepinephrine contractions by U46619, the postjunctional effect may be independent of thromboxane/PGH2 receptors. We interpret these results to be indicative of both pre- and postjunctional sites of action of U46619. The physiological importance of these thromboxane effects is unknown currently.

  17. Continuous infusion of tracer norepinephrine may miscalculate unidirectional nerve uptake of norepinephrine in humans

    SciTech Connect

    Henriksen, J.H.; Christensen, N.J.; Ring-Larsen, H. )

    1989-08-01

    In order to evaluate uptake kinetics of norepinephrine (NE) in different tissues, a catheterization study was performed in control subjects (n = 6) and patients with enhanced sympathetic nervous activity (cirrhosis, n = 12) during constant intravenous infusion of L(3H)norepinephrine ((3H)NE) for 75 minutes. In spite of a higher NE spillover from kidneys in patients compared with controls (82 vs. 49 ng/min, p less than 0.01), renal extraction ratios of (3H)NE were similar in the two groups (0.33 vs. 0.32, NS), and no significant change was observed during the time of infusion. In contrast, liver-intestine extraction ratios of (3H)NE decreased significantly and equally with infusion time in patients (from 0.57 to 0.44, p less than 0.01) and controls (from 0.59 to 0.46, p less than 0.01). This was observed despite the fact that spillover of NE from this vascular bed was observed only in patients with cirrhosis and not in controls (41 vs. -5 ng/min, p less than 0.02). In the lower limb, net release of NE was similar in patients and controls, and extraction ratios of (3H)NE decreased almost equally with infusion time (from 0.35 to 0.30, p less than 0.01 and from 0.40 to 0.24, p less than 0.1, respectively). Whole-body clearance of (3H)NE decreased over time in patients (-6%, p less than 0.01) and controls (-20%, p less than 0.01), but significant difference was not observed between the groups. We conclude that failure to attain a steady state with respect to (3H)NE removal was demonstrated in areas of large tissue volume relative to blood flow.

  18. Combined Norepinephrine/Serotonergic Reuptake Inhibition: Effects on Maternal Behavior, Aggression, and Oxytocin in the Rat

    PubMed Central

    Cox, Elizabeth Thomas; Jarrett, Thomas Merryfield; McMurray, Matthew Stephen; Greenhill, Kevin; Hofler, Vivian E.; Williams, Sarah Kaye; Joyner, Paul Wayland; Middleton, Christopher L.; Walker, Cheryl H.; Johns, Josephine M.

    2011-01-01

    Background: Few systematic studies exist on the effects of chronic reuptake of monoamine neurotransmitter systems during pregnancy on the regulation of maternal behavior (MB), although many drugs act primarily through one or more of these systems. Previous studies examining fluoxetine and amfonelic acid treatment during gestation on subsequent MB in rodents indicated significant alterations in postpartum maternal care, aggression, and oxytocin levels. In this study, we extended our studies to include chronic gestational treatment with desipramine or amitriptyline to examine differential effects of reuptake inhibition of norepinephrine and combined noradrenergic and serotonergic systems on MB, aggression, and oxytocin system changes. Methods: Pregnant Sprague-Dawley rats were treated throughout gestation with saline or one of three doses of either desipramine, which has a high affinity for the norepinephrine monoamine transporter, or amitriptyline, an agent with high affinity for both the norepinephrine and serotonin monoamine transporters. MB and postpartum aggression were assessed on postpartum days 1 and 6 respectively. Oxytocin levels were measured in relevant brain regions on postpartum day 7. Predictions were that amitriptyline would decrease MB and increase aggression relative to desipramine, particularly at higher doses. Amygdaloidal oxytocin was expected to decrease with increased aggression. Results: Amitriptyline and desipramine differentially reduced MB, and at higher doses reduced aggressive behavior. Hippocampal oxytocin levels were lower after treatment with either drug but were not correlated with specific behavioral effects. These results, in combination with previous findings following gestational treatment with other selective neurotransmitter reuptake inhibitors, highlight the diverse effects of multiple monoamine systems thought to be involved in maternal care. PMID:21713063

  19. Analysis of ballistic transport in nanoscale devices by using an accelerated finite element contact block reduction approach

    SciTech Connect

    Li, H.; Li, G.

    2014-08-28

    An accelerated Finite Element Contact Block Reduction (FECBR) approach is presented for computational analysis of ballistic transport in nanoscale electronic devices with arbitrary geometry and unstructured mesh. Finite element formulation is developed for the theoretical CBR/Poisson model. The FECBR approach is accelerated through eigen-pair reduction, lead mode space projection, and component mode synthesis techniques. The accelerated FECBR is applied to perform quantum mechanical ballistic transport analysis of a DG-MOSFET with taper-shaped extensions and a DG-MOSFET with Si/SiO{sub 2} interface roughness. The computed electrical transport properties of the devices obtained from the accelerated FECBR approach and associated computational cost as a function of system degrees of freedom are compared with those obtained from the original CBR and direct inversion methods. The performance of the accelerated FECBR in both its accuracy and efficiency is demonstrated.

  20. Norepinephrine release in arteries of spontaneously hypertensive rats

    SciTech Connect

    Zsoter, T.T.; Wolchinsky, C.; Lawrin, M.; Sirko, S.

    1982-01-01

    The role of the sympathetic nervous system in arterial hypertension cannot be properly evaluated until it is known about the activity in the vessels themselves. In this study researchers investigated the effect of transmural stimulation on the tail artery - labelled in vitro with /sup 3/H-norepinephrine - of 7-9 week old spontaneously hypertensive rats (SHR) and Wistar Kyoto controls (WKR). Electrical stimulation using two frequencies (2 and 10 Hz) resulted in significantly more /sup 3/H overflow in vessels from SHR than from WKR. With 10 Hz stimulation the fractional release was also greater. Column chromatographic analysis of /sup 3/H overflow revealed that transmural stimulation in arteries of SHR enhanced mainly the release of norepinephrine and not of its metabolites. Significantly, an increased release of /sup 3/H-norepinephrine on stimulation was observed in SHR before the full development of hypertension suggesting that it might be a cause rather than a consequence of high blood pressure.

  1. Economic Rationality of On-Orbit Servicing by Reduction of Transportation Cost

    NASA Astrophysics Data System (ADS)

    Akiyama, Yasuhiro; Inatani, Yoshifumi

    The costs of transportation from the Earth to the orbit are very high. Decreasing the transportation costs should increase the launch market significantly. However, the objective of transportation costs is ambiguous and few studies have examined the relationship between transportation costs and commercial profits of businesses. On-Orbit Servicing (OOS) is a business that could profit from lower transportation costs, and we quantified the relationship between costs and profitability for this business. Real-coded Adaptive Range Genetic Algorithm optimized the OOS method. The results showed that the revenues generated by OOS would support the outlay required to decrease transportation costs.

  2. Norepinephrine Regulates Condylar Bone Loss via Comorbid Factors.

    PubMed

    Jiao, K; Niu, L; Xu, X; Liu, Y; Li, X; Tay, F R; Wang, M

    2015-06-01

    Degenerative changes of condylar subchondral bone occur frequently in temporomandibular disorders. Although psychologic stresses and occlusal abnormalities have been implicated in temporomandibular disorder, it is not known if these risks represent synergistic comorbid factors that are involved in condylar subchondral bone degradation that is regulated by the sympathetic nervous system. In the present study, chronic immobilization stress (CIS), chemical sympathectomy, and unilateral anterior crossbite (UAC) were sequentially applied in a murine model. Norepinephrine contents in the subjects' serum and condylar subchondral bone were detected by ELISA; bone and cartilage remodeling parameters and related gene expression in the subchondral bone were examined. Subchondral bone loss and increased subchondral bone norepinephrine level were observed in the CIS and UAC groups. These groups exhibited decreased bone mineral density, volume fraction, and bone formation rate; decreased expressions of osterix, collagen I, and osteocalcin; but increased trabecular separation, osteoclast number and surface, and RANKL expression. Combined CIS + UAC produced more severe subchondral bone loss, higher bone norepinephrine level, and decreased chondrocyte density and cartilage thickness when compared to CIS or UAC alone. Sympathectomy simultaneously prevented subchondral bone loss and decreased bone norepinephrine level in all experimental subgroups when compared to the vehicle-treated counterparts. Norepinephrine also decreased mRNA expression of osterix, collagen I, and osteocalcin by mesenchymal stem cells at 7 and 14 d of stimulation and increased the expression of RANKL and RANKL/OPG ratio by mesenchymal stem cells at 2 h. In conclusion, CIS and UAC synergistically promote condylar subchondral bone loss and cartilage degradation; such processes are partially regulated by norepinephrine within subchondral bone.

  3. Altered locus coeruleus-norepinephrine function following single prolonged stress.

    PubMed

    George, Sophie A; Knox, Dayan; Curtis, Andre L; Aldridge, J Wayne; Valentino, Rita J; Liberzon, Israel

    2013-03-01

    Data from preclinical and clinical studies have implicated the norepinephrine system in the development and maintenance of post-traumatic stress disorder. The primary source of norepinephrine in the forebrain is the locus coeruleus (LC); however, LC activity cannot be directly measured in humans, and previous research has often relied upon peripheral measures of norepinephrine to infer changes in central LC-norepinephrine function. To directly assess LC-norepinephrine function, we measured single-unit activity of LC neurons in a validated rat model of post-traumatic stress disorder - single prolonged stress (SPS). We also examined tyrosine hydroxylase mRNA levels in the LC of SPS and control rats as an index of norepinephrine utilisation. For electrophysiological recordings, 92 LC neurons were identified from 19 rats (SPS, 12; control, 7), and spontaneous and evoked responses to a noxious event (paw compression) were recorded. Baseline and restraint stress-evoked tyrosine hydroxylase mRNA expression levels were measured in SPS and control rats (n = 16 per group) in a separate experiment. SPS rats showed lower spontaneous activity but higher evoked responses, leading to an enhanced signal-to-noise ratio of LC neurons, accompanied by impaired recovery from post-stimulus inhibition. In concert, tyrosine hydroxylase mRNA expression in the LC of SPS rats tended to be lower at baseline, but was exaggerated following restraint stress. These data demonstrate persistent changes in LC function following stress/trauma in a rat model of post-traumatic stress, as measured by differences in both the electrophysiological properties of LC neurons and tyrosine hydroxylase mRNA transcription.

  4. The Mechanisms of Oxygen Reduction in the Terminal Reducing Segment of the Chloroplast Photosynthetic Electron Transport Chain.

    PubMed

    Kozuleva, Marina A; Ivanov, Boris N

    2016-07-01

    The review is dedicated to ascertainment of the roles of the electron transfer cofactors of the pigment-protein complex of PSI, ferredoxin (Fd) and ferredoxin-NADP reductase in oxygen reduction in the photosynthetic electron transport chain (PETC) in the light. The data regarding oxygen reduction in other segments of the PETC are briefly analyzed, and it is concluded that their participation in the overall process in the PETC under unstressful conditions should be insignificant. Data concerning the contribution of Fd to the oxygen reduction in the PETC are examined. A set of collateral evidence as well as results of direct measurements of the involvement of Fd in this process in the presence of isolated thylakoids led to the inference that this contribution in vivo is negligible. The increase in oxygen reduction rate in the isolated thylakoids in the presence of either Fd or Fd plus NADP(+) under increasing light intensity was attributed to the increase in oxygen reduction executed by the membrane-bound oxygen reductants. Data are presented which imply that a main reductant of the O2 molecule in the terminal reducing segment of the PETC is the electron transfer cofactor of PSI, phylloquinone. The physiological significance of characteristic properties of oxygen reductants in this segment of the PETC is discussed.

  5. Reduction of Auxin Transport Capacity with Age and Internal Water Deficits in Cotton Petioles 1

    PubMed Central

    Davenport, Thomas L.; Morgan, Page W.; Jordan, Wayne R.

    1980-01-01

    Auxin transport was examined in leaf petioles taken from the upper, middle, and lower leaf canopy of large cotton plants. The ability of petioles to transport auxin decreased with age (position) of the leaves. Plant water deficit reduced transport regardless of age. These correlations support the view that reduced transport capacity of petioles plays a significant role in the induction of abscission of lower or older leaves during water deficits. PMID:16661278

  6. Edge transport and turbulence reduction, and formation of ultra-wide pedestals with lithium coated PFCs in NSTX

    NASA Astrophysics Data System (ADS)

    Canik, John

    2010-11-01

    The coating of plasma facing components (PFCs) with lithium improves energy confinement [1] and eliminates ELMs in the National Spherical Torus Experiment (NSTX), the latter due to a relaxation of the density and pressure profiles that reduces the drive for peeling-ballooning modes [2]. Here we show that both a reduction in recycling (due to lithium pumping) and cross-field transport is needed to reproduce the measured profile changes. Furthermore we document a concomitant density fluctuation reduction measured in the steep gradient region. The experimental transport coefficients are obtained via data-constrained modeling using the SOLPS code [3], which couples a 2D fluid treatment of the edge plasma transport to a Monte Carlo neutrals calculation. First, a reduction in the PFC recycling coefficient from R˜0.98 to R˜0.90 is required to match the drop in Dα emission with lithium coatings. Furthermore, a ˜75% drop of the D and χe from 0.8 < ψN < 0.93 are needed to match the profile relaxation with lithium coatings; indeed, the region of low transport in the H-mode simply extends to the innermost domain of the simulation. Transport is similar with and without lithium coatings outside of ψN ˜ 0.93, with D/χe ˜ 0.2/1.0 m2/s. Turbulence measurements using an edge reflectometry system [4] show a decrease in broadband density fluctuations with lithium coatings, primarily at frequencies <10 kHz. These transport changes allow the realization of very wide pedestals, with a ˜100% width increase relative to the reference discharges. [4pt] [1] H. W. Kugel et al, Phys. Plas. 15 (2008) 056118. [0pt] [2] R. Maingi et al, Phys. Rev. Lett. 103 (2009) 075001. [0pt] [3] R. Schneider et al, Contr. Plas. Phys. 46 (2006) 3. [0pt] [4] S Kubota et al, Bull. Am. Phys. Soc. 53 (2008) 188.

  7. Planning Strategies for Transportation Fuel Consumption Reduction: An Evaluation of the Hawaii Clean Energy Initiative’s Transportation Plan

    DTIC Science & Technology

    2014-04-01

    technologies to improve fleet efficiency goals, and evaluate switching to biodiesel for trucks and vehicles without other alternatives (HCEI 2011...standards and biodiesel usage levels 2020 Goal 50 MGY of renewable fuels 28 working with industry to increase EV market penetration, and...Strategy Reduction Potential Purchase more efficient vehicles 10-20% Promote hybrid technologies 10-20% Evaluate biodiesel switching (freight) TBD

  8. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    PubMed

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles

  9. Diffusion algorithms and data reduction routine for onsite launch predictions for the transport of Titan 3 C exhaust effluents

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Hamilton, P. A.

    1974-01-01

    The NASA/MSFC multilayer diffusion algorithms have been specialized for the prediction of the surface impact for the dispersive transport of the exhaust effluents from the launch of a Titan 3 vehicle. This specialization permits these transport predictions to be made at the launch range in real time so that the effluent monitoring teams can optimize their monitoring grids. Basically, the data reduction routine requires just the meteorology profiles for the thermodynamics and kinematics of the atmosphere as an input. These profiles are graphed along with the resulting exhaust cloud rise history, the center line concentrations and dosages, and the hydrogen chloride isopleths.

  10. Selective norepinephrine reuptake inhibition as a human model of orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Schroeder, Christoph; Tank, Jens; Boschmann, Michael; Diedrich, Andre; Sharma, Arya M.; Biaggioni, Italo; Luft, Friedrich C.; Jordan, Jens; Robertson, D. (Principal Investigator)

    2002-01-01

    BACKGROUND: Observations in patients with functional mutations of the norepinephrine transporter (NET) gene suggest that impaired norepinephrine uptake may contribute to idiopathic orthostatic intolerance. METHODS AND RESULTS: We studied the effect of the selective NET blocker reboxetine and placebo in a randomized, double-blind, crossover fashion on cardiovascular responses to cold pressor testing, handgrip testing, and a graded head-up tilt test (HUT) in 18 healthy subjects. In a subset, we determined isoproterenol and phenylephrine sensitivities. Subjects ingested 8 mg reboxetine or placebo 12 hours and 1 hour before testing. In the supine position, heart rate was 65+/-2 bpm with placebo and 71+/-3 bpm with reboxetine. At 75 degrees HUT, heart rate was 84+/-3 and 119+/-4 bpm with placebo and with reboxetine (P<0.0001). Mean arterial pressure was 85+/-2 with placebo and 91+/-2 mm Hg with reboxetine while supine (P<0.01) and 88+/-2 mm Hg and 90+/-3 mm Hg at 75 degrees HUT. Blood pressure responses to cold pressor and handgrip testing were attenuated with reboxetine. Reboxetine increased the sensitivity to the chronotropic effect of isoproterenol and the pressor effect of phenylephrine. Vasovagal reactions occurred in 9 subjects on placebo and in 1 subject on reboxetine. CONCLUSIONS: Selective NET blockade creates a phenotype that resembles idiopathic orthostatic intolerance. This observation supports the hypothesis that disordered norepinephrine uptake mechanisms can contribute to human cardiovascular disease. Our study also suggests that NET inhibition might be useful in preventing vasovagal reactions.

  11. From facial mimicry to emotional empathy: A role for norepinephrine?

    PubMed Central

    Harrison, Neil A.; Morgan, Robert; Critchley, Hugo D.

    2010-01-01

    Tendency to mimic others’ emotional facial expressions predicts empathy and may represent a physiological marker of psychopathy. Anatomical connectivity between amygdala, cingulate motor cortex (M3, M4), and facial nucleus demonstrates a potential neuroanatomical substrate for mimicry, though pharmacological influences are largely unknown. Norepinephrine modulation selectively impairs negative emotion recognition, reflecting a potential role in processing empathy-eliciting facial expressions. We examined effects of single doses of propranolol (beta-adrenoceptor blocker) and reboxetine (selective norepinephrine reuptake inhibitor) on automatic facial mimicry of sadness, anger, and happiness, and the relationship between mimicry and empathy. Forty-five healthy volunteers were randomized to 40 mg propranolol or 4 mg reboxetine. Two hours after drug subjects viewed and rated facial expressions of sadness, anger, and happiness, while corrugator, zygomatic, and mentalis EMG were recorded. Trait emotional empathy was measured using the Balanced Emotional Empathy Scale. EMG confirmed emotion-specific mimicry and the relationship between corrugator mimicry and empathy. Norepinephrine modulation did not alter mimicry to any expression or influence the relationship between mimicry and empathy. Corrugator but not zygomaticus mimicry predicts trait empathy, consistent with greater anatomical connectivity between amygdala and M3 coding upper facial muscle representations. Although influencing emotion perception, norepinephrine does not influence emotional facial mimicry or its relationship with trait empathy. PMID:20486012

  12. Inadvertent overinfusion of norepinephrine using infusion pump loading dose.

    PubMed

    Ibey, Andrew A M; Ciarniello, Camille; Gorelik, Stephen

    2015-12-01

    Programming infusion pumps has been recognised as a high-risk step and a source of adverse events (Nuckols et al., 2008; Hyman, 2010). Literature describing infusion pump loading dose errors and NORepinephrine complications is scarce (Girard et al., 2010). This case study presents the first ever report of an inadvertent overinfusion of NORepinephrine due to the loading dose option on the infusion pump, and resulting cardiac arrest of the patient. A patient was admitted to the emergency room and started on a NORepinephrine infusion inadvertently as a loading dose rather than a primary infusion. Historical values for the loading dose volume to be infused (VTBI) and primary rate were not adjusted during the setup. Eight hours and 58minutes later, the loading dose VTBI reached 0mL and the pump reverted to the historical primary rate of 999mL/hour. The event log showed that 37.1mL of NORepinephrine was infused resulting in an equivalent calculated bolus dose of 1.8mg administered in two minutes. The patient suffered a cardiac arrest and the infusion was stopped. No faults were found with the pump. Herein, we discuss our analysis of the pump event logs and propose further safety strategies and interventions.

  13. Genetic influence on brain catecholamines: high brain norepinephrine in salt-sensitive rats

    SciTech Connect

    Iwai, J; Friedman, R; Tassinari, L

    1980-01-01

    Rats genetically sensitive to salt-induced hypertension evinced higher levels of plasma norepinephrine and epinephrine than rats genetically resistant to hypertension. The hypertension-sensitive rats showed higher hypothalamic norepinephrine and lower epinephrine than resistant rats. In response to a high salt diet, brain stem norepinephrine increased in sensitive rats while resistant rats exhibited a decrease on the same diet.

  14. Pressure dependence of the oxygen reduction reaction at the platinum microelectrode/nafion interface - Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.

  15. Dysregulation of Norepinephrine Release in the Absence of Functional Synaptotagmin 7.

    PubMed

    Shih, Alvin M; Varghese, Lincy; Bittar, Alice; Park, Sung-Hoon; Chung, Jin Mo; Shin, Ok-Ho

    2016-06-01

    Synaptotagmin 7 (Syt7) is expressed in cardiac sympathetic nerve terminals where norepinephrine (NE) is released in both Ca(2+)-dependent exocytosis and Ca(2+)-independent norepinephrine transporter (NET)-mediated overflow. The role of Syt7 in the regulation of NE release from cardiac sympathetic nerve terminals is tested by employing a Syt7 knock-in mouse line that expresses a non-functional mutant form of Syt7. In cardiac sympathetic nerve terminals prepared from these Syt7 knock-in mice, the Ca(2+)-dependent component of NE release was diminished. However, these terminals displayed upregulated function of NET (∼130% of controls) and a significant increase in Ca(2+)-independent NE overflow (∼140% of controls), which is greater than the Ca(2+)-dependent component of NE exocytosis occurring in wild-type controls. Consistent with a significant increase in NE overflow, the Syt7 knock-in mice showed significantly higher blood pressures compared to those of littermate wild-type and heterozygous mice. Our results indicate that the lack of functional Syt7 dysregulates NE release from cardiac sympathetic nerve terminals.

  16. Norepinephrine inhibits islet lipid metabolism, sup 45 Ca sup 2+ uptake, and insulin secretion

    SciTech Connect

    Vara, E.; Tamarit-Rodriguez, J. )

    1989-12-01

    We have previously shown that palmitate potentiates, in isolated islets, glucose-induced stimulation of insulin release, de novo lipid synthesis, and {sup 45}Ca{sup 2+} turnover in a correlative manner. Norepinephrine, a known inhibitor of the secretory response, has now been used to further investigate the relationships among the three phenomena. The amine decreased insulin secretion dose dependently in response to glucose and palmitate with alpha 2-adrenergic specificity. It also reduced similarly the oxidation of 1 mmol/l (U-{sup 14}C)palmitate as well as the incorporation of 20 mmol/l D-(U-{sup 14}C)glucose into islet phospholipids and neutral lipids through an alpha 2-adrenergic mechanism. These results indirectly suggest that alpha 2-adrenoceptor stimulation inhibits in islets both palmitate oxidation and esterification through an inactivation of long-chain acyl-CoA synthetase and other enzymes of glycerolipid synthesis. Islet uptake of {sup 45}Ca{sup 2+} was also decreased by norepinephrine with a similar sensitivity to that shown by insulin release and de novo lipid synthesis. Therefore, it is suggested that alpha 2-adrenoceptor-mediated reduction of the potentiation by palmitate of the secretory response to glucose depends on the inhibition of fatty acid metabolism and the resulting impairment of de novo lipid synthesis and {sup 45}Ca{sup 2+} turnover.

  17. SYMPATHETIC INNERVATION, NOREPINEPHRINE CONTENT, AND NOREPINEPHRINE TURNOVER IN ORTHOTOPIC AND SPONTANEOUS MODELS OF BREAST CANCER

    PubMed Central

    Dawes, Ryan P.; Madden, Kelley S.

    2016-01-01

    Activation of the sympathetic nervous system (SNS) drives breast cancer progression in preclinical breast cancer models, but it has yet to be established if neoplastic and stromal cells residing in the tumor are directly targeted by locally released norepinephrine (NE). In murine orthotopic and spontaneous mammary tumors, tyrosine hydroxylase (TH)+ sympathetic nerves were limited to the periphery of the tumor. No TH+ staining was detected deeper within these tumors, even in regions with a high density of blood vessels. NE concentration was much lower in tumors compared to the more densely innervated spleen, reflecting the relative paucity of tumor TH+ innervation. Tumor and spleen NE concentration decreased with increased tissue mass. In mice treated with the neurotoxin 6-hydroxydopamine (6-OHDA) to selectively destroy sympathetic nerves, tumor NE concentration was reduced approximately 50%, suggesting that the majority of tumor NE is derived from local sympathetic nerves. To evaluate NE utilization, NE turnover in orthotopic 4T1 mammary tumors was compared to spleen under baseline and stress conditions. In non-stressed mice, NE turnover was equivalent between tumor and spleen. In mice exposed to a stressor, tumor NE turnover was increased compared to spleen NE turnover, and compared to non-stressed tumor NE turnover. Together, these results demonstrate that NE in mammary tumors is derived from local sympathetic nerves that synthesize and metabolize NE. However, differences between spleen and tumor NE turnover with stressor exposure suggest that sympathetic NE release is regulated differently within the tumor microenvironment compared to the spleen. Local mammary tumor sympathetic innervation, despite its limited distribution, is responsive to stressor exposure and therefore can contribute to stress-induced tumor progression. PMID:26718447

  18. Sympathetic innervation, norepinephrine content, and norepinephrine turnover in orthotopic and spontaneous models of breast cancer.

    PubMed

    Szpunar, Mercedes J; Belcher, Elizabeth K; Dawes, Ryan P; Madden, Kelley S

    2016-03-01

    Activation of the sympathetic nervous system (SNS) drives breast cancer progression in preclinical breast cancer models, but it has yet to be established if neoplastic and stromal cells residing in the tumor are directly targeted by locally released norepinephrine (NE). In murine orthotopic and spontaneous mammary tumors, tyrosine hydroxylase (TH)+ sympathetic nerves were limited to the periphery of the tumor. No TH+ staining was detected deeper within these tumors, even in regions with a high density of blood vessels. NE concentration was much lower in tumors compared to the more densely innervated spleen, reflecting the relative paucity of tumor TH+ innervation. Tumor and spleen NE concentration decreased with increased tissue mass. In mice treated with the neurotoxin 6-hydroxydopamine (6-OHDA) to selectively destroy sympathetic nerves, tumor NE concentration was reduced approximately 50%, suggesting that the majority of tumor NE is derived from local sympathetic nerves. To evaluate NE utilization, NE turnover in orthotopic 4T1 mammary tumors was compared to spleen under baseline and stress conditions. In non-stressed mice, NE turnover was equivalent between tumor and spleen. In mice exposed to a stressor, tumor NE turnover was increased compared to spleen NE turnover, and compared to non-stressed tumor NE turnover. Together, these results demonstrate that NE in mammary tumors is derived from local sympathetic nerves that synthesize and metabolize NE. However, differences between spleen and tumor NE turnover with stressor exposure suggest that sympathetic NE release is regulated differently within the tumor microenvironment compared to the spleen. Local mammary tumor sympathetic innervation, despite its limited distribution, is responsive to stressor exposure and therefore can contribute to stress-induced tumor progression.

  19. A technical review of urban land use - transportation models as tools for evaluating vehicle travel reduction strategies

    SciTech Connect

    Southworth, F.

    1995-07-01

    The continued growth of highway traffic in the United States has led to unwanted urban traffic congestion as well as to noticeable urban air quality problems. These problems include emissions covered by the 1990 Clean Air Act Amendments (CAAA) and 1991 Intermodal Surface Transportation Efficiency Act (ISTEA), as well as carbon dioxide and related {open_quotes}greenhouse gas{close_quotes} emissions. Urban travel also creates a major demand for imported oil. Therefore, for economic as well as environmental reasons, transportation planning agencies at both the state and metropolitan area level are focussing a good deal of attention on urban travel reduction policies. Much discussed policy instruments include those that encourage fewer trip starts, shorter trip distances, shifts to higher-occupancy vehicles or to nonvehicular modes, and shifts in the timing of trips from the more to the less congested periods of the day or week. Some analysts have concluded that in order to bring about sustainable reductions in urban traffic volumes, significant changes will be necessary in the way our households and businesses engage in daily travel. Such changes are likely to involve changes in the ways we organize and use traffic-generating and-attracting land within our urban areas. The purpose of this review is to evaluate the ability of current analytic methods and models to support both the evaluation and possibly the design of such vehicle travel reduction strategies, including those strategies involving the reorganization and use of urban land. The review is organized into three sections. Section 1 describes the nature of the problem we are trying to model, Section 2 reviews the state of the art in operational urban land use-transportation simulation models, and Section 3 provides a critical assessment of such models as useful urban transportation planning tools. A number of areas are identified where further model development or testing is required.

  20. Noise and Fuel Burn Reduction Potential of an Innovative Subsonic Transport Configuration

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Nickol, Craig L.; Thomas, Russell H.

    2014-01-01

    A study is presented for the noise and fuel burn reduction potential of an innovative double deck concept aircraft with two three-shaft direct-drive turbofan engines. The engines are mounted from the fuselage so that the engine inlet is over the main wing. It is shown that such an aircraft can achieve a cumulative Effective Perceived Noise Level (EPNL) about 28 dB below the current aircraft noise regulations of Stage 4. The combination of high bypass ratio engines and advanced wing design with laminar flow control technologies provide fuel burn reduction and low noise levels simultaneously. For example, the fuselage mounted engine position provides more than 4 EPNLdB of noise reduction by shielding the inlet radiated noise. To identify the potential effect of noise reduction technologies on this concept, parametric studies are presented to reveal the system level benefits of various emerging noise reduction concepts, for both engine and airframe noise reduction. These concepts are discussed both individually to show their respective incremental noise reduction potential and collectively to assess their aggregate effects on the total noise. Through these concepts approximately about 8 dB of additional noise reduction is possible, bringing the cumulative noise level of this aircraft to 36 EPNLdB below Stage 4, if the entire suite of noise reduction technologies would mature to practical application. In a final step, an estimate is made for this same aircraft concept but with higher bypass ratio, geared, turbofan engines. With this geared turbofan propulsion system, the noise is estimated to reach as low as 40-42 dB below Stage 4 with a fuel burn reduction of 43-47% below the 2005 best-in-class aircraft baseline. While just short of the NASA N+2 goals of 42 dB and 50% fuel burn reduction, for a 2025 in service timeframe, this assessment shows that this innovative concept warrants refined study. Furthermore, this design appears to be a viable potential future passenger

  1. Norepinephrine Modulates Coding of Complex Vocalizations in the Songbird Auditory Cortex Independent of Local Neuroestrogen Synthesis.

    PubMed

    Ikeda, Maaya Z; Jeon, Sung David; Cowell, Rosemary A; Remage-Healey, Luke

    2015-06-24

    The catecholamine norepinephrine plays a significant role in auditory processing. Most studies to date have examined the effects of norepinephrine on the neuronal response to relatively simple stimuli, such as tones and calls. It is less clear how norepinephrine shapes the detection of complex syntactical sounds, as well as the coding properties of sensory neurons. Songbirds provide an opportunity to understand how auditory neurons encode complex, learned vocalizations, and the potential role of norepinephrine in modulating the neuronal computations for acoustic communication. Here, we infused norepinephrine into the zebra finch auditory cortex and performed extracellular recordings to study the modulation of song representations in single neurons. Consistent with its proposed role in enhancing signal detection, norepinephrine decreased spontaneous activity and firing during stimuli, yet it significantly enhanced the auditory signal-to-noise ratio. These effects were all mimicked by clonidine, an α-2 receptor agonist. Moreover, a pattern classifier analysis indicated that norepinephrine enhanced the ability of single neurons to accurately encode complex auditory stimuli. Because neuroestrogens are also known to enhance auditory processing in the songbird brain, we tested the hypothesis that norepinephrine actions depend on local estrogen synthesis. Neither norepinephrine nor adrenergic receptor antagonist infusion into the auditory cortex had detectable effects on local estradiol levels. Moreover, pretreatment with fadrozole, a specific aromatase inhibitor, did not block norepinephrine's neuromodulatory effects. Together, these findings indicate that norepinephrine enhances signal detection and information encoding for complex auditory stimuli by suppressing spontaneous "noise" activity and that these actions are independent of local neuroestrogen synthesis.

  2. Norepinephrine as a Potential Aggravator of Symptomatic Cerebral Vasospasm: Two Cases and Argument for Milrinone Therapy

    PubMed Central

    Zeiler, F. A.; Silvaggio, J.; Kaufmann, A. M.; Gillman, L. M.; West, M.

    2014-01-01

    Background. During hypertensive therapy for post-subarachnoid hemorrhage (SAH) symptomatic vasospasm, norepinephrine is commonly used to reach target blood pressures. Concerns over aggravation of vasospasm with norepinephrine exist. Objective. To describe norepinephrine temporally related deterioration in neurological examination of two post-SAH patients in vasospasm. Methods. We retrospectively reviewed two charts of patients with delayed cerebral ischemia (DCI) post-SAH who deteriorated with norepinephrine infusions. Results. We identified two patients with DCI post-SAH who deteriorated during hypertensive therapy with norepinephrine. The first, a 43-year-old male presented to hospital with DCI, failed MABP directed therapy with rapid deterioration in exam with high dose norepinephrine and MABP of 140–150 mm Hg. His exam improved on continuous milrinone and discontinuation of norepinephrine. The second, a 39-year-old female who developed DCI on postbleed day 8 responded to milrinone therapy upfront. During further deterioration and after angioplasty, norepinephrine was utilized to drive MABP to 130–140 mm Hg. Progressive deterioration in examination occurred after angioplasty as norepinephrine doses escalated. After discontinuation of norepinephrine and continuation of milrinone, function dramatically returned but not to baseline. Conclusions. The potential exists for worsening of DCI post-SAH with hypertensive therapy directed by norepinephrine. A potential role exists for vasodilation and inotropic directed therapy with milrinone in the setting of DCI post-SAH. PMID:25431686

  3. Global threat reduction initiative efforts to address transportation challenges associated with the recovery of disused radioactive sealed sources - 10460

    SciTech Connect

    Whitworth, Julie; Abeyta, Cristy L; Griffin, Justin M; Matzke, James L; Pearson, Michael W; Cuthbertson, Abigail; Rawl, Richard; Singley, Paul

    2010-01-01

    Proper disposition of disused radioactive sources is essential for their safe and secure management and necessary to preclude their use in malicious activities. Without affordable, timely transportation options, disused sealed sources remain in storage at hundreds of sites throughout the country and around the world. While secure storage is a temporary measure, the longer sources remain disused or unwanted the chances increase that they will become unsecured or abandoned. The Global Threat Reduction Initiative's Off-Site Source Recovery Project (GTRIlOSRP), recovers thousands of disused and unwanted sealed sources annually as part of GTRl's larger mission to reduce and protect high risk nuclear and radiological materials located at civilian sites worldwide. Faced with decreasing availability of certified transportation containers to support movement of disused and unwanted neutron- and beta/gamma-emitting radioactive sealed sources, GTRIlOSRP has initiated actions to ensure the continued success of the project in timely recovery and management of sealed radioactive sources. Efforts described in this paper to enhance transportation capabilities include: {sm_bullet} Addition of authorized content to existing and planned Type B containers to support the movement of non-special form and other Type B-quantity sealed sources; {sm_bullet} Procurement of vendor services for the design, development, testing and certification of a new Type B container to support transportation of irradiators, teletherapy heads or sources removed from these devices using remote handling capabilities such as the IAEA portable hot cell facility; {sm_bullet} Expansion of shielded Type A container inventory for transportation of gamma-emitting sources in activity ranges requiring use of shielding for conformity with transportation requirements; {sm_bullet} Approval of the S300 Type A fissile container for transport of Pu-239 sealed sources internationally; {sm_bullet} Technology transfer of field

  4. The central nervous norepinephrine network links a diminished sense of emotional well-being to an increased body weight

    PubMed Central

    Melasch, J; Rullmann, M; Hilbert, A; Luthardt, J; Becker, GA; Patt, M; Villringer, A; Arelin, K; Meyer, PM; Lobsien, D; Ding, Y-S; Müller, K; Sabri, O; Hesse, S; Pleger, B

    2016-01-01

    OBJECTIVES The neurobiological mechanisms linking obesity to emotional distress remain largely undiscovered. METHODS In this pilot study, we combined positron emission tomography, using the norepinephrine transporter (NET) tracer [11C]-O-methylreboxetine, with functional connectivity magnetic resonance imaging, the Beck depression inventory (BDI), and the impact of weight on quality of life-Lite questionnaire (IWQOL–Lite), to investigate the role of norepinephrine in the severity of depression (BDI), as well as in the loss of emotional well-being with body weight (IWQOL–Lite). RESULTS In a small group of lean-to-morbidly obese individuals (n = 20), we show that an increased body mass index (BMI) is related to a lowered NET availability within the hypothalamus, known as the brain’s homeostatic control site. The hypothalamus displayed a strengthened connectivity in relation to the individual hypothalamic NET availability to the anterior insula/frontal operculum, as well as the medial orbitofrontal cortex, assumed to host the primary and secondary gustatory cortex, respectively (n = 19). The resting-state activity in these two regions was correlated positively to the BMI and IWQOL–Lite scores, but not to the BDI, suggesting that the higher the resting-state activity in these regions, and hence the higher the BMI, the stronger the negative impact of the body weight on the individual’s emotional well-being was. CONCLUSIONS This pilot study suggests that the loss in emotional well-being with weight is embedded within the central norepinephrine network. PMID:26620766

  5. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    SciTech Connect

    Deng, Baolin; Thornton, Edward C.; Cantrell, Kirk J.; Olsen, Khris B.; Amonette, James E.

    2003-06-01

    Immobilization of toxic and radioactive metals (e.g., Cr, Tc, and U) in the vadose zone by the In Situ Gaseous Reduction (ISGR) using hydrogen sulfide (H2S) is a promising technology for soil remediation. Earlier laboratory studies have shown that Cr(VI) in soil samples can be effectively immobilized by treatment with dilute gaseous H2S. A field test completed in 1999 at White Sand Missile Range, New Mexico, has shown a 70% immobilization of Cr(VI). The objective of this EMSP project is to characterize the interactions among H2S, the metal contaminants, and soil components. Understanding these interactions is needed to optimize the remediation system and to assess the long-term effectiveness of the technology. Proposed research tasks included: (A) Evaluation of the potential catalytic effect of mineral surfaces on the rate of Cr(VI) reduction by H2S and the rate of H2S oxidation by air; (B) Identification of the reactions of soil minerals with H2S and determination of associated reaction rates; (C) Evaluation of the role of soil water chemistry on the reduction of Cr(VI) by H2S; (D) Assessment of the reductive buffering capacity of H2S-reduced soil and the potential for emplacement of long-term vadose zone reactive barriers; and (E) Evaluation of the potential for immobilization of Tc and U in the vadose zone by reduction and an assessment of the potential for remobilization by subsequent reoxidation.

  6. Flight-test measurement of the noise reduction of a jet transport delayed flap approach procedure

    NASA Technical Reports Server (NTRS)

    Foster, J. D.; Lasagna, P. L.

    1976-01-01

    A delayed flap approach procedure was flight tested using the NASA CV-990 airplane to measure and analyze the noise produced beneath the flight path. Three other types of landing approaches were also flight tested to provide a comparison of the noise reduction benefits to the delayed flap approach. The conventional type of approach was used as a baseline to compare the effectiveness of the other approaches. The decelerating approach is a variation of the delayed flap approach. A detailed comparison of the ground perceived noise generated during the approaches is presented. For this comparison, the measured noise data were normalized to compensate for variations in aircraft weight and winds that occurred during the flight tests. The data show that the reduced flap approach offers some noise reduction, while the delayed flap and decelerating approaches offer significant noise reductions over the conventional approach.

  7. Mechanisms of immune regulation by norepinephrine and cholera toxin

    SciTech Connect

    Campbell, K.S.

    1988-01-01

    Norepinephrine has previously been demonstrated by this laboratory to potentiate the in vitro T-dependent antibody response through the stimulation of {beta}-adrenergic receptors. The role of {beta}-adrenergic receptor subtypes in norepinephrine-induced potentiation of the antibody responses was examined with selective {beta}-adrenergic antagonists. The antagonists were metoprolol ({beta}{sub 1}-selective), ICI 118-551 ({beta}{sub 2}-selective), and propranolol ({beta}-non-selective). Both propranolol and ICI 118-551 blocked norepinephrine-induced potentiation of the antibody response, but metoprolol was ineffective. Receptor binding competition of antagonists with the radioligant, ({sup 3}H)CGP-12177 was examined and results were analyzed with the computer program, LIGAND. Competition by ICI 118-551 identified 75% {beta}{sub 2}- and 25% {beta}{sub 1}-adrenergic receptors on splenic mononuclear cells. Enriched T lymphocytes exhibited 75% {beta}{sub 2}-adrenergic receptors, while enriched B lymphocytes contained 90% {beta}{sub 2}-adrenergic receptors as identified by ICI 118-551. Greater than twice as many total receptors were identified on B lymphocytes than T lymphocytes. A T cell lymphoma contained about 60% {beta}{sub 2}-receptors, while 100% were {beta}{sub 2} receptors on a B cell lymphoma, as assessed by ICI 118-551. Results support a heterogeneous {beta}-adrenergic receptor population on T lymphocytes and a more homogeneous {beta}{sub 2}-population on B lymphocytes.

  8. Role of brain norepinephrine in the behavioral response to stress.

    PubMed

    Morilak, David A; Barrera, Gabe; Echevarria, David J; Garcia, April S; Hernandez, Angelica; Ma, Shuaike; Petre, Corina O

    2005-12-01

    The brain noradrenergic system is activated by acute stress. The post-synaptic effects of norepinephrine (NE), exerted at a cellular or neural circuit level, have been described as modulatory in nature, as NE facilitates responses evoked in target cells by both excitatory and inhibitory afferent input. Over the past few years, we have undertaken a series of studies to understand how these cellular modulatory effects of NE, elicited by acute stress, might translate into modulation of the behavioral-affective components of the whole-animal response to stress. Using microdialysis, we have demonstrated that acute immobilization stress activates NE release in a number of stress-related limbic forebrain target regions, such as the central and medial amygdala, lateral bed nucleus of the stria terminalis, medial prefrontal cortex, and lateral septum. Using microinjections of adrenergic antagonist drugs directly into these regions, we have shown that this stress-induced release of NE facilitates a number of anxiety-like behavioral responses that are mediated in these regions, including stress-induced reduction of open-arm exploration on the elevated plus-maze, stress-induced reduction of social interaction behavior, and activation of defensive burying behavior by contact with an electrified probe. Dysregulation of the brain noradrenergic system may be a factor in determining vulnerability to stress-related pathology, or in the interaction of genetic vulnerability and environmental sensitization. Compared to outbred Sprague-Dawley rats, we have shown that the modulatory effect of NE is deficient in Wistar-Kyoto rats, which also exhibit attenuated behavioral reactivity to acute stress, as well as increased vulnerability to stress-induced gastric ulcers and exaggerated activation of the hypothalamic-pituitary-adrenal (HPA) stress axis. Further, repeated exposure to mild intermittent cold stress resulted in a much greater sensitization of both the brain noradrenergic system and

  9. Aircraft surface coatings study: Energy efficient transport program. [sprayed and adhesive bonded coatings for drag reduction

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Surface coating materials for application on transport type aircraft to reduce drag, were investigated. The investigation included two basic types of materials: spray on coatings and adhesively bonded films. A cost/benefits analysis was performed, and recommendations were made for future work toward the application of this technology.

  10. Structural and functional studies of multiheme cytochromes C involved in extracellular electron transport in bacterial dissimilatory metal reduction.

    PubMed

    Tikhonova, T V; Popov, V O

    2014-12-01

    Bacteria utilizing insoluble mineral forms of metal oxides as electron acceptors in respiratory processes are widespread in the nature. The electron transfer from a pool of reduced quinones in the cytoplasmic membrane across the periplasm to the bacterial outer membrane and then to an extracellular acceptor is a key step in bacterial dissimilatory metal reduction. Multiheme cytochromes c play a crucial role in the extracellular electron transfer. The bacterium Shewanella oneidensis MR-1 was used as a model organism to study the mechanism of extracellular electron transport. In this review, we discuss recent data on the composition, structures, and functions of multiheme cytochromes c and their functional complexes responsible for extracellular electron transport in Shewanella oneidensis.

  11. Reduction of intra-hospital transport time using the easy tube arrange device

    PubMed Central

    Joo, Ki Hyuk; Yoo, In Sool; Lee, Jinwoong; Kim, Seung Whan; Ryu, Seung; You, Yeon Ho; Cho, Yong Chul; Jeong, Woon Jun; Ahn, Byung Jun; Cho, Sung Uk

    2016-01-01

    Objective Critically ill patients sometimes require transport to another location. Longer intra-hospital transport time increases the risk of hemodynamic instability and associated complications. Therefore, reducing intra-hospital transport time is critical. Our objective was to evaluate whether or not a new device the easy tube arrange device (ETAD) has the potential to reduce intra-hospital transport time of critically ill patients. Methods We enrolled volunteers for this prospective randomized controlled study. Each participant arranged four, five, and six fluid tubings, monitoring lines, and therapeutic equipment on a cardiopulmonary resuscitation training mannequin (Resusci Anne). The time required to arrange the fluid tubings for intra-hospital transport using two different methods was evaluated. Results The median time to arrange four, five, and six fluid tubings was 86.00 (76.50 to 98.50), 96.00 (86.00 to 113.00), and 115.50 (93.00 to 130.75) seconds, respectively, using the conventional method and 60.50 (52.50 to 72.75), 69.00 (57.75 to 80.80), and 72.50 (64.75 to 90.50) seconds using the ETAD (all P<0.001). The total duration (for preparing the basic setting and organizing before and after the transport) was 280.00 (268.75 to 293.00), 315.50 (304.75 to 330.75), and 338.00 (319.50 to 360.25) seconds for four, five, and six fluid tubings, respectively, using the conventional method and 274.50 (261.75 to 289.25), 288.00 (271.75 to 298.25), and 301.00 (284.50 to 310.75) seconds, respectively, using the new method (P=0.024, P<0.001, and P<0.001, respectively). Conclusion The ETAD was convenient to use, reduced the time to arrange medical tubings, and is expected to assist medical staff during intra-hospital transport. PMID:27752622

  12. Arthroscopic Reduction and Transportal Screw Fixation of Acetabular Posterior Wall Fracture: Technical Note

    PubMed Central

    Park, Jin young; Kim, Che Keun; Huh, Soon Ho; Kim, Se Jin; Jung, Bo Hyun

    2016-01-01

    Acetabular fractures can be treated with variable method. In this study, acetabular posterior wall fracture was treated with arthroscopic reduction and fixation using cannulated screw. The patient recovered immediately and had a satisfactory outcome. In some case of acetabular fracture could be good indication with additional advantages of joint debridement and loose body removal. So, we report our case with technical note. PMID:27536654

  13. Reduction of degradation in vapor phase transported InP/InGaAsP mushroom stripe lasers

    SciTech Connect

    Jung, H.; Burkhardt, E.G.; Pfister, W.

    1988-10-03

    The rapid degradation rate generally observed in InP/InGaAsP mushroom stripe lasers can be considerably decreased by regrowing the open sidewalls of the active stripe with low-doped InP in a second epitaxial step using the hydride vapor phase transport technique. This technique does not change the fundamental laser parameters like light-current and current-voltage characteristics. Because of this drastic reduction in degradation, the vapor phase epitaxy regrown InP/InGaAsP mushroom laser seems to be an interesting candidate for application in optical communication.

  14. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    SciTech Connect

    Principal Investigator: Baolin Deng, University of Missouri, Columbia, MO; Co-Principal Investigator: Silvia Sabine Jurisson, University of Missouri, Columbia, MO; Co-Principal Investigator: Edward C. Thornton, Pacific Northwest National Laboratory Richland, WA; Co-Principal Investigator: Jeff Terry, Illinois Institute of Technology, Chicago, IL

    2008-05-12

    There are many soil contamination sites at the Department of Energy (DOE) installations that contain radionuclides and toxic metals such as uranium (U), technetium (Tc), and chromium (Cr). Since these contaminants are the main 'risk drivers' at the Hanford site (WA) and some of them also pose significant risk at other DOE facilities (e.g., Oak Ridge Reservation - TN; Rocky Flats - CO), development of technologies for cost effective site remediation is needed. Current assessment indicates that complete removal of these contaminants for ex-situ disposal is infeasible, thus in-situ stabilization through reduction to insoluble species is considered one of the most important approaches for site remediation. In Situ Gaseous Reduction (ISGR) is a technology developed by Pacific Northwest National Laboratory (PNNL) for vadose zone soil remediation. The ISGR approach uses hydrogen sulfide (H{sub 2}S) for reductive immobilization of contaminants that show substantially lower mobility in their reduced forms (e.g., Tc, U, and Cr). The technology can be applied in two ways: (i) to immobilize or stabilize pre-existing contaminants in the vadose zone soils by direct H{sub 2}S treatment, or (ii) to create a permeable reactive barrier (PRB) that prevents the migration of contaminants. Direct treatment involves reduction of the contaminants by H{sub 2}S to less mobile species. Formation of a PRB is accomplished through reduction of ferric iron species in the vadose zone soils by H{sub 2}S to iron sulfides (e.g., FeS), which provides a means for capturing the contaminants entering the treated zone. Potential future releases may occur during tank closure activities. Thus, the placement of a permeable reactive barrier by ISGR treatment can be part of the leak mitigation program. Deployment of these ISGR approaches, however, requires a better understanding of the immobilization kinetics and mechanisms, and a better assessment of the long-term effectiveness of treatment. The primary

  15. Effects of cadmium on the uptake of dopamine and norepinephrine in rat brain synaptosomes

    SciTech Connect

    Not Available

    1986-09-01

    Cadmium (Cd) a known environmental contaminant is neurotoxic. Kinetics of cadmium inhibition indicate that the metal may compete with ATP and Na/sup +/ sites on Na/sup +/-K/sup +/ ATPase in rat brain synaptosomes. Uptake and release processes of catecholamines into the central nervous system are dependent on membrane bound Na/sup +/-K/sup +/ ATPase. It is suggested that the uptake and release processes of dopamine (DA) and norepinephrine (NE) in neurons are energy utilizing and hence are dependent on active ion transport. If the two aforementioned mechanisms are truly interdependent, then any alteration caused by a toxin to either of the above two mechanisms should also cause a parallel change in the other. The purpose of this study was to examine in vitro effects of cadmium chloride on the uptake of DA and NE and the activity of ATPase in the rat brain synaptosome.

  16. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Li, Yihong; Gemmen, Randall; Liu, Xingbo

    In recent years, various models have been developed for describing the reaction mechanisms in solid oxide fuel cell (SOFC) especially for the cathode electrode. However, many fundamental issues regarding the transport of oxygen and electrode kinetics have not been fully understood. This review tried to summarize the present status of the SOFC cathode modeling efforts, and associated experimental approaches on this topic. In addition, unsolved problems and possible future research directions for SOFC cathode kinetics had been discussed.

  17. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes

    SciTech Connect

    Li YH, Gemmen R, Liu XB

    2010-06-01

    In recent years, various models have been developed for describing the reaction mechanisms in solid oxide fuel cell (SOFC) especially for the cathode electrode. However, many fundamental issues regarding the transport of oxygen and electrode kinetics have not been fully understood. This review tried to summarize the present status of the SOFC cathode modeling efforts, and associated experimental approaches on this topic. In addition, unsolved problems and possible future research directions for SOFC cathode kinetics had been discussed

  18. Potential emissions reduction in road transport sector using biofuel in developing countries

    NASA Astrophysics Data System (ADS)

    Liaquat, A. M.; Kalam, M. A.; Masjuki, H. H.; Jayed, M. H.

    2010-10-01

    Use of biofuels as transport fuel has high prospect in developing countries as most of them are facing severe energy insecurity and have strong agricultural sector to support production of biofuels from energy crops. Rapid urbanization and economic growth of developing countries have spurred air pollution especially in road transport sector. The increasing demand of petroleum based fuels and their combustion in internal combustion (IC) engines have adverse effect on air quality, human health and global warming. Air pollution causes respiratory problems, adverse effects on pulmonary function, leading to increased sickness absenteeism and induces high health care service costs, premature birth and even mortality. Production of biofuels promises substantial improvement in air quality through reducing emission from biofuel operated automotives. Some of the developing countries have started biofuel production and utilization as transport fuel in local market. This paper critically reviews the facts and prospects of biofuel production and utilization in developing countries to reduce environmental pollution and petro dependency. Expansion of biofuel industries in developing countries can create more jobs and increase productivity by non-crop marginal lands and wastelands for energy crops plantation. Contribution of India and China in biofuel industry in production and utilization can dramatically change worldwide biofuel market and leap forward in carbon cut as their automotive market is rapidly increasing with a souring proportional rise of GHG emissions.

  19. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    SciTech Connect

    Baolin Deng; Edward Thornton; Kirk Cantrell; Khris Olsen; James Amonette

    2004-01-11

    Immobilization of toxic and radioactive metals in the vadose zone by In Situ Gaseous Reduction (ISGR) using hydrogen sulfide (H2S) is a promising technology for soil remediation. Earlier laboratory and field studies have shown that Cr(VI) can be effectively immobilized by treatment with dilute gaseous H2S. The objective of this project is to characterize the interactions among H2S, the metal contaminants, and soil components. Understanding these interactions is needed to assess the long-term effectiveness of the technology and to optimize the remediation system.

  20. A Combined Approach to Model Reduction for Nonlinear Groundwater Flow and Solute Transport Simulations Using POD and DEIM.

    NASA Astrophysics Data System (ADS)

    Stanko, Z.; Boyce, S. E.; Yeh, W. W. G.

    2015-12-01

    Model reduction techniques using proper orthogonal decomposition (POD) have been very effective in applications to confined groundwater flow models. These techniques consist of performing a projection of the solution of the full model onto a reduced basis. POD combined with the snapshot approach has been successfully applied to highly discretized linear models. In many cases, the reduced model is orders of magnitude smaller than the full model and runs 1,000 times faster. For nonlinear models, such as the unconfined groundwater flow, direct application of POD requires additional calls to the full model to generate additional snapshots. This is time consuming and increases the dimension of the reduced model. The discrete empirical interpolation method (DEIM) is a technique that avoids the additional full model calls and captures the dynamics of the nonlinear term while reducing the dimensions. Here, POD and DEIM are combined to reduce both the nonlinear unconfined groundwater flow and solute transport equations. To prove the concept, simple one-dimensional models are created for MODFLOW and MT3DMS separately. The dual approach is then tested on a density-dependent flow and transport simulation using the LMT package developed for MODFLOW. For each iteration of the nonlinear flow solver and the transport solver, the respective reduced models are solved instead. Numerical experiments show that significant reduction is obtainable before errors become too large. This method is well suited for a coastal aquifer seawater intrusion scenario, where nonlinearities only exist in small subregions of the model domain. A fine discretization can be utilized and POD will effectively eliminate unnecessary parameterization by projecting the full model system matrix onto a subspace with fewer column dimensions. DEIM can then reduce the row dimension of the original system by using only those state variable nodes with the most influence. This combined approach allows for full

  1. Health Cobenefits and Transportation-Related Reductions in Greenhouse Gas Emissions in the San Francisco Bay Area

    PubMed Central

    Woodcock, James; Co, Sean; Ostro, Bart; Fanai, Amir; Fairley, David

    2013-01-01

    Objectives. We quantified health benefits of transportation strategies to reduce greenhouse gas emissions (GHGE). Methods. Statistics on travel patterns and injuries, physical activity, fine particulate matter, and GHGE in the San Francisco Bay Area, California, were input to a model that calculated the health impacts of walking and bicycling short distances usually traveled by car or driving low-emission automobiles. We measured the change in disease burden in disability-adjusted life years (DALYs) based on dose–response relationships and the distributions of physical activity, particulate matter, and traffic injuries. Results: Increasing median daily walking and bicycling from 4 to 22 minutes reduced the burden of cardiovascular disease and diabetes by 14% (32 466 DALYs), increased the traffic injury burden by 39% (5907 DALYS), and decreased GHGE by 14%. Low-carbon driving reduced GHGE by 33.5% and cardiorespiratory disease burden by less than 1%. Conclusions: Increased physical activity associated with active transport could generate a large net improvement in population health. Measures would be needed to minimize pedestrian and bicyclist injuries. Together, active transport and low-carbon driving could achieve GHGE reductions sufficient for California to meet legislative mandates. PMID:23409903

  2. Reduction-Induced Suppression of Electron Flow (RISE) in the Photosynthetic Electron Transport System of Synechococcus elongatus PCC 7942.

    PubMed

    Shaku, Keiichiro; Shimakawa, Ginga; Hashiguchi, Masaki; Miyake, Chikahiro

    2016-07-01

    Accumulation of electrons under conditions of environmental stress produces a reduced state in the photosynthetic electron transport (PET) system and causes the reduction of O2 by PSI in the thylakoid membranes to produce the reactive oxygen species superoxide radical, which irreversibly inactivates PSI. This study aims to elucidate the molecular mechanism for the oxidation of reaction center Chl of PSI, P700, after saturated pulse (SP) light illumination of the cyanobacterium Synechococcus elongatus PCC 7942 under steady-state photosynthetic conditions. Both P700 and NADPH were transiently oxidized after SP light illumination under CO2-depleted photosynthesis conditions. In contrast, the Chl fluorescence intensity transiently increased. Compared with the wild type, the increase in Chl fluorescence and the oxidations of P700 and NADPH were greatly enhanced in a mutant (Δflv1/3) deficient in the genes encoding FLAVODIIRON 1 (FLV1) and FLV3 proteins even under high photosynthetic conditions. Furthermore, oxidation of Cyt f was also observed in the mutant. After SP light illumination, a transient suppression of O2 evolution was also observed in Δflv1/3. From these observations, we propose that the reduction in the plastquinone (PQ) pool suppresses linear electron flow at the Cyt b6/f complex, which we call the reduction-induced suppression of electron flow (RISE) in the PET system. The accumulation of the reduced form of PQ probably suppresses turnover of the Q cycle in the Cyt b6/f complex.

  3. O-atom transport catalysis by atomic cations in the gas phase: reduction of N2O by CO.

    PubMed

    Blagojevic, Voislav; Orlova, Galina; Bohme, Diethard K

    2005-03-16

    Atomic cations (26), M+, have been shown to lie within a thermodynamic window for O-atom transport catalysis of the reduction of N2O by CO and have been checked for catalytic activity at room temperature with kinetic measurements using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Only 10 of these 26 atomic cations were seen to be catalytic: Ca+, Fe+, Ge+, Sr+, Ba+, Os+, Ir+, Pt+, Eu+, and Yb+. The remaining 16 cations that lie in the thermodynamic window (Cr+, Mn+, Co+, Ni+, Cu+, Se+, Mo+, Ru+, Rh+, Sn+, Te+, Re+, Pb+, Bi+, Tm+, and Lu+) react too slowly at room temperature either in the formation of MO+ or in its reduction by CO. Many of these reactions are known to be spin forbidden and a few actually may lie outside the thermodynamic window. A new measure of efficiency is introduced for catalytic cycles that allows the discrimination between catalytic cations on the basis of the efficiencies of the two legs of the catalytic cycle. Also, a potential-energy landscape is computed for the reduction of N2O by CO catalyzed by Fe+(6D) that vividly illustrates the operation of an ionic catalyst.

  4. Norepinephrine release and reuptake by hypothalamic synaptosomes of spontaneously hypertensive rats

    SciTech Connect

    Hano, T.; Jeng, Y.; Rho, J.

    1989-03-01

    We compared the overflow of endogenous norepinephrine during electrical field stimulation, the norepinephrine content, and the rate of initial neuronal uptake of (3H)norepinephrine in synaptosomes isolated from hypothalamus and brainstem of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats at 7 and 13 weeks of age. The synaptosomes of two rats, a SHR and a WKY rat control, were simultaneously processed and subjected to the same electrical field stimulation. The overflow of endogenous norepinephrine during electrical stimulation (2 Hz, 2 minutes) in the hypothalamic synaptosomes of 7-week-old SHR was significantly greater, whereas the overflow of 13-week-old SHR was equivalent to the age-matched WKY rat. The norepinephrine content of synaptosomes was about the same in SHR and age-matched controls. There was also significantly enhanced (3H)norepinephrine uptake in the hypothalamic synaptosomes of young SHR, but neither the hypothalamic nor the brainstem samples of 13-week-old SHR showed any significant difference in their rate of (3H)norepinephrine uptake. These data are similar to those we observed (unpublished observations) in perfused mesenteric artery system in which norepinephrine release was significantly elevated during periarterial nerve stimulation only in young SHR. Thus, these results suggest that a parallel enhancement of norepinephrine release in hypothalamus with that of peripheral nervous system may play an important role during development of hypertension in young SHR.

  5. Ischemic Necrosis of Upper Lip, and All Fingers and Toes After Norepinephrine Use.

    PubMed

    Shin, Jin Yong; Roh, Si-Gyun; Lee, Nae-Ho; Yang, Kyung-Moo

    2016-03-01

    A 68-year-old woman with necrosis of total finger, toe, and upper lip was requested by department of internal medicine. She was diagnosed with septic shock and treated with norepinephrine 10 days ago. Norepinephrine is an often-used medicine for normalizing blood pressure in septic shock patients. Norepinephrine stimulates adrenergic receptors, causing vasoconstriction and the rise of blood pressure. These peripheral vasoconstrictions sometimes lead to ischemic changes in end organs. In this case report, the authors describe ischemic necrosis of the upper lip and all fingers and toes after norepinephrine use in a patient in the intensive care unit.

  6. Reduction in tribological energy losses in the transportation and electric utilities sectors

    SciTech Connect

    Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

    1985-09-01

    This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

  7. Mass transport, corrosion, plugging, and their reduction in solar dish/Stirling heat pipe receivers

    SciTech Connect

    Adkins, D.R.; Andraka, C.E.; Bradshaw, R.W.; Goods, S.H.; Moreno, J.B.; Moss, T.A.

    1996-07-01

    Solar dish/Stirling systems using sodium heat pipe receivers are being developed by industry and government laboratories here and abroad. The unique demands of this application lead to heat pipe wicks with very large surface areas and complex three-dimensional flow patterns. These characteristics can enhance the mass transport and concentration of constituents of the wick material, resulting in wick corrosion and plugging. As the test times for heat pipe receivers lengthen, we are beginning to see these effects both indirectly, as they affect performance, and directly in post-test examinations. We are also beginning to develop corrective measures. In this paper, we report on our test experiences, our post-test examinations, and on our initial effort to ameliorate various problems.

  8. Neuromodulatory influence of norepinephrine during developmental experience-dependent plasticity.

    PubMed

    Golovin, Randall M; Ward, Nicholas J

    2016-07-01

    Critical periods represent phases of development during which neuronal circuits and their responses can be readily shaped by stimuli. Experience-dependent plasticity that occurs within these critical periods can be influenced in many ways; however, Shepard et al. (J Neurosci 35: 2432-2437, 2015) recently singled out norepinephrine as an essential driver of this plasticity within the auditory cortex. This work provides novel insight into the mechanisms of critical period plasticity and challenges previous conceptions that a functional redundancy exists between noradrenergic and cholinergic influences on cortical plasticity.

  9. Beam breakup growth and reduction experiments in long-pulse electron beam transport

    NASA Astrophysics Data System (ADS)

    Menge, P. R.; Gilgenbach, R. M.; Lau, Y. Y.; Bosch, R. A.

    1994-02-01

    The results of an experimental program whose sole objective is to investigate the cumulative beam breakup instability (BBU) in electron beam accelerators are presented. The BBU growth rate scalings are examined with regard to beam current, focusing field, cavity Q, and propagation distance. A microwave cavity array was designed and fabricated to excite and measure the cumulative BBU resulting from beam interactions with the deflecting TM110 cavity mode. One phase of this experiment used high Q(≊1000) cavities with relatively large frequency spread (Δf/f0≊0.1%). The observed TM110 mode microwave growth between an upstream (second) and a downstream (tenth) cavity indicated BBU growth of 26 dB for an electron beam of kinetic energy of 750 keV, 45 A, and focused by a 1.1 kG solenoidal field. At beam currents of less than 100 A the experiments agreed well with a two-dimensional continuum theory; the agreement was worse at higher beam currents (≳100 A) due to beam loading. The second-phase experiments used lower Q(≊200) cavities with relatively low frequency spread (Δf/f0≊0.03%). Theory and experiment agreed well for beam currents up to 220 A. Distance scaling experiments were also performed by doubling the propagation length. Instability growth reduction experiments using the technique of external cavity coupling resulted in a factor of four decrease in energy in BBU growth when seven internal beam cavities were coupled by microwave cable to seven identical external dummy cavities. A theory invoking power sharing between the internal beam cavities and the external dummy cavities was used to explain the experimental reduction with excellent agreement using an equivalent circuit model.

  10. Improved preclinical cardiovascular therapeutic indices with long-term inhibition of norepinephrine reuptake using reboxetine

    SciTech Connect

    Fossa, Anthony A.; Wisialowski, Todd A.; Cremers, Thomas; Hart, Marieke van der; Tseng, Elaine; Deng, Shibing; Rollema, Hans; Wang, Ellen Q.

    2012-11-01

    Norepinephrine reuptake inhibitors (NRIs) acutely increase norepinephrine (NE) levels, but therapeutic antidepressant activity is only observed after weeks of treatment because central NE levels progressively increase during continued drug exposure. Similarly, while NRIs acutely increase blood pressure (BP) and heart rate (HR) due to enhanced sympathetic neurotransmission, chronic treatment changes the responsiveness of the central noradrenergic system and suppresses these effects via autonomic regulation. To better understand the relationship between NE increases and cardiovascular safety, we investigated acute and chronic effects of the NRI reboxetine on central NE release and on BP and HR and electrical alternans, a measure of arrhythmia liability, in guinea pigs. NE release was assessed by microdialysis in medial prefrontal cortex (mPFC) and hypothalamic paraventricular nucleus (PVN); BP and HR were measured by telemetry. Animals were treated for 28 days with 15 mg/kg/day of reboxetine or vehicle via an osmotic minipump and then challenged with acute intravenous doses of reboxetine. Animals chronically treated with reboxetine had 2-fold higher extracellular basal NE levels in mPFC and PVN compared to basal levels after chronic vehicle treatment. BP was significantly increased after the first day of treatment, and gradually returned to vehicle levels by day 21. These data indicate that chronic NRI treatment may lead to an increase in central NE levels and a concomitant reduction in BP based on exposure–response curves compared to vehicle treatment, suggesting a larger separation between preclinical estimates of efficacy vs. safety compared to acute NRI treatment. -- Highlights: ► Acute RBX produces blood pressure increases acutely that decrease with chronic RBX ► Chronic RBX increases brain NE levels, a preclinical surrogate of improved efficacy ► Short-term screening of NRI often underestimates the chronic therapeutic index ► Chronic cardiovascular

  11. Effects of vanadate on in vivo myocardial reactivity to norepinephrine in diabetic rats.

    PubMed

    Paulson, D J; Kopp, S J; Tow, J P; Peace, D G

    1987-02-01

    Myocardial contractile function is often depressed in patients with diabetes mellitus. Vanadate is an essential trace element that has purportedly an insulin-like action and has been suggested as a therapeutic agent for the treatment of diabetes mellitus. The purpose of the present study was to compare the prophylactic efficacy of oral vanadate therapy (0.8 mg of sodium orthovanadate per milliliter drinking water) to that of insulin treatment (5 units/day s.c.) in terms of its ability to reduce or prevent the progressive cardiodepression that occurs in untreated diabetes mellitus. Diabetes was induced in male rats by i.v. streptozotocin injection (50 mg/kg). Diabetes rats were assigned randomly to one of three regimens for 8 weeks: untreated, insulin-treated or vanadate-treated. Noninjected rats served as controls. In vivo myocardial contractile function was measured under basal conditions and after i.v. norepinephrine infusions in ketamine-xylazine-anesthetized rats using a miniature catheter-tip pressure transducer inserted in the right carotid artery and advanced into the left ventricle. Vanadate and insulin treatment resulted in comparable increases in body weight and reductions in plasma glucose, which were improved relative to untreated diabetics. These findings suggest that vanadium may possess an insulin-like action. Basal in vivo myocardial contractile performance was depressed significantly in untreated diabetic rats as compared to control and insulin-treated diabetic rats. The contractile performance of vanadate-treated diabetic rats was in between untreated diabetic and control groups. In vivo myocardial reactivity to norepinephrine based on assessments of left intraventricular developed pressure, positive and negative dP/dt and delta dP/dt was depressed significantly in untreated diabetic rats.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    NASA Astrophysics Data System (ADS)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  13. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.

    PubMed

    Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T

    2015-11-10

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  14. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    PubMed Central

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-01-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  15. Reaction-based Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect

    Tsyh Yeh, Gour

    2007-12-21

    This research sought to examine biogeochemical processes likely to take place in the less conductive materials above and below the gravel during the in situ ethanol biostimulation experiment conducted at Area 2 during 2005-2006. The in situ experiment in turn examined the hypothesis that injection of electron donor into this layer would induce formation of a redox barrier in the less conductive materials, resulting in decreased mass transfer of uranium out these materials and attendant declines in groundwater U(VI) concentration. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This report summarizes research activities conducted at The University of Central Florida (2004-2007), the development of biogeochemical and reactive transport models and the conduction of numerical simulations at laboratory, column, and field scales.

  16. Norepinephrine Modulates Coding of Complex Vocalizations in the Songbird Auditory Cortex Independent of Local Neuroestrogen Synthesis

    PubMed Central

    Ikeda, Maaya Z.; Jeon, Sung David; Cowell, Rosemary A.

    2015-01-01

    The catecholamine norepinephrine plays a significant role in auditory processing. Most studies to date have examined the effects of norepinephrine on the neuronal response to relatively simple stimuli, such as tones and calls. It is less clear how norepinephrine shapes the detection of complex syntactical sounds, as well as the coding properties of sensory neurons. Songbirds provide an opportunity to understand how auditory neurons encode complex, learned vocalizations, and the potential role of norepinephrine in modulating the neuronal computations for acoustic communication. Here, we infused norepinephrine into the zebra finch auditory cortex and performed extracellular recordings to study the modulation of song representations in single neurons. Consistent with its proposed role in enhancing signal detection, norepinephrine decreased spontaneous activity and firing during stimuli, yet it significantly enhanced the auditory signal-to-noise ratio. These effects were all mimicked by clonidine, an α-2 receptor agonist. Moreover, a pattern classifier analysis indicated that norepinephrine enhanced the ability of single neurons to accurately encode complex auditory stimuli. Because neuroestrogens are also known to enhance auditory processing in the songbird brain, we tested the hypothesis that norepinephrine actions depend on local estrogen synthesis. Neither norepinephrine nor adrenergic receptor antagonist infusion into the auditory cortex had detectable effects on local estradiol levels. Moreover, pretreatment with fadrozole, a specific aromatase inhibitor, did not block norepinephrine's neuromodulatory effects. Together, these findings indicate that norepinephrine enhances signal detection and information encoding for complex auditory stimuli by suppressing spontaneous “noise” activity and that these actions are independent of local neuroestrogen synthesis. PMID:26109659

  17. Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

    NASA Astrophysics Data System (ADS)

    Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.

    2015-05-01

    Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.

  18. Regulation of gluconeogenesis by norepinephrine, vasopressin, and angiotensin II: a comparative study in the absence and presence of extracellular Ca2+1.

    PubMed

    Kneer, N M; Lardy, H A

    1983-08-01

    In hepatocytes isolated from fasted rats, vasopressin and angiotensin II stimulate the rate of gluconeogenesis from lactate or pyruvate in a Ca2+-dependent manner similar to that previously reported for norepinephrine. Actions of the peptide hormones on gluconeogenesis from glycerol or sorbitol, reduced substrates that require oxidation before they enter the gluconeogenic pathway at triosephosphate, also resemble those of norepinephrine. Stimulation of glucose production from these substrates is observed only in the presence of extracellular Ca2+. Actions of the peptide hormones on gluconeogenesis from dihydroxyacetone or fructose, the oxidized counterparts of glycerol and sorbitol, respectively, do not resemble those of norepinephrine. While norepinephrine enhances rates of glucose production from dihydroxyacetone or fructose in the absence of extracellular Ca2+, vasopressin and angiotensin II are ineffective either in the absence or presence of extracellular Ca2+. When the oxidation-reduction state in hepatocytes metabolizing dihydroxyacetone is altered by adding an equimolar concentration of ethanol (to provide cytosolic reducing equivalents), the results are similar to those obtained when cells are incubated with the reduced counterpart of dihydroxyacetone, glycerol, i.e., the peptide hormones cause an apparent increase in the rate of glucose production in a Ca2+-dependent manner. If, on the other hand, hepatocytes are incubated with glycerol or sorbitol and an equimolar concentration of pyruvate (to provide a cytosolic hydrogen acceptor), the peptide hormones, unlike norepinephrine, are ineffective in stimulating gluconeogenesis in the absence of extracellular Ca2+. These results indicate that whereas many of the actions of vasopressin and angiotensin II are similar to those of alpha 1-adrenergic agents, there are major differences in the manner in which the hormones act at various sites to regulate gluconeogenesis.

  19. Weimer Award: Reduction of core turbulence and transport in I-mode and comparisons with nonlinear gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    White, Anne

    2014-10-01

    Understanding transport in high performance ELM-suppressed tokamak plasmas is of great interest for ITER and other future experiments. `I-mode' regime on Alcator C-Mod, also known as `improved L-mode' on ASDEX Upgrade, has several favorable characteristics: pedestals in electron and ion temperature, with ITER98y2 H-factors similar to and exceeding H-mode [Hubbard et al., Phys. Plasmas 18, 056115 (2011)], but without a density pedestal and without impurity accumulation and without ELMs. Most research on I-mode focuses on changes in edge and pedestal turbulence/transport and stability. In this work, transport in I-mode is probed by measuring changes in core turbulence across L-I transitions at Alcator C-Mod and comparing with nonlinear gyrokinetic simulations. Long wavelength (kθρs < 0.5) density fluctuation levels decrease from L-mode levels by up to 30% in I-mode, and long wavelength (kθρs < 0.3) electron temperature fluctuation levels decrease by up to 70%, reaching the instrumental sensitivity limit. Gyrokinetic simulation results suggest that ExB shear in the core of these intrinsically rotating plasmas can reduce the fluctuation amplitude in I-mode. As the pedestal temperature increases across slow L-I transitions, core density fluctuations (0.40 < ρ <0.95) are reduced prior to the onset of the edge-localized (0.99 < ρ < 1.0) weakly coherent mode (WCM) and prior to the reduction of low-frequency turbulence in the edge/pedestal region (0.99 < ρ < 1.0), which suggests that effects of profile stiffness across the radius can also lead to reduced core turbulence. By comparing experimental measurements from Alcator C-Mod to nonlinear gyrokinetic simulations and to different models of profile stiffness, this talk will explore the impact of core turbulence and transport on overall I-mode confinement and on the separation of particle and heat transport in I-mode. This work was supported by U.S. Department of Energy Contract DE-FC02-99ER54512-CMOD.

  20. Synthesis and transport properties of superconducting thin films of K0.33WO3: Tc reduction due to disorder

    NASA Astrophysics Data System (ADS)

    Wu, Phillip M.; Hart, Chris; Luna, Katherine; Munakata, Ko; Tsukada, Akio; Risbud, Subhash H.; Geballe, T. H.; Beasley, M. R.

    2014-05-01

    Via a two-step deposition and post-annealing procedure, K-doped WO3 thin films with reproducible transport properties are obtained. We observe a larger critical field Hc2 along the c axis, consistent with the picture of the Fermi surface containing one-dimensional bands along this direction. Reducing the film thickness results in a superconductor to insulator transition. Scanning electron microscopy (SEM) images show that KWO3 crystallites become less connected as the deposition time is reduced, providing a microscopic explanation for the transport behavior. In the superconducting films, a resistive anomaly is observed similar to bulk crystals, with a characteristic temperature that shifts lower with decreasing film thickness. The competing electronic effects manifest as a suppression of the density of states at the Fermi level, observed using point contact tunneling spectroscopy, demonstrating that disorder-induced increased Coulomb interactions are present. Using the theory of Belitz for the reduction of Tc due to disorder, we can infer that the film with the highest observed Tc has a relatively large disorder dependent electron-phonon interaction parameter ˜1.2. Understanding microscopically why certain films display higher Tc will aid in the search for the trace high-Tc superconducting anomalies observed in lightly surface doped bronzes.

  1. The effectiveness of policy on consumer choices for private road passenger transport emissions reductions in six major economies

    NASA Astrophysics Data System (ADS)

    Mercure, J.-F.; Lam, A.

    2015-06-01

    The effectiveness of fiscal policy to influence vehicle purchases for emissions reductions in private passenger road transport depends on its ability to incentivise consumers to make choices oriented towards lower emissions vehicles. However, car purchase choices are known to be strongly socially determined, and this sector is highly diverse due to significant socio-economic differences between consumer groups. Here, we present a comprehensive dataset and analysis of the structure of the 2012 private passenger vehicle fleet-years in six major economies across the World (UK, USA, China, India, Japan and Brazil) in terms of price, engine size and emissions distributions. We argue that choices and aggregate elasticities of substitution can be predicted using this data, enabling us to evaluate the effectiveness of potential fiscal and technological change policies on fleet-year emissions reductions. We provide tools to do so based on the distributive structure of prices and emissions in segments of a diverse market, both for conventional as well as unconventional engine technologies. We find that markets differ significantly between nations, and that correlations between engine sizes, emissions and prices exist strongly in some markets and not strongly in others. We furthermore find that markets for unconventional engine technologies have patchy coverages of varying levels. These findings are interpreted in terms of policy strategy.

  2. TRANSPORT

    EPA Science Inventory

    Presentation outline: transport principles, effective solubility; gasoline composition; and field examples (plume diving).
    Presentation conclusions: MTBE transport follows from - phyiscal and chemical properties and hydrology. Field examples show: MTBE plumes > benzene plu...

  3. Influence of calcium on the inotropic actions of hyperosmotic agents, norepinephrine, paired electrical stimulation, and treppe.

    PubMed

    Willerson, J T; Crie, J S; Adcock, R C; Templeton, G H; Wildenthal, K

    1974-10-01

    To analyze the interaction of calcium ion concentration with hypertonic agents and with other inotropic interventions, isolated right ventricular cat papillary muscles were studied under isometric conditions in Krebs-Ringer bicarbonate solution. Extracellular calcium concentrations were varied between 2.5 and 11.0 mM. Maximal inotropic effects occurred between 5 and 8.0 mM calcium and further elevation to 11.0 mM was without additional influence. The effect of hyperosmotic sucrose and mannitol on papillary muscle performance was compared with that of 10(-6) M norepinephrine at calcium concentrations of 2.5 and 10.0 mM and with paired electrical stimulation in 10.0 mM calcium. Both norepinephrine and the hyperosmotic agents produced significant increases in developed tension and in the maximal rate of tension rise (dT/dt) in Krebs-Ringer in 2.5 and 4.0 mM calcium. In 10 mM calcium norepinephrine increased developed tension and dT/dt, but sucrose and mannitol caused no change or small reductions in both. Paired electrical stimulation, like hyperosmolality, caused no increase in dT/dt in 10 mM calcium. The presence of a potent pharmacological inhibitor of systolic calcium transfer across the cell membrane (D600, 10(-6) M) reduced developed tension and dT/dt by 76+/-2.7 and 74+/-2.0%, respectively, and prevented and in fact reversed the expected increase in dT/dt associated with an increase in rate of stimulation (treppe). However, hypertonic mannitol and paired pacing persisted in causing marked increases in developed tension and dT/dt even in the presence of D600, suggesting that their inotropic effects are not dependent on increased intracellular transfer of calcium during systole through cell membrane channels in which D600 acts as a competitive inhibitor. The results of these studies suggest that apparent functional saturation of intracellular calcium receptor sites eliminates any additional inotropic effect of hyperosmolality or paired pacing. The data are

  4. Influence of Calcium on the Inotropic Actions of Hyperosmotic Agents, Norepinephrine, Paired Electrical Stimulation, and Treppe

    PubMed Central

    Willerson, James T.; Crie, J. Stanley; Adcock, Robert C.; Templeton, Gordon H.; Wildenthal, Kern

    1974-01-01

    To analyze the interaction of calcium ion concentration with hypertonic agents and with other inotropic interventions, isolated right ventricular cat papillary muscles were studied under isometric conditions in Krebs-Ringer bicarbonate solution. Extracellular calcium concentrations were varied between 2.5 and 11.0 mM. Maximal inotropic effects occurred between 5 and 8.0 mM calcium and further elevation to 11.0 mM was without additional influence. The effect of hyperosmotic sucrose and mannitol on papillary muscle performance was compared with that of 10-6 M norepinephrine at calcium concentrations of 2.5 and 10.0 mM and with paired electrical stimulation in 10.0 mM calcium. Both norepinephrine and the hyperosmotic agents produced significant increases in developed tension and in the maximal rate of tension rise (dT/dt) in Krebs-Ringer in 2.5 and 4.0 mM calcium. In 10 mM calcium norepinephrine increased developed tension and dT/dt, but sucrose and mannitol caused no change or small reductions in both. Paired electrical stimulation, like hyperosmolality, caused no increase in dT/dt in 10 mM calcium. The presence of a potent pharmacological inhibitor of systolic calcium transfer across the cell membrane (D600, 10-6 M) reduced developed tension and dT/dt by 76±2.7 and 74±2.0%, respectively, and prevented and in fact reversed the expected increase in dT/dt associated with an increase in rate of stimulation (treppe). However, hypertonic mannitol and paired pacing persisted in causing marked increases in developed tension and dT/dt even in the presence of D600, suggesting that their inotropic effects are not dependent on increased intracellular transfer of calcium during systole through cell membrane channels in which D600 acts as a competitive inhibitor. The results of these studies suggest that apparent functional saturation of intracellular calcium receptor sites eliminates any additional inotropic effect of hyperosmolality or paired pacing. The data are compatible

  5. An open-label, randomized positron emission tomography (PET) study in healthy male volunteers consisiting of Part A and Part B. Part A: Clinical validation of norepinephrine transporter (NET) PET ligand, (S,S)-[11C]O-methylreboxetine ([11C]MRB) using different doses of oral atomoxetine as NET reuptake inhibitor. Part B: Evaluation of NET occupancy, as measured by [11C]MRB, with multiple dosing regimens of orally administered GSK372475.

    SciTech Connect

    Fowler, Joanna

    2007-08-31

    Results from human studies with the PET radiotracer (S,S)-[(11)C]O-methyl reboxetine ([(11)C](S,S)-MRB), a ligand targeting the norepinephrine transporter (NET), are reported. Quantification methods were determined from test/retest studies, and sensitivity to pharmacological blockade was tested with different doses of atomoxetine (ATX), a drug that binds to the NET with high affinity (K(i)=2-5 nM). METHODS: Twenty-four male subjects were divided into different groups for serial 90-min PET studies with [(11)C](S,S)-MRB to assess reproducibility and the effect of blocking with different doses of ATX (25, 50 and 100 mg, po). Region-of-interest uptake data and arterial plasma input were analyzed for the distribution volume (DV). Images were normalized to a template, and average parametric images for each group were formed. RESULTS: [(11)C](S,S)-MRB uptake was highest in the thalamus (THL) and the midbrain (MBR) [containing the locus coeruleus (LC)] and lowest for the caudate nucleus (CDT). The CDT, a region with low NET, showed the smallest change on ATX treatment and was used as a reference region for the DV ratio (DVR). The baseline average DVR was 1.48 for both the THL and MBR with lower values for other regions [cerebellum (CB), 1.09; cingulate gyrus (CNG) 1.07]. However, more accurate information about relative densities came from the blocking studies. MBR exhibited greater blocking than THL, indicating a transporter density approximately 40% greater than THL. No relationship was found between DVR change and plasma ATX level. Although the higher dose tended to induce a greater decrease than the lower dose for MBR (average decrease for 25 mg=24+/-7%; 100 mg=31+/-11%), these differences were not significant. The different blocking between MBR (average decrease=28+/- 10%) and THL (average decrease=17+/-10%) given the same baseline DVR indicates that the CDT is not a good measure for non-NET binding in both regions. Threshold analysis of the difference between the

  6. Relationship of blood cadmium level to hypertension and plasma norepinephrine level: a Romanian study (41159)

    SciTech Connect

    Revis, N.W.; Zinsmeister, A.R.

    1981-06-01

    The associations of blood cadmium levels with hypertension and plasma norepinephrine concentrations were determined in normotensive and hypertensive nonsmokers and smokers. Statistical analysis showed that after adjustment for age alone, the estimated mean values of blood cadmium and plasma norepinephrine in nonsmokers were significantly lower than in smokers. However, after adjustment for age and blood cadmium, the estimated mean values for plasma norepinephrine were not significantly different between nonsmokers and smokers or normotensives and hypertensives. In contrast the estimated mean value for blood cadmium as a function of blood pressure and smoking habit was still significant after adjustment for age and plasma norepinephrine. We suggest that smoking and blood pressure affect the level of blood cadmium, and through this change in blood cadmium the level of plasma norepinephrine is affected.

  7. Evidence for Noncanonical Neurotransmitter Activation: Norepinephrine as a Dopamine D2-Like Receptor Agonist.

    PubMed

    Sánchez-Soto, Marta; Bonifazi, Alessandro; Cai, Ning Sheng; Ellenberger, Michael P; Newman, Amy Hauck; Ferré, Sergi; Yano, Hideaki

    2016-04-01

    The Gαi/o-coupled dopamine D2-like receptor family comprises three subtypes: the D2 receptor (D2R), with short and long isoform variants (D2SR and D2LR), D3 receptor (D3R), and D4 receptor (D4R), with several polymorphic variants. The common overlap of norepinephrine innervation and D2-like receptor expression patterns prompts the question of a possible noncanonical action by norepinephrine. In fact, previous studies have suggested that norepinephrine can functionally interact with D4R. To our knowledge, significant interactions between norepinephrine and D2R or D3R receptors have not been demonstrated. By using radioligand binding and bioluminescent resonance energy transfer (BRET) assays in transfected cells, the present study attempted a careful comparison between dopamine and norepinephrine in their possible activation of all D2-like receptors, including the two D2R isoforms and the most common D4R polymorphic variants. Functional BRET assays included activation of G proteins with all Gαi/o subunits, adenylyl cyclase inhibition, and β arrestin recruitment. Norepinephrine acted as a potent agonist for all D2-like receptor subtypes, with the general rank order of potency of D3R > D4R ≥ D2SR ≥ D2L. However, for both dopamine and norepinephrine, differences depended on the Gαi/o protein subunit involved. The most striking differences were observed with Gαi2, where the rank order of potencies for both dopamine and norepinephrine were D4R > D2SR = D2LR > D3R. Furthermore the results do not support the existence of differences in the ability of dopamine and norepinephrine to activate different human D4R variants. The potency of norepinephrine for adrenergic α2A receptor was only about 20-fold higher compared with D3R and D4R across the three functional assays.

  8. Evidence for Noncanonical Neurotransmitter Activation: Norepinephrine as a Dopamine D2-Like Receptor Agonist

    PubMed Central

    Sánchez-Soto, Marta; Bonifazi, Alessandro; Cai, Ning Sheng; Ellenberger, Michael P.; Newman, Amy Hauck

    2016-01-01

    The Gαi/o-coupled dopamine D2-like receptor family comprises three subtypes: the D2 receptor (D2R), with short and long isoform variants (D2SR and D2LR), D3 receptor (D3R), and D4 receptor (D4R), with several polymorphic variants. The common overlap of norepinephrine innervation and D2-like receptor expression patterns prompts the question of a possible noncanonical action by norepinephrine. In fact, previous studies have suggested that norepinephrine can functionally interact with D4R. To our knowledge, significant interactions between norepinephrine and D2R or D3R receptors have not been demonstrated. By using radioligand binding and bioluminescent resonance energy transfer (BRET) assays in transfected cells, the present study attempted a careful comparison between dopamine and norepinephrine in their possible activation of all D2-like receptors, including the two D2R isoforms and the most common D4R polymorphic variants. Functional BRET assays included activation of G proteins with all Gαi/o subunits, adenylyl cyclase inhibition, and β arrestin recruitment. Norepinephrine acted as a potent agonist for all D2-like receptor subtypes, with the general rank order of potency of D3R > D4R ≥ D2SR ≥ D2L. However, for both dopamine and norepinephrine, differences depended on the Gαi/o protein subunit involved. The most striking differences were observed with Gαi2, where the rank order of potencies for both dopamine and norepinephrine were D4R > D2SR = D2LR >> D3R. Furthermore the results do not support the existence of differences in the ability of dopamine and norepinephrine to activate different human D4R variants. The potency of norepinephrine for adrenergic α2A receptor was only about 20-fold higher compared with D3R and D4R across the three functional assays. PMID:26843180

  9. The brain norepinephrine system, stress and cardiovascular vulnerability.

    PubMed

    Wood, Susan K; Valentino, Rita J

    2017-03-01

    Chronic exposure to psychosocial stress has adverse effects on cardiovascular health, however the stress-sensitive neurocircuitry involved remains to be elucidated. The anatomical and physiological characteristics of the locus coeruleus (LC)-norepinephrine (NE) system position it to contribute to stress-induced cardiovascular disease. This review focuses on cardiovascular dysfunction produced by social stress and a major theme highlighted is that differences in coping strategy determine individual differences in social stress-induced cardiovascular vulnerability. The establishment of different coping strategies and cardiovascular vulnerability during repeated social stress has recently been shown to parallel a unique plasticity in LC afferent regulation, resulting in either excitatory or inhibitory input to the LC. This contrasting regulation of the LC would translate to differences in cardiovascular regulation and may serve as the basis for individual differences in the cardiopathological consequences of social stress. The advances described suggest new directions for developing treatments and/or strategies for decreasing stress-induced cardiovascular vulnerability.

  10. Soman-induced seizures impair norepinephrine-stimulated phosphoinositide turnover

    SciTech Connect

    Filbert, M.G.; Phann, S.; Forster, J.; Ballough, G.P.; Cann, F.J.

    1993-05-13

    Seizure activity increases turnover of phosphoinositide bisphosphate (PIP2). Turnover of PIP2 is thought to be modulated by neurotransmitter interactions. The effect of soman-induced seizures on neurotransmitter-stimulated PIP 2 turnover was examined in rats. Thirty minutes after induction of seizure activity, rats were euthanized and slices prepared from the hippocampus or cerebral cortex were incubated with myo-(2-3H) inositol for incorporation into phospholipids. Hydrolysis of phosphoinositides was determined by measuring the accumulation of (3H) inositol-l-phosphate (IP1) in the presence of LiCl. Carbachol, norepinephrine (NE) and high K+ increased accumulation of IP1 in slices from control rats. GABA was without effect on IP1 accumulation but potentiated the stimulation of PIP, hydrolysis by NE. NE-stimulated IP1 accumulation in slices from rats undergoing seizures was significantly reduced. GABA potentiation of the NE-stimulated hydrolysis was also reduced.

  11. Antihistamine effect on synaptosomal uptake of serotonin, norepinephrine and dopamine

    NASA Technical Reports Server (NTRS)

    Brown, P. A.; Vernikos, J.

    1980-01-01

    A study on the effects of five H1 and H2 antihistamines on the synaptosomal uptake of serotonin (5HT), norepinephrine (NE), and dopamine (DA) is presented. Brain homogenates from female rats were incubated in Krebs-Ringer phosphate buffer solution in the presence of one of three radioactive neurotransmitters, and one of the five antihistamines. Low concentrations of pyrilamine competitively inhibited 5HT uptake, had little effect on NE uptake, and no effect on DA uptake. Promethazine, diphenhydramine, metiamide, and cimetidine had no effect on 5HT or DA uptake at the same concentration. Diphenhydramine had a small inhibitory effect on NE uptake. It is concluded that pyrilamine is a selective and potent competitive inhibitor of 5HT uptake at concentrations between .05 and .5 micromolars.

  12. A medullary source of norepinephrine in cat cochlear nuclear complex.

    PubMed

    Thompson, Ann M

    2003-12-01

    Norepinephrine is believed to modulate important functions of the cochlear nuclear complex (CNC) such as the detection of signals in noise and the processing of timing cues. To better understand the impact of the noradrenergic system in the CNC, we used neurotransmitter immunohistochemistry combined with retrograde tract-tracing to identify the noradrenergic cell groups that project to the CNC. Here we present data showing that the CNC receives noradrenergic inputs from the A1 cell group located in the ventrolateral medulla. The projection from A1 to the CNC may be part of a system-wide modulation by the noradrenergic system based on stress and arousal level, or it may be part of a separate circuit that modulates its targets during survival behaviors.

  13. Selective Serotonin–norepinephrine Reuptake Inhibitors-induced Takotsubo Cardiomyopathy

    PubMed Central

    Vasudev, Rahul; Rampal, Upamanyu; Patel, Hiten; Patel, Kunal; Bikkina, Mahesh; Shamoon, Fayez

    2016-01-01

    Context: Takotsubo translates to “octopus pot” in Japanese. Takotsubo cardiomyopathy (TTC) is characterized by a transient regional systolic dysfunction of the left ventricle. Catecholamine excess is the one most studied and favored theories explaining the pathophysiology of TTC. Case Report: We present the case of a 52-year-old Hispanic female admitted for venlafaxine-induced TTC with a review literature on all the cases of Serotonin–norepinephrine reuptake inhibitors (SNRI)-associated TTC published so far. Conclusion: SNRI inhibit the reuptake of catecholamines into the presynaptic neuron, resulting in a net gain in the concentration of epinephrine and serotonin in the neuronal synapses and causing iatrogenic catecholamine excess, ultimately leading to TTC. PMID:27583240

  14. Hypertensive Crisis During Norepinephrine Syringe Exchange: A Case Report.

    PubMed

    Snijder, Roland A; Knape, Johannes T A; Egberts, Toine C G; Timmerman, Annemoon M D E

    2017-04-01

    A 67-year critically ill patient suffered from a hypertensive crisis (200 mm Hg) because of a norepinephrine overdose. The overdose occurred when the clinician exchanged an almost-empty syringe and the syringe pump repeatedly reported an error. We hypothesized that an object between the plunger and the syringe driver may have caused the exertion of too much force on the syringe. Testing this hypothesis in vitro showed significant peak dosing errors (up to +572%) but moderate overdose (0.07 mL, +225%) if a clamp was used on the intravenous infusion line and a large overdose (0.8 mL, +2700%) if no clamp was used. Clamping and awareness are advised.

  15. Effects of graded LBNP on MSNA and interstitial norepinephrine

    NASA Technical Reports Server (NTRS)

    Khan, Mazhar H.; Sinoway, Lawrence I.; MacLean, David A.

    2002-01-01

    Exposure to lower body negative pressure (LBNP) leads to an increased activation of the sympathetic nervous system (SNS) and an increase in muscle sympathetic nerve activity (MSNA). In this study, we examined the relationship between MSNA and interstitial norepinephrine (NE(i)) concentrations during LBNP. Twelve healthy volunteers were studied (26 +/- 6 yr). Simultaneous MSNA and microdialysis data were collected in six of these subjects. Measurements of MSNA (microneurography) and NE(i) (microdialysis, vastus lateralis) were performed at rest and then during an incremental LBNP paradigm (-10, -30, and -50 mmHg). MSNA rose as a function of LBNP (P < 0.001, n = 12). The plasma norepinephrine (NE(p)) concentration was 0.9 +/- 0.1 nmol/l at rest (n = 12). NE(i) measured in six subjects rose from 5.2 +/- 0.8 nmol/l at rest to 17.0 +/- 1.7 nmol/l at -50 mmHg (P < 0.001). Of note, the rise in NE(p) with LBNP was considerably less compared with the changes in NE(i) (Delta21 +/- 6% vs. Delta197 +/- 52%, n = 6, P < 0.015). MSNA and NE(i) showed a significant linear relationship (r = 0.721, P < 0.004). Activation of the SNS increased MSNA and NE(i) levels. The magnitude of the NE(i) increase was far greater than that seen for NE(p) suggesting that NE movement into the circulation decreases with baroreceptor unloading.

  16. Norepinephrine uptake by rat jejunum: Modulation by angiotensin II

    SciTech Connect

    Suvannapura, A.; Levens, N.R. )

    1988-02-01

    Angiotensin II (ANG II) is believed to stimulate sodium and water absorption from the small intestine by enhancing sympathetic nerve transmission. This study is designed to determine whether ANG II can enhance sympathetic neurotransmission within the small intestine by inhibition norepinephrine (NE) uptake. Intracellular NE accumulation by rat jejunum was concentration dependent and resolved into high- and low-affinity components. The high-affinity component (uptake 1) exhibited a Michaelis constant (K{sub m}) of 1.72 {mu}M and a maximum velocity (V{sub max}) of 1.19 nmol {center dot} g{sup {minus}1} {center dot} 10 min{sup {minus}1}. The low-affinity component (uptake 2) exhibited a K{sub m} of 111.1 {mu}M and a V{sub max} of 37.1 nmol {center dot} g{sup {minus}1} {center dot} 10 min{sup {minus}1}. Cocaine, an inhibitor of neuronal uptake, inhibited the intracellular accumulation of label by 80%. Treatment of animals with 6-hydroxydopamine, which depletes norepinephrine from sympathetic terminals, also attenuated NE uptake by 60%. Thus accumulation within sympathetic nerves constitutes the major form of ({sup 3}H)NE uptake into rat jejunum. ANG II inhibited intracellular ({sup 3}H)NE uptake in a concentration-dependent manner. At a dose of 1 mM, ANG II inhibited intracellular ({sup 3}H)NE accumulation by 60%. Cocaine failed to potentiate the inhibition of ({sup 3}H)NE uptake produced by ANG II. Thus ANG II appears to prevent ({sup 3}H)NE accumulation within rat jejunum by inhibiting neuronal uptake.

  17. Contribution of depressed reuptake to the depletion of norepinephrine from rat heart and spleen during endotoxin shock

    SciTech Connect

    Pardini, B.J.; Jones, S.B.; Filkins, J.P.

    1982-01-01

    Norepinephrine content (microgram/g) was depressed in hearts and spleens of fasted male Holtzman rats treated intravenously with Salmonella enteritidis lipopolysaccharide (14-17 mg/kg). To investigate the mechanism of norepinephrine depletion during endotoxicosis, in vivo norepinephrine reuptake was evaluated in control and severely shocked rats using the incorporation of /sup 3/H-norepinephrine into hearts and spleens. Incorporation of /sup 3/H-norepinephrine into spleens of endotoxic rats was reduced 88%. In contrast, cardiac tissue incorporation of /sup 3/H-norepinephrine was not significantly impaired. In vitro analysis of total norepinephrine retained in cardiac and splenic tissue slices incubated with /sup 3/H-norepinephrine yielded results consistent with in vivo experiments: Splenic norepinephrine reuptake was significantly decreased on the order of 50% in preparations from endotoxic rats, while myocardial norepinephrine reuptake was the same in both groups. The results indicate that depression of norepinephrine reuptake is a mechanism of norepinephrine depletion in spleens but not hearts of endotoxic rats.

  18. Does Prenatal Valproate Interact with a Genetic Reduction in the Serotonin Transporter? A Rat Study on Anxiety and Cognition

    PubMed Central

    Ellenbroek, Bart A.; August, Caren; Youn, Jiun

    2016-01-01

    There is ample evidence that prenatal exposure to valproate (or valproic acid, VPA) enhances the risk of developing Autism Spectrum Disorders (ASD). In line with this, a single injection of VPA induces a multitude of ASD-like symptoms in animals, such as rats and mice. However, there is equally strong evidence that genetic factors contribute significantly to the risk of ASD and indeed, like most other psychiatric disorders, ASD is now generally thought to results from an interaction between genetic and environmental factors. Given that VPA significantly impacts on the serotonergic system, and serotonin has strong biochemical and genetic links to ASD, we aimed to investigate the interaction between genetic reduction in the serotonin transporter and prenatal valproate administration. More specifically, we exposed both wildtype (SERT+/+) rats and rats heterozygous for the serotonin transporter deletion (SERT+/−) to a single injection of 400 mg/kg VPA at gestational day (GD) 12. The offspring, in adulthood, was assessed in four different tests: Elevated Plus Maze and Novelty Suppressed Feeding as measures for anxiety and prepulse inhibition (PPI) and latent inhibition as measures for cognition and information processing. The results show that prenatal VPA significantly increased anxiety in both paradigm, reduced PPI and reduced conditioning in the latent inhibition paradigm. However, we failed to find a significant gene–environment interaction. We propose that this may be related to the timing of the VPA injection and suggest that whereas GD12 might be optimal for affecting normal rat, rats with a genetically compromised serotonergic system may be more sensitive to VPA at earlier time points during gestation. Overall our data are the first to investigate gene * environmental interactions in a genetic rat model for ASD and suggest that timing may be of crucial importance to the long-term outcome. PMID:27708559

  19. The impact of transportation control measures on emission reductions during the 2008 Olympic Games in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Wu, Ye; Yang, Liu; Fu, Lixin; He, Kebin; Wang, Shuxiao; Hao, Jiming; Chen, Jinchuan; Li, Chunyan

    2010-01-01

    Traffic congestion and air pollution were two major challenges for the planners of the 2008 Olympic Games in Beijing. The Beijing municipal government implemented a package of temporary transportation control measures during the event. In this paper, we report the results of a recent research project that investigated the effects of these measures on urban motor vehicle emissions in Beijing. Bottom-up methodology has been used to develop grid-based emission inventories with micro-scale vehicle activities and speed-dependent emission factors. The urban traffic emissions of volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO x) and particulate matter with an aerodynamic diameter of 10 μm or less (PM 10) during the 2008 Olympics were reduced by 55.5%, 56.8%, 45.7% and 51.6%, respectively, as compared to the grid-based emission inventory before the Olympics. Emission intensity was derived from curbside air quality monitoring at the North 4th Ring Road site, located about 7 km from the National Stadium. Comparison between the emission intensity before and during the 2008 Olympics shows a reduction of 44.5% and 49.0% in daily CO and NO x emission from motor vehicles. The results suggest that reasonable traffic system improvement strategies along with vehicle technology improvements can contribute to controlling total motor vehicle emissions in Beijing after the Olympic Games.

  20. Escherichia coli O157:H7 gene expression in the presence of catecholamine norepinephrine.

    PubMed

    Dowd, Scot E

    2007-08-01

    Various forms of host stresses (e.g. physiological, psychological) are thought to influence susceptibility to pathogenic microorganisms. Catecholamines such as norepinephrine are released into the GI environment during acute stress and may influence the infective process of bacterial pathogens associated with the GI tract. To examine the effects of norepinephrine on expression of virulence factors in Escherichia coli O157:H7, the clinical-type isolate EDL933 (ATCC 43895) was grown in serum-Standard American Petroleum Institute media in the presence or absence of norepinephrine. After 5 h of exposure to norepinephrine, treatment and control cultures (not exposed to norepinephrine) were harvested, their RNA isolated, and gene expression evaluated. There was a dramatic increase in the expression of virulence factor transcripts including stx1, stx2, and eae. Also induced were transcripts involved in iron metabolism. Conversely, there was comparative repression of iron acquisition and phage shock protein-related transcripts in the presence of norepinephrine. Novel observations from these data suggested that exposure to norepinephrine induced glutamate decarboxylase acid resistance as well as an SOS response in E. coli O157:H7. The results corroborate many of the previous findings detailed in the literature and provide new observations that could expand the scope of microbial endocrinology.

  1. Pulmonary vascular efflux of norepinephrine in Dahl rats susceptible or resistant to salt-induced hypertension

    SciTech Connect

    Metting, P.J.; Duggan, J.M.

    1988-06-01

    The purpose of these studies was to determine whether the accumulation of norepinephrine by the pulmonary circulation is altered in the Dahl model of genetic hypertension. Pulmonary norepinephrine accumulation was evaluated by performing a compartmental analysis of the efflux of L-(/sup 3/H)norepinephrine from perfused lungs after inhibition of the norepinephrine-metabolizing enzymes. The lungs were isolated from Dahl salt-hypertension-susceptible (S) and salt-hypertension-resistant (R) rats that had been on a high sodium diet for 3 weeks. In both S and R rats, norepinephrine was accumulated into a single compartment with an efflux half-time of approximately 23 min, in addition to its distribution in the extracellular space. The size of the extracellular space was significantly increased in the S rats, but there was no difference in the size of the compartment of L-(/sup 3/H)norepinephrine efflux between S (6.4 +/- 1.2 ml/g) and R (3.7 +/- 0.7 ml/g) rats. These data indicate that impaired accumulation and efflux of norepinephrine by the lungs does not contribute to the pathogenesis of hypertension in Dahl S rats.

  2. Correction: Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials

    NASA Astrophysics Data System (ADS)

    Rojo, Miguel Muñoz; Martín, Jaime; Grauby, Stéphane; Borca-Tasciuc, Theodorian; Dilhaire, Stefan; Martin-Gonzalez, Marisol

    2015-02-01

    Correction for `Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials' by Miguel Muñoz Rojo et al., Nanoscale, 2014, 6, 7858-7865.

  3. Exploring the Inhibitory Mechanism of Approved Selective Norepinephrine Reuptake Inhibitors and Reboxetine Enantiomers by Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Zheng, Guoxun; Xue, Weiwei; Wang, Panpan; Yang, Fengyuan; Li, Bo; Li, Xiaofeng; Li, Yinghong; Yao, Xiaojun; Zhu, Feng

    2016-05-01

    Selective norepinephrine reuptake inhibitors (sNRIs) provide an effective class of approved antipsychotics, whose inhibitory mechanism could facilitate the discovery of privileged scaffolds with enhanced drug efficacy. However, the crystal structure of human norepinephrine transporter (hNET) has not been determined yet and the inhibitory mechanism of sNRIs remains elusive. In this work, multiple computational methods were integrated to explore the inhibitory mechanism of approved sNRIs (atomoxetine, maprotiline, reboxetine and viloxazine), and 3 lines of evidences were provided to verify the calculation results. Consequently, a binding mode defined by interactions between three chemical moieties in sNRIs and eleven residues in hNET was identified as shared by approved sNRIs. In the meantime, binding modes of reboxetine’s enantiomers with hNET were compared. 6 key residues favoring the binding of (S, S)-reboxetine over that of (R, R)-reboxetine were discovered. This is the first study reporting that those 11 residues are the common determinants for the binding of approved sNRIs. The identified binding mode shed light on the inhibitory mechanism of approved sNRIs, which could help identify novel scaffolds with improved drug efficacy.

  4. Exploring the Inhibitory Mechanism of Approved Selective Norepinephrine Reuptake Inhibitors and Reboxetine Enantiomers by Molecular Dynamics Study

    PubMed Central

    Zheng, Guoxun; Xue, Weiwei; Wang, Panpan; Yang, Fengyuan; Li, Bo; Li, Xiaofeng; Li, Yinghong; Yao, Xiaojun; Zhu, Feng

    2016-01-01

    Selective norepinephrine reuptake inhibitors (sNRIs) provide an effective class of approved antipsychotics, whose inhibitory mechanism could facilitate the discovery of privileged scaffolds with enhanced drug efficacy. However, the crystal structure of human norepinephrine transporter (hNET) has not been determined yet and the inhibitory mechanism of sNRIs remains elusive. In this work, multiple computational methods were integrated to explore the inhibitory mechanism of approved sNRIs (atomoxetine, maprotiline, reboxetine and viloxazine), and 3 lines of evidences were provided to verify the calculation results. Consequently, a binding mode defined by interactions between three chemical moieties in sNRIs and eleven residues in hNET was identified as shared by approved sNRIs. In the meantime, binding modes of reboxetine’s enantiomers with hNET were compared. 6 key residues favoring the binding of (S, S)-reboxetine over that of (R, R)-reboxetine were discovered. This is the first study reporting that those 11 residues are the common determinants for the binding of approved sNRIs. The identified binding mode shed light on the inhibitory mechanism of approved sNRIs, which could help identify novel scaffolds with improved drug efficacy. PMID:27230580

  5. Depletion of rat cortical norepinephrine and the inhibition of (/sup 3/H)norepinephrine uptake by xylamine does not require monoamine oxidase activity

    SciTech Connect

    Dudley, M.W.

    1988-01-01

    Inhibition of monoamine oxidase A through pretreatment of rats with clorgyline or the pro-drug MDL 72,394 did not block the amine-depleting action of xylamine. Xylamine treatment resulted in a loss of approximately 60% of the control level of norepinephrine in the cerebral cortex. A 1-hr pretreatment, but not a 24-hr pretreatment, with the monoamine oxidase B inhibitor, L-deprenyl, prevented the depletion of norepinephrine by xylamine. In addition, pretreatment with MDL 72,974, a monoamine oxidase B inhibitor without amine-releasing or uptake - inhibiting effects, did not prevent cortical norepinephrine levels. Inhibition of monoamine oxidase by either MDL 72,974 or MDL 72,394 did not prevent the inhibition of (/sup 3/H)norepinephrine uptake into rat cortical synaptosomes by xylamine. These data indicate that monoamine oxidase does not mediate the amine-releasing or uptake inhibiting properties of xylamine. The protection afforded by L-deprenyl following a 1-hr pretreatment most probably was due to accumulation of its metabolite, L-amphetamine, which would inhibit the uptake carrier. A functional carrier is required for depletion since desipramine administered 1 hr prior to xylamine, was also able to prevent depletion of norepinephrine.

  6. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects

    NASA Technical Reports Server (NTRS)

    Ruegger, M.; Dewey, E.; Hobbie, L.; Brown, D.; Bernasconi, P.; Turner, J.; Muday, G.; Estelle, M.

    1997-01-01

    Polar auxin transport plays a key role in the regulation of plant growth and development. To identify genes involved in this process, we have developed a genetic procedure to screen for mutants of Arabidopsis that are altered in their response to auxin transport inhibitors. We recovered a total of 16 independent mutants that defined seven genes, called TRANSPORT INHIBITOR RESPONSE (TIR) genes. Recessive mutations in one of these genes, TIR3, result in altered responses to transport inhibitors, a reduction in polar auxin transport, and a variety of morphological defects that can be ascribed to changes in indole-3-acetic acid distribution. Most dramatically, tir3 seedlings are strongly deficient in lateral root production, a process that is known to depend on polar auxin transport from the shoot into the root. In addition, tir3 plants display a reduction in apical dominance as well as decreased elongation of siliques, pedicels, roots, and the inflorescence. Biochemical studies indicate that tir3 plants have a reduced number of N-1-naphthylphthalamic (NPA) binding sites, suggesting that the TIR3 gene is required for expression, localization, or stabilization of the NPA binding protein (NBP). Alternatively, the TIR3 gene may encode the NBP. Because the tir3 mutants have a substantial defect in NPA binding, their phenotype provides genetic evidence for a role for the NBP in plant growth and development.

  7. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

  8. Feedback on the use of the MX6 Mox Fuel transport cask: reduction of the dose uptake during operations

    SciTech Connect

    Blachet, L.; Lallemant, Th.

    2007-07-01

    In the framework of the quality, safety and environment policy of AREVA, TN International has implemented a global management system according to ISO 9001, OHSAS 18001 and ISO 14001 requirements with certification obtained from third part organization (1). The design of the MX6 cask is an example of the implementation of this system in order to guarantee safety and the health of everyone involved and the protection of the environment. The MX6 design has allowed ALARA dose rates for the workers during all the phases of use of the cask, to be significantly reduced compared to previous design. The MX6 cask was developed by TN International for the transport of either BWR or PWR fresh MOX fuel assemblies. Replacing the previous SIEMENS type III and SIEMENS BWR packaging, the MX6 has been firstly used in the German Nuclear Power Plants. Complying with the TS-R-1 (IAEA 1996) regulations, the MX6 cask is based on innovative solutions implemented at each step of the design and the manufacturing. Its design includes an efficient neutron shielding for high Plutonium content and an easy use content restraining system. The large payload of the MX6 cask, 6 PWR MOX fuel assemblies or 16 BWR MOX fuel assemblies, minimizes the doses uptake during its unloading at the NPP. Moreover, new sequences of loading and unloading operations were proposed for testing and implementation in each Nuclear Facility. Concurrently, total dose uptakes by the operators were assessed in order to prove the efficiency of the packaging and the proposed sequences. In this paper, the main contributors to the transports to Germany with the MX6 cask will present their involvement and feedback for the reduction of the dose uptakes by the operators during the loading and unloading operations. Presently in use at GUNDREMMINGEN and ISAR Nuclear Power Plants (NPPs), the MX6 cask use will be extended to other German and Swiss NPPs from 2006 onwards. (1) AFAQ-AFNOR Certification for ISO 9001, OHSAS 18001 and ISO

  9. Dopamine and Norepinephrine Receptors Participate in Methylphenidate Enhancement of In Vivo Hippocampal Synaptic Plasticity

    PubMed Central

    Jenson, Daniel; Yang, Kechun; Acevedo-Rodriguez, Alexandra; Levine, Amber; Broussard, John I.; Tang, Jianrong; Dani, John A.

    2014-01-01

    Attention-deficit hyperactive disorder (ADHD) is the most commonly studied and diagnosed psychiatric disorder in children. Methylphenidate (MPH, e.g., Ritalin) has been used to treat ADHD for over 50 years. It is the most commonly prescribed treatment for ADHD, and in the past decade it was the drug most commonly prescribed to teenagers. In addition, MPH has become one of the most widely abused drugs on college campuses. In this study, we examined the effects of MPH on hippocampal synaptic plasticity, which serves as a measurable quantification of memory mechanisms. Field potentials were recorded with permanently implanted electrodes in freely-moving mice to quantify MPH modulation of perforant path synaptic transmission onto granule cells of the dentate gyrus. Our hypothesis was that MPH affects hippocampal synaptic plasticity underlying learning because MPH boosts catecholamine signaling by blocking the dopamine and norepinephrine transporters (DAT and NET respectively). In vitro hippocampal slice experiments indicated MPH enhances perforant path plasticity, and this MPH enhancement arose from action via D1-type dopamine receptors and β-type adrenergic receptors. Similarly, MPH boosted in vivo initiation of long-term potentiation (LTP). While there was an effect via both dopamine and adrenergic receptors in vivo, LTP induction was more dependent on the MPH-induced action via D1-type dopamine receptors. Under biologically reasonable experimental conditions, MPH enhances hippocampal synaptic plasticity via catecholamine receptors. PMID:25445492

  10. Comparison of the hypertrophic effect of phorbol ester, norepinephrine, angiotensin II and contraction on cultured cardiomyocytes

    SciTech Connect

    Allo, S.N.; Carl, L.L.; Morgan, H.E. )

    1991-03-15

    Phorbol 12-myristate 13-acetate (PMA), norepinephrine (NE), angiotensin II (AII) and contraction stimulate cardiomyocyte growth. Differences exist in the time course and extent of protein and RNA accumulation. Cells plated at 4 {times} 10{sup 6} cells/60mm dish and arrested with 50 mM KCl demonstrated no significant growth. Treatment with PMA stimulated growth to a maximum of 17% at 48 h. In contrast, maximal stimulation of growth was 36% at 48 h and 31% at 72 h for contracting and NE treated cells, respectively. Maximal stimulation of the capacity for protein synthesis was 32% for PMA treated cells at 24 h as compared to 59% and 77% for NE treated and contracting cells respectively at 72 h. In support of a primary role for altered capacity in the regulation of protein synthesis, there was a significant correlation between RNA and protein content independent of the stimulus used. AII increased RNA content by 28% at 48h, but had no effect on growth up to 72h. Treatment with staurosporine blocked the stimulation of growth, suggestive of a role for protein kinase C (PKC). However, the inhibition of contraction-induced growth was due in part to a reduction in the rate of contraction. It was concluded that: significant differences existed in the time course of growth stimulation and RNA accumulation, depending on the stimulus; and growth inhibition by staurosporine is suggestive of an important role of PKC in hypertrophic growth induced by these stimuli.

  11. Leptin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland.

    PubMed

    Peliciari-Garcia, Rodrigo Antonio; Andrade-Silva, Jéssica; Cipolla-Neto, José; Carvalho, Carla Roberta de Oliveira

    2013-01-01

    Pineal melatonin synthesis can be modulated by many peptides, including insulin. Because melatonin appears to alter leptin synthesis, in this work we aimed to investigate whether leptin would have a role on norepinephrine- (NE-)mediated melatonin synthesis in cultured rat pineal glands. According to our data, cultured rat pineal glands express leptin receptor isoform b (Ob-Rb). Pineal expression of Ob-Rb mRNA was also observed in vivo. Administration of leptin (1 nM) associated with NE ( 1 µM) reduced melatonin content as well as arylalkylamine-N-acetyl transferase (AANAT) activity and expression in cultured pineal glands. Leptin treatment per se induced the expression of STAT3 in cultured pineal glands, but STAT3 does not participate in the leptin modulation of NE-mediated pineal melatonin synthesis. In addition, the expression of inducible cAMP early repressor (ICER) was further induced by leptin challenge when associated with NE. In conclusion, leptin inhibition of pineal melatonin synthesis appears to be mediated by a reduction in AANAT activity and expression as well as by increased expression of Icer mRNA. Peptidergic signaling within the pineal gland appears to be one of the most important signals which modulates melatonin synthesis; leptin, as a member of this system, is not an exception.

  12. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand

    PubMed Central

    Bekar, Lane K; Wei, Helen S; Nedergaard, Maiken

    2012-01-01

    Given the brain's uniquely high cell density and tissue oxygen levels bordering on hypoxia, the ability to rapidly and precisely match blood flow to constantly changing patterns in neural activity is an essential feature of cerebrovascular regulation. Locus coeruleus-norepinephrine (LC-NE) projections innervate the cerebral vasculature and can mediate vasoconstriction. However, function of the LC-mediated constriction in blood-flow regulation has never been addressed. Here, using intrinsic optical imaging coupled with an anesthesia regimen that only minimally interferes with LC activity, we show that NE enhances spatial and temporal aspects of functional hyperemia in the mouse somatosensory cortex. Increasing NE levels in the cortex using an α2-adrenergic receptor antagonist paradoxically reduces the extent of functional hyperemia while enhancing the surround blood-flow reduction. However, the NE-mediated vasoconstriction optimizes spatial and temporal focusing of the hyperemic response resulting in a sixfold decrease in the disparity between blood volume and oxygen demand. In addition, NE-mediated vasoconstriction accelerated redistribution to subsequently active regions, enhancing temporal synchronization of blood delivery. These observations show an important role for NE in optimizing neurovascular coupling. As LC neuron loss is prominent in Alzheimer and Parkinson diseases, the diminished ability to couple blood volume to oxygen demand may contribute to their pathogenesis. PMID:22872230

  13. Valuing mortality risk reductions from environmental, transport, and health policies: a global meta-analysis of stated preference studies.

    PubMed

    Lindhjem, Henrik; Navrud, Ståle; Braathen, Nils Axel; Biausque, Vincent

    2011-09-01

    We conduct, to our knowledge, the first global meta-analysis (MA) of stated preference (SP) surveys of mortality risk valuation. The surveys ask adults their willingness to pay (WTP) for small reductions in mortality risks, deriving estimates of the sample mean value of statistical life (VSL) for environmental, health, and transport policies. We explain the variation in VSL estimates by differences in the characteristics of the SP methodologies applied, the population affected, and the characteristics of the mortality risks valued, including the magnitude of the risk change. The mean (median) VSL in our full data set of VSL sample means was found to be around $7.4 million (2.4 million) (2005 U.S. dollars). The most important variables explaining the variation in VSL are gross domestic product (GDP) per capita and the magnitude of the risk change valued. According to theory, however, VSL should be independent of the risk change. We discuss and test a range of quality screening criteria in order to investigate the effect of limiting the MA to high-quality studies. When limiting the MA to studies that find statistically significant differences in WTP using external or internal scope tests (without requiring strict proportionality), we find that mean VSL from studies that pass both tests tend to be less sensitive to the magnitude of the risk change. Mean VSL also tends to decrease when stricter screening criteria are applied. For many of our screened models, we find a VSL income elasticity of 0.7-0.9, which is reduced to 0.3-0.4 for some subsets of the data that satisfy scope tests or use the same high-quality survey.

  14. A HTAP Multi-Model Assessment of the Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing and the Role of Intercontinental Transport

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; West, J. Jason; Atherton, Cynthia S.; Bellouin, Nicolas; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Forberth, Gerd; Hess, Peter; Schulz, Michael; Shindell, Drew; Takemura, Toshihiko; Tan, Qian

    2012-01-01

    In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the northern hemisphere by using results from 10 global chemical transport models in the framework of the Hemispheric Transport of Air Pollution (HTAP). The multi-model results show that on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia and South Asia lowers the global mean AOD and DRF by about 9%, 4%, and 10% for sulfate, organic matter, and black carbon aerosol, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport. On an annual basis, intercontinental transport accounts for 10-30% of the overall AOD and DRF in a receptor region, with domestic emissions accounting for the remainder, depending on regions and species. While South Asia is most influenced by import of sulfate aerosol from Europe, North America is most influenced by import of black carbon from East Asia. Results show a large spread among models, highlighting the need to improve aerosol processes in models and evaluate and constrain models with observations.

  15. Should the norepinephrine maximal dosage rate be greatly increased in late shock?

    PubMed

    Stefanou, Christos; Palazis, Lakis; Loizou, Areti; Timiliotou, Chrystalla

    2016-03-04

    Any advanced shock eventually degenerates into vasoplegia, which responds weakly to vasopressors. The highest reported norepinephrine flow rate is 3 μg/kg/min. We present the case of a young explosion victim, who was transferred in late haemorrhagic shock. Apart from usual treatment (hydration, mass transfusion protocol), single-agent norepinephrine was used to maintain a mean arterial pressure (MAP) of >60-65 mm Hg. For several hours, norepinephrine flow was 7-10 times the aforementioned (highest reported) in order to achieve our goal; during which, further hydration or transfusion would not contribute to MAP elevation. Sequential Organ Failure Assessment (SOFA) severity score was 18 (expected mortality >99%). The patient survived without underperfusion-related damage. We conclude that norepinephrine dosages could potentially be greatly increased in late shock. We must resist giving up flow escalation based on its numerical value.

  16. Hippocampal release of dopamine and norepinephrine encodes novel contextual information.

    PubMed

    Moreno-Castilla, Perla; Pérez-Ortega, Rodrigo; Violante-Soria, Valeria; Balderas, Israela; Bermúdez-Rattoni, Federico

    2017-02-08

    The detection and processing of novel information encountered in our environment is crucial for proper adaptive behavior and learning. Hippocampus is a prime structure for novelty detection that receives high-level inputs including context information. It is of our interest to understand the mechanisms by which the hippocampus processes contextual information. For this, we performed in vivo microdyalisis in order to monitor extracellular changes in neurotransmitter levels during Object Location Memory (OLM), a behavioral protocol developed to evaluate contextual information processing in recognition memory. Neurotransmitter release was evaluated in the dorsal hippocampus and insular cortex during OLM in 3-month-old B6129SF2/J mice. We found a simultaneous release of dopamine and norepinephrine in hippocampus during OLM, while neurochemical activity remained unaltered in the cortex. Additionally, we administered 6-hydroxy-dopamine (6-OHDA), a neurotoxic compound selective to dopaminergic and noradrenergic neurons, in the dorsal hippocampus in a different group of mice. Depletion of catecholaminergic terminals in the hippocampus by 6-OHDA impaired OLM but did not affect novel object recognition. Our results support the relevance of hippocampal catecholaminergic neurotransmission in recognition memory. The significance of catecholaminergic function may be extended to the clinical field as it has been reported that innervation of hippocampus by the noradrenergic and dopaminergic system is reduced and atrophied in aging and Alzheimer's disease brain. © 2017 Wiley Periodicals, Inc.

  17. Norepinephrine turnover in heart of the copper deficient rat

    SciTech Connect

    Seidel, K.E.; Failla, M.L.; Rosebrough, R. )

    1989-02-01

    Weaned male SD rats were fed a modified AIN-76A diet containing 62% sucrose and either 7 ppm (+Cu) or 0.5 ppm (-Cu) copper for 5 weeks. Dietary copper deprivation resulted in lower concentrations of copper in liver and serum and enlarged hearts. Tissue levels of norepinephrine (NE) and dopamine (DPA) were quantified by HPLC using electrochemical detection. Cardiac concentration of NE and DPA and 26% lower and 63% higher, respectively, in -Cu rats than in +Cu controls. Altered cardiac levels of NE and DPA in -Cu rats were also evident after overnight fasting, a stress that depresses SNS activity. NE turnover was investigated after inhibition of tyrosine hydroxylase by injection of {alpha}-methyl-p-tyrosine methyl ester (250 mg/kg). The fractional rate of NE turnover in the heart was 4.6%/hour for rats fed -Cu and +Cu diets. Calculated NE turnover was greater in heart of +Cu rats than -Cu rats (26 vs. 19 ng/g/hr). NE and DPA concentration in brain, pancreas, and spleen were not affected by dietary copper. These data suggest that synthesis of NE in cardiac nerve endings of the weaned rats sensitive to dietary copper deficiency.

  18. Norepinephrine deficiency in Parkinson's disease: the case for noradrenergic enhancement.

    PubMed

    Espay, Alberto J; LeWitt, Peter A; Kaufmann, Horacio

    2014-12-01

    The dramatic response of most motor and some nonmotor symptoms to dopaminergic therapies has contributed to maintaining the long-established identity of Parkinson's disease (PD) as primarily a nigrostriatal dopamine (DA) deficiency syndrome. However, DA neurotransmission may be neither the first nor the major neurotransmitter casualty in the neurodegenerative sequence of PD. Growing evidence supports earlier norepinephrine (NE) deficiency resulting from selective degeneration of neurons of the locus coeruleus and sympathetic ganglia. Dopaminergic replacement therapy therefore would seem to neglect some of the motor, behavioral, cognitive, and autonomic impairments that are directly or indirectly associated with the marked deficiency of NE in the brain and elsewhere. Therapeutic strategies to enhance NE neurotransmission have undergone only limited pharmacological testing. Currently, these approaches include selective NE reuptake inhibition, presynaptic α2 -adrenergic receptor blockade, and an NE prodrug, the artificial amino acid L-threo-3,4-dihydroxyphenylserine. In addition to reducing the consequences of deficient noradrenergic signaling, enhancement strate gies have the potential for augmenting the effects of dopaminergic therapies in PD. Furthermore, early recognition of the various clinical manifestations associated with NE deficiency, which may precede development of motor symptoms, could provide a window of opportunity for neuroprotective interventions.

  19. Norepinephrine storage, distribution, and release in diabetic cardiomyopathy

    SciTech Connect

    Ganguly, P.K.; Beamish, R.E.; Dhalla, K.S.; Innes, J.R.; Dhalla, N.S.

    1987-06-01

    The ability of hearts to store, distribute, and release norepinephrine (NE) was investigated in rats 8 wk after the induction of diabetes by an injection of streptozotocin. Chronic diabetes was associated with increased content and concentration of NE in heart and in other tissues such as kidney, brain, and spleen. Reserpine or tyramine treatment resulted in depletion of endogenous cardiac NE in control and diabetic rats. The depletion of NE stores at different times after a dose of reserpine was greater in diabetic hearts. On the other hand, NE stores in diabetic hearts were less sensitive than control hearts to low doses of tyramine but were more sensitive to high doses. The uptake of (/sup 3/H)NE was greater in diabetic hearts in isolated perfused preparations. In comparison with the control values, diabetic hearts showed a decrease in (/sup 3/H)NE in the granular fraction and an increase in the supernatant fraction. Diabetic hearts also showed an accelerated spontaneous release of (/sup 3/H)NE. The increased cardiac NE and the uptake and release of NE in diabetic animals were reversible upon treatment with insulin. These results are consistent with the view that sympathetic activity is increased in diabetic cardiomyopathy and indicate that cardiac NE in diabetic rats is maintained at a higher level partly due to an increased uptake of released NE by adrenergic nerve terminals.

  20. Orienting of attention, pupil size, and the norepinephrine system.

    PubMed

    Gabay, Shai; Pertzov, Yoni; Henik, Avishai

    2011-01-01

    This research examined a novel suggestion regarding the involvement of the locus coeruleus-norepinephrine (LC-NE) system in orienting reflexive (exogenous) attention. A common procedure for studying exogenous orienting of attention is Posner's cuing task. Importantly, one can manipulate the required level of target processing by changing task requirements, which, in turn, can elicit a different time course of inhibition of return (IOR). An easy task (responding to target location) produces earlier onset IOR, whereas a demanding task (responding to target identity) produces later onset IOR. Aston-Jones and Cohen (Annual Review of Neuroscience, 28, 403-450, 2005) presented a theory suggesting two different modes of LC activity: tonic and phasic. Accordingly, we suggest that in the more demanding task, the LC-NE system is activated in phasic mode, and in the easier task, it is activated in tonic mode. This, in turn, influences the appearance of IOR. We examined this suggestion by measuring participants' pupil size, which has been demonstrated to correlate with the LC-NE system, while they performed cuing tasks. We found a response-locked phasic dilation of the pupil in the discrimination task, as compared with the localization task, which may reflect different firing modes of the LC-NE system during the two tasks. We also demonstrated a correlation between pupil size at the time of cue presentation and magnitude of IOR.

  1. Behavior and the balance between norepinephrine and serotonin.

    PubMed

    Ellison, G D

    1975-01-01

    The functions of the central monoamines Norepinephrine (NE) and Serotonin (5HT) can be clarified by the study of behaviors of rats administered selective monoamine toxins. In his home environment the low NE rat has drive deficits and is lethargic, tending to remain in his burrow, but in novel environments this animal acts less frightened than Controls. The low 5HT rat is conversely active and exploratory in familiar environments but frightened in novel environments. These two animals model aspects of depression and anxiety, respectively. 5HT can be thought of as placing the brain into a state of consciousness appropriate for an animal in his nest (i.e., 5HT neurons act as relaxers), and as involved in a type of positive affect related to security, whereas NE neurons are dominant when an animal is vigilant, foraging out in the environment and are involved in a type of positive affect related to goal-directed approach arousal. Monoamine toxins may be produced when the behaviors elicited by these central neuronal systems are negatively reinforced (extinguished).

  2. Population pharmacokinetics and haemodynamic effects of norepinephrine in hypotensive critically ill children

    PubMed Central

    Oualha, Mehdi; Tréluyer, Jean-Marc; Lesage, Fabrice; de Saint Blanquat, Laure; Dupic, Laurent; Hubert, Philippe; Spreux-Varoquaux, Odile; Urien, Saïk

    2014-01-01

    Aim The aim of the study was to investigate the pharmacokinetics and pharmacodynamics of norepinephrine in hypotensive critically ill children, including associated variability factors. Methods This was a prospective study in an 18-bed neonatal and paediatric intensive care unit. All children were aged less than 18 years, weighed more than 1500 g and required norepinephrine for systemic arterial hypotension. The pharmacokinetics and haemodynamic effects were described using the non-linear mixed effect modelling software MONOLIX. Results Norepinephrine dosing infusions ranging from 0.05 to 2 μg kg−1 min−1 were administered to 38 children whose weight ranged from 2 to 85 kg. A one compartment open model with linear elimination adequately described the norepinephrine concentration–time courses. Bodyweight (BW) was the main covariate influencing norepinephrine clearance (CL) and endogenous norepinephrine production rate (q0) via an allometric relationship: CL(BWi) = θCL × (BWi)3/4 and q0(BWi) = θq0 × (BWi)3/4. The increase in mean arterial pressure (MAP) as a function of norepinephrine concentration was well described using an Emax model. The effects of post-conceptional age (PCA) and number of organ dysfunctions were significant on basal MAP level (MAP0i = MAP0 × PCA/9i0.166) and on the maximal increase in MAP (32 mmHg and 12 mmHg for a number of organ dysfunctions ≤3 and ≥4, respectively). Conclusion The pharmacokinetics and haemodynamic effects of norepinephrine in hypotensive critically ill children highlight the between-subject variability which is related to the substantial role of age, BW and severity of illness. Taking into account these individual characteristics may help clinicians in determining an appropriate initial a priori dosing regimen. PMID:24802558

  3. Mutual modulation between norepinephrine and nitric oxide in haemocytes during the mollusc immune response.

    PubMed

    Jiang, Qiufen; Zhou, Zhi; Wang, Lingling; Yang, Chuanyan; Wang, Jingjing; Wu, Tiantian; Song, Linsheng

    2014-11-07

    Nitric oxide (NO) is one of the most important immune molecules in innate immunity of invertebrates, and it can be regulated by norepinephrine in ascidian haemocytes. In the present study, the mutual modulation and underlying mechanism between norepinephrine and NO were explored in haemocytes of the scallop Chlamys farreri. After lipopolysaccharide stimulation, NO production increased to a significant level at 24 h, and norepinephrine concentration rose to remarkable levels at 3 h and 12~48 h. A significant decrease of NO production was observed in the haemocytes concomitantly stimulated with lipopolysaccharide and α-adrenoceptor agonist, while a dramatic increase of NO production was observed in the haemocytes incubated with lipopolysaccharide and β-adrenoceptor agonist. Meanwhile, the concentration of cyclic adenosine monophosphate (cAMP) decreased significantly in the haemocytes treated by lipopolysaccharide and α/β-adrenoceptor agonist, while the content of Ca(2+) was elevated in those triggered by lipopolysaccharide and β-adrenoceptor agonist. When the haemocytes was incubated with NO donor, norepinephrine concentration was significantly enhanced during 1~24 h. Collectively, these results suggested that norepinephrine exerted varied effects on NO production at different immune stages via a novel α/β-adrenoceptor-cAMP/Ca(2+) regulatory pattern, and NO might have a feedback effect on the synthesis of norepinephrine in the scallop haemocytes.

  4. Norepinephrine turnover in brown adipose tissue is stimulated by a single meal

    SciTech Connect

    Glick, Z.; Raum, W.J.

    1986-07-01

    A single meal stimulates brown adipose tissue (BAT) thermogenesis in rats. In the present study the role of norepinephrine in this thermogenic response was assessed from the rate of its turnover in BAT after a single test meal. For comparison, norepinephrine turnover was determined in the heart and spleen. A total of 48 male Wistar rats (200 g) were trained to eat during two feeding sessions per day. On the experimental day, one group (n = 24) was meal deprived and the other (n = 24) was given a low-protein high-carbohydrate test meal for 2 h. The synthesis inhibition method with ..cap alpha..-methyl-p-tyrosine was employed to determine norepinephrine turnover from its concentration at four hourly time points after the meal. Tissue concentrations of norepinephrine were determined by radioimmunoassay. Norepinephrine concentration and turnover rate were increased more than threefold in BAT of the meal-fed compared with the meal-deprived rats. Neither were significantly altered by the meal in the heart or spleen. The data suggest that norepinephrine mediates a portion of the thermic effect of meals that originate in BAT.

  5. Diffusion algorithms and data reduction routine for onsite real-time launch predictions for the transport of Delta-Thor exhaust effluents

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.

    1976-01-01

    The National Aeronautics and Space Administration/Marshall Space Flight Center multilayer diffusion algorithms have been specialized for the prediction of the surface impact for the dispersive transport of the exhaust effluents from the launch of a Delta-Thor vehicle. This specialization permits these transport predictions to be made at the launch range in real time so that the effluent monitoring teams can optimize their monitoring grids. Basically, the data reduction routine requires only the meteorology profiles for the thermodynamics and kinematics of the atmosphere as an input. These profiles are graphed along with the resulting exhaust cloud rise history, the centerline concentrations and dosages, and the hydrogen chloride isopleths.

  6. Mechanism and kinetics of halogenated compound removal by metallic iron: Transport in solution, diffusion and reduction within corrosion films.

    PubMed

    Tang, Shun; Wang, Xiao-Mao; Liu, Shi-Ting; Yang, Hong-Wei; Xie, Yuefeng F; Yang, Xiao-Yi

    2017-03-06

    A detailed kinetic model comprised of mass transport (ktra), pore diffusion (kdif), adsorption and reduction reaction (krea), was developed to quantitatively evaluate the effect of corrosion films on the removal rate (kobs) of halogenated compounds by metallic iron. Different corrosion conditions were controlled by adjusting the iron aging time (0 or 1 yr) and dissolved oxygen concentration (0-7.09 mg/L DO). The kobs values for bromate, mono-, di- and tri-chloroacetic acids (BrO3(-), MCAA, DCAA and TCAA) were 0.41-7.06, 0-0.16, 0.01-0.53, 0.10-0.73 h(-1), with ktra values at 13.32, 12.12, 11.04 and 10.20 h(-1), kdif values at 0.42-5.82, 0.36-5.04, 0.30-4.50, 0.30-3.90 h(-1), and krea values at 14.94-421.18, 0-0.19, 0.01-1.30, 0.10-3.98 h(-1), respectively. The variation of kobs value with reaction conditions depended on the reactant species, while those of ktra, kdif and krea values were irrelevant to the species. The effects of corrosion films on kdif and krea values were responsible for the variation of kobs value for halogenated compounds. For a mass-transfer-limited halogenated compound such as BrO3(-), an often-neglected kdif value primarily determined its kobs value when pore diffusion was the rate-limiting step of its removal. In addition, the value of kdif might influence product composition during a consecutive dechlorination, such as for TCAA and DCAA. For a reaction-controlled compound such as MCAA, an increased krea value was achieved under low oxic conditions, which was favorable to improve its kobs value. The proposed model has a potential in predicting the removal rate of halogenated compounds by metallic iron under various conditions.

  7. Age differences in plasma norepinephrine kinetics in humans

    SciTech Connect

    Veith, R.C.; Featherstone, J.A.; Linares, O.A.; Halter, J.B.

    1986-05-01

    To determine if the increased plasma norepinephrine (NE) of older individuals is due to greater plasma NE appearance rate and/or decreased NE clearance, arterialized plasma NE kinetics were measured in 25 healthy young (27 +/- 6 yr, M +/- SD) and 18 healthy older volunteers (68 +/- 5 yr) using a tritium-labeled NE isotope dilution technique. Basal NE levels were 54% greater in the older participants (282 +/- 24 vs. 183 +/- 11 pg/ml, M +/- SEM, p less than .001). The mean plasma NE appearance rate was 32% higher (0.33 +/- 0.03 vs. 0.25 +/- 0.02 microgram/m2/min, p less than .016) and NE clearance was 19% lower (1.21 +/- 0.08 vs. 1.49 +/- 0.06 L/min/m2, p less than .006) in the older participants. There was a close correlation between NE appearance rate and NE levels (r = .76, p less than .001, N = 43), but only modest inverse correlation between NE clearance and NE levels (r = -.37, p less than .01, N = 43). Stepwise multiple linear regression analysis revealed that NE appearance rate and clearance explained 80% of the variance in NE levels and that 57% of the variance was attributable to NE appearance, F (1,41) = 54.8, p less than .001, compared with only 14% by NE clearance, F (1, 41) = 6.5, p = .01. We conclude that the principal factor accounting for the higher plasma NE levels of older individuals is an increase in plasma NE appearance rate.

  8. Norepinephrine metabolism in humans. Kinetic analysis and model

    SciTech Connect

    Linares, O.A.; Jacquez, J.A.; Zech, L.A.; Smith, M.J.; Sanfield, J.A.; Morrow, L.A.; Rosen, S.G.; Halter, J.B.

    1987-11-01

    The present study was undertaken to quantify more precisely and to begin to address the problem of heterogeneity of the kinetics of distribution and metabolism of norepinephrine (NE) in humans, by using compartmental analysis. Steady-state NE specific activity in arterialized plasma during (/sup 3/H)NE infusion and postinfusion plasma disappearance of (/sup 3/H)NE were measured in eight healthy subjects in the supine and upright positions. Two exponentials were clearly identified in the plasma (/sup 3/H)NE disappearance curves of each subject studied in the supine (r = 0.94-1.00, all P less than 0.01) and upright (r = 0.90-0.98, all P less than 0.01) positions. A two-compartment model was the minimal model necessary to simultaneously describe the kinetics of NE in the supine and upright positions. The NE input rate into the extravascular compartment 2, estimated with the minimal model, increased with upright posture (1.87 +/- 0.08 vs. 3.25 +/- 0.2 micrograms/min per m2, P less than 0.001). Upright posture was associated with a fall in the volume of distribution of NE in compartment 1 (7.5 +/- 0.6 vs. 4.7 +/- 0.3 liters, P less than 0.001), and as a result of that, there was a fall in the metabolic clearance rate of NE from compartment 1 (1.80 +/- 0.11 vs. 1.21 +/- 0.08 liters/min per m2, P less than 0.001). We conclude that a two-compartment model is the minimal model that can accurately describe the kinetics of distribution and metabolism of NE in humans.

  9. Copper-deficient mice have higher cardiac norepinephrine turnover

    SciTech Connect

    Gross, A.M.; Prohaska, J.R. )

    1989-02-01

    Male Swiss albino mice were studied at 6 weeks of age. Their dams were fed a copper-deficient diet (modified AIN-76A) starting 4 days after birth and given deionized water (-Cu) or water with CuSO{sub 4} added (+Cu) (20 {mu}g Cu/ml). When 3 weeks of age mice were weaned and housed in stainless steel cages on the respective treatment of their dams. Turnover of norepinephrine (NE) was studied in 8 experiments using 2 separate techniques. The first procedure used {alpha}-methyl-p-tyrosine methyl ester (300 mg/kg i.p.) to inhibit tyrosine hydroxlase activity. The loss of residual NE was determined by HPLC with electrochemical detection. Regression lines were constructed and fractional turnover (%/h) and calculated turnover (ng/g/h) were determined for heart, cerebellum and adrenal gland. In 4 experiments loss of NE in cerebellum of -Cu ad +Cu mice was equivalent. Loss of NE from adrenal gland could not be detected in the 8 h time course. Loss of NE, both fractional turnover and calculated turnover, from heart of -Cu mice was 4-5 fold higher compared to +Cu controls. A second method using m- hydroxybenzylhydrazine (NSD-1015) (100 mg/kg i.p.), which inhibits aromatic amino acid decarboxylase, confirmed the results. For all 4 experiments the cardiac accumulation of L-DOPA (measured by HPLC) was faster in -Cu mice compared to controls. The higher turnover rate of NE in heart and perhaps other sympathetic nerves may contribute to the higher urinary NE output observed previously.

  10. Effects of desipramine on norepinephrine clearance in congestive heart failure

    SciTech Connect

    Clemson, B.; Baily, R.G.; Davis, D.; Zelis, R. )

    1990-08-01

    Elevated plasma norepinephrine (NE) in congestive heart failure (CHF) is caused by increased NE spillover and decreased NE clearance. To evaluate the effects of neuronal uptake blockade on NE clearance, we studied NE kinetics during steady-state infusions of (3H)NE, before and after oral desipramine (DMI, 50 mg) in 11 patients with CHF and 8 normal volunteers. Baseline plasma NE was greater in the CHF group (637 +/- 56 vs. 271 +/- 32 pg/ml; P less than 0.001), NE clearance was lower in CHF (1.31 +/- 0.21 vs. 1.94 +/- 0.17 l.min-1.m-2; P = 0.026), and NE spillover was greater in CHF (4.71 +/- 0.78 vs. 3.04 +/- 0.35 nmol.min-1.m-2, P = 0.054). After DMI, plasma NE rose significantly in CHF (778 +/- 67; P = 0.008), and NE clearance decreased further in CHF (0.97 +/- 0.16; P = 0.024), but neither changed in normal subjects. NE spillover did not change in either group. There appears to be an enhanced effect of DMI on NE clearance in CHF patients. Two general mechanisms may be responsible for this finding, an increased concentration of drug, possibly caused by a decreased volume of distribution, and an increased sensitivity of neuronal amine pumps to DMI. Both mechanisms may reflect a more general abnormality of clearance of drugs and hormones related to abnormalities of tissue perfusion in CHF.

  11. Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: Putative mechanism for manganese-induced neurotoxicity.

    PubMed

    Karki, Pratap; Smith, Keisha; Johnson, James; Aschner, Michael; Lee, Eunsook

    2015-09-01

    Astrocytes are the most abundant non-neuronal glial cells in the brain. Once relegated to a mere supportive role for neurons, contemporary dogmas ascribe multiple active roles for these cells in central nervous system (CNS) function, including maintenance of optimal glutamate levels in synapses. Regulation of glutamate levels in the synaptic cleft is crucial for preventing excitotoxic neuronal injury. Glutamate levels are regulated predominantly by two astrocytic glutamate transporters, glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST). Indeed, the dysregulation of these transporters has been linked to several neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD), as well as manganism, which is caused by overexposure to the trace metal, manganese (Mn). Although Mn is an essential trace element, its excessive accumulation in the brain as a result of chronic occupational or environmental exposures induces a neurological disorder referred to as manganism, which shares common pathological features with Parkinsonism. Mn decreases the expression and function of both GLAST and GLT-1. Astrocytes are commonly targeted by Mn, and thus reduction in astrocytic glutamate transporter function represents a critical mechanism of Mn-induced neurotoxicity. In this review, we will discuss the role of astrocytic glutamate transporters in neurodegenerative diseases and Mn-induced neurotoxicity.

  12. Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: putative mechanism for manganese-induced neurotoxicity

    PubMed Central

    Karki, Pratap; Smith, Keisha; Johnson, James; Aschner, Michael; Lee, Eunsook

    2014-01-01

    Astrocytes are the most abundant non-neuronal glial cells in the brain. Once relegated to a mere supportive role for neurons, contemporary dogmas ascribe multiple active roles for these cells in central nervous system (CNS) function, including maintenance of optimal glutamate levels in synapses. Regulation of glutamate levels in the synaptic cleft is crucial for preventing excitotoxic neuronal injury. Glutamate levels are regulated predominantly by two astrocytic glutamate transporters, glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST). Indeed, the dysregulation of these transporters has been linked to several neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD), as well as manganism, which is caused by overexposure to the trace metal, manganese (Mn). Although Mn is an essential trace element, its excessive accumulation in the brain as a result of chronic occupational or environmental exposures induces a neurological disorder referred to as manganism, which shares common pathological features with Parkinsonism. Mn decreases the expression and function of both GLAST and GLT-1.Astrocytes are commonly targeted by Mn, and thus reduction in astrocytic glutamate transporter function represents a critical mechanism of Mn-induced neurotoxicity. In this review, we will discuss the role of astrocytic glutamate transporters in neurodegenerative diseases and Mn-induced neurotoxicity. PMID:25128239

  13. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification.

    PubMed

    Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu

    2015-08-13

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2'-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation.

  14. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification

    PubMed Central

    Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu

    2015-01-01

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2′-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation. PMID:26287170

  15. Effects of the selective norepinephrine reuptake inhibitor reboxetine on norepinephrine and serotonin transmission in the rat hippocampus.

    PubMed

    Szabo, S T; Blier, P

    2001-12-01

    Given that norepinephrine (NE) and serotonin (5-HT) neurons are implicated in the mechanisms of action of antidepressant drugs and both project to the hippocampus, the impact of acute and long-term administration of the selective NE inhibitor reboxetine was assessed on CA(3) pyramidal neuron firing in this postsynaptic structure. Cumulative injections of reboxetine (1-4 mg/kg, i.v.) dose-dependently increased the recovery time of the firing of these neurons following iontophoretic applications of NE, but not 5-HT. In rats treated with reboxetine for 2.5 mg/kg/day for 21 days, a robust increase in the recovery time following NE applications was observed, and a small but significant prolongation occurred following 5-HT applications. In controls and reboxetine-treated rats, 1 and 5 Hz stimulations of the afferent 5-HT bundle to the hippocampus, which allows determination of terminal 5-HT(1B) autoreceptor sensitivity, produced similar frequency-dependent decreases in pyramidal neuron firing in both groups. However, after low and high doses of clonidine (10 and 400 microg/kg, i.v.), which assesses alpha(2)-adrenergic auto- and heteroreceptor sensitivity, respectively, only the effect of the high dose of clonidine was attenuated. Interestingly, administration of the selective 5-HT(1A) receptor antagonist WAY 100,635 induced a 140% increase in basal pyramidal neuron firing in reboxetine as compared to saline-treated rats. This increase in tonic activation of postsynaptic 5-HT(1A) receptors might be attributable in part to a desensitization of alpha(2)-adrenergic heteroreceptors, presumably resulting from sustained NE reuptake inhibition. These results indicate that even a selective NE reuptake inhibitor can modulate 5-HT transmission.

  16. Anaerobic humus and Fe(III) reduction and electron transport pathway by a novel humus-reducing bacterium, Thauera humireducens SgZ-1.

    PubMed

    Ma, Chen; Yu, Zhen; Lu, Qin; Zhuang, Li; Zhou, Shun-Gui

    2015-04-01

    In this study, an anaerobic batch experiment was conducted to investigate the humus- and Fe(III)-reducing ability of a novel humus-reducing bacterium, Thauera humireducens SgZ-1. Inhibition tests were also performed to explore the electron transport pathways with various electron acceptors. The results indicate that in anaerobic conditions, strain SgZ-1 possesses the ability to reduce a humus analog, humic acids, soluble Fe(III), and Fe(III) oxides. Acetate, propionate, lactate, and pyruvate were suitable electron donors for humus and Fe(III) reduction by strain SgZ-1, while fermentable sugars (glucose and sucrose) were not. UV-visible spectra obtained from intact cells of strain SgZ-1 showed absorption peaks at 420, 522, and 553 nm, characteristic of c-type cytochromes (cyt c). Dithionite-reduced cyt c was reoxidized by Fe-EDTA and HFO (hydrous ferric oxide), which suggests that cyt c within intact cells of strain SgZ-1 has the ability to donate electrons to extracellular Fe(III) species. Inhibition tests revealed that dehydrogenases, quinones, and cytochromes b/c (cyt b/c) were involved in reduction of AQS (9, 10-anthraquinone-2-sulfonic acid, humus analog) and oxygen. In contrast, only NADH dehydrogenase was linked to electron transport to HFO, while dehydrogenases and cyt b/c were found to participate in the reduction of Fe-EDTA. Thus, various different electron transport pathways are employed by strain SgZ-1 for different electron acceptors. The results from this study help in understanding the electron transport processes and environmental responses of the genus Thauera.

  17. Amelioration of deficit syndrome of schizophrenia by norepinephrine reuptake inhibitor

    PubMed Central

    Shoja Shafti, Saeed; Jafarabad, Mohammad Sadeghe; Azizi, Reza

    2015-01-01

    Objective: Negative symptoms are a significant barrier to successful functional outcome and recovery in individuals with schizophrenia and their management is not unproblematic. Reboxetine is a norepinephrine reuptake inhibitor (NRI). Previous studies regarding the useful effects of reboxetine on deficit symptoms of schizophrenia have resulted in inconsistent results. The present study therefore evaluated the effectiveness of reboxetine as an adjunctive treatment in a group of schizophrenic patients with prominent negative symptoms. Method: A total of 50 male inpatients meeting diagnosis of schizophrenia entered into a 12-week parallel group, double-blind study for random assignment to reboxetine (n = 25 patients) or placebo (n = 25 patients). The inclusion criterion, in addition to the diagnosis of schizophrenia, was the existence of obvious negative symptoms for a duration of at least 2 years. The Scale for Assessment of Negative Symptoms (SANS) was used as the primary outcome measure. The Scale for Assessment of Positive Symptoms (SAPS), Simpson Angus Scale (SAS), Hamilton Rating Scale for Depression (HAM-D) and Mini-Mental Status Examination (MMSE) were used for comparison of the intervening parameters in this study. Results: According to the findings, 76% of patients in the target group showed some positive response to reboxetine compared with 24% in the control group (p < 0.01). The mean total score of SANS in the reboxetine group decreased significantly from 79.94 ± 1.20 to 74.23 ± 4.07 (p < 0.0001) at the end of the study; such an improvement was not significant in the placebo group with a decrease from 80.42 ± 2.46 to 79.08 ± 5.83 (p < 0.29). Changes of SAPS were insignificant in both groups. Effect size analysis for changes of SANS at the end of assessment indicated a large improvement with reboxetine (Cohen’s d = 2.91). Conclusion: Reboxetine, as an adjuvant to haloperidol, may have a helpful effect on the deficit syndrome of schizophrenia. PMID

  18. INTRANEURAL DISTRIBUTION OF EXOGENOUS NOREPINEPHRINE IN THE CENTRAL NERVOUS SYSTEM OF THE RAT

    PubMed Central

    Descarries, Laurent; Droz, Bernard

    1970-01-01

    Catecholaminergic neurons, which take up and retain exogenous norepinephrine labeled with tritium, were studied by means of high resolution radioautography, in the substantia nigra, the substantia grisea periventricularis, and the locus coeruleus of the rat. Under the conditions required for the radioautographic detection of exogenous norepinephrine-3H, it was established that (1) glutaraldehyde was the most suitable fixative for preserving the labeled amine in situ; (2) norepinephrine-3H itself, rather than metabolites, accounted for most of the reactions detected in catecholaminergic neurons. At various time intervals after an intraventricular injection of norepinephrine-3H, the tracer reached a concentration 15–100 times higher, and disappeared at a slower rate, in presynaptic axons (t½:4 hr) than in nerve cell bodies (t½:0.8–1.3 hr). After pretreatment with a monoamine oxidase inhibitor, the radioautographic reactions increased and persisted longer, especially in the preterminal axons. Within neurons, the labeled amine was ubiquitously distributed in the nerve cell body and concentrated in presynaptic axons and synaptic terminals of various morphological types. Although large granular vesicles were usually present in the labeled axonal bulbs, no structural characteristic could be specifically ascribed to catecholaminergic neurons. It is suggested that exogenous norepinephrine bound to macromolecular complexes is present in all parts of catecholaminergic neurons and mainly concentrated within presynaptic axons. PMID:5411080

  19. The stress hormone norepinephrine increases migration of prostate cancer cells in vitro and in vivo.

    PubMed

    Barbieri, Antonio; Bimonte, Sabrina; Palma, Giuseppe; Luciano, Antonio; Rea, Domenica; Giudice, Aldo; Scognamiglio, Giosuè; La Mantia, Elvira; Franco, Renato; Perdonà, Sisto; De Cobelli, Ottavio; Ferro, Matteo; Zappavigna, Silvia; Stiuso, Paola; Caraglia, Michele; Arra, Claudio

    2015-08-01

    The metastatic process is the most serious cause of cancer death. Norepinephrine, secreted in chronic stress conditions, stimulates the motility of breast and colon cells through β-adrenergic receptor. On these bases, we examined its possible role in metastasis formation and development in vitro and in vivo. Treatments with norepinephrine (β2-adrenoreceptor agonist) in mice xenografted with human DU145 prostate cancer cells increased the metastatic potential of these cells. Specifically, we showed that treatment of mice with norepinephrine induced a significant increase of the migratory activity of cancer cells in a concentration-dependent manner and that this process was blocked by propanolol (β-adrenergic antagonist). Mice treated with norepinephrine, displayed an increased number of metastatic foci of DU145 cells in inguinal lymph nodes and also showed an increased expression of MMP2 and MMP9 in tumor samples compared to controls. Moreover, we demonstrated that propanolol induced in norepinephrine treated DU145 cells a E-cadherin finger-like membrane protrusions driven by vimentin remodeling. Altogether these data suggest that β2-AR plays an important role in prostate cancer metastasis formation and that the treatment with antagonist propanolol, could represents an interesting tool to control this process in cells overexpressing β2AR.

  20. Interaction Between Brain Histamine and Serotonin, Norepinephrine, and Dopamine Systems: In Vivo Microdialysis and Electrophysiology Study.

    PubMed

    Flik, Gunnar; Folgering, Joost H A; Cremers, Thomas I H F; Westerink, Ben H C; Dremencov, Eliyahu

    2015-06-01

    Brain monoamines (serotonin, norepinephrine, dopamine, and histamine) play an important role in emotions, cognition, and pathophysiology and treatment of mental disorders. The interactions between serotonin, norepinephrine, and dopamine were studied in numerous works; however, histamine system received less attention. The aim of this study was to investigate the interactions between histamine and other monoamines, using in vivo microdialysis and electrophysiology. It was found that the inverse agonist of histamine-3 receptors, thioperamide, increased the firing activity of dopamine neurons in the ventral tegmental area. Selective agonist of histamine-3 receptors, immepip, reversed thiperamide-induced stimulation of firing activity of dopamine neurons. The firing rates of serotonin and norpeinephrine neurons were not attenuated by immepip or thioperamide. Thioperamide robustly and significantly increased extracellular concentrations of serotonin, norepinephrine, and dopamine in the rat prefrontal cortex and slightly increased norepinephrine and dopamine levels in the tuberomammillary nucleus of the hypothalamus. It can be concluded that histamine stimulates serotonin, norepinephrine, and dopamine transmission in the brain. Modulation of firing of dopamine neurons is a key element in functional interactions between histamine and other monoamines. Antagonists of histamine-3 receptors, because of their potential ability to stimulate monoamine neurotransmission, might be beneficial in the treatment of mental disorders.

  1. Electrophysiological Properties of Catecholaminergic Neurons in the Norepinephrine-Deficient Mouse

    PubMed Central

    Beckstead, Michael J.; Weinshenker, David

    2007-01-01

    To determine how norepinephrine affects the basic physiological properties of catecholaminergic neurons, brain slices containing the Substantia Nigra Pars Compacta and Locus Coeruleus were studied with cell-attached and whole-cell recordings in control and dopamine β-hydroxylase knockout (Dbh −/−) mice that lack norepinephrine. In the cell-attached configuration, the spontaneous firing rate and pattern of Locus Coeruleus neurons recorded from Dbh −/− mice was the same as the firing rate and pattern recorded from heterozygous littermates (Dbh +/−). During whole-cell recordings, synaptic stimulation produced an α-2 receptor-mediated outward current in the Locus Coeruleus of control mice that was absent in Dbh −/− mice. Normal α-2 mediated outward currents were restored in Dbh −/− slices after pre-incubation with norepinephrine. Locus Coeruleus neurons also displayed similar changes in holding current in response to bath application of norepinephrine, UK 14304, and methionine-enkephalin. Dopamine neurons recorded in the Substantia Nigra Pars Compacta similarly showed no differences between slices harvested from Dbh −/− and control mice. These results indicate that endogenous norepinephrine is not necessary for the expression of catecholaminergic neuron firing properties or responses to direct agonists, but is necessary for auto-inhibition mediated by indirect α-2 receptor stimulation. PMID:17156935

  2. Norepinephrine turnover in the goldfish brain is modulated by sex steroids and GABA.

    PubMed

    Trudeau, V L; Sloley, B D; Peter, R E

    1993-10-08

    It is known that norepinephrine (NE) is important in the neuroendocrine control of pituitary gonadotropin II (GTH-II) and growth hormone (GH) release but very little is known about the factors regulating NE neurons in the goldfish brain. Female gonad-intact goldfish were implanted intraperitoneally (100 micrograms/g) with testosterone (T) or estradiol (E2) to elevate serum steroid levels. High-performance liquid chromatography measurements showed that steroid implantation had no effect on NE content in the telencephalon, including preoptic area (TEL-POA), or the hypothalamus (HYP). The turnover rate of NE was estimated from the rate of depletion of NE content from tissues following inhibition of tyrosine hydroxylase by alpha-methyl-p-tyrosine (240 micrograms/g). The present study demonstrates that E2 can decrease NE turnover rates in TEL-POA and HYP of sexually regressed goldfish (August). The results in recrudescent fish (November), however, indicate a more complex interaction of E2 with NE neurons since E2 increased NE turnover in TEL-POA and HYP in these animals. Testosterone (T) has less prominent effects on NE turnover rates in TEL-POA and HYP; the only significant effect of T-implantation was a small reduction of NE turnover in the TEL-POA of sexually recrudescent fish. Elevation of endogenous brain GABA concentrations by injection of the GABA transaminase inhibitor, gamma-vinyl-GABA (300 micrograms/g), significantly reduced NE turnover in TEL-POA. These data demonstrate that goldfish NE neurons in the TEL-POA are sensitive to regulation by changes in circulating sex steroids and by increases in brain GABA.

  3. Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine.

    PubMed

    Janowsky, Aaron; Tosh, Dilip K; Eshleman, Amy J; Jacobson, Kenneth A

    2016-04-01

    Thirty-two congeneric rigid adenine nucleoside derivatives containing a North (N)-methanocarba ribose substitution and a 2-arylethynyl group either enhanced (up to 760% of control) or inhibited [(125)I] methyl (1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (RTI-55) binding at the human dopamine (DA) transporter (DAT) and inhibited DA uptake. Several nucleosides also enhanced [(3)H]mazindol [(±)-5-(4-chlorophenyl)-3,5-dihydro-2H-imidazo[2,1-a]isoindol-5-ol] binding to the DAT. The combination of binding enhancement and functional inhibition suggests possible allosteric interaction with the tropanes. The structure-activity relationship of this novel class of DAT ligands was explored: small N(6)-substition (methyl or ethyl) was favored, while the N1 of the adenine ring was essential. Effective terminal aryl groups include thien-2-yl (compounds 9 and 16), with EC50 values of 35.1 and 9.1 nM, respectively, in [(125)I]RTI-55 binding enhancement, and 3,4-difluorophenyl as in the most potent DA uptake inhibitor (compound 6) with an IC50 value of 92 nM (3-fold more potent than cocaine), but not nitrogen heterocycles. Several compounds inhibited or enhanced binding at the norepinephrine transporter (NET) and serotonin transporter (SERT) and inhibited function in the micromolar range; truncation at the 4'-position in compound 23 allowed for weak inhibition of the SERT. We have not yet eliminated adenosine receptor affinity from this class of DAT modulators, but we identified modifications that remove DAT inhibition as an off-target effect of potent adenosine receptor agonists. Thus, we have identified a new class of allosteric DAT ligands, rigidified adenosine derivatives, and explored their initial structural requirements. They display a very atypical pharmacological profile, i.e., either enhancement by increasing affinity or inhibition of radioligand binding at the DAT, and in some cases the NET and SERT, and inhibition of neurotransmitter

  4. Nature of rate-limiting steps in a compartmentalized enzyme system. Quantitation of dopamine transport and hydroxylation rates in resealed chromaffin granule ghosts

    SciTech Connect

    Ahn, N.G.; Klinman, J.P.

    1989-07-25

    Using isolated chromaffin granule ghosts from bovine adrenal medullae, we have studied the kinetics of dopamine beta-monooxygenase (D beta M) activity as it is linked to dopamine transport. Measurements of the initial rates of transport and of transport-linked norepinephrine formation suggested that enzyme activity may be partially rate-limiting in the coupled carrier/enzyme system. This was confirmed by (i) measurements of initial rates of norepinephrine formation using deuterated substrate, which gave isotope effects greater than 2.0, and (ii) kinetic measurements using ghosts pulsed with varying concentrations of labeled dopamine, which indicated substantial substrate accumulation in the vesicle interior as a function of time. Initial rates of product formation, when combined with approximations of internal substrate concentrations, allowed estimates of Kcat and Km for intravesicular D beta M. Activation by external reductant was apparent in both initial rate parameters and the measurements of transients. Under conditions of optimal D beta M activity, the enzyme rate parameters (kcat = 0.31 nmol/s.mg and Km = 2 mM) indicated partial rate limitation compared to dopamine transport (kcat = 0.38 nmol/s.mg and Km = 32 microM). Compartmental analysis of the time curves, performed using numerical nonlinear least squares methods, gave least squares estimates of rate constants for a simple carrier mechanism and kcat values for D beta M which were consistent with estimates from initial rates.

  5. Computational modeling suggests distinct, location-specific function of norepinephrine in olfactory bulb and piriform cortex.

    PubMed

    de Almeida, Licurgo; Reiner, Seungdo J; Ennis, Matthew; Linster, Christiane

    2015-01-01

    Noradrenergic modulation from the locus coerulus is often associated with the regulation of sensory signal-to-noise ratio. In the olfactory system, noradrenergic modulation affects both bulbar and cortical processing, and has been shown to modulate the detection of low concentration stimuli. We here implemented a computational model of the olfactory bulb and piriform cortex, based on known experimental results, to explore how noradrenergic modulation in the olfactory bulb and piriform cortex interact to regulate odor processing. We show that as predicted by behavioral experiments in our lab, norepinephrine can play a critical role in modulating the detection and associative learning of very low odor concentrations. Our simulations show that bulbar norepinephrine serves to pre-process odor representations to facilitate cortical learning, but not recall. We observe the typical non-uniform dose-response functions described for norepinephrine modulation and show that these are imposed mainly by bulbar, but not cortical processing.

  6. Prejunctional inhibition of norepinephrine release caused by acetylcholine in the human saphenous vein

    SciTech Connect

    Rorie, D.K.; Rusch, N.J.; Shepherd, J.T.; Vanhoutte, P.M.; Tyce, G.M.

    1981-08-01

    We performed experiments to determine whether or not acetylcholine exerts a prejunctional inhibitory effect on adrenergic neurotransmission in the human blood vessel wall. Rings of human greater saphenous veins were prepared 2 to 15 hours after death and mounted for isometric tension recording in organ chambers filled with Krebs-Ringer solution. Acetylcholine depressed contractile responses to electric activation of the sympathetic nerve endings significantly more than those to exogenous norepinephrine; the relaxations caused by the cholinergic transmitter were antagonized by atropine. Helical strips were incubated with (/sub 3/H)norepinephrine and mounted for superfusion. Electric stimulation augmented the fractional release of labeled norepinephrine. Acetylcholine caused a depression of the evoked /sub 3/H release which was antagonized by atropine but not by hexamethonium. These experiments demonstrate that, as in animal cutaneous veins, there are prejunctional inhibitory muscarinic receptors on the adrenergic nerve endings in the human saphenous vein. By contrast, the human vein also contains postjunctional inhibitory muscarinic receptors.

  7. A novel composite of molecularly imprinted polymer-coated PdNPs for electrochemical sensing norepinephrine.

    PubMed

    Chen, Jianrong; Huang, Hong; Zeng, Yanbo; Tang, Huan; Li, Lei

    2015-03-15

    A novel composite of molecularly imprinted polymer-coated palladium nanoparticles (MIP-coated PdNPs) was synthesized by sol-gel method using norepinephrine as template, phenyl trimethoxysilane as functional monomer and tetramethoxysilane as crosslinker. The combination of PdNPs and silica-based MIP endowed the composite with good electrochemical catalytic property, large surface area and template selectivity. MIP-coated PdNPs were characterized by Fourier transform infrared spectroscopy and Transmission electron microscopy. Then MIP-coated PdNPs composite was used as a recognition element in the construction of an electrochemical sensor for norepinephrine. The properties of MIP-coated PdNPs sensor such as special binding, adsorption dynamics and selective recognition ability were evaluated by differential pulse voltammetry. The results demonstrated that MIP-coated PdNPs sensor not only possessed a short response time, but also high binding capacity for norepinephrine, which enabled the imprinted sensor with higher current response than that of non-imprinted material and MIP without PdNPs. In addition, the MIP-coated PdNPs sensor exhibited selectivity for norepinephrine in comparison to other analogs. The MIP-coated PdNPs sensor had a wide linear range over norepinephrine concentration from 0.5 to 80.0μM with a detection limit of 0.1μM. The MIP-coated PdNPs sensor was proved to be a suitable sensing tool for the fast, sensitive and selective determination of norepinephrine in injection and urine samples.

  8. A Multimodel Assessment of the Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing and the Role of Intercontinental Transport

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; West, Jason; Atherton, Cynthia S.; Bellouin, Nicolas; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Forberth, Gerd; Hess, Peter; Schulz, Michael; Shindell, Drew; Takemura, Toshihiko; Tan, Qian

    2013-01-01

    In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the Northern Hemisphere by using results from nine global models in the framework of the Hemispheric Transport of Air Pollution (HTAP). DRF at top of atmosphere (TOA) and surface is estimated based on AOD results from the HTAP models and AOD-normalized DRF (NDRF) from a chemical transport model. The multimodel results show that, on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia, and South Asia lowers the global mean AOD (all-sky TOA DRF) by 9.2% (9.0%), 3.5% (3.0%), and 9.4% (10.0%) for sulfate, particulate organic matter (POM), and black carbon (BC), respectively. Global annual average TOA all-sky forcing efficiency relative to particle or gaseous precursor emissions from the four regions (expressed as multimodel mean +/- one standard deviation) is -3.5 +/-0.8, -4.0 +/- 1.7, and 29.5+/-18.1mW / sq m per Tg for sulfate (relative to SO2), POM, and BC, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport (ICT). On an annual basis, ICT accounts for 11 +/- 5% to 31 +/- 9% of AOD and DRF in a receptor region at continental or subcontinental scale, with domestic emissions accounting for the remainder, depending on regions and species. For sulfate AOD, the largest ICT contribution of 31 +/- 9% occurs in South Asia, which is dominated by the emissions from Europe. For BC AOD, the largest ICT contribution of 28 +/- 18% occurs in North America, which is dominated by the emissions from East Asia. The large spreads among models highlight the need to improve aerosol processes in models, and evaluate and constrain models with observations.

  9. Characteristics of the norepinephrine-stimulated phosphatidylinositol turnover in rat pineal cell dispersions

    SciTech Connect

    Hauser, G.; Smith, T.L.

    1981-10-01

    Dispersed rat pineal cells can be used for the study of the phosphatidylinositol effect. The response to ( - )-norepinephrine of the incorporation of 32Pi into phospholipids is linear with time and cell concentration, stereospecific, and mediated through alpha-1-adrenergic receptors. Na+ in the incubation medium is obligatory for labeling of phosphatidylinositol and phosphatidylcholine by 32P. In the absence of K+, incorporation of 32P is drastically lowered and no stimulation by norepinephrine occurs. Rb+ can replace K+. Omission of Ca2+ or substitution with Sr2+ preferentially lowers incorporation of radioactivity into phosphatidylcholine. Mg2+ is not required for basal or stimulated labeling.

  10. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  11. Reaction-Based Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect

    Yeh, Gour-Tsyh

    2006-06-01

    This research project (started Fall 2004) was funded by a grant to The Pennsylvania State University, University of Central Florida, and The University of Alabama in the Integrative Studies Element of the NABIR Program (DE-FG04-ER63914/63915/63196). Dr. Eric Roden, formerly at The University of Alabama, is now at the University of Wisconsin - Madison. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and is directly aligned with the Scheibe et al. NABIR FRC Field Project at Area 2.

  12. High Performance Reduction of H2O2 with an Electron Transport Decaheme Cytochrome on a Porous ITO Electrode.

    PubMed

    Reuillard, Bertrand; Ly, Khoa H; Hildebrandt, Peter; Jeuken, Lars J C; Butt, Julea N; Reisner, Erwin

    2017-03-08

    The decaheme cytochrome MtrC from Shewanella oneidensis MR-1 immobilized on an ITO electrode displays unprecedented H2O2 reduction activity. Although MtrC showed lower peroxidase activity in solution compared to horseradish peroxidase, the ten heme cofactors enable excellent electronic communication and a superior activity on the electrode surface. A hierarchical ITO electrode enabled optimal immobilization of MtrC and a high current density of 1 mA cm(-2) at 0.4 V vs SHE could be obtained at pH 6.5 (Eonset = 0.72 V). UV-visible and Resonance Raman spectroelectrochemical studies suggest the formation of a high valent iron-oxo species as the catalytic intermediate. Our findings demonstrate the potential of multiheme cytochromes to catalyze technologically relevant reactions and establish MtrC as a new benchmark in biotechnological H2O2 reduction with scope for applications in fuel cells and biosensors.

  13. Variation in key genes of serotonin and norepinephrine function predicts gamma-band activity during goal-directed attention.

    PubMed

    Enge, Sören; Fleischhauer, Monika; Lesch, Klaus-Peter; Reif, Andreas; Strobel, Alexander

    2014-05-01

    Recent evidence shows that genetic variations in key regulators of serotonergic (5-HT) signaling explain variance in executive tasks, which suggests modulatory actions of 5-HT on goal-directed selective attention as one possible underlying mechanism. To investigate this link, 130 volunteers were genotyped for the 5-HT transporter gene-linked polymorphic region (5-HTTLPR) and for a variation (TPH2-703 G/T) of the TPH2 gene coding for the rate-limiting enzyme of 5-HT synthesis in the brain. Additionally, a functional polymorphism of the norepinephrine transporter gene (NET -3081 A/T) was considered, which was recently found to predict attention and working memory processes in interaction with serotonergic genes. The flanker-based Attention Network Test was used to assess goal-directed attention and the efficiency of attentional networks. Event-related gamma-band activity served to indicate selective attention at the intermediate phenotype level. The main findings were that 5-HTTLPR s allele and TPH2 G-allele homozygotes showed increased induced gamma-band activity during target processing when combined with the NET A/A genotype compared with other genotype combinations, and that gamma activity mediates the genotype-specific effects on task performance. The results further support a modulatory role of 5-HT and NE function in the top-down attentional selection of motivationally relevant over competing or irrelevant sensory input.

  14. Effects of coronary occlusion and norepinephrine on the myocardium of alloxan-diabetic dogs.

    PubMed

    Palik, I; Koltai, M Z; Kolonics, I; Wagner, M; Pogátsa, G

    1982-01-01

    The aim of this study was to clarify the role of altered diabetic vascular reactivity in ischaemic heart disease. In diabetic condition, the necrotic area of myocardial infarction was significantly extended and myocardial oedema failed to develop after administration of norepinephrine 2 or 48 hours after ligation of the left anterior descending coronary artery. In metabolically healthy dogs the necrotic area of myocardial infarction was considerably smaller and an increase in myocardial water content, in myocardial thiocyanate space, in microscopically demonstrable permeability and in diastolic stiffness of left ventricular wall occurred when norepinephrine was administered 2 or 48 hours after coronary infarction. A close correlation was demonstrable between enhanced water content, thiocyanate space and diastolic stiffness in metabolically healthy animals, whereas in diabetic condition diastolic stiffness was primarily increased, and decreased when norepinephrine was infused after coronary ligation. Therefore, the altered vascular reactivity in diabetes is supposed to be responsible for the lack of oedema in the nonischaemic part of myocardium after norepinephrine infusion as well as for the size and severity of myocardial infarction.

  15. Intrahippocampal Infusions of Anisomycin Produce Amnesia: Contribution of Increased Release of Norepinephrine, Dopamine, and Acetylcholine

    ERIC Educational Resources Information Center

    Qi, Zhenghan; Gold, Paul E.

    2009-01-01

    Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the beta-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and…

  16. Norepinephrine Triggers Metaplasticity of LTP by Increasing Translation of Specific mRNAs

    ERIC Educational Resources Information Center

    Maity, Sabyasachi; Rah, Sean; Sonenberg, Nahum; Gkogkas, Christos G.; Nguyen, Peter V.

    2015-01-01

    Norepinephrine (NE) is a key modulator of synaptic plasticity in the hippocampus, a brain structure crucially involved in memory formation. NE boosts synaptic plasticity mostly through initiation of signaling cascades downstream from beta (ß)-adrenergic receptors (ß-ARs). Previous studies demonstrated that a ß-adrenergic receptor agonist,…

  17. Perilipin regulates the thermogenic actions of norepinephrine in brown adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In response to cold, norepinephrine (NE)-induced triacylglycerol hydrolysis (lipolysis) in adipocytes of brown adipose tissue (BAT) provides fatty acid substrates to mitochondria for heat generation (adaptive thermogenesis). NE-induced lipolysis is mediated by protein kinase A (PKA)-dependent phosp...

  18. Plasma norepinephrine, blood pressure and heart rate response to graded change in body position.

    PubMed

    Fiorica, V; Kem, D C

    1985-12-01

    In this study, 44 human subjects underwent either an orthostatic postural change (supine to stand, n = 17) or a graded change in body position (head-up) on a tilt-table (n = 27). No significant changes in systolic blood pressure or mean blood pressure were observed during either maneuver; significant increases, under both conditions, were observed in diastolic blood pressure and heart rate. Plasma norepinephrine concentrations after orthostatic position change increased significantly (supine 181 +/- 14 (S.E.M.) pg X ml-1; stand, 472 +/- 35 pg X ml-1, p less than 0.01). Plasma norepinephrine concentrations during graded postural change increased proportionately with increasing degrees of tilt (r = 0.76, p less than 0.01). A significant correlation between plasma norepinephrine and heart rate was observed during both positional change maneuvers (graded tilt-table, r = 0.80, p less than 0.01; orthostatic, r = 0.50, p less than 0.01). These results suggest that the degree of sympathetic nervous system activity for blood pressure regulation during graded postural change is appropriately reflected by plasma norepinephrine concentrations.

  19. Successful long-term ambulatory norepinephrine infusions in a patient with pure autonomic failure.

    PubMed

    Zekeridou, A; Michel, P; Medlin, F; Hayoz, D; Lalive, P H; Kuntzer, T

    2015-08-01

    We present a case study of a patient with pure autonomic failure who was successfully treated with ambulatory norepinephrine (NE) infusions over a 9-year-period of time before death occurred unexpectedly. Given this patient's response to the NE infusion treatment, we discuss the option of ambulatory NE infusions as a treatment for severe orthostatic hypotension that is refractory to common treatments.

  20. Low dose naltrexone administration in morphine dependent rats attenuates withdrawal-induced norepinephrine efflux in forebrain.

    PubMed

    Van Bockstaele, Elisabeth J; Qian, Yaping; Sterling, Robert C; Page, Michelle E

    2008-05-15

    The administration of low dose opioid antagonists has been explored as a potential means of detoxification in opiate dependence. Previous results from our laboratory have shown that concurrent administration of low dose naltrexone in the drinking water of rats implanted with subcutaneous morphine pellets attenuates behavioral and biochemical signs of withdrawal in brainstem noradrenergic nuclei. Noradrenergic projections originating from the nucleus tractus solitarius (NTS) and the locus coeruleus (LC) have previously been shown to be important neural substrates involved in the somatic expression of opiate withdrawal. The hypothesis that low dose naltrexone treatment attenuates noradrenergic hyperactivity typically associated with opiate withdrawal was examined in the present study by assessing norepinephrine tissue content and norepinephrine efflux using in vivo microdialysis coupled to high performance liquid chromatography (HPLC) with electrochemical detection (ED). The frontal cortex (FC), amygdala, bed nucleus of the stria terminalis (BNST) and cerebellum were analyzed for tissue content of norepinephrine following withdrawal in morphine dependent rats. Naltrexone-precipitated withdrawal elicited a significant decrease in tissue content of norepinephrine in the BNST and amygdala. This decrease was significantly attenuated in the BNST of rats that received low dose naltrexone pre-treatment compared to controls. No significant difference was observed in the other brain regions examined. In a separate group of rats, norepinephrine efflux was assessed with in vivo microdialysis in the BNST or the FC of morphine dependent rats or placebo treated rats subjected to naltrexone-precipitated withdrawal that received either naltrexone in their drinking water (5 mg/L) or unadulterated water. Following baseline dialysate collection, withdrawal was precipitated by injection of naltrexone and sample collection continued for an additional 4 h. At the end of the experiment

  1. Expression of Iron-Related Proteins at the Neurovascular Unit Supports Reduction and Reoxidation of Iron for Transport Through the Blood-Brain Barrier.

    PubMed

    Burkhart, Annette; Skjørringe, Tina; Johnsen, Kasper Bendix; Siupka, Piotr; Thomsen, Louiza Bohn; Nielsen, Morten Schallburg; Thomsen, Lars Lykke; Moos, Torben

    2016-12-01

    The mechanisms for iron transport through the blood-brain barrier (BBB) remain a controversy. We analyzed for expression of mRNA and proteins involved in oxidation and transport of iron in isolated brain capillaries from dietary normal, iron-deficient, and iron-reverted rats. The expression was also investigated in isolated rat brain endothelial cells (RBECs) and in immortalized rat brain endothelial (RBE4) cells grown as monoculture or in hanging culture inserts with defined BBB properties. Transferrin receptor 1, ferrireductases Steap 2 and 3, divalent metal transporter 1 (DMT1), ferroportin, soluble and glycosylphosphatidylinositol (GPI)-anchored ceruloplasmin, and hephaestin were all expressed in brain capillaries in vivo and in isolated RBECs and RBE4 cells. Gene expression of DMT1, ferroportin, and soluble and GPI-anchored ceruloplasmin were significantly higher in isolated RBECs with induced BBB properties. Primary pericytes and astrocytes both expressed ceruloplasmin and hephaestin, and RBECs, pericytes, and astrocytes all exhibited ferrous oxidase activity. The coherent protein expression of these genes was demonstrated by immunocytochemistry. The data show that brain endothelial cells provide the machinery for receptor-mediated uptake of ferric iron-containing transferrin. Ferric iron can then undergo reduction to ferrous iron by ferrireductases inside endosomes followed by DMT1-mediated pumping into the cytosol and subsequently cellular export by ferroportin. The expression of soluble ceruloplasmin by brain endothelial cells, pericytes, and astrocytes that together form the neurovascular unit (NVU) provides the ferroxidase activity necessary to reoxidize ferrous iron once released inside the brain.

  2. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots.

    PubMed

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-07-20

    The objective of this study was to investigate Al(3+)-induced IAA transport, distribution, and the relation of these two processes to Al(3+)-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L(-1) IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al(3+)-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al(3+) stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al(3+)-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips.

  3. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots

    PubMed Central

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-01-01

    The objective of this study was to investigate Al3+-induced IAA transport, distribution, and the relation of these two processes to Al3+-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L−1 IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al3+-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al3+ stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al3+-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips. PMID:27435109

  4. Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3.

    PubMed

    Duan, Haichuan; Wang, Joanne

    2010-12-01

    The plasma membrane monoamine transporter (PMAT) and organic cation transporter 3 (OCT3) are the two most prominent low-affinity, high-capacity (i.e., uptake(2)) transporters for endogenous biogenic amines. Using the Flp-in system, we expressed human PMAT (hPMAT) and human OCT3 (hOCT3) at similar levels in human embryonic kidney 293 cells. Parallel and detailed kinetics analysis revealed distinct and seemingly complementary patterns for the two transporters in transporting monoamine neurotransmitters. hPMAT is highly selective toward serotonin (5-HT) and dopamine, with the rank order of transport efficiency (V(max)/K(m)) being: dopamine, 5-HT ≫ histamine, norepinephrine, epinephrine. The substrate preference of hPMAT toward these amines is substantially driven by large (up to 15-fold) distinctions in its apparent binding affinities (K(m)). In contrast, hOCT3 is less selective than hPMAT toward the monoamines, and the V(max)/K(m) rank order for hOCT3 is: histamine > norepinephrine, epinephrine > dopamine >5-HT. It is noteworthy that hOCT3 demonstrated comparable (≤2-fold difference) K(m) toward all amines, and distinctions in V(max) played an important role in determining its differential transport efficiency toward the monoamines. Real-time reverse transcription-polymerase chain reaction revealed that hPMAT is expressed at much higher levels than hOCT3 in most human brain areas, whereas hOCT3 is selectively and highly expressed in adrenal gland and skeletal muscle. Our results suggest that hOCT3 represents a major uptake(2) transporter for histamine, epinephrine, and norepinephrine. hPMAT, on the other hand, is a major uptake(2) transporter for 5-HT and dopamine and may play a more important role in transporting these two neurotransmitters in the central nervous system.

  5. Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect

    Burgos, W.D.

    2009-09-02

    This report summarizes research conducted in conjunction with a project entitled “Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2.

  6. Measurement of sympathetic nervous system activity in heart failure: the role of norepinephrine kinetics.

    PubMed

    Esler, M; Kaye, D

    2000-03-01

    Recent demonstration that the level of sympathetic nervous drive to the failing heart in patients with severe heart failure is a major determinant of prognosis, and that mortality in heart failure is reduced by beta-adrenergic blockade, indicate the clinical relevance of heart failure neuroscience research. The cardiac sympathetic nerves are preferentially stimulated in severe heart failure, with the application of isotope dilution methods for measuring cardiac norepinephrine release to plasma indicating that in untreated patients cardiac norepinephrine spillover is increased as much as 50-fold, similar to levels of release seen in the healthy heart during near maximal exercise. This preferential activation of the cardiac sympathetic outflow contributes to arrhythmia development and to progressive deterioration of the myocardium, and has been linked to mortality in both mild and severe cardiac failure. Although the central nervous system mechanisms involved in the sympathetic nervous activation at present remain uncertain, increased intracardiac diastolic pressure seems to be one peripheral reflex stimulus, and increased forebrain norepinephrine turnover an important central mechanism.Additional neurophysiological abnormalities present in the failing human heart include release of the sympathetic cotransmitters, epinephrine and neuropeptide Y, at high levels more typical of their release during exercise in healthy subjects, and the possible presynaptic augmentation of norepinephrine release from the cardiac sympathetic nerves by the regionally released epinephrine. Following on the demonstrable benefit of beta-adrenergic blockade in heart failure, additional antiadrenergic measures (central suppression of sympathetic outflow with imidazoline binding agents such as clonidine, blocking of norepinephrine synthesis by dopamine-beta-hydroxylase inhibition, antagonism of neuropeptide Y) are now under active investigation.

  7. Antidepressants that inhibit both serotonin and norepinephrine reuptake impair long-term potentiation in hippocampus

    PubMed Central

    Cooke, Jennifer D.; Cavender, Hannah M.; Lima, Hope K.; Grover, Lawrence M.

    2014-01-01

    Rationale Monoamine reuptake inhibitors can stimulate expression of brain-derived neurotrophic factor (BDNF) and alter long-term potentiation (LTP), a widely used model for the synaptic mechanisms that underlie memory formation. BDNF expression is up-regulated during LTP, and BDNF in turn positively modulates LTP. Previously, we found that treatment with venlafaxine, a serotonin and norepinephrine reuptake inhibitor (SNRI), but not citalopram, a selective serotonin reuptake inhibitor (SSRI) reduced LTP in hippocampal area CA1 without changing hippocampal BDNF protein expression. Objectives We tested the hypothesis that combined serotonin and norepinephrine reuptake inhibition is necessary for LTP impairment, and we reexamined the potential role of BNDF by testing for region-specific changes in areas CA1, CA3 and dentate gyrus. We also tested whether early events in the LTP signaling pathway were altered to impair LTP. Methods Animals were treated for 21 days with venlafaxine, imipramine, fluoxetine, or maprotiline. In vitro hippocampal slices were used for electrophysiological measurements. Protein expression was measured by enzyme-linked immunosorbent assay (ELISA) and western blotting. Results LTP was impaired only following treatment with combined serotonin and norepinephrine reuptake inhibitors (venlafaxine, imipramine) but not with selective serotonin (fluoxetine) or norepinephrine (maprotiline) reuptake inhibitors. BDNF protein expression was not altered by venlafaxine or imipramine treatment, nor were postsynaptic depolarization during LTP inducing stimulation or synaptic membrane NMDA receptor subunit expression affected. Conclusions LTP is impaired by chronic treatment with antidepressant that inhibit both serotonin and norepinephrine reuptake; this impairment results from changes that are downstream of postsynaptic depolarization and calcium-influx. PMID:24781518

  8. Zinc and zinc chelators modify taurine transport in rat retinal cells.

    PubMed

    Márquez, Asarí; Urbina, Mary; Lima, Lucimey

    2014-11-01

    Zinc regulates Na(+)/Cl(-)-dependent transporters, similar to taurine one, such as those for dopamine, serotonin and norepinephrine. This study examined the ex vivo effect of zinc (ZnSO4), N,N,N,N-tetraquis-(2-piridilmetil)etilendiamino (TPEN) and diethylenetriaminepenta-acetic acid (DTPA), intracellular and extracellular zinc chelators, respectively, on rat retina [(3)H]taurine transport. Isolated cells were incubated in Locke solution with 100 nM of [(3)H]taurine for 25 s. Different concentrations of ZnSO4 (0.5-200 μM) were used. Low concentrations of ZnSO4 (30 and 40 μM) increased the transport, while higher concentrations (100, 150 and 200 μM) decreased it. Various concentrations of TPEN (1-200 μM) were added. Intermediate concentrations of TPEN (10-60 μM) significantly decreased [(3)H]taurine transport. The presence of TPEN, 20 μM, plus ZnSO4 reversed the effect of TPEN alone. Several concentrations of DTPA (1-500 μM) were also investigated. Reduction of transport took place at high concentrations of the chelator (100, 250 and 500 μM). DTPA, 500 μM, plus ZnSO4, did not modify the effect of it. These results indicate that zinc modulates taurine transport in a concentration-dependent manner, directly acting on the transporter or by forming taurine-zinc complexes in cell membranes.

  9. Xylamine, a ligand for the catecholamine transporter

    SciTech Connect

    Waggaman, L.A.

    1985-01-01

    Previous studies have established xylamine (N-2'-chloro-ethyl-N-ethyl-2-methylbenzylamine) irreversibly inhibits neuronal norepinephrine uptake with no concomitant effect on other neurotransmitter systems. Since xylamine is thought to alkylate transport-associated sites in the plasma membrane of noradrenergic neurons, so the loss of endogenous norepinephrine may be a consequence of neuronal membrane damage resulting from the alkylation of membrane components. In these studies, xylamine, under in vitro conditions, irreversibly inhibited both neuronal norepinephrine and dopamine uptake in the rat cortex and striatum, respectively. The efficacy of xylamine as a neuronal dopamine uptake inhibitor appeared to depend on its ability to access dopaminergic neurons during tissue exposure to the drug. In sympathetically innervated peripheral tissues, (/sup 3/H)xylamine was accumulated in noradrenergic neurons in a carrier-dependent manner. Although the data suggested that xylamine was interacting with the norepinephrine uptake carrier, (/sup 3/H)xylamine exposure to isolated synaptic membranes from superior cervical ganglia revealed a large proportion of (/sup 3/H)xylamine binding that was not associated with the noradrenergic transporter. For a closer characterization of xylamine binding in synaptic membranes, brain tissue was chosen as a more practical source of these membranes. While these experiments did not meet with great success, xylamine remains potentially useful as a ligand for identifying the catecholamine transporter, particularly in conjunction with procedures for protein purification and reconstitution.

  10. Deep Reductions in Greenhouse Gas Emissions from the California Transportation Sector: Dynamics in Vehicle Fleet and Energy Supply Transitions to Achieve 80% Reduction in Emissions from 1990 Levels by 2050

    NASA Astrophysics Data System (ADS)

    Leighty, Wayne Waterman

    California's "80in50" target for reducing greenhouse gas emissions to 80 percent below 1990 levels by the year 2050 is based on climate science rather than technical feasibility of mitigation. As such, it raises four fundamental questions: is this magnitude of reduction in greenhouse gas emissions possible, what energy system transitions over the next 40 years are necessary, can intermediate policy goals be met on the pathway toward 2050, and does the path of transition matter for the objective of climate change mitigation? Scenarios for meeting the 80in50 goal in the transportation sector are modelled. Specifically, earlier work defining low carbon transport scenarios for the year 2050 is refined by incorporating new information about biofuel supply. Then transition paths for meeting 80in50 scenarios are modelled for the light-duty vehicle sub-sector, with important implications for the timing of action, rate of change, and cumulative greenhouse gas emissions. One aspect of these transitions -- development in the California wind industry to supply low-carbon electricity for plug-in electric vehicles -- is examined in detail. In general, the range of feasible scenarios for meeting the 80in50 target is narrow enough that several common themes are apparent: electrification of light-duty vehicles must occur; continued improvements in vehicle efficiency must be applied to improving fuel economy; and energy carriers must de-carbonize to less than half of the carbon intensity of gasoline and diesel. Reaching the 80in50 goal will require broad success in travel demand reduction, fuel economy improvements and low-carbon fuel supply, since there is little opportunity to increase emission reductions in one area if we experience failure in another. Although six scenarios for meeting the 80in50 target are defined, only one also meets the intermediate target of reducing greenhouse gas emissions to 1990 levels by the year 2020. Furthermore, the transition path taken to reach any

  11. Adolescents and adults differ in the immediate and long-term impact of nicotine administration and withdrawal on cardiac norepinephrine.

    PubMed

    Slotkin, Theodore A; Stadler, Ashley; Skavicus, Samantha; Seidler, Frederic J

    2016-04-01

    Cardiovascular responses to smoking cessation may differ in adolescents compared to adults. We administered nicotine by osmotic minipump infusion for 17 days to adolescent and adult rats (30 and 90 days of age, respectively) and examined cardiac norepinephrine levels during treatment, after withdrawal, and for months after cessation. In adults, nicotine evoked a significant elevation of cardiac norepinephrine and a distinct spike upon withdrawal, after which the levels returned to normal; the effect was specific to males. In contrast, adolescents did not show significant changes during nicotine treatment or in the immediate post-withdrawal period. However, beginning in young adulthood, males exposed to adolescent nicotine showed sustained elevations of cardiac norepinephrine, followed by later-emerging deficits that persisted through six months of age. We then conducted adolescent exposure using twice-daily injections, a regimen that augments stress associated with inter-dose withdrawal episodes. With the injection route, adolescents showed an enhanced cardiac norepinephrine response, reinforcing the relationship between withdrawal stress and a surge in cardiac norepinephrine levels. The relative resistance of adolescents to the acute nicotine withdrawal response is likely to make episodic nicotine exposure less stressful or aversive than in adults. Equally important, the long-term changes after adolescent nicotine exposure resemble those known to be associated with risk of hypertension in young adulthood (elevated norepinephrine) or subsequent congestive heart disease (norepinephrine deficits). Our findings reinforce the unique responses and consequences of nicotine exposure in adolescence, the period in which most smokers commence tobacco use.

  12. Adolescents and Adults Differ in the Immediate and Long-Term Impact of Nicotine Administration and Withdrawal on Cardiac Norepinephrine

    PubMed Central

    Slotkin, Theodore A.; Stadler, Ashley; Skavicus, Samantha; Seidler, Frederic J.

    2016-01-01

    Cardiovascular responses to smoking cessation may differ in adolescents compared to adults. We administered nicotine by osmotic minipump infusion for 17 days to adolescent and adult rats (30 and 90 days of age, respectively) and examined cardiac norepinephrine levels during treatment, after withdrawal, and for months after cessation. In adults, nicotine evoked a significant elevation of cardiac norepinephrine and a distinct spike upon withdrawal, after which the levels returned to normal; the effect was specific to males. In contrast, adolescents did not show significant changes during nicotine treatment or in the immediate post-withdrawal period. However, beginning in young adulthood, males exposed to adolescent nicotine showed sustained elevations of cardiac norepinephrine, followed by later-emerging deficits that persisted through six months of age. We then conducted adolescent exposure using twice-daily injections, a regimen that augments stress associated with inter-dose withdrawal episodes. With the injection route, adolescents showed an enhanced cardiac norepinephrine response, reinforcing the relationship between withdrawal stress and a surge in cardiac norepinephrine levels. The relative resistance of adolescents to the acute nicotine withdrawal response is likely to make episodic nicotine exposure less stressful or aversive than in adults. Equally important, the long-term changes after adolescent nicotine exposure resemble those known to be associated with risk of hypertension in young adulthood (elevated norepinephrine) or subsequent congestive heart disease (norepinephrine deficits). Our findings reinforce the unique responses and consequences of nicotine exposure in adolescence, the period in which most smokers commence tobacco use. PMID:26993795

  13. Effects of exposure to simulated microgravity on neuronal catecholamine release and blood pressure responses to norepinephrine and angiotensin

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Ludwig, D. A.; Gray, B. D.; Vernikos, J.

    1998-01-01

    We tested the hypothesis that exposure to microgravity reduces the neuronal release of catecholamines and blood pressure responses to norepinephrine and angiotensin. Eight men underwent 30 days of 6 degrees head-down tilt (HDT) bedrest to simulate exposure to microgravity. Plasma norepinephrine and mean arterial blood pressure (MAP) were measured before and after a cold pressor test (CPT) and graded norepinephrine infusion (8, 16 and 32 ng/kg/min) on day 6 of a baseline control period (C6) and on days 14 and 27 of HDT. MAP and plasma angiotensin II (Ang-II) were measured during graded Ang-II infusion (1, 2 and 4 ng/kg/min) on C8 and days 16 and 29 of HDT. Baseline total circulating norepinephrine was reduced from 1017ng during the baseline control period to 610 ng at day 14 and 673ng at day 27 of HDT, confirming a hypoadrenergic state. An elevation of norepinephrine (+178 ng) to the CPT during the baseline control period was eliminated by HDT days 14 and 27. During norepinephrine infusion, similar elevations in plasma norepinephrine (7.7 pg/ml/ng/kg/min) caused similar elevations in MAP (0.12 mmHg/ng/kg/min) across all test days. Ang-II infusion produced higher levels of plasma Ang-II during HDT (47.3 pg/ml) than during baseline control (35.5 pg/ml), while producing similar corresponding elevations in blood pressure. While vascular responsiveness to norepinephrine appears unaffected, impaired neuronal release of norepinephrine and reduced vascular responsiveness to Ang-II might contribute to the lessened capacity to vasoconstrict after spaceflight. The time course of alterations indicates effects that occur within two weeks of exposure.

  14. In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast-scan cyclic voltammetry.

    PubMed

    Park, Jinwoo; Takmakov, Pavel; Wightman, R Mark

    2011-12-01

    Brain norepinephrine and dopamine regulate a variety of critical behaviors such as stress, learning, memory, and drug addiction. In this study, we demonstrate differences in the regulation of in vivo neurotransmission for dopamine in the anterior nucleus accumbens (NAc) and norepinephrine in the ventral bed nucleus of the stria terminalis (vBNST) of the anesthetized rat. Release of the two catecholamines was measured simultaneously using fast-scan cyclic voltammetry at two different carbon-fiber microelectrodes, each implanted in the brain region of interest. Simultaneous dopamine and norepinephrine release was evoked by electrical stimulation of a region where the ventral noradrenergic bundle, the pathway of noradrenergic neurons, courses through the ventral tegmental area/substantia nigra, the origin of dopaminergic cell bodies. The release and uptake of norepinephrine in the vBNST were both significantly slower than for dopamine in the NAc. Pharmacological manipulations in the same animal demonstrated that the two catecholamines are differently regulated. The combination of a dopamine autoreceptor antagonist and amphetamine significantly increased basal extracellular dopamine whereas a norepinephrine autoreceptor antagonist and amphetamine did not change basal norepinephrine concentration. α-Methyl-p-tyrosine, a tyrosine hydroxylase inhibitor, decreased electrically evoked dopamine release faster than norepinephrine. The dual-microelectrode fast-scan cyclic voltammetry technique along with anatomical and pharmacological evidence confirms that dopamine in the NAc and norepinephrine in the vBNST can be monitored selectively and simultaneously in the same animal. The high temporal and spatial resolution of the technique enabled us to examine differences in the dynamics of extracellular norepinephrine and dopamine concurrently in two different limbic structures.

  15. Decreased intracellular calcium mediates the histamine H3-receptor-induced attenuation of norepinephrine exocytosis from cardiac sympathetic nerve endings.

    PubMed

    Silver, Randi B; Poonwasi, Kumar S; Seyedi, Nahid; Wilson, Sandy J; Lovenberg, Timothy W; Levi, Roberto

    2002-01-08

    Activation of presynatic histamine H(3) receptors (H(3)R) down-regulates norepinephrine exocytosis from cardiac sympathetic nerve terminals, in both normal and ischemic conditions. Analogous to the effects of alpha(2)-adrenoceptors, which also act prejunctionally to inhibit norepinephrine release, H(3)R-mediated antiexocytotic effects could result from a decreased Ca(2+) influx into nerve endings. We tested this hypothesis in sympathetic nerve terminals isolated from guinea pig heart (cardiac synaptosomes) and in a model human neuronal cell line (SH-SY5Y), which we stably transfected with human H(3)R cDNA (SH-SY5Y-H(3)). We found that reducing Ca(2+) influx in response to membrane depolarization by inhibiting N-type Ca(2+) channels with omega-conotoxin (omega-CTX) greatly attenuated the exocytosis of [(3)H]norepinephrine from both SH-SY5Y and SH-SY5Y-H(3) cells, as well as the exocytosis of endogenous norepinephrine from cardiac synaptosomes. Similar to omega-CTX, activation of H(3)R with the selective H(3)R-agonist imetit also reduced both the rise in intracellular Ca(2+) concentration (Ca(i)) and norepinephrine exocytosis in response to membrane depolarization. The selective H(3)R antagonist thioperamide prevented this effect of imetit. In the parent SH-SY5Y cells lacking H(3)R, imetit affected neither the rise in Ca(i) nor [(3)H]norepinephrine exocytosis, demonstrating that the presence of H(3)R is a prerequisite for a decrease in Ca(i) in response to imetit and that H(3)R activation modulates norepinephrine exocytosis by limiting the magnitude of the increase in Ca(i). Inasmuch as excessive norepinephrine exocytosis is a leading cause of cardiac dysfunction and arrhythmias during acute myocardial ischemia, attenuation of norepinephrine release by H(3)R agonists may offer a novel therapeutic approach to this condition.

  16. Alternative Function of the Electron Transport System in Azotobacter vinelandii: Removal of Excess Reductant by the Cytochrome d Pathway.

    PubMed

    Liu, J; Lee, F; Lin, C; Yao, X; Davenport, J W; Wong, T

    1995-11-01

    The N(inf2)-fixing bacterium Azotobacter vinelandii was grown in an O(inf2)-regulated chemostat with glucose or galactose as substrate. Increasing the O(inf2) partial pressure resulted in identical synthesis of the noncoupled cytochrome d terminal oxidase, which is consistent with the hypothesis that A. vinelandii uses high rates of respiration to protect the nitrogenase from oxygen. However, cell growth on glucose showed a lower yield of biomass, higher glycolytic rate, higher respiratory rate, and lower cytochrome o content than cell growth on galactose. Elemental analysis indicated no appreciable change in the C-to-N ratio of cell cultures, suggesting that the major composition of the cell was not influenced by the carbon source. A poor coordination of glucose and nitrogen metabolisms in A. vinelandii was suggested. The rapid hydrolysis of glucose resulted in carbonaceous accumulation in cells. Thus, Azotobacter species must induce a futile electron transport to protect cells from the high rates of glucose uptake and glycolysis.

  17. Neurotoxic compound N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP4) depletes endogenous norepinephrine and enhances release of (/sup 3/H)norepinephrine from rat cortical slices

    SciTech Connect

    Landa, M.E.; Rubio, M.C.; Jaim-Etcheverry, G.

    1984-10-01

    The alkylating compound N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP4) injected to rodents blocks norepinephrine (NE) uptake and reduces endogenous NE levels in the central nervous system and in the periphery. To investigate the processes leading to these alterations, rat cortical slices were incubated in the presence of DSP4. Cortical NE was depleted by 40% after incubation of slices in 10(-5) M DSP4 for 60 min and this was blocked by desipramine. The spontaneous outflow of radioactivity from cortical slices labeled previously with (/sup 3/H)NE was enhanced markedly both during exposure to DSP4 and during the subsequent washings, suggesting that NE depletion could be due to this stimulation of NE release. The radioactivity released by DSP4 was accounted for mainly by NE and its deaminated metabolite 3,4-dihydroxyphenylglycol. The enhanced release, independent of external Ca++, apparently originated from the vesicular pool as it was absent after reserpine pretreatment. Activities of the enzymes related to NE synthesis were not altered by DSP4 in vitro and only monoamine oxidase activity was inhibited at high concentrations. Thus, the depletion of endogenous NE produced by DSP4 is probably due to a persistent enhancement of its release from the vesicular pool. Fixation of DSP4 to the NE transport system is necessary but not sufficient to produce the acute NE depletion and the characteristic long-term actions of the compound.

  18. Reduction of ion transport and turbulence via dilution with nitrogen and neon injection in C-Mod deuterium plasmas

    NASA Astrophysics Data System (ADS)

    Porkolab, M.; Ennever, P.; Baek, S. G.; Creely, A. J.; Edlund, E. M.; Hughes, J.; Rice, J. E.; Rost, J. C.; White, A. E.; Reinke, M. L.; Staebler, G.; Candy, J.; Alcator C-Mod Team

    2016-10-01

    Recent experiments on C-Mod ohmic plasmas and gyrokinetic studies indicated that dilution of deuterium plasmas by injection of nitrogen decreased the ion diffusivity and may also alter the direction of intrinsic toroidal rotation. Simulations with TGLF and GYRO showed that dilution of deuterium ions in low density (LOC) plasmas increased the critical ion temperature gradient, while in high density (SOC) plasmas it decreased the stiffness. The density fluctuation spectrum measured in low q95 plasmas with Phase Contrast Imaging (PCI), and corroborated with spatially localized reflectometer measurements show a reduction of turbulence near r/a = 0.8 with kρs <= 1, in agreement with modeling predictions in this region where the ion turbulence is well above marginal stability. Measurements also indicate that reversal of the toroidal rotation direction near the SOC-LOC transition may depend on ion collisionality rather than that of electrons. New experiments with neon seeding, which may be more relevant to ITER than with nitrogen seeding, show similar results. The impact of dilution on Te turbulence as measured with CECE diagnostic will also be presented. Supported by US DOE Awards DE-FG02-94-ER54235 and DE-FC02-99-ER54512.

  19. Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials.

    PubMed

    Rojo, Miguel Muñoz; Martín, Jaime; Grauby, Stéphane; Borca-Tasciuc, Theodorian; Dilhaire, Stefan; Martin-Gonzalez, Marisol

    2014-07-21

    To date, there is no experimental characterization of thermal conductivity of semiconductor polymeric individual nanowires embedded in a matrix. This work reports on scanning thermal microscopy measurements in a 3ω configuration to determine how the thermal conductivity of individual nanowires made of a model conjugated polymer (P3HT) is modified when decreasing their diameters. We observe a reduction of thermal conductivity, from λNW = 2.29 ± 0.15 W K(-1) m(-1) to λNW = 0.5 ± 0.24 W K(-1) m(-1), when the diameter of nanowires is reduced from 350 nm to 120 nm, which correlates with the polymer crystal orientation measured by WAXS. Through this work, the foundations for future polymer thermal transport engineering are presented.

  20. Binge-like eating attenuates nisoxetine feeding suppression, stress activation, and brain norepinephrine activity.

    PubMed

    Bello, Nicholas T; Yeh, Chung-Yang; Verpeut, Jessica L; Walters, Amy L

    2014-01-01

    Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h) and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min) twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat), Binge (sweetened fat), Restrict (calorie deprivation), and Naive (no calorie deprivation/no sweetened fat). Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP), a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h). In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml) and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min) following restraint stress (1 h). Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4), but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01). In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus-norepinephrine neural activity demonstrated reduced sensory-evoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz). These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly palatable

  1. Effects of dopamine, norepinephrine and dobutamine on gastric mucosal pH of septic shock patients

    PubMed Central

    Wu, Yifen; Zhang, Ning; Wu, Yifu; Zheng, Yanping; You, Xiaoen; Cao, Zhuo; Xu, Yaqi

    2016-01-01

    The effect of different vasoactive drugs on the pH [intracellular pH (pHi)] of gastric mucosa in patients with septic shock was evaluated in the present study. According to the vasoactive drugs applied, 48 patients with septic shock were divided into 3 groups: A, B and C, with 16 cases each. Cases of group A were treated with dopamine, those of group B with norepinephrine while those of group C were treated with norepinephrine plus dobutamine. The changes of pH of gastric mucosa were observed before treatment (baseline) and 6, 12, 24 and 48 h after treatment, and the hemodynamic indicators were observed before treatment (baseline) and 6 h after administration. The gastric mucosal pH was not significantly different between two of the three groups before treatment (each at P>0.05). The gastric mucosal pH of group A did not change 6, 12, 24 and 48 h after treatment with drugs compared with the baseline (all at P>0.05), while the gastric mucosal pH in groups B and C were each statistically higher at the time points of 6, 12, 24 and 48 h after treatment with drugs compared with the respective baselines (all at P<0.05). Following treatment with drugs, the gastric mucosal pH of group C at all the time points of 6, 12, 24 and 48 h after treatment were significantly higher than those of groups A and B at the same time points after treatment, while there were some statistical differences between groups A and B at these time points (6, 12, 24 and 48 h after treatment; P<0.05). The hemodynamic indicators of the patients before treatment were not significantly different between two of the three groups (all at P>0.05). Compared with the baseline values, the mean arterial pressure and the cardiac index of each group after treatment were significantly increased, the pulmonary capillary wedge pressure and the central venous pressure of groups B and C significantly increased (all at P<0.05) and the heart rate of group A was significantly increased (P<0.05). In conclusion, the

  2. Determination of Endogenous Norepinephrine Levels in Different Chambers of the Rat Heart by Capillary Electrophoresis Coupled with Amperometric Detection

    PubMed Central

    Novotny, Martin; Quaiserova-Mocko, Veronika; Wehrwein, Erica A.; Kreulen, David L.; Swain, Greg M.

    2009-01-01

    Capillary electrophoresis with end-column amperometric detection (CE-EC) was used to determine the regional distribution of norepinephrine (NE) in the hearts of sympathetically innervated (control) and chemically sympathectomized rats. Key features of the method are (i) the sample preparation and clean-up step that involved the application of off-line solid phase extraction (SPE) with a 95% NE recovery and (ii) the use of a diamond microelectrode for detection. NE was quantified in the left and right ventricle, the ventricular septum, and the left and right atrium. The NE concentration in the atria was 3–5 times higher than in the ventricles and ventricular septum of control rats. Basal NE levels in the left and right ventricle and the ventricular septum were reduced to below the detection limit (0.034 μg/g tissue) in tissues treated with the neurotoxin, 6-hydroxydopamine (6-OHDA), while only a moderate reduction was observed in the left and right atrium. Importantly, the diamond microelectrode provided low and stable background current and low peak-to-peak noise ≤ 0.65 pA at a detection potential of +0.86 V vs Ag/AgCl. A reproducible electrode response was observed for multiple injections of tissue homogenates with minimal response attenuation due to electrode fouling. PMID:17383009

  3. Effects of nasal continuous positive airway pressure and oxygen supplementation on norepinephrine kinetics and cardiovascular responses in obstructive sleep apnea.

    PubMed

    Mills, Paul J; Kennedy, Brian P; Loredo, Jose S; Dimsdale, Joel E; Ziegler, Michael G

    2006-01-01

    Obstructive sleep apnea (OSA) is characterized by noradrenergic activation. Nasal continuous positive airway pressure (CPAP) is the treatment of choice and has been shown to effectively reduce elevated norepinephrine (NE) levels. This study examined whether the reduction in NE after CPAP is due to an increase in NE clearance and/or a decrease of NE release rate. Fifty CPAP-naive OSA patients with an apnea-hypopnea index >15 were studied. NE clearance and release rates, circulating NE levels, urinary NE excretion, and blood pressure and heart rate were determined before and after 14 days of CPAP, placebo CPAP (CPAP administered at ineffective pressure), or oxygen supplementation. CPAP led to a significant increase in NE clearance (P < or = 0.01), as well as decreases in plasma NE levels (P < or = 0.018) and daytime (P < 0.001) and nighttime (P < 0.05) NE excretion. NE release rate was unchanged with treatment. Systolic (P < or = 0.013) and diastolic (P < or = 0.026) blood pressure and heart rate (P < or = 0.014) were decreased in response to CPAP but not in response to oxygen or placebo CPAP treatment. Posttreatment systolic blood pressure was best predicted by pretreatment systolic blood pressure and posttreatment NE clearance and release rate (P < 0.01). The findings indicate that one of the mechanisms through which CPAP reduces NE levels is through an increase in the clearance of NE from the circulation.

  4. Norepinephrine genes predict response time variability and methylphenidate-induced changes in neuropsychological function in attention deficit hyperactivity disorder.

    PubMed

    Kim, Bung-Nyun; Kim, Jae-Won; Cummins, Tarrant D R; Bellgrove, Mark A; Hawi, Ziarih; Hong, Soon-Beom; Yang, Young-Hui; Kim, Hyo-Jin; Shin, Min-Sup; Cho, Soo-Churl; Kim, Ji-Hoon; Son, Jung-Woo; Shin, Yun-Mi; Chung, Un-Sun; Han, Doug-Hyun

    2013-06-01

    Noradrenergic dysfunction may be associated with cognitive impairments in attention-deficit/hyperactivity disorder (ADHD), including increased response time variability, which has been proposed as a leading endophenotype for ADHD. The aim of this study was to examine the relationship between polymorphisms in the α-2A-adrenergic receptor (ADRA2A) and norepinephrine transporter (SLC6A2) genes and attentional performance in ADHD children before and after pharmacological treatment.One hundred one medication-naive ADHD children were included. All subjects were administered methylphenidate (MPH)-OROS for 12 weeks. The subjects underwent a computerized comprehensive attention test to measure the response time variability at baseline before MPH treatment and after 12 weeks. Additive regression analyses controlling for ADHD symptom severity, age, sex, IQ, and final dose of MPH examined the association between response time variability on the comprehensive attention test measures and allelic variations in single-nucleotide polymorphisms of the ADRA2A and SLC6A2 before and after MPH treatment.Increasing possession of an A allele at the G1287A polymorphism of SLC6A2 was significantly related to heightened response time variability at baseline in the sustained (P = 2.0 × 10) and auditory selective attention (P = 1.0 × 10) tasks. Response time variability at baseline increased additively with possession of the T allele at the DraI polymorphism of the ADRA2A gene in the auditory selective attention task (P = 2.0 × 10). After medication, increasing possession of a G allele at the MspI polymorphism of the ADRA2A gene was associated with increased MPH-related change in response time variability in the flanker task (P = 1.0 × 10).Our study suggested an association between norepinephrine gene variants and response time variability measured at baseline and after MPH treatment in children with ADHD. Our results add to a growing body of evidence, suggesting that response time

  5. Na(+) doping induced changes in the reduction and charge transport characteristics of Al2O3-stabilized, CuO-based materials for CO2 capture.

    PubMed

    Imtiaz, Q; Abdala, P M; Kierzkowska, A M; van Beek, W; Schweiger, S; Rupp, J L M; Müller, C R

    2016-04-28

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging CO2 capture technologies that could reduce appreciably the costs associated with the capture of CO2. In CLC and CLOU, the oxygen required to combust a hydrocarbon is provided by a solid oxygen carrier. Among the transition metal oxides typically considered for CLC and CLOU, copper oxide (CuO) stands out owing to its high oxygen carrying capacity, exothermic reduction reactions and fast reduction kinetics. However, the low Tammann (sintering) temperature of CuO is a serious drawback. In this context, it has been proposed to support CuO on high Tammann temperature and low cost alumina (Al2O3), thus, reducing the morphological changes occurring over multiple CLC or CLOU redox cycles and stabilizing, in turn, the high activity of CuO. However, in CuO-Al2O3 systems, phase stabilization and avoiding the formation of the CuAl2O4 spinel is key to obtaining a material with a high redox stability and activity. Here, we report a Na(+) doping strategy to phase stabilize Al2O3-supported CuO, yielding in turn an inexpensive material with a high redox stability and CO2 capture efficiency. We also demonstrate that doping CuO-Al2O3 with Na(+) improves the oxygen uncoupling characteristics and coke resistance of the oxygen carriers. Utilizing in situ and ex situ X-ray absorption spectroscopy (XAS), the local structure of Cu and the reduction pathways of CuO were determined as a function of the Na(+) content and cycle number. Finally, using 4-point conductivity measurements, we confirm that doping of Al2O3-supported CuO with Na(+) lowers the activation energy for charge transport explaining conclusively the improved redox characteristics of the new oxygen carriers developed.

  6. Aspirin curtails the acetaminophen-induced rise in brain norepinephrine levels.

    PubMed

    Maharaj, Himant; Maharaj, Deepa S; Saravanan, Karruppagounder S; Mohanakumar, Kochupurackal P; Daya, Santy

    2004-06-01

    We previously showed that acetaminophen administration to rats increases forebrain serotonin levels as a result of the inhibition of liver tryptophan-2,3-dioxygenase (TDO). In this study we determined whether aspirin alone and in combination with acetaminophen could further influence brain serotonin as well as norepinephrine levels and if so whether the status of the liver TDO activity would be altered. The results show that acetaminophen alone increases brain serotonin as well as norepinephrine levels with a concomitant inhibition of liver TDO activity. In contrast, aspirin did not alter the levels of these monoamines but increased serotonin turnover in the brain while acetaminophen decreased the turnover. When combined with acetaminophen, aspirin overrides the reduced serotonin turnover induced by acetaminophen. This report demonstrates the potential of these agents to alter neurotransmitter levels in the brain.

  7. Simultaneous ultrastructural visualization of acetylcholinesterase activity and tritiated norepinephrine uptake in renal nerves

    SciTech Connect

    Barajas, L.; Wang, P.

    1983-02-01

    In this investigation we have combined the methods of ultrastructural demonstration of acetylcholinesterase activity with electron microscopic autoradiography for the demonstration of norepinephrine uptake. The results show electron-dense deposits indicative of acetylcholinesterase activity associated with perivascular axons overlaid by concentrations of silver grains representing exogenous tritiated norepinephrine. Forty-five percent of the intervaricose regions and 19% of the varicosities overlaid by autoradiographic grains showed ''moderate'' amounts of cholinesterase staining. A greater proportion of autoradiographic grains was observed on the varicosities than in the intervaricose regions; however, the amount of acetylcholinesterase activity was greater in the intervaricose regions than in the varicosities. This investigation provides evidence for the presence of periaxonal acetylcholinesterase staining in adrenergic axons in the rat kidney.

  8. Rhythmic Melatonin Response of the Syrian Hamster Pineal Gland to Norepinephrine In Vitro and In Vivo

    DTIC Science & Technology

    1986-01-01

    melatonin production . NE appears to be the neurotransmitter for stimulation of pineal melatonin production in the Syrian hamster. The sensitivity rhythm and...these findings indicate similarity of these three species with regard to sympathetic control of melatonin production as revealed by neural lesions and...of melatonin production in humans. Hamster Melatonin Response to Norepinephrine 237 One purpose of the present study was to re-examine whether the

  9. Habituation in the Single Cell: Diminished Secretion of Norepinephrine with Repetitive Depolarization of PC12 Cells

    NASA Astrophysics Data System (ADS)

    McFadden, Philip N.; Koshland, Daniel E., Jr.

    1990-03-01

    Neuronally differentiated PC12 cells secrete decreasing amounts of [^3H]norepinephrine when repetitively stimulated by depolarizing concentrations of potassium ion. The decreasing response shows attributes that have been classically ascribed to response habituation, a behavior commonly observed in nervous systems but found here in a homogeneous cell type. Alteration of the habituation pattern was caused by activators of the protein kinase C pathway and of voltage-gated calcium channels.

  10. Manipulation of norepinephrine metabolism with yohimbine in the treatment of autonomic failure

    NASA Technical Reports Server (NTRS)

    Biaggioni, I.; Robertson, R. M.; Robertson, D.

    1994-01-01

    It has been postulated that alpha 2-adrenergic receptors play a modulatory role in the regulation of blood pressure. Activation of alpha 2-receptors located in the central nervous system results in inhibition of sympathetic tone and decrease of blood pressure. This indeed may be the mechanism of action of central sympatholytic antihypertensives such as alpha-methyldopa. Presynaptic alpha 2-receptors also are found in adrenergic nerve terminals. These receptors act as a negative feedback mechanism by inhibiting the release of norepinephrine. The relevance of alpha 2-adrenergic receptors for blood pressure regulation can be explored with yohimbine, a selective antagonist of these receptors. Yohimbine increases blood pressure in resting normal volunteers. This effect is associated with an increase in both sympathetic nerve activity, reflecting an increase in central sympathetic outflow, and in norepinephrine spillover, reflecting potentiation of the release of norepinephrine from adrenergic nerve terminals. These actions, therefore, underscore the importance of alpha 2-adrenergic receptors for blood pressure regulation even under resting conditions. Patients with autonomic failure, even those with severe sympathetic deprivation, are hypersensitive to the pressor effects of yohimbine. This increased responsiveness can be explained by sensitization of adrenergic receptors, analogous to denervation supersensitivity, and by the lack of autonomic reflexes that would normally buffer any increase in blood pressure. Preliminary studies suggest that the effectiveness of yohimbine in autonomic failure can be enhanced with monoamine oxidase inhibitors. Used in combination, yohimbine increases norepinephrine release, whereas monoamine oxidase inhibitors inhibit its degradation. Therefore, yohimbine is not only a useful tool in the study of blood pressure regulation, but may offer a therapeutic option in autonomic dysfunction.

  11. Cardiovascular alterations after injection of 2% lidocaine with norepinephrine 1:50,000 (xylestesin) in rats.

    PubMed

    Faraco, Fatima Neves; Armonia, Paschoal Laercio; Malamed, Stanley F

    2007-01-01

    The purpose of the present study is to determine the cardiovascular effects produced by intravascular injection of 2% lidocaine with 20 microg/mL of norepinephrine on systolic, diastolic, and mean arterial pressures and heart rate of rats at the following times: control period, during the injection (first 15 seconds), during the first minute, and at the end of 1, 2, 3, 4, 5, 10, 15, 20, 25, and 30 minutes after drug administration. The study was performed on 13 male Wistar rats with weights between 200 grams and 220 grams that were awake during the recording of these parameters. The dose administered was proportional to 1 cartridge of local anesthetic (1.8 mL) in an average-size human, which is equivalent to 0.51 mg/kg of lidocaine hydrochloride and 0.51 microg/kg of norepinephrine hydrochloride. The average time of injection was 15.7 seconds. The results of this study showed significant increases in systolic, diastolic, and mean arterial pressure and a noticeable decrease in heart rate. The greatest variation occurred in the systolic blood pressure. The greatest alterations occurred during injection and within the first minute following administration of the anesthetic solution. We would anticipate these changes in the parameters analyzed to be clinically significant. Thus, dentists using 2% lidocaine with norepinephrine 20 mug/mL should be very careful to avoid intravascular injection.

  12. Phosphorylation potential and adenosine release during norepinephrine infusion in guinea pig heart

    SciTech Connect

    He, Miao-Xiang; Wangler, R.D.; Dillon, P.F.; Romig, G.D.; Sparks, H.V. )

    1987-11-01

    This study tested the hypothesis that adenosine released from isolated guinea pig hearts in response to norepinephrine is related to the cellular phosphorylation potential (PP;(ATP)/(ADP)(P{sub i})), where P{sub i} is inorganic phosphate. {sup 31}P-nuclear magnetic resonance (NMR) was used to measure the relative concentrations of P{sub i}, phosphocreatine (PCr), and ATP. After a control period, norepinephrine was infused for 20 min during which {sup 31}P-NMR spectra and samples of venous effluent were collected every minute. With norepinephrine infusion, PCr decreased rapidly to 72% of control by 8 min and then recovered to 80% of control for the remaining 12 min. ATP fell slowly to 70% of control over 20 min. P{sub i} increased to a peak at 2 min, then declined slowly to a steady state from 8 to 20 min. Adenosine release increased at 7 min and then slowly fell to a steady state from 10 to 20 min. There is hyperbolic relationship between adenosine release and PP; when the PP declines, a level is reached below which there is a rapid increase in adenosine release. These data support the hypothesis that adenosine release is regulated by the cellular PP as a closely related variable.

  13. Stimulatory effects of neuronally released norepinephrine on renin release in vitro

    SciTech Connect

    Matsumura, Yasuo; Kawazoe, Shinka; Ichihara, Toshio; Shinyama, Hiroshi; Kageyama, Masaaki; Morimoto, Shiro )

    1988-10-01

    Extracellular high potassium inhibits renin release in vitro by increasing calcium concentrations in the juxtaglomerular cells. The authors found that the decreased response of renin release from rat kidney cortical slices in high potassium solution changed to a strikingly increased one in the presence of nifedipine at doses over 10{sup {minus}6} M. They then examined the stimulatory effect of extracellular high potassium in the presence of nifedipine on renin release. The enhancement of release was significantly suppressed either by propranolol or by metoprolol but not by prazosin. High potassium plus nifedipine-induced increase in renin release was markedly attenuated by renal denervation. The enhancing effect was not observed when the slices were incubated in calcium-free medium. Divalent cations such as Cd{sup 2+}, Co{sup 2+}, and Mn{sup 2+} blocked this enhancement in a concentration-dependent manner. High potassium elicited an increase in {sup 3}H efflux from the slices preloaded with ({sup 3}H)-norepinephrine. The increasing effect was not influenced by nifedipine but was abolished by the removal of extracellular calcium or by the addition of divalent cations. These observations suggest to us that the high potassium plus nifedipine-induced increase in renin release from the slices is mediated by norepinephrine derived from renal sympathetic nerves and that this neuronally released norepinephrine stimulates renin release via activation of {beta}-adrenoceptors.

  14. Dopamine and norepinephrine depletion in ring doves fed DDE, dieldrin, and Aroclor 1254

    USGS Publications Warehouse

    Heinz, G.H.; Hill, E.F.; Contrera, J.F.

    1980-01-01

    The levels of dopamine and norepinephrine were measured in one-half of the brain of ring doves fed a control diet or a diet containing 2, 20, or 200 ppm DDE; 1, 4, or 16 ppm dieldrin; or 1, 10, or 100 ppm Aroclor 1254. Levels of DDE, dieldrin, or Aroclor 1254 were determined in the other half of each brain. The intermediate and high levels of each chemical caused depletions in both neurotransmitters, and brain residues of each chemical were negatively correlated with levels of neurotransmitters. The highest concentrations of DDE, dieldrin, and Aroclor 1254 depressed averages of dopamine to 42.4, 41.4, and 45.2% of the control level and norepinephrine to 61.6, 62.0, and 56.9% of controls, respectively. Depletions of dopamine and norepinephrine could result in abnormal behavior of contaminated birds in the wild, and the detection of such depletions could become an important tool in assessing contaminant-induced behavioral aberrations in birds.

  15. Memory-enhancing corticosterone treatment increases amygdala norepinephrine and Arc protein expression in hippocampal synaptic fractions.

    PubMed

    McReynolds, Jayme R; Donowho, Kyle; Abdi, Amin; McGaugh, James L; Roozendaal, Benno; McIntyre, Christa K

    2010-03-01

    Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of memory for emotionally arousing events through interactions with the noradrenergic system of the basolateral complex of the amygdala (BLA). We previously reported that intra-BLA administration of a beta-adrenoceptor agonist immediately after inhibitory avoidance training enhanced memory consolidation and increased hippocampal expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc). In the present experiments corticosterone (3 mg/kg, i.p.) was administered to male Sprague-Dawley rats immediately after inhibitory avoidance training to examine effects on long-term memory, amygdala norepinephrine levels, and hippocampal Arc expression. Corticosterone increased amygdala norepinephrine levels 15 min after inhibitory avoidance training, as assessed by in vivo microdialysis, and enhanced memory tested at 48 h. Corticosterone treatment also increased expression of Arc protein in hippocampal synaptic tissue. The elevation in BLA norepinephrine appears to participate in corticosterone-influenced modulation of hippocampal Arc expression as intra-BLA blockade of beta-adrenoceptors with propranolol (0.5 microg/0.2 microL) attenuated the corticosterone-induced synaptic Arc expression in the hippocampus. These findings indicate that noradrenergic activity at BLA beta-adrenoceptors is involved in corticosterone-induced enhancement of memory consolidation and expression of the synaptic-plasticity-related protein Arc in the hippocampus.

  16. Habituation of thermal sensations, skin temperatures, and norepinephrine in men exposed to cold air.

    PubMed

    Leppäluoto, J; Korhonen, I; Hassi, J

    2001-04-01

    We studied habituation processes by exposing six healthy men to cold air (2 h in a 10 degrees C room) daily for 11 days. During the repeated cold exposures, the general cold sensations and those of hand and foot became habituated so that they were already significantly less intense after the first exposure and remained habituated to the end of the experiment. The decreases in skin temperatures and increases in systolic blood pressure became habituated after four to six exposures, but their habituations occurred only at a few time points during the 120-min cold exposure and vanished by the end of the exposures. Serum thyroid-stimulating hormone, total thyroxine and triiodothyronine, norepinephrine, epinephrine, cortisol, and total proteins were measured before and after the 120-min cold exposure on days 0, 5, and 10. The increase in norepinephrine response became reduced on days 5 and 10 and that of proteins on day 10, suggesting that the sympathetic nervous system became habituated and hemoconcentration became attenuated. Thus repeated cold-air exposures lead to habituations of cold sensation and norepinephrine response and to attenuation of hemoconcentration, which provide certain benefits to those humans who have to stay and work in cold environments.

  17. Cardiovascular Alterations After Injection of 2% Lidocaine With Norepinephrine 1:50,000 (Xylestesin) in Rats

    PubMed Central

    Faraco, Fatima Neves; Armonia, Paschoal Laercio; Malamed, Stanley F

    2007-01-01

    The purpose of the present study is to determine the cardiovascular effects produced by intravascular injection of 2% lidocaine with 20 μg/mL of norepinephrine on systolic, diastolic, and mean arterial pressures and heart rate of rats at the following times: control period, during the injection (first 15 seconds), during the first minute, and at the end of 1, 2, 3, 4, 5, 10, 15, 20, 25, and 30 minutes after drug administration. The study was performed on 13 male Wistar rats with weights between 200 grams and 220 grams that were awake during the recording of these parameters. The dose administered was proportional to 1 cartridge of local anesthetic (1.8 mL) in an average-size human, which is equivalent to 0.51 mg/kg of lidocaine hydrochloride and 0.51 μg/kg of norepinephrine hydrochloride. The average time of injection was 15.7 seconds. The results of this study showed significant increases in systolic, diastolic, and mean arterial pressure and a noticeable decrease in heart rate. The greatest variation occurred in the systolic blood pressure. The greatest alterations occurred during injection and within the first minute following administration of the anesthetic solution. We would anticipate these changes in the parameters analyzed to be clinically significant. Thus, dentists using 2% lidocaine with norepinephrine 20 μg/mL should be very careful to avoid intravascular injection. PMID:17579502

  18. Milnacipran: a selective serotonin and norepinephrine dual reuptake inhibitor for the management of fibromyalgia.

    PubMed

    Palmer, Robert H; Periclou, Antonia; Banerjee, Pradeep

    2010-08-01

    Milnacipran, a serotonin and norepinephrfrine reuptake inhibitor with preferential inhibition of norepinephrine reuptake over serotonin, is approved in the United States for the management of fibromyalgia. Owing to its effects on norepinephrine and serotonin, as well as its lack of activity at other receptor systems, it was hypothesized that milnacipran would provide improvements in pain and other fibromyalgia symptoms without some of the unpleasant side effects associated with other medications historically used for treating fibromyalgia. The clinical safety and efficacy of milnacipran 100 and 200 mg/day in individuals with fibromyalgia has been investigated in four large, randomized, double-blind, placebo-controlled studies and three long-term extension studies. The clinical studies used composite responder analyses to identify the proportion of individual patients reporting simultaneous and clinically significant improvements in pain, global status, and physical function, in addition to assessing improvement in various symptom domains such as fatigue and dyscognition. In the clinical studies, patients receiving milnacipran reported significant improvements in pain and other symptoms for up to 15 months of treatment. Most adverse events were mild to moderate in severity and were related to the intrinsic pharmacologic properties of the drug. Long-term exposure to milnacipran did not result in any new safety concerns. As with other serotonin and norepinephrine reuptake inhibitors, increases in heart rate and blood pressure have been observed in some patients with milnacipran treatment.

  19. Effects of serotonin-norepinephrine reuptake inhibitors on locomotion and prefrontal monoamine release in spontaneously hypertensive rats.

    PubMed

    Umehara, Masato; Ago, Yukio; Fujita, Kazumi; Hiramatsu, Naoki; Takuma, Kazuhiro; Matsuda, Toshio

    2013-02-28

    Catecholamine neurotransmission in the prefrontal cortex plays a key role in the therapeutic actions of drugs for attention-deficit/hyperactivity disorder (ADHD). Recent clinical studies show that several serotonin-norepinephrine reuptake inhibitors have potential for treating ADHD. In this study, we examined the effects of acute treatment with serotonin-norepinephrine reuptake inhibitors on locomotion and the extracellular levels of monoamines in the prefrontal cortex in spontaneously hypertensive rats (SHR), an animal model of ADHD. Adolescent male SHR exhibited greater horizontal locomotion in an open-field test than male WKY control rats. Psychostimulant methylphenidate (0.3 and 1 mg/kg), the selective norepinephrine reuptake inhibitor atomoxetine (1 and 3 mg/kg), and serotonin-norepinephrine reuptake inhibitors duloxetine (10 mg/kg), venlafaxine (10 and 30 mg/kg) and milnacipran (30 mg/kg) reduced the horizontal activity in SHR, but did not affect in WKY rats. The selective norepinephrine reuptake inhibitor reboxetine (10 mg/kg) and the tricyclic antidepressant desipramine (10 and 30 mg/kg) also reduced the horizontal activity in SHR, whereas the selective serotonin reuptake inhibitor citalopram (30 mg/kg) did not. Microdialysis studies showed that atomoxetine, methylphenidate, duloxetine, venlafaxine, milnacipran, and reboxetine increased the extracellular levels of norepinephrine and dopamine in the prefrontal cortex in SHR. Citalopram did not affect norepinephrine and dopamine levels in the prefrontal cortex, although it increased the serotonin levels. Neither duloxetine nor venlafaxine increased the dopamine levels in the striatum. These findings suggest that serotonin-norepinephrine reuptake inhibitors, similar to methylphenidate and atomoxetine, have potential for ameliorating motor abnormality in the SHR model.

  20. Norepinephrine causes epigenetic repression of PKCε gene in rodent hearts by activating Nox1-dependent reactive oxygen species production.

    PubMed

    Xiong, Fuxia; Xiao, Daliao; Zhang, Lubo

    2012-07-01

    Heart disease is the leading cause of death in the United States. Recent studies demonstrate that fetal programming of PKCε gene repression results in ischemia-sensitive phenotype in the heart. The present study tests the hypothesis that increased norepinephrine causes epigenetic repression of PKCε gene in the heart via Nox1-dependent reactive oxygen species (ROS) production. Prolonged norepinephrine treatment increased ROS production in fetal rat hearts and embryonic ventricular myocyte H9c2 cells via a selective increase in Nox1 expression. Norepinephrine-induced ROS resulted in an increase in PKCε promoter methylation at Egr-1 and Sp-1 binding sites, leading to PKCε gene repression. N-acetylcysteine, diphenyleneiodonium, and apocynin blocked norepinephrine-induced ROS production and the promoter methylation, and also restored PKCε mRNA and protein to control levels in vivo in fetal hearts and in vitro in embryonic myocyte cells. Accordingly, norepinephrine-induced ROS production, promoter methylation, and PKCε gene repression were completely abrogated by knockdown of Nox1 in cardiomyocytes. These findings provide evidence of a novel interaction between elevated norepinephrine and epigenetic repression of PKCε gene in the heart mediated by Nox1-dependent oxidative stress and suggest new insights of molecular mechanisms linking the heightened sympathetic activity to aberrant cardioprotection and increased ischemic vulnerability in the heart.

  1. Urinary epinephrine and norepinephrine interrelations with obesity, insulin, and the metabolic syndrome in Hong Kong Chinese.

    PubMed

    Lee, Z S; Critchley, J A; Tomlinson, B; Young, R P; Thomas, G N; Cockram, C S; Chan, T Y; Chan, J C

    2001-02-01

    The metabolic syndrome is characterized by a clustering of cardiovascular risk factors including type 2 diabetes mellitus, hypertension, dyslipidemia, and obesity. Elevated plasma insulin and urinary norepinephrine (noradrenaline) and reduced urinary epinephrine (adrenaline) excretion are associated with obesity in Caucasian populations. We examined the interrelationships between obesity, plasma insulin, and urinary catecholamine excretion in Chinese subjects with various components of the metabolic syndrome. A total of 577 Chinese subjects (aged 38 +/- 10 years; 68% with type 2 diabetes mellitus, hypertension, dyslipidemia, obesity, and/or albuminuria and 32% healthy subjects) were studied, all of whom had a plasma creatinine less than 150 micromol/L. The blood pressure, height, weight, waist and hip circumference, and fasting plasma glucose, insulin, lipid, and creatinine levels were measured. A 24-hour urine sample was collected for measurement of albumin and catecholamine excretion. The body mass index (BMI) and waist circumference were used as measures of general and central obesity, respectively. The insulin resistance index was estimated by the calculated product of fasting plasma insulin and glucose concentrations. Patients with an increasing number of components of the metabolic syndrome (type 2 diabetes mellitus, hypertension, dyslipidemia, obesity, and/or albuminuria) were more obese, hyperglycemic, dyslipidemic, and albuminuric and had higher blood pressure, plasma insulin, insulin resistance indices, and 24-hour urinary norepinephrine excretion but lower urinary epinephrine output (all P < .005). Increasing quintiles of BMI in the whole population or waist circumference in both sexes were associated with increasing trends for adverse lipid profiles, plasma insulin, insulin resistance indices, and urinary norepinephrine excretion but a decreasing trend for urinary epinephrine output (all P < .001). There were close associations between age, obesity

  2. INTERACTION BETWEEN GABA AND NOREPINEPHRINE IN INTERLEUKIN-1β-INDUCED SUPPRESSION OF THE LUTEINIZING HORMONE SURGE

    PubMed Central

    Sirivelu, Madhu P.; Burnett, Robert; Shin, Andrew C.; Kim, Charlotte; MohanKumar, P.S.; MohanKumar, Sheba M.J.

    2009-01-01

    Interleukin-1β (IL-1β), a cytokine that is closely associated with inflammation and immune stress, is known to interfere with reproductive functions. Earlier studies have demonstrated that IL-1β inhibits the luteinizing hormone (LH) surge during the afternoon of proestrus in female rats. We have shown that this effect is most probably mediated through a reduction in norepinephrine (NE) levels in the medial preoptic area (MPA) of the hypothalamus. However, the mechanism by which IL-1β decreases NE levels in the MPA is unclear. We hypothesized that the inhibitory neurotransmitter, GABA could play a role in decreasing NE levels in the MPA. To test this, ovariectomized, steroid-primed rats were injected (i.p.) with either PBS-BSA (control) or 5 μg of IL-1β, alone or in combination with i.c.v. administration of GABA-A and GABA-B receptor antagonists, Bicuculline and CGP 35348 (CGP) respectively. Animals were subjected to push-pull perfusion of the MPA and perfusates collected at 30 min intervals were analyzed for both NE and GABA levels using HPLC-EC. Simultaneously, serial plasma samples were obtained through jugular catheters and were analyzed for LH levels using RIA. Compared to control rats, NE levels decreased significantly in the MPA in IL-1β-treated rats (p<0.05). Concurrently, there was a significant increase in GABA levels in the MPA (p<0.05). The GABA-A receptor antagonist, bicuculline, was able to reverse the effect of IL-1β on NE and LH, while the GABA-B receptor antagonist, CGP 35348 was without any effect. This leads us to conclude that the IL-1β-induced suppression of the LH surge is most probably mediated through an increase in GABA levels in the MPA which causes a reduction in NE levels. This is probably one of the mechanisms by which IL-1β inhibits reproductive functions. PMID:19014915

  3. Chloride Requirement for Monoamine Transporters

    PubMed Central

    De Felice, Louis J

    2016-01-01

    This review focuses on the Cl− requirement for dopamine, serotonin, and norepinephrine (DA, 5-HT, and NE) transport and induced current via the transporters for these transmitters, DAT, SERT, and NET. Indirect evidence exists for the passage of Cl− ions through monoamine transporters; however, direct evidence is sparse. An unanswered question is why in some preparations, notably native neurons, it appears that Cl− ions carry the current through DAT, whereas in heterologous expression systems Na+ ions carry the current often referred to as the uncoupled current. It is suggested that different functional states in monoamine transporters represent conformational states that carry dominantly Cl− or Na+. Structures of monoamine transporters contribute enormously to structure-function relationships; however, thus far no structural features support the functionally relevant ionic currents that are known to exist in monoamine transporters. PMID:26794730

  4. Activation of histamine H3-receptors inhibits carrier-mediated norepinephrine release during protracted myocardial ischemia. Comparison with adenosine A1-receptors and alpha2-adrenoceptors.

    PubMed

    Imamura, M; Lander, H M; Levi, R

    1996-03-01

    We previously showed that prejunctional histamine H3-receptors downregulate norepinephrine exocytosis, which is markedly enhanced in early myocardial ischemia. In the present study, we investigated whether H3-receptors modulate nonexocytotic norepinephrine release during protracted myocardial ischemia. In this setting, decreased pH(i) in sympathetic nerve endings sequentially leads to a compensatory activation of the Na+-H+ antiporter (NHE), accumulation of intracellular Na+, reversal of the neuronal uptake of norepinephrine, and thus carrier-mediated release of norepinephrine. Accordingly, norepinephrine overflow from isolated guinea pig hearts undergoing 20-minute global ischemia and 45-minute reperfusion was attenuated approximately 80% by desipramine (10 nmol/L) and 70% by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA, 10 micromol/L), inhibitors of norepinephrine uptake and NHE, respectively. The H3-receptor agonist imetit (0.1 micromol/L) decreased carrier-mediated norepinephrine release by approximately 50%. This effect was blocked by the H3-receptor antagonist thioperamide (0.3 micromol/L), indicating that H-receptor activation inhibits carrier-mediated norepinephrine release. At lower concentrations, imetit (10 nmol/L) or EIPA (3 micromol/L) did not inhibit carrier-mediated norepinephrine release. However, a 25% inhibition occurred with imetit (10 nmol/L) and EIPA (3 micromol/L) combined. This synergism suggests an association between H-receptors and NHE. Conceivably, activation of H-receptors may lead to inhibition of NHE. In fact, alpha2-adrenoceptor activation, which is known to stimulate NHE, enhanced norepinephrine release, whereas alpha2-adrenoceptor blockade attenuated it. Furthermore, activation of adenosine A1-receptors markedly attenuated norepinephrine release, whereas their inhibition potentiated it. Because norepinephrine directly correlated with the severity of reperfusion arrhythmia and imetit reduced the incidence of ventricular fibrillation by 50

  5. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    SciTech Connect

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.

  6. Ultrastructural Correlates of Enhanced Norepinephrine and Neuropeptide Y Cotransmission in the Spontaneously Hypertensive Rat Brain.

    PubMed

    Kourtesis, Ioannis; Kasparov, Sergey; Verkade, Paul; Teschemacher, Anja G

    2015-01-01

    The spontaneously hypertensive rat (SHR) replicates many clinically relevant features of human essential hypertension and also exhibits behavioral symptoms of attention-deficit/hyperactivity disorder and dementia. The SHR phenotype is highly complex and cannot be explained by a single genetic or physiological mechanism. Nevertheless, numerous studies including our own work have revealed striking differences in central catecholaminergic transmission in SHR such as increased vesicular catecholamine content in the ventral brainstem. Here, we used immunolabeling followed by confocal microscopy and electron microscopy to quantify vesicle sizes and populations across three catecholaminergic brain areas-nucleus tractus solitarius and rostral ventrolateral medulla, both key regions for cardiovascular control, and the locus coeruleus. We also studied colocalization of neuropeptide Y (NPY) in norepinephrine and epinephrine-containing neurons as NPY is a common cotransmitter with central and peripheral catecholamines. We found significantly increased expression and coexpression of NPY in norepinephrine and epinephrine-positive neurons of locus coeruleus in SHR compared with Wistar rats. Ultrastructural analysis revealed immunolabeled vesicles of 150 to 650 nm in diameter (means ranging from 250 to 300 nm), which is much larger than previously reported. In locus coeruleus and rostral ventrolateral medulla, but not in nucleus tractus solitarius, of SHR, noradrenergic and adrenergic vesicles were significantly larger and showed increased NPY colocalization when compared with Wistar rats. Our morphological evidence underpins the hypothesis of hyperactivity of the noradrenergic and adrenergic system and increased norepinephrine and epinephrine and NPY cotransmission in specific brain areas in SHR. It further strengthens the argument for a prohypertensive role of C1 neurons in the rostral ventrolateral medulla as a potential causative factor for essential hypertension.

  7. The role of norepinephrine and insulin resistance in an early stage of hypertension.

    PubMed

    Penesova, Adela; Radikova, Zofia; Cizmarova, Eva; Kvetnanský, Richard; Blazicek, Pavel; Vlcek, Miroslav; Koska, Juraj; Vigas, Milan

    2008-12-01

    The interrelationship between activity of sympathetic nervous system and metabolic risk factors in youth with hypertension (HT) has been poorly studied. The aim of our present study was to assess the interrelationship between metabolic risk factors, such as insulin resistance, concentration of plasminogen activator inhibitor (PAI)-1, and catecholamines in an early stage of HT onset. An oral glucose tolerance test was performed in 17 young males with early-diagnosed nontreated HT grade 1 and 16 gender-, age-, and BMI-matched normotensive controls. Concentrations of glucose, insulin, epinephrine, norepinephrine, PAI-1, and plasma renin activity (PRA) were determined in venous plasma. Insulin sensitivity indices (ISIs) proposed by Cederholm, Matsuda, and Gutt were calculated. HT had higher baseline levels of norepinephrine, insulin (P= 0.02), and PAI-1 (P= 0.04). ISIs were lower in HT subjects (P < 0.001). Baseline concentrations of epinephrine were negatively associated with HDL cholesterol (r=-0.415, P= 0.02), ISI Matsuda (r=-0.361, P= 0.04), ISI Cederholm (r=-0.354, P= 0.04), and ISI Gutt (r=-0.429, P= 0.01), and positively with PRA (r= 0.609, P < 0.0001). Positive association was found between baseline concentrations of norepinephrine and PAI-1 (r= 0.418, P= 0.02). The sympathetic overactivity, which occurs in the early stage of HT may contribute to reduced insulin sensitivity even in young patients and intensify the undesirable development of metabolic cardiovascular risk factors and progress of the disease.

  8. Increased norepinephrine release during sympathetic nerve stimulation and its inhibition by adenosine in the isolated perfused kidney of spontaneously hypertensive rats

    SciTech Connect

    Ekas, R.D. Jr.; Steenberg, M.L.; Lokhandwala, M.F.

    1983-01-01

    The present study was performed to measure norepinephrine release during sympathetic nerve stimulation and determine the inhibitory action of adenosine on stimulus-induced release of norepinephrine in the isolated perfused kidney of WKY and SHR. Norepinephrine release during periarterial nerve stimulation was measured as total /sup 3/H-overflow since greater than 75% of total /sup 3/H-overflow was /sup 3/H-norepinephrine in both the WKY and SHR. A significantly greater increase in /sup 3/H-norepinephrine overflow was observed during periarterial nerve stimulation in SHR in comparison with WKY. Adenosine (0.3, 1.0, 3.0 and 10.0 micrograms/ml) produced dose-dependent inhibition of /sup 3/H-norepinephrine overflow elicited by periarterial nerve stimulation. However, the effect of adenosine on transmitter release was more pronounced in the SHR in that the threshold dose required to cause inhibition of stimulus-induced release of /sup 3/H-norepinephrine was smaller in the SHR. These results demonstrate that while norepinephrine release during sympathetic nerve stimulation is greater in the SHR, this finding can not be explained on the basis of a decrease in the presynaptic inhibitory action of adenosine. Therefore, the mechanism responsible for the increased release of norepinephrine in the SHR remains to be determined.

  9. Influence of norepinephrine on somatosensory neuronal responses in the rat thalamus: a combined modeling and in vivo multi-channel, multi-neuron recording study.

    PubMed

    Moxon, Karen A; Devilbiss, David M; Chapin, John K; Waterhouse, Barry D

    2007-05-25

    Norepinephrine released within primary sensory circuits from locus coeruleus afferent fibers can produce a spectrum of modulatory actions on spontaneous or sensory-evoked activity of individual neurons. Within the ventral posterior medial thalamus, membrane currents modulated by norepinephrine have been identified. However, the relationship between the cellular effects of norepinephrine and the impact of norepinephrine release on populations of neurons encoding sensory signals is still open to question. To address this lacuna in understanding the net impact of the noradrenergic system on sensory signal processing, a computational model of the rat trigeminal somatosensory thalamus was generated. The effects of independent manipulation of different cellular actions of norepinephrine on simulated afferent input to the computational model were then examined. The results of these simulations aided in the design of in vivo neural ensemble recording experiments where sensory-driven responses of thalamic neurons were measured before and during locus coeruleus activation in waking animals. Together the simulated and experimental results reveal several key insights regarding the regulation of neural network operation by norepinephrine including: 1) cell-specific modulatory actions of norepinephrine, 2) mechanisms of norepinephrine action that can improve the tuning of the network and increase the signal-to-noise ratio of cellular responses in order to enhance network representation of salient stimulus features and 3) identification of the dynamic range of thalamic neuron function through which norepinephrine operates.

  10. Altered baseline blood volume and the norepinephrine response to stress in humans

    NASA Technical Reports Server (NTRS)

    Vernikos, J.; Convertino, V. A.

    1992-01-01

    A hypothesis is proposed that a primary physiological purpose of the neural and endocrine response to stressors is the preservation of the blood volume/blood pressure relationship. Changes in blood volume caused by an adaptation to the environmental challenge serve to modulate the neural and endocrine responsiveness to stress. Relationships between changes in vascular volume, vasoconstriction, and norepinephrine (NE) responses during acute and chronic exposure to various stressors are examined. It is noted that the hypothesis is based on numerous observations rather than definitive cause-effect experiments and further investigation is required to prove it.

  11. Reflex limb dilatation following norepinephrine and angiotensin II in conscious dogs

    NASA Technical Reports Server (NTRS)

    Vatner, S. F.; Mcritchie, R. J.

    1976-01-01

    The extent to which norepinephrine (NE) and angiotensin II (AN) constrict the mesenteric, renal, and iliac beds in conscious dogs is evaluated with a view to elicit opposing reflex actions tempering the vasoconstriction in the limb of the animals tested. The afferent and efferent mechanisms mediating this reflex are analyzed. It is shown that intravenous NE and AN cause striking reflex iliac dilatation in the limb of the conscious dog. The afferent arc of this reflex involves both arterial baroreceptor and vagal path-ways, whereas the efferent mechanism involves an interaction of alpha-adrenergic and histaminergic receptors.

  12. Involvement of norepinephrine in the control of activity and attentive processes in animal models of attention deficit hyperactivity disorder.

    PubMed

    Viggiano, D; Ruocco, L A; Arcieri, S; Sadile, A G

    2004-01-01

    Functional and morphological studies in children affected by Attention Deficit Hyperactivity Disorder (ADHD) suggest a prefrontal cortex (PFc) dysfunction. This cortical region is regulated by subcortical systems including noradrenergic (NEergic), dopaminergic (DAergic), cholinergic, serotonergic, and histaminergic pathways. A wealth of data in humans and in animal models demonstrates altered dopamine (DA) regulation. Drugs that modulate norepinephrine (NE) transmission are also effective in ADHD patients, thus leading to the hypothesis of a NEergic disorder. This review covers the regulation of PFc functions by NE and the interaction between the NE and DA systems, as suggested by pharmacological, electrophysiological, morphological, and gene knock out (KO) studies. A negative feedback between NE and DA neurons emerges from KO studies because KO mice showing increased (NE transporter (NET) KO) or decreased (DBH and VMAT2 KO) NE levels are respectively associated with lower and higher DA levels. Locomotor activity can be generally predicted by the DA level, whereas sensitivity to amphetamines is by NE/DA balance. Some animal models of ADHD, such as spontaneously hypertensive rats (SHR), show alterations in the PFc and in the DA system. Evidence about a correlation between the NE system and hyper-locomotion activity in such animals has not yet been clarified. Therefore, this review also includes recent evidence on the behavioral effects of two NET blockers, reboxetine and atomoxetine, in two animal models of ADHD: SHR and Naples High Excitability rats. As these drugs modulate the DA level in the PFc, certain effects are likely to be due to a rebalanced DA system. We discuss the significance of the results for theories of ADHD and make suggestions for future experimentation.

  13. Effect of duloxetine, a norepinephrine and serotonin reuptake inhibitor, on sneeze-induced urethral continence reflex in rats.

    PubMed

    Miyazato, Minoru; Kaiho, Yasuhiro; Kamo, Izumi; Chancellor, Michael B; Sugaya, Kimio; de Groat, William C; Yoshimura, Naoki

    2008-07-01

    We investigated the effect of duloxetine, a norepinephrine (NE) and serotonin (5-HT) reuptake inhibitor, on the neurally evoked urethral continence reflex induced by sneezing in rats. To clarify the role of noradrenergic and serotonergic mechanisms in preventing stress urinary incontinence (SUI) during sneezing, we examined the effect of duloxetine followed by intrathecal (it) methiothepin maleate (5-HT receptor and alpha1-adrenoceptor antagonist) or terazosin or idazoxan (selective alpha1- and alpha2-adrenoceptor antagonists, respectively). Amplitude of urethral pressure responses during sneezing (A-URS), urethral baseline pressure (UBP) at the midurethra, and sneeze-induced leak point pressure (S-LPP) were measured in normal adult female rats and rats with SUI induced by vaginal distension (VD). In normal and VD rats, intravenous application of duloxetine (1 mg/kg) increased A-URS by 35% and 34% and UBP by 21% and 34%, respectively. Sneezing-induced fluid leakage from the urethral orifice was observed in VD rats but not in normal rats. S-LPP was increased from 39.1 to 92.2 cmH2O by intravenous duloxetine in incontinent VD rats. Duloxetine-mediated enhancement of A-URS was inhibited by terazosin but not methiothepin maleate (it). In addition, simultaneous intrathecal application of methiothepin and terazosin induced a reduction in A-URS during sneezing, which was not increased by intravenous duloxetine. However, the reduced A-URS after intrathecal application of methiothepin and terazosin returned to the control level when duloxetine (iv) was applied after intrathecal idazoxan administration. These results indicate that duloxetine can prevent SUI by facilitating noradrenergic and serotonergic systems in the spinal cord to enhance the sneeze-induced active urethral closure mechanism.

  14. U.S. onroad transportation CO2 emissions analysis comparing highly resolved CO2 emissions and a national average approach : mitigation options and uncertainty reductions

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Gurney, K. R.

    2011-12-01

    The transportation sector is the second largest CO2 emitting economic sector in the United States, accounting for 32.3% of the total U.S. emissions in 2002. Within the transportation sector, the largest component (80%) is made up of onroad emissions. In order to accurately quantify future emissions and evaluate emissions regulation strategies, analysis must account for spatially-explicit fleet distribution, driving patterns, and mitigation strategies. Studies to date, however, have either focused on one of these three components, have been only completed at the national scale, or have not explicitly represented CO2 emissions instead relying on the use of vehicle miles traveled (VMT) as an emissions proxy. We compare a high resolution onroad emissions data product (Vulcan) to a national averaging of the Vulcan result. This comparison is performed in four groupings: light duty (LD) and heavy duty (HD) vehicle classes, and rural and urban road classes. Two different bias metrics are studied: 1) the state-specific, group-specific bias and 2) the same bias when weighted by the state share of the national group-specific emissions. In the first metric, we find a spread of positive and negative biases for the LD and HD vehicle groupings and these biases are driven by states having a greater/lesser proportion of LD/HD vehicles within their total state fleet than found from a national average. The standard deviation of these biases is 2.01% and 0.75% for the LD and HD groupings, respectively. These biases correlate with the road type present in a state, so that biases found in the urban and LD groups are both positive or both negative, with a similar relationship found between biases of the rural and HD groups. Additionally, the road group bias is driven by the distribution of VMT on individual road classes within the road groupings. When normalized by national totals, the state-level group-specific biases reflect states with large amounts of onroad travel that deviate

  15. The dopamine transporter and attention-deficit/hyperactivity disorder.

    PubMed

    Madras, Bertha K; Miller, Gregory M; Fischman, Alan J

    2005-06-01

    The high incidence of attention-deficit/hyperactivity disorder (ADHD) and escalating use of ADHD medications present a compelling case for clarifying the pathophysiology of, and developing laboratory or radiologic tests for, ADHD. Currently, the majority of specific genes implicated in ADHD encode components of catecholamine signaling systems. Of these, the dopamine transporter (DAT) is a principal target of the most widely used antihyperactivity medications (amphetamine and methylphenidate); the DAT gene is associated with ADHD, and some studies have detected abnormal levels of the DAT in brain striatum of ADHD subjects. Medications for ADHD interfere with dopamine transport by brain-region- and drug-specific mechanisms, indirectly activating dopamine- and possibly norepinephrine-receptor subtypes that are implicated in enhancing attention and experiential salience. The most commonly used DAT-selective ADHD medications raise extracellular dopamine levels in DAT-rich brain regions. In brain regions expressing both the DAT and the norepinephrine transporter (NET), the relative contributions of dopamine and norepinephrine to ADHD pathophysiology and therapeutic response are obfuscated by the capacity of the NET to clear dopamine as well as norepinephrine. Thus, ADHD medications targeting DAT or NET might disperse dopamine widely and consign dopamine storage and release to regulation by noradrenergic, as well as dopaminergic neurons.

  16. Influence of systemically given placebo, trapidil and isosorbide dinitrate on norepinephrine-evoked hand vein constriction in healthy subjects.

    PubMed

    Sziegoleit, Werner; Dannenberg, Katrin; Konschak, Ariana; Lautenschläger, Christine; Presek, Peter

    2007-01-01

    Since trapidil (CAS 15421-84-8) is able to dilate human hand veins after local intravenous administration, four studies were carried out in healthy male volunteers using the dorsal hand vein compliance technique to test the influence of common systemic single doses of trapidil (200 mg orally, 100 mg intravenously) and isosorbide dinitrate (CAS 87-33-2, 20 mg orally) on norepinephrine (CAS 51-41-2)-evoked hand vein constriction in comparison with oral placebo. Oral placebo and oral trapidil were studied in a randomized double-blind cross-over design in 10 subjects aged 20 to 30 years, and oral isosorbide dinitrate and intravenous trapidil, in a randomized open cross-over design in 8 subjects aged 22 to 29 years. In the three similar studies with oral medications dose-response curves for venoconstriction by locally infused norepinephrine were established before and 1 h, 2 h and 3 h after oral medication and ED50 values of norepinephrine were calculated. The control dose-response curves and ED50 values of norepinephrine did not differ significantly. After oral placebo administration the dose-response curves of norepinephrine did not change significantly, but the ED50 of norepinephrine increased 3 h after placebo (from 12.1 to 31.7 ng/ min), indicating a lessening in norepinephrine effect at this time. After oral trapidil application the dose-response curves of norepinephrine shifted to the left compared with the pre-treatment curve (significantly 2 h after trapidil) and the corresponding curves after placebo with a significant decrease in the ED50 of norepinephrine 3 h after trapidil compared with placebo (from 31.7 to 12.6 ng/ min). After oral isosorbide dinitrate administration the dose-response curves of norepinephrine did not differ significantly from the pre-treatment curve, but they shifted to the left compared with the corresponding curves after placebo (significantly 3 h after isosorbide dinitrate). The ED50 of norephinephrine decreased significantly 2 h after

  17. Decreased norepinephrine content in the medulla oblongata in severely hypertensive rats.

    PubMed

    Takami, T; Ito, H; Suzuki, T

    1993-03-01

    1. To clarify possible abnormalities in catecholamines in the medulla oblongata in relation to severe hypertension, the authors measured changes in catecholamine levels in the medulla oblongata of malignant stroke-prone spontaneously hypertensive rats (M-SHRSP). Effects of the adrenal medullae and peripheral nerves were ruled out by adrenal demedullation and chemical sympathectomy. 2. The level of norepinephrine in the medulla oblongata was significantly lower in untreated M-SHRSP than in untreated WKY (control) rats at 10 weeks of age. Further, it was significantly lower in treated M-SHRSP than in the treated WKY group at both 6 and 10 weeks of age. The level of epinephrine in 6 week old treated M-SHRSP was significantly higher than that in age-matched treated WKY, but no other differences were observed in terms of epinephrine content. There were no age- or treatment-related differences in dopamine levels in the medullar oblongata. 3. Since norepinephrine has an inhibitory effect on blood pressure elevation in the nucleus tractus solitarii (NTS) in the medulla oblongata, the suppression of negative feedback due to a decrease in the activity of inhibitory neurons in the medulla oblongata appears to be involved in the development and progression of severe hypertension in M-SHRSP.

  18. Insulin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland.

    PubMed

    Garcia, Rodrigo Antonio Peliciari; Afeche, Solange Castro; Scialfa, Julieta Helena; do Amaral, Fernanda Gaspar; dos Santos, Sabrina Heloísa José; Lima, Fabio Bessa; Young, Martin Elliot; Cipolla-Neto, José

    2008-01-02

    The mammalian pineal gland synthesizes melatonin in a circadian manner, peaking during the dark phase. This synthesis is primarily regulated by sympathetic innervations via noradrenergic fibers, but is also modulated by many peptidergic and hormonal systems. A growing number of studies reveal a complex role for melatonin in influencing various physiological processes, including modulation of insulin secretion and action. In contrast, a role for insulin as a modulator of melatonin synthesis has not been investigated previously. The aim of the current study was to determine whether insulin modulates norepinephrine (NE)-mediated melatonin synthesis. The results demonstrate that insulin (10(- 8)M) potentiated norepinephrine-mediated melatonin synthesis and tryptophan hydroxylase (TPOH) activity in ex vivo incubated pineal glands. When ex vivo incubated pineal glands were synchronized (12h NE-stimulation, followed by 12h incubation in the absence of NE), insulin potentiated NE-mediated melatonin synthesis and arylalkylamine-N-acetyltransferase (AANAT) activity. Insulin did not affect the activity of hydroxyindole-O-methyltranferase (HIOMT), nor the gene expression of tpoh, aanat, or hiomt, under any of the conditions investigated. We conclude that insulin potentiates NE-mediated melatonin synthesis in cultured rat pineal gland, potentially through post-transcriptional events.

  19. Increased norepinephrine release from dog pulmonary artery caused by nitrous oxide

    SciTech Connect

    Rorie, D.K.; Tyce, G.M.; Sill, J.C.

    1986-06-01

    The effects of nitrous oxide on the release and metabolism of norepinephrine (NE) at neuroeffector junctions in dog pulmonary artery were examined. Helical strips of artery were incubated in Krebs-Ringer solution containing L-(/sup 3/H)NE and mounted for superfusion. The arterial strips were studied in the presence of 95% oxygen-5% carbon dioxide, 70% nitrogen-30% oxygen, or 70% nitrous oxide-30% oxygen. During the 60 min of each experiment, five samples of superfusion fluid were collected for analysis and the effluxes of (/sup 3/H)NE and its radiolabeled metabolites were measured before and during electrical stimulation and during recovery from stimulation. (/sup 3/H)Norepinephrine was separated from its metabolites in the superfusate and in extracts of artery by column chromatography and quantitated by liquid scintillation spectrometry. Nitrous oxide significantly increased the fractional loss of total radioactivity and the amount of NE in the superfusate both during resting conditions and during stimulation. Nitrous oxide had no effect on the proportions of radioactivity among metabolites of NE in the superfusate or on the profile of NE metabolites remaining in the tissue after experimentation. These findings are consistent with increased NE release as a direct effect of nitrous oxide on nerve endings.

  20. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way.

    PubMed

    Wang, Shan; Wang, Xiuchao; Ye, Zichen; Xu, Chengming; Zhang, Ming; Ruan, Banjun; Wei, Ming; Jiang, Yinghao; Zhang, Ying; Wang, Li; Lei, Xiaoying; Lu, Zifan

    2015-10-16

    Brown adipose tissue converts energy from food into heat via the mitochondrial uncoupling protein UCP1, defending against cold. In some conditions, inducible 'brown-like' adipocytes, also known as beige adipocytes, can develop within white adipose tissue (WAT). These beige adipocytes have characteristics similar to classical brown adipocytes and thus can burn lipids to produce heat. In the current study, we demonstrated that curcumin (50 or 100 mg/kg/day) decreased bodyweight and fat mass without affecting food intake in mice. We further demonstrated that curcumin improves cold tolerance in mice. This effect was possibly mediated by the emergence of beige adipocytes and the increase of thermogenic gene expression and mitochondrial biogenesis in inguinal WAT. In addition, curcumin promotes β3AR gene expression in inguinal WAT and elevates the levels of plasma norepinephrine, a hormone that can induce WAT browning. Taken together, our data suggest that curcumin can potentially prevent obesity by inducing browning of inguinal WAT via the norepinephrine-β3AR pathway.

  1. Inhibition of K+ permeability diminishes alpha 2-adrenoceptor mediated effects on norepinephrine release

    SciTech Connect

    Zimanyi, I.; Folly, G.; Vizi, E.S.

    1988-05-01

    The effect of two different potassium channel blockers, 4-aminopyridine (4-AP) and quinine, on the alpha 2-adrenoceptor mediated modulation of norepinephrine (NE) release was investigated. Pairs of mouse vasa deferentia were loaded with /sup 3/H-norepinephrine (/sup 3/H-NE), superfused continuously, and stimulated electrically. 4-AP (5.3 x 10(-4) M), and quinine (10(-5) M) enhanced the stimulation-evoked release of tritium significantly. The electrically induced release of radioactivity was reduced by alpha 2-adrenoceptor agonists (1-NE and xylazine) and enhanced by the alpha 2-adrenoceptor antagonist yohimbine. Both effects were affected markedly by 4-AP or quinine: the depressant action of 1-NA and xylazine was partially antagonized and the facilitatory effect of yohimbine was completely abolished during the blockade of the potassium channels. It is suggested that the blockade of the potassium permeability counteracts negative feedback modulation; therefore, it seems likely that the stimulation of alpha 2-adrenoceptors leads to an enhanced potassium permeability and hyperpolarization of varicose axon terminals.

  2. Stress hormone epinephrine (adrenaline) and norepinephrine (noradrenaline) effects on the anaerobic bacteria.

    PubMed

    Boyanova, Lyudmila

    2017-01-08

    Microbial endocrinology is a relatively new research area that already encompasses the anaerobes. Stress hormones, epinephrine and norepinephrine, can affect the growth of anaerobic bacteria such as Fusobacterium nucleatum, Prevotella spp., Porhyromonas spp., Tanerella forsythia and Propionibacterium acnes and can increase virulence gene expression, iron acquisition and many virulence factors of some anaerobic species such as Clostridium perfringens, Porphyromonas gingivalis and Brachyspira pilosicoli. Epinephrine and norepinephrine effects can lead to a growth increase or decrease, or no effect on the growth of the anaerobes. The effects are species-specific and perhaps strain-specific. Discrepancies in the results of some studies can be due to the different methods and media used, catecholamine concentrations, measurement techniques and the low number of strains tested. Biological effects of the stress hormones on the anaerobes may range from halitosis and a worsening of periodontal diseases to tissue damages and atherosclerotic plaque ruptures. Optimizations of the research methods and a detailed assessment of the catecholamine effects in conditions mimicking those in affected organs and tissues, as well as the effects on the quorum sensing and virulence of the anaerobes and the full spectrum of biological consequences of the effects are interesting topics for further evaluation.

  3. Exogenous norepinephrine attenuates the efficacy of sunitinib in a mouse cancer model

    PubMed Central

    2014-01-01

    Background Sunitinib alone exhibits satisfactory efficacy in several mouse homografts and xenografts but unsatisfactory efficacy in many kinds of solid tumors in clinic. Different from animals, receiving a diagnosis of cancer impacts chronic stress on patients. Here, we examine whether norepinephrine (NE), one of the most potent stress related hormones, leads to the difference in the efficacy of sunitinib between clinical and preclinical trials. Methods The influence of NE on mouse melanoma B16F1 cells under sunitinib was evaluated in vitro and in vivo. The β-AR/cAMP/PKA (β-adrenoceptor/cyclic adenosine monophosphate/protein kinase A) signaling pathway was also evaluated in human lung adenocarcinoma cells. Results We found that NE upregulated the expression of VEGF, IL-8 and IL-6 in vitro and stimulated tumor growth in vivo, which was mediated by β-AR/cAMP/PKA signaling pathway and could be inhibited by propranolol, a β-blocker for hypertension for decades. Conclusions This research indicates exogenous norepinephrine attenuates the efficacy of sunitinib, and a combination of sunitinib and propranolol might be suggested as a new strategy in solid tumor in clinic. PMID:24555849

  4. Levomilnacipran (Fetzima): A New Serotonin-Norepinephrine Reuptake Inhibitor for the Treatment of Major Depressive Disorder.

    PubMed

    Saraceni, Megan M; Venci, Jineane V; Gandhi, Mona A

    2014-08-01

    In July 2013, the US Food and Drug Administration approved levomilnacipran extended release (ER; Fetzima), a serotonin-norepinephrine reuptake inhibitor, for the treatment of adults with major depressive disorder. Levomilnacipran is an active enantiomer of the racemic drug milnacipran that is currently approved in the United States for the treatment of fibromyalgia. This article provides an overview of the mechanism of action, pharmacokinetic properties, clinical efficacy, safety, and tolerability of levomilnacipran ER. Relevant information was identified through a search of databases using the key word levomilnacipran. Additional information was obtained from fda.gov, by a review of the reference lists of identified articles, and from posters and abstracts from scientific meetings. Levomilnacipran ER, dosed once daily, is generally well tolerated and has demonstrated favorable effects compared to placebo in clinical trials of patients with major depressive disorder. The increased potency for norepinephrine reuptake inhibition is a characteristic that may represent a novel contribution for levomilnacipran. Additional studies comparing levomilnacipran ER to other commonly prescribed antidepressants are needed to further evaluate its place in therapy.

  5. In Vivo Voltammetric Monitoring of Norepinephrine Release in the Rat Ventral Bed Nucleus of the Stria Terminalis and Anteroventral Thalamic Nucleus

    PubMed Central

    Park, Jinwoo; Kile, Brian M.; Wightman, R. Mark

    2010-01-01

    The role and contribution of the dense noradrenergic innervation in the ventral bed nucleus of the stria terminalis (vBNST) and anteroventral thalamic nucleus (AV) to biological function and animal behaviors is poorly understood due to the small size of these nuclei. The aim of this study was to compare norepinephrine release and uptake in the vBNST with that in the AV of anesthetized rats. Measurements were made in vivo with fast-scan cyclic voltammetry following electrical stimulation of noradrenergic projection pathways, either the dorsal noradrenergic bundle (DNB) or the ventral noradrenergic bundle (VNB). The substance detected was identified as norepinephrine based upon voltammetric, anatomical, neurochemical, and pharmacological evidence. Fast-scan cyclic voltammetry enables the selective monitoring of local norepinephrine overflow in the vBNST evoked by the stimulation of either the DNB or VNB while norepinephrine in the AV was only evoked by DNB stimulation. The α2-adrenoceptor antagonist, yohimbine, and the norepinephrine uptake inhibitor, desipramine, increased norepinephrine overflow and slowed its disappearance in both regions. However, control of extracellular norepinephrine by both autoreceptors and uptake was greater in the AV. The greater control exerted by autoreceptors and uptake in the AV resulted in reduced extracellular concentration compared to the vBNST when large numbers of stimulation pulses were employed. The differences in noradrenergic transmission observed in the terminal fields of the vBNST and the AV may differentially regulate activity in these two regions that both contain high densities of norepinephrine terminals. PMID:20128849

  6. Cloning of the cocaine-sensitive bovine dopamine transporter

    SciTech Connect

    Usdin, T.B.; Chen, C.; Brownstein, M.J.; Hoffman, B.J. ); Mezey, E. )

    1991-12-15

    A cDNA encoding the dopamine transporter from bovine brain substantia nigra was identified on the basis of its structural homology to other, recently cloned, neurotransmitter transporters. The sequence of the 693-amino acid protein is quite similar to those of the rat {gamma}-aminobutyric acid, human norepinephrine, and rat serotonin transporters. Dopamine transporter mRNA was detected by in situ hybridization in the substantia nigra but not in the locus coeruleus, raphe, caudate, or other brain areas. ({sup 3}H)Dopamine accumulation in tissue culture cells transfected with the cDNA was inhibited by amphetamine, cocaine, and specific inhibitors of dopamine transports, including GBR12909.

  7. Mass spectrometric measurements of norepinephrine synthesis in man from infusion of stable isotope-labelled L-threo-3,4-dihydroxyphenylserine

    SciTech Connect

    Suzuki, T.; Sakoda, S.; Ueji, M.; Kishimoto, S.

    1985-02-04

    The kinetics of stable isotope-labelled L-threo-3,4-dihydroxyphenylserine (L-threo-DOPS), an immediate precursor of (-)-norepinephrine, was studied to investigate the pharmacologic mechanism of its therapeutic effect on orthostatic hypotension in familial amyloid polyneuropathy (FAP) and on akinesia and freezing in parkinsonism. (/sup 13/C,D)-L-threo-DOPS was synthesized, and 100 mg of the compound was infused for 2 h into two normal subjects, two FAP patients and two patients with the degenerative diseases of the central nervous system. Labelled and endogenous norepinephrine in urine and plasma was assayed simultaneously by gas chromatography/mass spectrometry. The results indicate that the increase in norepinephrine in biological fluids after administration of L-threo-DOPS is attributable mostly to norepinephrine derived from L-threo-DOPS, not to pre-formed endogenous norepinephrine released by L-threo-DOPS.

  8. Effects of exercise on stress-induced changes of norepinephrine and serotonin in rat hippocampus.

    PubMed

    Wang, Jing; Chen, Xuewei; Zhang, Na; Ma, Qiang

    2013-10-31

    Exercise is beneficial to brain and can attenuate stress-induced hippocampal damages. However, the details involved monoamine neurotransmitter in exercise to counteract stress have not been well elucidated. The aim of this study was to examine exercise-induced responses of the norepinephrine (NE) and serotonin (5-HT) systems in counteracting stress-induced hippocampal damages. Rats were divided into exercise (four weeks of voluntary wheel running), stress (three weeks of restraint stress), exercise-stress (three weeks of stress following four weeks of exercise), and control groups. Levels of NE and 5-HT were detected with high-performance liquid chromatography (HPLC), mRNA expression was detected with real-time fluorescence quantitative reverse transcription polymerase reaction (FQ-RT-PCR) and proteins associated with 5-HT₁Α receptors (5-HT₁Α-R) and β₂-adrenergic receptors (β₂-AR) were analyzed by western blotting. 5-HT levels were highest (P < 0.01) in the exercised group, lowest (P < 0.05) in the stressed rats, and were similar (P = 0.065) in stressed and exercise-stressed rats. NE levels were highest (P < 0.01) in the exercised group, and higher in the exercise-stressed than the stressed rats (P < 0.01). 5-HT₁A-R mRNA expression was highest (P < 0.01) in the exercised group, lowest in the stressed group. The 5-HT₁Α-R protein expression changed in the same tendency as its mRNA levels. The β₂-AR mRNA was highest in exercised rats (P < 0.05), and its protein expression was higher in the exercised and exercise-stress rats than in the control and stress rats (P < 0.05). In conclusion, norepinephrine may represent endophenotypic features of exercise states. Serotonin levels may be more susceptible to stress and responsible for deleterious stress-induced effects. Norepinephrine and serotonin may both contribute to counteraction of stress-induced hippocampal damages of physical exercises.

  9. Dezocine exhibits antihypersensitivity activities in neuropathy through spinal μ-opioid receptor activation and norepinephrine reuptake inhibition

    PubMed Central

    Wang, Yong-Xiang; Mao, Xiao-Fang; Li, Teng-Fei; Gong, Nian; Zhang, Ma-Zhong

    2017-01-01

    Dezocine is the number one opioid painkiller prescribed and sold in China, occupying 44% of the nation’s opioid analgesics market today and far ahead of the gold-standard morphine. We discovered the mechanisms underlying dezocine antihypersensitivity activity and assessed their implications to antihypersensitivity tolerance. Dezocine, given subcutaneously in spinal nerve-ligated neuropathic rats, time- and dose-dependently produced mechanical antiallodynia and thermal antihyperalgesia, significantly increased ipsilateral spinal norepinephrine and serotonin levels, and induced less antiallodynic tolerance than morphine. Its mechanical antiallodynia was partially (40% or 60%) and completely (100%) attenuated by spinal μ-opioid receptor (MOR) antagonism or norepinephrine depletion/α2-adrenoceptor antagonism and combined antagonism of MORs and α2-adenoceptors, respectively. In contrast, antagonism of spinal κ-opioid receptors (KORs) and δ-opioid receptors (DORs) or depletion of spinal serotonin did not significantly alter dezocine antiallodynia. In addition, dezocine-delayed antiallodynic tolerance was accelerated by spinal norepinephrine depletion/α2-adenoceptor antagonism. Thus dezocine produces antihypersensitivity activity through spinal MOR activation and norepinephrine reuptake inhibition (NRI), but apparently not through spinal KOR and DOR activation, serotonin reuptake inhibition or other mechanisms. Our findings reclassify dezocine as the first analgesic of the recently proposed MOR-NRI, and reveal its potential as an alternative to as well as concurrent use with morphine in treating pain. PMID:28230181

  10. Cerebellar Norepinephrine Modulates Learning of Delay Classical Eyeblink Conditioning: Evidence for Post-Synaptic Signaling via PKA

    ERIC Educational Resources Information Center

    Fister, Mathew; Bickford, Paula C.; Cartford, M. Claire; Samec, Amy

    2004-01-01

    The neurotransmitter norepinephrine (NE) has been shown to modulate cerebellar-dependent learning and memory. Lesions of the nucleus locus coeruleus or systemic blockade of noradrenergic receptors has been shown to delay the acquisition of several cerebellar-dependent learning tasks. To date, no studies have shown a direct involvement of…

  11. Mechanism of palytoxin-induced (/sup 3/H)norepinephrine release from a rat pheochromocytoma cell line

    SciTech Connect

    Tatsumi, M.; Takahashi, M.; Ohizumi, Y.

    1984-05-01

    Palytoxin, isolated from the zoanthid Palytoha species, is one of the most potent marine toxins. Palytoxin caused a release of (/sup 3/H)norepinephrine from clonal rat pheochromocytoma cells in a concentration-dependent manner. This releasing action of palytoxin was markedly inhibited or abolished by Co/sup 2 +/ or Ca/sup 2 +/ -free medium, but was not modified by tetrodotoxin. The release of (/sup 3/H)norepinephrine induced by a low concentration of palytoxin was abolished in sodium-free medium and increased as the external Na+ concentrations were increased, but the release induced by a high concentration was unaffected by varying the concentration of external Na/sup +/. The release of (/sup 3/H)norepinephrine induced by both concentrations of palytoxin increased with increasing Ca/sup 2 +/ concentrations. Palytoxin caused a concentration-dependent increase in /sup 22/Na and /sup 45/Ca influxes into pheochromocytoma cells. The palytoxin-induced /sup 45/Ca influx was markedly inhibited by Co/sup 2 +/, whereas the palytoxin-induced /sup 22/Na influx was not affected by tetrodotoxin. These results suggest that in pheochromocytoma cells the (/sup 3/H)norepinephrine release induced by lower concentrations of palytoxin is primarily brought about by increasing tetrodotoxin-insensitive Na/sup +/ permeability across the cell membrane, whereas that induced by higher concentrations is mainly caused by a direct increase in Ca/sup 2 +/ influx into them.

  12. Repeated phase shifts in the lighting regimen change the blood pressure response to norepinephrine stimulation in rats.

    PubMed

    Molcan, L; Vesela, A; Zeman, M

    2014-01-01

    Disturbed circadian activity of the sympathetic system may be involved in negative consequences of chronodisruption on the cardiovascular system. We studied daily changes in pressure response to adrenergic stimulation in rats exposed to repeated phase advance shifts (PAS) of light/dark (LD) regimen. Blood pressure (BP), heart rate (HR) and locomotor activity was measured by radiotelemetry in normotensive Wistar rats exposed to repeated PAS (three 8-h shifts per week) lasting for 12 weeks. Norepinephrine was administered subcutaneously in the middle of L and D during week 12 of PAS exposure. In the control LD cycle, cardiovascular parameters exhibited significant daily rhythms with expected higher values during D than L phase. Rats exposed to PAS showed disturbed rhythms without a BP and HR increase. Administration of norepinephrine to control rats revealed daily variability in the cardiovascular response with higher stimulation of BP during L than D. This daily pattern of BP response to norepinephrine was diminished in the PAS group. The damped daily variability in pressure response to norepinephrine and augmented response during the light phase of the day suggest that the increased and desynchronized activity of the sympathetic system may worsen responses of the cardiovascular system to load in individuals exposed to irregular LD conditions.

  13. Effects of norepinephrine infusion on myocardial high-energy phosphate content and turnover in the living rat.

    PubMed Central

    Bittl, J A; Balschi, J A; Ingwall, J S

    1987-01-01

    Using 31P-nuclear magnetic resonance, we studied the relationship between myocardial high-energy phosphate content and flux values for the creatine kinase reaction in the living rat under inotropic states achieved during norepinephrine infusion and halothane anesthesia. Under 2% halothane anesthesia (n = 4), 1% halothane anesthesia (n = 5) and norepinephrine infusion (n = 4), rats developed rate-pressure products of 19.5 +/- 1.6, 32.0 +/- 3.5, and 48.5 +/- 2.0 X 1,000 mmHg/min, respectively. Adenosine triphosphate content was not affected by inotropic state, ranging from 24.3 +/- 1.1 to 25.6 +/- 1.1 mumol/g dry weight, but creatine phosphate content varied inversely and reversibly with cardiac performance from 45.6 +/- 6.0 under 2% halothane to 26.0 +/- 6.5 mumol/g dry weight during norepinephrine infusion. The flux values for the creatine kinase reaction were 15.4 +/- 4.6, 20.5 +/- 2.0, and 30.1 +/- 7.9 mumol/g dry weight per s under 2% halothane, 1% halothane, and 1% halothane with norepinephrine, respectively. These results suggest that the turnover of myocardial high-energy phosphate compounds, not their tissue contents, matches cardiac performance during inotropic stimulation. Images PMID:3584473

  14. Evidence for a presynaptic adenylate cyclase system facilitating (TH)norepinephrine release from rat brain neocortex slices and synaptosomes

    SciTech Connect

    Schoffelmeer, A.N.; Hogenboom, F.; Mulder, A.H.

    1985-10-01

    The effects of drugs known to enhance intracellular cyclic AMP levels on depolarization-induced (TH)norepinephrine release from superfused rat neocortical slices and synaptosomes were investigated. The adenylate cyclase activator forskolin, the membrane-permeating cyclic AMP analogues 8-bromo-cyclic AMP and dibutyryl cyclic AMP, as well as the phosphodiesterase inhibitors isobutylmethylxanthine and 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrolidone (ZK 62771) enhanced the electrically evoked release of (TH)norepinephrine from superfused rat brain neocortex slices. 8-Bromo-cyclic GMP was without effect on the electrically evoked release. When (TH)norepinephrine release was enhanced by prolonging the electrical pulse duration from 2 msec to 10 msec, the relative inhibitory effect of the CaS channel blocker CdS and the relative facilitatory effect of the K+ channel blocker 4-aminopyridine remained unaffected. In striking contrast, the relative facilitatory effects of forskolin and 8-bromo-cyclic AMP were strongly reduced, whereas the effect of ZK 62771 was almost doubled. When veratrine-induced release of (TH)norepinephrine from cortex synaptosomes was examined, the facilitatory effects of forskolin, 8-bromo-cyclic AMP, and ZK 62771 were even more pronounced than in brain slices. The data strongly support the hypothesis that a presynaptic adenylate cyclase system plays a facilitatory role in the stimulus-secretion coupling process in central noradrenergic nerve terminals.

  15. Dezocine exhibits antihypersensitivity activities in neuropathy through spinal μ-opioid receptor activation and norepinephrine reuptake inhibition.

    PubMed

    Wang, Yong-Xiang; Mao, Xiao-Fang; Li, Teng-Fei; Gong, Nian; Zhang, Ma-Zhong

    2017-02-23

    Dezocine is the number one opioid painkiller prescribed and sold in China, occupying 44% of the nation's opioid analgesics market today and far ahead of the gold-standard morphine. We discovered the mechanisms underlying dezocine antihypersensitivity activity and assessed their implications to antihypersensitivity tolerance. Dezocine, given subcutaneously in spinal nerve-ligated neuropathic rats, time- and dose-dependently produced mechanical antiallodynia and thermal antihyperalgesia, significantly increased ipsilateral spinal norepinephrine and serotonin levels, and induced less antiallodynic tolerance than morphine. Its mechanical antiallodynia was partially (40% or 60%) and completely (100%) attenuated by spinal μ-opioid receptor (MOR) antagonism or norepinephrine depletion/α2-adrenoceptor antagonism and combined antagonism of MORs and α2-adenoceptors, respectively. In contrast, antagonism of spinal κ-opioid receptors (KORs) and δ-opioid receptors (DORs) or depletion of spinal serotonin did not significantly alter dezocine antiallodynia. In addition, dezocine-delayed antiallodynic tolerance was accelerated by spinal norepinephrine depletion/α2-adenoceptor antagonism. Thus dezocine produces antihypersensitivity activity through spinal MOR activation and norepinephrine reuptake inhibition (NRI), but apparently not through spinal KOR and DOR activation, serotonin reuptake inhibition or other mechanisms. Our findings reclassify dezocine as the first analgesic of the recently proposed MOR-NRI, and reveal its potential as an alternative to as well as concurrent use with morphine in treating pain.

  16. Influence of Reactive Transport on the Reduction of U(VI) in the Presence of Fe(III) and Nitrate: Implications for U(VI) Immobilization by Bioremediation / Biobarriers- Final Report

    SciTech Connect

    B.D. Wood

    2007-01-01

    Subsurface contamination by metals and radionuclides represent some of the most challenging remediation problems confronting the Department of Energy (DOE) complex. In situ remediation of these contaminants by dissimilatory metal reducing bacteria (DMRB) has been proposed as a potential cost effective remediation strategy. The primary focus of this research is to determine the mechanisms by which the fluxes of electron acceptors, electron donors, and other species can be controlled to maximize the transfer of reductive equivalents to the aqueous and solid phases. The proposed research is unique in the NABIR portfolio in that it focuses on (i) the role of flow and transport in the initiation of biostimulation and the successful sequestration of metals and radionuclides [specifically U(VI)], (ii) the subsequent reductive capacity and stability of the reduced sediments produced by the biostimulation process, and (iii) the potential for altering the growth of biomass in the subsurface by the addition of specific metabolic uncoupling compounds. A scientifically-based understanding of these phenomena are critical to the ability to design successful bioremediation schemes. The laboratory research will employ Shewanella putrefaciens (CN32), a facultative DMRB that can use Fe(III) oxides as a terminal electron acceptor. Sediment-packed columns will be inoculated with this organism, and the reduction of U(VI) by the DMRB will be stimulated by the addition of a carbon and energy source in the presence of Fe(III). Separate column experiments will be conducted to independently examine: (1) the importance of the abiotic reduction of U(VI) by biogenic Fe(II); (2) the influence of the transport process on Fe(III) reduction and U(VI) immobilization, with emphasis on methods for controlling the fluxes of aqueous species to maximize uranium reduction; (3) the reductive capacity of biologically-reduced sediments (with respect to re-oxidation by convective fluxes of O2 and NO3-) and

  17. Ficts and facts of epinephrine and norepinephrine stability in injectable solutions.

    PubMed

    Hoellein, Ludwig; Holzgrabe, Ulrike

    2012-09-15

    Epinephrine (EPI) and norepinephrine (NE) play an important role in emergency medicine and acute treatment of hypotension and shocks in the intensive care unit. Injectable solutions can either be provided as proprietary medicinal products or as individually prepared dilutions. Due to the chemical structure of EPI and NE, the stability of the corresponding solutions is limited. Thus, most manufacturers of EPI and NE injectable solutions use sulfites and nitrogen for stabilization, Nevertheless, storage conditions such as temperature and light have to be considered, but are often neglected in the daily hospital routine. In addition, hospital pharmacies prepare EPI and NE solutions and dilute commercially available solutions for individual therapy, especially on ICUs. Since the influence of dilution and the presence of excipients and other preservatives are not systematically explored, we collected published data and investigations on stability on the potency of EPI and NE injectable solutions in order to deduce storage recommendations for diluted EPI and NE solutions of different concentration.

  18. Effects of 2-substituted-4-phenylquinolines on uptake of serotonin and norepinephrine by isolated brain synaptosomes

    SciTech Connect

    Alhaider, A.A.; Lein, E.J.; Ransom, R.W.; Bolger, M.B.

    1987-03-02

    In this present communication, the in vitro inhibition of the uptake of (/sup 3/H)-L-norepinephrine ((/sup 3/H) NE) and (/sup 3/H)-Serotonin ((/sup 3/H) 5-HT) by eleven synthesized 2-substituted-4-phenylquionlines were studied using rate brain synaptosomal preparations. Compounds with an open side chain were relatively weak inhibitors of the synaptosomal uptake of (/sup 3/H) NE and (/sup 3/H) 5HT. Compounds having a distance of three atoms between the terminal basic nitrogen of the side chain and the quinoline ring were better inhibitors of serotonin uptake than those compounds having a four-atom distance. The replacement of the side chain with a piperazine ring produced compounds which were more potent and selective inhibitors of the uptake of either (/sup 3/H) 5-HT or (/sup 3/H) NE. Further structure-activity relationships are also discussed. 13 references, 1 table.

  19. Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish.

    PubMed

    Singh, Chanpreet; Oikonomou, Grigorios; Prober, David A

    2015-09-16

    Pharmacological studies in mammals suggest that norepinephrine (NE) plays an important role in promoting arousal. However, the role of endogenous NE is unclear, with contradicting reports concerning the sleep phenotypes of mice lacking NE due to mutation of dopamine β-hydroxylase (dbh). To investigate NE function in an alternative vertebrate model, we generated dbh mutant zebrafish. In contrast to mice, these animals exhibit dramatically increased sleep. Surprisingly, despite an increase in sleep, dbh mutant zebrafish have a reduced arousal threshold. These phenotypes are also observed in zebrafish treated with small molecules that inhibit NE signaling, suggesting that they are caused by the lack of NE. Using genetic overexpression of hypocretin (Hcrt) and optogenetic activation of hcrt-expressing neurons, we also find that NE is important for Hcrt-induced arousal. These results establish a role for endogenous NE in promoting arousal and indicate that NE is a critical downstream effector of Hcrt neurons.

  20. Thermal effects of injecting norepinephrine into hypothalamus of the rat during rest and exercise

    SciTech Connect

    Gisolfi, C.V.; Christman, J.V.

    1980-12-01

    Norepinephrine (NE) was injected bilaterally through implanted guide cannulas into the anterior hypothalamus (AH) of male Sprague-Dawley rats at rest and before treadmill exercise. Colonic (T sub c), tail-skin (T sub s), and ambient (T sub a) temperatures were monitored by a telethermometer. Intrahypothalamic injections of NE produced a dose-dependent hypothermia with a 3-5 C rise in T sub s at rest, but NE injected 2 min before exercise raised the T sub s and reduced the T sub c by 0.9 C below resting levels during exercise. The results show that (1) 0.5-40.0 microgram amounts of NE injected into the AH produce only hypothermia, (2) alpha-adrenergic receptors in the AH play a role in heat dissipation when the thermoregulatory system is subjected to the endogenous stress of exercise, and (3) exercise provides a nonthermal input to the temperature regulatory system which increases heat dissipation.

  1. Importance of calcium in the inotropic effect of hyperosomotic agents, norepinephrine, paired electrical stimulation, and treppe.

    PubMed

    Willerson, J T; Crie, J S; Adcock, R C; Templeton, G H; Wildenthal, K

    1975-01-01

    The data obtained from these studies demonstrate that the inotropic effect of hyperosmolar mannitol and sucrose and of paired electrical stimulation is critically influenced by extracellular calcium concentration. The inotropic effect of norepinephrine is not prevented by maximal functional extracellular calcium concentrations. Inhibition of systolic calcium flux at the cell membrane by D600 does not prevent the inotropic effect of hyperosmolar mannitol or of paired electrical stimulation but it does prevent the inotropic effect of hyperosmolar intropic effect of treppe. Thus, intracellular calcium regulation appears to be of major importance in the inotropic effect in isolated cardiac muscle of mannitol and paired pacing while systolic calcium flux at the cell membrane appears to be of major importance in the inotropic effect of treppe.

  2. Toward a theoretical role for tonic norepinephrine in the orbitofrontal cortex in facilitating flexible learning.

    PubMed

    Sadacca, Brian F; Wikenheiser, Andrew M; Schoenbaum, Geoffrey

    2017-03-14

    To adaptively respond in a complex, changing world, animals need to flexibly update their understanding of the world when their expectations are violated. Though several brain regions in rodents and primates have been implicated in aspects of this updating, current models of orbitofrontal cortex (OFC) and norepinephrine neurons of the locus coeruleus (LC-NE) suggest that each plays a role in responding to environmental change, where the OFC allows updating of prior learning to occur without overwriting or unlearning one's previous understanding of the world that changed, while elevated tonic NE allows for increased flexibility in behavior that tracks an animal's uncertainty. In light of recent studies highlighting a specific LC-NE projection to the OFC, in this review we discuss current models of OFC and NE function, and their potential synergy in the updating of associations following environmental change.

  3. Feeding increases 5-hydroxytryptamine and norepinephrine within the hypothalamus of chicks.

    PubMed

    Tachibana, T; Tazawa, M; Sugahara, K

    2001-11-01

    It is thought that hypothalamic 5-hydroxytryptamine (5HT) and norepinephrine (NE) are involved in the regulation of feeding in chicks. The present study was conducted to elucidate changes in the levels of extracellular 5HT and NE in the hypothalamus during feeding of chicks. In order to measure 5HT, NE and 4-hydroxy-3-methoxyphenylglycol (MHPG), which is a major metabolite of NE, we used brain microdialysis and high-pressure liquid chromatography with an electrochemical detector. After collecting samples to determine the basal levels of 5HT, NE and MHPG, food-deprived birds were given access to food. 5HT levels in the medial hypothalamus (MH) and lateral hypothalamus (LH) increased during the first 30 min of feeding, and then returned to basal levels. NE and MHPG in the LH increased during feeding, and remained elevated throughout the experiment. This study supports an idea that hypothalamic monoamines in the chick brain are involved in the regulation of feeding.

  4. Extracellular norepinephrine in the medial hypothalamus increases during feeding in chicks: a microdialysis study.

    PubMed

    Tachibana, T; Utimura, D; Kato, H; Kubo, T; Sugahara, K

    2000-11-01

    Norepinephrinergic function in the medial hypothalamus is important for the regulation of feeding behavior in chicks as well as in rats. This study was conducted to clarify the variation of extracellular norepinephrine (NE) in the medial hypothalamus, including the paraventricular nucleus (PVN) and the ventromedial hypothalamic nucleus (VMN), during feeding behavior of layer-type chicks. To measure extracellular NE and 4-hydroxy-3-methoxyphenylglycol (MHPG), a major metabolite of NE, we used microdialysis and high-pressure liquid chromatography (HPLC) with electrochemical detection. After the collection of baseline samples, food-deprived animals were allowed access to the food for 3 h. Extracellular NE significantly increased during the first hour of access to food, and then returned to baseline levels. MHPG also increased during the feeding, but its increase continued throughout the remainder of the experiment. This study suggests that the variation of NE in the medial hypothalamus may be involved in the control of feeding in layer-type chicks.

  5. Stress, genotype and norepinephrine in the prediction of mouse behavior using reinforcement learning.

    PubMed

    Luksys, Gediminas; Gerstner, Wulfram; Sandi, Carmen

    2009-09-01

    Individual behavioral performance during learning is known to be affected by modulatory factors, such as stress and motivation, and by genetic predispositions that influence sensitivity to these factors. Despite numerous studies, no integrative framework is available that could predict how a given animal would perform a certain learning task in a realistic situation. We found that a simple reinforcement learning model can predict mouse behavior in a hole-box conditioning task if model metaparameters are dynamically controlled on the basis of the mouse's genotype and phenotype, stress conditions, recent performance feedback and pharmacological manipulations of adrenergic alpha-2 receptors. We find that stress and motivation affect behavioral performance by altering the exploration-exploitation balance in a genotype-dependent manner. Our results also provide computational insights into how an inverted U-shape relation between stress/arousal/norepinephrine levels and behavioral performance could be explained through changes in task performance accuracy and future reward discounting.

  6. Norepinephrine turnover in heart and spleen of 7-, 22-, and 34 C-acclimated hamsters

    NASA Technical Reports Server (NTRS)

    Jones, S. B.; Musacchia, X. J.

    1976-01-01

    The relationship of norepinephrine (NE) concentration and endogenous turnover rates in both myocardial and spleen tissues in the golden hamster is examined as a function of chronic exposure to either high or low ambient temperatures. Changes in myocardial and spleen NE turnover values are discussed in terms of functional alterations in sympathetic nerve activity and the importance of such changes in temperature acclimation. It is found that acclimation of hamsters to 7 C for 7-10 weeks results in decreased myocardial NE concentration and an apparent increase in myocardial NE turnover. In contrast, exposure to 34 C for 6-8 weeks results in increased myocardial NE concentration and an apparent decrease in NE turnover in both myocardial and spleen tissues. The implication of altered NE synthesis is that sympathetic nerve activity is reduced with heat acclimation and is enhanced with cold acclimation.

  7. Insulation for Daydreams: A Role for Tonic Norepinephrine in the Facilitation of Internally Guided Thought

    PubMed Central

    Smallwood, Jonathan; Brown, Kevin S.; Baird, Benjamin; Mrazek, Michael D.; Franklin, Michael S.; Schooler, Jonathan W.

    2012-01-01

    Although consciousness can be brought to bear on both perceptual and internally generated information, little is known about how these different cognitive modes are coordinated. Here we show that between-participant variance in thoughts unrelated to the task being performed (known as task unrelated thought, TUT) is associated with longer response times (RT) when target presentation occurs during periods when baseline Pupil Diameter (PD) is increased. As behavioral interference due to high baseline PD can reflect increased tonic activity in the norepinephrine system (NE), these results might implicate high tonic NE activity in the facilitation of TUTs. Based on these findings, it is hypothesised that high tonic mode NE leads to a generalised de-amplification of task relevant information that prioritses internally generated thought and insulates it from the potentially disruptive events taking place in the external environment. PMID:22493672

  8. Norepinephrine and cardiovascular responses to maximal exercise in Parkinson's disease on and off medication.

    PubMed

    DiFrancisco-Donoghue, Joanne; Elokda, Ahmed; Lamberg, Eric M; Bono, Nancy; Werner, William G

    2009-09-15

    The aim of this experiment is to understand how Parkinson's disease (PD) medication affects the autonomic responses of individuals during an acute exercise stress test. Fourteen people with PD and fifteen healthy individuals age-matched between 50 and 80 years performed a modified Bruce protocol. Subjects with PD performed the test once off medication (PD-off) and then 1 week later on medication (PD-on). Heart rate (HR), blood pressure (BP), VO(2), and norepinephrine (NE) levels were taken at rest and at peak exercise. At peak exercise HR, BP, and NE values for the PD-on and PD-off group were all significantly lower than healthy controls, regardless of whether subjects were on their medication. Autonomic abnormalities during exercise in this population appear to be disease manifested and not impacted by medications used to treat PD. We can assume, both on and off medication, this population will show markedly lower BP, HR, and NE responses.

  9. Histamine-, norepinephrine-, and dopamine-sensitive central adenylate cyclases: effects of chlorpromazine derivatives and butaclamol.

    PubMed

    Palmer, G C; Wagner, H R; Palmer, S J; Manian, A A

    1978-06-01

    A series of recently available derivatives (quaternary and hydroxylated) of chlorpromazine (CPZ) and butaclamol were evaluated with respect to antagonism of norepinephrine- (NE) (rat cerebral cortex), dopamine- (DA) (rat striatum) and histamine- (H) sensitive (rabbit cerebral cortex) adenylate cyclases. With incubated tissue slices (rat and rabbit cortices) CPZ-CH3, 7-OH-CPZ-CH3, beta-OH-CPZ and butaclamol displayed a capacity to inhibit either NE- or H- induced accumulation of adenosine cyclic 3',5'-monophosphate (cAMP). With the broken cellular enzyme responsive to DA, rather potent inhibition of enzyme activity (IC50 less than 24 micron) occurred with butaclamol, beta-OH-CPZ, 7,8,beta-triOH-CPZ, 7,8-dioxo-beta-OH-CPZ and 3,7,8-triOH-CPZ. It is concluded that the metabolites of CPZ contribute to the central therapeutic and/or side effects of the parent compound.

  10. Beta-Adrenergic Receptor 1 Selective Antagonism Inhibits Norepinephrine-Mediated TNF-Alpha Downregulation in Experimental Liver Cirrhosis

    PubMed Central

    Zapater, Pedro; Gómez-Hurtado, Isabel; Peiró, Gloria; González-Navajas, José Manuel; García, Irma; Giménez, Paula; Moratalla, Alba; Such, José; Francés, Rubén

    2012-01-01

    Background Bacterial translocation is a frequent event in cirrhosis leading to an increased inflammatory response. Splanchnic adrenergic system hyperactivation has been related with increased bacterial translocation. We aim at evaluating the interacting mechanism between hepatic norepinephrine and inflammation during liver damage in the presence of bacterial-DNA. Animals and Methods Forty-six mice were included in a 16-week protocol of CCl4-induced cirrhosis. Laparotomies were performed at weeks 6, 10, 13 and 16. A second set of forty mice injected with a single intraperitoneal dose of CCl4 was treated with saline, 6-hydroxidopamine, Nebivolol or Butoxamine. After 5 days, mice received E. coli-DNA intraperitoneally. Laparotomies were performed 24 hours later. Liver bacterial-DNA, norepinephrine, TNF-alpha, IL-6 and beta-adrenergic receptor levels were measured. Results Bacterial-DNA translocation was more frequent in CCl4-treated animals compared with controls, and increased as fibrosis progressed. Liver norepinephrine and pro-inflammatory cytokines were significantly higher in mice with vs without bacterial-DNA (319.7±120.6 vs 120.7±68.6 pg/g for norepinephrine, 38.4±6.1 vs 29.7±4.2 pg/g for TNF-alpha, 41.8±7.4 vs 28.7±4.3 pg/g for IL-6). Only beta-adrenergic receptor-1 was significantly increased in treated vs control animals (34.6±7.3 vs 12.5±5.3, p = 0.01) and correlated with TNF-alpha, IL-6 and norepinephrine hepatic levels in animals with bacterial-DNA. In the second set of mice, cytokine levels were increased in 6-hydroxidopamine and Nebivolol (beta-adrenergic receptor-1 antagonist) treated mice compared with saline. Butoxamine (beta-adrenergic receptor-2 antagonist) didn’t inhibit liver norepinephrine modulation of pro-inflammatory cytokines. Conclusions Beta-adrenergic receptor-1 mediates liver norepinephrine modulation of the pro-inflammatory response in CCl4-treated mice with bacterial-DNA. PMID:22916250

  11. Norepinephrine and its metabolites are involved in the synthesis of neuromelanin derived from the locus coeruleus.

    PubMed

    Wakamatsu, Kazumasa; Tabuchi, Keisuke; Ojika, Makoto; Zucca, Fabio A; Zecca, Luigi; Ito, Shosuke

    2015-11-01

    In order to elucidate the chemical structure of black to brown pigments, neuromelanins (NMs), in the substantia nigra (SN) and the locus coeruleus (LC) in the central nervous system of humans and other mammalian species during aging, chemical degradative methods are powerful tools. HPLC analysis after hydroiodic acid hydrolysis detected aminohydroxyphenylethylamines, aminohydroxyphenylacetic acids, and aminohydroxyethylbenzenes, which confirmed that SN-NM and LC-NM contain melanin derived not only from dopamine and norepinephrine (NE) but also from several other catecholic metabolites, such as 3,4-dihydroxyphenylalanine, 3,4-dihydroxyphenylacetic acid, 3,4-dihydroxymandelic acid, 3,4-dihydroxyphenylethanol, and 3,4-dihydroxyphenylethylene glycol, in addition to the corresponding Cys-derivatives in varying degrees. However, hydroiodic acid hydrolysis showed that LC-NM produced the same degradation products as were detected in SN-NM. Thus, we needed to develop a new chemical detection method to validate the existence of NE in LC-NM. In the present study, we report that HCl hydrolysis of LC-NM in the presence of thioglycolic acid yields new products arising from substitution of the hydroxyl group by thioglycolic acid at the benzyl position of NE and cysteinyl-NE. This is the first chemical evidence showing that NE and cysteinyl-NE are incorporated into LC-NM. Using the chemical degradation methods for the determination of catechols in neuromelanin (NM), we have shown that dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), 3,4-dihydroxyphenylethanol (DOPE), and 3,4-dihydroxyphenylalanine (DOPA) are mainly responsible for the structure of NM from substantia nigra (SN), while norepinephrine (NE), 3,4-dihydroxymandelic acid (DOMA), and 3,4-dihydroxyphenylethylene glycol (DOPEG) are additionally responsible for the structure of NM from locus coeruleus (LC).

  12. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    SciTech Connect

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  13. Analysis of epinephrine, norepinephrine, and dopamine in urine samples of hospital patients by micellar liquid chromatography.

    PubMed

    García Ferrer, Daniel; García García, Aurelio; Peris-Vicente, Juan; Gimeno-Adelantado, José Vicente; Esteve-Romero, Josep

    2015-12-01

    An analytical method based on micellar liquid chromatography was developed to determine the concentration of three catecholamines (epinephrine, norepinephrine, and dopamine) in urine. The detection of these compounds in urine can be useful to diagnose several diseases, related to stress and sympathoadrenal system dysfunction, using a non-invasive collection procedure. The sample pretreatment was a simple dilution in a micellar solution, filtration, and direct injection, thus avoiding time-consuming and tedious extraction steps. Therefore, there is no need to use an internal standard. The three catecholamines were eluted using a C18 column and a mobile phase of 0.055 M sodium dodecyl sulfate-1.5% methanol buffered at pH 3.8 running at 1.5 mL/min under isocratic mode in less than 25 min. The detection was performed by amperometry applying a constant potential of +0.5 V. The procedure was validated following the guidelines of the European Medicines Agency in terms of the following: calibration range (0.09-5 μg/mL), linearity (r(2) > 0.9995), limit of detection (0.02 μg/mL), within- and between-run accuracy (-6.5 to +8.4%) and precision (<10.2%), dilution integrity, matrix effect, robustness (<8.4), and stability. The obtained values were below those required by the guide. The method was rapid, easy-to-handle, eco-friendly, and safe and provides reliable quantitative data, and is thus useful for routine analysis. The procedure was applied to the analysis of epinephrine, norepinephrine, and dopamine in urine samples from patients of a local hospital.

  14. Contribution of Ca²⁺-dependent Cl⁻ channels to norepinephrine-induced contraction of femoral artery is replaced by increasing EDCF contribution during ageing.

    PubMed

    Liskova, Silvia; Petrova, Miriam; Karen, Petr; Behuliak, Michal; Zicha, Josef

    2014-01-01

    The activation of Ca(2+)-dependent Cl(-) channels during norepinephrine-induced contraction of vascular smooth muscle was suggested to depolarize cell membrane and to increase Ca(2+) entry. Hypertension and ageing are associated with altered Ca(2+) handling including possible activation of Ca(2+)-dependent Cl(-) channels. Our study was aimed to determine Ca(2+)-dependent Cl(-) channels contribution to norepinephrine-induced contraction during hypertension and ageing. Norepinephrine-induced concentration-response curves of femoral arteries from 6- and 12-month-old spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were recorded using wire myograph. Pretreatment with Ca(2+)-dependent Cl- channel inhibitor indanyloxyacetic acid 94 [R(+)-IAA-94](IAA) attenuated norepinephrine-induced contraction in all groups, but relatively more in WKY than SHR arteries. The attenuation of norepinephrine-induced contraction after Ca(2+)-dependent Cl(-) channels blockade was partially reduced in 12-month-old WKY rats, but substantially diminished in 12-month-old SHR. IAA effect was enhanced after NO synthase inhibition but decreased by ageing. In 20-month-old WKY rats norepinephrine-induced contraction was not affected by IAA but was almost abolished after cyclooxygenase inhibition by indomethacin or niflumic acid. In conclusion, contribution of Ca(2+)-dependent Cl(-) channels to norepinephrine-induced contraction diminished with age, hypertension development, and/or NO synthesis inhibition. Ca(2+)-dependent Cl(-) channels are important for maintenance of normal vascular tone while their inactivation/closing might be a pathological mechanism.

  15. Monoamine Transporters: Vulnerable and Vital Doorkeepers

    PubMed Central

    Lin, Zhicheng; Canales, Juan J.; Björgvinsson, Thröstur; Thomsen, Morgane M.; Qu, Hong; Liu, Qing-Rong; Torres, Gonzalo E.; Caine, S. Barak

    2012-01-01

    Transporters of dopamine, serotonin and norepinephrine have been empirically used as medication targets for several mental illnesses for the last decades. These protein-targeted medications are effective only for subpopulations of patients with transporter-related brain disorders. Since the cDNA clonings in early 1990’s, molecular studies of these transporters have revealed a wealth of information about the transporters’ structure activity relationship (SAR), neuropharmacology, cell biology, biochemistry, pharmacogenetics and the diseases related to the human genes encoding these transporters among related regulators. Such new information creates a unique opportunity to develop transporter-specific medications based on SAR, mRNA, DNA and perhaps transporter trafficking regulation, for a list of highly relevant diseases including substance abuse, depression, schizophrenia and Parkinson’s disease. PMID:21199769

  16. Structural insight into the interactions of SoxV, SoxW and SoxS in the process of transport of reductants during sulfur oxidation by the novel global sulfur oxidation reaction cycle.

    PubMed

    Bagchi, Angshuman; Ghosh, Tapash Chandra

    2006-01-01

    Microbial redox reactions involving inorganic sulfur compounds, mainly the sulfur anions, are one of the vital reactions responsible for the environmental sulfur balance. These reactions are mediated by phylogenetically diverse prokaryotes, some of which also take part in the extraction of metal ions from their sulfur containing ores. These sulfur oxidizers oxidize inorganic sulfur compounds like sulfide, thiosulfate etc. to produce reductants that are used for carbon dioxide fixation or in respiratory electron transfer chains. The sulfur oxidizing gene cluster (sox) of alpha-Proteobacteria comprises of at least 15 genes, forming two transcriptional units, viz., soxSR and soxVWXYZABCDEFGH. SoxV is known to be a CcdA homolog involved in the transport of reductants from cytoplasm to periplasm. SoxW and SoxS are periplasmic thioredoxins, which (SoxW) interact with SoxV and thereby help in the redox reactions. We have employed homology modeling to construct the three-dimensional structures of the SoxV, SoxW and SoxS proteins from Rhodovulum sulfidophilum. With the help of docking and molecular dynamics simulations we have identified the amino acid residues of these proteins involved in the interaction. The probable biochemical mechanism of the transport of reductants through the interactions of these proteins has also been investigated. Our study provides a rational basis to interpret the molecular mechanism of the biochemistry of sulfur anion oxidation reactions by these ecologically important organisms.

  17. Extracellular Electron Transport-Mediated Fe(III) Reduction by a Community of Alkaliphilic Bacteria That Use Flavins as Electron Shuttles

    PubMed Central

    Fuller, Samuel J.; McMillan, Duncan G. G.; Renz, Marc B.; Schmidt, Martin

    2014-01-01

    The biochemical and molecular mechanisms used by alkaliphilic bacterial communities to reduce metals in the environment are currently unknown. We demonstrate that an alkaliphilic (pH > 9) consortium dominated by Tissierella, Clostridium, and Alkaliphilus spp. is capable of using iron (Fe3+) as a final electron acceptor under anaerobic conditions. Iron reduction is associated with the production of a freely diffusible species that, upon rudimentary purification and subsequent spectroscopic, high-performance liquid chromatography, and electrochemical analysis, has been identified as a flavin species displaying properties indistinguishable from those of riboflavin. Due to the link between iron reduction and the onset of flavin production, it is likely that riboflavin has an import role in extracellular metal reduction by this alkaliphilic community. PMID:24141133

  18. Response of Vibrio cholerae to the Catecholamine Hormones Epinephrine and Norepinephrine

    PubMed Central

    Halang, Petra; Toulouse, Charlotte; Geißel, Bernadette; Michel, Bernd; Flauger, Birgit; Müller, Manuel; Voegele, Ralf T.; Stefanski, Volker

    2015-01-01

    ABSTRACT In Escherichia coli or Salmonella enterica, the stress-associated mammalian hormones epinephrine (E) and norepinephrine (NE) trigger a signaling cascade by interacting with the QseC sensor protein. Here we show that Vibrio cholerae, the causative agent of cholera, exhibits a specific response to E and NE. These catecholates (0.1 mM) enhanced the growth and swimming motility of V. cholerae strain O395 on soft agar in a medium containing calf serum, which simulated the environment within the host. During growth, the hormones were converted to degradation products, including adrenochrome formed by autooxidation with O2 or superoxide. In E. coli, the QseC sensor kinase, which detects the autoinducer AI-3, also senses E or NE. The genome of V. cholerae O395 comprises an open reading frame coding for a putative protein with 29% identity to E. coli QseC. Quantitative reverse transcriptase PCR (qRT-PCR) experiments revealed increased transcript levels of the qseC-like gene and of pomB, a gene encoding a structural component of the flagellar motor complex, under the influence of E or NE. Phentolamine blocks the response of E. coli QseC to E or NE. A V. cholerae mutant devoid of the qseC-like gene retained the phentolamine-sensitive motility in the presence of E, whereas NE-stimulated motility was no longer inhibited by phentolamine. Our study demonstrates that V. cholerae senses the stress hormones E and NE. A sensor related to the histidine kinase QseC from E. coli is identified and is proposed to participate in the sensing of NE. IMPORTANCE Vibrio cholerae is a Gram-negative bacterium that may cause cholera, a severe illness with high mortality due to acute dehydration caused by diarrhea and vomiting. Pathogenic V. cholerae strains possess virulence factors like the cholera toxin (CTX) and the toxin-coregulated pilus (TCP) produced in response to signals provided by the host. In pathogenic enterobacteria, the stress-associated hormones epinephrine (E) and

  19. Increases in norepinephrine release and ovarian cyst formation during ageing in the rat

    PubMed Central

    Acuña, Eric; Fornes, Romina; Fernandois, Daniela; Garrido, Maritza P; Greiner, Monika; Lara, Hernan E; Paredes, Alfonso H

    2009-01-01

    Background Depletion of ovarian follicles is associated with the end of reproductive function in ageing females. Recently, it has been described that this process parallels increases in the concentration of norepinephrine (NE) in the rat ovary. In sexually mature rats, experimentally-induced increases in the sympathetic tone of the ovary is causally related to ovarian cyst formation and deranged follicular development. Thus, there is a possibility that increased ovarian NE concentrations represent changes in the activity of sympathetic nerves, which consequently participate in the process of ovarian cyst formation observed during ageing in the human and experimental animal models. Methods Sprague-Dawley rats between 6 and 14 months old were used to analyse the capacity of the ovary to release 3H-NE recently incorporated under transmural depolarisation in relation to changes in the ovarian follicular population. Morphometric analysis of ovarian follicles and real time PCR for Bcl2 and Bax mRNA were used to assess follicular atresia. Results From 8 months old, the induced release of recently incorporated 3H-norepinephrine (3H-NE) from the ovary and ovarian NE concentrations increased, reaching their peak values at 12 months old and remained elevated up to 14 months old. Increases in sympathetic nerve activity paralleled changes in the follicular population, as well as disappearance of the corpus luteum. In contrast, luteinised follicles, precystic follicles, and cystic follicles increased. During this period, the relationship between Bax and Bcl2 mRNAs (the proapoptotic/antiapoptotic signals) increased, suggesting atresia as the principal mechanism contributing to the decreased follicular population. When NE tone was increased, the mRNA ratio favoured Bcl2 to Bax and antiapoptotic signals dominated this period of development. Thus, these changing ratios could be responsible for the increase in luteinised follicles, as well as precystic and cystic follicles

  20. Impaired norepinephrine regulation of monocyte inflammatory cytokine balance in heart failure

    PubMed Central

    Ng, Tien MH; Toews, Myron L

    2016-01-01

    AIM To evaluate the effect of norepinephrine on inflammatory cytokine expression in ex vivo human monocytes and monocytic THP-1 cells. METHODS For human monocyte studies, cells were isolated from 12 chronic heart failure (HF) (66 ± 12 years, New York Heart Association functional class III-IV, left ventricular ejection fraction 22% ± 9%) and 14 healthy subjects (66 ± 12 years). Monocytes (1 × 106/mL) were incubated with lipopolysaccharide (LPS) 100 ng/mL, LPS + norepinephrine (NE) 10-6 mol/L or neither (control) for 4 h. Tumor necrosis factor-alpha (TNFα) and interleukin-10 (IL-10) production were determined by ELISA. Relative contribution of α- and β-adrenergic receptor subtypes on immunomodulatory activity of NE was assessed in LPS-stimulated THP-1 cells incubated with NE, the α-selective agonist phenylephrine (PE), and the β-selective agonist isoproterenol (IPN). NE-pretreated THP-1 cells were also co-incubated with the β-selective antagonist propranolol (PROP), α2-selective antagonist yohimbine (YOH) or the α1-selective antagonist prazosin (PRAZ). RESULTS Basal TNFα concentrations were higher in HF vs healthy subjects (6.3 ± 3.3 pg/mL vs 2.5 ± 2.6 pg/mL, P = 0.004). Norepinephrine’s effect on TNFα production was reduced in HF (-41% ± 17% HF vs -57% ± 9% healthy, P = 0.01), and proportionately with NYHA FC. Increases in IL-10 production by NE was also attenuated in HF (16% ± 18% HF vs 38% ± 23% healthy, P = 0.012). In THP-1 cells, NE and IPN, but not PE, induced a dose-dependent suppression of TNFα. Co-incubation with NE and antagonists revealed a dose-dependent inhibition of the NE suppression of TNFα by PROP, but not by YOH or PRAZ. Dose-dependent increases in IL-10 production were seen with NE and IPN, but not with PE. This effect was also antagonized by PROP but not by YOH or PRAZ. Pretreatment of cells with IPN attenuated the effects of NE and IPN, but did not induce a response to PE. CONCLUSION NE regulation of monocyte inflammatory

  1. Pharmacodynamics of norepinephrine reuptake inhibition: Modeling the peripheral and central effects of atomoxetine, duloxetine, and edivoxetine on the biomarker 3,4-dihydroxyphenylglycol in humans.

    PubMed

    Kielbasa, William; Lobo, Evelyn

    2015-12-01

    Norepinephrine, a neurotransmitter in the autonomic sympathetic nervous system, is deaminated by monoamine oxidase to 3,4-dihydroxyphenylglycol (DHPG). Inhibition of the NE transporter (NET) using DHPG as a biomarker was evaluated using atomoxetine, duloxetine, and edivoxetine as probe NET inhibitors. Pharmacokinetic and pharmacodynamic data were obtained from healthy subjects (n = 160) from 5 clinical trials. An indirect response model was used to describe the relationship between drug plasma concentration and DHPG concentration in plasma and cerebrospinal fluid (CSF). The baseline plasma DHPG concentration (1130-1240 ng/mL) and Imax (33%-37%) were similar for the 3 drugs. The unbound plasma drug IC50 (IC50U ) based on plasma DHPG was 0.973 nM for duloxetine, 0.136 nM for atomoxetine, and 0.041 nM for edivoxetine. The baseline CSF DHPG concentration (1850-2260 ng/mL) was similar for the 3 drugs, but unlike plasma DHPG, the Imax for DHPG was 38% for duloxetine, 53% for atomoxetine, and75% for edivoxetine. The IC50U based on CSF DHPG was 2.72 nM for atomoxetine, 1.22 nM for duloxetine, and 0.794 nM for edivoxetine. These modeling results provide insights into the pharmacology of NET inhibitors and the use of DHPG as a biomarker.

  2. K(+)-evoked [(3)H]-norepinephrine release in human brain slices from epileptic and non-epileptic patients is differentially modulated by gabapentin and pinacidil.

    PubMed

    Freiman, Thomas M; Surges, Rainer; Kukolja, Juraj; Heinemeyer, Jan; Klar, Maximilian; van Velthoven, Vera; Zentner, Josef

    2006-06-01

    The modulation of K(+)-evoked [(3)H]-norepinephrine ([(3)H]-NE) release by gabapentin (GBP) and pinacidil (PIN), a known K(ATP) agonist, was examined in human brain slices. We compared the pharmacological effects on NE-release in human epileptic neocortex and epileptic hippocampus to non-epileptic neocortex. GBP (100 microM) decreased [(3)H]-NE release by 22% in non-epileptic neocortical slices, whereas this inhibition was absent in slices from epileptic hippocampus and epileptic neocortex. PIN (10 microM) also reduced [(3)H]-NE release by 30% in non-epileptic neocortical slices and only by 5% in epileptic hippocampal slices. The blockade of voltage-gated calcium channels by omega-conotoxins MVIIA and MVIIC (0.1 microM) reduced [(3)H]-NE release in epileptic and non-epileptic neocortical slices to the same extend. The data show a marked reduction in K(+)-evoked [(3)H]-NE release by GBP and PIN in epileptic hippocampus and neocortex, suggesting an alteration of K(ATP) channel function, whereas the effects of the calcium channel modulators omega-conotoxins MVIIA and MVIIC are similar in both epileptic and non-epileptic neocortex.

  3. A New Family of Membrane Electron Transporters and Its Substrates, Including a New Cell Envelope Peroxiredoxin, Reveal a Broadened Reductive Capacity of the Oxidative Bacterial Cell Envelope

    PubMed Central

    Cho, Seung-Hyun; Parsonage, Derek; Thurston, Casey; Dutton, Rachel J.; Poole, Leslie B.; Collet, Jean-Francois; Beckwith, Jon

    2012-01-01

    ABSTRACT The Escherichia coli membrane protein DsbD functions as an electron hub that dispatches electrons received from the cytoplasmic thioredoxin system to periplasmic oxidoreductases involved in protein disulfide isomerization, cytochrome c biogenesis, and sulfenic acid reduction. Here, we describe a new class of DsbD proteins, named ScsB, whose members are found in proteobacteria and Chlamydia. ScsB has a domain organization similar to that of DsbD, but its amino-terminal domain differs significantly. In DsbD, this domain directly interacts with substrates to reduce them, which suggests that ScsB acts on a different array of substrates. Using Caulobacter crescentus as a model organism, we searched for the substrates of ScsB. We discovered that ScsB provides electrons to the first peroxide reduction pathway identified in the bacterial cell envelope. The reduction pathway comprises a thioredoxin-like protein, TlpA, and a peroxiredoxin, PprX. We show that PprX is a thiol-dependent peroxidase that efficiently reduces both hydrogen peroxide and organic peroxides. Moreover, we identified two additional proteins that depend on ScsB for reduction, a peroxiredoxin-like protein, PrxL, and a novel protein disulfide isomerase, ScsC. Altogether, our results reveal that the array of proteins involved in reductive pathways in the oxidative cell envelope is significantly broader than was previously thought. Moreover, the identification of a new periplasmic peroxiredoxin indicates that in some bacteria, it is important to directly scavenge peroxides in the cell envelope even before they reach the cytoplasm. PMID:22493033

  4. External and internal standards in the single-isotope derivative (radioenzymatic) measurement of plasma norepinephrine and epinephrine

    SciTech Connect

    Shah, S.D.; Clutter, W.E.; Cryer, P.E.

    1985-12-01

    In plasma from normal humans (n = 9, 35 samples) and from patients with diabetes mellitus (n = 12, 24 samples) single-isotope derivative (radioenzymatic) plasma norepinephrine and epinephrine concentrations calculated from external standard curves constructed in a normal plasma pool were identical to those calculated from internal standards added to an aliquot of each plasma sample. In plasma from patients with end-stage renal failure receiving long-term dialysis (n = 34, 109 samples), competitive catechol-O-methyltransferase (COMT) inhibitory activity resulted in a systematic error when external standards in a normal plasma pool were used, as reported previously; values so calculated averaged 21% (+/- 12%, SD) lower than those calculated from internal standards. However, when external standard curves were constructed in plasma from a given patient with renal failure and used to calculate that patient's values, or in a renal failure plasma pool and used to calculate all renal failure values, norepinephrine and epinephrine concentrations were not significantly different from those calculated from internal standards. We conclude: (1) External standard curves constructed in plasma from a given patient with renal failure can be used to measure norepinephrine and epinephrine in plasma from that patient; further, external standards in a renal failure plasma pool can be used for assays in patients with end-stage renal failure receiving long-term dialysis. (2) Major COMT inhibitory activity is not present commonly if samples from patients with renal failure are excluded. Thus, it would appear that external standard curves constructed in normal plasma can be used to measure norepinephrine and epinephrine precisely in samples from persons who do not have renal failure.

  5. Acute injections of corticosterone, norepinephrine and epinephrine retards food passage in the crop of chicks.

    PubMed

    Ogino, Madoka; Khan, Md Sakirul Islam; Cline, Mark A; Tachibana, Tetsuya

    2016-01-01

    The purpose of the present study was to clarify whether acute injection of stress-related hormones, corticosterone (CORT), norepinephrine (NE) and epinephrine (E) affect food passage in the crop of chicks (Gallus gallus). Subcutaneous (SQ) injection of CORT significantly retarded the food passage in the crop of chicks. Intraperitoneal (IP) injection of NE and E also significantly decreased the crop emptying rate. Additional experiments by using agonists of adrenergic receptors found that IP injection of phenylephrine and clonidine but not isoproterenol retarded the food passage in the crop of chicks. These results demonstrated that the effect of NE and E would be mediated by alpha-1-, alpha-2- rather than beta-adrenergic receptor. Finally, we found that injection of CORT, NE and E had no effect on the number of defecations while intracerebroventricular injection of corticotropin-releasing hormone and urocortin-3 significantly increased it. These results suggest that CORT, NE and E might affect the food passage in the upper digestive tract in chicks.

  6. Mechanistic insight into the norepinephrine-induced fibrosis in systemic sclerosis

    PubMed Central

    Uehara, Akihito; Motegi, Sei-ichiro; Yamada, Kazuya; Uchiyama, Akihiko; Perera, Buddhini; Toki, Sayaka; Ogino, Sachiko; Yokoyama, Yoko; Takeuchi, Yuko; Ishikawa, Osamu

    2016-01-01

    Raynaud’s phenomenon is frequently observed in systemic sclerosis (SSc) patients, and cold- or stress-induced norepinephrine (NE) has been speculated to be associated with vasoconstriction. Objective was to elucidate the role of NE in fibrosis in SSc. IL-6 is a potent stimulator of collagen production in fibroblasts. NE enhanced IL-6 production and proliferation more significantly in SSc fibroblasts than in normal fibroblasts. Furthermore, the production of IL-6 and phosphorylation of p38 in SSc fibroblasts was enhanced by adrenergic receptor (AR)β agonist, isoproterenol, but not ARα agonist, oxymetazoline. ARβ blocker, propranolol, inhibited NE-induced IL-6 production and phosphorylation of p38 in SSc fibroblasts. NE-induced IL-6 was significantly inhibited by p38 inhibitor, SB203580, suggesting that NE-induced phosphorylation of p38 via ARβ enhances IL-6 production in SSc fibroblasts. NE-induced phosphorylation of ERK1/2 via ARα inhibited IL-6 production in SSc fibroblasts. Combined treatment with NE and endothelin-1 resulted in an additive increase in IL-6 production in SSc fibroblasts. NE-induced IL-6/IL-6 receptor trans-signaling increased the production of collagen type I in SSc fibroblasts, and both propranolol and SB203580 inhibited NE-induced collagen production. These results suggest that cold exposure and/or emotional stress-induced NE might contribute to the skin fibrosis via potentiation of IL-6 production from fibroblasts in SSc. PMID:27650973

  7. Selective suppression of excitatory synapses on GABAergic interneurons by norepinephrine in juvenile rat prefrontal cortical microcircuitry.

    PubMed

    Wang, H-X; Waterhouse, B D; Gao, W-J

    2013-08-29

    The noradrenergic system of the brain is thought to facilitate neuronal processes that promote behavioral activation, alertness, and attention. It is known that norepinephrine (NE) can be significantly elevated in the prefrontal cortex under normal conditions such as arousal and attention, and following the administration of psychostimulants and various other drugs prescribed for psychiatric disorders. However, how NE modulates neuronal activity and synapses in the local prefrontal circuitry remains elusive. In this study, we characterized the actions of NE on individual monosynaptic connections among layer V pyramidal neurons (P) and fast-spiking (FS) GABAergic interneurons in the juvenile (postnatal days 20-23) rat prefrontal local circuitry. We found that NE selectively depresses excitatory synaptic transmission in P-FS connections but has no detectable effect on the excitatory synapses in P-P connections and the inhibitory synapses in FS-P connections. NE apparently exerts distinctly different modulatory actions on identified synapses that target GABAergic interneurons but has no effect on those in the pyramidal neurons in this specific developmental period. These results indicate that, depending on the postsynaptic targets, the effects of NE in prefrontal cortex are synapse-specific, at least in the juvenile animals.

  8. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe.

    PubMed

    Di, Guo-Qing; Zhou, Bing; Li, Zheng-Guang; Lin, Qi-Li

    2011-12-01

    In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L(WECPN)) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe.

  9. Whose side are you on: does serotonin preferentially activate the right hemisphere and norepinephrine the left?

    PubMed

    Fitzgerald, Paul J

    2012-08-01

    Serotonin (5-HT) and norepinephrine (NE) innervate both the left and right hemispheres of the brain, but whether they affect lateralization of function is unknown. This paper concisely examines evidence that these two neurotransmitters differentially affect the two hemispheres, and puts forth the novel hypothesis 5-HT preferentially activates the right hemisphere (RH) and NE the left hemisphere (LH). The principal lines of evidence comprise studies of: (1) 5-HT and NE level measurement, (2) receptor binding, (3) functional brain imaging, (4) dichotic listening, and (5) electroencephalography and evoked potentials. In assessing these 5 lines, emphasis is placed on studies of pharmaceutical drugs that affect the 5-HT and NE systems. While all of the data do not support the hypothesis, they are generally consistent with it, or a variant of the hypothesis that there is a bias toward 5-HT preferentially activating a majority of brain areas or functions in the RH, and NE a majority of LH areas or functions. If this hypothesis, or a variant of it, is correct, it may be relevant to understanding the physiological basis of neuropsychiatric disorders that could involve dysfunction in brain monoaminergic systems, as well as understanding potential lateralization of the effects of drugs that act on these systems.

  10. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe*

    PubMed Central

    Di, Guo-qing; Zhou, Bing; Li, Zheng-guang; Lin, Qi-li

    2011-01-01

    In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L WECPN) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe. PMID:22135145

  11. Microinjection of different doses of norepinephrine into the caudate putamen produces opposing effects in rats.

    PubMed

    Zhang, Guang-wen; Yang, Chun-xiao; Gao, He-ren; Zhang, Duo; Zhang, Ying; Jiao, Run-sheng; Zhang, Hui; Liang, Yu; Xu, Man-ying

    2010-03-03

    It has been proven that norepinephrine (NE) regulates antinociception through its action on alpha-adrenoceptors located in brain nuclei, spinal cord, and peripheral organs. However, the supraspinal mechanism of noradrenergic pain modulation is controversial. The present study was aimed at investigating the nociceptive effects induced by injecting different doses of NE and phentolamine into the caudate putamen (CPU) of rats. The thermal pain threshold of the rats was measured by performing a tail-flick test. The tail-flick latency (TFL) was measured at 2-60 min after microinjection of the drugs. Our results revealed that the thermal pain threshold increased (long TFL) after the administration of a low dose of NE (2 microg/2 microl) and decreased (short TFL) after injection of a high dose of NE (8 microg/2 microl). In contrast, the pain threshold decreased after the administration of a low dose of phentolamine (1 microg/2 microl), while it increased after injection of a high dose of phentolamine (4 microg/2 microl). These results indicated that the injection of different doses of NE in the CPU of the rats produced opposite effects on the pain threshold, as determined by the tail-flick tests.

  12. The involvement of norepinephrine in pain modulation in the nucleus accumbens of morphine-dependent rats.

    PubMed

    Zhang, Ying; Qu, Hui; Zhou, You; Wang, Yi; Zhang, Duo; Yang, Xu; Yang, ChunXiao; Xu, ManYing

    2015-01-12

    Opioids are effective analgesics used clinically for both acute and chronic pain management. However, repeated opioid treatment can induce serious side effects such as nausea, vomiting, drowsiness, respiratory depression, euphoria, dependence, hyperalgesia, and tolerance. The mechanism of noxious information transmission in the central nervous system following dependence is still not clear. Norepinephrine (NE), an important neurotransmitter, participates both in the process of opioid dependence and also pain modulation in the central nervous system. In this study, we examined the role of NE on the evoked discharges of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the nucleus accumbens (NAc) of rats, following the development of morphine dependence. Our results revealed that NE inhibited the evoked discharges of PENs and attenuated the inhibition of PINs, while phentolamine enhanced the evoked discharges of PENs and facilitated the inhibition of PINs. These results indicate that the inhibitory action of NE on pain modulation acts via alpha adrenoceptors in the NAc of morphine-dependent rats.

  13. Norepinephrine-mediated regulation of 5HT1 receptor functioning in human platelets.

    PubMed

    Trincavelli, M L; Cuboni, S; Montali, M; Santaguida, S; Lucacchini, A; Martini, C

    2008-07-01

    Adaptive changes in serotonergic 5HT1 receptor signalling are believed to underlie the therapeutic effectiveness of antidepressant drugs. Since cells are continuously exposed to neurotransmitters/neuromodulators, spatially and temporally integrated, the responsiveness of a receptor system is dependent upon the physio-pathological state of the cell and the interaction between different neurotransmitters. In the present work, we investigated heterologous regulation of 5HT1 receptors induced by norepinephrine (NE) in human platelets. NE platelet treatment induced a time and concentration dependent 5HT1 receptor desensitisation mediated by both alpha and beta receptors through activation of intracellular protein kinases. In particular NE, through PKC activation, regulated 5HT1 receptor phosphorylation on threonine residues, causing in turn serotonin receptor-G protein uncoupling and functional responsiveness drop. These results suggest that high NE levels (released i.e. during stress disorders) may play an important role in regulating the 5HT1 responsiveness and in controlling effectiveness of drugs acting on these neurotransmitter systems.

  14. Exercise-Induced Norepinephrine Decreases Circulating Hematopoietic Stem and Progenitor Cell Colony-Forming Capacity

    PubMed Central

    Mangge, Harald; Pekovits, Karin; Fuchs, Robert; Allard, Nathalie; Schinagl, Lukas; Hofmann, Peter; Dohr, Gottfried; Wallner-Liebmann, Sandra; Domej, Wolfgang; Müller, Wolfram

    2014-01-01

    A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC) numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE) concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/−4.4 yrs) before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2<0.15). The circulating hematopoietic stem and progenitor cell numbers were correlated with free/bound NE, free/bound epinephrine (EPI), cortisol (Co) and interleukin-6 (IL-6). Additionally, the influence of exercise-induced NE and blood lactate (La) on CPC functionality was analyzed in a randomly selected group of subjects (n = 6) in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality. PMID:25180783

  15. Increased release of norepinephrine and dopamine from canine kidney during bilateral carotid occlusion

    SciTech Connect

    Bradley, T.; Hjemdahl, P.; DiBona, G.F.

    1987-02-01

    The renal overflow of norepinephrine (NE) and dopamine (DA) to plasma from the innervated kidney was studied at rest and during sympathetic nervous system activation by bilateral carotid artery occlusion (BCO) in vagotomized dogs under barbiturate or barbiturate/nitrous oxide anesthesia. BCO elevated arterial pressure and the arterial plasma concentration of NE, DA, and epinephrine (Epi). Renal vascular resistance (renal arterial pressure kept constant) increased by 15 +/- 7% and the net renal venous outflows (renal veno-arterial concentration difference x renal plasma flow) of NE and DA were enhanced. To obtain more correct estimates of the renal contribution to the renal venous catecholamine outflow, they corrected for the renal extraction of arterial catecholamines, assessed as the extractions of (/sup 3/H)NE, (/sup 3/H)DA, or endogenous Epi. The (/sup 3/H)NE corrected renal NE overflow to plasma increased from 144 +/- 40 to 243 +/- 64 pmol-min/sup -1/ during BCO, which, when compared with a previous study of the (/sup 3/H)NE corrected renal NE overflow to plasma evoked by electrical renal nerve stimulation, corresponds to a 40% increase in nerve impulse frequency from approx. 0.6 Hz. If the renal catecholamine extraction was not taken into account the effect of BCO was underestimated. The renal DA overflow to plasma was about one-fifth of the NE overflow both at rest and during BCO, indicating that there was no preferential activation of noradrenergic or putative dopaminergic nerves by BCO.

  16. Photoaffinity labeling the. beta. -adrenergic receptor with an iodoazido derivative of norepinephrine

    SciTech Connect

    Resek, J.F.

    1989-01-01

    The {beta}-adrenergic receptor is an integral membrane protein coupled to adenylate cyclase by the guanine nucleotide binding protein, Gs. Agonist binding to the receptor results in coupling the receptor to Gs, increased adenylate cyclase activity, and receptor desensitization. In contrast, antagonists bind but do not activate the receptor or result in desensitization. To study the structure and regulation of the {beta}-adrenergic receptor in the membrane, it is useful to develop ligands which covalently label the binding site. In this thesis the synthesis and characterization of the first agonist photolabel for the {beta}-adrenergic receptor is presented. The agonist photoaffinity label, N-(p-azido-m-iodophenethylamidoisobutyl)-norepinephrine (NAIN), was synthesized in non-radioactive and radioactive carrier-free forms with {sup 125}I (2,200 Ci/mmole). NAIN was chemically characterized by TLC mobility, melting point, NMR, IR, and Mass Spectroscopy. NAIN was shown to be competitive with the {beta}-adrenergic ligand ({sup 125}I)-ICYP in several membranes containing {beta}-adrenergic receptors. Binding data indicated that NAIN coupled the receptor to Gs and had an affinity for the receptor which was similar to isoproterenol. NAIN stimulated adenylate cyclase activity in guinea pig lung and S49 WT mouse lymphoma cell membranes with a K{sub act} and V max similar to isoproterenol while in frog erythrocyte ghosts, NAIN produced 77% of the maximally stimulated adenylate cyclase activity of isoproterenol. These data show that NAIN is an agonist for the {beta}-adrenergic receptor.

  17. Norepinephrine and veratrine stimulated formation of inositol phosphates in rat brain slices

    SciTech Connect

    Maier, K.U.; Rutledge, C.O.

    1986-03-05

    Stimulation of phosphoinositide (PIn) hydrolysis by depolarization with veratrine was compared to that produced by stimulation of alpha/sub 1/ adrenoceptors by norepinephrine (NE). The PIns in rat cerebral cortex were labelled with /sup 3/H-myoinositol and the effects of the drugs on the formation of the three /sup 3/H-inositol phosphates (IP, IP2, IP3) were determined. The amounts of IP and IP2 formed by a maximal concentration of veratrine were about 50% of that formed by a maximal concentration of NE while the amount of IP3 formed after stimulation by veratrine was only about 10% of that produced by NE. The increase in IP was linear with time (30 min) for both NE and veratrine. IP2 and IP3 stimulation by veratrine reached a maximum at 5 min whereas that produced by NE continued to increase for 30 min. Blockade of voltage dependent calcium channels with manganese produced nearly complete antagonism of the veratrine response while only partially antagonizing the NE response. NE-induced IP2 formation was less sensitive to manganese than IP or IP3. These data suggest that veratrine causes hydrolysis of either a different pool of PIn or that the hydrolysis occurs by a different mechanism compared to NE. The data also suggest that IP2 may be produced directly from phosphatidylinositol 4-phosphate rather than solely as a metabolite of IP3.

  18. Impact of methylene blue in addition to norepinephrine on the intestinal microcirculation in experimental septic shock.

    PubMed

    Nantais, Jordan; Dumbarton, Tristan C; Farah, Nizam; Maxan, Alexander; Zhou, Juan; Minor, Samuel; Lehmann, Christian

    2014-01-01

    Methylene blue (MB) has been used with some success as a treatment for the vasoplegia of vasopressor-refractory septic shock. The putative mechanism of action of MB is the inhibition of endothelial nitric oxide within the microvasculature and improved responsiveness to endogenous catecholamines (norepinephrine (NE)). However, to date, no study has demonstrated the microcirculatory effect of methylene blue in septic shock. The objective of this randomized, controlled, animal study was to show, in an experimentally-induced, septic shock model in rats, the effects of MB and NE on global hemodynamics and the microcirculation. Mean arterial pressure (MAP) was drastically reduced following bacterial endotoxin (lipopolysaccharide, LPS) administration in animals not receiving vasopressors. Only the combination of NE + MB restored MAP to control levels by the end of the three hour experiment. Intravital microscopy of the microcirculation was performed in the terminal ileum in order to examine functional capillary density in intestinal muscle layers and the mucosa, as well as leukocyte activation in venules (rolling, adhesion to the endothelium). Untreated LPS animals showed a significant increase in leukocyte adhesion and a decrease in capillary perfusion in the intestinal microcirculation. In groups receiving NE or NE+MB, we observed a significant decrease in leukocyte adhesion and improved functional capillary density, indicating that microvasculature function was improved. This study suggests that methylene blue may be able to improve hemodynamics while preserving microvascular function in septic shock.

  19. High plasma norepinephrine attenuates the dynamic heart rate response to vagal stimulation.

    PubMed

    Miyamoto, Tadayoshi; Kawada, Toru; Takaki, Hiroshi; Inagaki, Masashi; Yanagiya, Yusuke; Jin, Yintie; Sugimachi, Masaru; Sunagawa, Kenji

    2003-06-01

    To better understand the pathophysiological significance of high plasma norepinephrine (NE) concentration in regulating heart rate (HR), we examined the interactions between high plasma NE and dynamic vagal control of HR. In anesthetized rabbits with sinoaortic denervation and vagotomy, using a binary white noise sequence (0-10 Hz) for 10 min, we stimulated the right vagus and estimated the transfer function from vagal stimulation to HR response. The transfer function approximated a first-order low-pass filter with pure delay. Infusion of NE (100 microg. kg(-1) x h(-1) iv) attenuated the dynamic gain from 6.2 +/- 0.8 to 3.9 +/- 1.2 beats x min(-1) x Hz(-1) (n = 7, P < 0.05) without affecting the corner frequency or pure delay. Simultaneous intravenous administration of phentolamine (1 mg x kg(-1) x h(-1)) and NE (100 microg x kg(-1) x h(-1)) abolished the inhibitory effect of NE on the dynamic gain (6.3 +/- 0.8 vs. 6.4 +/- 1.3 beats x min(-1) x Hz(-1), not significant, n = 7). The inhibitory effect of NE at infusion rates of 10, 50, and 100 microg x kg(-1) x h(-1) on dynamic vagal control of HR was dose-dependent (n = 5). In conclusion, high plasma NE attenuated the dynamic HR response to vagal stimulation, probably via activation of alpha-adrenergic receptors on the preganglionic and/or postganglionic cardiac vagal nerve terminals.

  20. Mutations in the dopamine beta-hydroxylase gene are associated with human norepinephrine deficiency

    NASA Technical Reports Server (NTRS)

    Kim, Chun-Hyung; Zabetian, Cyrus P.; Cubells, Joseph F.; Cho, Sonhae; Biaggioni, Italo; Cohen, Bruce M.; Robertson, David; Kim, Kwang-Soo

    2002-01-01

    Norepinephrine (NE), a key neurotransmitter of the central and peripheral nervous systems, is synthesized by dopamine beta-hydroxylase (DBH) that catalyzes oxidation of dopamine (DA) to NE. NE deficiency is a congenital disorder of unknown etiology, in which affected patients suffer profound autonomic failure. Biochemical features of the syndrome include undetectable tissue and circulating levels of NE and epinephrine, elevated levels of DA, and undetectable levels of DBH. Here, we report identification of seven novel variants including four potentially pathogenic mutations in the human DBH gene (OMIM 223360) from analysis of two unrelated patients and their families. Both patients are compound heterozygotes for variants affecting expression of DBH protein. Each carries one copy of a T-->C transversion in the splice donor site of DBH intron 1, creating a premature stop codon. In patient 1, there is a missense mutation in DBH exon 2. Patient 2 carries missense mutations in exons 1 and 6 residing in cis. We propose that NE deficiency is an autosomal recessive disorder resulting from heterogeneous molecular lesions at DBH. Copyright 2002 Wiley-Liss, Inc.

  1. Mobilization of a common source of smooth muscle Ca2+ by norepinephrine and methylxanthines.

    PubMed

    Deth, R C; Lynch, C J

    1981-05-01

    The ability of norepinephrine (NE), caffeine (CAF), theophylline (THEO), dinitrophenol (DNP), and potassium (high K) to mobilize cellular Ca2+ in rabbit aorta was examined using 45Ca-efflux techniques. After 10 min of Ca2+ deprivation using either Ca-free EGTA or Ca-free lanthanum (La3+) buffers, NE, CAF, and DNP still caused an increase in 45Ca-efflux rate, indicating a cellular source of 45Ca, while high K did not. Contractile behavior after Ca removal paralleled 45Ca-efflux events. CAF (10 mM) inhibited NE contractile responses, and this inhibition was associated with the depletion of the NE-releasable Ca2+ store. Previous exposure to CAF during 45Ca efflux reduced subsequent stimulation of 45Ca efflux was not additive. THEO caused a stimulation of 45Ca efflux similar to CAF. CAF, THEO, and 3-isobutyl-l-methylxanthine caused a two- to threefold increase in cAMP levels in association with their stimulation of 45Ca efflux. These results suggest that NE and methylxanthines mobilize a common cellular Ca2+ source that is associated with contraction in the case of NE but relaxation in the case of methylxanthines.

  2. Spectrophotometric determination of norepinephrine with sodium iodate and determination of its acidity constants

    NASA Astrophysics Data System (ADS)

    Hashem, E. Y.; Youssef, A. K.

    2013-05-01

    A spectrophotometric method is proposed for the determination of norepinephrine (NE) and its bitartrate salts. The method was based on the development of a red color (λmax = 495 nm) with sodium iodate in aqueous alcoholic medium at pH 5. The color was stable for at least 4 hrs. The molar reacting ratio of NE to sodium iodate was 1:4. A linear relationship was obtained between the absorption intensity and NE concentration in the range of 3.384-37.224 μg/ml with detection limit of 0.067 μg/ml and correlation coefficient of 0.9972. The present work facilitated the determination of the three acidity constants, 7.564 ± 0.02, 9.036 ± 0.034, and 10.761 ± 0.023. The reaction mechanism was also described. The proposed method was successfully applied for the determination of NE in pharmaceutical formulations. Results for analysis of bulk drugs and injections agree with those of official methods.

  3. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance.

    PubMed

    Aston-Jones, Gary; Cohen, Jonathan D

    2005-01-01

    Historically, the locus coeruleus-norepinephrine (LC-NE) system has been implicated in arousal, but recent findings suggest that this system plays a more complex and specific role in the control of behavior than investigators previously thought. We review neurophysiological and modeling studies in monkey that support a new theory of LC-NE function. LC neurons exhibit two modes of activity, phasic and tonic. Phasic LC activation is driven by the outcome of task-related decision processes and is proposed to facilitate ensuing behaviors and to help optimize task performance (exploitation). When utility in the task wanes, LC neurons exhibit a tonic activity mode, associated with disengagement from the current task and a search for alternative behaviors (exploration). Monkey LC receives prominent, direct inputs from the anterior cingulate (ACC) and orbitofrontal cortices (OFC), both of which are thought to monitor task-related utility. We propose that these frontal areas produce the above patterns of LC activity to optimize utility on both short and long timescales.

  4. Is elevated norepinephrine an etiological factor in some cases of schizophrenia?

    PubMed

    Fitzgerald, Paul J

    2014-03-30

    A number of hypotheses have been put forth regarding the etiology of schizophrenia, including the dopamine hypothesis, NMDA receptor hypofunction hypothesis, and others. A lesser known theory is that elevated noradrenergic signaling plays a causative role in the disease. This paper briefly re-examines the merits of this hypothesis, including as it relates to some recently published studies. Several lines of evidence are investigated, including: endogenous level studies of norepinephrine (NE); modulation of the disease by noradrenergic drugs; association of the disease with bipolar disorder and hypertension, since these latter two conditions may involve elevated NE transmission; and effects of psychological stress on the disease, since stress can produce elevated release of NE. For many of these lines of evidence, their relationship with prepulse inhibition of startle is examined. A number of these studies support the hypothesis, and several suggest that elevated NE signaling plays a particularly prominent role in the paranoid subtype of schizophrenia. If the hypothesis is correct for some persons, conventional pharmaceutical treatment options, such as use of atypical antipsychotics (which may themselves modulate noradrenergic signaling), may be improved if selective NE transmission modulating agents are added to or even substituted for these conventional drugs.

  5. Drinking-Induced Plasma Vasopressin and Norepinephrine Changes in Dehydrated Humans

    NASA Technical Reports Server (NTRS)

    Geelen, Ghislaine; Greenleaf, John E.; Keil, Lanny C.

    1996-01-01

    After 24-h water deprivation, five men (23-41 yr; 78 +/- 3.6 kg) consumed, within 4.0-6.2 min, 12 mL/kg of one of six fluid formulations (16.5 C) once a week over a period of 6 weeks: water, hypotonic saline (0.045% Na(+)), isotopic saline (0.36%, Na(+)), hypertonic glucose 9 7%, glucose), and two commercial mildly hypertonic 9.7% carbohydrate drinks. Blood samples were drawn 5 min before and: 3, 9, 15, 30, and 70 min after completion of drinking. Ingestion induced no significant change in plasma Na(+), K(+), osmotic, or protein concentrations, blood pressure; or heart rate. Plasma volume (PV) was increases (P <0.05) between 30-70 min with isotonic saline and the two commercial drinks. Ingestion induced a decrease in plasma AVP (PAVP) at 3 min, which was maximal (P < 0.05) at 15 min with all drinks. Thus, the act of drinking, independent of the composition or osmolality of the fluid absorbed, leads to a prompt inhibition of PAVP secretion in man. With the exception of rehydration with isotonic saline, this prompt response was followed by a long lasting inhibition of PAVP. There was no change in PRA, plasma aldosterone, atrial natriuretic peptide, or epinephrine, but an increase in plasma norepinephrine occurred immediately after ingestion, which suggests, like that for PAVP depression, a drinking-stimulate neural mechanism.

  6. Optimality and robustness of a biophysical decision-making model under norepinephrine modulation

    PubMed Central

    Eckhoff, Philip; Wong-Lin, KongFatt; Holmes, Philip

    2009-01-01

    The locus coeruleus (LC) can exhibit tonic or phasic activity and release norepinephrine (NE) throughout the cortex, modulating cellular excitability and synaptic efficacy and thus influencing behavioral performance. We study the effects of LC-NE modulation on decision making in two-alternative forced-choice tasks by changing conductances in a biophysical neural network model, and we investigate how it affects performance measured in terms of reward rate. We find that low tonic NE levels result in unmotivated behavior and high levels in impulsive, inaccurate choices, but that near-optimal performance can occur over a broad middle range. Robustness is greatest when pyramidal cells are less strongly modulated than interneurons, and superior performance can be achieved with phasic NE release, provided only glutamatergic synapses are modulated. We also show that network functions such as sensory information accumulation and short-term memory can be modulated by tonic NE levels, and that previously-observed diverse evoked cell responses may be due to network effects. PMID:19339624

  7. Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat.

    PubMed

    Roosevelt, Rodney W; Smith, Douglas C; Clough, Richard W; Jensen, Robert A; Browning, Ronald A

    2006-11-13

    The vagus nerve is an important source of afferent information about visceral states and it provides input to the locus coeruleus (LC), the major source of norepinephrine (NE) in the brain. It has been suggested that the effects of electrical stimulation of the vagus nerve on learning and memory, mood, seizure suppression, and recovery of function following brain damage are mediated, in part, by the release of brain NE. The hypothesis that left vagus nerve stimulation (VNS) at the cervical level results in increased extracellular NE concentrations in the cortex and hippocampus was tested at four stimulus intensities: 0.0, 0.25, 0.5, and 1.0 mA. Stimulation at 0.0 and 0.25 mA had no effect on NE concentrations, while the 0.5 mA stimulation increased NE concentrations significantly in the hippocampus (23%), but not the cortex. However, 1.0 mA stimulation significantly increased NE concentrations in both the cortex (39%) and hippocampus (28%) bilaterally. The increases in NE were transient and confined to the stimulation periods. VNS did not alter NE concentrations in either structure during the inter-stimulation baseline periods. No differences were observed between NE levels in the initial baseline and the post-stimulation baselines. These findings support the hypothesis that VNS increases extracellular NE concentrations in both the hippocampus and cortex.

  8. Transcriptomic analysis of Campylobacter jejuni NCTC 11168 in response to epinephrine and norepinephrine

    PubMed Central

    Xu, Fuzhou; Wu, Cun; Guo, Fangfang; Cui, Guolin; Zeng, Ximin; Yang, Bing; Lin, Jun

    2015-01-01

    Upon colonization in the host gastrointestinal tract, the enteric bacterial pathogen Campylobacter jejuni is exposed to a variety of signaling molecules including the catecholamine hormones epinephrine (Epi) and norepinephrine (NE). NE has been observed to stimulate the growth and potentially enhance the pathogenicity of C. jejuni. However, the underlying mechanisms are still largely unknown. In this study, both Epi and NE were also observed to promote C. jejuni growth in MEMα-based iron-restricted medium. Adhesion and invasion of Caco-2 cells by C. jejuni were also enhanced upon exposure to Epi or NE. To further examine the effect of Epi or NE on the pathobiology of C. jejuni, transcriptomic profiles were conducted for C. jejuni NCTC 11168 that was cultured in iron-restricted medium supplemented with Epi or NE. Compared to the genes expressed in the absence of the catecholamine hormones, 183 and 156 genes were differentially expressed in C. jejuni NCTC 11168 that was grown in the presence of Epi and NE, respectively. Of these differentially expressed genes, 102 genes were common for both Epi and NE treatments. The genes differentially expressed by Epi or NE are involved in diverse cellular functions including iron uptake, motility, virulence, oxidative stress response, nitrosative stress tolerance, enzyme metabolism, DNA repair and metabolism and ribosomal protein biosynthesis. The transcriptome analysis indicated that Epi and NE have similar effects on the gene expression of C. jejuni, and provided insights into the delicate interaction between C. jejuni and intestinal stress hormones in the host. PMID:26042101

  9. Effect of Uptake-one inhibitors on the uptake of norepinephrine and metaiodobenzylguanidine

    SciTech Connect

    Tobes, M.C.; Jaques, S. Jr.; Wieland, D.M.; Sisson, J.C.

    1985-08-01

    The mechanisms underlying the uptake of the radiopharmaceutical metaiodobenzylguanidine (MIBG) and the catecholamine norepinephrine (NE) were studied using cultured bovine adrenomedullary cells as an in vitro model system. Sodium-dependent and sodium-independent uptake systems have been identified and characterized for both MIBG and NE. The sodium-dependent uptake of Ne and MIBG was inhibited by the selective Uptake-one inhibitors, desmethylimipramine (DMI) and cocaine, whereas the sodium-independent uptake for NE and MIBG was much less sensitive to inhibition by these agents. The sodium-dependent uptake system fulfills the criteria for the neuronal Uptake-one system, and the sodium-independent uptake system fulfills the criteria for a passive diffusion mechanism. Arterial concentrations proximal to the dog adrenal were very small suggesting that the sodium-dependent (Uptake-one) system is predominant in vivo. Consistent with the in vitro observations, the in vivo uptake of MIBG and NE into dog adrenal medullae was effectively blocked by pretreatment with DMI or cocaine. Therefore, iodine-131 MIBG scintigraphy of the adrenal appears to reflect uptake by way of the Uptake-one system.

  10. Regional development of carbachol-, glutamate-, norepinephrine-, and serotonin-stimulated phosphoinositide metabolism in rat brain.

    PubMed

    Balduini, W; Candura, S M; Costa, L G

    1991-09-19

    Phosphoinositide metabolism stimulated by activation of cholinergic muscarinic, glutamatergic, alpha-adrenergic and serotoninergic receptors was measured in brain regions of the developing rats. Accumulation of [3H]inositol phosphates ([3H]InsPs) in [3H]inositol-prelabeled slices from cerebral cortex, hippocampus, brainstem and cerebellum was measured as an index of phosphoinositide metabolism. Large age-, neurotransmitter receptor-, and brain region-dependent differences were found. Carbachol-stimulated [3H]InsPs accumulation peaked on postnatal day 7 in cerebral cortex and hippocampus while in cerebellum and brainstem the effect of muscarinic stimulation was maximal at birth and then declined to adulthood. The effect of glutamate also showed a peak on day 7 in hippocampus and brainstem and a developmentally related decrease in cerebral cortex. In the cerebellum, on the other hand, the response to glutamate remained sustained through adulthood. Stimulation of phosphoinositide metabolism by norepinephrine increased with age in hippocampus and cerebral cortex, but decreased in the cerebellum, while the effect of serotonin did not change significantly with age except in cerebellum. These changes in receptor-stimulated phosphoinositide metabolism do not parallel, for the most part, the ontogeny of receptor recognition sites. Activation of the phosphoinositide metabolism pathway leads to an increase in intracellular calcium levels and to stimulation of protein kinase C, which are believed to play significant roles in cellular proliferation and differentiation. Thus, the differential ability of neurotransmitters to stimulate phosphoinositide hydrolysis might play a role in the development of brain regions.

  11. Japanese experience with milnacipran, the first serotonin and norepinephrine reuptake inhibitor in Japan

    PubMed Central

    Higuchi, Teruhiko; Briley, Mike

    2007-01-01

    Milnacipran is a serotonin and norepinephrine reuptake inhibitor (SNRI), with a balanced potency for the inhibition of the reuptake of the two monoamines. In this, it contrasts with venlafaxine and duloxetine which, while possessing a dual action, have a selectivity of the order of 30-fold and 10-fold respectively for the reuptake of serotonin. Milnacipran has mainly been launched in countries where the selective serotonin reuptake inhibitors (SSRIs) and venlafaxine had been established for several years. As such it has attracted relative little interest from clinician investigators as a research tool. Japan, however, represents a unique situation because in 1999 milnacipran was launched within months of the first SSRI and is still the only SNRI in Japan together with only two SSRIs (a third has just been introduced). This has led to a large number of investigative clinical studies, many of which give interesting insights into the potential of milnacipran in the treatment of depression and of other disorders. This article reviews these Japanese studies with milnacipran. PMID:19300537

  12. Cortical serotonin and norepinephrine denervation in parkinsonism: preferential loss of the beaded serotonin innervation.

    PubMed

    Nayyar, Tultul; Bubser, Michael; Ferguson, Marcus C; Neely, M Diana; Shawn Goodwin, J; Montine, Thomas J; Deutch, Ariel Y; Ansah, Twum A

    2009-07-01

    Parkinson's Disease (PD) is marked by prominent motor symptoms that reflect striatal dopamine insufficiency. However, non-motor symptoms, including depression, are common in PD. It has been suggested that these changes reflect pathological involvement of non-dopaminergic systems. We examined regional changes in serotonin (5-HT) and norepinephrine (NE) systems in mice treated with two different 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment paradigms, at survival times of 3 or 16 weeks after the last MPTP injection. MPTP caused a decrease in striatal dopamine concentration, the magnitude of which depended on the treatment regimen and survival interval after MPTP treatment. There was significant involvement of other subcortical areas receiving a dopamine innervation, but no consistent changes in 5-HT or NE levels in subcortical sites. In contrast, we observed an enduring decrease in 5-HT and NE concentrations in both the somatosensory cortex and medial prefrontal cortex (PFC). Immunohistochemical studies also revealed a decrease in the density of PFC NE and 5-HT axons. The decrease in the cortical serotonergic innervation preferentially involved the thick beaded but not smooth fine 5-HT axons. Similar changes in the 5-HT innervation of post-mortem samples of the PFC from idiopathic PD cases were seen. Our findings point to a major loss of the 5-HT and NE innervations of the cortex in MPTP-induced parkinsonism, and suggest that loss of the beaded cortical 5-HT innervation is associated with a predisposition to the development of depression in PD.

  13. Intracellular pH of brown adipose tissue increases during norepinephrine stimulation of thermogenesis

    SciTech Connect

    Horwitz, B.A.; Hamilton, J.S.

    1986-03-01

    Norepinephrine (NE) activation of brown fat (BAT) thermogenesis appears to involve dissociation of purine nucleotides from the mitochondrial uncoupling protein, resulting in release of normal respiratory control and enhanced substrate oxidation. Since the affinity of the uncoupling protein for purine nucleotides decreases significantly with increasing pH, the authors wished to determine if NE administration shifted the intracellular pH of BAT. To examine this question under in vivo conditions, they positioned a nuclear magnetic resonance (NMR) surface coil over the interscapular BAT of anesthetized male Syrian hamsters. The underlying and surrounding musculature was shielded to minimize their contribution to the /sup 31/P spectra. The hamster was placed in a Nicolet 200 Mhz spectrometer, operating in the Fourier Transform mode and tuned to /sup 31/P. Scans taken during infusion of ascorbate buffer (vehicle for NE) were compared to those taken during NE infusion (8 ng/g x min). During this infusion, BAT temperature increased 3.7 +/- 0.5/sup 0/C, confirming that BAT thermogenesis was activated. There also occurred a statistically significant PPM (parts per million) shift, averaging 0.070 +/- 0.022 (n = 22) and corresponding to an increase of approximately 0.07 pH units. This shift in intracellular pH from 7.32 to 7.39, although small, would facilitate the maintenance of loosely coupled brown fat mitochondria.

  14. Individual differences in the locus coeruleus-norepinephrine system: Relevance to stress-induced cardiovascular vulnerability.

    PubMed

    Wood, Christopher S; Valentino, Rita J; Wood, Susan K

    2017-04-01

    Repeated exposure to psychosocial stress is a robust sympathomimetic stressor and as such has adverse effects on cardiovascular health. While the neurocircuitry involved remains unclear, the physiological and anatomical characteristics of the locus coeruleus (LC)-norepinephrine (NE) system suggest that it is poised to contribute to stress-induced cardiovascular vulnerability. A major theme throughout is to review studies that shed light on the role that the LC may play in individual differences in vulnerability to social stress-induced cardiovascular dysfunction. Recent findings are discussed that support a unique plasticity in afferent regulation of the LC, resulting in either excitatory or inhibitory input to the LC during establishment of different stress coping strategies. This contrasting regulation of the LC by either afferent regulation, or distinct differences in stress-induced neuroinflammation would translate to differences in cardiovascular regulation and may serve as the basis for individual differences in the cardiopathological consequences of social stress. The goal of this review is to highlight recent developments in the interplay between the LC-NE and cardiovascular systems during repeated stress in an effort to advance therapeutic treatments for the development of stress-induced cardiovascular vulnerability.

  15. Electrochemistry of norepinephrine on carbon-coated nickel magnetic nanoparticles modified electrode and analytical applications.

    PubMed

    Bian, Chunli; Zeng, Qingxiang; Xiong, Huayu; Zhang, Xiuhua; Wang, Shengfu

    2010-08-01

    A carbon-coated nickel magnetic nanoparticles modified glassy carbon electrode (C-Ni/GCE) was fabricated. The carbon-coated nickel magnetic nanoparticles were characterized with transmission electron microscopy (TEM). The electrochemical behaviors of norepinephrine (NE) were investigated on the modified electrode by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The carbon-coated nickel magnetic nanoparticles showed excellent electrocatalytic activity for the electrochemical redox of NE. NE exhibited two couples of well-defined redox peaks on C-Ni/GCE over the potential range from -0.4 to 0.8V in phosphate buffer solution (PBS) (pH=7.0). The redox mechanism for NE was proposed. DPV response of NE on the C-Ni/GCE showed that the catalytic oxidative peak current was linear with the square root concentration of NE in the range of 2.0 x 10(-7) to 8.0 x 10(-5)M, with a detection limit of 6.0 x 10(-8)M. The C-Ni/GCE showed good sensitivity, selectivity and stability for the determination of NE.

  16. Effects of aging and hypertension on the participation of endothelium-derived constricting factor (EDCF) in norepinephrine-induced contraction of rat femoral artery.

    PubMed

    Líšková, Silvia; Silvia, Líšková; Petrová, Miriam; Miriam, Petrová; Karen, Petr; Petr, Karen; Kuneš, Jaroslav; Jaroslav, Kuneš; Zicha, Josef; Josef, Zicha

    2011-09-30

    Endothelium-dependent contraction elicited by high concentrations of acetylcholine was described in hypertensive as well as in aged normotensive rats. The contribution of endothelium-derived constricting factor (EDCF) to norepinephrine-induced contraction is still unknown. We aimed to compare EDCF participation to norepinephrine-induced arterial contraction in spontaneously hypertensive rats (SHR) and aged normotensive Wistar-Kyoto (WKY) rats. Femoral arteries from either adult (7-months-old) or aged (14-months-old) animals were placed in myograph and norepinephrine-induced concentration-response curves were recorded under control conditions and in the presence of indomethacin (cyclooxygenase inhibitor, 10(-5) mol/l) or L-NNA (NO synthase inhibitor, 10(-4) mol/l) or both. Norepinephrine-induced concentration-response curve was enhanced in SHR compared to WKY rats, but concentration-response curve of aged WKY rats was similar to those of adult SHR. Cyclooxygenase inhibition largely attenuated concentration-response curves in all groups. However, this effect was greater in aged WKY rats and adult SHR compared to adult WKY rats. NO synthase inhibition augmented norepinephrine-induced contraction in arteries of adult WKY rats, but not in arteries from aged WKY rats or adult SHR. The combined administration of L-NNA and indomethacin had no additive effects on concentration-response curves. EDCF contribution to norepinephrine-induced contractions of arteries was considerably greater in adult SHR (80±3%) and aged WKY rats (86±2%) compared to adult WKY rats (35±10%). The inhibition of NO synthase augmented EDCF contribution to norepinephrine-induced contraction only in arteries from adult WKY rats (76±9%). We conclude that EDCF contribution to norepinephrine-induced contraction of conduit arteries is similarly enhanced in adult hypertensive and aged normotensive rats.

  17. Advanced computer technology - An aspect of the Terminal Configured Vehicle program. [air transportation capacity, productivity, all-weather reliability and noise reduction improvements

    NASA Technical Reports Server (NTRS)

    Berkstresser, B. K.

    1975-01-01

    NASA is conducting a Terminal Configured Vehicle program to provide improvements in the air transportation system such as increased system capacity and productivity, increased all-weather reliability, and reduced noise. A typical jet transport has been equipped with highly flexible digital display and automatic control equipment to study operational techniques for conventional takeoff and landing aircraft. The present airborne computer capability of this aircraft employs a multiple computer simple redundancy concept. The next step is to proceed from this concept to a reconfigurable computer system which can degrade gracefully in the event of a failure, adjust critical computations to remaining capacity, and reorder itself, in the case of transients, to the highest order of redundancy and reliability.

  18. Excitatory drive onto dopaminergic neurons in the rostral linear nucleus is enhanced by norepinephrine in an α1 adrenergic receptor-dependent manner.

    PubMed

    Williams, Megan A; Li, Chia; Kash, Thomas L; Matthews, Robert T; Winder, Danny G

    2014-11-01

    Dopaminergic innervation of the extended amygdala regulates anxiety-like behavior and stress responsivity. A portion of this dopamine input arises from dopamine neurons located in the ventral lateral periaqueductal gray (vlPAG) and rostral (RLi) and caudal linear nuclei of the raphe (CLi). These neurons receive substantial norepinephrine input, which may prime them for involvement in stress responses. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase promoter, we explored the physiology and responsiveness to norepinephrine of these neurons. We find that RLi dopamine neurons differ from VTA dopamine neurons with respect to membrane resistance, capacitance and the hyperpolarization-activated current, Ih. Further, we found that norepinephrine increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) on RLi dopamine neurons. This effect was mediated through the α1 adrenergic receptor (AR), as the actions of norepinephrine were mimicked by the α1-AR agonist methoxamine and blocked by the α1-AR antagonist prazosin. This action of norepinephrine on sEPSCs was transient, as it did not persist in the presence of prazosin. Methoxamine also increased the frequency of miniature EPSCs, indicating that the α1-AR action on glutamatergic transmission likely has a presynaptic mechanism. There was also a modest decrease in sEPSC frequency with the application of the α2-AR agonist UK-14,304. These studies illustrate a potential mechanism through which norepinephrine could recruit the activity of this population of dopaminergic neurons.

  19. Metaiodobenzylguanidine (/sup 131/I) scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-overload heart failure

    SciTech Connect

    Rabinovitch, M.A.; Rose, C.P.; Rouleau, J.L.; Chartrand, C.; Wieland, D.M.; Lepanto, L.; Legault, F.; Suissa, S.; Rosenthall, L.; Burgess, J.H.

    1987-12-01

    In heart failure secondary to chronic mechanical overload, cardiac sympathetic neurons demonstrate depressed catecholamine synthetic and transport function. To assess the potential of sympathetic neuronal imaging for detection of depressed transport function, serial scintigrams were acquired after the intravenous administration of metaiodobenzylguanidine (/sup 131/I) to 13 normal dogs, 3 autotransplanted (denervated) dogs, 5 dogs with left ventricular failure, and 5 dogs with compensated left ventricular hypertrophy due to a surgical arteriovenous shunt. Nine dogs were killed at 14 hours postinjection for determination of metaiodobenzylguanidine (/sup 131/I) and endogenous norepinephrine content in left atrium, left ventricle, liver, and spleen. By 4 hours postinjection, autotransplanted dogs had a 39% reduction in mean left ventricular tracer accumulation, reflecting an absent intraneuronal tracer pool. Failure dogs demonstrated an accelerated early mean left ventricular tracer efflux rate (26.0%/hour versus 13.7%/hour in normals), reflecting a disproportionately increased extraneuronal tracer pool. They also showed reduced late left ventricular and left atrial concentrations of tracer, consistent with a reduced intraneuronal tracer pool. By contrast, compensated hypertrophy dogs demonstrated a normal early mean left ventricular tracer efflux rate (16.4%/hour) and essentially normal late left ventricular and left atrial concentrations of tracer. Metaiodobenzylguanidine (/sup 131/I) scintigraphic findings reflect the integrity of the cardiac sympathetic neuronal transport system in canine mechanical-overload heart failure. Metaiodobenzylguanidine (/sup 123/I) scintigraphy should be explored as a means of early detection of mechanical-overload heart failure in patients.

  20. Reduction of Nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA

    SciTech Connect

    Gao, Haichun; Yang, Zamin; Barua, Soumitra; Reed, Samantha B.; Romine, Margaret F.; Nealson, Kenneth H.; Fredrickson, Jim K.; Tiedje, James M.; Zhou, Jizhong

    2009-04-23

    In the genome of Shewanella oneidensis, a napDAGHB gene cluster encoding periplasmic nitrate reductase (NapA) and accessory proteins and an nrfA gene encoding periplasmic nitrite reductase (NrfA) have been identified. These two systems seem to be atypical because the genome lacks genes encoding cytoplasmic membrane electron transport proteins, NapC for NAP and NrfBCD/NrfH for NRF, respectively. Here, we present evidence that reduction of nitrate to ammonium in S. oneidensis is carried out by these atypical systems in a two-step manner. Transcriptional and mutational analyses suggest that CymA, a cytoplasmic membrane electron transport protein, is likely to be the functional replacement of both NapC and NrfH in S. oneidensis. Surprisingly, a strain devoid of napB encoding the small subunit of nitrate reductase exhibited the maximum cell density sooner than the wild type. Further characterization of this strain showed that nitrite was not detected as a free intermediate in its culture and NapB provides a fitness gain for S. oneidensis to compete for nitrate in the environments. On the basis results from mutational analyses of napA, napB, nrfA and napBnrfA in-frame deletion mutants, we propose that NapB is able to favor nitrate reduction by routing electrons to NapA exclusively.

  1. Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA.

    PubMed

    Gao, Haichun; Yang, Zamin K; Barua, Soumitra; Reed, Samantha B; Romine, Margaret F; Nealson, Kenneth H; Fredrickson, James K; Tiedje, James M; Zhou, Jizhong

    2009-08-01

    In the genome of Shewanella oneidensis, a napDAGHB gene cluster encoding periplasmic nitrate reductase (NapA) and accessory proteins and an nrfA gene encoding periplasmic nitrite reductase (NrfA) have been identified. These two systems seem to be atypical because the genome lacks genes encoding cytoplasmic membrane electron transport proteins, NapC for NAP and NrfBCD/NrfH for NRF, respectively. Here, we present evidence that reduction of nitrate to ammonium in S. oneidensis is carried out by these atypical systems in a two-step manner. Transcriptional and mutational analyses suggest that CymA, a cytoplasmic membrane electron transport protein, is likely to be the functional replacement of both NapC and NrfH in S. oneidensis. Surprisingly, a strain devoid of napB encoding the small subunit of nitrate reductase exhibited the maximum cell density sooner than the wild type. Further characterization of this strain showed that nitrite was not detected as a free intermediate in its culture and NapB provides a fitness gain for S. oneidensis to compete for nitrate in the environments. On the basis results from mutational analyses of napA, napB, nrfA and napBnrfA in-frame deletion mutants, we propose that NapB is able to favor nitrate reduction by routing electrons to NapA exclusively.

  2. A Selective V1A Receptor Agonist, Selepressin, Is Superior to Arginine Vasopressin and to Norepinephrine in Ovine Septic Shock*

    PubMed Central

    He, Xinrong; Su, Fuhong; Taccone, Fabio Silvio; Laporte, Régent; Kjølbye, Anne Louise; Zhang, Jing; Xie, Keliang; Moussa, Mouhamed Djahoum; Reinheimer, Torsten Michael

    2016-01-01

    Objective: Selective vasopressin V1A receptor agonists may have advantages over arginine vasopressin in the treatment of septic shock. We compared the effects of selepressin, a selective V1A receptor agonist, arginine vasopressin, and norepinephrine on hemodynamics, organ function, and survival in an ovine septic shock model. Design: Randomized animal study. Setting: University hospital animal research laboratory. Subjects: Forty-six adult female sheep. Interventions: Fecal peritonitis was induced in the anesthetized, mechanically ventilated, fluid-resuscitated sheep, and they were randomized in two successive phases. Three late-intervention groups (each n = 6) received IV selepressin (1 pmol/kg/min), arginine vasopressin (0.25 pmol [0.1 mU]/kg/min), or norepinephrine (3 nmol [0.5 μg]/kg/min) when mean arterial pressure remained less than 70 mm Hg despite fluid challenge; study drugs were thereafter titrated to keep mean arterial pressure at 70–80 mm Hg. Three early-intervention groups (each n = 7) received selepressin, arginine vasopressin, or norepinephrine at the same initial infusion rates as for the late intervention, but already when mean arterial pressure had decreased by 10% from baseline; doses were then titrated as for the late intervention. A control group (n = 7) received saline. All animals were observed until death or for a maximum of 30 hours. Measurements and Main Results: In addition to hemodynamic and organ function assessment, plasma interleukin-6 and nitrite/nitrate levels were measured. In the late-intervention groups, selepressin delayed the decrease in mean arterial pressure and was associated with lower lung wet/dry weight ratios than in the other two groups. In the early-intervention groups, selepressin maintained mean arterial pressure and cardiac index better than arginine vasopressin or norepinephrine, slowed the increase in blood lactate levels, and was associated with less lung edema, lower cumulative fluid balance, and lower

  3. Abnormal norepinephrine clearance and adrenergic receptor sensitivity in idiopathic orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Shannon, J. R.; Costa, F.; Furlan, R.; Biaggioni, I.; Mosqueda-Garcia, R.; Robertson, R. M.; Robertson, D.

    1999-01-01

    BACKGROUND: Chronic orthostatic intolerance (OI) is characterized by symptoms of inadequate cerebral perfusion with standing, in the absence of significant orthostatic hypotension. A heart rate increase of >/=30 bpm is typical. Possible underlying pathophysiologies include hypovolemia, partial dysautonomia, or a primary hyperadrenergic state. We tested the hypothesis that patients with OI have functional abnormalities in autonomic neurons regulating cardiovascular responses. METHODS AND RESULTS: Thirteen patients with chronic OI and 10 control subjects underwent a battery of autonomic tests. Systemic norepinephrine (NE) kinetics were determined with the patients supine and standing before and after tyramine administration. In addition, baroreflex sensitivity, hemodynamic responses to bolus injections of adrenergic agonists, and intrinsic heart rate were determined. Resting supine NE spillover and clearance were similar in both groups. With standing, patients had a greater decrease in NE clearance than control subjects (55+/-5% versus 30+/-7%, P<0.02). After tyramine, NE spillover did not change significantly in patients but increased 50+/-10% in control subjects (P<0.001). The dose of isoproterenol required to increase heart rate 25 bpm was lower in patients than in control subjects (0.5+/-0.05 versus 1.0+/-0.1 microg, P<0.005), and the dose of phenylephrine required to increase systolic blood pressure 25 mm Hg was lower in patients than control subjects (105+/-11 versus 210+/-12 microg, P<0.001). Baroreflex sensitivity was lower in patients (12+/-1 versus 18+/-2 ms/mm Hg, P<0.02), but the intrinsic heart rate was similar in both groups. CONCLUSIONS: The decreased NE clearance with standing, resistance to the NE-releasing effect of tyramine, and increased sensitivity to adrenergic agonists demonstrate dramatically disordered sympathetic cardiovascular regulation in patients with chronic OI.

  4. Neurotensin releases norepinephrine differentially from perfused hypothalamus of sated and fasted rat

    SciTech Connect

    Lee, T.F.; Rezvani, A.H.; Hepler, J.R.; Myers, R.D.

    1987-01-01

    The central injection of neurotensin (NT) has been reported to attenuate the intake of food in the fasted animal. To determine whether endogenous norepinephrine (NE) is involved in the satiating effect of NT, the in vivo activity of NE in circumscribed sites in the hypothalamus of the unanesthetized rat was examined. Bilateral guide tubes for push-pull perfusion were implanted stereotaxically to rest permanently above one of several intended sites of perfusion, which included the paraventricular nucleus (PVN), ventromedial nucleus (VMN), and the lateral hypothalamic (LH) area. After endogenous stores of NE at a specific hypothalamic locus were radiolabeled by microinjection of 0.02-0.5 ..mu..Ci of (/sup 3/H)NE, an artificial cerebrospinal fluid was perfused at the site at a rate of 20 ..mu..l/min over successive intervals of 5.0 min. When 0.05 or 0.1 ..mu..g/..mu..l NT was added to the perfusate, the peptide served either to enhance or educe the local release of NE at 50% of the sites of perfusion. In these experiments, the circumscribed effect of NT on the characteristics of catecholamine efflux depended entirely on the state of hunger or satiety of the rat. That is, when NT was perfused in the fully satiated rat, NE release was augmented within the PVn or VMN; conversely, NE release was inhibited in the LH. in the animal fasted for 18-22 h, NT exerted an opposite effect on the activity of NE within the same anatomical loci in that the efflux of NE was enhanced in the LH but attenuated or unaffected in the PVN or VMN. Taken together, these observations provide experimental support for the view-point that NT could act as a neuromodulator of the activity of hypothalamic noradrenergic neurons that are thought to play a functional role in the regulation of food intake.

  5. Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor

    NASA Astrophysics Data System (ADS)

    Mphuthi, Ntsoaki G.; Adekunle, Abolanle S.; Ebenso, Eno E.

    2016-06-01

    Glassy carbon electrode (GCE) was modified with metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, and the electrocatalytic properties were studied. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using FTIR, Raman and SEM techniques. The electrodes were characterized using cyclic voltammetry (CV) technique. The electrocatalytic behaviour of the electrode towards epinephrine (EP) and norepinephrine (NE) oxidation was investigated using CV and DPV. Result showed that GCE-MWCNT/Fe3O4/2,3-Nc, GCE-MWCNT/Fe3O429H,31H-Pc, GCE-MWCNT/ZnO/2,3-Nc and GCE-MWCNT/ZnO/29H,31H-Pc electrodes gave enhanced EP and NE current response. Stability study indicated that the four GCE-MWCNT/MO/Pc modified electrodes were stable against electrode fouling effect with the percentage NE current drop of 5.56–5.88% after 20 scans. GCE-MWCNT/Fe3O4/29H,31H-Pc gave the lowest limit of detection (4.6 μM) towards EP while MWCNT/ZnO/29H,31H-Pc gave the lowest limit of detection (1.7 μM) towards NE. The limit of detection and sensitivity of the electrodes compared well with literature. Electrocatalytic oxidation of EP and NE on GCE-MWCNT/MO/Pc electrodes was diffusion controlled with some adsorption of electro-oxidation reaction intermediates products. The electrodes were found to be electrochemically stable, reusable and can be used for the analysis of EP and NE in real life samples.

  6. Clock-Controlled Regulation of the Acute Effects of Norepinephrine on Chick Pineal Melatonin Rhythms.

    PubMed

    Li, Ye; Cassone, Vincent M

    2015-12-01

    The chicken pineal gland synthesizes and releases melatonin rhythmically in light/dark (LD) cycles, with high melatonin levels during the dark phase, and in constant darkness (DD) for several cycles before it gradually damps to arrhythmicity in DD. Daily administration of norepinephrine (NE) in vivo and in vitro prevents the damping and restores the melatonin rhythm. To investigate the role of the circadian clock on melatonin rhythm damping and of its restoration by NE, the effects of NE administration at different phases of the melatonin cycle revealed a robust rhythm in NE sensitivity in which NE efficacy in increasing melatonin amplitude peaked in late subjective night and early subjective day, suggesting a clock underlying NE sensitivity. However, NE itself had no effect on circadian phase or period of the melatonin rhythms. Transcriptional analyses indicated that even though the rhythm of melatonin output damped to arrhythmicity, messenger RNA (mRNA) encoding clock genes gper2, gper3, gBmal1, gclock, gcry1, and gcry2; enzymes associated with melatonin biosynthesis; and enzymes involved in cyclic nucleotide signaling remained robustly rhythmic. Of these, only gADCY1 (adenylate cyclase 1) and gPDE4D (cAMP-specific 3',5'-cyclic phosphodiesterase 4D) were affected by NE administration at the mRNA levels, and only ADCY1 was affected at the protein level. The data strongly suggest that damping of the melatonin rhythm in the chick pineal gland occurs at the posttranscriptional level and that a major role of the clock is to regulate pinealocytes' sensitivity to neuronal input from the brain.

  7. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline.

    PubMed

    Mei, Yufei; Jiang, Chun; Wan, You; Lv, Jihui; Jia, Jianping; Wang, Xiaomin; Yang, Xu; Tong, Zhiqian

    2015-08-01

    A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer's disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging-associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age-related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6-hydroxydopamine (6-OHDA, a NE depletor) can mimic age-related NE deficiency, long-term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age-related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence-accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age-matched, senescence-resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging-associated NE depletion and cognitive decline.

  8. Norepinephrine responses in rat renal and femoral veins are reinforced by vasoconstrictor prostanoids.

    PubMed

    de Souza Rossignoli, Patrícia; Yamamoto, Fernanda Zocatelli; Pereira, Oduvaldo Câmara Marques; Chies, Agnaldo Bruno

    2015-09-01

    Norepinephrine (NE) responses are larger in renal and femoral veins compared to phenylephrine (PE). These differences may be due to the subtypes of adrenoceptor involved in these responses or to the involvement of local modulatory mechanisms. Therefore, the present study investigated in organ bath the adrenoceptor subtypes involved in the NE and PE responses in both renal and femoral veins as well as the influence of local mechanisms related to NO and to prostanoids upon these responses. The obtained data showed that the NE responses in these veins were not significantly modified by the selective inhibition of β1 or β2-adrenoceptors as well as AT1 or AT2 receptors. However, yohimbine reduced the NE Rmax in renal veins and, in parallel, right shifted the NE concentration-response curves in femoral veins. In both veins, prazosin reduced the NE Rmax and the clonidine induced a measurable contraction. The endothelium removal attenuated the NE responses in femoral veins, thereby abolishing the differences of NE and PE responses. Furthermore, the NE responses in renal and femoral veins were attenuated by indomethacin, which suppressed the statistical difference in relation to the PE response. In conclusion, a synergism between α1- and α2-adrenoceptors is essential to assure full NE contractile responses in both renal and femoral veins. Thus, by acting simultaneously in these adrenoceptors, NE induces more pronounced contractile responses, in comparison to PE, not only in renal but also in femoral veins. Moreover, this pronounced NE response in both renal and femoral veins appears to involve endothelium-derived vasoconstrictor prostanoids.

  9. Immunomodulation Mechanism of Antidepressants: Interactions between Serotonin/Norepinephrine Balance and Th1/Th2 Balance

    PubMed Central

    Martino, Matteo; Rocchi, Giulio; Escelsior, Andrea; Fornaro, Michele

    2012-01-01

    Neurotransmitters and hormones regulate major immune functions, including the selection of T helper (Th)1 or Th2 cytokine responses, related to cell-mediated and humoral immunity, respectively. A role of imbalance and dynamic switching of Th1/Th2 system has been proposed, with relative displacement of the immune reserve in relation to complex interaction between Th1/Th2 and neuro-hormonal balance fluctuations, in the pathogenesis of various chronic human diseases, probably also including psychiatric disorders. Components of the stress system such as norepinephrine (NE) and glucocorticoids appear to mediate a Th2 shift, while serotonin (5-HT) and melatonin might mediate a Th1 shift. Some antidepressants would occur affecting these systems, acting on neurotransmitter balance (especially the 5-HT/NE balance) and expression levels of receptor subtypes, which in turn affect cytokine production and relative Th1/Th2 balance. It could be therefore hypothesized that the antidepressant-related increase in NE tone enhances the Th2 response, while the decrease in NE tone or the increase in 5-HT tone enhances the Th1 response. However, the neurotransmitter and Th1/Th2 balance modulation could be relative, aiming to restore physiological levels a previous imbalance in receptor sensitivity and cytokine production. The considerations on neuro-immunomodulation could represent an additional aid in the study of pathophysiology of psychiatric disorders and in the choice of specific antidepressants in specific clusters of symptoms, especially in comorbidity with internal pathologies. Furthermore limited data, reviewed here, have shown the effectiveness of some antidepressants as pure immunomodulators. However, these considerations are tentative and require experimental confirmation or refutation by future studies. PMID:23204981

  10. A kinetic study of the ouabain-induced efflux of norepinephrine from the dog saphenous vein

    SciTech Connect

    Monteiro, J.G. )

    1991-07-01

    Dog saphenous vein strips were incubated with (3H)norepinephrine ((3H)NE), 1.4 microM, after inhibition of the NE-metabolizing enzymes and extraneuronal uptake, and superfused for up to 290 min. From the 70th min onwards the strips were exposed to 10 microM ouabain, some of them being subject to electrical stimulation from the 140th min onwards. Other strips were exposed to either 1, 10 or 100 microM ouabain from the 70th min onwards. The spontaneous efflux of (3H)NE had a long half-time (156 min), and over 90% of the (3H)NE accumulated did not participate in efflux (bound fraction). Ouabain, 10 microM, induced a pronounced increase of the rate of efflux of (3H)NE, which was delayed in its onset and reached a maximum at t = 135 min of superfusion. Increasing the concentration of ouabain decreased both the delay to the beginning of the overflow and the time to maximum efflux and increased the maximum rate of efflux. In Ca(++)-free medium (during the superfusion period), the maximum rate of efflux was lower than in Ca(++)-containing medium, but was attained earlier. The bound fraction amounted to 22% when the efflux was induced by 10 microM ouabain in Ca(++)-containing medium, a value unnaffected by electrical stimulation but reduced markedly by omitting calcium. The results support the view that the efflux of (3H)NE induced by ouabain is delayed and that it is both carrier-mediated and due to exocytosis.

  11. Metabolism of D, L-/sup 3/H-norepinephrine in essential hypertension

    SciTech Connect

    Gitlow, S.; Dziedzic, S.; Dziedzic, L.; Roubein, I.

    1981-01-01

    Defective control of the cardiovascular system by the sympathetic nerves continues to be incriminated as the potential primary physiologic defect in essential hypertension (EH). The need to measure sympathetic tone has progressed from physiologic mensuration by assessment of reflex and pharmacological responses to the recent assay of norepinephrine (NE) and its congeners in both urine and plasma. The way in which the body handles D,L-B-/sup 3/H-NE represents yet another technique by which to evaluate sympathetic function. Previous studies of EH by this method demonstrated more rapid plasma disappearance of /sup 3/H-NE as well as elevated 24 hour tritium accumulation in the urine following D,L-B-/sup 3/H-NE injection. The present study of 7 normotensive subjects and 7 patients with EH was designed to depict more precisely these abnormalities in /sup 3/H-NE-metabolism. Following a one minute injection of 8 micrograms D,L-B-/sup 3/H-NE, (200 microCi) intravenously, the excretion of unlabeled endogenous metabolites and their labeled congeners was assayed. By these means one could estimate catecholamine synthesis, turnover of the labeled pools, and by comparison of relative specific activities of the metabolites, gain some insight into the distribution of the injected material. Alternative catabolic pathways were evaluated by measurement of the excretion of /sup 3/H/sub 2/O. Patients with EH excreted more label per 24 hours, revealed a more rapid decline of /sup 3/H2O excretion and lower specific activity of normetanephrine (NM). These findings are compatible with changes in pool dynamics and distribution of administered label which gave additional support to the concept of adrenergic dysfunction in association with essential hypertension.

  12. Electrophysiological impact of trazodone on the dopamine and norepinephrine systems in the rat brain.

    PubMed

    Ghanbari, Ramez; El Mansari, Mostafa; Blier, Pierre

    2012-07-01

    Previous study has documented the long-term effects of the antidepressant trazodone on the serotonin (5-HT) system. The present work examined the impact of sustained trazodone on ventral tegmental area (VTA) dopamine (DA) and locus ceruleus (LC) norepinephrine (NE) neurons firing activity, and characterized its effects at 5-HT(2C), 5-HT(2A) receptors and α₁- and α₂-adrenoceptors. Electrophysiological recordings were carried out in anesthetized rats. Subcutaneously implanted minipumps delivered vehicle or trazodone (10 mg/kg/day) for 2 or 14 days. Administration of trazodone for 2 and 14 days did not alter the firing activity of DA neurons. Systemic injection of trazodone, however, reversed the inhibitory effect of the 5-HT(2C) receptor agonist Ro 60,0175 on the DA neuronal firing, suggesting an antagonistic action of trazodone at this receptor. Administration of trazodone for 2 days significantly enhanced the NE neurons firing. Despite a return of the NE neurons firing rate to the baseline following 14-day trazodone, the percentage of neurons discharging in burst was increased by this regimen. Administration of trazodone for 14 days enhanced the tonic activation of postsynaptic α₂-adrenoceptors, as indicated by the disinhibitory effect of the α₂-adrenoceptor antagonist idazoxan on hippocampus pyramidal neurons firing. The inhibitory effect of acute trazodone on dorsal raphe (DR) 5-HT neurons firing was shown to be through the 5-HT(1A) receptor. Systemic injection of trazodone reversed the inhibitory action of 5-HT(2A) agonist DOI on the NE neurons firing rate, indicating its antagonistic action at 5-HT(2A) receptors. The enhancement in α₂-adrenergic transmission by trazodone, and its 5-HT(2A) and 5-HT(2C) receptor antagonism may contribute to its therapeutic action in major depression.

  13. FeMoO4 based, enzyme-free electrochemical biosensor for ultrasensitive detection of norepinephrine.

    PubMed

    Samdani, Kunda J; Samdani, Jitendra S; Kim, Nam Hoon; Lee, Joong Hee

    2016-07-15

    Herein, FeMoO4 (FM) nanorods were synthesized by a template-free, facile, hydrothermal method in an aqueous medium. The surface morphology of FeMoO4 was identified with field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). X-ray diffraction (XRD) was performed to identify the crystallographic nature of the as-synthesized FeMoO4. The as-synthesized material was used as an active electrode material for the oxidation of a neurotransmitter (i.e. norepinephrine (NE)) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. FeMoO4 possesses polycrystallanity and bimetallic character, which helps to enhance the performance of the FM/GCE as compared to the GCE. The enhanced performance was also due to the formation of Fe (II)-dioxygen complexes, which catalyze the oxidation of NE. Meticulous observations taken from CV studies proved the diffusion-controlled nature of the reaction with a diffusion coefficient of 1.10×10(-4)cm(2)/s and a standard heterogeneous rate constant of 4.078×10(-3)cm/s. The amperometric response of NE on the FM/GCE showed a linear increase in the current between 5.0×10(-8)M and 2.0×10(-4)M with a detection limit of 3.7×10(-9)M. In the amperometric study, the time required to reach the 98% steady state response, after successive additions of 50nM NE, was less than 3s. The FM/GCE showed good sensitivity, and stability for the determination of NE.

  14. Modulatory effect of endothelin-1 and -3 on neuronal norepinephrine release in the rat posterior hypothalamus.

    PubMed

    Di Nunzio, Andrea S; Legaz, Guillermina; Rodano, Valeria; Bianciotti, Liliana G; Vatta, Marcelo S

    2004-04-15

    Based upon the existence of high density of ET-receptors on catecholaminergic neurons of the hypothalamus, we studied the effects of endothelin-1 (ET-1) and endothelin-3 (ET-3) on neuronal norepinephrine (NE) release in the rat posterior hypothalamus. The intracellular pathways and receptors involved were also investigated. Neuronal NE release was enhanced by ET-1 and ET-3 (10 etaM). The selective antagonists of subtype A and B ET receptors (ETA, ETB) (100 etaM BQ-610 and 100 etaM BQ-788, respectively) abolished the increase induced by ET-1 but not by ET-3. The PLC inhibitor, U73122 (10 microM), abolished ET-1 and ET-3 response. GF-109203X (100 etaM) (PKC inhibitor) blocked the increase in NE release produced by ET-3 and partially blocked ET-1 response. The inositol 1,4,5-trisphosphate-induced calcium release inhibitor, 42 microM 2-APB, inhibited the stimulatory effect induced by ET-3 but not by ET-1. The PKA inhibitor, 500 etaM H-89, blocked the increase in neuronal NE release evoked by ET-1 but not by ET-3. Our results showed that ET-1 as well as ET-3 displayed an excitatory neuromodulatory effect on neuronal NE release in the rat posterior hypothalamus. ET-1 through an atypical ETA or ETB receptor activated the PLC/PKC signalling pathway as well as the cAMP pathway, whereas ET-3 through a non-ETA/non-ETB receptor activated the phosphoinositide pathway. Both ETs would enhance the sympathoexcitatory response elicited by the posterior hypothalamus and thus participate in cardiovascular regulation.

  15. Eudaimonic Well-Being and Tumor Norepinephrine in Epithelial Ovarian Cancer Patients

    PubMed Central

    Davis, Lauren Z.; Slavich, George M.; Thaker, Premal H.; Goodheart, Michael J.; Bender, David; Dahmoush, Laila; Farley, Donna; Markon, Kristian; Penedo, Frank J.; Lubaroff, David M.; Cole, Steve W.; Sood, Anil K.; Lutgendorf, Susan K.

    2015-01-01

    Background The impact of psychological well-being on physiologic processes involved in cancer progression remains unclear. Prior research has implicated adrenergic signaling in tumor growth and metastasis. Given that adrenergic signaling is influenced by both positive and negative factors, we examined how two different aspects of well-being (eudaimonic and positive affect) and psychological distress were associated with tumor norepinephrine (NE) in ovarian cancer patients. Methods Women with suspected ovarian cancer (N=365) completed psychosocial assessments pre-surgery and clinical information was obtained from medical records. Study inclusion was confirmed following histological diagnosis. Tumor NE was measured in frozen tissue samples using HPLC with electrochemical detection. We employed confirmatory factor analysis to model eudaimonic well-being, positive affect, and psychological distress, and structural equation modeling (SEM) to examine associations between these factors and tumor NE. Results Eudaimonic well-being, positive affect, and psychological distress, modeled as distinct but correlated constructs, best fit the data (i.e., compared to unitary or 2-factor models) (RMSEA=.048, CFI=.982, SRMR=.035). SEM analyses that included physical well-being, stage, histology, psychological treatment history, beta-blocker use, and caffeine use as covariates had good model fit (RMSEA=.052, CFI=.955, SRMR=.036) and showed that eudaimonic well-being was related to lower tumor NE (β=−.24, p=.045). In contrast, we found no effects for positive affect or psychological distress. Conclusion Eudaimonic well-being is associated with lower tumor NE, independent of positive affect and psychological distress. Because adrenergic signaling is implicated in tumor progression, increasing eudaimonic well-being may improve both psychological and physiologic resilience in ovarian cancer patients. PMID:26096769

  16. Is elevated norepinephrine an etiological factor in some cases of Parkinson's disease?

    PubMed

    Fitzgerald, Paul J

    2014-04-01

    It is well documented that norepinephrine (NE) releasing neurons in the locus coeruleus, a brainstem nucleus that is a major source of NE for the brain, degenerate during the progression of Parkinson's disease (PD). A number of studies also suggest that, as a result, there is less NE released in the brain during disease progression, which may contribute to the pathophysiology and symptomatology of PD. This paper puts forth the novel hypothesis that NE degeneration in PD is preceded by elevated NE signaling, mainly as a result of genetics, and that this elevation is a major etiological factor in the disease. In this scenario, long-term (if not lifelong) elevated NE signaling could eventually invoke compensatory mechanisms that result in noradrenergic, and possibly dopaminergic, cell death. Several lines of evidence are briefly reviewed on the relationship between NE signaling and PD, including studies of: the level of NE; drugs that increase or decrease NE signaling; the relationship between PD and bipolar disorder, hypertension, and obesity, since the latter three conditions may be associated with increased NE signaling; and the relationship between PD and psychological stress, since stress is associated with increased release of NE. Many of these studies support NE degeneration during the disease, although some are consistent with elevated NE signaling during disease progression. Because there are few data on the state of the NE system prior to disease onset, the central point of this paper that NE signaling is elevated prior to development of PD, remains largely hypothetical. If elevated NE signaling really is an etiological factor in this disease, then early identification of susceptible ind