Science.gov

Sample records for normal ankle joint

  1. Analysis of the Effects of Normal Walking on Ankle Joint Contact Characteristics After Acute Inversion Ankle Sprain.

    PubMed

    Bae, Ji Yong; Park, Kyung Soon; Seon, Jong Keun; Jeon, Insu

    2015-12-01

    To show the causal relationship between normal walking after various lateral ankle ligament (LAL) injuries caused by acute inversion ankle sprains and alterations in ankle joint contact characteristics, finite element simulations of normal walking were carried out using an intact ankle joint model and LAL injury models. A walking experiment using a volunteer with a normal ankle joint was performed to obtain the boundary conditions for the simulations and to support the appropriateness of the simulation results. Contact pressure and strain on the talus articular cartilage and anteroposterior and mediolateral translations of the talus were calculated. Ankles with ruptured anterior talofibular ligaments (ATFLs) had a higher likelihood of experiencing increased ankle joint contact pressures, strains and translations than ATFL-deficient ankles. In particular, ankles with ruptured ATFL + calcaneofibular ligaments and all ruptured ankles had a similar likelihood as the ATFL-ruptured ankles. The push off stance phase was the most likely situation for increased ankle joint contact pressures, strains and translations in LAL-injured ankles.

  2. Total ankle joint replacement.

    PubMed

    2016-02-01

    Ankle arthritis results in a stiff and painful ankle and can be a major cause of disability. For people with end-stage ankle arthritis, arthrodesis (ankle fusion) is effective at reducing pain in the shorter term, but results in a fixed joint, and over time the loss of mobility places stress on other joints in the foot that may lead to arthritis, pain and dysfunction. Another option is to perform a total ankle joint replacement, with the aim of giving the patient a mobile and pain-free ankle. In this article we review the efficacy of this procedure, including how it compares to ankle arthrodesis, and consider the indications and complications.

  3. The Effect of Cryotherapy on the Normal Ankle Joint Position Sense

    PubMed Central

    khanmohammadi, Roya; Someh, Marjan; Ghafarinejad, Farahnaze

    2011-01-01

    Purpose To determine whether a fifteen-minute water immersion treatment affects the normal ankle joint position sense (JPS) at the middle range of dorsiflexion and plantar flexion actively and passively. Methods Thirty healthy female volunteers aged between 18 and 30 years were treated by a 15-minute cryotherapy (6 ± 1°C). The subject's skin temperature over antromedial aspect of dominant ankle was measured by the Mayomed device before, immediate and 15 minutes after water immersion. Ankle JPS was tested trough the pedal goniometer at 3 stages similar to the skin temperature. ANOVA (α = 0.05) was performed on each of variables using SPSS 19.0 software. Results Skin temperature was seen to decrease after water immersion but subjects did not return to pre-test skin temperature after 15 minutes (P<0.001). The research found no significant difference in JPS at middle range of dorsiflexion and plantar flexion actively and passively before and after cryotherapy. Conclusion These findings suggest that 15-minute water immersion at 6°C dose not significantly alter the middle range of plantar flexion/ dorsiflexion JPS at the ankle and is not deleterious to JPS. PMID:22375224

  4. Arthroscopic Capsular Release of the Ankle Joint.

    PubMed

    Lui, Tun Hing

    2016-12-01

    Adhesive capsulitis of the ankle is also known as frozen ankle and results in marked fibrosis and contracture of the ankle capsule. Arthroscopic capsular release is indicated for symptomatic frozen ankle that is resistant to conservative treatment. It is contraindicated for ankle stiffness due to degenerative joint disease, intra-articular malunion, or adhesion of the extensors of the ankle. The procedure consists of endoscopic posterior ankle capsulectomy and arthroscopic anterior ankle capsulotomy. It has the advantages of being minimally invasive surgery and allowing early postoperative vigorous mobilization of the ankle joint.

  5. Osteoligamentous injuries of the medial ankle joint.

    PubMed

    Lötscher, P; Lang, T H; Zwicky, L; Hintermann, B; Knupp, M

    2015-12-01

    Injuries of the ankle joint have a high incidence in daily life and sports, thus, playing an important socioeconomic role. Therefore, proper diagnosis and adequate treatment are mandatory. While most of the ligament injuries around the ankle joint are treated conservatively, great controversy exists on how to treat deltoid ligament injuries in ankle fractures. Missed injuries and inadequate treatment of the medial ankle lead to inferior outcome with instability, progressive deformity, and ankle joint osteoarthritis.

  6. Stresses in the ankle joint and total ankle replacement design.

    PubMed

    Kakkar, Rahul; Siddique, M S

    2011-06-01

    The ankle is a highly congruent joint with a surface area of 11-13 cm(2). Total ankle replacements have been attempted since the early 1970s and design has continually evolved as the early designs were a failure. This was because the stresses involved and the mutiaxial motion of the ankle has not been understood until recently. It has been shown that the talus slides as well as rolls during the ankle arc of motion from plantarflexion to dorsiflexion. Furthermore, the articular surfaces and the calcaneofibular and tibiocalcaneal ligaments have been shown to form a four bar linkage dictating ankle motion. A new design ankle replacement has been suggested recently which allows multiaxial motion at the ankle while maintaining congruency throughout the arc of motion. The early results of this ankle replacement have been encouraging without any reported failures due to mechanical loosening.

  7. Biomechanics of the ankle joint and clinical outcomes of total ankle replacement.

    PubMed

    Michael, Junitha M; Golshani, Ashkahn; Gargac, Shawn; Goswami, Tarun

    2008-10-01

    Until the 1970s ankle arthrodesis was considered to be the "gold-standard" to treat arthritis. But the low fusion rate of ankle arthrodeses along with the inability to achieve normal range of motion led to the growing interest in the development of total ankle replacements. Though the short-term outcomes were good, their long-term outcomes were not as promising. To date, most models do not exactly mimic the anatomical functionality of a natural ankle joint. Therefore, research is being conducted worldwide to either enhance the existing models or develop new models while understanding the intricacies of the joint more precisely. This paper reviews the anatomical and biomechanical aspects of the ankle joint. Also, the evolution and comparison of clinical outcomes of various total ankle replacements are presented.

  8. Does ice immersion influence ankle joint position sense?

    PubMed

    Hopper, D; Whittington, D; Davies, J; Chartier, J D

    1997-01-01

    The purpose of this study was to determine whether a fifteen minute ice immersion treatment influenced the normal ankle joint position sense at 40% and 80% range of inversion and to establish the length of treatment effect through monitoring the rewarming process. Forty nine healthy volunteers between the ages of 17 and 28 were tested. Subjects were screened to exclude those with a history of ankle injuries. The subject's skin temperature over antero-lateral aspect of the ankle was measured using a thermocouple device during the fifteen minutes ice intervention and thirty minutes post-intervention. Testing of ankle joint position sense using the pedal goniometer was performed before and after a clinical application of ice immersion. The testing required the subject to actively reposition their ankle at 40% and 80% of their total range of inversion. The majority of subjects experienced numbness of the foot and ankle by the fifth or sixth minute during ice immersion. One minute after immersion skin temperatures averaged 15 degrees C + 1.7 degrees C. Skin temperature was seen to rise relatively rapidly for the first ten minutes and then slowed considerably. Subjects had not returned to the pre-test skin temperatures by thirty minutes. A significant difference in ankle joint position sense (p < 0.0499) following fifteen minutes of ice immersion was found. However, the magnitude of this difference (0.5 degree) would not be deemed significant in clinical practice. The research found no significant difference in joint position sense between 40% and 80% of the range of inversion both before and after cryotherapy. These findings suggest that the clinical application of cryotherapy is not deleterious to joint position sense and assuming normal joint integrity patients may resume exercise without increased risk of injury.

  9. [Chronic diseases of the ankle joint].

    PubMed

    Rand, T; Trattnig, S; Breitenseher, M; Kreuzer, S; Wagesreither, S; Imhof, H

    1999-01-01

    The etiology of chronic diseases of the ankle joint comprises a wide spectrum including chronic inflammatory processes and chronic degenerative, tumorous and neuropathic processes, as well as some specific syndromes based on chronic changes of the ankle joint. Of the inflammatory processes, chronic juvenile arthritis (JVC) is the most common disease. However, also Reiter disease, psoriasis or chronic monoarthritid diseases such as gout, as well as granulomatous diseases (tuberculosis, sarcoidosis) and fungal infections, may affect the ankle joint in a chronic course. Chronic degenerative changes are usually secondary due to abnormal positioning of the joint constituents or repetitive trauma. Neuropathic changes, as frequently seen in the course of diabetes, present with massive osseous destruction and malposition of the articular constituents. Chronic osseous as well as cartilaginous and synovial changes are seen in hemophilic patients. Chronic traumatic changes are represented by pigmented villonodular synovitis (PVNS), and chondromatosis, both with a predilection for the ankle joint. Due to the possibilities of magnetic resonance imaging (MRI), diagnosis of chronic ankle changes includes chronic ligamentous, tendinous and soft tissue changes. With the use of MRI, specific syndromes can be defined which particularly affect the ankle joint in a chronic way, such as the os trigonum syndrome, the anterolateral impingement syndrome and the sinus tarsi syndrome. Nevertheless, plain film radiographs are still the basic element of any investigation. MRI, however, can be potentially used as a second investigation, saving an unnecessary cascade of investigations with ultrasound and CT. The latter investigations are used only with very specific indications, for instance CT for subtle bone structures and sonography for a limited investigation of tendons or evaluation of fluid. Particularly due to the possibilities of MRI and the development of special gradient-echo imaging

  10. [Lateral instability of the upper ankle joint].

    PubMed

    Harrasser, N; Eichelberg, K; Pohlig, F; Waizy, H; Toepfer, A; von Eisenhart-Rothe, R

    2016-11-01

    Because of their frequency, ankle sprains are of major clinical and economic importance. The simple sprain with uneventful healing has to be distinguished from the potentially complicated sprain which is at risk of transition to chronic ankle instability. Conservative treatment is indicated for the acute, simple ankle sprain without accompanying injuries and also in cases of chronic instability. If conservative treatment fails, good results can be achieved by anatomic ligament reconstruction of the lateral ankle ligaments. Arthroscopic techniques offer the advantage of joint inspection and addressing intra-articular pathologies in combination with ligament repair. Accompanying pathologies must be adequately addressed during ligament repair to avoid persistent ankle discomfort. If syndesmotic insufficiency and tibiofibular instability are suspected, the objective should be early diagnosis with MRI and surgical repair.

  11. [Ankle joint arthritis--etiology, diagnosis and treatment].

    PubMed

    Uri, Ofir; Haim, Amir

    2008-11-01

    Ankle joint arthritis causes functional limitation and affects the quality of life many patients. It follows traumatic injuries, inflammatory joint arthritis, primary osteoarthritis, hemochromatosis and infections. Understanding the unique anatomy and biomechanics of the ankle is important for diagnosis and treatment of ankle joint pathology. The treatment of ankle joint arthritis has advanced considerably in recent years and it is still a surgical challenge. Total ankle replacement seems to be a promising form of treatment, even though current data does not demonstrate advantages over ankle joint arthrodesis.

  12. Osteochondral Allografts in the Ankle Joint

    PubMed Central

    Vannini, Francesca; Buda, Roberto; Ruffilli, Alberto; Cavallo, Marco; Giannini, Sandro

    2013-01-01

    Purpose: The aim of this systematic review is to report about the clinical use of partial and total fresh osteochondral allograft in the ankle joint. The state of the art of allografts with regard to basic science, procurement and storage methods, immunogenicity, generally accepted indications and contraindications, and the rationale of the allografting procedure have been described. Methods: All studies published in PubMed from 2000 to January 2012 addressing fresh osteochondral allograft procedures in the ankle joint were identified, including those that fulfilled the following criteria: (a) level I-IV evidence addressing the areas of interest outlined above; (b) measures of functional, clinical, or imaging outcome; and (c) outcome related to ankle cartilage lesions or ankle arthritis treated by allografts. Results: The analysis showed a progressively increasing number of articles from 2000. The number of selected articles was 14; 9 of those focused on limited dimension allografts (plugs, partial) and 5 on bipolar fresh osteochondral allografts. The evaluation of evidence level showed 14 case series and no randomized studies. Conclusions: Fresh osteochondral allografts are now a versatile and suitable option for the treatment of different degrees of osteochondral disease in the ankle joint and may even be used as total joint replacement. Fresh osteochondral allografts used for total joint replacement are still experimental and might be considered as a salvage procedure in otherwise unsolvable situations. A proper selection of the patients is therefore a key point. Moreover, the patients should be adequately informed about the possible risks, benefits, and alternatives to the allograft procedure. PMID:26069666

  13. Effects of ankle joint cooling on peroneal short latency response.

    PubMed

    Hopkins, J Ty; Hunter, Iain; McLoda, Todd

    2006-01-01

    While cryotherapy has direct physiological effects on contractile tissues, the extent to which joint cooling affects the neuromuscular system is not well understood. The purpose of the study was to detect changes in ankle dynamic restraint (peroneal short latency response and muscle activity amplitude) during inversion perturbation following ankle joint cryotherapy. A 2x3 factorial design was used to compare reaction time and EMG amplitude data of treatment conditions (cryotherapy and control) across time (pre-treatment, post-treatment, and 30 min post-treatment). Thirteen healthy volunteers (age 23 ± 4 yrs, ht 1.76 ± 0.09 m, mass 78.8 ± 16.6 kg), with no history of lower extremity joint injury participated in this study. Surface EMG was collected from the peroneus longus (PL) of the dominant leg during an ankle inversion perturbation triggered while walking. Subjects walked the length of a 6.1 m runway 30 times. A trap door mechanism, inducing inversion perturbation, was released at heel contact during six randomly selected trials for each leg. Following baseline measurements, a 1.5 L bag of crushed ice was applied to the lateral ankle of subjects in the treatment group with an elastic wrap. A bag similar in weight and consistency was applied to the lateral ankle of subjects in the control group. A repeated measures ANOVA was used to compare treatment conditions across time (p < 0.05). Maximum inversion range of motion was 28.4 ± 1.8° for all subjects. No overall condition by time difference was detected (p > 0.05) for PL reaction time. Average RMS EMG, normalized to an isometric reference position, increased in the cryotherapy group at the 30 min post-treatment interval relative to the control group (p < 0.05). Joint cooling does not result in deficiencies in reaction time or immediate muscle activation following inversion perturbation compared to a control. Key PointsJoint cooling is used as a treatment intervention prior to activity. Whether ankle cooling

  14. Ankle and hip postural strategies defined by joint torques

    NASA Technical Reports Server (NTRS)

    Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control

  15. Bone alterations are associated with ankle osteoarthritis joint pain

    PubMed Central

    Nakamura, Yukio; Uchiyama, Shigeharu; Kamimura, Mikio; Komatsu, Masatoshi; Ikegami, Shota; Kato, Hiroyuki

    2016-01-01

    The etiology of ankle osteoarthritis (OA) is largely unknown. We analyzed 24 ankle OA of 21 patients diagnosed by plain radiographs using magnetic resonance imaging (MRI). Ankle joint pain disappeared in 22 out of 24 joints by conservative treatment. MRI bone signal changes in and around the ankle joints were observed in 22 of 24 joints. Bone signal changes along the joint line were seen in 10 of 11 joints as a Kellgren-Lawrence (KL) grade of II to IV. Such signal changes were witnessed in only 4 of 13 joints with KL grade 0 or I. In the talocrural joint, bone alterations occurred in both tibia and talus bones through the joint line in cases of KL grade III or IV, while focal bone alterations were present in the talus only in KL grade I or II cases. Sixteen of 24 joints exhibited intraosseous bone signal changes, which tended to correspond to joint pain of any ankle OA stage. Our results suggest that bone alterations around the ankle joint might be one of the etiologies of OA and associated with ankle joint pain. PMID:26776564

  16. [Ankle joint prosthesis for bone defects].

    PubMed

    Lampert, C

    2011-11-01

    Large defects of the talus, i.e. due to tumors, large areas of osteolysis in total ankle replacement (TAR) and posttraumatic talus body necrosis are difficult to manage. The gold standard in these circumstances is still tibiocalcaneal arthrodesis with all the negative aspects of a completely rigid hindfoot. We started 10 years ago to replace the talus by a custom-made, all cobalt-chrome implant (laser sintering). The first patient with a giant cell tumor did very well but the following patients showed all subsidence of the metal talus into the tibia due to missing bony edges. Therefore, we constructed a custom-made talus (mirrored from the healthy side) and combined it with a well functioning total ankle prosthesis (Hintegra). So far we have implanted this custom-made implant into 3 patients: the first had a chondrosarcoma of the talus (1 year follow-up), the second had massive osteolysis/necrosis of unknown origin (6 months follow-up) and the third massive osteolysis following a correct TAR (2 months follow-up). The results are very encouraging as all of the patients are practically pain free and have a good range of movement (ROM): D-P flexion 15°-0-20° but less motion in the lower ankle joint: ROM P-S 5°-0-5°. No subsidence was detected in the tibia or the calcaneus. The custom-made talus combined with the Hintegra total ankle replacement will probably be an interesting alternative to a tibiocalcaneal arthrodesis in selected cases with massive defects of the talus.

  17. [Advances on biomechanics and kinematics of sprain of ankle joint].

    PubMed

    Zhao, Yong; Wang, Gang

    2015-04-01

    Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint.

  18. Biomechanical changes at the ankle joint after stroke.

    PubMed Central

    Thilmann, A F; Fellows, S J; Ross, H F

    1991-01-01

    The resistance of the relaxed ankle to slow displacement over the joint movement range was measured on both sides of a group of hemiparetic stroke patients, in whom spasticity had been established for at least one year and who showed no clinical signs of contractures. The ankle joints of the age-matched normal subjects were flexible over most of the movement range, showing dramatically increasing stiffness only when the foot was dorsiflexed beyond 70 degrees, with a neutral range between 90-100 degrees, and a less dramatic increase in stiffness during plantarflexion. Hemiparetic patients showed identical curves to the normal subjects on the "healthy" side, ipsilateral to the causative cerebral lesion, but were significantly stiffer in dorsiflexion on the contralateral side, without change in the minimum stiffness range or during plantarflexion. Therefore significant changes in passive biomechanical properties occur at the affected ankle of hemiparetic subjects, predominantly as the result of a loss of compliance in the Achilles tendon, although an increase in the passive stiffness of the triceps surae may also occur. The contribution of these changes to the locomotor disability of hemiparetic patients is discussed. PMID:2019838

  19. Test-Retest Reliability of Sudden Ankle Inversion Measurements in Subjects With Healthy Ankle Joints

    PubMed Central

    Eechaute, Christophe; Vaes, Peter; Duquet, William; Van Gheluwe, Bart

    2007-01-01

    Context: Sudden ankle inversion tests have been used to investigate whether the onset of peroneal muscle activity is delayed in patients with chronically unstable ankle joints. Before interpreting test results of latency times in patients with chronic ankle instability and healthy subjects, the reliability of these measures must be first demonstrated. Objective: To investigate the test-retest reliability of variables measured during a sudden ankle inversion movement in standing subjects with healthy ankle joints. Design: Validation study. Setting: Research laboratory. Patients or Other Participants: 15 subjects with healthy ankle joints (30 ankles). Intervention(s): Subjects stood on an ankle inversion platform with both feet tightly fixed to independently moveable trapdoors. An unexpected sudden ankle inversion of 50° was imposed. Main Outcome Measure(s): We measured latency and motor response times and electromechanical delay of the peroneus longus muscle, along with the time and angular position of the first and second decelerating moments, the mean and maximum inversion speed, and the total inversion time. Correlation coefficients and standard error of measurements were calculated. Results: Intraclass correlation coefficients ranged from 0.17 for the electromechanical delay of the peroneus longus muscle (standard error of measurement = 2.7 milliseconds) to 0.89 for the maximum inversion speed (standard error of measurement = 34.8 milliseconds). Conclusions: The reliability of the latency and motor response times of the peroneus longus muscle, the time of the first and second decelerating moments, and the mean and maximum inversion speed was acceptable in subjects with healthy ankle joints and supports the investigation of the reliability of these measures in subjects with chronic ankle instability. The lower reliability of the electromechanical delay of the peroneus longus muscle and the angular positions of both decelerating moments calls the use of these

  20. Effects of deep brain stimulation and medication on strength, bradykinesia, and electromyographic patterns of the ankle joint in Parkinson's disease.

    PubMed

    Vaillancourt, David E; Prodoehl, Janey; Sturman, Molly M; Bakay, Roy A E; Metman, Leo Verhagen; Corcos, Daniel M

    2006-01-01

    We investigated the control of movement in 12 patients with Parkinson's disease (PD) after they received surgically implanted high-frequency stimulating electrodes in the subthalamic nucleus (STN). The experiment studied ankle strength, movement velocity, and the associated electromyographic patterns in PD patients, six of whom had tremor at the ankle. The patients were studied off treatment, ON STN deep brain stimulation (DBS), on medication, and on medication plus STN DBS. Twelve matched control subjects were also examined. Medication alone and STN DBS alone increased patients' ankle strength, ankle velocity, agonist muscle burst amplitude, and agonist burst duration, while reducing the number of agonist bursts during movement. These findings were similar for PD patients with and without tremor. The combination of medication plus STN DBS normalized maximal strength at the ankle joint, but ankle movement velocity and electromyographic patterns were not normalized. The findings are the first to demonstrate that STN DBS and medication increase strength and movement velocity at the ankle joint.

  1. Compensatory strategies during walking in response to excessive muscle co-contraction at the ankle joint.

    PubMed

    Wang, Ruoli; Gutierrez-Farewik, Elena M

    2014-03-01

    Excessive co-contraction causes inefficient or abnormal movement in several neuromuscular pathologies. How synergistic muscles spanning the ankle, knee and hip adapt to co-contraction of ankle muscles is not well understood. This study aimed to identify the compensation strategies required to retain normal walking with excessive antagonistic ankle muscle co-contraction. Muscle-actuated simulations of normal walking were performed to quantify compensatory mechanisms of ankle and knee muscles during stance in the presence of normal, medium and high levels of co-contraction of antagonistic pairs gastrocnemius+tibialis anterior and soleus+tibialis anterior. The study showed that if co-contraction increases, the synergistic ankle muscles can compensate; with gastrocmemius+tibialis anterior co-contraction, the soleus will increase its contribution to ankle plantarflexion acceleration. At the knee, however, almost all muscles spanning the knee and hip are involved in compensation. We also found that ankle and knee muscles alone can provide sufficient compensation at the ankle joint, but hip muscles must be involved to generate sufficient knee moment. Our findings imply that subjects with a rather high level of dorsiflexor+plantarflexor co-contraction can still perform normal walking. This also suggests that capacity of other lower limb muscles to compensate is important to retain normal walking in co-contracted persons. The compensatory mechanisms can be useful in clinical interpretation of motion analyses, when secondary muscle co-contraction or other deficits may present simultaneously in subjects with motion disorders.

  2. Treatment of anterolateral impingements of the ankle joint by arthroscopy.

    PubMed

    Hassan, Al-Husseiny Moustafa

    2007-09-01

    Impingement syndromes of the ankle joint are among the most common intraarticular ankle lesions. Soft tissue impingement lesions of the ankle usually occur as a result of synovial, or capsular irritation secondary to traumatic injuries, usually ankle sprains, leading to chronic ankle pain. The aim of this prospective study was to evaluate arthroscopic debridement of an anterolateral soft tissue impingement of the ankle. During the period between October 2000 and February 2004, 23 patients with residual complaints after an ankle sprain were diagnosed as anterolateral impingement of the ankle, and were treated by arthroscopic debridement. At a minimum of 6 months follow up, patients were asked to complete an American orthopaedic foot and ankle society (AOFAS) ankle and hind foot score. The average follow-up was 25 months (range 12-38). The average pre-operative patient assessed AOFAS score was 34 (range 4-57). At the end of follow-up the mean AOFAS score was 89 (range 60-100). In terms of patient satisfaction 22 patients said they would accept the same arthroscopic procedure again for the same complaints. At the end of follow-up, 7 patients had excellent results, and 14 patients had good results while two patients had fair results. We believe that arthroscopic debridement of the anterolateral impingement soft tissues are a good, and effective method of treatment.

  3. Dynamic high-resolution US of ankle and midfoot ligaments: normal anatomic structure and imaging technique.

    PubMed

    Sconfienza, Luca Maria; Orlandi, Davide; Lacelli, Francesca; Serafini, Giovanni; Silvestri, Enzo

    2015-01-01

    The ankle is the most frequently injured major joint in the body, and ankle sprains are frequently encountered in individuals playing football, basketball, and other team sports, in addition to occurring in the general population. Imaging plays a crucial role in the evaluation of ankle ligaments. Magnetic resonance imaging has been proven to provide excellent evaluation of ligaments around the ankle, with the ability to show associated intraarticular abnormalities, joint effusion, and bone marrow edema. Ultrasonography (US) performed with high-resolution broadband linear-array probes has become increasingly important in the assessment of ligaments around the ankle because it is low cost, fast, readily available, and free of ionizing radiation. US can provide a detailed depiction of normal anatomic structures and is effective for evaluating ligament integrity. In addition, US allows the performance of dynamic maneuvers, which may contribute to increased visibility of normal ligaments and improved detection of tears. In this article, the authors describe the US techniques for evaluation of the ankle and midfoot ligaments and include a brief review of the literature related to their basic anatomic structures and US of these structures. Short video clips showing dynamic maneuvers and dynamic real-time US of ankle and midfoot structures and their principal pathologic patterns are included as supplemental material. Use of a standardized imaging technique may help reduce the intrinsic operator dependence of US. Online supplemental material is available for this article.

  4. Ankle pain

    MedlinePlus

    Pain - ankle ... Ankle pain is often due to an ankle sprain. An ankle sprain is an injury to the ligaments, which ... the joint. In addition to ankle sprains, ankle pain can be caused by: Damage or swelling of ...

  5. In vitro measurement of intraarticular pressure in the ankle joint.

    PubMed

    Suckel, Andreas; Muller, Otto; Wachter, Nikolaus; Kluba, Torsten

    2010-05-01

    Ankle joint affections and injuries are common problems in sports traumatology and in the daily routine of arthroscopic surgeons. However, there is little knowledge regarding intraarticular loads. Pressures on the ankle were determined in a dynamic model on 8 cadaver specimens, applying forces to tendons of the foot over the stance phase under vertical loading. A characteristic course of loading in the tibiotalar joint with a rapid increase upon heel contact was observed. It increased gradually to reach a maximum after 70% of the stance phase, during the push-off phase. The major torque in the ankle joint is located anterolaterally. A dynamic loading curve of the ankle joint can be demonstrated. These observations explain phenomena such as the appearance of osteophytes on the anterior tibia in the case of ankle osteoarthritis and the relatively low incidence of posterior tibial edge fragments in the case of trimalleolar ankle fracture. Furthermore, the medial side of the talus is less loaded compared to the lateral side, which appears relevant to the treatment of osteochondrosis dissecans.

  6. [Revision arthroplasty of the ankle joint].

    PubMed

    Hintermann, B; Barg, A; Knupp, M

    2011-11-01

    In the last 20 years total ankle replacement has become a viable alternative to arthrodesis for end-stage osteoarthritis of the ankle. Numerous ankle prosthesis designs have appeared on the market in the past and attracted by the encouraging intermediate results reported in the literature, many surgeons have started to perform this procedure. With increased availability on the market the indications for total ankle replacement have also increased in recent years. In particular, total ankle replacement may now be considered even in younger patients. Therefore, despite progress in total ankle arthroplasty the number of failures may increase. Up to now, arthrodesis was considered to be the gold standard for salvage of failed ankle prostheses. Because of extensive bone loss on the talar side, in most instances tibiocalcaneal fusion is the only reliable solution. An alternative to such extended hindfoot fusions would be revision arthroplasty. To date, however, there are no reported results of revision arthroplasty for salvage of a failed ankle replacement.Based on our experience prosthetic components with a flat undersurface are most likely to be able to find solid support on remaining bone stock. The first 83 cases (79 patients, 46 males, 33 females, average age 58.9 years, range 30.6-80.7 years) with a average follow-up of 5.4 years (range 2-11 years) showed excellent to good results in 69 cases (83%), a satisfactory result in 12 cases (15%) and a fair result in 2 cases (2%) and 47 patients (56%) were pain free. Primary loosening was noted in three cases and of these two cases were successfully revised by another total ankle replacement and in one case with arthrodesis. Another case with hematogenous infection was also revised by arthrodesis. At the last follow-up control two components were considered to be loose and the overall loosening rate was thus 6%.This series has proven that revision arthroplasty can be a promising option for patients with failed total

  7. Finite element stress analysis of some ankle joint prostheses.

    PubMed

    Falsig, J; Hvid, I; Jensen, N C

    1986-05-01

    A three-dimensional finite element stress analysis was employed to calculate stresses in a distal tibia modelled with three simple total ankle joint replacement tibial components. The bone was modelled as a composite structure consisting of cortical and trabecular bone in which the trabecular bone was either homogeneous with a constant modulus of elasticity or heterogenous with experimentally determined heterogeneity. The results were sensitive to variations in trabecular bone material property distributions, with lower stresses being calculated in the heterogeneous model. An anterolateral application of load, which proved the least favourable, was used in comparing the prosthetic variants. Normal and shear stresses at the trabecular bone-cement interface and supporting trabecular bone were slightly reduced by addition of metal backing to the polyethylene articular surface, and a further reduction to very low values was obtained by addition of a long intramedullary peg bypassing stresses to the cortical bone.

  8. Supramalleolar osteotomies for degenerative joint disease of the ankle joint: indication, technique and results.

    PubMed

    Barg, Alexej; Pagenstert, Geert I; Horisberger, Monika; Paul, Jochen; Gloyer, Marcel; Henninger, Heath B; Valderrabano, Victor

    2013-09-01

    Patients with varus or valgus hindfoot deformities usually present with asymmetric ankle osteoarthritis. In-vitro biomechanical studies have shown that varus or valgus hindfoot deformity may lead to altered load distribution in the tibiotalar joint which may result in medial (varus) or lateral (valgus) tibiotalar joint degeneration in the short or medium term. The treatment of asymmetric ankle osteoarthritis remains challenging, because more than half of the tibiotalar joint surface is usually preserved. Therefore, joint-sacrificing procedures like total ankle replacement or ankle arthrodesis may not be the most appropriate treatment options. The shortand midterm results following realignment surgery, are very promising with substantial pain relief and functional improvement observed post-operatively. In this review article we describe the indications, surgical techniques, and results from of realignment surgery of the ankle joint in the current literature.

  9. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness

    NASA Astrophysics Data System (ADS)

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  10. Effects of the application of ankle functional rehabilitation exercise on the ankle joint functional movement screen and isokinetic muscular function in patients with chronic ankle sprain

    PubMed Central

    Ju, Sung-Bum; Park, Gi Duck

    2017-01-01

    [Purpose] This study was conducted to investigate the effects of ankle functional rehabilitation exercise on ankle joint functional movement screen results and isokinetic muscular function in patients with chronic ankle sprain patients. [Subjects and Methods] In this study, 16 patients with chronic ankle sprain were randomized to an ankle functional rehabilitation exercise group (n=8) and a control group (n=8). The ankle functional rehabilitation exercise centered on a proprioceptive sense exercise program, which was applied 12 times for 2 weeks. To verify changes after the application, ankle joint functional movement screen scores and isokinetic muscular function were measured and analyzed. [Results] The ankle functional rehabilitation exercise group showed significant improvements in all items of the ankle joint functional movement screen and in isokinetic muscular function after the exercise, whereas the control group showed no difference after the application. [Conclusion] The ankle functional rehabilitation exercise program can be effectively applied in patients with chronic ankle sprain for the improvement of ankle joint functional movement screen score and isokinetic muscular function. PMID:28265157

  11. Effects of the application of ankle functional rehabilitation exercise on the ankle joint functional movement screen and isokinetic muscular function in patients with chronic ankle sprain.

    PubMed

    Ju, Sung-Bum; Park, Gi Duck

    2017-02-01

    [Purpose] This study was conducted to investigate the effects of ankle functional rehabilitation exercise on ankle joint functional movement screen results and isokinetic muscular function in patients with chronic ankle sprain patients. [Subjects and Methods] In this study, 16 patients with chronic ankle sprain were randomized to an ankle functional rehabilitation exercise group (n=8) and a control group (n=8). The ankle functional rehabilitation exercise centered on a proprioceptive sense exercise program, which was applied 12 times for 2 weeks. To verify changes after the application, ankle joint functional movement screen scores and isokinetic muscular function were measured and analyzed. [Results] The ankle functional rehabilitation exercise group showed significant improvements in all items of the ankle joint functional movement screen and in isokinetic muscular function after the exercise, whereas the control group showed no difference after the application. [Conclusion] The ankle functional rehabilitation exercise program can be effectively applied in patients with chronic ankle sprain for the improvement of ankle joint functional movement screen score and isokinetic muscular function.

  12. Reliability of metatarsophalangeal and ankle joint torque measurements by an innovative device.

    PubMed

    Man, Hok-Sum; Leung, Aaron Kam-Lun; Cheung, Jason Tak-Man; Sterzing, Thorsten

    2016-07-01

    The toe flexor muscles maintain body balance during standing and provide push-off force during walking, running, and jumping. Additionally, they are important contributing structures to maintain normal foot function. Thus, weakness of these muscles may cause poor balance, inefficient locomotion and foot deformities. The quantification of metatarsophalangeal joint (MPJ) stiffness is valuable as it is considered as a confounding factor in toe flexor muscles function. MPJ and ankle joint stiffness measurement is still largely depended on manual skills as current devices do not have good control on alignment, angular joint speed and displacement during measurement. Therefore, this study introduces an innovative dynamometer and protocol procedures for MPJ and ankle Joint torque measurement with precise and reliable foot alignment, angular joint speed and displacement control. Within-day and between-day test-retest experiments on MPJ and ankle joint torque measurement were conducted on ten and nine healthy male subjects respectively. The mean peak torques of MPJ and ankle joint of between-day and within-day measurement were 1.50±0.38Nm/deg and 1.19±0.34Nm/deg. The corresponding torques of the ankle joint were 8.24±2.20Nm/deg and 7.90±3.18Nm/deg respectively. Intraclass-correlation coefficients (ICC) of averaged peak torque of both joints of between-day and within-day test-retest experiments were ranging from 0.91 to 0.96, indicating the innovative device is systematic and reliable for the measurements and can be used for multiple scientific and clinical purposes.

  13. Engineering considerations in the design of an ankle joint.

    PubMed

    Kempson, G E; Freeman, M A; Tuke, M A

    1975-05-01

    A prothesis has been designed to replace the articulating surfaces of the human ankle joint. The prothesis is in two parts, each forming a segment of a right circular cylinder with a single axis of rotation. The concave tibial component is manufactured from ultra-high molecular weight polyethylene and the talar component is manufactured from medical grade stainless steel. It is likely, however, that the talar component will be commercially manufactured from cobalt chrome alloy (Vitallium or Vinertia). The two components are secured to the cancellous bone by polymethylmethacrylate bone cement and laboratory tests have indicated that the bond should be strong enough to withstand the loads encountered at the ankle joint in vivo. The tests have also shown that the stability and strength of the ankle are not seriously reduced by implantation of the prosthesis. Laboratory wear tests and clinical experience over the last two years encourage optimism over the long term performance of the prothesis.

  14. Normal Variants: Accessory Muscles About the Ankle.

    PubMed

    Cheung, Yvonne

    2017-02-01

    Accessory muscles around the ankle are commonly encountered as incidental findings on cross-sectional imaging. Mostly asymptomatic, accessory muscles sometimes mimic mass lesions. They have been implicated as the cause of tarsal tunnel syndrome, impingement of surrounding structures, and chronic pain. Distinguishing these muscles can be challenging, because some travel along a similar path. This article describes these accessory muscles in detail, including their relationships to the aponeurosis of the lower leg. An imaging algorithm is proposed to aid in identification of these muscles, providing a valuable tool in diagnostic accuracy and subsequent patient management.

  15. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace...

  16. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace...

  17. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace...

  18. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace...

  19. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an...

  20. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ankle joint metal/polymer non-constrained cemented... metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non... December 26, 1996 for any ankle joint metal/polymer non-constrained cemented prosthesis that was...

  1. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ankle joint metal/polymer non-constrained cemented... metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non... December 26, 1996 for any ankle joint metal/polymer non-constrained cemented prosthesis that was...

  2. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ankle joint metal/polymer non-constrained cemented... metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non... December 26, 1996 for any ankle joint metal/polymer non-constrained cemented prosthesis that was...

  3. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an...

  4. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an...

  5. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ankle joint metal/polymer non-constrained cemented... metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non... December 26, 1996 for any ankle joint metal/polymer non-constrained cemented prosthesis that was...

  6. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an...

  7. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer non-constrained cemented... metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non... December 26, 1996 for any ankle joint metal/polymer non-constrained cemented prosthesis that was...

  8. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an...

  9. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace...

  10. [Treatment of lateral ankle joint instability. Open or arthroscopic?].

    PubMed

    Galla, M

    2016-02-01

    Chronic ankle joint instability often necessitates operative treatment. Operative treatment methods are classified into non-anatomical tenodesis, anatomical reconstruction and direct repair. In addition to open approaches, arthroscopic techniques are increasingly becoming established. This article describes the various operative treatment procedures, their advantages and disadvantages and in particular the arthroscopic feasibility.

  11. [The reorientational rearthrodesis of the upper ankle joint following failed arthrodesis].

    PubMed

    Zwipp, H; Grass, R; Rammelt, S

    2005-12-01

    There are three important principles for the correction of nonunion and/or malunion of the ankle joint: (1) reorientation back to anatomic shape and to the normal biomechanical axis of the ankle and foot; (2) respect for the biology of bone by resecting all sclerotic bone and/or transplantation of autogenous bone graft; and (3) achievement of optimal biomechanical stability by using the four-screw technique, a limited-contact dynamic-compression plate or a blade plate. CT scanning is the most reliable method for detecting nonunion of the ankle joint after arthrodesis. According to Saltzman, in order to understand the pathology of malunions and nonunions and to plan their correction, weight-bearing anteroposterior radiographs with a 20 degrees internal rotation of the feet, precise lateral views, and rear views of both sides are highly recommended.

  12. Effect of ankle proprioceptive exercise on static and dynamic balance in normal adults

    PubMed Central

    Yong, Min-Sik; Lee, Yun-Seob

    2017-01-01

    [Purpose] The present study was conducted to investigate whether ankle proprioceptive exercise affects static and dynamic balance in normal adults. [Subjects and Methods] Twenty-eight normal adults were recruited to measure their static and dynamic balancing before and after the proprioceptive exercise. A subject stood with bare feet on the round supporting platform of the device for measuring balance, and the investigator entered the age and the height of the subjects and set his/her feet on the central point of the monitor screen. Training of ankle proprioceptive sense for the movements of plantar-flexion and dorsiflexion was performed. In the training of joint position sense in plantar-flexion and dorsiflexion, the plantar-flexion and the dorsiflexion were set as 15°, respectively. [Results] The static balancing did not show significant differences in average, while the dynamic balancing showed significant differences. [Conclusion] Ankle proprioceptive exercise can affect dynamic balance. PMID:28265149

  13. [Lateral ligament injuries of the ankle joint].

    PubMed

    Walther, M; Kriegelstein, S; Altenberger, S; Volkering, C; Röser, A; Wölfel, R

    2013-09-01

    Lateral ligament injuries are the most common sports injury and have a high incidence even in non-sportive activities. Although lateral ligament injuries are very common there is still a controversial debate on the best management. The diagnosis is based on clinical examination and X-ray images help to rule out fractures. Further imaging, especially magnetic resonance imaging (MRI) is used to diagnose associated injuries. According to the recommendations of the various scientific societies the primary therapy of lateral ligament injuries is conservative. Chronic ankle instability develops in 10-20 % of patients and the instability can be a result of sensomotoric deficits or insufficient healing of the lateral ligament complex. If the patient does not respond to an intensive rehabilitation program an operative reconstruction of the lateral ligaments has to be considered. Most of the procedures currently performed are anatomical reconstructions due to better long-term results compared to tenodesis procedures.

  14. [Arthrodesis versus total joint replacement of the ankle].

    PubMed

    Mittlmeier, T

    2013-06-01

    In general, for the treatment of end-stage osteoarthritis of the ankle joint arthrodesis is considered to be the gold standard based on its versatility and eligibility for numerous indications. Nowadays, total ankle arthroplasty represents a viable alternative to ankle arthrodesis taking into account distinct premises as both procedures provide a calculable reduction of the preoperative pain level and a comparable functional gain. Furthermore, current 10-year-survival rates of total ankle replacement are reported to range between 76 % and 89 %. Revision rates of up to 10 % for both techniques have been reported with manifest differences within the respective spectrum of complications. Due to the fact that more than two thirds of patients suffer from post-traumatic osteoarthritis with a relatively low average of age concomitant malalignment, soft tissue damage or instability may frequently occur. A restoration of anatomic axes and an adequate centering of the talus under the tibia appear to be crucial for the outcome as well as an adequate soft tissue balancing, in particular in total ankle replacement. Thus, the selection of the correct indication and the right choice of treatment on the basis of complete preoperative diagnostics considering necessary additive surgical measures are of paramount importance for the final outcome.

  15. Long-term neuromuscular training and ankle joint position sense.

    PubMed

    Kynsburg, A; Pánics, G; Halasi, T

    2010-06-01

    Preventive effect of proprioceptive training is proven by decreasing injury incidence, but its proprioceptive mechanism is not. Major hypothesis: the training has a positive long-term effect on ankle joint position sense in athletes of a high-risk sport (handball). Ten elite-level female handball-players represented the intervention group (training-group), 10 healthy athletes of other sports formed the control-group. Proprioceptive training was incorporated into the regular training regimen of the training-group. Ankle joint position sense function was measured with the "slope-box" test, first described by Robbins et al. Testing was performed one day before the intervention and 20 months later. Mean absolute estimate errors were processed for statistical analysis. Proprioceptive sensory function improved regarding all four directions with a high significance (p<0.0001; avg. mean estimate error improvement: 1.77 degrees). This was also highly significant (p< or =0.0002) in each single directions, with avg. mean estimate error improvement between 1.59 degrees (posterior) and 2.03 degrees (anterior). Mean absolute estimate errors at follow-up (2.24 degrees +/-0.88 degrees) were significantly lower than in uninjured controls (3.29 degrees +/-1.15 degrees) (p<0.0001). Long-term neuromuscular training has improved ankle joint position sense function in the investigated athletes. This joint position sense improvement can be one of the explanations for injury rate reduction effect of neuromuscular training.

  16. Dynamic Postural-Stability Deficits After Cryotherapy to the Ankle Joint

    PubMed Central

    Fullam, Karl; Caulfield, Brian; Coughlan, Garrett F.; McGroarty, Mark; Delahunt, Eamonn

    2015-01-01

    Context  Decreased postural stability is a primary risk factor for lower limb musculoskeletal injuries. During athletic competitions, cryotherapy may be applied during short breaks in play or during half-time; however, its effects on postural stability remain unclear. Objective  To investigate the acute effects of a 15-minute ankle-joint cryotherapy application on dynamic postural stability. Design  Controlled laboratory study. Setting  University biomechanics laboratory. Patients or Other Participants  A total of 29 elite-level collegiate male field-sport athletes (age = 20.8 ± 1.12 years, height = 1.80 ± 0.06 m, mass = 81.89 ± 8.59 kg) participated. Intervention(s)  Participants were tested on the anterior (ANT), posterolateral (PL), and posteromedial (PM) reach directions of the Star Excursion Balance Test before and after a 15-minute ankle-joint cryotherapy application. Main Outcome Measure(s)  Normalized reach distances; sagittal-plane kinematics of the hip, knee, and ankle joints; and associated mean velocity of the center-of-pressure path during performance of the ANT, PL, and PM reach directions of the Star Excursion Balance Test. Results  We observed a decrease in reach-distance scores for the ANT, PL, and PM reach directions from precryotherapy to postcryotherapy (P < .05). No differences were observed in hip-, knee-, or ankle-joint sagittal-plane kinematics (P > .05). We noted a decrease in mean velocity of the center-of-pressure path from precryotherapy to postcryotherapy (P < .05) in all reach directions. Conclusions  Dynamic postural stability was adversely affected immediately after cryotherapy to the ankle joint. PMID:26285088

  17. Biomechanics of the natural, arthritic, and replaced human ankle joint

    PubMed Central

    2014-01-01

    The human ankle joint complex plays a fundamental role in gait and other activities of daily living. At the same time, it is a very complicated anatomical system but the large literature of experimental and modelling studies has not fully described the coupled joint motion, position and orientation of the joint axis of rotation, stress and strain in the ligaments and their role in guiding and stabilizing joint motion, conformity and congruence of the articular surfaces, patterns of contact at the articular surfaces, patterns of rolling and sliding at the joint surfaces, and muscle lever arm lengths. The present review article addresses these issues as described in the literature, reporting the most recent relevant findings. PMID:24499639

  18. A novel ultrasound technique for detection of osteochondral defects in the ankle joint: a parametric and feasibility study.

    PubMed

    Sarkalkan, Nazli; Loeve, Arjo J; van Dongen, Koen W A; Tuijthof, Gabrielle J M; Zadpoor, Amir A

    2014-12-24

    (Osteo)chondral defects (OCDs) in the ankle are currently diagnosed with modalities that are not convenient to use in long-term follow-ups. Ultrasound (US) imaging, which is a cost-effective and non-invasive alternative, has limited ability to discriminate OCDs. We aim to develop a new diagnostic technique based on US wave propagation through the ankle joint. The presence of OCDs is identified when a US signal deviates from a reference signal associated with the healthy joint. The feasibility of the proposed technique is studied using experimentally-validated 2D finite-difference time-domain models of the ankle joint. The normalized maximum cross correlation of experiments and simulation was 0.97. Effects of variables relevant to the ankle joint, US transducers and OCDs were evaluated. Variations in joint space width and transducer orientation made noticeable alterations to the reference signal: normalized root mean square error ranged from 6.29% to 65.25% and from 19.59% to 8064.2%, respectively. The results suggest that the new technique could be used for detection of OCDs, if the effects of other parameters (i.e., parameters related to the ankle joint and US transducers) can be reduced.

  19. Can Chronic Ankle Instability be Prevented? Rethinking Management of Lateral Ankle Sprains.

    ERIC Educational Resources Information Center

    Denegar, Craig R.; Miller, Sayers J., III

    2002-01-01

    Investigates whether chronic ankle instability can be prevented, discussing: the relationship between mechanical and functional instability; normal ankle mechanics, sequelae to lateral ankle sprains, and abnormal ankle mechanics; and tissue healing, joint dysfunction, and acute lateral ankle sprain management. The paper describes a treatment model…

  20. The axis of rotation of the ankle joint.

    PubMed

    Lundberg, A; Svensson, O K; Németh, G; Selvik, G

    1989-01-01

    The axis of the talo-crural joint was analysed by roentgen stereophotogrammetry in eight healthy volunteers. Examinations were performed at 10 degrees increments of flexion and pronation/supination of the foot as well as medial and lateral rotation of the leg. Results indicate that the talo-crural joint axis changes continuously throughout the range of movement. In dorsiflexion it tended to be oblique downward and laterally. In rotation of the leg, the axis took varying inclinations between horizontal and vertical. All axes in each subject lay close to the midpoint of a line between the tips of the malleoli. Our study indicates that the talo-crural joint axis may alter considerably during the arc of motion and differ significantly between individuals. This prompts caution in the use of hinge axes in orthoses and prostheses for the ankle.

  1. [Arthroscopy-guided fracture management. Ankle joint and calcaneus].

    PubMed

    Schoepp, C; Rixen, D

    2013-04-01

    Arthroscopic fracture management of the ankle and calcaneus requires a differentiated approach. The aim is to minimize surgical soft tissue damage and to visualize anatomical fracture reduction arthroscopically. Moreover, additional cartilage damage can be detected and treated. The arthroscopic approach is limited by deep impressions of the joint surface needing cancellous bone grafting, by multiple fracture lines on the articular side and by high-grade soft tissue damage. An alternative to the minimally invasive arthroscopic approach is open arthroscopic reduction in conventional osteosynthesis. This facilitates correct assessment of surgical reduction of complex calcaneal fractures, otherwise remaining non-anatomical reduction might not be fluoroscopically detected during surgery.

  2. Use of circular external fixation for combined subtalar joint fusion and ankle distraction.

    PubMed

    Zgonis, Thomas; Stapleton, John J; Roukis, Thomas S

    2008-10-01

    The authors discuss a novel technique not previously published that incorporates a subtalar joint arthrodesis with an ankle joint arthrodiastasis as an alternative to a tibiotalocalcaneal arthrodesis. Young and active patients who experience refractory pain and stiffness to the rearfoot and ankle secondary to combined severe subtalar and ankle arthrosis are suitable candidates for this surgical procedure. This new approach is based on sound principles in the treatment of severe arthrosis affecting the ankle and subtalar joint. The authors are currently prospectively reviewing their surgical experience with this procedure and believe that it provides an alternative option for the patient, with potentially promising long-term results.

  3. Reconstruction of the form and function of lateral malleolus and ankle joint.

    PubMed

    Kiyokawa, Kensuke; Tanaka, Shinsuke; Kiduka, Yuichiro; Inoue, Yojiro; Yamauchi, Toshihiko; Tai, Yoshiaki

    2005-08-01

    Soft-tissue reconstruction alone cannot obtain normal ankle function in patients with large defects in the area of the lateral malleolus. The authors report a functional reconstructive method for the lateral malleolus, utilized in a male patient whose osteosarcoma in the fibula was resected with surrounding soft tissue. In order to reconstruct the lateral malleolus, the remaining half of the fibula at the knee was removed, and the fibular head was fixed with the tibia at the ankle joint. Ligaments were reconstructed with tendon grafts. Skin and soft-tissue defects were reconstructed with a combined composite flap comprised of a latissimus dorsi myocutaneous flap and a serratus anterior muscle flap. Dead space around the bone graft was filled with the serratus anterior muscle flap that was divided into two portions. The surface was covered with the latissimus dorsi myocutaneous flap. The patient regained almost normal function of the ankle joint. This technique would be a useful functional reconstructive method for patients with large defects in the area of the lateral malleolus.

  4. Effects of Kinesio taping on joint position sense of the ankle

    PubMed Central

    Seo, Hyun-Do; Kim, Min-Young; Choi, Jung-Eun; Lim, Ga-Hee; Jung, Seong-In; Park, So-Hyun; Cheon, Song-Hee; Lee, Hae-Yong

    2016-01-01

    [Purpose] The purpose of this study was to examine the effect of Kinesio taping on the joint position sense of the ankle. [Subjects and Methods] The subjects of this study were 26 nomal adults who had experienced ankle sprain. Kinesio taping was applied over the ankle medial ligament and ankle lateral ligament with eight pattern reinforcement taping. Joint position sense was measured using isokinetic equipment (Biodex System 4 pro dynamometer, Biodex Medical systems Inc., USA) during dorsiflexion/plantarflexion and inversion/eversion, before and after taping. Statistical analyses were performed using SPSS 21.0 for Windows. [Results] Joint position sense after Kinesio taping was improved in the dorsiflexion and inversion positions. [Conclusion] According to the results of this study, Kinesio taping of the ankle is effective for the prevention of ankle sprain. PMID:27190446

  5. Comparative study on isokinetic capacity of knee and ankle joints by functional injury

    PubMed Central

    Jeon, Kyoungkyu; Seo, Byoung-Do; Lee, Sang-Ho

    2016-01-01

    [Purpose] To collect basic data for exercise programs designed to enhance functional knee and ankle joint stability based on isokinetic measurement and muscle strength evaluations in normal and impaired functional states. [Subjects and Methods] Twenty-four subjects were randomly assigned to the athlete group and the control group (n = 12 each). Data were collected of isokinetic knee extensor and flexor strength at 60°/sec, 180°/sec, and 240°/sec and ankle plantar and dorsiflexor strength at 30°/sec and 120°/sec. [Results] Significant intergroup differences were observed in peak torque of the right extensors at 60°/sec, 180°/sec, and 240°/sec and the right flexors at 240°/sec. Significant differences were observed in peak torque/body weight in the right extensors at 60°/sec, 180°/sec, and 240°/sec and in the right flexors at 180°/sec and 240°/sec. Significant peak torque differences were noted in the left ankle joint dorsiflexor at 30°/sec and 120°/sec, right plantar flexor at 120°/sec, left plantar flexor at 30°/sec, left dorsiflexor at 30°/sec and 120°/sec, and right dorsiflexor at 120°/sec. [Conclusion] Isokinetic evaluation stimulates muscle contraction at motion-dependent speeds and may contribute to the development of intervention programs to improve knee and ankle joint function and correct lower-extremity instability. PMID:26957768

  6. The effects of a semi-rigid ankle brace on a simulated isolated subtalar joint instability.

    PubMed

    Choisne, Julie; Hoch, Matthew C; Bawab, Sebastian; Alexander, Ian; Ringleb, Stacie I

    2013-12-01

    Subtalar joint instability is hypothesized to occur after injuries to the calcaneofibular ligament (CFL) in isolation or in combination with the cervical and the talocalcaneal interosseous ligaments. A common treatment for hindfoot instability is the application of an ankle brace. However, the ability of an ankle brace to promote subtalar joint stability is not well established. We assessed the kinematics of the subtalar joint, ankle, and hindfoot in the presence of isolated subtalar instability, investigated the effect of bracing in a CFL deficient foot and with a total rupture of the intrinsic ligaments, and evaluated how maximum inversion range of motion is affected by the position of the ankle in the sagittal plane. Kinematics from nine cadaveric feet were collected with the foot placed in neutral, dorsiflexion, and plantar flexion. Motion was applied with and without a brace on an intact foot and after sequentially sectioning the CFL and the intrinsic ligaments. Isolated CFL sectioning increased ankle joint inversion, while sectioning the CFL and intrinsic ligaments affected subtalar joint stability. The brace limited inversion at the subtalar and ankle joints. Additionally, examining the foot in dorsiflexion reduced ankle and subtalar joint motion.

  7. Soluble Flt-1 improves the repair of ankle joint injury in rats

    PubMed Central

    Tian, Jing; Xie, Bing; Xiang, Liangbi; Zhao, Yong; Zhou, Dapeng

    2016-01-01

    The ankle injuries create great pain to a great number of patients worldwide. Past studies have focused on the development of practical treatments to relieve pain and improve recovery, but the molecular mechanisms underlying the ankle injuries, especially the local inflammation in the damaged ankle joint, have been rarely studied. Moreover, although reduction of production and secretion of pro-inflammatory cytokines may reduce the pain and promote the recovery, a practical approach is currently lacking. Here, we detected significantly higher levels of placental growth factor (PLGF) and pro-inflammatory cytokines in the joint fluid from the patients of acute ankle joint injury (AAJI). Interestingly, the levels of PLGF and pro-inflammatory cytokines in the joint fluid strongly correlated. In order to examine whether PLGF may regulate the production and secretion of pro-inflammatory cytokines in the injured joint, we used a rat carrageenan-induced ankle injury model for AAJI in humans. We injected soluble Flt-1 (sFlt-1) into the articular cavity of the injured ankle joint to block PLGF signaling and found that injection of sFlt-1 significantly improved the rat behavior in activity wheels test, which appeared to result from reduced secretion of the pro-inflammatory cytokines in the ankle joint. Thus, our study suggests that blocking PLGF signaling may be a novel therapeutic approach for treating AAJI in humans. PMID:27904694

  8. Effects of focal ankle joint cooling on unipedal static balance in individuals with and without chronic ankle instability.

    PubMed

    Kim, Kyung-Min; Hart, Joseph M; Saliba, Susan A; Hertel, Jay

    2015-01-01

    Application of cryotherapy over an injured joint has been shown to improve muscle function, yet it is unknown how ankle cryotherapy affects postural control. Our purpose was to determine the effects of a 20-min focal ankle joint cooling on unipedal static stance in individuals with and without chronic ankle instability (CAI). Fifteen young subjects with CAI (9 males, 6 females) and 15 healthy gender-matched controls participated. All subjects underwent two intervention sessions on different days in which they had a 1.5L plastic bag filled with either crushed ice (active treatment) or candy corn (sham) applied to the ankle. Unipedal stance with eyes closed for 10s were assessed with a forceplate before and after each intervention. Center of pressure (COP) data were used to compute 10 specific dependent measures including velocity, area, standard deviation (SD), and percent range of COP excursions, and mean and SD of time-to-boundary (TTB) minima in the anterior-posterior (AP) and mediolateral directions. For each measure a three-way (Group-Intervention-Time) repeated ANOVAs found no significant interactions and main effects involving intervention (all Ps > 0.05). There were group main effects found for mean velocity (F(1,28) = 6.46, P = .017), area (F(1,28) = 12.83, P = .001), and mean of TTB minima in the AP direction (F(1,28) = 5.19, P = .031) indicating that the CAI group demonstrated greater postural instability compared to the healthy group. Postural control of unipedal stance was not significantly altered following focal ankle joint cooling in groups both with and without CAI. Ankle joint cryotherapy was neither beneficial nor harmful to single leg balance.

  9. Ankle Instability Effects on Joint Position Sense When Stepping Across the Active Movement Extent Discrimination Apparatus

    PubMed Central

    Witchalls, Jeremy; Waddington, Gordon; Blanch, Peter; Adams, Roger

    2012-01-01

    Context Individuals with and without functional ankle instability have been tested for deficits in lower limb proprioception with varied results. Objective To determine whether a new protocol for testing participants' joint position sense during stepping is reliable and can detect differences between participants with unstable and stable ankles. Design Descriptive laboratory study. Setting University clinical laboratory. Patients or Other Participants Sample of convenience involving 21 young adult university students and staff. Ankle stability was categorized by score on the Cumberland Ankle Instability Tool; 13 had functional ankle instability, 8 had healthy ankles. Intervention(s) Test-retest of ankle joint position sense when stepping onto and across the Active Movement Extent Discrimination Apparatus twice, separated by an interim test, standing still on the apparatus and moving only 1 ankle into inversion. Main Outcome Measure(s) Difference in scores between groups with stable and unstable ankles and between test repeats. Results Participants with unstable ankles were worse at differentiating between inversion angles underfoot in both testing protocols. On repeated testing with the stepping protocol, performance of the group with unstable ankles was improved (Cohen d = 1.06, P = .006), whereas scores in the stable ankle group did not change in the second test (Cohen d = 0.04, P = .899). Despite this improvement, the unstable group remained worse at differentiating inversion angles on the stepping retest (Cohen d = 0.99, P = .020). Conclusions The deficits on proprioceptive tests shown by individuals with functional ankle instability improved with repeated exposure to the test situation. The learning effect may be the result of systematic exposure to ankle-angle variation that led to movement-specific learning or increased confidence when stepping across the apparatus. PMID:23182010

  10. Effects of wearing ankle weight on knee joint repositioning sense in the elderly.

    PubMed

    Kim, Sooyoung; Jung, Daeun; Han, Jintae; Jung, Jaemin

    2016-09-01

    [Purpose] To investigate the effects of different ankle weights on knee joint repositioning sense in elderly individuals. [Subjects and Methods] Twenty-one subjects were divided for assessment as follows: young (20-30 years, n=10) and elderly (60-70 years, n=11). Knee joint repositioning error was measured by asking the subjects to reposition the target angle of their knee joints while wearing different ankle weights (0%, 0.5%, 1%, and 1.5%) in an open kinetic chain. The Hawk Digital System (60 Hz; Motion Analysis, Santa Rosa, CA, USA) was used to measure knee joint repositioning error. Differences in knee joint repositioning error between the young and elderly groups according to ankle weight load were examined by using two-way mixed repeated-measures analysis of variance. [Results] The knee joint repositioning error was lower with than without ankle weights in both groups. The error value was lowest with the 1.0% weight, though not significantly. Knee joint repositioning error was significantly higher in the elderly under all the ankle weight conditions. [Conclusion] Knee joint repositioning sense can be improved in elderly individuals by wearing proper ankle weights. However, weights that are too heavy might disturb knee joint positioning sense.

  11. Effects of wearing ankle weight on knee joint repositioning sense in the elderly

    PubMed Central

    Kim, Sooyoung; Jung, Daeun; Han, Jintae; Jung, Jaemin

    2016-01-01

    [Purpose] To investigate the effects of different ankle weights on knee joint repositioning sense in elderly individuals. [Subjects and Methods] Twenty-one subjects were divided for assessment as follows: young (20–30 years, n=10) and elderly (60–70 years, n=11). Knee joint repositioning error was measured by asking the subjects to reposition the target angle of their knee joints while wearing different ankle weights (0%, 0.5%, 1%, and 1.5%) in an open kinetic chain. The Hawk Digital System (60 Hz; Motion Analysis, Santa Rosa, CA, USA) was used to measure knee joint repositioning error. Differences in knee joint repositioning error between the young and elderly groups according to ankle weight load were examined by using two-way mixed repeated-measures analysis of variance. [Results] The knee joint repositioning error was lower with than without ankle weights in both groups. The error value was lowest with the 1.0% weight, though not significantly. Knee joint repositioning error was significantly higher in the elderly under all the ankle weight conditions. [Conclusion] Knee joint repositioning sense can be improved in elderly individuals by wearing proper ankle weights. However, weights that are too heavy might disturb knee joint positioning sense. PMID:27799664

  12. Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.

    PubMed

    Takahashi, Kota Z; Stanhope, Steven J

    2013-09-01

    Over the last half-century, the field of prosthetic engineering has continuously evolved with much attention being dedicated to restoring the mechanical energy properties of ankle joint musculatures during gait. However, the contributions of 'distal foot structures' (e.g., foot muscles, plantar soft tissue) have been overlooked. Therefore, the purpose of this study was to quantify the total mechanical energy profiles (e.g., power, work, and work-ratio) of the natural ankle-foot system (NAFS) by combining the contributions of the ankle joint and all distal foot structures during stance in level-ground steady state walking across various speeds (0.4, 0.6, 0.8 and 1.0 statures/s). The results from eleven healthy subjects walking barefoot indicated ankle joint and distal foot structures generally performed opposing roles: the ankle joint performed net positive work that systematically increased its energy generation with faster walking speeds, while the distal foot performed net negative work that systematically increased its energy absorption with faster walking speeds. Accounting for these simultaneous effects, the combined ankle-foot system exhibited increased work-ratios with faster walking. Most notably, the work-ratio was not significantly greater than 1.0 during the normal walking speed of 0.8 statures/s. Therefore, a prosthetic design that strategically exploits passive-dynamic properties (e.g., elastic energy storage and return) has the potential to replicate the mechanical energy profiles of the NAFS during level-ground steady-state walking.

  13. Measurement of the passive stiffness of ankle joint in 3 DOF using stewart platform type ankle foot device.

    PubMed

    Nomura, Kenta; Yonezawa, Teru; Mizoguchi, Hiroshi; Takemura, Hiroshi

    2016-08-01

    This paper presents a method to measure the passive stiffness of an ankle joint in three degrees of freedom (DOF) under two motion speeds (1 Hz and 5 degree/s) using a developed Stewart platform-type device. The developed device can reproduce input motions of the foot in 6 DOF by controlling six pneumatic linear motion actuators. We used the device to measure the passive stiffness of an ankle joint undergoing three kinds of motion, namely dorsi-plantar flexion, inversion-eversion, and adduction-abduction. The measured values of the passive stiffness of the ankle joint in dorsiflexion that we obtained agreed well with that obtained in a previous study, indicating that the developed device is useful for measuring the passive stiffness of ankle joint. In addition, the developed device can be used to measure the stiffness in inversion-eversion and adduction-abduction motions as well, parameters that have never been measured. The results we obtained demonstrated certain interesting features as we varied both the direction and pace of motion (e.g., there were significant differences in the stiffness not only between adduction and abduction during the faster pace, but also between these and the other motions).

  14. Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex.

    PubMed

    Ozen, Mustafa; Sayman, Onur; Havitcioglu, Hasan

    2013-01-01

    Total ankle replacement (TAR) is a relatively new concept and is becoming more popular for treatment of ankle arthritis and fractures. Because of the high costs and difficulties of experimental studies, the developments of TAR prostheses are progressing very slowly. For this reason, the medical imaging techniques such as CT, and MR have become more and more useful. The finite element method (FEM) is a widely used technique to estimate the mechanical behaviors of materials and structures in engineering applications. FEM has also been increasingly applied to biomechanical analyses of human bones, tissues and organs, thanks to the development of both the computing capabilities and the medical imaging techniques. 3-D finite element models of the human foot and ankle from reconstruction of MR and CT images have been investigated by some authors. In this study, data of geometries (used in modeling) of a normal and a prosthetic foot and ankle were obtained from a 3D reconstruction of CT images. The segmentation software, MIMICS was used to generate the 3D images of the bony structures, soft tissues and components of prosthesis of normal and prosthetic ankle-foot complex. Except the spaces between the adjacent surface of the phalanges fused, metatarsals, cuneiforms, cuboid, navicular, talus and calcaneus bones, soft tissues and components of prosthesis were independently developed to form foot and ankle complex. SOLIDWORKS program was used to form the boundary surfaces of all model components and then the solid models were obtained from these boundary surfaces. Finite element analyses software, ABAQUS was used to perform the numerical stress analyses of these models for balanced standing position. Plantar pressure and von Mises stress distributions of the normal and prosthetic ankles were compared with each other. There was a peak pressure increase at the 4th metatarsal, first metatarsal and talus bones and a decrease at the intermediate cuneiform and calcaneus bones, in

  15. Unusual exostosis formation of the subtalar joint following an inversion ankle injury.

    PubMed

    Cisco, R W; Shaffer, M; Kuchler, L

    1993-01-01

    Exostosis formation following trauma isnot uncommon to the joints of the foot and ankle. The etiology and treatment of these boney lesions is well-documented in the literature. The following is a report of an unusual exostosis of the subtalar joint following inversion ankle injury. This case is unusual in respect to the formation of an adventitious articulation, the size of the lesion, and the pathology.

  16. Footwear affects the gearing at the ankle and knee joints during running.

    PubMed

    Braunstein, Bjoern; Arampatzis, Adamantios; Eysel, Peer; Brüggemann, Gert-Peter

    2010-08-10

    The objective of the study was to investigate the adjustment of running mechanics by wearing five different types of running shoes on tartan compared to barefoot running on grass focusing on the gearing at the ankle and knee joints. The gear ratio, defined as the ratio of the moment arm of the ground reaction force (GRF) to the moment arm of the counteracting muscle tendon unit, is considered to be an indicator of joint loading and mechanical efficiency. Lower extremity kinematics and kinetics of 14 healthy volunteers were quantified three dimensionally and compared between running in shoes on tartan and barefoot on grass. Results showed no differences for the gear ratios and resultant joint moments for the ankle and knee joints across the five different shoes, but showed that wearing running shoes affects the gearing at the ankle and knee joints due to changes in the moment arm of the GRF. During barefoot running the ankle joint showed a higher gear ratio in early stance and a lower ratio in the late stance, while the gear ratio at the knee joint was lower during midstance compared to shod running. Because the moment arms of the counteracting muscle tendon units did not change, the determinants of the gear ratios were the moment arms of the GRF's. The results imply higher mechanical stress in shod running for the knee joint structures during midstance but also indicate an improved mechanical advantage in force generation for the ankle extensors during the push-off phase.

  17. Design and simulation of a cable-pulley-based transmission for artificial ankle joints

    NASA Astrophysics Data System (ADS)

    Liu, Huaxin; Ceccarelli, Marco; Huang, Qiang

    2016-06-01

    In this paper, a mechanical transmission based on cable pulley is proposed for human-like actuation in the artificial ankle joints of human-scale. The anatomy articular characteristics of the human ankle is discussed for proper biomimetic inspiration in designing an accurate, efficient, and robust motion control of artificial ankle joint devices. The design procedure is presented through the inclusion of conceptual considerations and design details for an interactive solution of the transmission system. A mechanical design is elaborated for the ankle joint angular with pitch motion. A multi-body dynamic simulation model is elaborated accordingly and evaluated numerically in the ADAMS environment. Results of the numerical simulations are discussed to evaluate the dynamic performance of the proposed design solution and to investigate the feasibility of the proposed design in future applications for humanoid robots.

  18. The effect of strapping on the motor performance of the ankle and wrist joints.

    PubMed

    Kauranen, K; Siira, P; Vanharanta, H

    1997-08-01

    The purpose of this study was to examine the effect of strapping on different components of motor performance of wrist and ankle joints. The subjects were 14 healthy volunteers (12 females, two males), aged 21-33 years, with no known previous injuries of the ankle and wrist joints. The measurements were made with the HPM/BEP system and Isokinetic Lido Active Multi-joint system. First, the subjects performed the test without strapping and then, on the following day, with strapped right wrist and ankle joints. The strapping of the wrist increased the simple reaction time by 9%, choice reaction time by 9% and decreased the wrist tapping speed by 21%. Wrist strength decreased in flexion (180 degrees/s) by 14% and ulnar deviation (180 degrees/s) by 8%. The strapping of the ankle increased the simple reaction time by 12%, choice reaction time by 9% and decreased foot tapping speed by 14%. Ankle strength in plantar flexion decreased in 60 degrees/s by 22% and 180 degrees/s by 14% and in inversion in 60 degrees/s by 28% and 180 degrees/s by 15%. These results suggest the strapping of ankle and wrist joints reduces motor performance in the above-mentioned directions as measured by the following parameters: simple reaction time, choice reaction time, tapping speed, and muscle strength.

  19. In vivo kinematics of the talocrural and subtalar joints with functional ankle instability during weight-bearing ankle internal rotation: a pilot study.

    PubMed

    Kobayashi, Takumi; No, Yumi; Yoneta, Kei; Sadakiyo, Masashi; Gamada, Kazuyoshi

    2013-06-01

    Functional ankle instability (FAI) may involve abnormal kinematics. However, reliable quantitative data for kinematics of FAI have not been reported. The objective of this study was to determine if the abnormal kinematics exist in the talocrural and subtalar joints in patients with FAI. Five male subjects with unilateral FAI (a mean age of 33.4 ± 13.2 years) were enrolled. All subjects were examined with stress radiography and found to have no mechanical ankle instability (MAI). Lateral radiography at weight-bearing ankle internal rotation of 0° and 20° was taken with the ankle at 30° dorsiflexion and 30° plantar flexion. Patients underwent computed tomography scan at 1.0 mm slice pitch spanning distal one third of the lower leg and the distal end of the calcaneus. Three-dimensional (3D) kinematics of the talocrural and subtalar joints as well as the ankle joint complex (AJC) were determined using a 3D-to-2D registration technique using a 3D-to-2D registration technique with 3D bone models and plain radiography. FAI joints in ankle dorsiflexion demonstrated significantly greater subtalar internal rotation from 0° to 20° internal rotation. No statistical differences in plantar flexion were detected in talocrural, subtalar or ankle joint complex kinematics between the FAI and contralateral healthy joints. During ankle internal rotation in dorsiflexion, FAI joints demonstrated greater subtalar internal rotation. The FAI joints without mechanical instability presented abnormal kinematics. This suggests that abnormal kinematics of the FAI joints may contribute to chronic instability. FAI joints may involve unrecognized abnormal subtalar kinematics during internal rotation in ankle dorsiflexion which may contribute to chronic instability and frequent feelings of instability.

  20. Online estimation algorithm for a biaxial ankle kinematic model with configuration dependent joint axes.

    PubMed

    Tsoi, Y H; Xie, S Q

    2011-02-01

    The kinematics of the human ankle is commonly modeled as a biaxial hinge joint model. However, significant variations in axis orientations have been found between different individuals and also between different foot configurations. For ankle rehabilitation robots, information regarding the ankle kinematic parameters can be used to estimate the ankle and subtalar joint displacements. This can in turn be used as auxiliary variables in adaptive control schemes to allow modification of the robot stiffness and damping parameters to reduce the forces applied at stiffer foot configurations. Due to the large variations observed in the ankle kinematic parameters, an online identification algorithm is required to provide estimates of the model parameters. An online parameter estimation routine based on the recursive least-squares (RLS) algorithm was therefore developed in this research. An extension of the conventional biaxial ankle kinematic model, which allows variation in axis orientations with different foot configurations had also been developed and utilized in the estimation algorithm. Simulation results showed that use of the extended model in the online algorithm is effective in capturing the foot orientation of a biaxial ankle model with variable joint axis orientations. Experimental results had also shown that a modified RLS algorithm that penalizes a deviation of model parameters from their nominal values can be used to obtain more realistic parameter estimates while maintaining a level of estimation accuracy comparable to that of the conventional RLS routine.

  1. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke

    PubMed Central

    Kobayashi, Toshiki; Singer, Madeline L.; Orendurff, Michael S.; Gao, Fan; Daly, Wayne K.; Foreman, K. Bo

    2015-01-01

    Background The adjustment of plantarflexion resistive moment of an articulated ankle-foot orthosis is considered important in patients post stroke, but the evidence is still limited. Therefore, the aim of this study was to investigate the effect of changing the plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments in patients post stroke. Methods Gait analysis was performed on 10 subjects post stroke under four different plantarflexion resistive moment conditions using a newly designed articulated ankle-foot orthosis. Data were recorded using a Bertec split-belt instrumented treadmill in a 3-dimensional motion analysis laboratory. Findings The ankle and knee sagittal joint angles and moments were significantly affected by the amount of plantarflexion resistive moment of the ankle-foot orthosis. Increasing the plantarflexion resistive moment of the ankle-foot orthosis induced significant decreases both in the peak ankle plantarflexion angle (P<0.01) and the peak knee extension angle (P<0.05). Also, the increase induced significant increases in the internal dorsiflexion moment of the ankle joint (P<0.01) and significantly decreased the internal flexion moment of the knee joint (P<0.01). Interpretation These results suggest an important link between the kinematic/kinetic parameters of the lower-limb joints and the plantarflexion resistive moment of an articulated ankle-foot orthosis. A future study should be performed to clarify their relationship further so that the practitioners may be able to use these parameters as objective data to determine an optimal plantarflexion resistive moment of an articulated ankle-foot orthosis for improved orthotic care in individual patients. PMID:26149007

  2. Supramalleolar osteotomy for realignment of the ankle joint.

    PubMed

    Siddiqui, Noman A; Herzenberg, John E; Lamm, Bradley M

    2012-10-01

    Ankle replacement systems have not been as reliable as hip replacements in providing long-term relief of pain, increased motion, and return to full activity. Supramalleolar Osteotomy is an extraarticular procedure that realigns the mechanical axis, thereby restoring ankle function. The literature discussing knee arthritis has shown that realignment osteotomies of the tibia improve function and prolong total knee replacement surgery. The success of the procedure is predicated on understanding the patient's clinical and radiographic presentation and proper preoperative assessment and planning.

  3. Ankle Joint Angle and Lower Leg Musculotendinous Unit Responses to Cryotherapy.

    PubMed

    Akehi, Kazuma; Long, Blaine C; Warren, Aric J; Goad, Carla L

    2016-09-01

    Akehi, K, Long, BC, Warren, AJ, and Goad, CL. Ankle joint angle and lower leg musculotendinous unit responses to cryotherapy. J Strength Cond Res 30(9): 2482-2492, 2016-The use of cold application has been debated for its influence on joint range of motion (ROM) and stiffness. The purpose of this study was to determine whether a 30-minute ice bag application to the plantarflexor muscles or ankle influences passive ankle dorsiflexion ROM and lower leg musculotendinous stiffness (MTS). Thirty-five recreationally active college-aged individuals with no history of lower leg injury 6 months before data collection volunteered. On each testing day, we measured maximum passive ankle dorsiflexion ROM (°) and plantarflexor torque (N·m) on an isokinetic dynamometer to calculate the passive plantarflexor MTS (N·m per degree) at 4 joint angles before, during, and after a treatment. Surface electromyography amplitudes (μV), and skin surface and ambient air temperature (°C) were also measured. Subjects received an ice bag to the posterior lower leg, ankle joint, or nothing for 30 minutes in different days. Ice bag application to the lower leg and ankle did not influence passive ROM (F(12,396) = 0.67, p = 0.78). Passive torque increased after ice bag application to the lower leg (F(12,396) = 2.21, p = 0.011). Passive MTS at the initial joint angle increased after ice bag application to the lower leg (F(12,396) = 2.14, p = 0.014) but not at the other joint angles (p > 0.05). Surface electromyography amplitudes for gastrocnemius and soleus muscles increased after ice application to the lower leg (F(2,66) = 5.61, p = 0.006; F(12,396) = 3.60, p < 0.001). Ice bag application to the lower leg and ankle joint does not alter passive dorsiflexion ROM but increases passive ankle plantarflexor torque in addition to passive ankle plantarflexor MTS at the initial joint angle.

  4. Muscle, reflex and central components in the control of the ankle joint in healthy and spastic man.

    PubMed

    Sinkjaer, T

    1997-01-01

    In understanding the control of the ankle joint during different motor tasks, we have to investigate at least three components, namely the influence of i) the passive and intrinsic properties of the intact and active muscle system around the joint (termed the non-reflex component), ii) the mechanical importance of the stretch reflex in the stretched and unloaded muscles, and iii) the supraspinal control of the stretch reflex. This thesis is dealing with the importance of the three components in healthy and spastic persons during sitting, standing, and walking. The results are based on stretch reflex and H-reflex measurements from the ankle extensor muscles. During stretch reflex experiments the foot was mounted to a platform (portable during walking) from which the ankle joint torque and the position were measured. To elicit a stretch reflex, the ankle joint was rotated by a strong motor connected to the platform. The mechanical importance of the stretch reflex was investigated by measuring the changes in joint torque. Electrically, the stretch reflex was recorded as the compound muscle action potential through bipolar surface EMG electrodes placed over the soleus muscle. During H-reflex experiments, the tibial nerve was stimulated at the popliteal fossa and the H-reflex recorded over the soleus muscle as during stretch reflex experiments. To investigate how the contractile properties of a muscle in humans depend on the history of activation, we investigated the intrinsic stiffness of the ankle extensors in healthy subjects. At matched background contraction in sitting subjects, a prolonged contraction increased the intrinsic muscle stiffness by 49%. Muscle yielding has been considered especially important for understanding the reflex compensation. We found a general lack of muscle yield and a mechanically important non-reflex stiffness of the ankle extensors showing that non-reflex stiffness is a prominent factor in normal movements of the ankle joint. In both

  5. Ankle rehabilitation device with two degrees of freedom and compliant joint

    NASA Astrophysics Data System (ADS)

    Racu (Cazacu, C.-M.; Doroftei, I.

    2015-11-01

    We propose a rehabilitation device that we intend to be low cost and easy to manufacture. The system will ensure functionality but also have a small dimensions and low mass, considering the physiological dimensions of the foot and lower leg. To avoid injure of the ankle joint, this device is equipped with a compliant joint between the motor and mechanical transmission. The torque of this joint is intended to be adjustable, according to the degree of ankle joint damage. To choose the material and the dimensions of this compliant joint, in this paper we perform the first stress simulation. The minimum torque is calculated, while the maximum torque is given by the preliminary chosen actuator.

  6. Proprioceptive impairments associated with knee osteoarthritis are not generalized to the ankle and elbow joints.

    PubMed

    Shanahan, Camille J; Wrigley, Tim V; Farrell, Michael J; Bennell, Kim L; Hodges, Paul W

    2015-06-01

    The mechanisms for proprioceptive changes associated with knee osteoarthritis (OA) remain elusive. Observations of proprioceptive changes in both affected knees and other joints imply more generalized mechanisms for proprioceptive impairment. However, evidence for a generalized effect remains controversial. This study examined whether joint repositioning proprioceptive deficits are localized to the diseased joint (knee) or generalized across other joints (elbow and ankle) in people with knee OA. Thirty individuals with right knee OA (17 female, 66±7 [mean±SD] years) of moderate/severe radiographic disease severity and 30 healthy asymptomatic controls of comparable age (17 female, 65±8years) performed active joint repositioning tests of the knee, ankle and elbow in randomised order in supine. Participants with knee OA had a larger relative error for joint repositioning of the knee than the controls (OA: 2.7±2.1°, control: 1.6±1.7°, p=.03). Relative error did not differ between groups for the ankle (OA: 2.2±2.5°, control: 1.9±1.3°, p=.50) or elbow (OA: 2.5±3.3°, control: 2.9±2.8°, p=.58). These results are consistent with a mechanism for proprioceptive change that is localized to the knee joint. This could be mediated by problems with mechanoreceptors, processing/relay of somatosensory input to higher centers, or joint-specific interference with cognitive processes by pain.

  7. The Scandinavian Total Ankle Replacement and the ideal biomechanical requirements of ankle replacements

    PubMed Central

    Robati, Shibby; Salih, Alan; Ghosh, Koushik; Vinayakam, Parthiban

    2016-01-01

    The complex anatomy of the articular bone surfaces, ligaments, tendon attachments and muscles makes the ankle joint difficult to replicate in prosthetic replacements. Ever since the early 1970s, which saw the dawn of the first total ankle replacements, there have been numerous other attempts at replicating the joint, often with poor clinical outcomes. The anatomy of the ankle is discussed, followed by evidence of the normal ankle biomechanics and the ideal requirements of an ankle replacement. We focus on the Scandinavian Total Ankle Replacement and evaluate whether these requirements have been met. PMID:26955224

  8. The Scandinavian Total Ankle Replacement and the ideal biomechanical requirements of ankle replacements.

    PubMed

    Robati, Shibby; Salih, Alan; Ghosh, Koushik; Vinayakam, Parthiban

    2016-03-01

    The complex anatomy of the articular bone surfaces, ligaments, tendon attachments and muscles makes the ankle joint difficult to replicate in prosthetic replacements. Ever since the early 1970s, which saw the dawn of the first total ankle replacements, there have been numerous other attempts at replicating the joint, often with poor clinical outcomes. The anatomy of the ankle is discussed, followed by evidence of the normal ankle biomechanics and the ideal requirements of an ankle replacement. We focus on the Scandinavian Total Ankle Replacement and evaluate whether these requirements have been met.

  9. Ankle replacement - discharge

    MedlinePlus

    You had an ankle replacement. Your surgeon removed and reshaped damaged bones, and put in an artificial ankle joint. You received pain medicine and were shown how to treat swelling around your new ankle joint.

  10. Effects of immobilization and remobilization on the ankle joint in Wistar rats

    PubMed Central

    Kunz, R.I.; Coradini, J.G.; Silva, L.I.; Bertolini, G.R.F.; Brancalhão, R.M.C.; Ribeiro, L.F.C.

    2014-01-01

    A sprained ankle is a common musculoskeletal sports injury and it is often treated by immobilization of the joint. Despite the beneficial effects of this therapeutic measure, the high prevalence of residual symptoms affects the quality of life, and remobilization of the joint can reverse this situation. The aim of this study was to analyze the effects of immobilization and remobilization on the ankle joint of Wistar rats. Eighteen male rats had their right hindlimb immobilized for 15 days, and were divided into the following groups: G1, immobilized; G2, remobilized freely for 14 days; and G3, remobilized by swimming and jumping in water for 14 days, performed on alternate days, with progression of time and a series of exercises. The contralateral limb was the control. After the experimental period, the ankle joints were processed for microscopic analysis. Histomorphometry did not show any significant differences between the control and immobilized/remobilized groups and members, in terms of number of chondrocytes and thickness of the articular cartilage of the tibia and talus. Morphological analysis of animals from G1 showed significant degenerative lesions in the talus, such as exposure of the subchondral bone, flocculation, and cracks between the anterior and mid-regions of the articular cartilage and the synovial membrane. Remobilization by therapeutic exercise in water led to recovery in the articular cartilage and synovial membrane of the ankle joint when compared with free remobilization, and it was shown to be an effective therapeutic measure in the recovery of the ankle joint. PMID:25140815

  11. Ankle, knee, and hip joint contribution to body support during gait

    PubMed Central

    Fukui, Tsutomu; Ueda, Yasuhisa; Kamijo, Fumiko

    2016-01-01

    [Purpose] Support moment was defined as the sum of ankle plantar flexion, knee and hip extension moments. There are some mechanical relationships among the 3 joints. If these relationships were understood, it might be possible to determine which joint should be strengthened to improve gait. The aims of this study were to examine the mutual relationship among kinetic variables of the 3 joints during different phases. [Subjects and Methods] Twenty-five healthy subjects volunteered for this study. They were asked to walk on a platform at a self-selected speed. Correlation coefficients between support moment and vertical ground reaction force were calculated for each subject. Pearson correlation analysis was performed among the 3 joint moments and between each joint moment and vertical ground reaction force. [Results] Knee and hip extension moments showed negative correlation throughout the stance. Ankle moment had a positive with hip but a negative correlation with knee moment except in the initial contact and pre-swing. Hip moment in the initial contact, knee moment in the loading response, and ankle moment from the terminal stance to pre-swing had a high correlation with vertical ground reaction force. [Conclusion] The results may indicate which joint should be strengthened to improve gait pattern. PMID:27821945

  12. Interventions for increasing ankle joint dorsiflexion: a systematic review and meta-analysis

    PubMed Central

    2013-01-01

    Background Ankle joint equinus, or restricted dorsiflexion range of motion (ROM), has been linked to a range of pathologies of relevance to clinical practitioners. This systematic review and meta-analysis investigated the effects of conservative interventions on ankle joint ROM in healthy individuals and athletic populations. Methods Keyword searches of Embase, Medline, Cochrane and CINAHL databases were performed with the final search being run in August 2013. Studies were eligible for inclusion if they assessed the effect of a non-surgical intervention on ankle joint dorsiflexion in healthy populations. Studies were quality rated using a standard quality assessment scale. Standardised mean differences (SMDs) and 95% confidence intervals (CIs) were calculated and results were pooled where study methods were homogenous. Results Twenty-three studies met eligibility criteria, with a total of 734 study participants. Results suggest that there is some evidence to support the efficacy of static stretching alone (SMDs: range 0.70 to 1.69) and static stretching in combination with ultrasound (SMDs: range 0.91 to 0.95), diathermy (SMD 1.12), diathermy and ice (SMD 1.16), heel raise exercises (SMDs: range 0.70 to 0.77), superficial moist heat (SMDs: range 0.65 to 0.84) and warm up (SMD 0.87) in improving ankle joint dorsiflexion ROM. Conclusions Some evidence exists to support the efficacy of stretching alone and stretching in combination with other therapies in increasing ankle joint ROM in healthy individuals. There is a paucity of quality evidence to support the efficacy of other non-surgical interventions, thus further research in this area is warranted. PMID:24225348

  13. A three-dimensional ankle kinetostatic model to simulate loaded and unloaded joint motion.

    PubMed

    Forlani, Margherita; Sancisi, Nicola; Parenti-Castelli, Vincenzo

    2015-06-01

    A kinetostatic model able to replicate both the natural unloaded motion of the tibiotalar (or ankle) joint and the joint behavior under external loads is presented. The model is developed as the second step of a sequential procedure, which allows the definition of a kinetostatic model as a generalization of a kinematic model of the joint defined at the first step. Specifically, this kinematic model taken as the starting point of the definition procedure is a parallel spatial mechanism which replicates the ankle unloaded motion. It features two rigid bodies (representing the tibia-fibula and the talus-calcaneus complexes) interconnected by five rigid binary links, that mimic three articular contacts and two nearly isometric fibers (IFs) of the tibiocalcaneal ligament (TiCaL) and calcaneofibular ligament (CaFiL). In the kinetostatic model, the five links are considered as compliant; moreover, further elastic structures are added to represent all the main ankle passive structures of the joint. Thanks to this definition procedure, the kinetostatic model still replicates the ankle unloaded motion with the same accuracy as the kinematic model. In addition, the model can replicate the behavior of the joint when external loads are applied. Finally, the structures that guide these motions are consistent with the anatomical evidence. The parameters of the model are identified for two specimens from both subject-specific and published data. Loads are then applied to the model in order to simulate two common clinical tests. The model-predicted ankle motion shows good agreement with results from the literature.

  14. Factors affecting the range of motion of the ankle and first metatarsophalangeal joints in patients undergoing hemodialysis who walk daily

    PubMed Central

    Matsui, Nobumasa; Shoji, Morio; Kitagawa, Takashi; Terada, Shigeru

    2016-01-01

    [Purpose] Increased plantar pressure during walking is a risk factor for foot ulcers because of reduced range of motion at the ankle and first metatarsophalangeal joints. However, the range of motion in patients undergoing hemodialysis has not yet been determined. A cross-sectional study was performed to investigate the factors affecting the range of motion of the ankle and first metatarsophalangeal joints in patients undergoing hemodialysis who walk daily. [Subjects and Methods] Seventy feet of 35 patients receiving hemodialysis therapy were examined. Measurements included the passive range of motion of plantar flexion and dorsiflexion of the ankle joint, and flexion and extension of the first metatarsophalangeal joint. [Results] Hemodialysis duration was not associated with ankle and first metatarsophalangeal joint range of motion in patients undergoing hemodialysis. Diabetes duration was significantly associated with limited ankle joint mobility. Finally, blood hemoglobin levels, body mass index, and age were associated with first metatarsophalangeal joint range of motion. [Conclusion] The present study identified age, diabetes, and decreased physical activity, but not hemodialysis duration, to be risk factors for limited joint mobility of the ankle and first metatarsophalangeal joints in patients undergoing hemodialysis. PMID:27313371

  15. Estimation of ankle joint angle from peroneal and tibial electroneurograms based on muscle spindle model.

    PubMed

    Lin, Chou-Ching K; Ju, Ming-Shaung; Chan, Ching-Chao

    2010-01-01

    The main goal of this study was to develop a new method of estimating the angle of the passively stretched ankle joint, based on structural muscle spindle models of the tibial and peroneal electroneurograms (ENG). Passive ramp-and-hold and alternating stretches of the ankle joint were performed in a rabbit. Simultaneously, two cuff electrodes were used to record the ENGs of peroneal and tibial nerves. Based on the two ENGs and the joint angle trajectory, two muscle spindle models were constructed and their inverse models were integrated to compute angle estimates. The model parameters were optimized. The performance of our approach was compared with those of the adaptive neuro-fuzzy inference system and artificial neural network model. The results revealed that our model had a better performance of estimating the ankle joint angle in large-range movements and smaller tracking errors. This study provides a new estimation algorithm to extract the joint angle from the information conveyed in a nerve.

  16. [Conventional X-Rays of Ankle Joint Fractures in Older Patients are Not Always Predictive].

    PubMed

    Jubel, A; Faymonville, C; Andermahr, J; Boxberg, S; Schiffer, G

    2017-02-01

    Background: Ankle fractures are extremely common in the elderly, with an incidence of up to 39 fractures per 100,000 persons per year. We found a discrepancy between intraoperative findings and preoperative X-ray findings. It was suggested that many relevant lesions of the ankle joint in the elderly cannot be detected with plain X-rays. Methods: Complete data sets and preoperative X-rays of 84 patients aged above 60 years with ankle fractures were analysed retrospectively. There were 59 women and 25 men, with a mean age of 69.9 years. Operation reports and preoperative X-rays were analysed with respect to four relevant lesions: multifragmentary fracture pattern of the lateral malleolus, involvement of the medial malleolus, posterior malleolar fractures and bony avulsion of anterior syndesmosis. Sensitivity, specificity, positive predictive value, negative predictive value, accuracy and prevalence were calculated. Results: The prevalence of specific ankle lesions in the analyzed cohort was 24 % for the multifragmentary fracture pattern of the lateral malleolus, 38 % for fractures of the medial malleolus, 25 % for posterior malleolar fractures and 22.6 % for bony avulsions of the anterior syndesmosis. Multifragmentary fracture patterns of the lateral malleolus (sensitivity 0 %) and bony avulsions of the anterior syndesmosis (sensitivity 5 %) could not be detected in plain X-rays of the ankle joint at all. Fractures of the medial malleolus and involvement of the dorsal tibial facet were detected with a sensitivity of 96.8 % and 76.2 %, respectively, and specificity of 100 % in both cases. Conclusions: This study confirms that complex fracture patterns, such as multifragmentary involvement of the lateral malleolus, additional fracture of the medial malleolus, involvement of the dorsal tibial facet or bony avulsion of the anterior syndesmosis are common in ankle fractures of the elderly. Therefore, CT scans should be routinely considered for primary

  17. Effects of changing speed on knee and ankle joint load during walking and running.

    PubMed

    de David, Ana Cristina; Carpes, Felipe Pivetta; Stefanyshyn, Darren

    2015-01-01

    Joint moments can be used as an indicator of joint loading and have potential application for sports performance and injury prevention. The effects of changing walking and running speeds on joint moments for the different planes of motion still are debatable. Here, we compared knee and ankle moments during walking and running at different speeds. Data were collected from 11 recreational male runners to determine knee and ankle joint moments during different conditions. Conditions include walking at a comfortable speed (self-selected pacing), fast walking (fastest speed possible), slow running (speed corresponding to 30% slower than running) and running (at 4 m · s(-1) ± 10%). A different joint moment pattern was observed between walking and running. We observed a general increase in joint load for sagittal and frontal planes as speed increased, while the effects of speed were not clear in the transverse plane moments. Although differences tend to be more pronounced when gait changed from walking to running, the peak moments, in general, increased when speed increased from comfortable walking to fast walking and from slow running to running mainly in the sagittal and frontal planes. Knee flexion moment was higher in walking than in running due to larger knee extension. Results suggest caution when recommending walking over running in an attempt to reduce knee joint loading. The different effects of speed increments during walking and running should be considered with regard to the prevention of injuries and for rehabilitation purposes.

  18. Retrospective analysis of the rate and interval to union for joint arthrodesis of the foot and ankle.

    PubMed

    Mirmiran, Roya; Wilde, Brandon; Nielsen, Michael

    2014-01-01

    Arthrodesis is a common procedure indicated for surgical treatment of end-stage degenerative joint disease of the foot and ankle. Many published studies have reviewed the union rate, focusing on specific technique or fixation. However, studies reporting on the average period required to achieve fusion, irrespective of the type of fixation or surgical method used, have been lacking. We report on the union rate and interval to fusion in patients who had undergone primary arthrodesis of various joints of the foot and ankle. A retrospective review of the medical records of 135 patients was performed. The specific joints studied were ankle, and the subtalar, triple, first tarsometatarsal, first metatarsophalangeal, and hallux interphalangeal joints. Our results showed that the average interval for complete fusion was significantly less for the joints in the forefoot, with the subtalar joint, ankle, and triple arthrodesis requiring a longer period to achieve complete fusion. The nonunion rate was also greater when the fusion involved the joints of the rearfoot. Our results have refuted the idea that 6 weeks is the minimum period required to achieve fusion in the foot and ankle. The results of our study support the need for additional education of the patients and surgeons that the interval required for recovery after foot and ankle fusion depends on the location and surface area that has been fused.

  19. Changes in joint position sense after conservatively treated chronic lateral ankle instability.

    PubMed

    Kynsburg, A; Halasi, T; Tállay, A; Berkes, I

    2006-12-01

    Improvement of ankle proprioception through physiotherapy (a.k.a. proprioceptive training) is a widely accepted conservative treatment modality of chronic functional lateral ankle instability. Clinical studies provided controversial data on its proprioceptive effect. Aim of this study was to gain evidence on the efficacy of proprioceptive training on ankle joint position sense. Ten patients (five males and five females, aged 23.3+/-5.4 years) were treated conservatively for chronic lateral ankle instability with a special training programme over 6 weeks. For the assessment of joint position sense we used the slope-box test, first applied and described by Robbins et al. (Br J Sports Med 29:242-247, 1995). The test was performed before the start and after the end of the training programme, measuring joint position sense on 11 different slope amplitudes in four directions (anterior, posterior, lateral and medial) in random order each on both ankles. Comparisons were made between pre- and post-training results as well as versus a control-group of ten healthy athletes. Overall the proprioceptive sensory function of the studied group has improved, but this improvement was not significant in all directions. Only two patients have shown significant improvement of joint position sense in all directions (mean estimate error improvement: 2.47 degrees ), while conservative treatment was partially successful in five others (mean estimate error improvement: 0.73 degrees ). The follow-up results of these seven patients were comparable with the values measured in the control-group. Three patients did not show any improvements (mean estimate error improvement: -0.55 degrees ) (overall difference between improving and non-improving patients: P<0.0001). Mean absolute estimate error profiles of the seven improving patients became similar to the profiles of healthy athletes, while these changes could not be observed in the case of the three non-improving participants. Proprioceptive

  20. Joint Loads in Marsupial Ankles Reflect Habitual Bipedalism versus Quadrupedalism

    PubMed Central

    Carlson, Kristian J.; Jashashvili, Tea; Houghton, Kimberley; Westaway, Michael C.; Patel, Biren A.

    2013-01-01

    Joint surfaces of limb bones are loaded in compression by reaction forces generated from body weight and musculotendon complexes bridging them. In general, joints of eutherian mammals have regions of high radiodensity subchondral bone that are better at resisting compressive forces than low radiodensity subchondral bone. Identifying similar form-function relationships between subchondral radiodensity distribution and joint load distribution within the marsupial postcranium, in addition to providing a richer understanding of marsupial functional morphology, can serve as a phylogenetic control in evaluating analogous relationships within eutherian mammals. Where commonalities are established across phylogenetic borders, unifying principles in mammalian physiology, morphology, and behavior can be identified. Here, we assess subchondral radiodensity patterns in distal tibiae of several marsupial taxa characterized by different habitual activities (e.g., locomotion). Computed tomography scanning, maximum intensity projection maps, and pixel counting were used to quantify radiodensity in 41 distal tibiae of bipedal (5 species), arboreal quadrupedal (4 species), and terrestrial quadrupedal (5 species) marsupials. Bipeds (Macropus and Wallabia) exhibit more expansive areas of high radiodensity in the distal tibia than arboreal (Dendrolagus, Phascolarctos, and Trichosurus) or terrestrial quadrupeds (Sarcophilus, Thylacinus, Lasiorhinus, and Vombatus), which may reflect the former carrying body weight only through the hind limbs. Arboreal quadrupeds exhibit smallest areas of high radiodensity, though they differ non-significantly from terrestrial quadrupeds. This could indicate slightly more compliant gaits by arboreal quadrupeds compared to terrestrial quadrupeds. The observed radiodensity patterns in marsupial tibiae, though their statistical differences disappear when controlling for phylogeny, corroborate previously documented patterns in primates and xenarthrans

  1. Joint loads in marsupial ankles reflect habitual bipedalism versus quadrupedalism.

    PubMed

    Carlson, Kristian J; Jashashvili, Tea; Houghton, Kimberley; Westaway, Michael C; Patel, Biren A

    2013-01-01

    Joint surfaces of limb bones are loaded in compression by reaction forces generated from body weight and musculotendon complexes bridging them. In general, joints of eutherian mammals have regions of high radiodensity subchondral bone that are better at resisting compressive forces than low radiodensity subchondral bone. Identifying similar form-function relationships between subchondral radiodensity distribution and joint load distribution within the marsupial postcranium, in addition to providing a richer understanding of marsupial functional morphology, can serve as a phylogenetic control in evaluating analogous relationships within eutherian mammals. Where commonalities are established across phylogenetic borders, unifying principles in mammalian physiology, morphology, and behavior can be identified. Here, we assess subchondral radiodensity patterns in distal tibiae of several marsupial taxa characterized by different habitual activities (e.g., locomotion). Computed tomography scanning, maximum intensity projection maps, and pixel counting were used to quantify radiodensity in 41 distal tibiae of bipedal (5 species), arboreal quadrupedal (4 species), and terrestrial quadrupedal (5 species) marsupials. Bipeds (Macropus and Wallabia) exhibit more expansive areas of high radiodensity in the distal tibia than arboreal (Dendrolagus, Phascolarctos, and Trichosurus) or terrestrial quadrupeds (Sarcophilus, Thylacinus, Lasiorhinus, and Vombatus), which may reflect the former carrying body weight only through the hind limbs. Arboreal quadrupeds exhibit smallest areas of high radiodensity, though they differ non-significantly from terrestrial quadrupeds. This could indicate slightly more compliant gaits by arboreal quadrupeds compared to terrestrial quadrupeds. The observed radiodensity patterns in marsupial tibiae, though their statistical differences disappear when controlling for phylogeny, corroborate previously documented patterns in primates and xenarthrans

  2. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion

    PubMed Central

    Maculan, Marco; Pizzolato, Claudio; Reggiani, Monica; Farina, Dario

    2015-01-01

    This work presents an electrophysiologically and dynamically consistent musculoskeletal model to predict stiffness in the human ankle and knee joints as derived from the joints constituent biological tissues (i.e., the spanning musculotendon units). The modeling method we propose uses electromyography (EMG) recordings from 13 muscle groups to drive forward dynamic simulations of the human leg in five healthy subjects during overground walking and running. The EMG-driven musculoskeletal model estimates musculotendon and resulting joint stiffness that is consistent with experimental EMG data as well as with the experimental joint moments. This provides a framework that allows for the first time observing 1) the elastic interplay between the knee and ankle joints, 2) the individual muscle contribution to joint stiffness, and 3) the underlying co-contraction strategies. It provides a theoretical description of how stiffness modulates as a function of muscle activation, fiber contraction, and interacting tendon dynamics. Furthermore, it describes how this differs from currently available stiffness definitions, including quasi-stiffness and short-range stiffness. This work offers a theoretical and computational basis for describing and investigating the neuromuscular mechanisms underlying human locomotion. PMID:26245321

  3. Safety profile of sural nerve in posterolateral approach to the ankle joint: MRI study.

    PubMed

    Ellapparadja, Pregash; Husami, Yaya; McLeod, Ian

    2014-05-01

    The posterolateral approach to ankle joint is well suited for ORIF of posterior malleolar fractures. There are no major neurovascular structures endangering this approach other than the sural nerve. The sural nerve is often used as an autologous peripheral nerve graft and provides sensation to the lateral aspect of the foot. The aim of this paper is to measure the precise distance of the sural nerve from surrounding soft tissue structures so as to enable safe placement of skin incision in posterolateral approach. This is a retrospective image review study involving 64 MRI scans. All measurements were made from Axial T1 slices. The key findings of the paper is the safety window for the sural nerve from the lateral border of tendoachilles (TA) is 7 mm, 1.3 cm and 2 cm at 3 cm above ankle joint, at the ankle joint and at the distal tip of fibula respectively. Our study demonstrates the close relationship of the nerve in relation to TA and fibula in terms of exact measurements. The safety margins established in this study should enable the surgeon in preventing endangerment of the sural nerve encountered in this approach.

  4. Effects of plyometric training on passive stiffness of gastrocnemii and the musculo-articular complex of the ankle joint.

    PubMed

    Fouré, A; Nordez, A; Guette, M; Cornu, C

    2009-12-01

    This study aimed to determine simultaneously the effects of plyometric training on the passive stiffness of the ankle joint musculo-articular complex, the gastrocnemii muscle-tendon complex (MTC) and the Achilles tendon in order to assess possible local adaptations of elastic properties. Seventeen subjects were divided into a trained (TG) group and a control (CG) group. They were tested before and after 8 weeks of a plyometric training period. The ankle joint range of motion (RoM), the global musculo-articular passive stiffness of the ankle joint, the maximal passive stiffness of gastrocnemii and the stiffness of the Achilles tendon during isometric plantar flexion were determined. A significant increase in the jump performances of TG relative to CG was found (squat jumps: +17.6%, P=0.008; reactive jumps: +19.8%, P=0.001). No significant effect of plyometric training was observed in the ankle joint RoM, musculo-articular passive stiffness of the ankle joint or Achilles tendon stiffness (P>0.05). In contrast, the maximal passive stiffness of gastrocnemii of TG increased after plyometric training relative to CG (+33.3%, P=0.001). Thus, a specific adaptation of the gastrocnemii MTC occurred after plyometric training, without affecting the global passive musculo-articular stiffness of the ankle joint.

  5. One-degree-of-freedom spherical model for the passive motion of the human ankle joint.

    PubMed

    Sancisi, Nicola; Baldisserri, Benedetta; Parenti-Castelli, Vincenzo; Belvedere, Claudio; Leardini, Alberto

    2014-04-01

    Mathematical modelling of mobility at the human ankle joint is essential for prosthetics and orthotic design. The scope of this study is to show that the ankle joint passive motion can be represented by a one-degree-of-freedom spherical motion. Moreover, this motion is modelled by a one-degree-of-freedom spherical parallel mechanism model, and the optimal pivot-point position is determined. Passive motion and anatomical data were taken from in vitro experiments in nine lower limb specimens. For each of these, a spherical mechanism, including the tibiofibular and talocalcaneal segments connected by a spherical pair and by the calcaneofibular and tibiocalcaneal ligament links, was defined from the corresponding experimental kinematics and geometry. An iterative procedure was used to optimize the geometry of the model, able to predict original experimental motion. The results of the simulations showed a good replication of the original natural motion, despite the numerous model assumptions and simplifications, with mean differences between experiments and predictions smaller than 1.3 mm (average 0.33 mm) for the three joint position components and smaller than 0.7° (average 0.32°) for the two out-of-sagittal plane rotations, once plotted versus the full flexion arc. The relevant pivot-point position after model optimization was found within the tibial mortise, but not exactly in a central location. The present combined experimental and modelling analysis of passive motion at the human ankle joint shows that a one degree-of-freedom spherical mechanism predicts well what is observed in real joints, although its computational complexity is comparable to the standard hinge joint model.

  6. Inverse Dynamics Model for the Ankle Joint with Applications in Tibia Malleolus Fracture

    NASA Astrophysics Data System (ADS)

    Budescu, E.; Merticaru, E.; Chirazi, M.

    The paper presents a biomechanical model of the ankle joint, in order to determine the force and the torque of reaction into the articulation, through inverse dynamic analysis, in various stages of the gait. Thus, knowing the acceleration of the foot and the reaction force between foot and ground during the gait, determined by experimental measurement, there was calculated, for five different positions of the foot, the joint reaction forces, on the basis of dynamic balance equations. The values numerically determined were compared with the admissible forces appearing in the technical systems of osteosynthesis of tibia malleolus fracture, in order to emphasize the motion restrictions during bone healing.

  7. Ankle replacement

    MedlinePlus

    ... is surgery to replace the damaged bone and cartilage in the ankle joint. Artificial joint parts (prosthetics) ... Your surgeon will remove the damaged bone and cartilage. Your surgeon will replace the damaged part of: ...

  8. Tibialis anterior response to sudden ankle displacements in normal and Parkinsonian subjects.

    PubMed

    Chan, C W; Kearney, R E; Jones, G M

    1979-09-14

    It is well known that in Parkinsonian subjects with akinesia, reaction times are increased but reflex latencies remain normal. We have attempted to use this knowledge to distinguish between 'reflex' and 'voluntary' components of the electromyographic (EMG) response to ankle displacement. The EMG and torque responses of tibialis anterior (TA) to randomly applied servo-controlled plantar-flexing displacements of the ankle with and without the subject's intentional opposition were examined in 9 Parkinsonian and 9 age-matched normal humans. To obtain a measure of akinesia, the response latency to a visual stimulus was subsequently measured in the same subjects. Three principal findings emerged. (1) The intermediate latency EMG component (PSR) of the response evoked by ankle displacement with the subject instructed to relax was more regularly evoked and of lower threshold in Parkinsonians than in normals. This finding corresponds to the enlarged M2 component in upper limb muscles. However, the facilitation of PSR was not found to be associated with an increase in torque. In fact, the patients did not exhibit more stiffness than normals under our experimental conditions. (2) Mean latency estimate of the PSR was indistinguishable between Parkinsonians and normals. This finding puts the PSR in the nature of a reflex. Indeed, in accordance with reflex behaviour which is proportional to input characteristics, its area increased linearly with increase in the magnitude of displacement velocity. (3) In contrast, the 'late' EMG response (FSR) evoked by opposing sudden ankle displacement exhibited a significantly longer latency in 6 out of 8 Parkinsonians than normals. In the same patients, the EMG response latency to a visual signal was similarly increased. The delay of FSR in akinesia patients thus argued against its being a stereotyped reflex. The result is discussed with reference to the recent finding that preprogrammed responses are delayed in Parkinsonians.

  9. The Effects of a Lateral Wedge Insole on Knee and Ankle Joints During Slope Walking.

    PubMed

    Uto, Yuki; Maeda, Tetsuo; Kiyama, Ryoji; Kawada, Masayuki; Tokunaga, Ken; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Yoshimoto, Yoichi; Yone, Kazunori

    2015-12-01

    The purpose of this study was to determine whether a lateral wedge insole reduces the external knee adduction moment during slope walking. Twenty young, healthy subjects participated in this study. Subjects walked up and down a slope using 2 different insoles: a control flat insole and a 7° lateral wedge insole. A three-dimensional motion analysis system and force plate were used to examine the knee adduction moment, the ankle valgus moment, and the moment arm of the ground reaction force to the knee joint center in the frontal plane. The lateral wedge insole significantly decreased the moment arm of the ground reaction force, resulting in a reduction of the knee adduction moment during slope walking, similar to level walking. The reduction ratio of knee adduction moment by the lateral wedge insole during the early stance of up-slope walking was larger than that of level walking. Conversely, the lateral wedge insole increased the ankle valgus moment during slope walking, especially during the early stance phase of up-slope walking. Clinicians should examine the utilization of a lateral wedge insole for knee osteoarthritis patients who perform inclined walking during daily activity, in consideration of the load on the ankle joint.

  10. Consideration of equilibrium equations at the hip joint alongside those at the knee and ankle joints has mixed effects on knee joint response during gait.

    PubMed

    Adouni, M; Shirazi-Adl, A

    2013-02-01

    Accurate estimation of muscle forces during daily activities such as walking is critical for a reliable evaluation of loads on the knee joint. To evaluate knee joint muscle forces, the importance of the inclusion of the hip joint alongside the knee and ankle joints when treating the equilibrium equations remains yet unknown. An iterative kinematics-driven finite element model of the knee joint that accounts for the synergy between passive structures and active musculature is employed. The knee joint muscle forces and biomechanical response are predicted and compared with our earlier results that did not account for moment equilibrium equations at the hip joint. This study indicates that inclusion of the hip joint in the optimization along the knee and ankle joints only slightly (<10%) influences total forces in quadriceps, lateral hamstrings and medial hamstrings. As a consequence, even smaller differences are found in predicted ligament forces, contact forces/areas, and cartilage stresses/strains during the stance phase of gait. The distribution of total forces between the uni- and bi-articular muscle components in quadriceps and in lateral hamstrings; however, substantially alter at different stance phases.

  11. Changes in joint position sense after surgically treated chronic lateral ankle instability

    PubMed Central

    Halasi, T; Kynsburg, A; Tallay, A; Berkes, I

    2005-01-01

    Background: A search of the literature shows that the effect of surgery on ankle proprioception has been hardly investigated. Objective: To examine the effect of anatomical reconstruction of the anterolateral capsuloligamentous complex on ankle joint position sense. Methods: A prospective study using the "slope box" test. Ten consecutive patients were included in the study, and 10 healthy athletes represented the control group. Results: Similar test-retest reliability rates (overall reliability 0.92; p = 0.0013) were obtained to those of the original designers of the method. There were no significant differences with respect to side dominance (p = 0.9216). Investigation of the characteristics of mean absolute estimate errors showed that the controls tested became error prone in the range of slope altitudes 7.5–25° in every direction, compared with the range 0–5° (range of p values 0.00003–0.00072). The results of the intervention group showed that, for the two main directions of interest (anterior and lateral), preoperative differences in mean absolute estimate errors between injured (anterior 3.91 (2.81)°; lateral 4.06 (2.85)°) and healthy (anterior 2.94 (2.21)°, lateral 3.19 (2.64)°) sides (anterior, p = 0.0124; lateral, p = 0.0250) had disappeared (postoperative differences: anterior, p = 0.6906; lateral, p = 0.4491). The afflicted ankle had improved significantly after surgery in both important directions (anterior, p<0.0001; lateral, p = 0.0023). Conclusions: The study shows that differences in joint position sense between healthy and injured ankles disappeared as the result of surgery. Preoperative data show that proprioceptive malfunction is a cause of functional instability. If treatment is by means of surgery, the retensioning of the original anterolateral structures is inevitable, even if other grafting or surgical techniques are used. PMID:16244190

  12. Adaptations to long-term strength training of ankle joint muscles in old age.

    PubMed

    Simoneau, Emilie; Martin, Alain; Van Hoecke, Jacques

    2007-07-01

    The aim of this study was to enquire whether older adults, who continue plantar-flexion (PF) strength training for an additional 6-month period, would achieve further improvements in neuromuscular performance, in the ankle PFs, and in the antagonist dorsi-flexors (DFs). Twenty-three healthy older volunteers (mean age 77.4 +/- 3.7 years) took part in this investigation and 12 of them followed a 1-year strength-training program. Both neural and muscular factors were examined during isometric maximal voluntary contraction (MVC) torques in ankle PF and DF pre-training, post 6 and post 12 months. The main finding was that 6 months of additional strength training of the PFs, beyond 6 months, allowed further improvements in neuromuscular performance at the ankle joint in older adults. Indeed, during the first 6 months of progressive resistance training, there was an increase in the PF MVC torque of 11.1 +/- 19.9 N m, and then of 11.1 +/- 17.9 N m in the last 6-month period. However, it was only after 1 year that there was an improvement in the evoked contraction at rest in PF (+ 8%). The strength training of the agonist PF muscles appeared to have an impact on the maximal resultant torque in DF. However, it appeared that this gain was first due to modifications occurring in the trained PFs muscles, then, it seemed that the motor drive of the DFs per se was altered. In conclusion, long-term strength training of the PFs resulted in continued improvements in neuromuscular performance at the ankle joint in older adults, beyond the initial 6 months.

  13. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy

    PubMed Central

    2013-01-01

    Background Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: “spasticity” vs. “contracture”). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Methods Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. Results In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p < .001). Ratio between neural and non-neural contributors varied substantially within adolescents with CP. Significant associations of SPAT (spasticity test) score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. Conclusions Using an instrumented and model based approach, increased joint stiffness in CP could be mainly attributed to higher reflexive torque compared to control subjects. Ratios between contributors varied substantially within adolescents with CP. Quantitative differentiation of neural and non-neural stiffness contributors in CP allows for assessment of individual patient characteristics and tailoring of therapy. PMID:23880287

  14. The effect of the ankle joint angle in the level of soleus Ia afferent presynaptic inhibition.

    PubMed

    Patikas, D A; Kotzamanidis, C; Robertson, C T; Koceja, D M

    2004-12-01

    The factors that are responsible for the relationship between motoneuron excitability and muscle length may have both mechanical and/or neurophysiologic origins. The aim of the study was to investigate the changes in the level of presynaptic inhibition, as measured with a soleus H-reflex conditioning protocol, and muscle length. Ten healthy volunteers were measured at three different ankle angles: 30 degrees plantar flexion, neutral position (0 degrees) and 15 degrees dorsiflexion. At each position the soleus H-reflex and the maximum M-wave were measured while the limb was relaxed. The H-reflex was conditioned by a stimulation of the common peroneal nerve, 100 ms prior to the tibial nerve stimulation. The results revealed that the level of presynaptic inhibition was higher at the neutral position in comparison to the dorsiflexed or plantarflexed positions. Additionally, the HMAX/MMAX ratio was significantly decreased when the joint position was set at dorsiflexion. Further, there was a significant correlation, independent of ankle joint angle, between presynaptic inhibition levels and the HMAX/MMAX ratio. The above findings support the concept that peripheral feedback from passive, static modifications in the joint angle and consequently in muscle length, can modify the input/output threshold of the motoneurons on a presynaptic level.

  15. Anatomical variations of the anterior talofibular ligament of the human ankle joint

    PubMed Central

    MILNER, C. E.; SOAMES, R. W.

    1997-01-01

    Compared with other joints, the ligaments of the ankle have not been studied in great detail; consequently relatively little literature exists. The positions of the 3 major bands of the lateral collateral ligament are well known and documented (Schafer et al. 1915; Sarrafian, 1983; McMinn, 1994; Palastanga et al. 1994; Williams et al. 1995). The detailed anatomy of the ligaments is, however, relatively complex with variations of the major bands and several minor additional bands being reported (Sarrafian, 1993; Burks & Morgan, 1994; Rosenberg et al. 1995). PMID:9419003

  16. Open Dislocation of the High Ankle Joint After Fibular Graft Harvesting.

    PubMed

    Anđelković, Slađana Z; Vučković, Čedo Đ; Palibrk, Tomislav D; Milutinović, Suzana M; Bumbaširević, Marko Ž

    2015-01-01

    The free microvascular fibula and soft tissue transfer has become a widely used method for reconstruction of different regions. Donor site morbidity for free fibula microvascular flaps has generally been reported to be low, or at least acceptable. We describe the case of a patient who underwent vascularized free fibula graft harvest for mandibular reconstruction. After 21 months, he had sustained an open dislocation of the left high ankle joint during recreational sports activity. We did not found such case in the published data.

  17. IINCIDENCE OF ANKLE SPRAINS IN SOCCER PLAYERS WITH JOINT HYPERMOBILITY SYNDROME

    PubMed Central

    Vieira, Rodrigo Barreiros; Bertolini, Fabricio Melo; Vieira, Tallys Campos; Aguiar, Rodrigo Manso; Pinheiro, Guilherme Baldez; Lasmar, Rodrigo Campos Pace

    2015-01-01

    Objective: Eighty-three soccer players aged between 14 and 19 years, in the basic category of a professional soccer club in the city of Belo Horizonte, were followed up during the 2009 season. Methods: A prospective observational cohort study was conducted, in which these soccer players were divided randomly into two groups. The first consisted of individuals with joint hypermobility syndrome (JHS), totaling 22 players, and the second was a control group with 61 players without this syndrome, determined through a physical examinati. Results: Both groups were studied with regard to incidence of ankle sprains. At the end of this period, the data were compiled and statistical analysis was performed. A total of 43 cases of ankle injury due to sprains were recorded, of which nine episodes were in players with JHS, thus making p = 0.106. The significance level was 5%. Conclusion: We were able to conclude that in our study there was insufficient evidence to assert that there is an association with increased incidence of ankle sprains among patients with JHS. PMID:27047888

  18. Vibrotactile stimulation of fast-adapting cutaneous afferents from the foot modulates proprioception at the ankle joint.

    PubMed

    Mildren, Robyn L; Bent, Leah R

    2016-04-15

    It has previously been shown that cutaneous sensory input from across a broad region of skin can influence proprioception at joints of the hand. The present experiment tested whether cutaneous input from different skin regions across the foot can influence proprioception at the ankle joint. The ability to passively match ankle joint position (17° and 7° plantar flexion and 7° dorsiflexion) was measured while cutaneous vibration was applied to the sole (heel, distal metatarsals) or dorsum of the target foot. Vibration was applied at two different frequencies to preferentially activate Meissner's corpuscles (45 Hz, 80 μm) or Pacinian corpuscles (255 Hz, 10 μm) at amplitudes ∼3 dB above mean perceptual thresholds. Results indicated that cutaneous input from all skin regions across the foot could influence joint-matching error and variability, although the strongest effects were observed with heel vibration. Furthermore, the influence of cutaneous input from each region was modulated by joint angle; in general, vibration had a limited effect on matching in dorsiflexion compared with matching in plantar flexion. Unlike previous results in the upper limb, we found no evidence that Pacinian input exerted a stronger influence on proprioception compared with Meissner input. Findings from this study suggest that fast-adapting cutaneous input from the foot modulates proprioception at the ankle joint in a passive joint-matching task. These results indicate that there is interplay between tactile and proprioceptive signals originating from the foot and ankle.

  19. The Colorado Haemophilia Paediatric Joint Physical Examination Scale: normal values and interrater reliability.

    PubMed

    Hacker, M R; Funk, S M; Manco-Johnson, M J

    2007-01-01

    Persons with haemophilia often experience their first joint haemorrhage in early childhood. Recurrent bleeding into a joint may lead to significant morbidity, specifically haemophilic arthropathy. Early identification of the onset and progression of joint damage is critical to preserving joint structure and function. Physical examination is the most feasible approach to monitor joint health. Our group developed the Colorado Haemophilia Paediatric Joint Physical Examination Scale to identify earlier signs of joint degeneration and incorporate developmentally appropriate tasks for assessing joint function in young children. This study's objectives were to establish normal ranges for this scale and assess interrater reliability. The ankles, knees and elbows of 72 healthy boys aged 1 through 7 years were evaluated by a physical therapist to establish normal ranges. Exactly 10 boys in each age category from 2 to 7 years were evaluated by a second physical therapist to determine interrater reliability. The original scale was modified to account for the finding that mild angulation in the weight-bearing joints is developmentally normal. The interrater reliability of the scale ranged from fair to good, underscoring the need for physical therapists to have specific training in the orthopaedic assessment of very young children and the measurement error inherent in the goniometer. Modifications to axial alignment scoring will allow the scale to distinguish healthy joints from those suffering frequent haemarthroses.

  20. Physiological coxa varus-genu valgus influences internal knee and ankle joint moments in females during crossover cutting.

    PubMed

    Nyland, J A; Caborn, D N M

    2004-07-01

    This study evaluated the ankle and knee electromyographic, kinematic, and kinetic differences of 20 nonimpaired females with either neutral (group 1) or coxa varus-genu valgus (group 2) alignment during crossover cutting stance phase. Two-way mixed model ANOVA (group, session) assessed mean differences ( p<0.05) and correlation analysis further delineated relationships. During impact absorption, group 2 displayed earlier peak horizontal braking (anterior-posterior) ground reaction force timing, decreased and earlier peak internal knee extension moments (eccentric function), and earlier peak internal ankle dorsiflexion moment timing (eccentric function). During the pivot phase, group 2 displayed later and eccentrically-biased peak ankle plantar flexion moments, increased peak internal knee flexion moments (eccentric function), and later peak knee internal rotation timing. Correlation analysis revealed that during impact absorption, subjects with coxa varus-genu valgus alignment (group 2) displayed a stronger relationship between knee internal rotation velocity and peak internal ankle dorsiflexion moment onset timing ( r= -0.64 vs r = -0.26) and between peak horizontal braking ground reaction forces and peak internal ankle dorsiflexion moment onset timing ( r= 0.61 vs r= 0.24). During the pivot phase these subjects displayed a stronger relationship between peak horizontal braking ground reaction forces and peak internal ankle plantar flexion moment onset timing ( r= -0.63 vs r= -0.09) and between peak horizontal braking forces and peak internal ankle plantar flexion moments ( r= -0.72 vs r= -0.26). Group differences suggest that subjects with coxa varus-genu valgus frontal-plane alignment have an increased dependence on both ankle dorsiflexor and plantar flexor muscle group function during crossover cutting. Greater dependence on ankle muscle group function during the performance of a task that requires considerable 3D dynamic knee joint control suggests a greater

  1. A cadaveric study showing the anatomical variations in the branches of the dorsalis pedis artery at the level of the ankle joint and its clinical implication in ankle arthroscopy.

    PubMed

    Parikh, S; Dawe, E; Lee, C; Whitehead-Clarke, T; Smith, C; Bendall, S

    2016-09-23

    Introduction Pseudoaneurysm formation following ankle arthroscopy is a rare but potentially catastrophic complication. The placement of anterior ankle portals carries inherent risk to the superficial and deep peroneal nerves, as well as to the dorsalis pedis artery. Anatomical variations in the dorsalis pedis and the presence of branches at the joint line may increase the risk of vascular injury and pseudoaneurysm formation during arthroscopy. There is limited anatomical evidence available regarding the branches of the dorsalis pedis artery, which occur at the point at which they cross the ankle joint. Objectives The objective of the study was to describe the frequency and direction of branches of the dorsalis pedis crossing the ankle joint. Materials and Methods Nineteen cadaveric feet were carefully dissected to explore the course of the dorsalis pedis artery, noting in particular the branching pattern at the joint line. Results Eleven of the nineteen feet had a branch of the dorsalis pedis artery that crossed the level of the ankle joint. Out of these, six were lateral, four medial and one bilateral. Eight of the eleven specimens had one branch at, or just before, the level of the joint. Two specimens had two branches and one had three branches crossing the ankle, which were all in the same direction, crossing laterally to the main trunk of the dorsalis pedis. Conclusions Our study demonstrated high rates of branching of the dorsalis pedis artery at the level of the ankle joint. The role of these branches in pseudoaneurysm formation during anterior hindfoot surgery remains unclear.

  2. [Arthroscopic treatment of chondral lesions of the ankle joint. Evidence-based therapy].

    PubMed

    Thomas, M; Jordan, M; Hamborg-Petersen, E

    2016-02-01

    Ankle sprains are the most relevant injuries of the lower extremities and can lead to damage to ligaments and osteochondral lesions. Up to 50 % of patients with a sprained ankle later develop a lesion of the cartilage in the ankle joint or an osteochondral lesion of the talus. This can lead to osteoarthritis of the injured ankle joint. Spontaneous healing is possible in all age groups in cases of a bone bruise in the subchondral bone but in isolated chondral injuries is only useful in pediatric patients. In many cases chondral and osteochondral injuries lead to increasing demarcation of the affected area and can result in progressive degeneration of the joint if not recognized in time. There also exist a certain number of osteochondral changes of the articular surface of the talus without any history of relevant trauma, which are collectively grouped under the term osteochondrosis dissecans. Perfusion disorders are discussed as one of many possible causes of these alterations. Nowadays, chondral and osteochondral defects can be treated earlier due to detection using very sensitive magnetic resonance imaging (MRI) and computed tomography (CT) techniques. The use of conservative treatment only has a chance of healing in pediatric patients. Conservative measures for adults should only be considered as adjuvant treatment to surgery.Based on a comprehensive analysis of the current literature, this article gives an overview and critical analysis of the current concepts for treatment of chondral and osteochondral injuries and lesions of the talus. With arthroscopic therapy curettage and microfracture of talar lesions are the predominant approaches or retrograde drilling of the defect is another option when the chondral coating is retained. Implantation of autologous chondral cells or homologous juvenile cartilage tissue is also possible with arthroscopic techniques. Osteochondral fractures (flake fracture) are usually performed as a mini-open procedure supported by

  3. [The Significance of Early Reposition in Patients with Visible Malposition of the Upper Ankle Joint].

    PubMed

    Wohlrath, B; Schweigkofler, U; Barzen, S; Heinz, S M; Schmidt-Horlohé, K; Hoffmann, R

    2016-12-01

    Background: Protracted dislocation of the upper ankle joint can lead to substantial damage to the surrounding soft tissue, possibly followed by local complications and longer hospitalisation. Although reposition is usually easy to conduct, it is commonly recommended that this should only be performed by an experienced specialist, as long as there is no neurovascular restriction. There are however no exact data or studies on this problem. The aim of the present study is to examine whether early reposition is of benefit for subsequent treatment. Methods: Retrospective study of all patients in a supra-regional trauma centre during the period from January 2009 to July 2015, with either prehospital reposition of the ankle joint because of visible malposition or documented visible malposition on arrival at hospital. Patients with relevant concomitant injuries elsewhere were excluded. Data on the duration of dislocation were matched with diagnostic findings at the time of hospital admission, the kind of primary care, local complications and the time of hospitalisation, using linear regression analysis and ANOVA calculations. Results: Of a total of 391 patients with a dislocation or a fracture dislocation of the ankle joint within this period, 132 fulfilled the inclusion criteria. These patients were divided into 5 groups on the basis of the time of dislocation. Time to reposition was less than one hour for 39 patients, between one and two hours for 29 patients, between two and six hours for 41 patients, between six and 24 hours for 13 patients and more than 24 hours for 10 patients, all with a visible dislocation. The results on admission showed a significant increase in skin bruises and tension bullae with increasing time of dislocation. A longer time of dislocation was associated with more two stage surgical procedures with external fixators and a decreasing number of single stage procedures. While there was immediate definitive treatment of 79.5 % of the patients in

  4. Joint sparing treatments in early ankle osteoarthritis: current procedures and future perspectives.

    PubMed

    Castagnini, Francesco; Pellegrini, Camilla; Perazzo, Luca; Vannini, Francesca; Buda, Roberto

    2016-12-01

    Ankle osteoarthritis (AOA) is a severe pathology, mostly affecting a post-traumatic young population. Arthroscopic debridement, arthrodiastasis, osteotomy are the current joint sparing procedures, but, in the available studies, controversial results were achieved, with better outcomes in case of limited degeneration. Only osteotomy in case of malalignment is universally accepted as a joint sparing procedure in case of partial AOA. Recently, the biological mechanism of osteoarthritis has been intensively studied: it is a whole joint pathology, affecting cartilage, bone and synovial membrane. In particular, the first stage is characterized by a reversible catabolic activity with a state of chondropenia. Thus, biological procedures for early AOA were proposed in order to delay or to avoid end stage procedures. Mesenchymal stem cells (MSCs) may be a good solution to prevent or reverse degeneration, due to their immunomodulatory features (able to control the catabolic joint environment) and their regenerative osteochondral capabilities (able to treat the chondral defects). In fact, MSCs may regulate the cytokine cascade and the metalloproteinases release, restoring the osteochondral tissue as well. After interesting reports of mesenchymal stem cells seeded on scaffold and applied to cartilage defects in non-degenerated joints, bone marrow derived cells transplantation appears to be a promising technique in order to control the degenerative pathway and restore the osteochondral defects.

  5. Proprioception in classical ballet dancers. A prospective study of the influence of an ankle sprain on proprioception in the ankle joint.

    PubMed

    Leanderson, J; Eriksson, E; Nilsson, C; Wykman, A

    1996-01-01

    We studied prospectively the influence of ankle sprains on proprioception as measured by recording the postural sway of classical ballet dancers. Excellent balance and coordination are important for classical ballet dancers, and postural stability requires adequate proprioception from the ankle joint. Fifty-three professional dancers from the Royal Swedish Ballet, Stockholm, and 23 nonathletes, the control group, participated in the investigation. Postural sway was recorded and analyzed with a stabilimeter using a specially designed, portable, computer-assisted force plate. Six dancers sustained ankle sprains during followup. The recordings were obtained of these dancers before and after the injuries. The stabilometry results differed among the male and female dancers and the control group as follows: 1) the male dancers demonstrated a smaller total area of sway, and 2) both the male and female dancers had a smaller mean sway on the left foot than on the right (no mean difference in sway was found between the left and right foot in the control group). In comparison with the condition before injury and with the uninjured foot, the postural stability of the dancer was impaired for several weeks after the ankle sprain. Postural stability gradually improved during rehabilitation and improvement still occurred several weeks after professional dancing had resumed.

  6. Control of torque direction by spinal pathways at the cat ankle joint.

    PubMed

    Nichols, T R; Lawrence, J H; Bonasera, S J

    1993-01-01

    To study the biomechanics of the calcaneal tendon's complex insertion onto the calcaneus, we measured torque-time trajectories exerted by the triceps surae and tibialis anterior muscles in eight unanesthetized decerebrate cats using a multi-axis force-moment sensor placed at the ankle joint. The ankle was constrained to an angle of 110 degrees plantarflexion. Muscles were activated using crossed-extension (XER), flexion (FWR), and caudal cutaneous sural nerve (SNR) reflexes. Torque contributions of other muscles activated by these reflexes were eliminated by denervation or tenotomy. In two animals, miniature pressure transducers were implanted among tendon fibers from the lateral gastrocnemius (LG) muscle that insert straight into the calcaneus or among tendon fibers from the medial gastrocnemius (MG) that cross over and insert on the lateral aspect of calcaneus. Reflexively evoked torques had the following directions: FWR, dorsiflexion and adduction; SNR, plantarflexion and abduction; and XER, plantarflexion and modest abduction or adduction. The proportion of abduction torque to plantarflexion torque was always greater for SNR than XER; this difference was about 50% of the magnitude of abduction torque generated by tetanic stimulation of the peronei. During SNR, pressures were higher in regions of the calcaneal tendon originating from MG than regions originating from LG. Similarly, pressures within the MG portion of the calcaneal tendon were higher during SNR than during XER, although these two reflexes produced matched ankle plantarflexion forces. Selective tenotomies and electromyographic recordings further demonstrated that MG generated most of the torque in response to SNR, while soleus, LG, and MG all generated torques in response to XER.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Kinesio-Taping Application and Corticospinal Excitability at the Ankle Joint

    PubMed Central

    Tremblay, Francois; Karam, Siobhan

    2015-01-01

    Context Physiotherapists and athletic trainers often use Kinesio Taping (KT) to prevent and treat musculoskeletal injuries in athletes, yet evidence about its effects on neuromuscular performance is conflicting. Objective To investigate the influence of a KT application directed at the ankle joint on measures of corticospinal excitability with transcranial magnetic stimulation. Design Controlled laboratory study. Setting Research laboratory. Patients or Other Participants Twelve healthy young women (age = 23.1 ± 1.9 years; range, 19–26 years). Intervention(s) Participants were tested under no-tape and KT conditions according to a random sequence order. The KT was applied to the skin overlying the dorsiflexor and plantar-flexor muscles of the ankle. Main Outcome Measure(s) We assessed changes in the amplitude of motor-evoked potentials elicited at rest and during movement and changes in the silent period and background muscle activity during movement. Results Taping conditions had no effect on motor-evoked potential amplitude at rest or during movement or on the silent-period duration and background muscle activity. Conclusions Our results concur with other recent reports, showing KT applications have little influence at the neuromuscular level. Alterations in sensory feedback ascribed to elastic taping are likely insufficient to modulate corticospinal excitability in a functionally meaningful manner. PMID:26090708

  8. Inverted Pendulum Standing Apparatus for Investigating Closed-Loop Control of Ankle Joint Muscle Contractions during Functional Electrical Stimulation.

    PubMed

    Tan, John F; Masani, Kei; Vette, Albert H; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R

    2014-01-01

    The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing.

  9. Therapeutic Experience on Stance Control Knee-Ankle-Foot Orthosis With Electromagnetically Controlled Knee Joint System in Poliomyelitis

    PubMed Central

    Kim, Jung-Hwan; Ji, Sang-Goo; Jung, Kang-Jae

    2016-01-01

    A 54-year-old man with poliomyelitis had been using a conventional, passive knee-ankle-foot orthosis (KAFO) with a drop ring lock knee joint for about 40 years. A stance control KAFO (SCKAFO) with an electromagnetically controlled (E-MAG) knee joint system was prescribed. To correct his gait pattern, he also underwent rehabilitation therapy, which included muscle re-education, neuromuscular electrical stimulation, strengthening exercises for the lower extremities, and balance training twice a week for about 4 months. Both before and after rehabilitation, we conducted a gait analysis and assessed the physiological cost index in energy expended during walking in a locked-knee state and while he wore a SCKAFO with E-MAG. When compared with the pre-rehabilitation data, the velocity, step length, stride length, and knee kinematic data were improved after rehabilitation. Although the SCKAFO with E-MAG system facilitated the control of knee motion during ambulation, appropriate rehabilitative therapy was also needed to achieve a normal gait pattern. PMID:27152288

  10. Long-term follow-up of mobile-bearing total ankle replacement in patients with inflammatory joint disease.

    PubMed

    Kraal, T; van der Heide, H J L; van Poppel, B J; Fiocco, M; Nelissen, R G H H; Doets, H C

    2013-12-01

    Little is known about the long-term outcome of mobile-bearing total ankle replacement (TAR) in the treatment of end-stage arthritis of the ankle, and in particular for patients with inflammatory joint disease. The aim of this study was to assess the minimum ten-year outcome of TAR in this group of patients. We prospectively followed 76 patients (93 TARs) who underwent surgery between 1988 and 1999. No patients were lost to follow-up. At latest follow-up at a mean of 14.8 years (10.7 to 22.8), 30 patients (39 TARs) had died and the original TAR remained in situ in 28 patients (31 TARs). The cumulative incidence of failure at 15 years was 20% (95% confidence interval (CI) 11 to 28). The mean American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot score of the surviving patients at latest follow-up was 80.4 (95% CI 72 to 88). In total, 21 patients (23 TARs) underwent subsequent surgery: three implant exchanges, three bearing exchanges and 17 arthrodeses. Neither design of TAR described in this study, the LCS and the Buechel-Pappas, remains currently available. However, based both on this study and on other reports, we believe that TAR using current mobile-bearing designs for patients with end-stage arthritis of the ankle due to inflammatory joint disease remains justified.

  11. Mechanics of the ankle and subtalar joints revealed through a 3D quasi-static stress MRI technique.

    PubMed

    Siegler, S; Udupa, J K; Ringleb, S I; Imhauser, C W; Hirsch, B E; Odhner, D; Saha, P K; Okereke, E; Roach, N

    2005-03-01

    A technique to study the three-dimensional (3D) mechanical characteristics of the ankle and of the subtalar joints in vivo and in vitro is described. The technique uses an MR scanner compatible 3D positioning and loading linkage to load the hindfoot with precise loads while the foot is being scanned. 3D image processing algorithms are used to derive from the acquired MR images bone morphology, hindfoot architecture, and joint kinematics. The technique was employed to study these properties both in vitro and in vivo. The ankle and subtler joint motion and the changes in architecture produced in response to an inversion load and an anterior drawer load were evaluated. The technique was shown to provide reliable measures of bone morphology. The left-to-right variations in bone morphology were less than 5%. The left-to-right variations in unloaded hindfoot architecture parameters were less than 10%, and these properties were only slightly affected by inversion and anterior drawer loads. Inversion and anterior drawer loads produced motion both at the ankle and at the subtalar joint. In addition, high degree of coupling, primarily of internal rotation with inversion, was observed both at the ankle and at the subtalar joint. The in vitro motion produced in response to inversion and anterior drawer load was greater than the in vivo motion. Finally, external motion, measured directly across the ankle complex, produced in response to load was much greater than the bone movements measured through the 3D stress MRI technique indicating the significant effect of soft tissue and skin interference.

  12. [Surgery of ipsilateral Hawkins Ⅲ talus neck and ankle joint fractures via internal and lateral approaches with Herbert screws].

    PubMed

    Zhang, P; Dong, Q R; Wang, Z Y; Chen, B; Wan, J H; Wang, L

    2016-11-08

    Objective: To explore the manual operation skills of operative treatment of ipsilateral Hawkins Ⅲ talus neck and ankle joint fractures via internal and lateral approaches with Herbert screws, and to study the clinical results. Method: From Jan 2009 to Dec 2014, the clinical data of 13 patients with ipsilateral Hawkins Ⅲ talus neck and ankle joint fractres via internal and lateral approaches with Herbert screws were retrospectively analyzed in our department.There were 10 males and 3 female, ranging in age from 20 to 60 years with an average age of 31.5 years.The fractures occurred on the right side in 9 patients and on the left side in 4 patients.Three cases had the complication of medial malleolar fracture.Ten cases had the complication of medial and lateral malleolar fracture. Totally 11 cases were made calcaneal skeletal traction, and all the were made CT with three-dimensional image reconstruction.Two cases were treated with emergency operation.Eleven cases were treated with selective operation.The operation time was 5 hours-10 days after injury. The functional results were evaluated by American Orthopaedic Foot and Ankle Society (AOFAS). Result: The average duration of follow-up was 22.6 months (range, 14-65 months). There was skin necrosis in one cases, no incision infection, malunion and nonunion of the fractures and loss of reduction. At final follow-up, AOFAS ankle score was 75.2 (range, 42 to 93), higher than preoperative 39.2 (range, 23 to 60), the difference was statistically significant (P=0.023). The result was excellent in 4 cases, good in 5 cases, fair in 3 cases and 1 cases in poor, and the overall excellent or good rate was 69.2%. Avascular necrosis occurred in 3 cases (23.1%, 3/13). Traumatic arthritis was found in 5 cases (38.5%, 5/13), involved tibial astragaloid joint in 2 cases, involved subtalar joint in 1 case, involved tibial astragaloid joint and subtalar joint in 2 cases. Conclusion: The effect of surgical treatment for ipsilateral

  13. [Arthrodesis and endoprostheses of the ankle joint: indications, techniques and pitfalls].

    PubMed

    Wirth, S H; Klammer, G; Espinosa, N

    2013-09-01

    If adequate conservative measures for the treatment of end-stage ankle osteoarthritis have failed, surgery may be taken into consideration. After exorbitant failure rates in the beginning of total ankle replacement, nowadays this kind of treatment has regained lot of interest and has become a viable alternative to ankle fusion. The correct indication and a precise explanation of the surgical procedure, outcomes and potential complications provide a solid base for future success.Currently, there is no doubt that total ankle replacement has become an important player in the treatment of symptomatic and debilitating end-stage ankle arthritis. With increasing number of patients who undergo total ankle replacement the experience with this kind of procedure increases too. As a consequence several surgeons have started to stretch indications favoring total ankle replacement. However, it must be mentioned here, despite progress in terms of improved anatomical and biomechanical understanding of the hindfoot and improved surgical techniques and instruments, total ankle replacement and ankle fusion remain challenging and difficult procedures. We provide a review article including an overview of the relevant techniques. This article should serve as rough guide for surgeons and help in decision-making regarding total ankle replacement and ankle fusion.

  14. Antagonist mechanical contribution to resultant maximal torque at the ankle joint in young and older men.

    PubMed

    Simoneau, Emilie M; Billot, Maxime; Martin, Alain; Van Hoecke, Jacques

    2009-04-01

    A recorded muscular torque at one joint is a resultant torque corresponding to the participation of both agonist and antagonist muscles. This study aimed to examine the effect of aging on the mechanical contributions of both plantar- and dorsi-flexors to the resultant maximal voluntary contraction (MVC) torques exerted at the ankle joint, in dorsi-flexion (DF) and plantar-flexion (PF). The estimation of isometric agonist and antagonist torques by means of an EMG biofeedback technique was made with nine young (mean age 24 years) and nine older (mean age 80 years) men. While there was a non-significant age-related decline in the measured resultant DF MVC torque (-15%; p=0.06), there was a clear decrease in the estimated agonist MVC torque exerted by the dorsi-flexors (-39%; p=0.001). The DF-to-PF resultant MVC torque ratio was significantly lower in young than in older men (0.25 vs. 0.31; p=0.006), whereas the DF-to-PF agonist MVC torque ratio was no longer different between the two populations (0.38 vs. 0.35; p>0.05). Thus, agonist MVC torques in PF and DF would be similarly affected by aging, which could not be deduced when only resultant torques were examined.

  15. Phenotypic plasticity of climbing-related traits in the ankle joint of great apes and rainforest hunter-gatherers.

    PubMed

    Venkataraman, Vivek V; Kraft, Thomas S; Desilva, Jeremy M; Dominy, Nathaniel J

    2013-01-01

    The "negrito" and African "pygmy" phenotypes are predominately exhibited by hunter-gatherers living in rainforest habitats. Foraging within such habitats is associated with a unique set of locomotor behaviors, most notably habitual vertical climbing during the pursuit of honey, fruit, and game. When performed frequently, this behavior is expected to correlate with developmentally plastic skeletal morphologies that respond to mechanical loading. Using six measurements in the distal tibia and talus that discriminate nonhuman primates by vertical climbing frequency, we tested the prediction that intraspecific variation in this behavior is reflected in the morphology of the ankle joint of habitually climbing human populations. First, to explore the plasticity of climbing-linked morphologies, we made comparisons between chimpanzees, gorillas, and orangutans from wild and captive settings. The analysis revealed significant differences in two climbing-linked traits (anterior expansion of the articular surface of the distal tibia and increased degree of talar wedging), indicating that these traits are sensitive to climbing behavior. However, our analyses did not reveal any signatures of climbing behavior in the ankles of habitually climbing hunter-gatherers. These results suggest that the detection of fine-grained differences in human locomotor behaviors at the ankle joint, particularly those associated with arboreality, may be obscured by the functional demands of terrestrial bipedalism. Accordingly, it may be difficult to use population-level characteristics of ankle morphology to make inferences about the climbing behavior of hominins in the fossil record, even when facultative arborealism is associated with key fitness benefits.

  16. Movement within foot and ankle joint in children with spastic cerebral palsy: a 3-dimensional ultrasound analysis of medial gastrocnemius length with correction for effects of foot deformation

    PubMed Central

    2013-01-01

    Background In spastic cerebral palsy (SCP), a limited range of motion of the foot (ROM), limits gait and other activities. Assessment of this limitation of ROM and knowledge of active mechanisms is of crucial importance for clinical treatment. Methods For a comparison between spastic cerebral palsy (SCP) children and typically developing children (TD), medial gastrocnemius muscle-tendon complex length was assessed using 3-D ultrasound imaging techniques, while exerting externally standardized moments via a hand-held dynamometer. Exemplary X-ray imaging of ankle and foot was used to confirm possible TD-SCP differences in foot deformation. Results SCP and TD did not differ in normalized level of excitation (EMG) of muscles studied. For given moments exerted in SCP, foot plate angles were all more towards plantar flexion than in TD. However, foot plate angle proved to be an invalid estimator of talocrural joint angle, since at equal foot plate angles, GM muscle-tendon complex was shorter in SCP (corresponding to an equivalent of 1 cm). A substantial difference remained even after normalizing for individual differences in tibia length. X-ray imaging of ankle and foot of one SCP child and two typically developed adults, confirmed that in SCP that of total footplate angle changes (0-4 Nm: 15°), the contribution of foot deformation to changes in foot plate angle (8) were as big as the contribution of dorsal flexion at the talocrural joint (7°). In typically developed individuals there were relatively smaller contributions (10 -11%) by foot deformation to changes in foot plate angle, indicating that the contribution of talocrural angle changes was most important. Using a new estimate for position at the talocrural joint (the difference between GM muscle–tendon complex length and tibia length, GM relative length) removed this effect, thus allowing more fair comparison of SCP and TD data. On the basis of analysis of foot plate angle and GM relative length as a function

  17. The effects of ankle joint strategy exercises with and without visual feedback on the dynamic balance of stroke patients

    PubMed Central

    Jeon, Si-Nae; Choi, Jung-Hyun

    2015-01-01

    [Purpose] The aim of this study was to examine the effects of visual feedback training on the balance of stroke patients performing ankle joint strategy exercises. [Subjects and Methods] In this study, 26 stroke patients were randomly and equally assigned to a visual feedback group (VFG) and a visual disuse group (VDG). They performed ankle joint strategy exercises for 30 minutes, three times per week for six weeks. The patients’ balance ability was measured before and after the exercises to compare the effects of visual feedback. To assess balance ability, the limits of stability (LOS) and the distance the center of pressure (CoP) moved were measured using a BT4 portable force platform. The Berg balance scale (BBS) and the timed up and go (TUG) test were also used to assess balance before and after the exercises. [Results] Changes in LOS were significant in the anterior, posterior, left, and right directions in each group, and the interactions between the two groups were significant in the posterior, left, and right directions. The changes in TUG and BBS results between pre-test and the post-test were statistically significant in the two groups, and also between the groups. [Conclusion] Visual feedback training had a positive effect on balance when ankle joint strategy exercises were performed by stroke patients to improve balance. PMID:26355721

  18. Effect of isotonic and isokinetic exercise on muscle activity and balance of the ankle joint

    PubMed Central

    Kim, Mi-Kyoung; Yoo, Kyung-Tae

    2015-01-01

    [Purpose] This study was performed to examine how the balance of lower limbs and the muscle activities of the tibialis anterior (TA), the medial gastrocnemius (GCM), and the peroneus longus (PL) are influenced by isotonic and isokinetic exercise of the ankle joint. [Subjects] The subjects of this study were healthy adults (n=20), and they were divided into two groups (isotonic=10, isokinetic=10). [Methods] Isotonic group performed 3 sets of 10 contractions at 50% of MVIC and Isokinetic group performed 3 sets of 60°/sec. Muscle activity was measured by EMG and balance was measured by one-leg standing test. [Results] For muscle activity, a main effect of group was found in the non-dominant TA, and the dominant TA, GCM and PL. For balance, a main effect of time was found in both groups for the sway area measured support was provided by the non-dominant side. [Conclusion] In terms of muscle activity, the two groups showed a significant difference, and the isokinetic group showed higher muscle activities. In terms of balance, there was a significant difference between the pre-test and the post-test. The results of this study may help in the selection of exercises for physical therapy, because they show that muscle activity and balance vary according to the type of exercise. PMID:25729181

  19. ANKLE JOINT CONTROL DURING SINGLE-LEGGED BALANCE USING COMMON BALANCE TRAINING DEVICES – IMPLICATIONS FOR REHABILITATION STRATEGIES

    PubMed Central

    Strøm, Mark; Thorborg, Kristian; Bandholm, Thomas; Tang, Lars; Zebis, Mette; Nielsen, Kristian

    2016-01-01

    ABSTRACT Background A lateral ankle sprain is the most prevalent musculoskeletal injury in sports. Exercises that aim to improve balance are a standard part of the ankle rehabilitation process. In an optimal progression model for ankle rehabilitation and prevention of future ankle sprains, it is important to characterize different balance exercises based on level of difficulty and sensori-motor training stimulus. Purpose The purpose of this study was to investigate frontal-plane ankle kinematics and associated peroneal muscle activity during single-legged balance on stable surface (floor) and three commonly used balance devices (Airex®, BOSU® Ball and wobble board). Design Descriptive exploratory laboratory study. Methods Nineteen healthy subjects performed single-legged balance with eyes open on an Airex® mat, BOSU® Ball, wobble board, and floor (reference condition). Ankle kinematics were measured using reflective markers and 3-dimensional recordings and expressed as inversion-eversion range of motion variability, peak velocity of inversion and number of inversion-eversion direction changes. Peroneus longus EMG activity was averaged and normalized to maximal activity during maximum voluntary contraction (MVC), and in addition amplitude probability distribution function (APDF) between 90 and 10% was calculated as a measure of muscle activation variability. Results Balancing on BOSU® Ball and wobble board generally resulted in increased ankle kinematic and muscle activity variables, compared to the other surfaces. BOSU® Ball was the most challenging in terms of inversion-eversion variability while wobble board was associated with a higher number of inversion-eversion direction changes. No differences in average muscle activation level were found between these two surfaces, but the BOSU® Ball did show a more variable activation pattern in terms of APDF. Conclusion The results showed large kinematic variability among different balance training devices and

  20. An EMG-Controlled SMA Device for the Rehabilitation of the Ankle Joint in Post-Acute Stroke

    NASA Astrophysics Data System (ADS)

    Pittaccio, S.; Viscuso, S.

    2011-07-01

    The capacity of flexing one's ankle is an indispensible segment of gait re-learning, as imbalance, wrong compensatory use of other joints and risk of falling may depend on the so-called drop-foot. The rehabilitation of ankle dorsiflexion may be achieved through active exercising of the relevant musculature (especially tibialis anterior, TA). This can be troublesome for patients affected by weakness and flaccid paresis. Thus, as needs evolve during patient's improvements, a therapeutic device should be able to guide and sustain gradual recovery by providing commensurate aid. This includes exploiting even initial attempts at voluntary motion and turns those into effective workout. An active orthosis powered by two rotary actuators containing NiTi wire was designed to obtain ankle dorsiflexion. A computer routine that analyzes the electromyographic (sEMG) signal from TA muscle is used to control the orthosis and trigger its activation. The software also provides instructions and feed-back for the patient. Tests on the orthosis proved that it can produce strokes up to 36° against resisting torques exceeding 180 Ncm. Three healthy subjects were able to control the orthosis by modulating their TA sEMG activity. The movement produced in the preliminary tests is interesting for lower limb rehabilitation, and will be further improved by optimizing body-orthosis interface. It is hoped that this device will enhance early rehabilitation and recovery of ankle mobility in stroke patients.

  1. The Effect of Velocity of Joint Mobilization on Corticospinal Excitability in Individuals With a History of Ankle Sprain.

    PubMed

    Fisher, Beth E; Piraino, Andrew; Lee, Ya-Yun; Smith, Jo Armour; Johnson, Sean; Davenport, Todd E; Kulig, Kornelia

    2016-07-01

    Study Design Controlled laboratory study. Background Joint mobilization and manipulation decrease pain and improve patient function. Yet, the processes underlying these changes are not well understood. Measures of corticospinal excitability provide insight into potential mechanisms mediated by the central nervous system. Objectives To investigate the differential effects of joint mobilization and manipulation at the talocrural joint on corticospinal excitability in individuals with resolved symptoms following ankle sprain. Methods Twenty-seven participants with a history of ankle sprain were randomly assigned to the control, joint mobilization, or thrust manipulation group. The motor-evoked potential (MEP) and cortical silent period (CSP) of the tibialis anterior and gastrocnemius were obtained with transcranial magnetic stimulation at rest and during active contraction of the tibialis anterior. The slopes of MEP/CSP input/output curves and the maximal MEP/CSP values were calculated to indicate corticospinal excitability. Behavioral measures, including ankle dorsiflexion and dynamic balance, were evaluated. Results A repeated-measures analysis of variance of the MEP slope showed a significant group-by-time interaction for the tibialis anterior at rest (P = .002) and during active contraction (P = .042). After intervention, the thrust manipulation group had an increase in corticospinal excitability, while the corticospinal excitability decreased in the mobilization group. The thrust manipulation group, but not other groups, also demonstrated a significant increase in the maximal MEP amplitude of the tibialis anterior after intervention. Conclusion The findings suggest that joint manipulation and mobilization have different effects on corticospinal excitability. The increased corticospinal excitability following thrust manipulation may provide a window for physical therapists to optimize muscle recruitment and subsequently movement. The trial was registered at

  2. Total Ankle Replacement Survival Rates Based on Kaplan-Meier Survival Analysis of National Joint Registry Data.

    PubMed

    Bartel, Annette F P; Roukis, Thomas S

    2015-10-01

    National joint registry data provides unique information about primary total ankle replacement (TAR) survival. We sought to recreate survival curves among published national joint registry data sets using the Kaplan-Meier estimator. Overall, 5152 primary and 591 TAR revisions were included over a 2- to 13-year period with prosthesis survival for all national joint registries of 0.94 at 2-years, 0.87 at 5-years and 0.81 at 10-years. National joint registry datasets should strive for completion of data presentation including revision definitions, modes and time of failure, and patients lost to follow-up or death for complete accuracy of the Kaplan-Meier estimator.

  3. Normal Anatomy and Compression Areas of Nerves of the Foot and Ankle: US and MR Imaging with Anatomic Correlation.

    PubMed

    De Maeseneer, Michel; Madani, Hardi; Lenchik, Leon; Kalume Brigido, Monica; Shahabpour, Maryam; Marcelis, Stefaan; de Mey, Johan; Scafoglieri, Aldo

    2015-01-01

    The anatomy of the nerves of the foot and ankle is complex, and familiarity with the normal anatomy and course of these nerves as well as common anatomic variants is essential for correct identification at imaging. Ultrasonography (US) and magnetic resonance (MR) imaging allow visualization of these nerves and may facilitate diagnosis of various compression syndromes, such as "jogger's heel," Baxter neuropathy, and Morton neuroma. It may be difficult to distinguish the nerves from adjacent vasculature at MR imaging, and US can help in differentiation. The authors review the normal anatomy and common variants of the nerves of the foot and ankle, with use of dissected specimens and correlative US and MR imaging findings. In addition, the authors illustrate proper probe positioning, which is essential for visualizing the nerves at US. The authors' discussion focuses on the superficial and deep peroneal, sural, saphenous, tibial, medial and lateral plantar, medial and inferior calcaneal, common digital, and medial proper plantar digital nerves.

  4. Military Exercises, Knee and Ankle Joint Position Sense, and Injury in Male Conscripts: A Pilot Study

    PubMed Central

    Mohammadi, Farshid; Azma, Kamran; Naseh, Iman; Emadifard, Reza; Etemadi, Yasaman

    2013-01-01

    Context: The high incidence of lower limb injuries associated with physical exercises in military conscripts suggests that fatigue may be a risk factor for injuries. Researchers have hypothesized that lower limb injuries may be related to altered ankle and knee joint position sense (JPS) due to fatigue. Objective: To evaluate if military exercises could alter JPS and to examine the possible relation of JPS to future lower extremity injuries in military service. Design: Cohort study. Setting: Laboratory. Patients or Other Participants: A total of 50 male conscripts (age = 21.4 ± 2.3 years, height = 174.5 ± 6.4 cm, mass = 73.1 ± 6.3 kg) from a unique military base were recruited randomly. Main Outcome Measure(s): Participants performed 8 weeks of physical activities at the beginning of a military course. In the first part of the study, we instructed participants to recognize predetermined positions before and after military exercises so we could examine the effects of military exercise on JPS. The averages of the absolute error and the variable error of 3 trials were recorded. We collected data on the frequency of lower extremity injuries over 8 weeks. Next, the participants were divided into 2 groups: injured and uninjured. Separate 2 × 2 × 2 (group-by-time-by-joint) mixed-model analyses of variance were used to determine main effects and interactions of these factors for each JPS measure. In the second part of the study, we examined whether the effects of fatigue on JPS were related to the development of injury during an 8-week training program. We calculated Hedges effect sizes for JPS changes postexercise in each group and compared change scores between groups. Results: We found group-by-time interactions for all JPS variables (F range = 2.86–4.05, P < .01). All participants showed increases in JPS errors postexercise (P < .01), but the injured group had greater changes for all the variables (P < .01). Conclusions: Military conscripts who sustained lower

  5. Assessment of ankle and hindfoot stability and joint pressures using a human cadaveric model of a large lateral talar process excision: a biomechanical study.

    PubMed

    Sands, Andrew; White, Charles; Blankstein, Michael; Zderic, Ivan; Wahl, Dieter; Ernst, Manuela; Windolf, Markus; Hagen, Jennifer E; Richards, R Geoff; Stoffel, Karl; Gueorguiev, Boyko

    2015-03-01

    Lateral talar process fragment excision may be followed by hindfoot instability and altered biomechanics. There is controversy regarding the ideal fragment size for internal fixation versus excision and a concern that excision of a large fragment may lead to significant instability. The aim of this study was to assess the effect of a simulated large lateral talar process excision on ankle and subtalar joint stability.A custom-made seesaw rig was designed to apply inversion/eversion stress loading on 7 fresh-frozen human cadaveric lower legs and investigate them in pre-excision, 5 cm and 10 cm lateral talar process fragment excision states. Anteroposterior radiographs were taken to assess ankle and subtalar joint tilt and calculate angular change from neutral hindfoot alignment to 10-kg forced inversion/eversion. Ankle joint pressures and contact areas were measured under 30-kg axial load in neutral hindfoot alignment.In comparison to the pre-excision state, no significantly different mediolateral angular change was observed in the subtalar joint after 5 and 10 cm lateral talar process fragment excision in inversion and eversion. With respect to the ankle joint, 10-cm fragment excision produced significantly bigger inversion tibiotalar tilt compared with the pre-excision state, P = .04. No significant change of the ankle joint pressure and contact area was detected after 5 and 10-cm excision in comparison with the pre-excison state.An excision of up to 10 cm of the lateral talar process does not cause a significant instability at the level of the subtalar joint but might be a destabilizing factor at the ankle joint under inversion stress. The latter could be related to extensive soft tissue dissection required for resection.

  6. Triceps surae muscle-tendon unit length changes as a function of ankle joint angles and contraction levels: the effect of foot arch deformation.

    PubMed

    Iwanuma, Soichiro; Akagi, Ryota; Hashizume, Satoru; Kanehisa, Hiroaki; Yanai, Toshimasa; Kawakami, Yasuo

    2011-09-23

    The purpose of this study was to clarify how foot deformation affects the relationship between triceps surae muscle-tendon unit (MTU) length and ankle joint angle. For six women and six men a series of sagittal magnetic resonance (MR) images of the right foot were taken, and changes in MTU length (the displacement of the calcaneal tuberosity), foot arch angle, and ankle joint angle were measured. In the passive session, each subject's ankle joint was secured at 10° dorsiflexed position, neutral position (NP), and 10° and 20° plantar flexed positions while MR images were acquired. In the active session, each subject was requested to perform submaximal isometric plantar flexions (30%, 60%, and 80% of voluntary maximum) at NP. The changes in MTU length in each trial were estimated by two different formulae reported previously. The changes of the measured MTU length as a function of ankle joint angles observed in all trials of the active session were significantly (p<0.05) larger than corresponding values in the passive session and by the estimation formulae. In the passive session, MTU length changes were significantly smaller than the estimated values when the ankle was plantar flexed. The foot arch angle increased as the contraction level increased from rest (117 ± 4°) to 80% (125 ± 3°), and decreased as the ankle was positioned further into plantar flexion in the passive session (115 ± 3°). These results indicate that foot deformation profoundly affects the triceps surae MTU length-ankle joint angle relationship during plantar flexion.

  7. Age and gender differences in the control of vertical ground reaction force by the hip, knee and ankle joints.

    PubMed

    Toda, Haruki; Nagano, Akinori; Luo, Zhiwei

    2015-06-01

    [Purpose] This study examined the relationships between joint moment and the control of the vertical ground reaction force during walking in the elderly and young male and female individuals. [Subjects and Methods] Forty elderly people, 65 years old or older (20 males and 20 females), and 40 young people, 20 to 29 years old (20 males and 20 females), participated in this study. Joint moment and vertical ground reaction force during walking were obtained using a 3D motion analysis system and force plates. Stepwise linear regression analysis determined the joint moments that predict the amplitude of the vertical ground reaction force. [Results] Knee extension moment was related to the vertical ground reaction force in the young males and females. On the other hand, in the elderly females, hip, ankle, and knee joint moments were related to the first peak and second peak forces, and the minimum value of vertical ground reaction force, respectively. [Conclusion] Our results suggest that the young males and females make use of the knee joint moment to control of the vertical ground reaction force. There were differences between the elderly and the young females with regard to the joints used for the control of the vertical ground reaction force.

  8. Combined total ankle replacement and modified bridle tendon transfer for end-stage ankle joint arthrosis with paralytic dropfoot: report of an unusual case.

    PubMed

    Bibbo, Christopher; Baronofsky, Hyim J; Jaffe, Leland

    2011-01-01

    In recent years, total ankle replacement has become a reasonable option for many patients with end-stage ankle arthrosis. In order to be successful, total ankle replacement requires a relatively balanced alignment of the foot in relation to the leg. Such alignment is traditionally achieved surgically by means of stabilization of the hindfoot in conjunction with relocation osteotomy of the calcaneus and/or tibia. In this report, we describe the unconventional combination of total ankle replacement in an adult patient with concomitant paralysis that was addressed by means of tendon transfer.

  9. Posttraumatic severe infection of the ankle joint - long term results of the treatment with resection arthrodesis in 133 cases.

    PubMed

    Kienast, Benjamin; Kiene, J; Gille, J; Thietje, R; Gerlach, U; Schulz, A P

    2010-02-26

    Although there is a clear trend toward internal fixation for ankle arthrodesis, there is general consensus that external fixation is required for cases of posttraumatic infection. We retrospectively evaluated the technique and clinical long term results of external fixation in a triangular frame for cases of posttraumatic infection of the ankle. From 1993 to 2006 a consecutive series of 155 patients with an infection of the ankle was included in our study. 133 cases of the advanced "Gächter" stage III and IV were treated with arthrodesis. We treated the patients with a two step treatment plan. After radical debridement and sequestrectomy the malleoli and the joint surfaces were resected. An AO fixator was applied with two Steinmann-nails inserted in the tibia and in the calcaneus and the gap was temporary filled with gentamicin beads as the first step. In the second step we performed an autologous bone graft after a period of four weeks. The case notes were evaluated regarding trauma history, medical complaints, further injuries and illnesses, walking and pain status and occupational issues. Mean age at the index procedure was 49.7 years (18-82), 104 patients were male (67.1%). Follow up examination after mean 4.5 years included a standardised questionnaire and a clinical examination including the criteria of the AOFAS-Score and radiographs. 92.7% of the cases lead to a stable arthrodesis. In 5 patients the arthrodesis was found partly-stable. In six patients (4,5%) the infection was not controllable during the treatment process. These patients had to be treated with a below knee amputation. The mean AOFAS score at follow up was 63.7 (53-92). Overall there is a high degree of remaining disability. The complication rate and the reduced patient comfort reserve this method mainly for infection. Joint salvage is possible in the majority of cases with an earlier stage I and II infection.

  10. Inferring Muscle-Tendon Unit Power from Ankle Joint Power during the Push-Off Phase of Human Walking: Insights from a Multiarticular EMG-Driven Model

    PubMed Central

    2016-01-01

    Introduction Inverse dynamics joint kinetics are often used to infer contributions from underlying groups of muscle-tendon units (MTUs). However, such interpretations are confounded by multiarticular (multi-joint) musculature, which can cause inverse dynamics to over- or under-estimate net MTU power. Misestimation of MTU power could lead to incorrect scientific conclusions, or to empirical estimates that misguide musculoskeletal simulations, assistive device designs, or clinical interventions. The objective of this study was to investigate the degree to which ankle joint power overestimates net plantarflexor MTU power during the Push-off phase of walking, due to the behavior of the flexor digitorum and hallucis longus (FDHL)–multiarticular MTUs crossing the ankle and metatarsophalangeal (toe) joints. Methods We performed a gait analysis study on six healthy participants, recording ground reaction forces, kinematics, and electromyography (EMG). Empirical data were input into an EMG-driven musculoskeletal model to estimate ankle power. This model enabled us to parse contributions from mono- and multi-articular MTUs, and required only one scaling and one time delay factor for each subject and speed, which were solved for based on empirical data. Net plantarflexing MTU power was computed by the model and quantitatively compared to inverse dynamics ankle power. Results The EMG-driven model was able to reproduce inverse dynamics ankle power across a range of gait speeds (R2 ≥ 0.97), while also providing MTU-specific power estimates. We found that FDHL dynamics caused ankle power to slightly overestimate net plantarflexor MTU power, but only by ~2–7%. Conclusions During Push-off, FDHL MTU dynamics do not substantially confound the inference of net plantarflexor MTU power from inverse dynamics ankle power. However, other methodological limitations may cause inverse dynamics to overestimate net MTU power; for instance, due to rigid-body foot assumptions. Moving

  11. Shoe collar height effect on athletic performance, ankle joint kinematics and kinetics during unanticipated maximum-effort side-cutting performance.

    PubMed

    Lam, Gilbert Wing Kai; Park, Eun Jung; Lee, Ki-Kwang; Cheung, Jason Tak-Man

    2015-01-01

    Side-step cutting manoeuvres comprise the coordination between planting and non-planting legs. Increased shoe collar height is expected to influence ankle biomechanics of both legs and possibly respective cutting performance. This study examined the shoe collar height effect on kinematics and kinetics of planting and non-planting legs during an unanticipated side-step cutting. Fifteen university basketball players performed maximum-effort side-step cutting to the left 45° direction or a straight ahead run in response to a random light signal. Seven successful cutting trials were collected for each condition. Athletic performance, ground reaction force, ankle kinematics and kinetics of both legs were analysed using paired t-tests. Results indicated that high-collar shoes resulted in less ankle inversion and external rotation during initial contact for the planting leg. The high-collar shoes also exhibited a smaller ankle range of motion in the sagittal and transverse planes for both legs, respectively. However, no collar effect was found for ankle moments and performance indicators including cutting performance time, ground contact time, propulsion ground reaction forces and impulses. These findings indicated that high-collar shoes altered ankle positioning and restricted ankle joint freedom movements in both legs, while no negative effect was found for athletic cutting performance.

  12. Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot

    PubMed Central

    Wang, Yan; Li, Zengyong; Wong, Duo Wai-Chi; Zhang, Ming

    2015-01-01

    Background/Methodology Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak. Principal Findings/Conclusions Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after

  13. Normal sacroiliac joint: a CT study of asymptomatic patients

    SciTech Connect

    Vogler, J.B. III; Brown, W.H.; Helms, C.A.; Genant, H.K.

    1984-05-01

    The sacroiliac (SI) joints of 45 asymptomatic subjects were prospectively studied to define better the normal appearance of SI joints on CT scans and therby attach appropriate significance to CT signs of sacroiliitis. Joint space narrowing, subchondral sclerosis, erosions, ankylosis, osteophytes, subchondral cysts, and symmetry were evaluted. The results indicate that the SI joints demonstrate symmetry in patients under the age of 30 (100% of subjects in this age group). Those CT findings of sacroiliitis that occurred infrequently in the asymptomatic population, and hence may represent good indicators of sacroiliac disease, include increased sacral subchondral sclerosis in subjects under the age of 40 (11%), bilateral or unilateral uniform joint space of less than 2 mm (2% or 0%, respectively), erosions (2%), and intraarticular ankylosis (0%).

  14. Expedited Patient-Specific Assessment of Contact Stress Exposure in the Ankle Joint Following Definitive Articular Fracture Reduction

    PubMed Central

    Kern, Andrew M.; Anderson, Donald D.

    2015-01-01

    Acute injury severity, altered joint kinematics, and joint incongruity are three important mechanical factors linked to post-traumatic osteoarthritis (PTOA). Finite element analysis (FEA) was previously used to assess the influence of increased contact stress due to joint incongruity on PTOA development. While promising agreement with PTOA development was seen, the inherent complexities of contact FEA limited the numbers of subjects that could be analyzed. Discrete element analysis (DEA) is a simplified methodology for contact stress computation, which idealizes contact surfaces as a bed of independent linear springs. In this study, DEA was explored as an expedited alternative to FEA contact stress exposure computation. DEA was compared to FEA using results from a previously completed validation study of two cadaveric human ankles, as well as a previous study of post-operative contact stress exposure in 11 patients with tibial plafond fracture. DEA-computed maximum contact stresses were within 19% of those experimentally measured, with 90% of the contact area having computed contact stress values within 1 MPa of those measured. In the 11 fractured ankles, maximum contact stress and contact area differences between DEA and FEA were 0.85±0.64 MPa and 22.5±11.5 mm2. As a predictive measure for PTOA development, both DEA and FEA had 100% concordance with presence of OA (KL grade ≥ 2) and >95% concordance with KL grade at 2 years. These results support DEA as a reasonable alternative to FEA for computing contact stress exposures following surgical reduction of a tibial plafond fracture. PMID:26105660

  15. Expedited patient-specific assessment of contact stress exposure in the ankle joint following definitive articular fracture reduction.

    PubMed

    Kern, Andrew M; Anderson, Donald D

    2015-09-18

    Acute injury severity, altered joint kinematics, and joint incongruity are three important mechanical factors linked to post-traumatic osteoarthritis (PTOA). Finite element analysis (FEA) was previously used to assess the influence of increased contact stress due to joint incongruity on PTOA development. While promising agreement with PTOA development was seen, the inherent complexities of contact FEA limited the numbers of subjects that could be analyzed. Discrete element analysis (DEA) is a simplified methodology for contact stress computation, which idealizes contact surfaces as a bed of independent linear springs. In this study, DEA was explored as an expedited alternative to FEA contact stress exposure computation. DEA was compared to FEA using results from a previously completed validation study of two cadaveric human ankles, as well as a previous study of post-operative contact stress exposure in 11 patients with tibial plafond fracture. DEA-computed maximum contact stresses were within 19% of those experimentally measured, with 90% of the contact area having computed contact stress values within 1MPa of those measured. In the 11 fractured ankles, maximum contact stress and contact area differences between DEA and FEA were 0.85 ± 0.64 MPa and 22.5 ± 11.5mm(2). As a predictive measure for PTOA development, both DEA and FEA had 100% concordance with presence of OA (KL grade ≥ 2) and >95% concordance with KL grade at 2 years. These results support DEA as a reasonable alternative to FEA for computing contact stress exposures following surgical reduction of a tibial plafond fracture.

  16. Design of a Robotic Ankle Joint for a Microspine-Based Robot

    NASA Technical Reports Server (NTRS)

    Thatte, Nitish

    2011-01-01

    Successful robotic exploration of near-Earth asteroids necessitates a method of securely anchoring to the surface of these bodies without gravitational assistance. Microspine grip- per arrays that can grasp rock faces are a potential solution to this problem. A key component of a future microspine-based rover will be the ankle used to attach each microspine gripper to the robot. The ankle's purpose is twofold: 1) to allow the gripper to conform to the rock so a higher percentage of microspines attach to the surface, and 2) to neutralize torques that may dislodge the grippers from the wall. Parts were developed using computer aided design and manufactured using a variety of methods including selective laser sintering, CNC milling, and traditional manual machining techniques. Upon completion of the final prototype, the gripper and ankle system was tested to demonstrate robotic engagement and disengagement of the gripper and to determine load bearing ability. The immediate application of this project is to out t the Lemur IIb robot so it can climb and hang from rock walls.

  17. Current concepts: tissue engineering and regenerative medicine applications in the ankle joint

    PubMed Central

    Correia, S. I.; Pereira, H.; Silva-Correia, J.; Van Dijk, C. N.; Espregueira-Mendes, J.; Oliveira, J. M.; Reis, R. L.

    2014-01-01

    Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to ‘conventional’ methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions. PMID:24352667

  18. Reverse lateral supramalleolar adipofascial flap and skin grafting for one-stage soft tissue reconstruction of foot and ankle joint.

    PubMed

    Lee, Jae-Hoon; Chung, Duke-Whan

    2010-09-01

    The aim of this report is to present the clinical result and efficacy of reverse lateral supramalleolar adipofascial flap and skin grafting for one stage soft tissue reconstruction of the foot and ankle joints. Reconstruction using a reverse lateral supramalleolar adipofascial flap and skin grafting was performed in eight cases between January 2005 and March 2009. All the subjects were male with a mean age of 53 years. The mean follow-up period was 20 months. The reasons for soft tissue defects were diabetic foot, infected bursitis, open injuries of the foot, and chronic osteomyelitis. The mean size of the flaps was 3.5 (3-4) × 4.5 (4-6) cm. The flaps were elevated in the form of an adipofascial flap and split-thickness skin grafting was performed over the flaps and adjoining raw areas. Flaps survived in all cases. The implantation of the split-thickness skin graft over the flap was also successful in all cases. Neither partial necrosis in the adipofascial flap nor venous congestion was observed. At the last follow-up, there were no limited motions in the ankle and the toe. No cases complained of inconveniences in ambulation or had difficulties in selecting footwear. In cases that require a flap for the exposed bone or tendon of the foot with a small-sized defect, reverse lateral supramalleolar adipofascial flap and skin grafting is considered a useful method as it lowers the morbidity rate of the donor site and reconstructs soft tissues.

  19. Bilateral Arthrodesis of the Ankle Joint: Self-Reported Outcomes in 35 Patients From the Swedish Ankle Registry.

    PubMed

    Henricson, Anders; Kamrad, Ilka; Rosengren, Björn; Carlsson, Åke

    Bilateral ankle arthrodesis is seldom performed, and results concerning the outcome and satisfaction can only sparsely be found in published studies. We analyzed the data from 35 patients who had undergone bilateral ankle arthrodesis in the Swedish Ankle Registry using patient-reported generic and region-specific outcome measures. Of 36 talocrural arthrodeses and 34 tibio-talar-calcaneal arthrodeses, 6 ankles (9%) had undergone repeat arthrodesis because of nonunion. After a mean follow-up period of 47 ± 5 (range 12 to 194) months, the mean scores were as follows: self-reported foot and ankle score, 33 ± 10 (range 4 to 48); the EuroQol Group's EQ-5D(™) score, 0.67 ± 0.28 (range -0.11 to 1), the EuroQol Group's visual analog scale score, 70 ± 19 (range 20 to 95), 36-item Short Form Health Survey (SF-36) physical domain, 39 ± 11 (range 16 to 58); and SF-36 mental domain, 54 ± 14 (range 17 to 71). Patients with rheumatoid arthritis seemed to have similar self-reported foot and ankle scores but possibly lower EQ-5D(™) and SF-36 scores. Those with talocrural arthrodeses scored higher than did those with tibio-talar-calcaneal arthrodeses on the EQ5D(™) and SF-36 questionnaires (p = .03 and p = .04). In 64 of 70 ankles (91%), the patients were satisfied or very satisfied with the outcome. In conclusion, we consider bilateral ankle arthrodesis to be a reasonable treatment for symptomatic hindfoot arthritis, with high postoperative mid-term satisfaction and satisfactory scores on the patient-reported generic and region-specific outcome measures, when no other treatment option is available.

  20. Effect of treadmill walking with ankle stretching orthosis on ankle flexibility and gait

    PubMed Central

    Cho, Young-ki; Kim, Si-hyun; Jeon, In-cheol; Ahn, Sun-hee; Kwon, Oh-yun

    2015-01-01

    [Purpose] The purpose of this study was to evaluate the kinematics of the ankle in the lunge to estabilish effectiveness of an ankle stretching orthosis (ASO) on the ankle dorsiflexion range of motion (ROM) of individuals with limited dorsiflexion ROM. [Subjects and Methods] Forty ankles with decreased dorsiflexion ROM of 20 participants were evaluated in this study. After wearing the ASO, participants walked on a treadmill for 15 minutes. Participants walked on the treadmill at a self-selected comfortable speed. Ankle dorsiflexion ROM, maximum dorsiflexion ROM before heel-off, and time to heel-off during the stance phase of gait were measured before and after 15 minutes of treadmill walking with the ASO. The differences in all variables between before and after treadmill walking with ASO were analyzed using the paired t-test. [Results] Ankle active and passive ROM, and dorsiflexion ROM during lunge increased significantly after treadmill walking with ASO. Treadmill walking with the ASO significantly increased the angle of maximal dorsiflexion before heel-off and time to heel-off during the stance phase. [Conclusion] The results of this study show that treadmill walking with the ASO effectively improved ankle flexibility and restored the normal gait pattern of the ankle joint by increasing dorsiflexion ROM, maximal angle of dorsiflexion, and time to heel-off in the stance phase. PMID:25995601

  1. A Review of 399 Total Ankle Replacements: Analysis of Ipsilateral Subtalar Joint Arthrodesis and Associated Talar Component Subsidence.

    PubMed

    Prissel, Mark A; Hyer, Christopher F; Berlet, Gregory C

    Total ankle replacement (TAR) is an accepted treatment for end-stage ankle arthritis. When concurrent subtalar joint pathologic features exist, ipsilateral subtalar joint arthrodesis (STJA) can be performed either simultaneous with TAR or as a staged procedure. Limited data exist on the effect of talar component subsidence and prosthesis survivorship. The present study purpose was to evaluate the effect of STJA on talar component subsidence after primary TAR and its effect on TAR survivorship. All patients, a minimum of 18 years old, from a single institution with modern-generation TAR and 1-year minimum follow-up data available were evaluated. The study group included patients who had also undergone STJA, and the control group (no STJA) was matched 1:1 by age, gender, and prosthesis. The initial postoperative weightbearing and most recent weightbearing radiographs were compared for talar component subsidence. We reviewed 399 primary TARs from 2004 to 2012. A total of 33 patients with ipsilateral STJA met the inclusion criteria and had an appropriate control group match. In the study group, 8 patients required a return to the operating room for 4 revisions and 4 reoperations at a median follow-up point of 24.3 months. Of the controls, 9 patients required a return to the operating room, with 4 revisions and 5 reoperations at a median follow-up point of 38.4 months. No statistically significant radiographic differences were found between the 2 groups. Primary TAR and ipsilateral STJA were infrequently required (41 of 399; 10.3%). TAR did not result in decreased survivorship when performed with ipsilateral STJA at an early follow-up point. Further study is warranted to determine any differences among previous, simultaneous, and subsequent STJA with ipsilateral TAR, and a matched longitudinal analysis is needed to determine longer term survivorship.

  2. Summary of Human Ankle Mechanical Impedance During Walking.

    PubMed

    Lee, Hyunglae; Rouse, Elliott J; Krebs, Hermano Igo

    2016-01-01

    The human ankle joint plays a critical role during walking and understanding the biomechanical factors that govern ankle behavior and provides fundamental insight into normal and pathologically altered gait. Previous researchers have comprehensively studied ankle joint kinetics and kinematics during many biomechanical tasks, including locomotion; however, only recently have researchers been able to quantify how the mechanical impedance of the ankle varies during walking. The mechanical impedance describes the dynamic relationship between the joint position and the joint torque during perturbation, and is often represented in terms of stiffness, damping, and inertia. The purpose of this short communication is to unify the results of the first two studies measuring ankle mechanical impedance in the sagittal plane during walking, where each study investigated differing regions of the gait cycle. Rouse et al. measured ankle impedance from late loading response to terminal stance, where Lee et al. quantified ankle impedance from pre-swing to early loading response. While stiffness component of impedance increases significantly as the stance phase of walking progressed, the change in damping during the gait cycle is much less than the changes observed in stiffness. In addition, both stiffness and damping remained low during the swing phase of walking. Future work will focus on quantifying impedance during the "push off" region of stance phase, as well as measurement of these properties in the coronal plane.

  3. Summary of Human Ankle Mechanical Impedance During Walking

    PubMed Central

    Rouse, Elliott J.; Krebs, Hermano Igo

    2016-01-01

    The human ankle joint plays a critical role during walking and understanding the biomechanical factors that govern ankle behavior and provides fundamental insight into normal and pathologically altered gait. Previous researchers have comprehensively studied ankle joint kinetics and kinematics during many biomechanical tasks, including locomotion; however, only recently have researchers been able to quantify how the mechanical impedance of the ankle varies during walking. The mechanical impedance describes the dynamic relationship between the joint position and the joint torque during perturbation, and is often represented in terms of stiffness, damping, and inertia. The purpose of this short communication is to unify the results of the first two studies measuring ankle mechanical impedance in the sagittal plane during walking, where each study investigated differing regions of the gait cycle. Rouse et al. measured ankle impedance from late loading response to terminal stance, where Lee et al. quantified ankle impedance from pre-swing to early loading response. While stiffness component of impedance increases significantly as the stance phase of walking progressed, the change in damping during the gait cycle is much less than the changes observed in stiffness. In addition, both stiffness and damping remained low during the swing phase of walking. Future work will focus on quantifying impedance during the “push off” region of stance phase, as well as measurement of these properties in the coronal plane. PMID:27766187

  4. Outcomes of temporomandibular joint arthroscopy in patients with painful but otherwise normal joints.

    PubMed

    Dimitroulis, George

    2015-07-01

    The aim of this retrospective clinical study was to assess the clinical outcomes of temporomandibular joint (TMJ) arthroscopy in patients who presented with category 1 normal joints. The null hypothesis being tested was that patients with normal joints do not respond to TMJ arthroscopy. The clinical records of 116 patients who had undergone TMJ arthroscopy by the author from 2010 to 2013 were retrieved and individually analysed for inclusion in this retrospective, cohort clinical study. The inclusion criteria used to select patients for this study were those who had arthroscopically proven category 1 normal joints, free of intra-articular pathology. Of the 14 patients who were found to have normal joints, only 10 could be contacted for a follow-up survey. Despite the fact that all patients were informed that no joint pathology was found, six out of the 10 patients reported improvement in their temporomandibular disorder (TMD) symptoms that lasted for more than 6 months following TMJ arthroscopy. The results of this investigation indicate that we can reject the null hypothesis, and that patients with normal TMJs do indeed respond to TMJ arthroscopy. What this limited study has highlighted is the pervasive effects of the placebo that all surgeons need to keep in mind when formulating treatment plans for patients with TMD.

  5. Sodium Magnetic Resonance Imaging of Ankle Joint in Cadaver Specimens, Volunteers, and Patients After Different Cartilage Repair Techniques at 7 T

    PubMed Central

    Zbýň, Štefan; Brix, Martin O.; Juras, Vladimir; Domayer, Stephan E.; Walzer, Sonja M.; Mlynarik, Vladimir; Apprich, Sebastian; Buckenmaier, Kai; Windhager, Reinhard; Trattnig, Siegfried

    2015-01-01

    Objectives The goal of cartilage repair techniques such as microfracture (MFX) or matrix-associated autologous chondrocyte transplantation (MACT) is to produce repair tissue (RT) with sufficient glycosaminoglycan (GAG) content. Sodium magnetic resonance imaging (MRI) offers a direct and noninvasive evaluation of the GAG content in native cartilage and RT. In the femoral cartilage, this method was able to distinguish between RTs produced by MFX and MACT having different GAG contents. However, it needs to be clarified whether sodium MRI can be useful for evaluating RT in thin ankle cartilage. Thus, the aims of this 7-T study were (1) to validate our sodium MRI protocol in cadaver ankle samples, (2) to evaluate the sodium corrected signal intensities (cSI) in cartilage of volunteers, (3) and to compare sodium values in RT between patients after MFX and MACT treatment. Materials and Methods Five human cadaver ankle samples as well as ankles of 9 asymptomatic volunteers, 6 MFX patients and 6 MACT patients were measured in this 7-T study. Sodium values from the ankle samples were compared with histochemically evaluated GAG content. In the volunteers, sodium cSI values were calculated in the cartilages of ankle and subtalar joint. In the patients, sodium cSI in RT and reference cartilage were measured, morphological appearance of RT was evaluated using the magnetic resonance observation of cartilage repair tissue (MOCART) scoring system, and clinical outcome before and after surgery was assessed using the American Orthopaedic Foot and Ankle Society score and Modified Cincinnati Knee Scale. All regions of interest were defined on morphological images and subsequently transferred to the corresponding sodium images. Analysis of variance, t tests, and Pearson correlation coefficients were evaluated. Results In the patients, significantly lower sodium cSI values were found in RT than in reference cartilage for the MFX (P = 0.007) and MACT patients (P = 0.008). Sodium cSI and

  6. Altered Knee and Ankle Kinematics During Squatting in Those With Limited Weight-Bearing–Lunge Ankle-Dorsiflexion Range of Motion

    PubMed Central

    Dill, Karli E.; Begalle, Rebecca L.; Frank, Barnett S.; Zinder, Steven M.; Padua, Darin A.

    2014-01-01

    Context: Ankle-dorsiflexion (DF) range of motion (ROM) may influence movement variables that are known to affect anterior cruciate ligament loading, such as knee valgus and knee flexion. To our knowledge, researchers have not studied individuals with limited or normal ankle DF-ROM to investigate the relationship between those factors and the lower extremity movement patterns associated with anterior cruciate ligament injury. Objective: To determine, using 2 different measurement techniques, whether knee- and ankle-joint kinematics differ between participants with limited and normal ankle DF-ROM. Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Forty physically active adults (20 with limited ankle DF-ROM, 20 with normal ankle DF-ROM). Main Outcome Measure(s): Ankle DF-ROM was assessed using 2 techniques: (1) nonweight-bearing ankle DF-ROM with the knee straight, and (2) weight-bearing lunge (WBL). Knee flexion, knee valgus-varus, knee internal-external rotation, and ankle DF displacements were assessed during the overhead-squat, single-legged squat, and jump-landing tasks. Separate 1-way analyses of variance were performed to determine whether differences in knee- and ankle-joint kinematics existed between the normal and limited groups for each assessment. Results: We observed no differences between the normal and limited groups when classifying groups based on nonweight-bearing passive-ankle DF-ROM. However, individuals with greater ankle DF-ROM during the WBL displayed greater knee-flexion and ankle-DF displacement and peak knee flexion during the overhead-squat and single-legged squat tasks. In addition, those individuals also demonstrated greater knee-varus displacement during the single-legged squat. Conclusions: Greater ankle DF-ROM assessed during the WBL was associated with greater knee-flexion and ankle-DF displacement during both squatting tasks as well as greater knee-varus displacement during

  7. Total ankle replacement. Design evolution and results.

    PubMed

    van den Heuvel, Alexander; Van Bouwel, Saskia; Dereymaeker, Greta

    2010-04-01

    The ankle joint has unique anatomical, biomechanical and cartilaginous structural characteristics that allow the joint to withstand the very high mechanical stresses and strains over years. Any minor changes to any of these features predispose the joint to osteoarthritis. Total ankle replacement (TAR) is evolving as an alternative to ankle arthrodesis for the treatment of end-stage ankle osteoarthritis. Initial implant designs from the early 1970s had unacceptably high failure and complication rates. As a result many orthopaedic surgeons have restricted the use of TAR in favour of ankle arthrodesis. Long term follow-up studies following ankle arthrodesis show risks of developing adjacent joint osteoarthritis. Therefore research towards a successful ankle replacement continues. Newer designs and longer-term outcome studies have renewed the interest in ankle joint replacement. We present an overview of the evolution, results and current concepts of total ankle replacement.

  8. Failure of normal development of central drive to ankle dorsiflexors relates to gait deficits in children with cerebral palsy.

    PubMed

    Petersen, Tue Hvass; Farmer, Simon F; Kliim-Due, Mette; Nielsen, Jens Bo

    2013-02-01

    Neurophysiological markers of the central control of gait in children with cerebral palsy (CP) are used to assess developmental response to therapy. We measured the central common drive to a leg muscle in children with CP. We recorded electromyograms (EMGs) from the tibialis anterior (TA) muscle of 40 children with hemiplegic CP and 42 typically developing age-matched controls during static dorsiflexion of the ankle and during the swing phase of treadmill walking. The common drive to TA motoneurons was identified through time- and frequency-domain cross-correlation methods. In control subjects, the common drive consists of frequencies between 1 and 60 Hz with peaks at beta (15-25 Hz) and gamma (30-45 Hz) frequencies known to be caused by activity within sensorimotor cortex networks: this drive to motoneurons strengthens during childhood. Similar to this drive in control subjects, this drive to the least affected TA in the CP children tended to strengthen with age, although compared with that in the control subjects, it was slightly weaker. For CP subjects of all ages, the most affected TA muscle common drive was markedly reduced compared with that of their least affected muscle as well as that of controls. These differences between the least and most affected TA muscles were unrelated to differences in the magnitude of EMG in the two muscles but positively correlated with ankle dorsiflexion velocity and joint angle during gait. Time- and frequency-domain analysis of ongoing EMG recruited during behaviorally relevant lower limb tasks provides a noninvasive and important measure of the central drive to motoneurons in subjects with CP.

  9. Current thoughts on ankle arthritis.

    PubMed

    Ritterman, Scott A; Fellars, Todd A; Digiovanni, Christopher W

    2013-03-01

    The ankle is the most commonly injured joint in athletic and work activities. In contrast, osteoarthritis of the ankle joint is relatively rare and is typically post-traumatic or inflammatory in nature. Common symptoms that prompt an orthopaedic consultation include pain, disability and altered gait mechanics. Non-operative management has been the mainstay for previously undiagnosed patients. For those with advanced disease, ankle fusion or total ankle replacement may be the only surgical options. Though some recent studies have shown patients' preference for a well functioning ankle replacement, significant long- term follow-up data is lacking.

  10. Topography of human ankle joint: focused on posterior tibial artery and tibial nerve

    PubMed Central

    Kim, Deog-Im; Kim, Yi-Suk

    2015-01-01

    Most of foot pain occurs by the entrapment of the tibial nerve and its branches. Some studies have reported the location of the tibial nerve; however, textbooks and researches have not described the posterior tibial artery and the relationship between the tibal nerve and the posterior tibial artery in detail. The purpose of this study was to analyze the location of neurovascular structures and bifurcations of the nerve and artery in the ankle region based on the anatomical landmarks. Ninety feet of embalmed human cadavers were examined. All measurements were evaluated based on a reference line. Neurovascular structures were classified based on the relationship between the tibial nerve and the posterior tibial artery. The bifurcation of arteries and nerves were expressed by X- and Y-coordinates. Based on the reference line, 9 measurements were examined. The most common type I (55.6%), was the posterior tibial artery located medial to the tibial nerve. Neurovascular structures were located less than 50% of the distance between M and C from M at the reference line. The bifurcation of the posterior tibial artery was 41% in X-coordinate, -38% in Y-coordinate, and that of the tibial nerve was 48%, and -10%, respectively. Thirteen measurements and classification showed statistically significant differences between both sexes (P<0.05). It is determined the average position of neurovascular structures in the human ankle region and recorded the differences between the sexes and amongst the populations. These results would be helpful for the diagnosis and treatment of foot pain. PMID:26140224

  11. The senses of active and passive forces at the human ankle joint.

    PubMed

    Savage, G; Allen, T J; Proske, U

    2015-07-01

    The traditional view of the neural basis for the sense of muscle force is that it is generated at least in part within the brain. Recently it has been proposed that force sensations do not arise entirely centrally and that there is a contribution from peripheral receptors within the contracting muscle. Evidence comes from experiments on thumb flexor and elbow flexor muscles. Here we have studied the sense of force in plantar flexor muscles of the human ankle, looking for further evidence for such a mechanism. The active angle-torque curve was measured for muscles of both legs, and for each muscle, ankle angles were identified on the ascending and descending limbs of the curve where active forces were similar. In a plantar flexion force matching task, subjects were asked to match the force in one foot, generated on the ascending limb of the curve, with force in the other foot, generated on the descending limb. It was hypothesised that despite active forces being similar, the sensation generated in the more stretched muscle should be greater because of the contribution from its peripheral stretch receptors, leading to an overestimation of the force in the stretched muscle. It was found that provided that the comparison was between active forces, there was no difference in the forces generated by the two legs, supporting the central hypothesis for the sense of force. When total forces were matched, including a component of passive force due to muscle stretch, subjects seemed to ignore the passive component. Yet subjects had an acute sense of passive force, provided that the muscles remained relaxed. It was concluded that subjects had two senses, a sense of active force, generated centrally, and a sense of passive force, or perhaps muscle stretch, generated within the muscle itself.

  12. The Effect of Modified Brostrom-Gould Repair for Lateral Ankle Instability on In Vivo Tibiotalar Kinematics

    PubMed Central

    Wainright, William B; Spritzer, Charles E.; Lee, Jun Young; Easley, Mark E.; DeOrio, James K.; Nunley, James A.; DeFrate, Louis E.

    2012-01-01

    Background Lateral ankle instability leads to an increased risk of tibiotalar joint osteoarthritis. Previous studies have found abnormal tibiotalar joint motions with lateral ankle instability that may contribute to this increased incidence of osteoarthritis, including increased anterior translation and internal rotation of the talus under weight-bearing loading. Surgical repairs for lateral ankle instability have shown good clinical results, but the effects of repair on in vivo ankle motion are not well understood. Hypothesis The modified Broström-Gould lateral ligament reconstruction decreases anterior translation and internal rotation of the talus under in vivo weight-bearing loading conditions. Study Design Controlled laboratory study. Methods Seven patients underwent modified Brostöm-Gould repair for unilateral lateral ankle instability. Ankle joint kinematics as a function of increasing body weight were studied with magnetic resonance imaging and biplanar fluoroscopy. Tibiotalar kinematics were measured in unstable ankles preoperatively and postoperatively at a mean follow-up of 12 months, as well as in the uninjured contralateral ankles of the same individuals. Results Surgical repair resulted in statistically significant decreases in anterior translation of the talus (0.9±0.3mm, p=0.018) at 100% bodyweight and internal rotation of the talus at 75% (2.6±0.8°, p=0.019) and 100% (2.7±0.8°, p=0.013) bodyweight compared to ankle kinematics measured before repair. No statistically significant differences were detected between repaired ankles and contralateral normal ankles. Conclusion The modified Broström-Gould repair improved the abnormal joint motion observed in patients with lateral ankle instability, decreasing anterior translation and internal rotation of the talus. Clinical Relevance Altered kinematics may contribute to the tibiotalar joint degeneration that occurs with chronic lateral ankle instability. The findings of the current study support

  13. The Effect of Ankle Joint Muscle Strengthening Training and Static Muscle Stretching Training on Stroke Patients’ C.O.P Sway Amplitude

    PubMed Central

    Kim, Tae Ho; Yoon, Joo Soo; Lee, Jin Hwan

    2014-01-01

    [Purpose] This study implement ankle joint dorsiflexion training for ankle muscle the weakness that impairs stroke patients’ gait performance, to examine the effect of the training on stroke patients’ plantar pressure and gait ability. [Subjects and Methods] In this study, 36 stroke patients diagnosed with stroke due to cerebral infarction or cerebral hemorrhage performed the training. Static muscle stretching was performed four times a week for 20 minutes at a time for 6 weeks by the training group. Ankle dorsiflexor training was performed four times a week, two sets per time in the case of females and three sets per time in the case of males for 6 weeks, by another group. Center of pressure sway amplitude was measured using the F-scan system during gait. All subjects were assessed with the same measurements at a pre-study examination and reassessed at eight weeks. Data were analyzed statistically using the paired t-test and one-way ANOVA. [Results] Among the between ankle dorsiflexor training group, static muscle stretching group, and control group, the difference before and after the training were proven to be statistically significant. [Conclusion] Compared to other training groups, the ankle muscle strength training group showed statistically significant increases of forward thrust at stroke patients’ toe-off which positively affected stroke patients’ ability to perform gait. PMID:24409032

  14. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation.

    PubMed

    Herr, Hugh M; Grabowski, Alena M

    2012-02-07

    Over time, leg prostheses have improved in design, but have been incapable of actively adapting to different walking velocities in a manner comparable to a biological limb. People with a leg amputation using such commercially available passive-elastic prostheses require significantly more metabolic energy to walk at the same velocities, prefer to walk slower and have abnormal biomechanics compared with non-amputees. A bionic prosthesis has been developed that emulates the function of a biological ankle during level-ground walking, specifically providing the net positive work required for a range of walking velocities. We compared metabolic energy costs, preferred velocities and biomechanical patterns of seven people with a unilateral transtibial amputation using the bionic prosthesis and using their own passive-elastic prosthesis to those of seven non-amputees during level-ground walking. Compared with using a passive-elastic prosthesis, using the bionic prosthesis decreased metabolic cost by 8 per cent, increased trailing prosthetic leg mechanical work by 57 per cent and decreased the leading biological leg mechanical work by 10 per cent, on average, across walking velocities of 0.75-1.75 m s(-1) and increased preferred walking velocity by 23 per cent. Using the bionic prosthesis resulted in metabolic energy costs, preferred walking velocities and biomechanical patterns that were not significantly different from people without an amputation.

  15. Preoperative gait characterization of patients with ankle arthrosis.

    PubMed

    Khazzam, Michael; Long, Jason T; Marks, Richard M; Harris, Gerald F

    2006-08-01

    The purpose of this study was to evaluate the kinematic changes that occur about the foot and ankle during gait in patients with degenerative joint disease (DJD). By comparing a normal adult population with what was found in the DJD population we determined how the motion of theses groups differed, thereby characterizing how this pathology affects foot and ankle motion. A 15-camera Vicon Motion Analysis System was used in conjunction with weight bearing radiographs to obtain three-dimensional motion of the foot and ankle during ambulation. The study was comprised of 34 patients and 35 ankles diagnosed with DJD (19 men and 15 women) of the ankle and 25 patients with normal ankles (13 men and 12 women). Dynamic foot and ankle motion was analyzed using the four-segment Milwaukee Foot Model (MFM). The data from this model resulted in three-dimensional (3D) kinematic parameters in the sagittal, coronal, and transverse planes as well as spatial-temporal parameters. Patient health status was evaluated using the SF-36 Health Survey and American Orthopaedics Foot and Ankle Society (AOFAS) hindfoot scores. The DJD group showed significant differences (p<0.001) as compared to normals with prolonged stance time, shortened stride length, reduced cadence and a walking speed which was only 66.96% of normal. Overall, kinematic data in the DJD cohort showed significant differences (p<0.001) in all planes of motion for tibial, hindfoot and forefoot motion as compared to normals. The average preoperative AOFAS hindfoot score was 26. DJD of the ankle results in decreased range of motion during gait. This decreased range of motion may be related to several factors including bony deformity, muscle weakness, and attempts to decrease the pain associated with weight bearing. To date there has not been a study which describes the effect of this disease process on motion of the foot and ankle. These findings may prove to be useful in the pre-operative assessment of these patients.

  16. Understanding acute ankle ligamentous sprain injury in sports.

    PubMed

    Fong, Daniel Tp; Chan, Yue-Yan; Mok, Kam-Ming; Yung, Patrick Sh; Chan, Kai-Ming

    2009-07-30

    used as it results in joint stiffness, muscle atrophy and loss of proprioception. Traditional Chinese medicine such as herbs, massage and acupuncture were well applied in China in managing sports injuries, and was reported to be effective in relieving pain, reducing swelling and edema, and restoring normal ankle function. Finally, the best practice of sports medicine would be to prevent the injury. Different previous approaches, including designing prophylactice devices, introducing functional interventions, as well as change of games rules were highlighted. This paper allows the readers to catch up with the previous researches on ankle sprain injury, and facilitate the future research idea on sport-related ankle sprain injury.

  17. Understanding acute ankle ligamentous sprain injury in sports

    PubMed Central

    Fong, Daniel TP; Chan, Yue-Yan; Mok, Kam-Ming; Yung, Patrick SH; Chan, Kai-Ming

    2009-01-01

    be used as it results in joint stiffness, muscle atrophy and loss of proprioception. Traditional Chinese medicine such as herbs, massage and acupuncture were well applied in China in managing sports injuries, and was reported to be effective in relieving pain, reducing swelling and edema, and restoring normal ankle function. Finally, the best practice of sports medicine would be to prevent the injury. Different previous approaches, including designing prophylactice devices, introducing functional interventions, as well as change of games rules were highlighted. This paper allows the readers to catch up with the previous researches on ankle sprain injury, and facilitate the future research idea on sport-related ankle sprain injury. PMID:19640309

  18. Differences Regarding Branded HA in Italy, Part 2: Data from Clinical Studies on Knee, Hip, Shoulder, Ankle, Temporomandibular Joint, Vertebral Facets, and Carpometacarpal Joint

    PubMed Central

    Migliore, A.; Bizzi, E.; De Lucia, O.; Delle Sedie, A.; Tropea, S.; Bentivegna, M.; Mahmoud, A.; Foti, C.

    2016-01-01

    OBJECTIVES The aim of the current study is to collect scientific data on all branded hyaluronic acid (HA) products in Italy that are in use for intra-articular (IA) injection in osteoarthritis (OA) compared with that reported in the leaflet. METHODS An extensive literature research was performed for all articles reporting data on the IA use of HA in OA. Selected studies were taken into consideration only if they are related to products based on HAs that are currently marketed in Italy with the specific joint indication for IA use in patients affected by OA. RESULTS Sixty-two HA products are marketed in Italy: 30 products are indicated for the knee but only 8 were proved with some efficacy; 9 products were effective for the hip but only 6 had hip indication; 7 products proved to be effective for the shoulder but only 3 had the indication; 5 products proved effective for the ankle but only one had the indication; 6 products were effective for the temporomandibular joint but only 2 had the indication; only 2 proved effective for vertebral facet joints but only 1 had the indication; and 5 products proved effective for the carpometacarpal joint but only 2 had the indication. CONCLUSIONS There are only a few products with some evidences, while the majority of products remain without proof. Clinicians and regulators should request postmarketing studies from pharmaceuticals to corroborate with that reported in the leaflet and to gather more data, allowing the clinicians to choose the adequate product for the patient. PMID:27279754

  19. The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury

    PubMed Central

    Sawicki, Gregory S; Domingo, Antoinette; Ferris, Daniel P

    2006-01-01

    Background Powered lower limb orthoses could reduce therapist labor during gait rehabilitation after neurological injury. However, it is not clear how patients respond to powered assistance during stepping. Patients might allow the orthoses to drive the movement pattern and reduce their muscle activation. The goal of this study was to test the effects of robotic assistance in subjects with incomplete spinal cord injury using pneumatically powered ankle-foot orthoses. Methods Five individuals with chronic incomplete spinal cord injury (ASIA C-D) participated in the study. Each subject was fitted with bilateral ankle-foot orthoses equipped with artificial pneumatic muscles to power ankle plantar flexion. Subjects walked on a treadmill with partial bodyweight support at four speeds (0.36, 0.54, 0.72 and 0.89 m/s) under three conditions: without wearing orthoses, wearing orthoses unpowered (passively), and wearing orthoses activated under pushbutton control by a physical therapist. Subjects also attempted a fourth condition wearing orthoses activated under pushbutton control by them. We measured joint angles, electromyography, and orthoses torque assistance. Results A therapist quickly learned to activate the artificial pneumatic muscles using the pushbuttons with the appropriate amplitude and timing. The powered orthoses provided ~50% of peak ankle torque. Ankle angle at stance push-off increased when subjects walked with powered orthoses versus when they walked with passive-orthoses (ANOVA, p < 0.05). Ankle muscle activation amplitudes were similar for powered and passive-orthoses conditions except for the soleus (~13% lower for powered condition; p < 0.05). Two of the five subjects were able to control the orthoses themselves using the pushbuttons. The other three subjects found it too difficult to coordinate pushbutton timing. Orthoses assistance and maximum ankle angle at push-off were smaller when the subject controlled the orthoses compared to when the therapist

  20. Rehabilitation of Syndesmotic (High) Ankle Sprains

    PubMed Central

    Williams, Glenn N.; Allen, Eric J.

    2010-01-01

    Context: High ankle sprains are common in athletes who play contact sports. Most high ankle sprains are treated nonsurgically with a rehabilitation program. Evidence Acquisition: All years of PUBMED, Cochrane Database of Systematic Reviews, CINAHL PLUS, SPORTDiscuss, Google Scholar, and Web of Science were searched to August 2010, cross-referencing existing publications. Keywords included syndesmosis ankle sprain or high ankle sprain and the following terms: rehabilitation, treatment, cryotherapy, braces, orthosis, therapeutic modalities, joint mobilization, massage, pain, pain medications, TENS (ie, transcutaneous electric nerve stimulation), acupuncture, aquatic therapy, strength, neuromuscular training, perturbation training, and outcomes. Results: Level of evidence, 5. A 3-phase rehabilitation program is described. The acute phase is directed at protecting the joint while minimizing pain, inflammation, muscle weakness, and loss of motion. Most patients are treated with some form of immobilization and have weightbearing restrictions. A range of therapeutic modalities are used to minimize pain and inflammation. Gentle mobilization and resistance exercises are used to gain mobility and maintain muscle size and strength. The subacute phase is directed at normalizing range of motion, strength, and function in activities of daily living. Progressive mobilization and strengthening are hallmarks of this phase. Neuromuscular training is begun and becomes the central component of rehabilitation. The advanced training phase focuses on preparing the patient for return to sports participation. Perturbation of support surfaces, agility drills, plyometrics, and sport-specific training are central components of this phase. Conclusion: The rehabilitation guidelines discussed may assist clinicians in managing syndesmotic ankle sprains. PMID:23015976

  1. Posterior ankle impingement syndrome.

    PubMed

    Maquirriain, Javier

    2005-10-01

    Posterior ankle impingement syndrome is a clinical disorder characterized by posterior ankle pain that occurs in forced plantar flexion. The pain may be acute as a result of trauma or chronic from repetitive stress. Pathology of the os trigonum-talar process is the most common cause of this syndrome, but it also may result from flexor hallucis longus tenosynovitis, ankle osteochondritis, subtalar joint disease, and fracture. Patients usually report chronic or recurrent posterior ankle pain caused or exacerbated by forced plantar flexion or push-off maneuvers, such as may occur during dancing, kicking, or downhill running. Diagnosis of posterior ankle impingement syndrome is based primarily on clinical history and physical examination. Radiography, scintigraphy, computed tomography, and magnetic resonance imaging depict associated bone and soft-tissue abnormalities. Symptoms typically improve with nonsurgical management, but surgery may be required in refractory cases.

  2. Classic article: foot & ankle 1:15, 1980 traumatic dislocations of the first metatarsophalangeal joint.

    PubMed

    Jahss, Melvin H

    2006-06-01

    The mechanics, anatomy, and pathomechanics of traumatic dorsal dislocation of the first metatarsophalangeal joint are discussed. There are two basic types of dislocations. In Type I, dislocation of the hallux with the sesamoids occurs without disrupting the sesamoid mass. Such cases are usually irreducible on closed reduction, the metatarsal head being incarcerated by the conjoined tendons with their intact sesamoids. In Type II, there is either associated disruption of the intersesamoid ligament (Type IIA) or a transverse fracture of one of the sesamoids (Type IIB). In Type II, the sesamoid disruption usually permits closed reduction.

  3. Development of an Intelligent Stretching Device for Ankle Joints With Contracture/Spasticity

    DTIC Science & Technology

    2007-11-02

    7] T. G. Olmstead, H. W. Wevers, J. T. Bryant, and G. J. Gouw, "Effect of Muscular Activity on Valgus /Varus Laxity and Stiffness of the Knee ," J...Biomech., vol. 19, pp. 565-577, 1986. [8] L.-Q. Zhang and G. Wang, " Dynamic and Static Control of the Human Knee Joint in Abduction-Adduction," J...casting, dynamic splinting and traction, the continuous passive motion (CPM) device, and advanced robot-aided devices [3-6]. However, existing devices

  4. Adaptive sports ankle prosthetics. Interview by Sarah A. Curran.

    PubMed

    Lyle, David K

    2012-09-01

    Participating in sport at all levels is gaining a dedicated following and this is also apparent in individuals with an amputation. Currently, there is a wide variety of ankle prostheses available which attempt to provide function, control, and comfort, as well as good aesthetic appeal. Participation in sport, however, increases the demands placed upon ankle prostheses. This can compromise function and performance, and constrain the opportunities of participation in various outdoor and water sports. In acknowledging this limitation and the need to develop more versatile ankle prostheses, this article introduces the evolution of a prototype ankle prosthesis referred to as "Adaptive Sports Ankle." The ankle prosthesis, which is compatible with any foot pyramid adapter, offers the same range of motion as the normal human ankle joint and is made up of components that are chemical and corrosion resistant. These design features that are specifically created to accommodate below-the-knee amputees provide an ideal prosthesis for those wishing to lead an active lifestyle and participate in aquatic (i.e. swimming, surfing, and scuba diving), snowboarding, and equestrian activities. Although it is acknowledged that there is a need to establish research on the Adaptive Sports Ankle, its introduction to the market will enhance and expand opportunities of those individuals with a lower limb amputation to lead an active and healthy lifestyle.

  5. Gender differences in hip and ankle joint kinematics on knee abduction during running.

    PubMed

    Sakaguchi, Masanori; Ogawa, Haruna; Shimizu, Norifumi; Kanehisa, Hiroaki; Yanai, Toshimasa; Kawakami, Yasuo

    2014-01-01

    The knee is the most common site of running injuries, particularly prevalent in females. The purpose of this study was to clarify gender differences in the lower extremity kinematics during running, with a specific emphasis on the relationships between the distal and proximal factors and the knee joint kinematics. Eleven female and 11 male runners participated in this study. Three-dimensional marker positions were recorded with a motion analysis system while the subjects ran along a 25 m runway at a speed of 3.5 m/s. Kinematic variables were analyzed for the stance phase of the right leg. Female runners demonstrated significantly greater peak knee abduction (P<0.05), hip adduction (P<0.01) and internal rotation (P<0.05), whereas male runners demonstrated significantly greater peak rearfoot eversion (P<0.01). The knee abduction angles were positively correlated with hip adduction angles (r=0.49, P<0.05) and negatively correlated with rearfoot eversion (r= -0.69, P<0.001). There was no significant difference in normalised step width between genders (P>0.05). Smaller rearfoot eversion and greater hip adduction related closely to the greater knee abduction as the distal and proximal factors, respectively. These relationships are thought to be the compensatory joint motions in the frontal plane, because there was no significant difference in the normalised step width between females and males. The current results suggest that if the step width is identical, the subjects with greater knee abduction had smaller rearfoot eversion to compensate for greater hip adduction, which were more apparent in females. This explains greater knee abduction found in female runners, which can be linked to a high risk of knee injury.

  6. [Injuries to the superior ankle joint from the viewpoint of accident surgery].

    PubMed

    Zwipp, H

    1991-12-01

    The treatment of bony, osteochondral, and ligamentous injuries of the tibio-talar joint requires precise preoperative planning by radiological investigation. This is essential to a correct understanding of the underlying pathology and will allow a proper classification of the injury, which is the basis of treatment. Conventional radiography using anteroposterior and lateral X-rays with comparative views of the noninjured side and, if necessary, rotated spot views and tomography are of high value especially in osteochondral fractures of the talus. Intraoperative control images in both planes after osteosynthesis are mandatory. For evaluation of the postoperative course and severity of arthrosis formation, the classification system of Bargon has proved its worth. In addition, tomography of the tibio-talar joint in two planes is useful especially in tibial pilon fractures, some malleolar fractures, and peripheral talar fractures. In talar fracture dislocations with concomitant compartment syndrome an emergency CT scan can be helpful to determine the optimal surgical approach. In these cases a 3-D reconstruction also might be of assistance. If there is evidence of partial or total talar necrosis, magnetic resonance imaging can be extremely helpful. However, in most cases implants considerably limit the validity of the image obtained. Ultrasonography offers a noninvasive, reproducible, and very inexpensive alternative and should be performed in cases of chondral-osteochondral talar rim avulsions and juvenile osteochondral ligament ruptures. It can also be used as a dynamic method for stress examination in fibular ligament ruptures and soft tissue injuries such as dislocation of the peroneal tendons. The use of Arthrography, stress tenography, and Arthro-CT scan nowadays has become extremely limited.

  7. Impact of the difference in the plantar flexor strength of the ankle joint in the affected side among hemiplegic patients on the plantar pressure and walking asymmetry.

    PubMed

    You, Young Youl; Chung, Sin Ho; Lee, Hyung Jin

    2016-11-01

    [Purpose] This study was to examine the changes in the gait lines and plantar pressures in static and dynamic circumstances, according to the differences in the strengths of the plantar flexors in the ankle joints on the affected sides of hemiplegic patients, and to determine their impacts on walking symmetry. [Subjects and Methods] A total of thirty hospitalized stroke patients suffering from hemiplegia were selected in this study. The subjects had ankylosing patterns in the ankle joints of the affected sides. Fifteen of the patients had plantar flexor manual muscle testing scores between poor and fair, while fifteen of the patients had zero and trace. [Results] The contact pattern of the plantar surface with the ground is a reliable method for walking analysis, which is an important index for understanding the ankle mechanism and the relationship between the plantar surface and the ground. [Conclusion] The functional improvement of patients with stroke could be supported through a verification of the analysis methods of the therapy strategy and walking pattern.

  8. Impact of the difference in the plantar flexor strength of the ankle joint in the affected side among hemiplegic patients on the plantar pressure and walking asymmetry

    PubMed Central

    You, Young Youl; Chung, Sin Ho; Lee, Hyung Jin

    2016-01-01

    [Purpose] This study was to examine the changes in the gait lines and plantar pressures in static and dynamic circumstances, according to the differences in the strengths of the plantar flexors in the ankle joints on the affected sides of hemiplegic patients, and to determine their impacts on walking symmetry. [Subjects and Methods] A total of thirty hospitalized stroke patients suffering from hemiplegia were selected in this study. The subjects had ankylosing patterns in the ankle joints of the affected sides. Fifteen of the patients had plantar flexor manual muscle testing scores between poor and fair, while fifteen of the patients had zero and trace. [Results] The contact pattern of the plantar surface with the ground is a reliable method for walking analysis, which is an important index for understanding the ankle mechanism and the relationship between the plantar surface and the ground. [Conclusion] The functional improvement of patients with stroke could be supported through a verification of the analysis methods of the therapy strategy and walking pattern. PMID:27942112

  9. [The Use of Pedobarographic Examination to Biomechanical Evaluation of Foot and Ankle Joint in Adult - Own Experience].

    PubMed

    Lorkowski, Jacek; Grzegorowska, Oliwia; Kotela, Ireneusz

    2015-01-01

    A non-invasive method, that can be used to describe the underfoot pressure distribution during stance and gait, is pedobarography. This examination helps to describe biomechanics of foot and ankle. It has been used to diagnose foot disorders, assess the disease progression, monitor the progress of rehabilitation and also evaluate the effectivness of undergone surgical treatment. In this article we describe chosen issues of pedobarographic examination in diagnostics and treatment of foot and ankle in adults. We base on our own experience (about 10 thousand examinations) and review of literature. In our opinion, pedobarography should be used in diagnostics and treatment of foot and ankle more often and widely than now.

  10. Ankle Arthroscopic Reconstruction of Lateral Ligaments (Ankle Anti-ROLL)

    PubMed Central

    Takao, Masato; Glazebrook, Mark; Stone, James; Guillo, Stéphane

    2015-01-01

    Ankle instability is a condition that often requires surgery to stabilize the ankle joint that will improve pain and function if nonoperative treatments fail. Ankle stabilization surgery may be performed as a repair in which the native existing anterior talofibular ligament or calcaneofibular ligament (or both) is imbricated or reattached. Alternatively, when native ankle ligaments are insufficient for repair, a reconstruction of the ligaments may be performed in which an autologous or allograft tendon is used to reconstruct the anterior talofibular ligament or calcaneofibular ligament (or both). Currently, ankle stabilization surgery is most commonly performed through an open incision, but arthroscopic ankle stabilization using repair techniques has been described and is being used more often. We present our technique for anatomic ankle arthroscopic reconstruction of the lateral ligaments (anti-ROLL) performed in an all–inside-out manner that is likely safe for patients and minimally invasive. PMID:26900560

  11. Ankle Arthroscopic Reconstruction of Lateral Ligaments (Ankle Anti-ROLL).

    PubMed

    Takao, Masato; Glazebrook, Mark; Stone, James; Guillo, Stéphane

    2015-10-01

    Ankle instability is a condition that often requires surgery to stabilize the ankle joint that will improve pain and function if nonoperative treatments fail. Ankle stabilization surgery may be performed as a repair in which the native existing anterior talofibular ligament or calcaneofibular ligament (or both) is imbricated or reattached. Alternatively, when native ankle ligaments are insufficient for repair, a reconstruction of the ligaments may be performed in which an autologous or allograft tendon is used to reconstruct the anterior talofibular ligament or calcaneofibular ligament (or both). Currently, ankle stabilization surgery is most commonly performed through an open incision, but arthroscopic ankle stabilization using repair techniques has been described and is being used more often. We present our technique for anatomic ankle arthroscopic reconstruction of the lateral ligaments (anti-ROLL) performed in an all-inside-out manner that is likely safe for patients and minimally invasive.

  12. Lubrication of the human ankle joint in walking with the synovial fluid filtrated by the cartilage with the surface zone worn out: steady pure sliding motion.

    PubMed

    Hlavácek, M

    1999-10-01

    A mixture model of synovial fluid filtration by cartilage in the human ankle joint during walking is presented for steady sliding motion of the articular surfaces. In the paper the cartilage surface zone is assumed worn out. The same model has been recently applied to the squeeze-film problem for the human hip joint loaded by the body weight during standing (Hlavácek, Journal of Biomechanics 26, 1145-1150, 1151-1160, 1993; Hlavácek and Novák, Journal of Biomechanics 28, 1193-1198, 1199-1205, 1995). The linear biphasic model for cartilage (elastic porous matrix + ideal fluid) due to Prof. V. C. Mow and his co-workers and the biphasic model for synovial fluid (viscous fluid + ideal fluid), as used in the above-mentioned squeeze-film problem, are applied. For the physiologic parameters of the ankle joint during walking, a continuous synovial fluid film about 1 microm thick is maintained under steady entraining motion according to the classical model without the fluid transport across the articular surface. This is not the case in the filtration model with the cartilage surface zones worn out. On the contrary, this filtration model indicates that synovial fluid is intensively filtrated by such cartilage, so that no continuous fluid film is maintained and a synovial gel layer, about 10(-8) m thick, develops over the majority of the contact. Thus, if the cartilage surface zones are worn out, boundary lubrication should prevail in the ankle joint under steady sliding motion for the mean values of loading and the sliding velocity encountered in walking cycle.

  13. Modelling the Shear Behaviour of Rock Joints with Asperity Damage Under Constant Normal Stiffness

    NASA Astrophysics Data System (ADS)

    Indraratna, Buddhima; Thirukumaran, Sivanathan; Brown, E. T.; Zhu, Song-Ping

    2015-01-01

    The shear behaviour of a rough rock joint depends largely on the surface properties of the joint, as well as the boundary conditions applied across the joint interface. This paper proposes a new analytical model to describe the complete shear behaviour of rough joints under constant normal stiffness (CNS) boundary conditions by incorporating the effect of damage to asperities. In particular, the effects of initial normal stress levels and joint surface roughness on the shear behaviour of joints under CNS conditions were studied, and the analytical model was validated through experimental results. Finally, the practical application of the model to a jointed rock slope stability analysis is presented.

  14. Reconstruction of the varus ankle from soft-tissue procedures with osteotomy through arthrodesis.

    PubMed

    LaClair, Susan Mosier

    2007-03-01

    Cavovarus foot and ankle reconstruction is done to preserve motion whenever possible, and to maintain or impart stability, realigning foot and ankle joints into as anatomic a position as possible to restore a more normal mechanical axis to the extremity, and redistribute joint pressure or load more evenly. In patients who have a flexible deformity based on the Coleman block test, this is accomplished through calcaneal and metatarsal osteotomies to preserve joint motion, even in the presence of osteoarthritis. In cases of rigid and nonreducible deformity, the rigid cavovarus foot and ankle are addressed using a modified triple arthrodesis, an ankle arthrodesis, a tibiotalocalcaneal arthrodesis, or pantalar arthrodesis. In most patients, bony procedures are combined with soft-tissue realignment procedures.

  15. Biomechanics of the ankle-foot system during stair ambulation: implications for design of advanced ankle-foot prostheses.

    PubMed

    Sinitski, Emily H; Hansen, Andrew H; Wilken, Jason M

    2012-02-02

    Unilateral lower limb prosthesis users display temporal, kinematic, and kinetic asymmetries between limbs while ascending and descending stairs. These asymmetries are due, in part, to the inability of current prosthetic devices to effectively mimic normal ankle function. The purpose of this study was to provide a comprehensive set of biomechanical data for able-bodied and unilateral transtibial amputee (TTA) ankle-foot systems for level-ground (LG), stair ascent (SA), and stair descent (SD), and to characterize deviations from normal performance associated with prosthesis use. Ankle joint kinematics, kinetics, torque-angle curves, and effective shapes were calculated for twelve able-bodied individuals and twelve individuals with TTA. The data from this study demonstrated the prosthetic limb can more effectively mimic the range of motion and power output of a normal ankle-foot during LG compared to SA and SD. There were larger differences between the prosthetic and able-bodied limbs during SA and SD, most evident in the torque-angle curves and effective shapes. These data can be used by persons designing ankle-foot prostheses and provide comparative data for assessment of future ankle-foot prosthesis designs.

  16. Total ankle replacement - surgical treatment and rehabilitation.

    PubMed

    Prusinowska, Agnieszka; Krogulec, Zbigniew; Turski, Piotr; Przepiórski, Emil; Małdyk, Paweł; Księżopolska-Orłowska, Krystyna

    2015-01-01

    Functions of the ankle joint are closely connected with the gait and ability to maintain an upright position. Degenerative lesions of the joint directly contribute to postural disorders and greatly restrict propulsion of the foot, thus leading to abnormal gait. Development of total ankle replacement is connected with the use of the method as an efficient treatment of joint injuries and continuation of achievements in hip and knee surgery. The total ankle replacement technique was introduced as an alternative to arthrodesis, i.e. surgical fixation, which made it possible to preserve joint mobility and to improve gait. Total ankle replacement is indicated in post-traumatic degenerative joint disease and joint destruction secondary to rheumatoid arthritis. In this paper, total ankle replacement and various types of currently used endoprostheses are discussed. The authors also describe principles of early postoperative rehabilitation as well as rehabilitation in the outpatient setting.

  17. Joint attention studies in normal and autistic children using NIRS

    NASA Astrophysics Data System (ADS)

    Chaudhary, Ujwal; Hall, Michael; Gutierrez, Anibal; Messinger, Daniel; Rey, Gustavo; Godavarty, Anuradha

    2011-03-01

    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic. In this study Near infrared spectroscopy (NIRS) is being applied for the first time to study the difference in activation and connectivity in the frontal cortex of typically developing (TD) and autistic children between 4-8 years of age in response to joint attention task. The optical measurements are acquired in real time from frontal cortex using Imagent (ISS Inc.) - a frequency domain based NIRS system in response to video clips which engenders a feeling of joint attention experience in the subjects. A block design consisting of 5 blocks of following sequence 30 sec joint attention clip (J), 30 sec non-joint attention clip (NJ) and 30 sec rest condition is used. Preliminary results from TD child shows difference in brain activation (in terms of oxy-hemoglobin, HbO) during joint attention interaction compared to the nonjoint interaction and rest. Similar activation study did not reveal significant differences in HbO across the stimuli in, unlike in an autistic child. Extensive studies are carried out to validate the initial observations from both brain activation as well as connectivity analysis. The result has significant implication for research in neural pathways associated with autism that can be mapped using NIRS.

  18. Posterior tibial nerve lesions in ankle arthroscopy.

    PubMed

    Cugat, Ramon; Ares, Oscar; Cuscó, Xavier; Garcia, Montserrat; Samitier, Gonzalo; Seijas, Roberto

    2008-05-01

    Ankle arthroscopy provides a minimally invasive approach to the diagnosis and treatment of certain ankle disorders. Neurological complications resulting from ankle arthroscopy have been well documented in orthopaedic and podiatric literature. Owing to the superficial location of the ankle joint and the abundance of overlying periarticular neurovascular structures, complications reported in ankle arthroscopy are greater than those reported for other joints. In particular, all reported neurovascular injuries following ankle arthroscopy have been the direct result of distractor pin or portal placement. The standard posteromedial portal has recognized risks because of the proximity of the posterior neurovascular structures. There can be considerable variability in the course of these portals and their proximity to the neurovascular structures. We found one report of intra-articular damage to the posterior tibial nerve as a result of ankle arthroscopy in the English-language literature and we report this paper as a second case described in the literature.

  19. Ankle mechanics during sidestep cutting implicates need for 2-degrees of freedom powered ankle-foot prostheses.

    PubMed

    Ficanha, Evandro M; Rastgaar, Mohammad; Kaufman, Kenton R

    2015-01-01

    The ankle joint of currently available powered prostheses is capable of controlling one degree of freedom (DOF), focusing on improved mobility in the sagittal plane. To increase agility, the requirements of turning in prosthesis design need to be considered. Ankle kinematics and kinetics were studied during sidestep cutting and straight walking. There were no significant differences between the ankle sagittal plane mechanics when comparing sidestep cutting and straight walking; however, significant differences were observed in ankle frontal plane mechanics. During straight walking, the inversion-eversion (IE) angles were smaller than with sidestep cutting. The ankle that initiated the sidestep cutting showed progressively increasing inversion from 2 to 13 degrees while the following contralateral step showed progressively decreasing inversion from 8 to -4 degrees during normal walking speed. The changes in IE kinematics were the most significant during sidestep cutting compared with straight walking. The IE moments of the step that initiated the sidestep cutting were always in eversion, acting as a braking moment opposing the inverting motion. This suggests that an ankle-foot prosthesis with active DOFs in the sagittal and frontal planes will increase the agility of gait for patients with limb loss.

  20. Quantitative analysis of human ankle characteristics at different gait phases and speeds for utilizing in ankle-foot prosthetic design

    PubMed Central

    2014-01-01

    Background Ankle characteristics vary in terms of gait phase and speed change. This study aimed to quantify the components of ankle characteristics, including quasi-stiffness and work in different gait phases and at various speeds. Methods The kinetic and kinematic data of 20 healthy participants were collected during normal gait at four speeds. Stance moment-angle curves were divided into three sub-phases including controlled plantarflexion, controlled dorsiflexion and powered plantarflexion. The slope of the moment-angle curves was quantified as quasi-stiffness. The area under the curves was defined as work. Results The lowest quasi-stiffness was observed in the controlled plantarflexion. The fitted line to moment-angle curves showed R2 > 0.8 at controlled dorsiflexion and powered plantarflexion. Quasi-stiffness was significantly different at different speeds (P = 0.00). In the controlled dorsiflexion, the ankle absorbed energy; by comparison, energy was generated in the powered plantarflexion. A negative work value was recorded at slower speeds and a positive value was observed at faster speeds. Ankle peak powers were increased with walking speed (P = 0.00). Conclusions Our findings suggested that the quasi-stiffness and work of the ankle joint can be regulated at different phases and speeds. These findings may be clinically applicable in the design and development of ankle prosthetic devices that can naturally replicate human walking at various gait speeds. PMID:24568175

  1. Apparatus to measure simultaneously 14 isometric leg joint moments. Part 1: Design and calibration of six-axis transducers for the forces and moments at the ankle.

    PubMed

    Donaldson, N N; Munih, M; Perkins, T A; Wood, D E

    1999-03-01

    An apparatus has been developed for making isometric measurements of the joint moments corresponding to the 14 degrees of freedom of the legs, in postures ranging between sitting and near full extension. The apparatus is called the multi-moment chair system (MMCS) and is described in the companion paper. This paper describes the most critical components of the MMCS, which are the six-axis transducers for measuring the force and moment components on the plantar-flexion axis of each ankle while the feet are laced into fixed shoes. The transducers are made of steel bars, on which strain gauges are mounted, joined by clamps. The design of the transducer and methods of calibration and error estimation are described. The RMS errors are less than 2 N for the forces and 1 Nm for the moments, but these may be correlated. A method for error reduction that compensates for the finite compliance of the transducer does not reduce the measured errors.

  2. Reliability of sagittal plane hip, knee, and ankle joint angles from a single frame of video data using the GAITRite camera system.

    PubMed

    Ross, Sandy A; Rice, Clinton; Von Behren, Kristyn; Meyer, April; Alexander, Rachel; Murfin, Scott

    2015-01-01

    The purpose of this study was to establish intra-rater, intra-session, and inter-rater, reliability of sagittal plane hip, knee, and ankle angles with and without reflective markers using the GAITRite walkway and single video camera between student physical therapists and an experienced physical therapist. This study included thirty-two healthy participants age 20-59, stratified by age and gender. Participants performed three successful walks with and without markers applied to anatomical landmarks. GAITRite software was used to digitize sagittal hip, knee, and ankle angles at two phases of gait: (1) initial contact; and (2) mid-stance. Intra-rater reliability was more consistent for the experienced physical therapist, regardless of joint or phase of gait. Intra-session reliability was variable, the experienced physical therapist showed moderate to high reliability (intra-class correlation coefficient (ICC) = 0.50-0.89) and the student physical therapist showed very poor to high reliability (ICC = 0.07-0.85). Inter-rater reliability was highest during mid-stance at the knee with markers (ICC = 0.86) and lowest during mid-stance at the hip without markers (ICC = 0.25). Reliability of a single camera system, especially at the knee joint shows promise. Depending on the specific type of reliability, error can be attributed to the testers (e.g. lack of digitization practice and marker placement), participants (e.g. loose fitting clothing) and camera systems (e.g. frame rate and resolution). However, until the camera technology can be upgraded to a higher frame rate and resolution, and the software can be linked to the GAITRite walkway, the clinical utility for pre/post measures is limited.

  3. Foot and ankle problems in dancers.

    PubMed

    Kadel, Nancy

    2014-11-01

    The dancer's foot and ankle are subjected to high forces and unusual stresses in training and performance. Injuries are common in dancers, and the foot and ankle are particularly vulnerable. Ankle sprains, ankle impingement syndromes, flexor hallucis longus tendonitis, cuboid subluxation, stress fractures, midfoot injuries, heel pain, and first metatarsophalangeal joint problems including hallux valgus, hallux rigidus, and sesamoid injuries will be reviewed. This article will discuss these common foot and ankle problems in dancers and give typical clinical presentation and diagnostic and treatment recommendations.

  4. Revision of the aseptic and septic total ankle replacement.

    PubMed

    Espinosa, Norman; Wirth, Stephan Hermann

    2013-04-01

    Total ankle replacement has become a popular treatment of symptomatic end-stage ankle osteoarthritis. Contemporary total ankle replacement systems provide more anatomic and biomechanically sound function. However, longevity is still limited and long-term results of modern total ankle replacement designs are not available. In the case of failure, conversion into arthrodesis has remained the treatment of choice but at the cost of hindfoot function and potential degeneration of the adjacent joints. Thus, revision total ankle replacement by exchange of the prosthetic components represents an attractive solution. This article focuses on revision total ankle replacement and conversion to ankle arthrodesis.

  5. Ankle Sprains

    MedlinePlus

    ... the sole of the foot is facing inwards, stretching and possibly damaging the ligaments on the outer ... sprains: Always warm up and use the recommended stretching techniques for your ankles before playing sports, exercising, ...

  6. Sprained Ankles

    MedlinePlus

    ... are usually stronger than the growing bones and cartilage to which they are attached. Therefore, the growing part of the bone might separate or tear away before the ligament is injured. Types of Sprains In young children, the ankle is ...

  7. Powered ankle-foot prosthesis for the improvement of amputee ambulation.

    PubMed

    Au, Samuel K; Herr, Hugh; Weber, Jeff; Martinez-Villalpando, Ernesto C

    2007-01-01

    This paper presents the mechanical design, control scheme, and clinical evaluation of a novel, motorized ankle-foot prosthesis, called MIT Powered Ankle-Foot Prosthesis. Unlike a conventional passive-elastic ankle-foot prosthesis, this prosthesis can provide active mechanical power during the stance period of walking. The basic architecture of the prosthesis is a unidirectional spring, configured in parallel with a force-controllable actuator with series elasticity. With this architecture, the anklefoot prosthesis matches the size and weight of the human ankle, and is also capable of delivering high mechanical power and torque observed in normal human walking. We also propose a biomimetic control scheme that allows the prosthesis to mimic the normal human ankle behavior during walking. To evaluate the performance of the prosthesis, we measured the rate of oxygen consumption of three unilateral transtibial amputees walking at self-selected speeds to estimate the metabolic walking economy. We find that the powered prosthesis improves amputee metabolic economy from 7% to 20% compared to the conventional passive-elastic prostheses (Flex-Foot Ceterus and Freedom Innovations Sierra), even though the powered system is twofold heavier than the conventional devices. This result highlights the benefit of performing net positive work at the ankle joint to amputee ambulation and also suggests a new direction for further advancement of an ankle-foot prosthesis.

  8. Ankle sprain - slideshow

    MedlinePlus

    ... anatomy URL of this page: //medlineplus.gov/ency/presentations/100209.htm Ankle sprain - Series—Normal anatomy To use the sharing features on this page, please enable JavaScript. Go to slide 1 out of 4 Go to slide 2 ...

  9. Haemophilic arthropathy of the ankle treated by total ankle replacement: a case series.

    PubMed

    Barg, A; Elsner, A; Hefti, D; Hintermann, B

    2010-07-01

    The standard treatment for end-stage osteoarthritis of the ankle joint in haemophilic patients has been fusion of the ankle joint. Total ankle replacement is still controversial as a treatment option. The objective of this prospective study was to evaluate the mid-term outcome in patients treated with total ankle replacement using an unconstrained three-component ankle implant. Ten haemophilic ankles in eight patients (mean age: 43.2 years, range 26.7-57.5) treated with total ankle replacement were followed up for a minimum of 2.7 years (mean: 5.6, range 2.7-7.6). The outcome was measured with clinical and radiological evaluations. There were no intra- or peri-operative complications. The AOFAS-hindfoot-score increased from 38 (range 8-57) preoperatively to 81 (range 69-95) postoperatively. All patients were satisfied with the results. Four patients became pain free; in the whole patient cohort pain level decreased from 7.1 (range 4-9) preoperatively to 0.8 (range 0-3) postoperatively. All categories of SF-36 score showed significant improvements in quality of life. In one patient, open ankle arthrolysis was performed because of painful arthrofibrosis. For patients with haemophilic osteoarthritis of the ankle joint, total ankle replacement is a valuable alternative treatment to ankle fusion.

  10. Ultrasound of the elbow: Examination techniques and US appearance of the normal and pathologic joint.

    PubMed

    Draghi, F; Danesino, G M; de Gautard, R; Bianchi, S

    2007-06-01

    Ultrasound studies are frequently requested for the work-up of patients with local elbow pain, which is generally caused by overuse syndromes, trauma, inflammatory diseases, or neuropathies. The technique used to examine this joint will vary to some extent depending on the precise location of the pain and other clinical findings. The aim of this article is to describe the standard technique used for elbow ultrasound, the normal anatomy of the joint, and the appearance on ultrasound of normal elbow anatomy and the alterations associated with some of the more common disorders affecting this joint.

  11. Normal and abnormal temporomandibular joints as demonstrated by magnetic resonance imaging.

    PubMed

    Kreipke, D L; Conces, D J; Sondhi, A; Lappas, J C; Augustyn, G T

    1986-01-01

    Magnetic resonance imaging of the temporomandibular joint (TMJ) was performed on two normal volunteer subjects and two symptomatic subjects using a 0.15 T resistive magnet. A spin echo pulse sequence with a TE of 38 ms and a TR of 500 ms was employed. The TMJ meniscus is a low signal structure, and the bilaminar zone behind it is a relatively high signal structure. In normal closed mouths, the demarcation between meniscus and bilaminar zone is located at the vertex position above the mandibular condyle. When the condyle translates, the posterior portion of the meniscus bulges into the joint space. Dislocated meniscus can be identified by a gray mass anterior to the condylar head. The joint space is filled with the higher signal of the bilaminar zone. In non-reducible dislocations, the meniscus remains anterior to the condylar head with opening of the mouth. Reduced dislocations appear similar to normal joints in the open mouth.

  12. Independent and Joint Effect of Brachial-Ankle Pulse Wave Velocity and Blood Pressure Control on Incident Stroke in Hypertensive Adults.

    PubMed

    Song, Yun; Xu, Benjamin; Xu, Richard; Tung, Renee; Frank, Eric; Tromble, Wayne; Fu, Tong; Zhang, Weiyi; Yu, Tao; Zhang, Chunyan; Fan, Fangfang; Zhang, Yan; Li, Jianping; Bao, Huihui; Cheng, Xiaoshu; Qin, Xianhui; Tang, Genfu; Chen, Yundai; Yang, Tianlun; Sun, Ningling; Li, Xiaoying; Zhao, Lianyou; Hou, Fan Fan; Ge, Junbo; Dong, Qiang; Wang, Binyan; Xu, Xiping; Huo, Yong

    2016-07-01

    Pulse wave velocity (PWV) has been shown to influence the effects of antihypertensive drugs in the prevention of cardiovascular diseases. Data are limited on whether PWV is an independent predictor of stroke above and beyond hypertension control. This longitudinal analysis examined the independent and joint effect of brachial-ankle PWV (baPWV) with hypertension control on the risk of first stroke. This report included 3310 hypertensive adults, a subset of the China Stroke Primary Prevention Trial (CSPPT) with baseline measurements for baPWV. During a median follow-up of 4.5 years, 111 participants developed first stroke. The risk of stroke was higher among participants with baPWV in the highest quartile than among those in the lower quartiles (6.3% versus 2.4%; hazard ratio, 1.66; 95% confidence interval, 1.06-2.60). Similarly, the participants with inadequate hypertension control had a higher risk of stroke than those with adequate control (5.1% versus 1.8%; hazard ratio, 2.32; 95% confidence interval, 1.49-3.61). When baPWV and hypertension control were examined jointly, participants in the highest baPWV quartile and with inadequate hypertension control had the highest risk of stroke compared with their counterparts (7.5% versus 1.3%; hazard ratio, 3.57; 95% confidence interval, 1.88-6.77). There was a significant and independent effect of high baPWV on stroke as shown among participants with adequate hypertension control (4.2% versus 1.3%; hazard ratio, 2.29, 95% confidence interval, 1.09-4.81). In summary, among hypertensive patients, baPWV and hypertension control were found to independently and jointly affect the risk of first stroke. Participants with high baPWV and inadequate hypertension control had the highest risk of stroke compared with other groups.

  13. Marked loss of sympathetic nerve fibers in chronic Charcot foot of diabetic origin compared to ankle joint osteoarthritis.

    PubMed

    Koeck, Franz-Xaver; Bobrik, Verena; Fassold, Alexander; Grifka, Joachim; Kessler, Sigurd; Straub, Rainer H

    2009-06-01

    The pathogenesis of Charcot foot is based on three disputed factors: (1) loss of neurotrophic influence, (2) microtraumatic lesions, and (3) neurovascular disturbances. These etiological causes were uncovered by clinicophysiological tests. However, no results of quantitative nerve density studies of sympathetic and sensory substance P-positive (SP+) nerve fibers are available. We studied the density of sympathetic and SP+ nerve fibers in three distinct areas of the tarsus. Fifteen patients with ankle osteoarthritis (OA) and 15 patients with diabetic Charcot foot were included. Patients with OA did not differ from those with Charcot foot in SP+ sensory nerve fiber density. However, at all three areas, the density of sympathetic nerve fibers was significantly lower in patients with Charcot foot compared to OA (p = 0.006). In addition, we found that the sympathetic nerve repellent factor semaphorin 3C was highly expressed in inflamed tissue in Charcot patients. In Charcot foot of diabetic origin a severe loss of sympathetic nerve fibers was observed. These findings in chronically inflamed Charcot foot lend support to the neurovascular theory in the late chronic phase, which probably depends on the inflammatory upregulation of nerve repellent factors.

  14. [Development of the normal infantile hip joints assessed by MRI].

    PubMed

    Wierusz-Kozłowska, M; Ziemiański, A; Kruczyński, J; Borkowski, W

    2000-01-01

    The paper provides an overview of the time of appearance of the secondary ossification centers and closure of the growth plates of the acetabulum and proximal epiphysis of the femur: the triradiate cartilage, the acetabular roof growth cartilage, the subcapital growth cartilage, the growth cartilage of the major trochanter, the growth cartilage of the minor trochanter. The study is based upon 62 MRI scans of healthy hips in 45 patients aged 3-21. The examined hips showed no pathologic traits--neither in the MRI scan nor in X-ray investigation. In Spin Echo and Turbo Spin Echo sequential imaging all obtained slices were used, on GRADIENT ECHO: FISP 3D, FLASH 2D, and FLASH 3D FAT SAT only chosen slices were included in the study. This way the following results were obtained: the ossification center of the major trochanter appears at the age of 3 in girls and at the age of 6 in boys, while the ossification center of the minor trochanter appears at the age of 6 in both sexes. The times of complete ossification of following growth cartilages were observed: for the triradiate cartilage ossification was observed at age 12-15 in girls and 15-16 in boys; for the cartilage of the acetabular roof ossification was noted at age 12-15 in girls and 15-18 in boys; ossification in the subcapital growth cartilage occurred at age 15-17 in girls and 16-18 in boys; the major trochanter growth cartilage ossifies at age 15-16 in girls and 16-18 in boys; for the minor trochanter ossification of the growth cartilage occurs at age 14-16 in girls and at age 16-18 in boys. The secondary ossification center of the pubic bone appears at age 9-11 in girls and 13-16 in boys and the secondary ossification center of the acetabular roof appears at age 13-17 in girls and boys. This study expand our knowledge on the development of the hip joint and facilitate the assessment of hip pathology.

  15. Ankle arthrodesis. Long-term follow-up with gait analysis.

    PubMed

    Mazur, J M; Schwartz, E; Simon, S R

    1979-10-01

    A functional assessment of twelve patients after ankle arthrodesis for post-traumatic arthritis was carried out by means of an extensive clinical evaluation and gait analysis after an average follow-up of eight years. A weighted point system was developed to grade ankle function clinically. The data on gait analysis were examined to determine the effect of arthrodesis of the ankle on the over-all pattern of walking. Under conditions of normal daily living while wearing shoes, all patients functioned well after arthrodesis. The gait-analysis data obtained with the patients wearing shoes showed excellent gait characteristics, and the ankle motion that had been lost was compensated for by: (1) motion of the small joints of the ipsilateral foot; (2) altered motion of the ankle in the contralateral limb; and (3) appropriate footwear. While the patients were walking barefooted, some adverse effects of fusion of the ankle were evident. Velocity of gait was slowed and the length of stride was shortened in all twelve patients. One patient whose ankle had been fused in an equinus position had a back-knee deformity during stance phase, and another walked only on his toes when he was without shoes. The gait patterns of all patients were markedly improved when they were wearing shoes with appropriate heel heights.

  16. Symptomatic anterior subtalar arthrosis after ankle arthrodesis.

    PubMed

    Lui, Tun Hing

    2014-05-13

    A 76-year-old man reported right lateral heel pain 11 years after ankle arthrodesis. Clinically, there was tenderness in the right sinus tarsi and over the junction point between the talonavicular and calcaneocuboid joints. Radiographs showed that the joint spaces of the posterior subtalar joint and the talonavicular joint were preserved although there were osteophytes at both joints. Arthroscopic findings showed degeneration of the anterior subtalar and talonavicular joints. The symptoms subsided after arthroscopic debridement.

  17. Arthroscopic Management of Complications Following Total Ankle Replacement.

    PubMed

    Lui, Tun Hing; Roukis, Thomas S

    2015-10-01

    There is great potential of managing the complications of total ankle replacement arthroscopically and endoscopically, and these procedures can be summarized into 3 groups. Group 1 includes procedures of the ankle joint proper with close proximity to the articular components of the total ankle replacement. Group 2 includes procedures of the tibia and talus with close proximity to the nonarticular parts of the total ankle replacement. Group 3 includes procedures that are away from the total ankle replacement. However, these remain master arthroscopist procedures and should be performed by foot and ankle surgeons who perform them with regularity.

  18. Comparison of Children with Joint Angles in Spastic Diplegia with Those of Normal Children

    PubMed Central

    Kim, Chang Ju; Kim, Young Mi; Kim, Dong Dae

    2014-01-01

    [Purpose] The purpose of this study was to compare joint angles between normal children and those with spastic diplegia using three-dimensional gait analysis. [Subjects and Methods] The study subjects were eight patients with spastic diplegia and eight normal children. Three-dimensional gait analysis was used for the survey. The measured gait variables were the joints of the lower extremity in the sagittal plane, frontal plane, and transverse planes and the maximum and minimum angles of their stance phase and swing phases. [Results] In the sagittal plane, the maximum angles of both the right and left pelvis and hip joint in the stance phase and swing phases were significantly greater for children with spastic diplegia than for normal children. In the stance phase of the right side of the hip joint, the maximum angles of the hip in the swing phase and the knee joint’s minimum angles in the stance phase differed significantly. In the transverse plane, there were a significant differences on the left side of the pelvis in the maximum angles in the swing and stance phases. There were also significant differences on the right side pelvis, in the maximum and minimum angles in the stance phase and minimum angles in the swing phase. [Conclusion] Children with spastic diplegia employ a different gait strategy and pattern from normal children. PMID:25276040

  19. Total ankle replacement – surgical treatment and rehabilitation

    PubMed Central

    Krogulec, Zbigniew; Turski, Piotr; Przepiórski, Emil; Małdyk, Paweł; Księżopolska-Orłowska, Krystyna

    2015-01-01

    Functions of the ankle joint are closely connected with the gait and ability to maintain an upright position. Degenerative lesions of the joint directly contribute to postural disorders and greatly restrict propulsion of the foot, thus leading to abnormal gait. Development of total ankle replacement is connected with the use of the method as an efficient treatment of joint injuries and continuation of achievements in hip and knee surgery. The total ankle replacement technique was introduced as an alternative to arthrodesis, i.e. surgical fixation, which made it possible to preserve joint mobility and to improve gait. Total ankle replacement is indicated in post-traumatic degenerative joint disease and joint destruction secondary to rheumatoid arthritis. In this paper, total ankle replacement and various types of currently used endoprostheses are discussed. The authors also describe principles of early postoperative rehabilitation as well as rehabilitation in the outpatient setting. PMID:27407223

  20. Feedforward ankle strategy of balance during quiet stance in adults

    PubMed Central

    Gatev, Plamen; Thomas, Sherry; Kepple, Thomas; Hallett, Mark

    1999-01-01

    We studied quiet stance investigating strategies for maintaining balance. Normal subjects stood with natural stance and with feet together, with eyes open or closed. Kinematic, kinetic and EMG data were evaluated and cross-correlated.Cross-correlation analysis revealed a high, positive, zero-phased correlation between anteroposterior motions of the centre of gravity (COG) and centre of pressure (COP), head and COG, and between linear motions of the shoulder and knee in both sagittal and frontal planes. There was a moderate, negative, zero-phased correlation between the anteroposterior motion of COP and ankle angular motion.Narrow stance width increased ankle angular motion, hip angular motion, mediolateral sway of the COG, and the correlation between linear motions of the shoulder and knee in the frontal plane. Correlations between COG and COP and linear motions of the shoulder and knee in the sagittal plane were decreased. The correlation between the hip angular sway in the sagittal and frontal planes was dependent on interaction between support and vision.Low, significant positive correlations with time lags of the maximum of cross-correlation of 250-300 ms were found between the EMG activity of the lateral gastrocnemius muscle and anteroposterior motions of the COG and COP during normal stance. Narrow stance width decreased both correlations whereas absence of vision increased the correlation with COP.Ankle mechanisms dominate during normal stance especially in the sagittal plane. Narrow stance width decreased the role of the ankle and increased the role of hip mechanisms in the sagittal plane, while in the frontal plane both increased.The modulation pattern of the lateral gastrocnemius muscle suggests a central program of control of the ankle joint stiffness working to predict the loading pattern. PMID:9882761

  1. Chronic Ankle Instability

    MedlinePlus

    ... foot and ankle surgeons. All Fellows of the College are board certified by the American Board of Foot and Ankle Surgery. Copyright © 2017 American College of Foot and Ankle Surgeons (ACFAS), All Rights ...

  2. Accuracy of Posterior Subtalar Joint Injection Without Fluoroscopy

    PubMed Central

    Kirk, Kevin L.; Campbell, John T.; Guyton, Gregory P.

    2008-01-01

    Injection into the posterior subtalar joint has not been validated for accuracy using radiographic end points. We asked whether needle placement into a normal posterior subtalar joint could be performed accurately and selectively by experienced surgeons without fluoroscopic guidance. Three fellowship-trained orthopaedic foot and ankle surgeons each injected the posterior subtalar joint of 20 cadaveric specimens using an anterolateral approach. Fluoroscopic images were obtained by an independent investigator and blinded. A separate fellowship-trained foot and ankle surgeon interpreted the images. Of 60 injections, 58 were accurate and two were extraarticular based on interpretation by an independent foot and ankle surgeon. Extravasation into the ankle occurred in 14 samples and into the peroneal sheath in two samples. Experienced surgeons can place intraarticular injections into a radiographically normal posterior subtalar joint without fluoroscopy with a high degree of accuracy. However, extravasation into the ankle or peroneal tendon sheath occurred in an unpredictable fashion, suggesting selectivity of injection placement is relatively limited without the use of fluoroscopy. Fluoroscopy may not be necessary for injections used solely for therapeutic purposes. However, if the injection is intended for diagnostic purposes or to assist in surgical decision-making or if the joint is abnormal, we recommend fluoroscopy to ensure the subtalar joint is the only anatomic structure impacted by the injection. PMID:18404293

  3. Modeling of Human Joint Structures.

    DTIC Science & Technology

    1982-09-01

    Radial Lateral " epicondyle Olecranon Radius Ulna Figure 3. Lateral aspect of the right elbow joint. -17- Annular Ligament This strong band encircles... elbow joint, knee joint, human joints, shoulder joint, ankle joint, joint models, hip joint, ligaments. 20. ABSTRACT (Continue on reverse side If...ligaments. -A rather extended discussion of the articulations and anatomical descriptions of the elbow , shoulder, hip, knee and ankle joints are

  4. Identification and long-term observation of early joint damage by magnetic resonance imaging in clinically asymptomatic joints in patients with haemophilia A or B despite prophylaxis.

    PubMed

    Olivieri, M; Kurnik, K; Pfluger, T; Bidlingmaier, C

    2012-05-01

    Severe haemophilia is associated with recurrent joint bleeds, which can lead to haemophilic arthropathy. Subclinical joint bleeds have also been associated with joint damage detected using magnetic resonance imaging (MRI). We investigated the development of early changes in clinically asymptomatic joints using MRI in haemophilia A or B patients receiving prophylactic therapy. In this single-centre retrospective cohort study, patients with clinical evidence of joint damage in one ankle and one clinically asymptomatic ankle, in which we performed an MRI scan of both ankles in one session, were enrolled. MRI findings were graded using a 4-point scoring system (0 = normal findings and III = severe joint damage). Since 2000, 38 MRIs in 26 patients have been performed. Starting at a median age of 4 years, 23 patients received prophylaxis 2-3 times weekly. On-demand treatment was performed in three patients. Eight patients (31%) presented with an MRI score of 0, 12 (46%) had a score of I, four (15%) had a score of II, and two (8%) had a score of III in the clinically unaffected ankle. The six patients with MRI scores of II and III had started regular prophylaxis between the ages of 2 years and 15 years; none had developed an inhibitor or experienced a clinically evident bleed in the asymptomatic ankle. During our study, five of 26 patients had a worsening of MRI findings without experiencing a joint bleed. Early morphological changes in clinically asymptomatic ankles can be detected using MRI, despite adequate prophylaxis.

  5. A new powered orthosis with hip and ankle linkage for paraplegics walking.

    PubMed

    Nagai, Chikara; Hisada, Shinnosuke; Obinata, Goro; Genda, Eiichi

    2013-06-01

    Several types of hip-knee-ankle-foot orthotic systems have been proposed for paraplegic walking during these decades. Hip and ankle linked orthosis (HALO) is compact one in those orthoses, which seeks to achieve a smoother-movement and user-easiness on its don/doff in paraplegic walking. The idea of HALO is to link two ankle joints with medial single joint via wires so that the orthosis keeps both feet always parallel to the floor while walking and assist the swinging of the leg. So as to reduce the consumption energy of HALO walking, we have introduced two actuators to control the ankle-joints angles in this paper. The actuators placed at hip joint in HALO allow the orthosis to have more degree-of-freedom and are able to provide a propulsive force the coupled user-orthosis system. The results of preliminary experiments with normal subjects show that the users can walk smoother and the proposed orthotic system will be able to reduce the users' consumption energy while walking.

  6. Primary ankle arthrodesis for neglected open Weber B ankle fracture dislocation.

    PubMed

    Thomason, Katherine; Ramesh, Ashwanth; McGoldrick, Niall; Cove, Richard; Walsh, James C; Stephens, Michael M

    2014-01-01

    Primary ankle arthrodesis used to treat a neglected open ankle fracture dislocation is a unique decision. A 63-year-old man presented to the emergency department with a 5-day-old open fracture dislocation of his right ankle. After thorough soft tissue debridement, primary arthrodesis of the tibiotalar joint was performed using initial Kirschner wire fixation and an external fixator. Definitive soft tissue coverage was later achieved using a latissimus dorsi free flap. The fusion was consolidated to salvage the limb from amputation. The use of primary arthrodesis to treat a compound ankle fracture dislocation has not been previously described.

  7. Sway‐dependent changes in standing ankle stiffness caused by muscle thixotropy

    PubMed Central

    Sakanaka, Tania E.; Lakie, Martin

    2016-01-01

    Key points The passive stiffness of the calf muscles contributes to standing balance, although the properties of muscle tissue are highly labile.We investigated the effect of sway history upon intrinsic ankle stiffness and demonstrated reductions in stiffness of up to 43% during conditions of increased baseline sway.This sway dependence was most apparent when using low amplitude stiffness‐measuring perturbations, and the short‐range stiffness component was smaller during periods of high sway.These characteristics are consistent with the thixotropic properties of the calf muscles causing the observed changes in ankle stiffness.Periods of increased sway impair the passive stabilization of standing, demanding more active neural control of balance. Abstract Quiet standing is achieved through a combination of active and passive mechanisms, consisting of neural control and intrinsic mechanical stiffness of the ankle joint, respectively. The mechanical stiffness is partly determined by the calf muscles. However, the viscoelastic properties of muscle are highly labile, exhibiting a strong dependence on movement history. By measuring the effect of sway history upon ankle stiffness, the present study determines whether this lability has consequences for the passive stabilization of human standing. Ten subjects stood quietly on a rotating platform whose axis was collinear with the ankle joint. Ankle sway was increased by slowly tilting this platform in a random fashion, or decreased by fixing the body to a board. Ankle stiffness was measured by using the same platform to simultaneously apply small, brief perturbations (<0.6 deg; 140 ms) at the same time as the resulting torque response was recorded. The results show that increasing sway reduces ankle stiffness by up to 43% compared to the body‐fixed condition. Normal quiet stance was associated with intermediate values. The effect was most apparent when using smaller perturbation amplitudes to measure stiffness (0

  8. Comparison of sensitivity coefficients for joint angle trajectory between normal and pathological gait.

    PubMed

    Błażkiewicz, Michalina; Wit, Andrzej

    2012-01-01

    Gait recordings exhibit intra-subject, inter-subject, within-trial and between-trial variability as well as data analysis methods. In medicine, comparison of different measuring method results or quantifying changes due to specific treatment is required. The aim of this study was to compare a group homogeneity with respect to dispersion around the reference curve and to compare waveforms of normal and pathological gait data based on joint angle curves. Data files were tracked using APAS system. Our own model of lower limb was used to calculate the trajectories of joint angles for 5 groups: healthy men, women, children, persons with drop foot and Trendelenburg's sign. Waveform parameterizations, RMS, IAE and correlation coefficients were used to compare joint angles with reference curve. The sample scores obtained in this work provide an important information about closeness in the shape of two curves. Using multiple techniques of data analysis will benefit and give more accurate information.

  9. Total Ankle Arthroplasty: An Imaging Overview

    PubMed Central

    Kim, Da-Rae; Potter, Hollis G.; Li, Angela E.; Chun, Ka-Young; Jung, Yoon Young; Kim, Jin-Su; Young, Ki-Won

    2016-01-01

    With advances in implant technology, total ankle arthroplasty (TAA) has become an increasingly popular alternative to arthrodesis for the management of end-stage ankle arthritis. However, reports in the literature do not focus on the imaging features of TAA. Through a literature review, we demonstrate basic design features of the current ankle arthroplasty system, and the normal and abnormal postoperative imaging features associated with such devices. Pre- and postoperative evaluations of ankle arthroplasty mainly include radiography; in addition, computed tomography and magnetic resonance imaging provide further characterization of imaging abnormalities. Familiarization with multimodal imaging features of frequent procedural complications at various postoperative intervals is important in radiological practice. PMID:27134529

  10. Conversion of ankle autofusion to total ankle replacement using the Salto XT revision prosthesis.

    PubMed

    Williamson, Emilie R C; Demetracopoulos, Constantine A; Ellis, Scott J

    2016-09-01

    Few reports in the literature have described the conversion of a surgically fused ankle to a total ankle replacement. The takedown of an autofusion and conversion to a prosthesis has not been described. We report the case of a patient with severe rheumatoid arthritis with an ankle autofusion fixed in equinus and severe talonavicular arthritis that was converted to ankle replacement using the Salto XT revision system. We describe the reasons why the decision was made to perform total ankle arthroplasty while concomitantly fusing the talonavicular joint, and discuss the rationale of the various surgical treatment options considered. We describe the clinical and radiographic outcomes achieved in this case. At 12 months post-operatively the patient reported significant reduction of pain, increased FAOS scores and had increased ankle range of motion.

  11. Contributions of individual muscles to hip joint contact force in normal walking.

    PubMed

    Correa, Tomas A; Crossley, Kay M; Kim, Hyung J; Pandy, Marcus G

    2010-05-28

    The human hip joint withstands high contact forces during daily activity and is therefore susceptible to injury and structural deterioration over time. Knowledge of muscle-force contributions to hip joint loading may assist in the development of strategies to prevent and manage conditions such as osteoarthritis, femoro-acetabular impingement and fracture. The main aim of this study was to determine the contributions of individual muscles to hip contact force in normal walking. Muscle contributions to hip contact force were calculated based on a previously published dynamic optimization solution for normal walking, which provided the time histories of joint motion, ground reaction forces, and muscle forces during the stance and swing phases of gait. The force developed by each muscle plus its contribution to the ground reaction force were used to determine the muscle's contribution to hip contact force. Muscles were the major contributors to hip contact force, with gravitational and centrifugal forces combined contributing less than 5% of the total contact force. Four muscles that span the hip - gluteus medius, gluteus maximus, iliopsoas, and hamstrings - contributed most significantly to the three components of the hip contact force and hip contact impulse (integral of hip contact force over time). Three muscles that do not span the hip - vasti, soleus, and gastrocnemius - also contributed substantially to hip joint loading. These results provide additional insight into lower-limb muscle function during walking and may also be relevant to studies of cartilage degeneration and bone remodelling at the hip.

  12. Do somatosensory conditions from the foot and ankle affect postural responses to plantar-flexor muscles fatigue during bipedal quiet stance?

    PubMed

    Hlavackova, Petra; Vuillerme, Nicolas

    2012-05-01

    The present study investigated the effects of somatosensory conditions at the foot and ankle on postural responses to plantar-flexor muscle fatigue during bipedal quiet stance. Twenty-two young healthy adults were asked to stand upright as still as possible with their eyes closed in three somatosensory conditions (normal, altered and improved) both prior to and after exercises inducing plantar-flexor muscle fatigue. In the normal condition, the postural task was executed on a firm support surface constituted by the force platform. In the altered condition, a 2-cm thick foam support surface was placed under the subjects' feet. In the improved condition, increased cutaneous feedback at the foot and ankle was provided by strips of athletic tape applied across both their ankle joints. Muscle fatigue was induced in the plantar-flexor muscles of both legs through the execution of a repeated standing heel raise exercise. Centre of foot pressure displacements were recorded using a force platform. Results showed that plantar-flexor muscle fatigue yielded increased centre of foot pressure displacements under normal foot and ankle sensory conditions. Furthermore, this effect was exacerbated under altered foot and ankle sensory conditions and mitigated under improved foot and ankle sensory conditions. Altogether, the present findings suggested an increased reliance on somatosensory information from the foot and ankle for controlling upright posture in the presence of plantar-flexor muscle fatigue.

  13. Failure modes of current total ankle replacement systems.

    PubMed

    Pappas, Michael J; Buechel, Frederick F

    2013-04-01

    Methodology for evaluation of total ankle replacements is described. Fusion and its problems are discussed as are those of total ankle joint replacement. Fusion is an imperfect solution because it reduces ankle functionality and has significant complications. Early fixed-bearing total ankles were long-term failures and abandoned. Currently available fixed-bearing ankles have proved inferior to fusion or are equivalent to earlier devices. Only mobile-bearing devices have been shown reasonably safe and effective. One such device, the STAR, has been approved by the Food and Drug Administration after a rigorous controlled clinical trial and is available for use in the United States.

  14. Biomechanical comparison of frontal plane knee joint moment arms during normal and Tai Chi walking.

    PubMed

    Jagodinsky, Adam; Fox, John; Decoux, Brandi; Weimar, Wendi; Liu, Wei

    2015-09-01

    [Purpose] Medial knee osteoarthritis, a degenerative joint disease, affects adults. The external knee adduction moment, a surrogate knee-loading measure, has clinical implications for knee osteoarthritis patients. Tai Chi is a promising intervention for pain alleviation in knee osteoarthritis; however, the characteristics of external knee adduction moment during Tai Chi have not been established. [Subjects and Methods] During normal and Tai Chi walking, a gait analysis was performed to compare the external knee adduction moment moment-arm characteristics and paired t-tests to compare moment-arm magnitudes. [Results] A significant difference was observed in the average lateral direction of moment-arm magnitude during Tai Chi walking (-0.0239 ± 0.011 m) compared to that during normal walking (-0.0057 ± 0.004 m). No significant difference was found between conditions in average medial direction of moment-arm magnitude (normal walking: 0.0143 ± 0.010 m; Tai Chi walking: 0.0098 ± 0.014 m). [Conclusion] Tai Chi walking produced a larger peak lateral moment-arm value than normal walking during the stance phase, whereas Tai Chi walking and normal walking peak medial moment-arm values were similar, suggesting that medial knee joint loading may be avoided during Tai Chi walking.

  15. Modeling the effect of preexisting joints on normal fault geometries using a brittle and cohesive material

    NASA Astrophysics Data System (ADS)

    Kettermann, M.; van Gent, H. W.; Urai, J. L.

    2012-04-01

    , stereo-photography at the final stage of deformation enabled the creation of 3D models to preserve basic geometric information. The models showed that at the surface the deformation localized always along preexisting joints, even when they strike at an angle to the basement-fault. In most cases faults intersect precisely at the maximum depth of the joints. With increasing fault-joint angle the deformation occurred distributed over several joints by forming stepovers with fractures oriented normal to the strike of the joints. No fractures were observed parallel to the basement fault. At low angles stepovers coincided with wedge-shaped structures between two joints that remain higher than the surrounding joint-fault intersection. The wide opening gap along the main fault allowed detailed observations of the fault planes at depth, which revealed (1) changing dips according to joint-fault angles, (2) slickenlines, (3) superimposed steepening fault-planes, causing sharp sawtooth-shaped structures. Comparison to a field analogue at Canyonlands National Park, Utah/USA showed similar structures and features such as vertical fault escarpments at the surface coinciding with joint-surfaces. In the field and in the models stepovers were observed as well as conjugate faulting and incremental fault-steepening.

  16. Extraarticular Supramalleolar Osteotomy for Managing Varus Ankle Osteoarthritis, Alternatives for Osteotomy: How and Why?

    PubMed

    Lee, Woo-Chun

    2016-03-01

    The supramalleolar osteotomy has been reported to be a joint preserving surgery with good clinical outcome for asymmetric ankle osteoarthritis, especially varus ankle osteoarthritis. Conventional supramalleolar osteotomy of the tibia and fibula creates angulation and translation of the ankle joint without changing the width of the ankle mortise. Distal tibial oblique osteotomy improved the preoperative clinical and radiological parameters; however, mean talar tilt angle did not decrease. Assessment of the ankle arthritis in sagittal, axial, and coronal planes may be helpful to achieve a decrease of the talar tilt in ankle osteoarthritis.

  17. Elimination of tritium-labelled hyaluronic acid from normal and osteoarthritic rabbit knee joints.

    PubMed

    Lindenhayn, K; Heilmann, H H; Niederhausen, T; Walther, H U; Pohlenz, K

    1997-05-01

    The half-life of [3H]hyaluronic acid in rabbit knee joints was estimated using two methods: (i) by following the [3H]hyaluronan content of the synovial fluid after intra-articular injection and (ii) by following the 3H2O radioactivity of plasma after intra-articular injection of [3H]hyaluronan. For normal rabbits we obtained a half-life of 15.8 hours (method I) and 17.5 +/- 1.0 hours (mean +/- SEM, method II), respectively. The second method was used to estimate the kinetics of the hyaluronan elimination from normal, sham-operated, as well as from osteoarthritic rabbit knee joints (Colombo model of osteoarthritis). Four weeks after injury, during the developing phase of osteoarthritis, the half-life of hyaluronan rose significantly to 23.5 +/- 2.1 hours and returned to normal levels (17.4 +/- 2.7 hours) 12 weeks after the operation (osteoarthritis developed). At the stage of developed osteoarthritis, the clearance rates were considerably higher than in normal rabbits.

  18. Ankle impingement syndromes: a review of etiology and related implications.

    PubMed

    Hess, Gregory William

    2011-10-01

    Ankle injuries are common occurrences in athletics involving and requiring extreme ranges of motion. Ankle sprains specifically occur with a 1 in 10,000 person rate in active individuals each day. If trauma is repetitive, the ankle structures have potential to experience secondary injury and dysfunction. Included in this category of dysfunction are both anterior and posterior ankle impingement syndromes where disruption of the bony structures, joint capsule, ligaments, and tendons typically occurs. Ankle impingement is described as ankle pain that occurs during athletic activity, with recurrent, extreme dorsiflexion or plantar flexion with the joint under a load. Ankle impingements can be classified according to what structures become involved both anteriorly and posteriorly. Osseous impingement, soft tissue impingement, impingement of the distal fascicle of anterior inferior tibiofibular ligament, and meniscoid lesions are all documented causes of ankle impingement. These changes tend to be brought about and exacerbated by extreme ranges of motion. Understanding various impingement types will better enable the clinician to prevent, identify, treat, and rehabilitate affected ankles. Acknowledging activities that predispose to ankle impingement syndrome will enhance prevention and recovery processes. Description of ankle impingement etiology and pathology is the objective of the current review.

  19. Range of Motion of the Ankle According to Pushing Force, Gender and Knee Position

    PubMed Central

    Cho, Kang Hee; Lee, Hyunkeun

    2016-01-01

    Objective To investigate the difference of range of motion (ROM) of ankle according to pushing force, gender and knee position. Methods One hundred and twenty-eight healthy adults (55 men, 73 women) between the ages of 20 and 51, were included in the study. One examiner measured the passive range of motion (PROM) of ankle by Dualer IQ Inclinometers and Commander Muscle Testing. ROM of ankle dorsiflexion (DF) and plantarflexion (PF) according to change of pushing force and knee position were measured at prone position. Results There was significant correlation between ROM and pushing force, the more pushing force leads the more ROM at ankle DF and ankle PF. Knee flexion of 90° position showed low PF angle and high ankle DF angle, as compared to the at neutral position of knee joint. ROM of ankle DF for female was greater than for male, with no significant difference. ROM of ankle PF for female was greater than male regardless of the pushing force. Conclusion To our knowledge, this is the first study to assess the relationship between pushing force and ROM of ankle joint. There was significant correlation between ROM of ankle and pushing force. ROM of ankle PF for female estimated greater than male regardless of the pushing force and the number of measurement. The ROM of the ankle is measured differently according to the knee joint position. Pushing force, gender and knee joint position are required to be considered when measuring the ROM of ankle joint. PMID:27152277

  20. Imaging of normal and pathologic joint synovium using nonlinear optical microscopy as a potential diagnostic tool

    NASA Astrophysics Data System (ADS)

    Tiwari, Nivedan; Chabra, Sanjay; Mehdi, Sheherbano; Sweet, Paula; Krasieva, Tatiana B.; Pool, Roy; Andrews, Brian; Peavy, George M.

    2010-09-01

    An estimated 1.3 million people in the United States suffer from rheumatoid arthritis (RA). RA causes profound changes in the synovial membrane of joints, and without early diagnosis and intervention, progresses to permanent alterations in joint structure and function. The purpose of this study is to determine if nonlinear optical microscopy (NLOM) can utilize the natural intrinsic fluorescence properties of tissue to generate images that would allow visualization of the structural and cellular composition of fresh, unfixed normal and pathologic synovial tissue. NLOM is performed on rabbit knee joint synovial samples using 730- and 800-nm excitation wavelengths. Less than 30 mW of excitation power delivered with a 40×, 0.8-NA water immersion objective is sufficient for the visualization of synovial structures to a maximum depth of 70 μm without tissue damage. NLOM imaging of normal and pathologic synovial tissue reveals the cellular structure, synoviocytes, adipocytes, collagen, vascular structures, and differential characteristics of inflammatory infiltrates without requiring tissue processing or staining. Further study to evaluate the ability of NLOM to assess the characteristics of pathologic synovial tissue and its potential role for the management of disease is warranted.

  1. Semiparametric Bayesian inference on skew-normal joint modeling of multivariate longitudinal and survival data.

    PubMed

    Tang, An-Min; Tang, Nian-Sheng

    2015-02-28

    We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within-subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew-normal distribution to specify the within-subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis-Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within-subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies.

  2. Reliability and smallest real difference of the ankle lunge test post ankle fracture.

    PubMed

    Simondson, David; Brock, Kim; Cotton, Susan

    2012-02-01

    This study aimed to determine the reliability and the smallest real difference of the Ankle Lunge test in an ankle fracture patient population. In the post immobilisation stage of ankle fracture, ankle dorsiflexion is an important measure of progress and outcome. The Ankle Lunge test measures weight bearing dorsiflexion, resulting in negative scores (knee to wall distance) and positive scores (toe to wall distance), for which the latter has proven reliability in normal subjects only. A consecutive sample of ankle fracture patients with permission to commence weight bearing, were recruited to the study. Three measurements of the Ankle Lunge Test were performed each by two raters, one senior and one junior physiotherapist. These occurred prior to therapy sessions in the second week after plaster removal. A standardised testing station was utilised and allowed for both knee to wall distance and toe to wall distance measurement. Data was collected from 10 individuals with ankle fracture, with an average age of 36 years (SD 14.8). Seventy seven percent of observations were negative. Intra and inter-rater reliability yielded intra class correlations at or above 0.97, p < .001. There was a significant systematic bias towards improved scores during repeated measurement for one rater (p = .01). The smallest real difference was calculated as 13.8mm. The Ankle Lunge test is a practical and reliable tool for measuring weightbearing dorsiflexion post ankle fracture.

  3. Neuromuscular control and rehabilitation of the unstable ankle

    PubMed Central

    Hung, You-jou

    2015-01-01

    Lateral ankle sprain is a common orthopedic injury with a very high recurrence rate in athletes. After decades of research, it is still unclear what contributes to the high recurrence rate of ankle sprain, and what is the most effective intervention to reduce the incident of initial and recurrent injuries. In addition, clinicians often implement balance training as part of the rehabilitation protocol in hopes of enhancing the neuromuscular control and proprioception of the ankle joint. However, there is no consensus on whether the neuromuscular control and proprioception are compromised in unstable ankles. To reduce the prevalence of ankle sprains, the effectiveness of engaging balance training to enhance the neuromuscular control and proprioception of the ankle joint is also questionable. PMID:26085985

  4. Computed and conventional arthrotomography of the glenohumeral joint: normal anatomy and clinical experience

    SciTech Connect

    Deutsch, A.L.; Resnick, D.; Mink, J.H.; Berman, J.L.; Cone, R.O. III; Resnik, C.S.; Danzig, L.; Guerra, J. Jr.

    1984-12-01

    The glenohumeral joint was studied in 25 cadavers and 136 patients using computed arthrotomography (CAT) and conventional arthrotomography (AT) to assess shoulder instability. Cadaver shoulders were injected with air or latex, sectioned with a band saw, and normal articular anatomy outlined. CAT was performed in 81 patients and characterized the glenoid labrum as normal, abnormal, or detached. Hill-Sachs defects were seen in 20 out of 29 patients with anterior labral abnormalities, while bicipital tendon abnormalities were evident on CAT in 6. Of 55 patients who had AT, the status of the labrum was clarified in 13 of the 16 patients who had surgery or arthroscopy. Both methods can characterize the labrum; however, CAT is more comprehensive and appears ideal for both detection of Hill-Sachs defects and imaging the bicipital tendon. CAT requires less technical expertise and radiation than AT and is tolerated better by patients in pain.

  5. Development of an efficient rehabilitation exercise program for functional recovery in chronic ankle instability

    PubMed Central

    Kim, Kewwan; Jeon, Kyoungkyu

    2016-01-01

    [Purpose] The aim of the present study was to construct an integrated rehabilitation exercise program to prevent chronic pain and improve motor ability in cases of ankle injury and re-injury. [Subjects and Methods] Twenty-six male soccer players who required functional strength exercises due to repeated ankle injury were the subjects. A 12-week rehabilitation exercise program was constructed with the aim of improving muscle strength in the ankle and dynamic coordination of the lower limb. Muscle strength and dynamic coordination were evaluated using the Y Balance Test, and isokinetic muscle strength of ankle dorsiflexion, plantarflexion, inversion, and eversion were measured before and after the 12-week program. [Results] Following 12 weeks of rehabilitation exercise, there were statistically significant improvements in the ratios of dorsiflexor strength to plantarflexor strength, eversion strength, and inversion strength on the left side. The other variables showed no significant changes. [Conclusion] The rehabilitation exercise program for chronic ankle instability helped to reduce pain, and to restore normal joint range of motion, muscle strength and endurance, and functional ability. Active protocols to improve complex functions need to be developed to complement these results. PMID:27313347

  6. Acute traumatic open posterolateral dislocation of the ankle without tearing of the tibiofibular syndesmosis ligaments: a case report.

    PubMed

    Demiralp, Bahtiyar; Komurcu, Mahmut; Ozturk, Cagatay; Ozturan, Kutay; Tasatan, Ersin; Erler, Kaan

    2008-01-01

    Pure open dislocation of the ankle, or dislocation not accompanied by rupture of the tibiofibular syndesmosis ligaments or fractures of the malleoli or of the posterior border of the tibia, is an extremely rare injury. A 62-year-old man injured his right ankle in a motor vehicle accident. Besides posterolateral ankle dislocation, there was a 7-cm transverse skin cut on the medial malleolus, and the distal end of the tibia was exposed. After reduction, we made a 2- to 2.5-cm longitudinal incision on the lateral malleolus; the distal fibular fracture was exposed. Two Kirschner wires were placed intramedullary in a retrograde manner, and the fracture was stabilized. The deltoid ligament and the medial capsule were repaired. The tibiofibular syndesmosis ligaments were intact. At the end of postoperative year 1, right ankle joint range of motion had a limit of approximately 5 degrees in dorsiflexion, 10 degrees in plantarflexion, 5 degrees in inversion, and 0 degrees in eversion. The joint appeared normal on radiographs, with no signs of osteoarthritis or calcification. The best result can be obtained with early reduction, debridement, medial capsule and deltoid ligament restoration, and early rehabilitation. Clinical and radiographic features at long-term follow-up also confirm good mobility of the ankle without degenerative change or mechanical instability.

  7. Assessment of Ankle Injuries

    ERIC Educational Resources Information Center

    Mai, Nicholas; Cooper, Leslie

    2009-01-01

    School nurses are faced with the challenge of identifying and treating ankle injuries in the school setting. There is little information guiding the assessment and treatment of these children when an injury occurs. It is essential for school nurses to understand ankle anatomy, pathophysiology of the acute ankle injury, general and orthopedic…

  8. Measurement of passive ankle stiffness in subjects with chronic hemiparesis using a novel ankle robot.

    PubMed

    Roy, Anindo; Krebs, Hermano I; Bever, Christopher T; Forrester, Larry W; Macko, Richard F; Hogan, Neville

    2011-05-01

    Our objective in this study was to assess passive mechanical stiffness in the ankle of chronic hemiparetic stroke survivors and to compare it with those of healthy young and older (age-matched) individuals. Given the importance of the ankle during locomotion, an accurate estimate of passive ankle stiffness would be valuable for locomotor rehabilitation, potentially providing a measure of recovery and a quantitative basis to design treatment protocols. Using a novel ankle robot, we characterized passive ankle stiffness both in sagittal and in frontal planes by applying perturbations to the ankle joint over the entire range of motion with subjects in a relaxed state. We found that passive stiffness of the affected ankle joint was significantly higher in chronic stroke survivors than in healthy adults of a similar cohort, both in the sagittal as well as frontal plane of movement, in three out of four directions tested with indistinguishable stiffness values in plantarflexion direction. Our findings are comparable to the literature, thus indicating its plausibility, and, to our knowledge, report for the first time passive stiffness in the frontal plane for persons with chronic stroke and older healthy adults.

  9. Management of Osseous and Soft-Tissue Ankle Equinus During Total Ankle Replacement.

    PubMed

    Roukis, Thomas S; Simonson, Devin C

    2015-10-01

    Obtaining functional alignment of a total ankle replacement, including physiologic sagittal plane range of motion, is paramount for a successful outcome. This article reviews the literature on techniques available for correction of osseous and soft-tissue equinus at the time of index total ankle replacement. These techniques include anterior tibiotalar joint cheilectomy, posterior superficial muscle compartment lengthening, posterior ankle capsule release, and release of the posterior portions of the medial and lateral collateral ligament complexes. The rationale for these procedures and the operative sequence of events for these procedures are presented.

  10. The ankle meter: an instrument for evaluation of anterior talar drawer in ankle sprain.

    PubMed

    Spahn, Gunter

    2004-07-01

    The aim of this study was to work out a clinical test which is possible to measure the anterior talar drawer (ATD) in patients after ankle sprain. The instrument for evaluation was called "ankle meter". The instrument consists of two plastic scales (heal scale and tibia scale). The instrument allows quantifying the results of the anterior drawing test. A total of 38 persons (16 men, 22 women) were available as control group. The persons were 28.8+/-10.1 years old. No proband had any ankle problems in his history. A total of 45 patients (25 males, 20 females) suffering from ankle sprain were included in the study. In these patients stress radiography (147.1 N) was performed to measure the ATD. In control group the clinical measured ATD was 1.7+/-1.3 mm. Measurement for detect the interobserver validity did not detect significant differences. The ATD of the joint after ankle sprain was significantly higher (8.9+/-4.3 mm). The difference between healthy and injured ankle in case of an ankle sprain was 7.4+/-4.2 mm. There was a significant correlation between clinical and radiological measured ATD (R=0.91). The results suggest that it is possible to measure the ATD exactly. The values of the clinical ATD measurement showed a good correlation with the results of stress radiography. Diligent clinical examination in combination with this special test are after this experiences sufficient to classify the severity of injury after ankle sprain.

  11. Joint development normal to regional compression during flexural-flow folding: the Lilstock buttress anticline, Somerset, England

    NASA Astrophysics Data System (ADS)

    Engelder, Terry; Peacock, David C. P.

    2001-02-01

    Alpine inversion in the Bristol Channel Basin includes reverse-reactivated normal faults with hanging wall buttress anticlines. At Lilstock Beach, joint sets in Lower Jurassic limestone beds cluster about the trend of the hinge of the Lilstock buttress anticline. In horizontal and gently north-dipping beds, J3 joints ( 295-285° strike) are rare, while other joint sets indicate an anticlockwise sequence of development. In the steeper south-dipping beds, J3 joints are the most frequent in the vicinity of the reverse-reactivated normal fault responsible for the anticline. The J3 joints strike parallel to the fold hinge, and their poles tilt to the south when bedding is restored to horizontal. This southward tilt aims at the direction of σ 1 for Alpine inversion. Finite-element analysis is used to explain the southward tilt of J3 joints that propagate under a local σ 3 in the direction of σ 1 for Alpine inversion. Tilted principal stresses are characteristic of limestone-shale sequences that are sheared during parallel (flexural-flow) folding. Shear tractions on the dipping beds generate a tensile stress in the stiffer limestone beds even when remote principal stresses are compressive. This situation favors the paradoxical opening of joints in the direction of the regional maximum horizontal stress. We conclude that J3 joints propagated during the Alpine compression caused the growth of the Lilstock buttress anticline.

  12. Catecholamine secretion and adrenal nerve activity in response to movements of normal and inflamed knee joints in cats.

    PubMed Central

    Sato, A; Sato, Y; Schmidt, R F

    1986-01-01

    The effects of articular stimulation on adrenal catecholamine secretion and adrenal sympathetic nerve activity were studied using halothane anaesthetized cats. Various natural passive movements were applied to the normal and inflamed knee joints. Rhythmic flexions and extensions as well as rhythmic inward and outward rotation of normal knee joints within their physiological range of motion did not change nerve activity or the secretion of adrenal catecholamines. Static outward rotation in the normal working range was also ineffective. However, as soon as this static rotation was extended into the noxious range, significant increases in both of these variables were elicited. In the acutely inflamed knee joint, various passive movements produced increases in both adrenal sympathetic and catecholamine secretion. Especially noteworthy was the finding that movements of the inflamed knee joint that were within the normal range of motion produced increases in all variables. Articularly induced increases in adrenal sympathetic nerve activity were diminished by severing various hind-limb somatic afferent nerves and abolished by complete denervation of the knee joint. Additionally, section of the adrenal sympathetic nerves eliminated the catecholamine secretion response. From these data it was concluded that the responses observed in these experiments were reflexes having an afferent limb in hind-limb nerves and an efferent limb in the adrenal sympathetic nerves. A contribution of supraspinal structures was suggested for the reflex responses of sympatho-adrenal medullary function evoked by knee joint stimulations, since spinal transection at the C2 level completely abolished the responses. PMID:3795070

  13. Traumeel vs. diclofenac for reducing pain and improving ankle mobility after acute ankle sprain: A multicentre, randomised, blinded, controlled and non-inferiority trial

    PubMed Central

    González de Vega, C; Speed, C; Wolfarth, B; González, J

    2013-01-01

    Background Acute ankle sprains are common and activity limiting injuries, and topical diclofenac gel has proven efficacy in alleviating pain and restoring function. This trial aimed to compare a topical natural agent, Traumeel with topical diclofenac gel (1%) in the management of acute ankle sprain. Methods This prospective, multicentre, randomised, blinded, active-control and non-inferiority study involved 449 physically active adults sustaining unilateral grade 1 or 2 ankle sprain within the past 24 h. Participants were randomised to receive 2 g of Traumeel ointment (T-O) (n = 152) or Traumeel gel (T-G) (n = 150) or diclofenac gel (D-G) (n = 147), administered topically to the ankle three times a day for 14 days, with 6-weeks follow up. Results Day 7 median percentage reductions in Visual Analogue Scale pain score were 60.6%, 71.1% and 68.9% for the T-O, T-G and D-G groups, respectively. Total pain relief was reported by 12 (8.5%), 7 (5.0%) and 8 (5.9%) participants in each group, respectively. Median improvements in Foot and Ankle Ability Measure Activities of Daily Living subscale score were 26.2, 26.2 and 25.0 points for T-O, T-G and D-G groups, respectively. Mann–Whitney effect sizes and lower bound confidence intervals demonstrated non-inferiority of Traumeel vs. diclofenac for reducing pain and functional improvement. At 6 weeks, participants reported total pain relief and normal functioning. Adverse events (n = 43) were reported by 31/447 participants (6.9%). Treatments were equally well tolerated. Conclusions T-O and T-G decreased pain and improved joint function to the same extent as D-G in acute ankle sprain, and were well tolerated. PMID:23889885

  14. Osteochondral defects in the ankle: why painful?

    PubMed

    van Dijk, C Niek; Reilingh, Mikel L; Zengerink, Maartje; van Bergen, Christiaan J A

    2010-05-01

    Osteochondral defects of the ankle can either heal and remain asymptomatic or progress to deep ankle pain on weight bearing and formation of subchondral bone cysts. The development of a symptomatic OD depends on various factors, including the damage and insufficient repair of the subchondral bone plate. The ankle joint has a high congruency. During loading, compressed cartilage forces its water into the microfractured subchondral bone, leading to a localized high increased flow and pressure of fluid in the subchondral bone. This will result in local osteolysis and can explain the slow development of a subchondral cyst. The pain does not arise from the cartilage lesion, but is most probably caused by repetitive high fluid pressure during walking, which results in stimulation of the highly innervated subchondral bone underneath the cartilage defect. Understanding the natural history of osteochondral defects could lead to the development of strategies for preventing progressive joint damage.

  15. Ankle Problems

    MedlinePlus

    ... weight:400;font-style:normal;font-size:18px;}Diseases and ConditionsPrevention and WellnessStaying Healthy Healthy Living Travel Occupational Health First Aid and Injury Prevention Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ...

  16. Lower extremity thrust and non-thrust joint mobilization for patellofemoral pain syndrome: a case report.

    PubMed

    Simpson, Brad G; Simon, Corey B

    2014-05-01

    A 40-year old female presented to physical therapy with a one-year history of insidious right anteromedial and anterolateral knee pain. Additionally, the patient had a history of multiple lateral ankle sprains bilaterally, the last sprain occurring on the right ankle 1 year prior to the onset of knee pain. The patient was evaluated and given a physical therapy diagnosis of patellofemoral pain syndrome (PFPS), with associated talocrural and tibiofemoral joint hypomobility limiting ankle dorsiflexion and knee extension, respectively. Treatment included a high-velocity low amplitude thrust manipulation to the talocrural joint, which helped restore normal ankle dorsiflexion range of motion. The patient also received tibiofemoral joint non-thrust manual therapy to regain normal knee extension mobility prior to implementing further functional progression exercises to her home program (HEP). This case report highlights the importance of a detailed evaluation of knee and ankle joint mobility in patients presenting with anterior knee pain. Further, manual physical therapy to the lower extremity was found to be successful in restoring normal movement patterns and pain-free function in a patient with chronic anterior knee pain.

  17. Ankle-Dorsiflexion Range of Motion After Ankle Self-Stretching Using a Strap

    PubMed Central

    Jeon, In-cheol; Kwon, Oh-yun; Yi, Chung-Hwi; Cynn, Heon-Seock; Hwang, Ui-jae

    2015-01-01

    Context  A variety of ankle self-stretching exercises have been recommended to improve ankle-dorsiflexion range of motion (DFROM) in individuals with limited ankle dorsiflexion. A strap can be applied to stabilize the talus and facilitate anterior glide of the distal tibia at the talocrural joint during ankle self-stretching exercises. Novel ankle self-stretching using a strap (SSS) may be a useful method of improving ankle DFROM. Objective  To compare the effects of 2 ankle-stretching techniques (static stretching versus SSS) on ankle DFROM. Design  Randomized controlled clinical trial. Setting  University research laboratory. Patients or Other Participants  Thirty-two participants with limited active dorsiflexion (<20°) while sitting (14 women and 18 men) were recruited. Main Outcome Measure(s)  The participants performed 2 ankle self-stretching techniques (static stretching and SSS) for 3 weeks. Active DFROM (ADFROM), passive DFROM (PDFROM), and the lunge angle were measured. An independent t test was used to compare the improvements in these values before and after the 2 stretching interventions. The level of statistical significance was set at α = .05. Results  Active DFROM and PDFROM were greater in both stretching groups after the 3-week interventions. However, ADFROM, PDFROM, and the lunge angle were greater in the SSS group than in the static-stretching group (P < .05). Conclusions  Ankle SSS is recommended to improve ADFROM, PDFROM, and the lunge angle in individuals with limited DFROM. PMID:26633750

  18. Analysis of the cytokine profiles of the synovial fluid in a normal temporomandibular joint: preliminary study.

    PubMed

    Kim, Young-Kyun; Kim, Su-Gwan; Kim, Bum-Soo; Lee, Jeong-Yun; Yun, Pil-Young; Bae, Ji-Hyun; Oh, Ji-Su; Ahn, Jong-Mo; Kim, Jae-Sung; Lee, Sook-Young

    2012-12-01

    The purpose of this study was to compare the cytokine profiles of the synovial fluid from the temporomandibular joint (TMJ) spaces of normal individuals and temporomandibular disorder (TMD) patients. Thirty-four patients with planned orthognathic surgery did not present abnormalities of the TMJ on magnetic resonance images and radiographs and did not show the symptoms identified by the Research Diagnostic Criteria for TMD (RDC-TMD); as a result, they were assigned to the control group. Twenty-two patients who sought treatment for TMD during the same period were assigned to the TMD group. Synovial fluid was collected from superior TMJ spaces, and cytokine expression was analysed by an enzyme-linked immunosorbent assay (ELISA). Significant differences were tested using Fisher's exact test (p<0.05). Granulocyte Macrophage Colony stimulating Factor (GM-CSF), interferon (INF), interleukin (IL)-1β, IL-2, IL-6, IL-8, IL-10 and tumour necrosis factor (TNF)-α were detected in the TMD group, whereas no cytokines were detected in the control group. The most prevalent cytokines in the TMD group were IL-1β, IL-6 and GM-CSF. IL-4 and IL-5 were not detected in either the TMD group or in the control group. None of the cytokines that were detected in patients with TMD were found in the articular spaces of normal individuals.

  19. Are there any relationships among ankle proprioception acuity, pre-landing ankle muscle responses, and landing impact in man?

    PubMed

    Fu, Siu Ngor; Hui-Chan, Christina Wan Ying

    2007-05-01

    Proprioceptive input has been suggested to contribute to the pre-landing muscle responses associated with drop-landing, but its precise role has yet to be delineated. This study set out to examine the relationships among ankle proprioception, pre-landing muscle responses, and landing impact on drop-landing in healthy man. Fifteen healthy male basketball players aged 18 to 26 participated in this study. Passive ankle joint repositioning errors were used to examine ankle joint proprioception. Pre-landing EMG responses in the ankle muscles and the impact force on landing were recorded while the players performed self-initiated drops from a height of 30 cm. Results demonstrated that averaged ankle repositioning errors were significantly correlated with the co-contraction indexes between left tibialis anterior and medial gastrocnemius muscles (TA/MG CoI) (r=0.67, p=0.006), and showed a trend towards a relationship with the right TA/MG CoI (r=0.47, p=0.079). TA/MG CoI from both ankles were further related to the magnitude of the total impact force on landing (r=0.54 and 0.53, respectively; p<0.05). We concluded that male basketball players with less accurate ankle joint sense adopted greater co-contraction of ankle dorsiflexors and platarflexors, which was in turn associated with greater impact force at the moment of landing.

  20. Total ankle replacement--evolution of the technology and future applications.

    PubMed

    Yu, John J; Sheskier, Steven

    2014-01-01

    Total ankle arthroplasty was developed to reduce pain and retain motion of the ankle joint in patients with osteoarthritis much like its total hip and knee counterparts. Orthopaedic surgeons are well equipped to evaluate and treat patients with end-stage hip or knee arthritis; however, the management of patients with ankle arthritis represents a challenge to both general orthopaedic surgeons and to the foot and ankle surgeons to whom these patients are often referred. Although techniques for both hip and knee arthroplasty have evolved to provide long-term pain relief and functional improvement, neither ankle arthrodesis nor arthroplasty has demonstrated comparably favorable outcomes in long-term follow-up studies. Early ankle arthroplasty designs with highly constrained cemented components were abandoned due to unacceptably high failure rates and complications. While arthrodesis is still considered the "gold standard" for treatment of end-stage ankle arthritis, progression of adjacent joint arthrosis and diminished gait efficiency has led to a resurgence of interest in ankle arthroplasty. Long-term outcome studies for total ankle replacement found excellent or good results in 82% of patients who received a newer generation ankle device compared with 72% if undergoing ankle fusion. Continued long-term follow-up studies are necessary, but total ankle arthroplasty has become a viable option for surgical treatment of ankle arthritis.

  1. Design and Control of an Active Electrical Knee and Ankle Prosthesis

    PubMed Central

    Sup, Frank; Varol, Huseyin Atakan; Mitchell, Jason; Withrow, Thomas; Goldfarb, Michael

    2010-01-01

    This paper presents an overview of the design and control of an electrically powered knee and ankle prosthesis. The prosthesis design incorporates two motor-driven ball screw units to drive the knee and ankle joints. A spring in parallel with the ankle motor unit is employed to decrease the power consumption and increase the torque output for a given motor size. The device’s sensor package includes a custom load cell to measure the sagittal socket interface moment above the knee joint, a custom sensorized foot to measure the ground reaction force at the heel and ball of the foot, and commercial potentiometers and load cells to measure joint positions and torques. A finite-state based impedance control approach, previously developed by the authors, is used and experimental results on level treadmill walking are presented that demonstrate the potential of the device to restore normal gait. The experimental power consumption of the device projects a walking distance of 5.0 km at a speed of 2.8 km/hr with a lithium polymer battery pack. PMID:20648239

  2. Removal of osteoblastoma of the talar neck using standard anterior ankle Arthroscopy:A case report

    PubMed Central

    Duan, Xiao-jun; Yang, Liu

    2016-01-01

    Introduction Osteoblastoma of the talus, a benign tumor, is rare in orthopedics. The choice of treatment is usually open surgery for excision of tumor. Limited data is available concerning arthroscopic approaches. Presentation of case A 36-year-old male patient was evaluated for pain and swelling of the left ankle joint. Based on the findings of physical examination, X-rays and MRI investigations, the tumor was isolated. Standard anterior arthroscopic surgery was performed due to ankle pain. A diagnosis of osteoblastoma of the talar neck was made following the pathological survey. He had no recurrent pain and normal joint mobility 5 years postoperatively during he was regularly followed up. Discussion Osteoblastoma of the talar neck is slowly progressive and it is a palpable painful mass. Open or arthroscopic surgery can be performed. Treatment strategies are decided on according to the tumor's location, extent and size. Some advantages of arthroscopic surgery are wide visualization areas, minimally invasion, low morbidity, no necessity for casting and immobilization, early rehabilitation and quick recovery. Conclusion In conclusion, arthroscopic management can be successful in selected patients with small benign tumor localized to the ankle joint. PMID:27100951

  3. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton.

    PubMed

    Kao, Pei-Chun; Lewis, Cara L; Ferris, Daniel P

    2010-01-19

    To guide development of robotic lower limb exoskeletons, it is necessary to understand how humans adapt to powered assistance. The purposes of this study were to quantify joint moments while healthy subjects adapted to a robotic ankle exoskeleton and to determine if the period of motor adaptation is dependent on the magnitude of robotic assistance. The pneumatically powered ankle exoskeleton provided plantar flexor torque controlled by the wearer's soleus electromyography (EMG). Eleven naïve individuals completed two 30-min sessions walking on a split-belt instrumented treadmill at 1.25m/s while wearing the ankle exoskeleton. After two sessions of practice, subjects reduced their soleus EMG activation by approximately 36% and walked with total ankle moment patterns similar to their unassisted gait (r(2)=0.98+/-0.02, THSD, p>0.05). They had substantially different ankle kinematic patterns compared to their unassisted gait (r(2)=0.79+/-0.12, THSD, p<0.05). Not all of the subjects reached a steady-state gait pattern within the two sessions, in contrast to a previous study using a weaker robotic ankle exoskeleton (Gordon and Ferris, 2007). Our results strongly suggest that humans aim for similar joint moment patterns when walking with robotic assistance rather than similar kinematic patterns. In addition, greater robotic assistance provided during initial use results in a longer adaptation process than lesser robotic assistance.

  4. Articular Ankle Fracture Results in Increased Synovitis, Synovial Macrophage Infiltration, and Synovial Fluid Concentrations of Inflammatory Cytokines and Chemokines

    PubMed Central

    Furman, Bridgette D.; Kimmerling, Kelly A.; Zura, Robert D.; Reilly, Rachel M.; Zlowodzki, Michal P.; Huebner, Janet L.; Kraus, Virginia B.; Guilak, Farshid; Olson, Steven A.

    2016-01-01

    Objective The inflammatory response following an articular fracture is thought to play a role in the development of posttraumatic arthritis (PTA) but has not been well characterized. The objective of this study was to characterize the acute inflammatory response, both locally and systemically, in joint synovium, synovial fluid (SF), and serum following articular fracture of the ankle. We hypothesized that intraarticular fracture would alter the synovial environment and lead to increased local and systemic inflammation. Methods Synovial tissue biopsy specimens, SF samples, and serum samples were collected from patients with an acute articular ankle fracture (n = 6). Additional samples (normal, ankle osteoarthritis [OA], and knee OA [n = 6 per group]) were included for comparative analyses. Synovial tissue was assessed for synovitis and macrophage count. SF and serum were assessed for cytokines (interferon-γ [IFNγ], interleukin-1β [IL-1β], IL-6, IL-8, IL-10, IL-12p70, and tumor necrosis factor α) and chemokines (eotaxin, eotaxin 3, IFNγ-inducible 10-kd protein, monocyte chemotactic protein 1 [MCP-1], MCP-4, macrophage-derived chemokine, macrophage inflammatory protein 1β, and thymus and activation–regulated chemokine). Results Synovitis scores were significantly higher in ankle fracture tissue compared with normal ankle tissue (P = 0.007), and there was a trend toward an increased abundance of CD68+ macrophages in ankle fracture synovium compared with normal knee synovium (P = 0.06). The concentrations of all cytokines and chemokines were elevated in the SF of patients with ankle fracture compared with those in SF from OA patients with no history of trauma. Only the concentration of IL-6 was significantly increased in the serum of patients with ankle fracture compared with normal serum (P = 0.027). Conclusion Articular fracture of the ankle increased acute local inflammation, as indicated by increased synovitis, increased macrophage infiltration into

  5. Short-term effect of ultrasound-guided low-molecular-weight hyaluronic acid injection on clinical outcomes and imaging changes in patients with rheumatoid arthritis of the ankle and foot joints. A randomized controlled pilot trial.

    PubMed

    Wang, Chien-Chih; Lee, Si-Huei; Lin, Hsiao-Yi; Liu, Fu-Wei; Chiou, Hong-Jen; Chan, Rai-Chi; Chou, Chen-Liang

    2017-01-06

    To determine whether hyaluronic acid (HA) injection into rheumatoid arthritis ankles and feet can achieve improvement in foot function and reduce synovial hyper-vascularization. Forty-four patients with RA having unilateral or bilateral painful ankle and foot involvement (N = 75) were studied. All the patients were randomized to receive HA (N = 40) or lidocaine (LI) (N = 35) injection at 2-week intervals; Clinical assessments were performed using a visual analog scale (VAS) and foot function index (FFItotal) including subscales of pain (FFIpain) before injection at baseline, 4 weeks (first evaluation) and 12 weeks (secondary evaluation). Imaging evaluation based on color Doppler ultrasound (CDUS) and synovitis scores was performed simultaneously. HA injection improved the VAS score (p = .009), FFIpain (p = .041), and FFItotal (p = .032) considerably more than LI injections did at the first evaluation. The CDUS values at first evaluation (p = .005) and secondary evaluation (p < .001) decreased significantly compared with the base line values. HA injections reduced the CDUS values of more than half of the joints (54%, p = .042) while the control group exhibited no change (20%, p = .56). However, HA injection did not reduce the CDUS values more than LI injection did. Regarding the evaluation of synovial hypertrophy, no significant difference was observed between or within the groups in the synovitis scores. HA injection improved short-term foot function and pain reduction. HA injection may have a modest effect in reducing synovial hyper-vascularization. Further large-scale study is warranted to confirm this result.

  6. Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    PubMed Central

    Cain, Stephen M; Gordon, Keith E; Ferris, Daniel P

    2007-01-01

    Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control. PMID:18154649

  7. Ankle Fractures Often Not Diagnosed

    MedlinePlus

    ... foot and ankle surgeons. All Fellows of the College are board certified by the American Board of Foot and Ankle Surgery. Copyright © 2017 American College of Foot and Ankle Surgeons (ACFAS), All Rights ...

  8. Individual muscle contributions to the axial knee joint contact force during normal walking.

    PubMed

    Sasaki, Kotaro; Neptune, Richard R

    2010-10-19

    Muscles are significant contributors to the high joint forces developed in the knee during human walking. Not only do muscles contribute to the knee joint forces by acting to compress the joint, but they also develop joint forces indirectly through their contributions to the ground reaction forces via dynamic coupling. Thus, muscles can have significant contributions to forces at joints they do not span. However, few studies have investigated how the major lower-limb muscles contribute to the knee joint contact forces during walking. The goal of this study was to use a muscle-actuated forward dynamics simulation of walking to identify how individual muscles contribute to the axial tibio-femoral joint force. The simulation results showed that the vastii muscles are the primary contributors to the axial joint force in early stance while the gastrocnemius is the primary contributor in late stance. The tibio-femoral joint force generated by these muscles was at times greater than the muscle forces themselves. Muscles that do not cross the knee joint (e.g., the gluteus maximus and soleus) also have significant contributions to the tibio-femoral joint force through their contributions to the ground reaction forces. Further, small changes in walking kinematics (e.g., knee flexion angle) can have a significant effect on the magnitude of the knee joint forces. Thus, altering walking mechanics and muscle coordination patterns to utilize muscle groups that perform the same biomechanical function, yet contribute less to the knee joint forces may be an effective way to reduce knee joint loading during walking.

  9. Hip Joint Contact Force in the Emu (Dromaius novaehollandiae) during Normal Level Walking

    PubMed Central

    Goetz, Jessica E.; Derrick, Timothy R.; Pedersen, Douglas R.; Robinson, Duane A.; Conzemius, Michael G.; Baer, Thomas E.; Brown, Thomas D.

    2008-01-01

    The emu is a large, (bipedal) flightless bird that potentially can be used to study various orthopaedic disorders in which load protection of the experimental limb is a limitation of quadrupedal models. An anatomy-based analysis of normal emu walking gait was undertaken to determine hip contact forces for comparison with human data. Kinematic and kinetic data captured for two laboratory-habituated emus were used to drive the model. Muscle attachment data were obtained by dissection, and bony geometries were obtained by CT scan. Inverse dynamics calculations at all major lower-limb joints were used in conjunction with optimization of muscle forces to determine hip contact forces. Like human walking gait, emu ground reaction forces showed a bimodal distribution over the course of the stance phase. Two-bird averaged maximum hip contact force was approximately 5.5 times body weight, directed nominally axially along the femur. This value is only modestly larger than optimization-based hip contact forces reported in literature for humans. The interspecies similarity in hip contact forces makes the emu a biomechanically attractive animal in which to model loading-dependent human orthopaedic hip disorders. PMID:18206892

  10. Load compensating reactions to perturbations at wrist joint in normal man

    NASA Technical Reports Server (NTRS)

    Jaeger, R. J.; Agarwell, G. C.; Gottlieb, G. L.

    1981-01-01

    The electromyographic responses to step torque loads were studied in flexors and extensors at the human wrist. Based on temporal bursting patterns and functional behavior, the response was divided into four temporal components. Two early components, the myotatic (30-60 ms) late myotatic (60-120 ms) appears to be reflex response. The third postmyotatic component (120-200 ms) appear to be a triggered reaction, preceeding the fourth, stabilizing component (200-400 ms). A comparison of response at the wrist with similar data at the ankle provides the basis for a generalized classification of the response in various muscles to torque step perturbations.

  11. Dietary and viscosupplementation in ankle arthritis.

    PubMed

    Khosla, Shaun K; Baumhauer, Judith F

    2008-09-01

    Glucosamine and chondroitin sulfate are the most well-marketed dietary supplements directed toward managing symptoms associated with osteoarthritis. The presumption of their benefit in the ankle is based largely on promising results from their use in knee osteoarthritis. Likewise, viscosupplementation has proved to be efficacious in the management of osteoarthritis of the knee. Preliminary studies demonstrate a realization of this benefit in the ankle joint, but further research is required. So far, the literature has shown the dietary and viscosupplementation discussed in this article to be relatively safe for use.

  12. Gait generation for powered Hip-Ankle-Linkage-Orthosis.

    PubMed

    Jaeryoung Lee; Mizumoto, Ryota; Obinata, Goro; Genda, Eiichi; Stefanov, Dimitar; Aoki, Hirofumi; Yanling Pei

    2015-08-01

    A hip-knee-ankle-foot orthotic system called `HALO'(Hip and Ankle Linked Orthosis) for paraplegic walking has been developed in our previous study. Each ankle joint of the HALO system is linked with a medial single joint via a wire which allows both feet of the orthosis to stay always parallel to the floor during walking and assists swinging the leg. The tests of the HALO system demonstrated that it allows smoother walking and easy don/doff. In order to improve further the characteristics of the previous design, we started a new project called pHALO aiming at further reducing of the energy expenditure during walking. As a difference from the previous solution where ankle joints were restrained, the new solution will incorporate two actuators to control the ankle joints angles. As an intermediate step from the development of the pHALO system, in this study we added to the existing system a feedback PI controller to control the ankle joint angle of the right foot in the push-off phase and conducted an experiment to evaluate the effect of the new design on the walking patterns and energy efficiency. The results showed longer stride length, faster gait speed, smaller variation of the CoG, and less energy consumption.

  13. Registry data trends of total ankle replacement use.

    PubMed

    Roukis, Thomas S; Prissel, Mark A

    2013-01-01

    Joint arthroplasty registry data are meaningful when evaluating the outcomes of total joint replacement, because they provide unbiased objective information regarding survivorship and incidence of use. Critical evaluation of the registry data information will benefit the surgeon, patient, and industry. However, the implementation and acceptance of registry data for total ankle replacement has lagged behind that of hip and knee implant arthroplasty. Currently, several countries have national joint arthroplasty registries, with only some procuring information for total ankle replacement. We performed an electronic search to identify publications and worldwide registry databanks with pertinent information specific to total ankle replacement to determine the type of prostheses used and usage trends over time. We identified worldwide registry data from 33 countries, with details pertinent to total ankle replacement identified in only 6 countries. The obtained information was arbitrarily stratified into 3 distinct periods: 2000 to 2006, 2007 to 2010, and 2011. Within these study periods, the data from 13 total ankle replacement systems involving 3,980 ankles were identified. The vast majority (97%) of the reported ankle replacements were 3-component, mobile-bearing, uncemented prostheses. Three usage trends were identified: initial robust embracement followed by abrupt disuse, minimal use, and initial embracement followed by sustained growth in implantation. Before the widespread acceptance of new total ankle replacements, the United States should scrutinize and learn from the international registry data and develop its own national joint registry that would include total ankle replacement. Caution against the adoption of newly released prostheses, especially those without readily available revision components, is recommended.

  14. Estimations of relative effort during sit-to-stand increase when accounting for variations in maximum voluntary torque with joint angle and angular velocity.

    PubMed

    Bieryla, Kathleen A; Anderson, Dennis E; Madigan, Michael L

    2009-02-01

    The main purpose of this study was to compare three methods of determining relative effort during sit-to-stand (STS). Fourteen young (mean 19.6+/-SD 1.2 years old) and 17 older (61.7+/-5.5 years old) adults completed six STS trials at three speeds: slow, normal, and fast. Sagittal plane joint torques at the hip, knee, and ankle were calculated through inverse dynamics. Isometric and isokinetic maximum voluntary contractions (MVC) for the hip, knee, and ankle were collected and used for model parameters to predict the participant-specific maximum voluntary joint torque. Three different measures of relative effort were determined by normalizing STS joint torques to three different estimates of maximum voluntary torque. Relative effort at the hip, knee, and ankle were higher when accounting for variations in maximum voluntary torque with joint angle and angular velocity (hip=26.3+/-13.5%, knee=78.4+/-32.2%, ankle=27.9+/-14.1%) compared to methods which do not account for these variations (hip=23.5+/-11.7%, knee=51.7+/-15.0%, ankle=20.7+/-10.4%). At higher velocities, the difference in calculating relative effort with respect to isometric MVC or incorporating joint angle and angular velocity became more evident. Estimates of relative effort that account for the variations in maximum voluntary torque with joint angle and angular velocity may provide higher levels of accuracy compared to methods based on measurements of maximal isometric torques.

  15. Chronic ankle instability: Current perspectives

    PubMed Central

    Al-Mohrej, Omar A.; Al-Kenani, Nader S.

    2016-01-01

    Ankle sprain is reported to be among the most common recurrent injuries. About 20% of acute ankle sprain patients develop chronic ankle instability. The failure of functional rehabilitation after acute ankle sprain leads to the development of chronic ankle instability. Differentiation between functional and anatomical ankle instability is very essential to guide the proper treatment. Stability testing by varus stress test and anterior drawer test should be carried out. Subtalar instability is an important pathology that is commonly by passed during the assessment of chronic ankle instability. Unlike acute ankle sprain, chronic ankle instability might require surgical intervention. The surgical and conservative management options can be very much developed by in-depth knowledge of the ankle anatomy, biomechanics, and pathology. Anatomical repair, augmentation by tendon, or both are the basic methods of surgical intervention. Arthroscopy is becoming more popular in the management of chronic ankle instability. PMID:27843798

  16. Lateral ligament reconstruction procedures for the ankle.

    PubMed

    Tourné, Y; Mabit, C

    2017-02-01

    Capsule/ligament lesions of the lateral compartment of the ankle lead to lateral laxity, which is a prime contributor to chronic ankle instability. Lateral ligament reconstruction stabilizes the joint. Exhaustive preoperative clinical and paraclinical work-up is essential. The present article classifies, presents and criticizes the main techniques in terms of long-term stabilization and reduction of osteoarthritis risk. Anatomic ligament repair with reinforcement (mainly extensor retinaculum) or anatomic ligament reconstruction are the two recommended options. Non-anatomic reconstructions using the peroneus brevis should be abandoned. Arthroscopy is increasingly being developed, but results need assessment on longer follow-up than presently available. Postoperative neuromuscular reprogramming is fundamental to optimal recovery. Finally, the concept of complex ankle instability is discussed from the diagnostic and therapeutic points of view. The various forms of ligament reconstruction failure and corresponding treatments are reported.

  17. Effects of normal and abnormal loading conditions on morphogenesis of the prenatal hip joint: application to hip dysplasia

    PubMed Central

    Giorgi, Mario; Carriero, Alessandra; Shefelbine, Sandra J.; Nowlan, Niamh C.

    2015-01-01

    Joint morphogenesis is an important phase of prenatal joint development during which the opposing cartilaginous rudiments acquire their reciprocal and interlocking shapes. At an early stage of development, the prenatal hip joint is formed of a deep acetabular cavity that almost totally encloses the head. By the time of birth, the acetabulum has become shallower and the femoral head has lost substantial sphericity, reducing joint coverage and stability. In this study, we use a dynamic mechanobiological simulation to explore the effects of normal (symmetric), reduced and abnormal (asymmetric) prenatal movements on hip joint shape, to understand their importance for postnatal skeletal malformations such as developmental dysplasia of the hip (DDH). We successfully predict the physiological trends of decreasing sphericity and acetabular coverage of the femoral head during fetal development. We show that a full range of symmetric movements helps to maintain some of the acetabular depth and femoral head sphericity, while reduced or absent movements can lead to decreased sphericity and acetabular coverage of the femoral head. When an abnormal movement pattern was applied, a deformed joint shape was predicted, with an opened asymmetric acetabulum and the onset of a malformed femoral head. This study provides evidence for the importance of fetal movements in the prevention and manifestation of congenital musculoskeletal disorders such as DDH. PMID:26163754

  18. Effects of normal and abnormal loading conditions on morphogenesis of the prenatal hip joint: application to hip dysplasia.

    PubMed

    Giorgi, Mario; Carriero, Alessandra; Shefelbine, Sandra J; Nowlan, Niamh C

    2015-09-18

    Joint morphogenesis is an important phase of prenatal joint development during which the opposing cartilaginous rudiments acquire their reciprocal and interlocking shapes. At an early stage of development, the prenatal hip joint is formed of a deep acetabular cavity that almost totally encloses the head. By the time of birth, the acetabulum has become shallower and the femoral head has lost substantial sphericity, reducing joint coverage and stability. In this study, we use a dynamic mechanobiological simulation to explore the effects of normal (symmetric), reduced and abnormal (asymmetric) prenatal movements on hip joint shape, to understand their importance for postnatal skeletal malformations such as developmental dysplasia of the hip (DDH). We successfully predict the physiological trends of decreasing sphericity and acetabular coverage of the femoral head during fetal development. We show that a full range of symmetric movements helps to maintain some of the acetabular depth and femoral head sphericity, while reduced or absent movements can lead to decreased sphericity and acetabular coverage of the femoral head. When an abnormal movement pattern was applied, a deformed joint shape was predicted, with an opened asymmetric acetabulum and the onset of a malformed femoral head. This study provides evidence for the importance of fetal movements in the prevention and manifestation of congenital musculoskeletal disorders such as DDH.

  19. Gradual reduction of chronic fracture dislocation of the ankle using ilizarov/taylor spatial frame.

    PubMed

    Tellisi, Nazzar; Deland, Jonathan T; Rozbruch, S Robert

    2011-02-01

    With the advances in trauma care, chronic fracture dislocation of the ankle is not a condition commonly seen in modern clinical practice. When encountered, it can be difficult to preserve the ankle joint. We present a case of a 65-year-old female, with a chronic fracture dislocation of the ankle. The ankle joint was subluxated with posterior translation of the talus, displacement of the posterior malleolus fragment, and a distal fibula fracture. A minimally traumatic approach was devised to treat this complex fracture dislocation which included gradual reduction of the ankle with a Taylor spatial frame, followed by stabilization with internal fixation and removal of the frame. Bony union and restoration of the ankle joint congruency was achieved.

  20. The effects of gastrocnemius-soleus muscle forces on ankle biomechanics during triple arthrodesis.

    PubMed

    Hejazi, S; Rouhi, G; Rasmussen, J

    2017-02-01

    This paper presents a finite element model of the ankle, taking into account the effects of muscle forces, determined by a musculoskeletal analysis, to investigate the contact stress distribution in the tibio-talar joint in patients with triple arthrodesis and in normal subjects. Forces of major ankle muscles were simulated and corresponded well with the trend of their EMG signals. These forces were applied to the finite element model to obtain stress distributions for patients with triple arthrodesis and normal subjects in three stages of the gait cycle, i.e. heel strike, midstance, and heel rise. The results demonstrated that the stress distribution patterns of the tibio-talar joint in patients with triple arthrodesis differ from those of normal subjects in investigated gait cycle stages. The mean and standard deviations for maximum stresses in the tibo-talar joint in the stance phase for patients and normal subjects were 9.398e7 ± 1.75e7 and 7.372e7 ± 4.43e6 Pa, respectively. The maximum von Mises stresses of the tibio-talar joint for all subjects in the stance phase found to be on the lateral side of the inferior surface of the joint. The results also indicate that, in patients with triple arthrodesis, increasing gastrocnemius-soleus muscle force reduces the stress on the medial malleolus compared with normal subjects. Most of stresses in this area are between 45 and 109 kPa, and will decrease to almost 32 kPa in patients after increasing of 40% in gastrocnemius-soleus muscle force.

  1. Functional Design in Rehabilitation: Modular Mechanisms for Ankle Complex

    PubMed Central

    2016-01-01

    This paper is aimed at presenting an innovative ankle rehabilitation device based on a parallel mechanism. A functional analysis and design are described to obtain a device able to guarantee ankle movement while patient's body remains stationary. Human ankle is a challenging context where a series of joints are highly integrated. The proposed rehabilitation device permits a patient with walking defects to improve his or her gait. The research focuses on plantar-flexion-dorsiflexion movement. The robust design starts from an accurate modelling of ankle movements during walking, assessing motion data from healthy individuals and patients. The kinematics analysis and functional evaluations lead the study and development of the articulated system. In particular, results of simulations support the effectiveness of the current design. A 3D prototype is presented highlighting that the ankle motion is successfully demonstrated. PMID:27524881

  2. Finite element analysis of a composite artificial ankle

    NASA Technical Reports Server (NTRS)

    Perkins, Leigh Ann; Johnston, Lawrence; Denniston, Charles; Czekalski, Blaise E.

    1993-01-01

    Ultra-light carbon fiber composite materials are being utilized in artificial limbs with increasing frequency in recent years. Dr. Arthur Copes, an orthotist from Baton Rouge, Louisiana, has developed a graphite expoxy composite material artificial ankle (Copes/Bionic Ankle) that is intended to be used by amputees who require the most advanced above-and-below-the-knee prosthetic devices. The Copes/Bionic Ankle is designed to reproduce the function of the natural ankle joint by allowing the composite material to act as a spring mechanism without the use of metal mechanical parts. NASA Marshall Space Flight Center has agreed to participate in the design effort by providing the structural analysis of the artificial ankle design.

  3. Dilatant normal faulting in jointed cohesive rocks: insights from physical modeling

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; von Hagke, Christoph; Urai, Janos

    2016-04-01

    Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights on geometry of fault zones in brittle rocks and eventually allows for predicting their subsurface appearance. We assess the evolution of dilatant faults in fractured rocks using analogue models with cohesive powder. The upper layer contains pre-formed joint sets, and we vary the angle between joints and a rigid basement fault in our experiments. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. We tested the influence of different angles between the strike of the basement fault and the joint set (joint fault (JF) angles of 0°, 4°, 8°, 12°, 16°, 20°, and 25°). During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. Results show robust structural features in models: damage zone width increases by about 50 % and the number of secondary fractures within this zone by more than 100 % with increasing JF-angle. Interestingly, the map-view area fraction of open gaps increases by only 3%. Secondary joints and fault step-overs are oriented at a high angle to the primary joint orientation. Due to the length of the pre-existing open joints, areas far beyond the fractured regions are connected to the system. In contrast

  4. Bilateral ankle edema with bilateral iritis.

    PubMed

    Kumar, Sunil

    2007-07-01

    I report two patient presented to me with bilateral symmetrical ankle edema and bilateral acute iritis. A 42-year-old female of Indian origin and 30-year-old female from Somalia both presented with bilateral acute iritis. In the first patient, bilateral ankle edema preceded the onset of bilateral acute iritis. Bilateral ankle edema developed during the course of disease after onset of ocular symptoms in the second patient. Both patients did not suffer any significant ocular problem in the past, and on systemic examination, all clinical parameters were within normal limit. Lacrimal gland and conjunctival nodule biopsy established the final diagnosis of sarcoidosis in both cases, although the chest x-rays were normal.

  5. The effects of ankle Kinesio taping on ankle stiffness and dynamic balance.

    PubMed

    Fayson, Shirleeah D; Needle, Alan R; Kaminski, Thomas W

    2013-01-01

    The purpose of this study was to determine the effects of Kinesio® taping on static restraint and dynamic postural control of the ankle joint. Thirty female subjects with no history of ankle injury participated in this study. Subjects were tested for passive ankle laxity and stiffness, and time to stabilization following forward, backward, medial, and lateral hops. Subjects were tested prior to tape application, immediately following application, and following 24 hours of use. Differences between taping conditions were investigated using analyses of variance and pairwise comparisons. Stiffness increased following initial application and 24 hours of Kinesio® tape use (F = 6.99, p = .003), despite no observed changes in ankle laxity (F = 0.77, p = .49); however, no changes were observed in time-to-stabilization (F = 0.03, p = .97). Our results suggest that Kinesio® tape may improve static restraint in the ankle joint without altering peak motion or dynamic postural control. A future investigation into Kinesio® tape efficacy in injury prevention or rehabilitation is warranted.

  6. Forces predicted at the ankle during running.

    PubMed

    Burdett, R G

    1982-01-01

    A biomechanical model of the ankle joint was developed and was used to predict the forces at the ankle during the stance phase of running. Measurements from five cadavers were averaged to obtain insertion points and directions of pull of equivalent tendons with respect to the assumed center of the ankle joint. A minimum joint force solution was obtained by assuming that only two equivalent muscle groups could exert force at one time. Three subjects ran at 4.47 m/s across a force platform that recorded the external forces and moments acting on the foot. Cinematography was used to measure the foot and leg positions during stance. Peak resultant joint forces ranging from 9.0 to 13.3 times body weight and peak Achilles tendon forces ranging from 5.3 to 10.0 times body weight were predicted. Small variations in some cases resulted in large differences in predicted forces. The highest tendon forces predicted exceeded those reported to cause damage to cadaver tendons in other studies.

  7. Arthroscopic Management of Posteromedial Ankle Impingement

    PubMed Central

    Lui, Tun Hing

    2015-01-01

    Posteromedial ankle impingement is a rare clinical entity. It usually follows an inversion injury, with compression of the posterior tibiotalar ligament between the medial malleolus and talus. This can be treated by posterior ankle endoscopy through the posteromedial and posterolateral portals. The flexor hallucis longus tendon can be examined for any tenosynovitis or tendinopathy. The posteromedial corner of the ankle joint is reached with the instruments staying on the lateral side of the flexor hallucis longus tendon. The inflamed synovium, scar tissue, and fibrillated cartilage are debrided. PMID:26697299

  8. [High complication rate after surgical treatment of ankle fractures].

    PubMed

    Bjørslev, Naja; Ebskov, Lars; Lind, Marianne; Mersø, Camilla

    2014-08-04

    The purpose of this study was to determine the quality and re-operation rate of the surgical treatment of ankle fractures at a large university hospital. X-rays and patient records of 137 patients surgically treated for ankle fractures were analyzed for: 1) correct classification according to Lauge-Hansen, 2) if congruity of the ankle joint was achieved, 3) selection and placement of the hardware, and 4) the surgeon's level of education. Totally 32 of 137 did not receive an optimal treatment, 11 were re-operated. There was no clear correlation between incorrect operation and the surgeon's level of education.

  9. Arthroscopic Management of Posteromedial Ankle Impingement.

    PubMed

    Lui, Tun Hing

    2015-10-01

    Posteromedial ankle impingement is a rare clinical entity. It usually follows an inversion injury, with compression of the posterior tibiotalar ligament between the medial malleolus and talus. This can be treated by posterior ankle endoscopy through the posteromedial and posterolateral portals. The flexor hallucis longus tendon can be examined for any tenosynovitis or tendinopathy. The posteromedial corner of the ankle joint is reached with the instruments staying on the lateral side of the flexor hallucis longus tendon. The inflamed synovium, scar tissue, and fibrillated cartilage are debrided.

  10. Review on design and control aspects of ankle rehabilitation robots.

    PubMed

    Jamwal, Prashant K; Hussain, Shahid; Xie, Sheng Q

    2015-03-01

    Ankle rehabilitation robots can play an important role in improving outcomes of the rehabilitation treatment by assisting therapists and patients in number of ways. Consequently, few robot designs have been proposed by researchers which fall under either of the two categories, namely, wearable robots or platform-based robots. This paper presents a review of both kinds of ankle robots along with a brief analysis of their design, actuation and control approaches. While reviewing these designs it was observed that most of them are undesirably inspired by industrial robot designs. Taking note of the design concerns of current ankle robots, few improvements in the ankle robot designs have also been suggested. Conventional position control or force control approaches, being used in the existing ankle robots, have been reviewed. Apparently, opportunities of improvement also exist in the actuation as well as control of ankle robots. Subsequently, a discussion on most recent research in the development of novel actuators and advanced controllers based on appropriate physical and cognitive human-robot interaction has also been included in this review. Implications for Rehabilitation Ankle joint functions are restricted/impaired as a consequence of stroke or injury during sports or otherwise. Robots can help in reinstating functions faster and can also work as tool for recording rehabilitation data useful for further analysis. Evolution of ankle robots with respect to their design and control aspects has been discussed in the present paper and a novel design with futuristic control approach has been proposed.

  11. The sensitivity of two-dimensional hindlimb joint kinematics analysis in assessing functional recovery in rats after sciatic nerve crush.

    PubMed

    Amado, Sandra; Armada-da-Silva, Paulo A S; João, Filipa; Maurício, Ana C; Luís, Ana L; Simões, Maria J; Veloso, António P

    2011-12-01

    Walking analysis in the rat is increasingly used to assess functional recovery after peripheral nerve injury. Here we assess the sensitivity and specificity of hindlimb joint kinematics measures during the rat gait early after sciatic nerve crush injury (DEN), after twelve weeks of recovery (REINN) and in sham-operated controls (Sham) using discriminant analysis. The analysis addressed gait spatiotemporal variables and hip, knee and ankle angle and angular velocity measures during the entire walking cycle. In DEN animals, changes affected all studied joints plus spatiotemporal parameters of gait. Both the spatiotemporal and ankle kinematics parameters recovered to normality within twelve weeks. At this time point, some hip and knee kinematics values were still abnormal when compared to sham controls. Discriminant models based on hip, knee and ankle kinematics displayed maximal sensitivity to identify DEN animals. However, the discriminant models based on spatiotemporal and ankle kinematics data showed a poor performance when assigning animals to the REINN and Sham groups. Models using hip and knee kinematics during walking showed the best sensitivity to recognize the reinnervated animals. The model construed on the basis of hip joint kinematics was the one combining highest sensitivity with robustness and high specificity. It is concluded that ankle joint kinematics fails in detecting minor functional deficits after long term recovery from sciatic nerve crush and extending the kinematic analysis during walking to the hip and knee joints improves the sensitivity of this functional test.

  12. Antibiotic-loaded cement beads for Charcot ankle osteomyelitis.

    PubMed

    Ramanujam, Crystal L; Zgonis, Thomas

    2010-10-01

    The concomitant presence of osteomyelitis and diabetic Charcot neuroarthropathy of the foot and ankle places those patients affected at increased risk for limb loss. Antibiotic-loaded cement has been reported to be useful in the treatment of deep soft tissue and joint infections. The authors present an overview of this adjunctive treatment modality and present a case report using antibiotic-loaded cement beads in staged reconstruction for Charcot ankle osteomyelitis.

  13. Modified Evans peroneus brevis lateral ankle stabilization for balancing varus ankle contracture during total ankle replacement.

    PubMed

    Roukis, Thomas S

    2013-01-01

    Lateral ankle instability is frequently encountered when performing total ankle replacement and remains a challenge. In the present techniques report, I have described a modification of the Evans peroneus brevis tendon lateral ankle stabilization harvested through limited incisions using simple topographic anatomic landmarks. The harvested peroneus brevis is then transferred either to the anterior distal tibia concomitantly with total ankle replacement or through the tibia when performed after total ankle replacement and secured with plate and screw fixation. This modified Evans peroneus brevis tendon is useful in providing lateral ankle stability during or after primary and revision total ankle replacement.

  14. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait.

    PubMed

    Blaya, Joaquin A; Herr, Hugh

    2004-03-01

    An active ankle-foot orthoses (AAFO) is presented where the impedance of the orthotic joint is modulated throughout the walking cycle to treat drop-foot gait. During controlled plantar flexion, a biomimetic torsional spring control is applied where orthotic joint stiffness is actively adjusted to minimize forefoot collisions with the ground. Throughout late stance, joint impedance is minimized so as not to impede powered plantar flexion movements, and during the swing phase, a torsional spring-damper control lifts the foot to provide toe clearance. To assess the clinical effects of variable-impedance control, kinetic and kinematic gait data were collected on two drop-foot participants wearing the AAFO. For each participant, zero, constant, and variable impedance control strategies were evaluated and the results were compared to the mechanics of three age, weight, and height matched normals. We find that actively adjusting joint impedance reduces the occurrence of slap foot allows greater powered plantar flexion and provides for less kinematic difference during swing when compared to normals. These results indicate that a variable-impedance orthosis may have certain clinical benefits for the treatment of drop-foot gait compared to conventional ankle-foot orthoses having zero or constant stiffness joint behaviors.

  15. Biomechanical study of tarsometatarsal joint fusion using finite element analysis.

    PubMed

    Wang, Yan; Li, Zengyong; Zhang, Ming

    2014-11-01

    Complications of surgeries in foot and ankle bring patients with severe sufferings. Sufficient understanding of the internal biomechanical information such as stress distribution, contact pressure, and deformation is critical to estimate the effectiveness of surgical treatments and avoid complications. Foot and ankle is an intricate and synergetic system, and localized intervention may alter the functions to the adjacent components. The aim of this study was to estimate biomechanical effects of the TMT joint fusion using comprehensive finite element (FE) analysis. A foot and ankle model consists of 28 bones, 72 ligaments, and plantar fascia with soft tissues embracing all the segments. Kinematic information and ground reaction force during gait were obtained from motion analysis. Three gait instants namely the first peak, second peak and mid-stance were simulated in a normal foot and a foot with TMT joint fusion. It was found that contact pressure on plantar foot increased by 0.42%, 19% and 37%, respectively after TMT fusion compared with normal foot walking. Navico-cuneiform and fifth meta-cuboid joints sustained 27% and 40% increase in contact pressure at second peak, implying potential risk of joint problems such as arthritis. Von Mises stress in the second metatarsal bone increased by 22% at midstance, making it susceptible to stress fracture. This study provides biomechanical information for understanding the possible consequences of TMT joint fusion.

  16. Ankle fracture - aftercare

    MedlinePlus

    Malleolar fracture; Tri-malleolar; Bi-malleolar; Distal tibia fracture; Distal fibula fracture; Malleolus fracture ... Some ankle fractures may require surgery when: The ends of the bone are out of line with each other (displaced). The ...

  17. Effects of hip and head position on ankle range of motion, ankle passive torque, and passive gastrocnemius tension.

    PubMed

    Andrade, R J; Lacourpaille, L; Freitas, S R; McNair, P J; Nordez, A

    2016-01-01

    Ankle joint range of motion (ROM) is notably influenced by the position of the hip joint. However, this result remains unexplained. Thus, the aim of this study was to test if the ankle passive torque and gastrocnemius muscle tension are affected by the hip and the head positions. The torque and the muscle shear elastic modulus (measured by elastography to estimate muscle tension) were collected in nine participants during passive ankle dorsiflexions performed in four conditions (by combining hip flexion at 90 or 150°, and head flexed or neutral). Ankle maximum dorsiflexion angle significantly decreased by flexing the hip from 150 to 90° (P < 0.001; mean difference 17.7 ± 2.5°), but no effect of the head position was observed (P > 0.05). Maximal passive torque and shear elastic modulus were higher with the hip flexed at 90° (P < 0.001). During submaximal ROM, no effects of the head and hip positioning (P > 0.05) were found for both torque and shear elastic modulus at a given common ankle angle among conditions. Shifts in maximal ankle angle due to hip angle manipulation are not related neither to changes in passive torque nor tension of the gastrocnemius. Further studies should be addressed to better understand the functional role of peripheral nerves and fasciae in the ankle ROM limits.

  18. Finite element analysis of a total ankle replacement during the stance phase of gait.

    PubMed

    Reggiani, B; Leardini, A; Corazza, F; Taylor, M

    2006-01-01

    Total ankle replacement (TAR) designs have still several important issues to be addressed before the treatment becomes fully acceptable clinically. Very little is known about the performance, in terms of the contact pressures and kinematics of TAR when subjected to daily activities such as level gait. For this purpose, an explicit finite element model of a novel 3-component TAR was developed, which incorporated a previously validated mechanical model of the ankle ligament apparatus. The intermediate mobile polyethylene meniscal bearing was modelled as an elastic-plastic continuum while the articulating surfaces of the tibial and talar metal components as rigid bodies. Overall kinematics, contact pressures and ligament forces were analysed during passive, i.e. virtually unloaded, and active, i.e. stance phase of gait, conditions. Simulation of passive motion predicted similar kinematics as reported previously in an analytical four-bar linkage model. The meniscal bearing was observed to move 5.6 mm posteriorly during the simulated stance and the corresponding antero-posterior displacement of the talar component was 8.3 mm. The predicted pattern and the amount (10.6 degrees ) of internal-external rotation of the ankle complex were found to be in good agreement with corresponding in vivo measurements on normal ankles. A peak contact pressure of 16.8 MPa was observed, with majority of contact pressures below 10 MPa. For most ligaments, reaction forces remain within corresponding physiological ranges. A first realistic representation of the biomechanical behaviour of the human ankle when replaced by prosthetic joints is provided. The applied methodology can potentially be applied to other TAR designs.

  19. An analysis of changes in in vivo cartilage thickness of the healthy ankle following dynamic activity.

    PubMed

    Cher, Wei Liang; Utturkar, Gangadhar M; Spritzer, Charles E; Nunley, James A; DeFrate, Louis E; Collins, Amber T

    2016-09-06

    Abnormal cartilage loading after injury is believed to be an important factor leading to post-traumatic ankle osteoarthritis. Due to the viscoelastic behavior of cartilage, it is possible to measure localized cartilage strains from changes in thickness following dynamic activities. However, there are limited data characterizing in vivo cartilage mechanics under physiological loading conditions in the healthy ankle. Therefore, the objective of this study was to directly measure in vivo cartilage strains in the healthy ankle joint in response to a dynamic hopping exercise. Ten healthy subjects with no history of ankle injury underwent magnetic resonance imaging before and after a single-leg hopping exercise. Bony and articular cartilage surfaces were created from these images using solid modeling software. Pre-exercise and post-exercise models were then registered to each other, and site-specific cartilage strains (defined as the normalized changes in cartilage thickness) were calculated at grid points spanning the articular surfaces. The effects of both location and exercise on strain were tested using a two-way repeated measures analysis of variance. We did not detect any significant interaction effect between location and exercise for either tibial or talar cartilage. However, hopping resulted in significant decreases in tibial (p<0.05) and talar (p<0.05) cartilage thicknesses, corresponding to strains of 3% and 2%, respectively. Additionally, pre-exercise cartilage thickness varied significantly by location in the talus (p<0.05), but not in the tibia. These strain data may provide important baseline information for future studies investigating altered biomechanics in those at high risk for the development of post-traumatic ankle osteoarthritis.

  20. Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.

    PubMed

    Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon

    2016-11-01

    The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups (p < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p = 0.006) and FCTP-pre (OR = 2.13, p = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint parameters

  1. Pediatric Ankle Fractures: Concepts and Treatment Principles

    PubMed Central

    Su, Alvin W.; Larson, A. Noelle

    2016-01-01

    Synopsis Current clinical concepts are reviewed regarding the epidemiology, anatomy, evaluation and treatment of pediatric ankle fractures. Correct diagnosis and management relies on appropriate exam, imaging, and knowledge of fracture patterns specific to children. Treatment is guided by patient history, physical examination, plain film radiographs and, in some instances, CT. Treatment goals are to restore acceptable limb alignment, physeal anatomy, and joint congruency. For high risk physeal fractures, patients should be monitored for growth disturbance as needed until skeletal maturity. PMID:26589088

  2. Foot and Ankle Injuries in American Football.

    PubMed

    Hsu, Andrew R; Anderson, Robert B

    Physicians need to be aware of a variety of foot and ankle injuries that commonly occur in American football, including turf toe, Jones fractures, Lisfranc injuries, syndesmotic and deltoid disruption, and Achilles ruptures. These injuries are often complex and require early individual tailoring of treatment and rehabilitation protocols. Successful management and return to play requires early diagnosis, a thorough work-up, and prompt surgical intervention when warranted with meticulous attention to restoration of normal foot and ankle anatomy. Physicians should have a high suspicion for subtle injuries and variants that can occur via both contact and noncontact mechanisms.

  3. Assessment of AK (Above Knee) Prosthesis with Different Ankle Assembly Using GRF Pattern in Stance Phase

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Min; Kim, Sung-Jae; Bae, Ha-Suk

    In this study, ground reaction force (GRF), absolute symmetry index (ASI) and coefficient of variation (CV) of fixed, single-axis and multi-axis prosthetic ankle assemblies were investigated by biomechanical evaluation of above knee amputees. In the experiments, 37 normal male volunteers, two male and two female Above Knee (AK) amputees GRF data were tested with fixed, single-axis and multi-axis prosthetic ankle assembly. A gait analysis was carried out to derive the ratio of GRF to weight as the percentage of total stance phase for ten points. The results showed that fixed-axis ankle assembly was superior to other two ankle assemblies for forwarding and braking forces. Multi-axis ankle was relatively superior to other two ankle assemblies for gait balancing and movement of the mass center. Single-axis ankle was relatively superior to the other two ankle assemblies for CV and ASI of GRF.

  4. Is deltoid and lateral ligament reconstruction necessary in varus and valgus ankle osteoarthritis, and how should these procedures be performed?

    PubMed

    Hogan, Macalus V; Dare, David M; Deland, Jonathan T

    2013-09-01

    Varus and valgus ankle deformities represent a challenge to the foot and ankle surgeons. The presence of degenerative changes of the tibiotalar joint articular surfaces introduces an additional layer of complexity. Reconstruction of such deformities requires a customized approach to each patient. Surgical intervention often requires joint-sparing realignment, arthroplasty, and/or arthrodesis, depending on the severity of deformity and the joint surface integrity. The ligamentous stability of the ankle plays an essential role in the preservation and optimization of function. This article reviews the role of deltoid and lateral ligament reconstruction in the treatment of varus and valgus ankle osteoarthritis.

  5. Kinematic evaluation of movement smoothness in golf: relationship between the normalized jerk cost of body joints and the clubhead

    PubMed Central

    2014-01-01

    Background When the human body is introduced to a new motion or movement, it learns the placement of different body parts, sequential muscle control, and coordination between muscles to achieve necessary positions, and it hones this new skill over time and repetition. Previous studies have demonstrated definite differences in the smoothness of body movements with different levels of training, i.e., amateurs compared with professionals. Therefore, we tested the hypothesis that skilled golfers swing a driver with a smoother motion than do unskilled golfers. In addition, the relationship between the smoothness of body joints and that of the clubhead was evaluated to provide further insight into the mechanism of smooth golf swing. Methods Two subject groups (skilled and unskilled) participated in the experiment. The skilled group comprised 20 male professional golfers registered with the Korea Professional Golf Association, and the unskilled group comprised 19 amateur golfers who enjoy golf as a hobby. Six infrared cameras (VICON460 system) were used to record the 3D trajectories of markers attached to the clubhead and body segments, and the resulting data was evaluated with kinematic analysis. A physical quantity called jerk was calculated to investigate differences in smoothness during downswing between the two study groups. Results The hypothesis that skilled golfers swing a driver with a smoother motion than do unskilled golfers was supported. The normalized jerk of the clubhead of skilled golfers was lower than that of unskilled golfers in the anterior/posterior, medial/lateral, and proximal/distal directions. Most human joints, especially in the lower body, had statistically significant lower normalized jerk values in the skilled group. In addition, the normalized jerk of the skilled group’s lower body joints had a distinct positive correlation with the normalized jerk of the clubhead with r = 0.657 (p < 0.01). Conclusions The result of this study

  6. The variability problem of normal human walking.

    PubMed

    Simonsen, Erik B; Alkjær, Tine

    2012-03-01

    Previous investigations have suggested considerable inter-individual variability in the time course pattern of net joint moments during normal human walking, although the limited sample sizes precluded statistical analyses. The purpose of the present study was to obtain joint moment patterns from a group of normal subjects and to test whether or not the expected differences would prove to be statistically significant. Fifteen healthy male subjects were recorded on video while they walked across two force platforms. Ten kinematic and kinetic parameters were selected and input to a statistical cluster analysis to determine whether or not the 15 subjects could be divided into different 'families' (clusters) of walking strategy. The net joint moments showed a variability corroborating earlier reports. The cluster analysis showed that the 15 subjects could be grouped into two clusters of 5 and 10 subjects, respectively. Five parameters differed significantly, so the group of 5 subjects was characterized by (1) a higher peak knee joint extensor moment, (2) more flexed knee joint angle at heel strike, (3) during the whole stance phase, (4) lower peak knee joint flexor moment and (5) lower ankle joint angle at flat foot position. Calculation of bone-on-bone forces in the knee joint showed a value of 64 N/kg body weight in the K+ group and 55 N/kg in the K- group (p<0.05). It is unknown if differences of similar magnitude contribute to early joint degeneration in some individuals while not in others.

  7. Measurement of Resistive Torques in Major Human Joints

    DTIC Science & Technology

    1979-04-01

    Joints Knee Joint Resistive Torques Hip Joint Resistive Moments Elbow Joint Ankle Joint 20. ABSTRACT (Continue on reverse side if necessary and...applications. The major articulating Joints which are considered are the shoulder, knee, hip, elbow and ankle. Due DD I J 1473 EDITION OF I NOV 65 IS OBSOLETE...47 Force is being applied by means of the GFA on the subject’s lower arm for the elbow joint resistive force and moment data collection

  8. Modulation of leg joint function to produce emulated acceleration during walking and running in humans

    PubMed Central

    Raiteri, Brent J.

    2017-01-01

    Understanding how humans adapt gait mechanics for a wide variety of locomotor tasks is important for inspiring the design of robotic, prosthetic and wearable assistive devices. We aimed to elicit the mechanical adjustments made to leg joint functions that are required to generate accelerative walking and running, using metrics with direct relevance to device design. Twelve healthy male participants completed constant speed (CS) walking and running and emulated acceleration (ACC) trials on an instrumented treadmill. External force and motion capture data were combined in an inverse dynamics analysis. Ankle, knee and hip joint mechanics were described and compared using angles, moments, powers and normalized functional indexes that described each joint as relatively more: spring, motor, damper or strut-like. To accelerate using a walking gait, the ankle joint was switched from predominantly spring-like to motor-like, while the hip joint was maintained as a motor, with an increase in hip motor-like function. Accelerating while running involved no change in the primary function of any leg joint, but involved high levels of spring and motor-like function at the hip and ankle joints. Mechanical adjustments for ACC walking were achieved primarily via altered limb positioning, but ACC running needed greater joint moments.

  9. Broken Ankle/Broken Foot

    MedlinePlus

    ... not warming up and stretching, also can cause foot and ankle injuries. Work in certain occupations. Certain work environments, such ... too little light may lead to falls and foot and ankle injuries. Have certain conditions. Having fragile bones (osteoporosis) or ...

  10. Development of a Robotic Assembly for Analyzing the Instantaneous Axis of Rotation of the Foot Ankle Complex

    PubMed Central

    Salb, Kelly N.; Wido, Daniel M.; Stewart, Thomas E.; DiAngelo, Denis J.

    2016-01-01

    Ankle instantaneous axis of rotation (IAR) measurements represent a more complete parameter for characterizing joint motion. However, few studies have implemented this measurement to study normal, injured, or pathological foot ankle biomechanics. A novel testing protocol was developed to simulate aspects of in vivo foot ankle mechanics during mid-stance gait in a human cadaveric specimen. A lower leg was mounted in a robotic testing platform with the tibia upright and foot flat on the baseplate. Axial tibia loads (ATLs) were controlled as a function of a vertical ground reaction force (vGRF) set at half body weight (356 N) and a 50% vGRF (178 N) Achilles tendon load. Two specimens were repetitively loaded over 10 degrees of dorsiflexion and 20 degrees of plantar flexion. Platform axes were controlled within 2 microns and 0.008 degrees resulting in ATL measurements within ±2 N of target conditions. Mean ATLs and IAR values were not significantly different between cycles of motion, but IAR values were significantly different between dorsiflexion and plantar flexion. A linear regression analysis showed no significant differences between slopes of plantar flexion paths. The customized robotic platform and advanced testing protocol produced repeatable and accurate measurements of the IAR, useful for assessing foot ankle biomechanics under different loading scenarios and foot conditions. PMID:27099456

  11. Development of restraint material and tucked fabric joints

    NASA Technical Reports Server (NTRS)

    Mcmullen, J. M.

    1975-01-01

    A study was conducted to evaluate and select a suitable restraint material for the exterior of space suits pressurized to 4.0 PSID for normal operations, and to develop and improve tucked fabric joints for motions associated with the human shoulder, elbow, knee, waist, hip, ankle, and wrist. The many attributes of the end items are summarized to include structural integrity, simplicity, low maintenance, lightweight, high durability, low elongation, full range mobility, long life, and resistance to degradation in the operational environment.

  12. Multivariable Dynamic Ankle Mechanical Impedance With Active Muscles

    PubMed Central

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Multivariable dynamic ankle mechanical impedance in two coupled degrees-of-freedom (DOFs) was quantified when muscles were active. Measurements were performed at five different target activation levels of tibialis anterior and soleus, from 10% to 30% of maximum voluntary contraction (MVC) with increments of 5% MVC. Interestingly, several ankle behaviors characterized in our previous study of the relaxed ankle were observed with muscles active: ankle mechanical impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness; stiffness was greater in the sagittal plane than in the frontal plane at all activation conditions for all subjects; and the coupling between dorsiflexion–plantarflexion and inversion–eversion was small—the two DOF measurements were well explained by a strictly diagonal impedance matrix. In general, ankle stiffness increased linearly with muscle activation in all directions in the 2-D space formed by the sagittal and frontal planes, but more in the sagittal than in the frontal plane, resulting in an accentuated “peanut shape.” This characterization of young healthy subjects’ ankle mechanical impedance with active muscles will serve as a baseline to investigate pathophysiological ankle behaviors of biomechanically and/or neurologically impaired patients. PMID:25203497

  13. X-Ray Exam: Ankle

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle A A A What's in this ... español Radiografía: tobillo What It Is An ankle X-ray is a safe and painless test that uses ...

  14. X-Ray Exam: Ankle

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle Print A A A What's in ... español Radiografía: tobillo What It Is An ankle X-ray is a safe and painless test that uses ...

  15. Ultrasound of ankle and foot: overuse and sports injuries.

    PubMed

    Khoury, Viviane; Guillin, Raphaël; Dhanju, Jag; Cardinal, Etienne

    2007-06-01

    Sports and overuse injuries of the ankle and foot are commonly encountered in clinical practice. Ultrasound (US) has been established as an excellent diagnostic modality for foot and ankle injuries, providing a rapid noninvasive, economical, and readily available tool that is well tolerated by the patient with acute or chronic pain. The opportunity for dynamic examination is another advantage of US in evaluating ankle and foot pathology, where maneuvers such as muscle contraction and stressing of the joint may be particularly helpful. In many cases, US can be used as a first-line and only imaging modality for diagnosis. This article focuses on ankle disorders related to sports or overuse that affect tendons, including tendinosis, tenosynovitis, paratendinitis, rupture, dislocation, and ligaments that are commonly torn. The sonographic features of certain common foot disorders related to physical activity and overuse are also discussed, including plantar fasciitis, Morton's neuroma, stress fractures, and plantar plate injury.

  16. [Anesthesiologic management of ankle joint osteosynthesis in the 35th week of pregnancy in a patient with Charcot-Marie-Tooth syndrome].

    PubMed

    Kirmayer, U J; Preisz, A

    1996-11-01

    We describe the case of an extremely overweight woman in her 35 th week of pregnancy with a manifest Charcot-Marie-Tooth syndrome (CMT), on whom a tibial fracture was operated under general anaesthesia. Anaesthesia was induced with thiopental, droperidol, fentanyl and maintained with nitrous oxide and isoflurane. Atracurium was administered as a muscle relaxant agent. Depolarizing muscle relaxants have not been used because of a significantly increased risk of hyperkalemia. The immediate intubation using the principle of a so-called "priming dose" was within normal limits. CMT syndrome is a very rare hereditary autosomal dominant degenerative disease of the peripheral nervous system. The main site of manifestation is the peroneus muscle. In case of affection of the respiratory muscular system, which acutely can occur postoperatively even without any suspicious findings in the preoperatively performed lung function tests, an insufficiency of the respiratory tract is predominant and may require a postoperative intensive care with a prolonged artificial respiration. With the application of non-depolarizing muscle relaxants significant prolongations of the half-life period have occasionally been observed. Therefore we recommend the monitoring of the neuromuscular blockade perioperatively using the train-of-four ratio. An extraordinary progression of the disease frequently occurs during pregnancy.

  17. MIDFOOT AND FOREFOOT INVOLVEMENT IN LATERAL ANKLE SPRAINS AND CHRONIC ANKLE INSTABILITY. PART 1: ANATOMY AND BIOMECHANICS

    PubMed Central

    Feger, Mark A.; Hertel, Jay

    2016-01-01

    The modern human foot is the culmination of more than five million years of evolution. The ankle-foot complex absorbs forces during loading, accommodates uneven surfaces, and acts as a lever for efficient propulsion. The ankle-foot complex has six independent functional segments that should be understood for proper assessment and treatment of foot and ankle injuries: the shank, rearfoot, midfoot, lateral forefoot, and the medial forefoot. The compliance of the individual segments of the foot is dependent on velocity, task, and active and passive coupling mechanisms within each of the foot segments. It is also important to understand the passive, active, and neural subsystems that are functionally intertwined to provide structure and control to the multisegmented foot. The purpose of the first part of this clinical commentary and current concepts review was to examine foot and ankle anatomy, detail the roles of the intrinsic and extrinsic foot and ankle musculature from a multisegmented foot perspective, and discuss the biomechanics of the ankle-foot complex during function. The interplay of segmental joint mobility, afferent and efferent sensorimotor function, and movement and stabilization provided by the extrinsic and intrinsic musculature is required to coordinate and execute the complex kinematic movements in the ankle-foot complex during propulsion. Level of Evidence 5 PMID:27904801

  18. MIDFOOT AND FOREFOOT INVOLVEMENT IN LATERAL ANKLE SPRAINS AND CHRONIC ANKLE INSTABILITY. PART 1: ANATOMY AND BIOMECHANICS.

    PubMed

    Fraser, John J; Feger, Mark A; Hertel, Jay

    2016-12-01

    The modern human foot is the culmination of more than five million years of evolution. The ankle-foot complex absorbs forces during loading, accommodates uneven surfaces, and acts as a lever for efficient propulsion. The ankle-foot complex has six independent functional segments that should be understood for proper assessment and treatment of foot and ankle injuries: the shank, rearfoot, midfoot, lateral forefoot, and the medial forefoot. The compliance of the individual segments of the foot is dependent on velocity, task, and active and passive coupling mechanisms within each of the foot segments. It is also important to understand the passive, active, and neural subsystems that are functionally intertwined to provide structure and control to the multisegmented foot. The purpose of the first part of this clinical commentary and current concepts review was to examine foot and ankle anatomy, detail the roles of the intrinsic and extrinsic foot and ankle musculature from a multisegmented foot perspective, and discuss the biomechanics of the ankle-foot complex during function. The interplay of segmental joint mobility, afferent and efferent sensorimotor function, and movement and stabilization provided by the extrinsic and intrinsic musculature is required to coordinate and execute the complex kinematic movements in the ankle-foot complex during propulsion.

  19. A geometric approach to study the contact mechanisms in the patellofemoral joint of normal versus patellofemoral pain syndrome subjects.

    PubMed

    Islam, Kamrul; Duke, Kajsa; Mustafy, Tanvir; Adeeb, Samer M; Ronsky, Janet L; El-Rich, Marwan

    2015-01-01

    The biomechanics of the patellofemoral (PF) joint is complex in nature, and the aetiology of such manifestations of PF instability as patellofemoral pain syndrome (PFPS) is still unclear. At this point, the particular factors affecting PFPS have not yet been determined. This study has two objectives: (1) The first is to develop an alternative geometric method using a three-dimensional (3D) registration technique and linear mapping to investigate the PF joint contact stress using an indirect measure: the depth of virtual penetration (PD) of the patellar cartilage surface into the femoral cartilage surface. (2) The second is to develop 3D PF joint models using the finite element analysis (FEA) to quantify in vivo cartilage contact stress and to compare the peak contact stress location obtained from the FE models with the location of the maximum PD. Magnetic resonance images of healthy and PFPS subjects at knee flexion angles of 15°, 30° and 45° during isometric loading have been used to develop the geometric models. The results obtained from both approaches demonstrated that the subjects with PFPS show higher PD and contact stresses than the normal subjects. Maximum stress and PD increase with flexion angle, and occur on the lateral side in healthy and on the medial side in PFPS subjects. It has been concluded that the alternative geometric method is reliable in addition to being computationally efficient compared with FEA, and has the potential to assess the mechanics of PFPS with an accuracy similar to the FEA.

  20. Normal and shear interactions between hyaluronan-aggrecan complexes mimicking possible boundary lubricants in articular cartilage in synovial joints.

    PubMed

    Seror, Jasmine; Merkher, Yulia; Kampf, Nir; Collinson, Lisa; Day, Anthony J; Maroudas, Alice; Klein, Jacob

    2012-11-12

    Using a surface force balance, normal and shear interactions have been measured between two atomically smooth surfaces coated with hyaluronan (HA), and with HA/aggrecan (Agg) complexes stabilized by cartilage link protein (LP). Such HA/Agg/LP complexes are the most abundant mobile macromolecular species permeating articular cartilage in synovial joints and have been conjectured to be present as boundary lubricants at its surface. The aim of the present study is to gain insight into the extremely efficient lubrication when two cartilage surfaces slide past each other in healthy joints, and in particular to elucidate the possible role in this of the HA/Agg/LP complexes. Within the range of our parameters, our results reveal that the HA/Agg/LP macromolecular surface complexes are much better boundary lubricants than HA alone, likely because of the higher level of hydration, due to the higher charge density, of the HA/Agg/LP layers with respect to the HA alone. However, the friction coefficients (μ) associated with the mutual interactions and sliding of opposing HA/Agg/LP layers (μ ≈ 0.01 up to pressure P of ca. 12 atm, increasing sharply at higher P) suggest that such complexes by themselves cannot account for the remarkable boundary lubrication observed in mammalian joints (up to P > 50 atm).

  1. Autogenic EMG-Controlled Functional Electrical Stimulation for Ankle Dorsiflexion Control

    PubMed Central

    Yeom, Hojun; Chang, Young-Hui

    2010-01-01

    Our objectives were to develop and test a new system for the potential for stable, real-time cancellation of residual stimulation artefacts (RSA) using surface electrode autogenic electromyography-controlled functional electrical stimulator (aEMGcFES). This type of closed-loop FES could be used to provide more natural, continuous control of lower extremity paretic muscles. We built upon work that has been done in the field of FES with one major technological innovation, an adaptive Gram-Schmidt filtering algorithm, which allowed us to digitally cancel RSA in real-time. This filtering algorithm resulted in a stable real-time estimation of the volitional intent of the stimulated muscle, which then acted as the direct signal for continuously controlling homonymous muscle stimulation. As a first step toward clinical application, we tested the viability of our aEMGcFES system to continuously control ankle dorsiflexion in a healthy subject. Our results indicate positively that an aEMGcFES device with adaptive filtering can respond proportionally to voluntary EMG and activate forceful movements to assist dorsiflexion during controlled isometric activation at the ankle. We also verified that normal ankle joint range of movement could be maintained while using the aEMGcFES system. We suggest that real-time cancellation of both primary and RSA is possible with surface electrode aEMGcFES in healthy subjects and shows promising potential for future clinical application to gait pathologies such as drop foot related to hemiparetic stroke. PMID:20713086

  2. Autogenic EMG-controlled functional electrical stimulation for ankle dorsiflexion control.

    PubMed

    Yeom, Hojun; Chang, Young-Hui

    2010-10-30

    Our objectives were to develop and test a new system for the potential for stable, real-time cancellation of residual stimulation artefacts (RSA) using surface electrode autogenic electromyography-controlled functional electrical stimulator (aEMGcFES). This type of closed-loop FES could be used to provide more natural, continuous control of lower extremity paretic muscles. We built upon work that has been done in the field of FES with one major technological innovation, an adaptive Gram-Schmidt filtering algorithm, which allowed us to digitally cancel RSA in real-time. This filtering algorithm resulted in a stable real-time estimation of the volitional intent of the stimulated muscle, which then acted as the direct signal for continuously controlling homonymous muscle stimulation. As a first step toward clinical application, we tested the viability of our aEMGcFES system to continuously control ankle dorsiflexion in a healthy subject. Our results indicate positively that an aEMGcFES device with adaptive filtering can respond proportionally to voluntary EMG and activate forceful movements to assist dorsiflexion during controlled isometric activation at the ankle. We also verified that normal ankle joint range of movement could be maintained while using the aEMGcFES system. We suggest that real-time cancellation of both primary and RSA is possible with surface electrode aEMGcFES in healthy subjects and shows promising potential for future clinical application to gait pathologies such as drop foot related to hemiparetic stroke.

  3. Multivariable Dynamic Ankle Mechanical Impedance With Relaxed Muscles

    PubMed Central

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic “peanut” shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed. PMID:24686292

  4. Gait changes after using a temporomandibular joint exerciser in patients who underwent lower limb joint surgery

    PubMed Central

    Chung, Gu-Young; Choi, Geun-Seok; Shin, Ki-Young; Park, Joon-Soo

    2016-01-01

    [Purpose] The improvements in gait of the patients with lower limb disease who used a temporomandibular joint (TMJ) exerciser were verified. [Subjects and Methods] Eleven subjects were included. Their mean age was 53.2 years. The lower limb joint angles before and after using the TMJ exerciser were measured using a gait analyzer. Before the gait experiment, the TMJ exerciser setting process and one-leg stance balance test (OLST) were repeated until the balance maintenance time improved. [Results] Because of the OLST, the mean change in the body center point after the subjects used the exerciser improved from 5.76 mm to 4.20 mm. When the TMJ exerciser was used, the joint angle range of the subjects approached that of the normal individuals. [Conclusion] According to the gait experiments, the angles of the subjects’ hips, knees, and ankle joints approached to those of the normal individuals after the subjects used the TMJ exerciser; however, the results did not completely match. The changes in the hip, knee, and ankle joint angles were statistically significant, which confirm the usefulness of the TMJ exerciser. PMID:27313377

  5. [Arthroscopically assisted treatment of ankle fractures].

    PubMed

    Braunstein, M; Baumbach, S F; Böcker, W; Mutschler, W; Polzer, H

    2016-02-01

    Acute ankle fractures are one of the most common fractures in adults with an incidence of 0.1-0.2 % per year. Operative treatment by open reduction and internal fixation (ORIF) is the standard method of treatment for unstable or dislocated fractures. The main goal of the operation is the anatomical realignment of the joint and restoration of ankle stability; nevertheless, anatomical reduction does not automatically lead to favorable clinical results. According to several studies the mid-term and in particular the long-term outcome following operative treatment is often poor with residual symptoms including chronic pain, stiffness, recurrent swelling and ankle instability. There is growing evidence that this poor outcome might be related to occult intra-articular injuries involving cartilage and soft tissues. In recent studies the frequency of fracture-related osteochondral lesions was reported to be approximately 64 %. By physical examination, standard radiography or even computed tomography (CT), these intra-articular pathologies cannot be reliably diagnosed; therefore, many authors emphasize the value of ankle arthroscopy in acute fracture treatment as it has become a safe and effective diagnostic and therapeutic procedure. Arthroscopically assisted open reduction and internal fixation (AORIF) allows control of the reduction as well examination of all intra-articular structures. If necessary, intra-articular pathologies can be addressed by removing ruptured ligaments and loose bodies, performing chondroplasty or microfracturing. So far there is no evidence that supplementary ankle arthroscopy increases the complication rate. On the other hand, the positive effect of AORIF has also not been clearly documented; nevertheless, there are clear indications that arthroscopically assisted fracture treatment is beneficial, especially in complex fractures.

  6. A new ankle foot orthosis for running.

    PubMed

    Bishop, David; Moore, Allan; Chandrashekar, Naveen

    2009-09-01

    Traumatic knee injuries in automobile accidents and sports often lead to damage of the peroneal nerve. A lack of control of muscles innervated by the peroneal nerve due to this damage, results in the inability to dorsiflex and evert the foot and to extend the toes. This condition is commonly known as foot drop. Foot drop reduces the stability in the body while walking and running and may also cause injury due to lack of foot clearance during the swing phase of the gait. Traditionally, an ankle foot orthosis (AFO), comprised of a moulded sheet of plastic that conforms around the posterior calf and distally contains all or part of the calcaneous as well as the plantar foot, is used to treat foot drop. The intent of this orthosis is to dorsiflex the foot to provide clearance during the swing phase of walking and running. Traditional AFO results in increased pressures due to a decrease in dorsiflexion range of motion at the ankle and make the orthosis increasingly uncomfortable to wear. Several other existing designs of foot drop AFO suffer from similar inadequacies. To address these issues, a new AFO was developed. The device was successfully used by one person with foot drop without issues for more than one year. This new design conforms to the lower anterior shin and dorsum of the foot using dorsiassist Tamarack ankle joints to allow for greater plantar and dorsiflexion range of motion. While still limiting ankle inversion it does allow for more ankle eversion. This orthosis can be discretely worn inside shoes due to its smaller size, and can be worn for a longer period of time without discomfort.

  7. Computed Tomography and Magnetic Resonance Imaging Features of the Temporomandibular Joint in Two Normal Camels

    PubMed Central

    Arencibia, Alberto; Blanco, Diego; González, Nelson; Rivero, Miguel A.

    2012-01-01

    Computed tomography (CT) and magnetic resonance (MR) image features of the temporomandibular joint (TMJ) and associated structures in two mature dromedary camels were obtained with a third-generation equipment CT and a superconducting magnet RM at 1.5 Tesla. Images were acquired in sagittal and transverse planes. Medical imaging processing with imaging software was applied to obtain postprocessing CT and MR images. Relevant anatomic structures were identified and labelled. The resulting images provided excellent anatomic detail of the TMJ and associated structures. Annotated CT and MR images from this study are intended as an anatomical reference useful in the interpretation for clinical CT and MR imaging studies of the TMJ of the dromedary camels. PMID:22567308

  8. Ankle Sprain Treatment

    MedlinePlus

    ... Treatment Page Content Article Body Acute ankle and foot injuries are common in athletes and other active young ... heels by pushing on the balls of your feet. Repeat steps 1 through 3. ... criteria Because injuries and recovery rates are different for every athlete, ...

  9. Prediction of medial and lateral contact force of the knee joint during normal and turning gait after total knee replacement.

    PubMed

    Purevsuren, Tserenchimed; Dorj, Ariunzaya; Kim, Kyungsoo; Kim, Yoon Hyuk

    2016-04-01

    The computational modeling approach has commonly been used to predict knee joint contact forces, muscle forces, and ligament loads during activities of daily living. Knowledge of these forces has several potential applications, for example, within design of equipment to protect the knee joint from injury and to plan adequate rehabilitation protocols, although clinical applications of computational models are still evolving and one of the limiting factors is model validation. The objective of this study was to extend previous modeling technique and to improve the validity of the model prediction using publicly available data set of the fifth "Grand Challenge Competition to Predict In Vivo Knee Loads." A two-stage modeling approach, which combines conventional inverse dynamic analysis (the first stage) with a multi-body subject-specific lower limb model (the second stage), was used to calculate medial and lateral compartment contact forces. The validation was performed by direct comparison of model predictions and experimental measurement of medial and lateral compartment contact forces during normal and turning gait. The model predictions of both medial and lateral contact forces showed strong correlations with experimental measurements in normal gait (r = 0.75 and 0.71) and in turning gait trials (r = 0.86 and 0.72), even though the current technique over-estimated medial compartment contact forces in swing phase. The correlation coefficient, Sprague and Geers metrics, and root mean squared error indicated that the lateral contact forces were predicted better than medial contact forces in comparison with the experimental measurements during both normal and turning gait trials.

  10. Benign joint hypermobility syndrome in soldiers; what is the effect of military training courses on associated joint instabilities?

    PubMed Central

    Azma, Kamran; Mottaghi, Peyman; Hosseini, Alireza; Abadi, Hossein Hassan; Nouraei, Mohammad Hadi

    2014-01-01

    Background: Hypermobile joints are joints with beyond normal range of motion and may be associated with joint derangements. This study aimed to evaluate the prevalence of benign joint hypermobility syndrome (BJHS) among soldiers and effect of training courses on related joint instabilities. Materials and Methods: In a prospective cohort study on 721 soldiers of Iran Army in Isfahan in 2013 the prevalence of joint hypermobility was obtained by using Beighton criteria. Soldiers divided in two groups of healthy and suffered based on their scores. The prevalence of ankle sprain, shoulder and temporomandibular joint (TMJ) dislocations identified before beginning service by history-taking and reviewing paraclinical documents. After 3 months of military training, a recent occurrence of mentioned diseases was revaluated in two groups. The collected data were analyzed using SPSS-20 software using Independent-T and Chi-square tests. Results: The frequency of BJHS before military training was 29.4%. After passing military training period, the incidence of ankle sprain was significantly higher in suffered group achieving the minimum Beighton score (BS) of 4 (4.3%, P = 0.03), 5 (5.5%, P = 0.005) and also 6 out of 9 (6.5%, P = 0.01). The incidence of TMJ dislocation was not significantly different based on a minimum score of 4, while it was higher in suffered group when considering the score of 5 (2.1%) and 6 (2.6%) for discrimination of two groups (P = 0.03). There was no significant difference between two groups in case of shoulder dislocation anyway. Conclusion: Military training can increase the incidence of ankle sprains and TMJ dislocations in hypermobility persons with higher BS in comparison with healthy people. Therefore, screening of joint hypermobility may be useful in identifying individuals at increased risk for joint instabilities. PMID:25364364

  11. Finger movement improves ankle control for gait initiation in patients with Parkinson's disease.

    PubMed

    Hiraoka, K; Kamata, N; Iwata, A; Minamida, F; Abe, K

    2008-01-01

    The purpose of this study was to investigate the effect of finger movement on ankle control for gait initiation in patients with Parkinson's disease (PD patients). The subjects were 13 PD patients and 6 age-matched healthy adults. The subjects moved fingers before or after gait initiation, or initiated gait without finger movement. Ankle joint movement in the stance leg was recorded to estimate the duration of ankle dorsiflexion (DIF duration), which reflects the degree of disturbance in ankle control for gait initiation in PD patients. In the PD patients with prolonged D/F duration, finger movement that preceded gait initiation shortened the D/F duration, but in the PD patients without prolonged D/F duration and in healthy subjects, the effect was not found. Accordingly, finger movement that precedes gait initiation improves ankle control for gait initiation in PD patients who suffer disturbance in ankle control for gait initiation.

  12. Decompression of Posterior Ankle Impingement With Concomitant Anterior Ankle Pathology by Posterior Ankle Arthroscopy in the Supine Position.

    PubMed

    Lui, Tun Hing

    2016-10-01

    Posterior ankle endoscopy is a safe and effective approach for treatment of posterior ankle impingement. This is usually performed with the patient in prone position. The purpose of this technical note is to describe an arthroscopic approach of decompression of posterior ankle impingement with the patient in supine position. This is indicated if there is posterior ankle impingement together with other ankle pathology requiring anterior ankle arthroscopy. This approach allows treatment of both anterior ankle and posterior ankle pathology with the patient in the supine position. Concomitant anterior ankle arthroscopy can be performed with the usual orientation without the need of change of patient's position.

  13. Plasminogen activation in synovial tissues: differences between normal, osteoarthritis, and rheumatoid arthritis joints

    PubMed Central

    Busso, N.; Peclat, V.; So, A.; Sappino, A.

    1997-01-01

    OBJECTIVE—To analyse the functional activity of the plasminogen activators urokinase (uPA) and tissue type plasminogen activator (tPA) in human synovial membrane, and to compare the pattern of expression between normal, osteoarthritic, and rheumatoid synovium. The molecular mechanisms underlying differences in PA activities between normal and pathological synovial tissues have been further examined.
METHODS—Synovial membranes from seven normal (N) subjects, 14 osteoarthritis (OA), and 10 rheumatoid arthritis (RA) patients were analysed for plasminogen activator activity by conventional zymography and in situ zymography on tissue sections. The tissue distribution of uPA, tPA, uPA receptor (uPAR), and plasminogen activator inhibitor type-1 (PAI-1) was studied by immunohistochemistry. uPA, tPA, uPAR, and PAI-1 mRNA values and mRNA distribution were assessed by northern blot and in situ hybridisations respectively.
RESULTS—All normal and most OA synovial tissues expressed predominantly tPA catalysed proteolytic activity mainly associated to the synovial vasculature. In some OA, tPA activity was expressed together with variable amounts of uPA mediated activity. By contrast, most RA synovial tissues exhibited considerably increased uPA activity over the proliferative lining areas, while tPA activity was reduced when compared with N and OA synovial tissues. This increase in uPA activity was associated with increased levels of uPA antigen and its corresponding mRNA, which were localised over the synovial proliferative lining areas. In addition, in RA tissues, expression of the specific uPA receptor (uPAR) and of the plasminogen activator inhibitor-type 1 (PAI-1) were also increased.
CONCLUSION—Taken together, these results show an alteration of the PA/plasmin system in RA synovial tissues, resulting in increased uPA catalytic activity that may play a part in tissue destruction in RA.

 PMID:9370880

  14. Relationship between two proprioceptive measures and stiffness at the ankle.

    PubMed

    Docherty, Carrie L; Arnold, Brent L; Zinder, Steven M; Granata, Kevin; Gansneder, Bruce M

    2004-06-01

    Previous research has investigated the role of proprioception and stiffness in the control of joint stability. However, to date, no research has been done on the relationship between proprioception and stiffness. Therefore, the purpose of this study was to determine the relationship between force sense, joint reposition sense, and stiffness at the ankle. A heterogeneous sample was obtained for this study; 20 of the 40 participants had a history of ankle sprains, and 13 of the 20 had been diagnosed by a physician (two mild ankle sprains, seven moderate sprains, four severe sprains). All subjects were asymptomatic and active at the time of the study. Active joint reposition sense was measured using a custom-built ankle goniometer, force sense was measured unilaterally and contralaterally with a load cell, and ankle muscle stiffness was measured via transient oscillation using a custom-built inversion-eversion cradle. We found no significant correlations between stiffness and joint reposition sense, with values of r ranging from 0.01 to 0.21. Significant correlations were found between stiffness and force sense. Specifically, contralateral force sense reproduction was significantly correlated to stiffness in the injured or "involved" ankle (r's ranging from 0.47 to 0.65; P< or =0.008). Whether the decreased ability to appropriately sense force (increased error) sends information to the central nervous system to increase muscle stiffness in response to an unexpected loss of stability, or whether these two phenomena function independently and both change concurrently as a result of injury to the system requires further investigation.

  15. An Experimental Study on Normal Stress and Shear Rate Dependency of Basic Friction Coefficient in Dry and Wet Limestone Joints

    NASA Astrophysics Data System (ADS)

    Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon

    2016-12-01

    Among all parameters that affect the friction of rocks, variable normal stress and slip rate are the most important second-order parameters. The shear-rate- and normal-stress-dependent friction behavior of rock discontinuities may significantly influence the dynamic responses of rock mass. In this research, two limestone rock types, which were travertine and onyx marble with slickenside and grinded #80 surfaces, were prepared and CNL direct shear tests were performed on the joints under various shear conditions. The shearing rate varied from 0.1 to 50 mm/min under different normal stresses (from 2 to 30 % of UCS) in both dry and wet conditions. Experiments showed that the friction coefficient of slickensided and ground #80 surfaces of limestone increased with the increasing shear velocity and decreased with the increasing normal stress. Micro-asperity interlocking between ground #80 surfaces showed higher wear and an increase in friction coefficient ( µ) compared to slickensided surfaces. Slickensided samples with moist surfaces showed an increase in the coefficient of friction compared to dry surfaces; however, on ground #80 surfaces, the moisture decreased the coefficient of friction to a smaller value. Slickenside of limestone typically slides stably in a dry condition and by stick-slip on moist surfaces. The observed shear-rate- and normal-stress-dependent friction behavior can be explained by a similar framework to that of the adhesion theory of friction and a friction mechanism that involves the competition between microscopic dilatant slip and surface asperity deformation. The results have important implications for understanding the behavior of basic and residual friction coefficients of limestone rock surfaces.

  16. Mycotic Septic Arthritis of the Ankle Joint.

    PubMed

    Tucker, Adam; Matthews, Scott; Wilson, Alister

    Septic arthritis is a debilitating acute orthopedic emergency. Unfortunately, the diagnosis can be delayed or missed in immunocompromised patients with diabetes mellitus, and the result can be catastrophic. These patients are also at risk for atypical infections, including mycotic subtypes, which are more insidious than their more aggressive, more common Staphylococcus counterparts. The result is increased morbidity. In this article, we report a case of Candida albicans septic arthritis in a patient with diabetes mellitus and rheumatoid arthritis. Her case highlights the complexities of this specific disease entity. With early diagnosis, treatment is multimodal, involving surgical débridement and prolonged antifungal therapy.

  17. A mixture of hierarchical joint models for longitudinal data with heterogeneity, non-normality, missingness, and covariate measurement error.

    PubMed

    Huang, Yangxin; Yan, Chunning; Yin, Ping; Lu, Meixia

    2016-01-01

    Longitudinal data arise frequently in medical studies and it is a common practice to analyze such complex data with nonlinear mixed-effects (NLME) models. However, the following four issues may be critical in longitudinal data analysis. (i) A homogeneous population assumption for models may be unrealistically obscuring important features of between-subject and within-subject variations; (ii) normality assumption for model errors may not always give robust and reliable results, in particular, if the data exhibit skewness; (iii) the responses may be missing and the missingness may be nonignorable; and (iv) some covariates of interest may often be measured with substantial errors. When carrying out statistical inference in such settings, it is important to account for the effects of these data features; otherwise, erroneous or even misleading results may be produced. Inferential procedures can be complicated dramatically when these four data features arise. In this article, the Bayesian joint modeling approach based on a finite mixture of NLME joint models with skew distributions is developed to study simultaneous impact of these four data features, allowing estimates of both model parameters and class membership probabilities at population and individual levels. A real data example is analyzed to demonstrate the proposed methodologies, and to compare various scenarios-based potential models with different specifications of distributions.

  18. Measurement of T2 value by using 3.0T MRI for patient with ankle arthritis.

    PubMed

    Ahn, Jae Ouk

    2013-01-01

    This study intended to evaluate shape of ankle joint cartilage and damage to the ankle joint cartilage by measuring changes in T2 value of cartilage of healthy people without ankle arthritis and patients with ankle arthritis. The multi-echo technique was used for 20 healthy persons who had no ankle arthritis in the past or in the present clinically and 20 patients who were examined to have ankle arthritis in order to obtain T2 map image of knee joint cartilage. We divided the talotibial joint into medial position, middle position and lateral position to calculate the mean values of T2 in 18 spots that included anterior part, middle part and posterior part of cartilage of neck bone and ankle bone. Mean T2 values were measured in the healthy people group and the ankle arthritis patient group. According to the measurement results, the mean T2 value of the ankle arthritis patient group was measured to be higher than that of the healthy people group.

  19. Assessment of dorsal instability of the ulnar head in the distal radioulnar joint: comparison between normal wrist joints and cases of ruptured extensor tendons.

    PubMed

    Naito, Kiyohito; Sugiyama, Yoichi; Aritomi, Kentaro; Nagahama, Yasushi; Tomita, Yoshimasa; Obayashi, Osamu; Kaneko, Kazuo

    2016-02-01

    In the present study, the adaptability of the distal radioulnar joint (DRUJ) was evaluated using conventional computed tomography (CT) evaluation methods. In addition, we investigated/compared a new method to evaluate dorsal displacement of the ulnar head. Our subjects consisted of 32 healthy volunteers (64 wrists) and 11 patients (13 wrists) with extensor tendon injuries related to dorsal displacement of the ulnar head. To diagnose instability in the DRUJ based on CT scans, the radioulnar line method and the modified radioulnar line method were measured. Instability was evaluated by the new method that the ulnar head was located on the dorsal side from a line involving the peak of Lister's tubercle in parallel to this baseline was regarded as showing abnormal dorsal displacement of the ulnar head. The diagnostic accuracy of each method was calculated. The sensitivities, specificities, false-positive rates, positive predictive values and the negative predictive value of new methods were better than other two methods. The new method that we recommend is simple. Based on the results of this study, an evaluation of normal/abnormal dorsal displacement of the ulnar head in the DRUJ using the new method may be useful for determining the timing of surgery.

  20. Effects of Prophylactic Ankle Supports on Vertical Ground Reaction Force During Landing: A Meta-Analysis

    PubMed Central

    Niu, Wenxin; Feng, Tienan; Wang, Lejun; Jiang, Chenghua; Zhang, Ming

    2016-01-01

    There has been much debate on how prophylactic ankle supports (PASs) may influence the vertical ground reaction force (vGRF) during landing. Therefore, the primary aims of this meta-analysis were to systematically review and synthesize the effect of PASs on vGRF, and to understand how PASs affect vGRF peaks (F1, F2) and the time from initial contact to peak loading (T1, T2) during landing. Several key databases, including Scopus, Cochrane, Embase, PubMed, ProQuest, Medline, Ovid, Web of Science, and the Physical Activity Index, were used for identifying relevant studies published in English since inception to April 1, 2015. The computerized literature search and cross-referencing the citation list of the articles yielded 3,993 articles. Criteria for inclusion required that 1) the study was conducted on healthy adults; 2) the subject number and trial number were known; 3) the subjects performed landing with and without PAS; 4) the landing movement was in the sagittal plane; 5) the comparable vGRF parameters were reported; and 6) the F1 and F2 must be normalized to the subject’s body weight. After the removal of duplicates and irrelevant articles, 6, 6, 15 and 11 studies were respectively pooled for outcomes of F1, T1, F2 and T2. This study found a significantly increased F2 (.03 BW, 95% CI: .001, .05) and decreased T1 (-1.24 ms, 95% CI: -1.77, -.71) and T2 (-3.74 ms, 95% CI: -4.83, -2.65) with the use of a PAS. F1 was not significantly influenced by the PAS. Heterogeneity was present in some results, but there was no evidence of publication bias for any outcome. These changes represented deterioration in the buffering characteristics of the joint. An ideal PAS design should limit the excessive joint motion of ankle inversion, while allowing a normal range of motion, especially in the sagittal plane. Key points PAS can effectively protect the ligamentous structure from spraining by providing mechanical support and cutaneous proprioceptive benefits. Using of PAS can

  1. Endoscopic Removal of Loose Bodies of the Posterior Ankle Extra-articular Space Arising From Flexor Hallucis Longus Tenosynovial Osteochondromatosis.

    PubMed

    Lui, Tun Hing

    2016-12-01

    Loose bodies of the posterior ankle can occur either at the posterior recess of the ankle or subtalar joint or at the posterior ankle extra-articular space. Loose bodies at the extra-articular space can be a result of tenosynovial chondromatosis of the tendons of the posterior ankle, especially the flexor hallucis longus tendon. Endoscopic removal of loose bodies of the posterior ankle extra-articular space is indicated for symptomatic cases that are not improved by conservative treatment. It is contraindicated if there is active infection at the planned portal sites or the surgeon is not familiar with the technique of posterior ankle endoscopy. Systematic assessment of the different parts of the posterior ankle will minimize the risk of loose body retention.

  2. Sensitivity of joint moments to changes in walking speed and body-weight-support are interdependent and vary across joints.

    PubMed

    Goldberg, Saryn R; Stanhope, Steven J

    2013-04-05

    We investigated the effect of simultaneous changes in body-weight-support level and walking speed on mean peak internal joint moments at the ankle, knee and hip. We hypothesized that observed changes in these joint moments would be approximately linear with both body-weight-support and walking speed and would be similar across joints. Kinematic and kinetic data were collected from 8 unimpaired adult subjects walking on an instrumented treadmill while wearing a dynamically controlled overhead support harness. Subjects walked with four levels of body-weight-support (0%, 20%, 40%, and 60% of bodyweight) at three walking speeds (0.4, 0.6, and 0.8 statures/s, ranging on average from 0.7 to 1.4m/s). Data were used to calculate mean peak joint moments across subjects for each condition. In general, subjects' mean peak joint moments decreased linearly with decreasing walking speed and with increasing body-weight-support, except the knee extension moment, which showed a quadratic relationship with walking speed and no significant change with body-weight-support. All joint moments, with the exception of knee extension, showed a significant interaction effect between walking speed and body-weight-support, indicating that the sensitivity of these joint moments to changes in these variables was interdependent. In most cases, the ankle and hip extension moments showed the largest sensitivity to walking speed. The ankle moment was observed to have the greatest sensitivity to body-weight-support. This finding, that altering walking speed and body-weight-support level results in non-uniform changes in peak moments across joints, suggests that further research is warranted to establish the set of combined speed and support conditions that produce motor patterns supportive of normal gait retraining.

  3. The distribution of cartilage thickness within the joints of the lower limb of elderly individuals

    PubMed Central

    ADAM, CHRISTOPH; ECKSTEIN, FELIX; MILZ, STEFAN; PUTZ, REINHARD

    1998-01-01

    The objective of this study was to investigate the normal distribution of cartilage thickness in the major joints of the lower limb in elderly individuals. A 12.5 MHz ultrasound transducer was used to measure the cartilage thickness in the right and left hip, knee and ankle joint of 10 individuals aged between 62 and 99 y. Distribution patterns of cartilage thickness were derived by b-spline interpolation and the average distribution computed in each surface. The maximum cartilage thickness in the hip joint was 2.6 (±0.36) mm and the mean thickness 1.3 (±0.17) mm. The CV% (a measure of thickness inhomogeneity within the joint surface) was 32%. In the knee, the maximal and mean values were 3.8 (±0.46) mm and 1.9 mm (±0.24) mm, respectively (CV%=34%), and in the ankle 1.7 (±0.25) mm and 1.0 (±0.16) mm (CV%=32%). Systematic differences existed between both sides in the knee, the distal femur showing a significantly greater thickness on the right. While the mean and maximal thicknesses were systematically higher in the knee than in the hip, and in the hip higher than in the ankle (P<0.05), there were no systematic differences in the thickness inhomogeneity of the 3 joints. Only the malleolus showed a somewhat more uniform thickness than the other joint surfaces. The variablity between individuals was similar for all joints for mean thickness, but the interindividual variability of the maximal thickness values was highest in the knee and lowest in the ankle. Whereas the cartilage thickness distributions in the joints of the lower limb have been suggested to reflect the pressure distribution within the articular surface, the absolute thickness is proposed to be a function of dynamic loading (range of motion) during gait, rather than being a reflection of the static articular pressure. PMID:9827636

  4. Multiple linear regression approach for the analysis of the relationships between joints mobility and regional pressure-based parameters in the normal-arched foot.

    PubMed

    Caravaggi, Paolo; Leardini, Alberto; Giacomozzi, Claudia

    2016-10-03

    Plantar load can be considered as a measure of the foot ability to transmit forces at the foot/ground, or foot/footwear interface during ambulatory activities via the lower limb kinematic chain. While morphological and functional measures have been shown to be correlated with plantar load, no exhaustive data are currently available on the possible relationships between range of motion of foot joints and plantar load regional parameters. Joints' kinematics from a validated multi-segmental foot model were recorded together with plantar pressure parameters in 21 normal-arched healthy subjects during three barefoot walking trials. Plantar pressure maps were divided into six anatomically-based regions of interest associated to corresponding foot segments. A stepwise multiple regression analysis was performed to determine the relationships between pressure-based parameters, joints range of motion and normalized walking speed (speed/subject height). Sagittal- and frontal-plane joint motion were those most correlated to plantar load. Foot joints' range of motion and normalized walking speed explained between 6% and 43% of the model variance (adjusted R(2)) for pressure-based parameters. In general, those joints' presenting lower mobility during stance were associated to lower vertical force at forefoot and to larger mean and peak pressure at hindfoot and forefoot. Normalized walking speed was always positively correlated to mean and peak pressure at hindfoot and forefoot. While a large variance in plantar pressure data is still not accounted for by the present models, this study provides statistical corroboration of the close relationship between joint mobility and plantar pressure during stance in the normal healthy foot.

  5. US in ankle impingement syndrome.

    PubMed

    Pesquer, Lionel; Guillo, Stephane; Meyer, Philippe; Hauger, Olivier

    2014-06-01

    Ankle impingement is a common condition occurring secondary to sprain or repeated microtrauma. Clinical symptoms are chronic pain located in the affected region and limited range of ankle motion. There are three types of ankle impingement syndrome: anterior impingement, which can be subdivided into anterolateral, anteromedial and purely anterior impingement; posterior impingement, which can be subdivided into posterior and posteromedial impingement; and calcaneal peroneal impingement which is secondary to planovalgus foot deformity. This paper evaluates physiological and clinical elements of these three types of ankle impingement syndrome as well as the role of ultrasound (US) imaging and US-guided treatment.

  6. What Is a Foot and Ankle Surgeon?

    MedlinePlus

    ... foot and ankle surgeons. All Fellows of the College are board certified by the American Board of Foot and Ankle Surgery. Copyright © 2017 American College of Foot and Ankle Surgeons (ACFAS), All Rights ...

  7. Osteoarthritis of the Foot and Ankle

    MedlinePlus

    ... foot and ankle surgeons. All Fellows of the College are board certified by the American Board of Foot and Ankle Surgery. Copyright © 2017 American College of Foot and Ankle Surgeons (ACFAS), All Rights ...

  8. Sports Injuries to the Foot and Ankle

    MedlinePlus

    ... foot and ankle surgeons. All Fellows of the College are board certified by the American Board of Foot and Ankle Surgery. Copyright © 2017 American College of Foot and Ankle Surgeons (ACFAS), All Rights ...

  9. Simultaneous bilateral total knee and ankle arthroplasty as a single surgical procedure

    PubMed Central

    2011-01-01

    Background Simultaneous osteoarthritis (OA) of the ankle joint complicates primary total knee arthroplasty (TKA). In such cases, rehabilitation of TKA is limited by debilitating ankle pain, but varus or valgus ankle arthritis may even compromise placement of knee prosthetic components. Case presentation We present a patient with simultaneous bilateral valgus and patellofemoral OA of the knees and bilateral varus OA of the ankle joints that equally contributed to overall disability. This 63 years old, motivated and otherwise healthy patient was treated by simultaneous bilateral total knee and ankle arthroplasty (quadruple total joint arthroplasty, TJA) during the same anesthesia. Two years outcome showed excellent alignment and function of all four replaced joints. Postoperative time for rehabilitation, back to work (6th week) and hospital stay (12 days) of this special patient was markedly reduced compared to the usual course of separate TJA. Conclusions Simultaneous quadruple TJA in equally disabling OA of bilateral deformed knees and ankles resulted in a better functional outcome and faster recovery compared to the average reported results after TKA and TAA in literature. However, careful preoperative planning, extensive patient education, and two complete surgical teams were considered essential for successful performance. To the best of our knowledge this is the first case report in literature about quadruple major total joint arthroplasty implanted during the same anesthesia in the same patient. PMID:21995682

  10. Effects of ankle biofeedback training on strength, balance, and gait in patients with stroke

    PubMed Central

    Kim, Sung-jin; Cho, Hwi-young; Kim, Kyung-hoon; Lee, Suk-min

    2016-01-01

    [Purpose] This study aimed to investigate the effects of ankle biofeedback training on muscle strength of the ankle joint, balance, and gait in stroke patients. [Subjects and Methods] Twenty-seven subjects who had had a stroke were randomly allocated to either the ankle biofeedback training group (n=14) or control group (n=13). Conventional therapy, which adhered to the neurodevelopmental treatment approach, was administered to both groups for 30 minutes. Furthermore, ankle strengthening exercises were performed by the control group and ankle biofeedback training by the experimental group, each for 30 minutes, 5 days a week for 8 weeks. To test muscle strength, balance, and gait, the Biodex isokinetic dynamometer, functional reach test, and 10 m walk test, respectively, were used. [Results] After the intervention, both groups showed a significant increase in muscle strength on the affected side and improved balance and gait. Significantly greater improvements were observed in the balance and gait of the ankle biofeedback training group compared with the control group, but not in the strength of the dorsiflexor and plantar flexor muscles of the affected side. [Conclusion] This study showed that ankle biofeedback training significantly improves muscle strength of the ankle joint, balance, and gait in patients with stroke. PMID:27799701

  11. Joint Inversion of Seismic and Magnetotelluric Data in the Parkfield Region of California Using the Normalized Cross-Gradient Constraint

    NASA Astrophysics Data System (ADS)

    Bennington, Ninfa L.; Zhang, Haijiang; Thurber, Clifford H.; Bedrosian, Paul A.

    2015-05-01

    We present jointly inverted models of P-wave velocity (Vp) and electrical resistivity for a two-dimensional profile centered on the San Andreas Fault Observatory at Depth (SAFOD). Significant structural similarity between main features of the separately inverted Vp and resistivity models is exploited by carrying out a joint inversion of the two datasets using the normalized cross-gradient constraint. This constraint favors structurally similar Vp and resistivity images that adequately fit the seismic and magnetotelluric (MT) datasets. The new inversion code, tomoDDMT, merges the seismic inversion code tomoDD and the forward modeling and sensitivity kernel subroutines of the MT inversion code OCCAM2DMT. TomoDDMT is tested on a synthetic dataset and demonstrates the code's ability to more accurately resolve features of the input synthetic structure relative to the separately inverted resistivity and velocity models. Using tomoDDMT, we are able to resolve a number of key issues raised during drilling at SAFOD. We are able to infer the distribution of several geologic units including the Salinian granitoids, the Great Valley sequence, and the Franciscan Formation. The distribution and transport of fluids at both shallow and great depths is also examined. Low values of velocity/resistivity attributed to a feature known as the Eastern Conductor (EC) can be explained in two ways: the EC is a brine-filled, high porosity region, or this region is composed largely of clay-rich shales of the Franciscan. The Eastern Wall, which lies immediately adjacent to the EC, is unlikely to be a fluid pathway into the San Andreas Fault's seismogenic zone due to its observed higher resistivity and velocity values.

  12. Design and characterization of a biologically inspired quasi-passive prosthetic ankle-foot.

    PubMed

    Mooney, Luke M; Lai, Cara H; Rouse, Elliott J

    2014-01-01

    By design, commonly worn energy storage and release (ESR) prosthetic feet cannot provide biologically realistic ankle joint torque and angle profiles during walking. Additionally, their anthropomorphic, cantilever architecture causes their mechanical stiffness to decrease throughout the stance phase of walking, opposing the known trend of the biological ankle. In this study, the design of a quasi-passive pneumatic ankle-foot prosthesis is detailed that is able to replicate the biological ankle's torque and angle profiles during walking. The prosthetic ankle is comprised of a pneumatic piston, bending spring and solenoid valve. The mechanical properties of the pneumatic ankle prosthesis are characterized using a materials testing machine and the properties are compared to those from a common, passive ESR prosthetic foot. The characterization spanned a range of ankle equilibrium pressures and testing locations beneath the foot, analogous to the location of center of pressure within the stance phase of walking. The pneumatic ankle prosthesis was shown to provide biologically appropriate trends and magnitudes of torque, angle and stiffness behavior, when compared to the passive ESR prosthetic foot. Future work will focus on the development of a control system for the quasi-passive device and clinical testing of the pneumatic ankle to demonstrate efficacy.

  13. Ankle Arthritis: You Can't Always Replace It.

    PubMed

    Hayes, Brandon J; Gonzalez, Tyler; Smith, Jeremy T; Chiodo, Christopher P; Bluman, Eric M

    2016-02-01

    End-stage arthritis of the tibiotalar joint is disabling and causes substantial functional impairment. Most often it is the residual effect of a previous traumatic injury. Nonsurgical treatment of end-stage arthritis of the ankle includes bracing, shoe-wear modifications, and selective joint injections. For patients who fail to respond to nonsurgical modalities, the two primary treatment options are arthroplasty and arthrodesis. Each has its proponents. Although no ideal treatment of ankle arthritis exists, high-quality studies can help guide treatment in patients of varying demographics. Inherent risks are linked with each treatment option, but those of greatest concern are early implant loosening that requires revision following arthroplasty and the acceleration of adjacent joint degeneration associated with arthrodesis.

  14. [Chronic instability in the ankle area].

    PubMed

    Dubrana, F; Poichotte, A; Toullec, E; Colin, D; Guillodo, Y; Moati, J-C; Brilhauht, J; Musset, T; Feron, F; Richou, J; Henri, M; Guillemot, E

    2006-06-01

    For ankle sprains, the initial radiological work-up must include weight-bearing AP and lateral stress views of the sprained and healthy ankle. Films are taken in auto-varus. Other explorations included arthroMRI, arthroscanner or MRI which can be indicated preoperatively to confirm suspected cartilage injury or an associated ligament tear. These techniques should be employed when pertinent information can be expected according to the clinical situation and the operator's experience. In the emergency setting, ultrasonography can provide a simple low-cost confirmation of joint hematoma which is more precise than x-rays with a positive predictive value of nearly 100%. The objective and subjective clinical outcome after surgical anatomic repair or ligamentoplasty are quite similar. The two principal differences relate to persistent subjective instability and post-operative surgical complications. Thus there are advantages and disadvantages for each option advantage for anatomical repair because of the low rate of surgical complications and advantage for ligament repairs which stabilize the subtalar joint with a low rate of residual instability.

  15. Salto Talaris fixed-bearing total ankle replacement system.

    PubMed

    Rush, Shannon M; Todd, Nicholas

    2013-01-01

    The Salto Talaris total ankle replacement is an anatomically designed fixed bearing prosthesis available in the United States based on the successful design of the mobile-bearing Salto prosthesis available outside the United States. The original mobile-bearing design was modified and the mobile-bearing was transferred to the precision instrumentation at the trial phase evaluation. Instrumentation and technique allow the surgeon to determine the functional joint axis before final implantation. The Salto Talaris total ankle replacement design blends minimal bone resection and optimizes surface area, cortical contact, and ultra-high molecular weight polyethylene conformity. The authors present an overview of the Salto Talaris total ankle replacement surgical technique and pearls for successful application.

  16. Technology-enhanced Interactive Teaching of Marginal, Joint and Conditional Probabilities: The Special Case of Bivariate Normal Distribution.

    PubMed

    Dinov, Ivo D; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas

    2013-01-01

    Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students' understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference.

  17. Effects of spiral taping on proprioception in subjects with unilateral functional ankle instability

    PubMed Central

    Bae, Young-Sook

    2017-01-01

    [Purpose] The Purpose of this study was to investigate the effects of spiral taping on proprioception in functional ankle instability. [Subjects and Methods] Thirty-five participants in this study had discomfort in only one ankle and Cumberland ankle instability score of ≤23. ST was applied to the unstable ankle, and proprioception was measured baseline and 30 min later. Proprioception was measured using the active joint angle reproduction test. [Results] Plantar flexions of 10° (ES, 0.303) and 20° (ES, 1.369) and inversion 20° (ES, 0.998) showed a significant improvement. [Conclusion] Spiral taping improved on proprioception. Therefore, spiral taping may be an effective method for functional ankle instability. PMID:28210052

  18. Effects of spiral taping on proprioception in subjects with unilateral functional ankle instability.

    PubMed

    Bae, Young-Sook

    2017-01-01

    [Purpose] The Purpose of this study was to investigate the effects of spiral taping on proprioception in functional ankle instability. [Subjects and Methods] Thirty-five participants in this study had discomfort in only one ankle and Cumberland ankle instability score of ≤23. ST was applied to the unstable ankle, and proprioception was measured baseline and 30 min later. Proprioception was measured using the active joint angle reproduction test. [Results] Plantar flexions of 10° (ES, 0.303) and 20° (ES, 1.369) and inversion 20° (ES, 0.998) showed a significant improvement. [Conclusion] Spiral taping improved on proprioception. Therefore, spiral taping may be an effective method for functional ankle instability.

  19. Diagnosing, planning and evaluating osteochondral ankle defects with imaging modalities

    PubMed Central

    van Bergen, Christiaan JA; Gerards, Rogier M; Opdam, Kim TM; Terra, Maaike P; Kerkhoffs, Gino MMJ

    2015-01-01

    This current concepts review outlines the role of different imaging modalities in the diagnosis, preoperative planning, and follow-up of osteochondral ankle defects. An osteochondral ankle defect involves the articular cartilage and subchondral bone (usually of the talus) and is mostly caused by an ankle supination trauma. Conventional radiographs are useful as an initial imaging tool in the diagnostic process, but have only moderate sensitivity for the detection of osteochondral defects. Computed tomography (CT) and magnetic resonance imaging (MRI) are more accurate imaging modalities. Recently, ultrasonography and single photon emission CT have been described for the evaluation of osteochondral talar defects. CT is the most valuable modality for assessing the exact location and size of bony lesions. Cartilage and subchondral bone damage can be visualized using MRI, but the defect size tends to be overestimated due to bone edema. CT with the ankle in full plantar flexion has been shown a reliable tool for preoperative planning of the surgical approach. Postoperative imaging is useful for objective assessment of repair tissue or degenerative changes of the ankle joint. Plain radiography, CT and MRI have been used in outcome studies, and different scoring systems are available. PMID:26716090

  20. Is Hardware Removal Recommended after Ankle Fracture Repair?

    PubMed Central

    Jung, Hong-Geun; Kim, Jin-Il; Park, Jae-Yong; Park, Jong-Tae; Eom, Joon-Sang

    2016-01-01

    The indications and clinical necessity for routine hardware removal after treating ankle or distal tibia fracture with open reduction and internal fixation are disputed even when hardware-related pain is insignificant. Thus, we determined the clinical effects of routine hardware removal irrespective of the degree of hardware-related pain, especially in the perspective of patients' daily activities. This study was conducted on 80 consecutive cases (78 patients) treated by surgery and hardware removal after bony union. There were 56 ankle and 24 distal tibia fractures. The hardware-related pain, ankle joint stiffness, discomfort on ambulation, and patient satisfaction were evaluated before and at least 6 months after hardware removal. Pain score before hardware removal was 3.4 (range 0 to 6) and decreased to 1.3 (range 0 to 6) after removal. 58 (72.5%) patients experienced improved ankle stiffness and 65 (81.3%) less discomfort while walking on uneven ground and 63 (80.8%) patients were satisfied with hardware removal. These results suggest that routine hardware removal after ankle or distal tibia fracture could ameliorate hardware-related pain and improves daily activities and patient satisfaction even when the hardware-related pain is minimal. PMID:27819005

  1. Reverse Evans peroneus brevis medial ankle stabilization for balancing valgus ankle contracture during total ankle replacement.

    PubMed

    Roukis, Thomas S; Prissel, Mark A

    2014-01-01

    Medial ankle instability secondary to deltoid ligament insufficiency is frequently encountered when performing total ankle replacement and remains a challenge. In the present techniques report, we describe a "reverse" Evans peroneus brevis tendon nonanatomic deltoid ligament reconstruction for medial ankle stabilization harvested through limited incisions using simple topographic anatomic landmarks. The harvested peroneus brevis tendon is brought through a drill hole in the talus from laterally to medially, aiming for the junction of the talar neck and body plantar to the midline. The tendon is the brought superiorly and obliquely to the anterior medial aspect of the distal tibia where it is secured under a plate and screw construct. This modified Evans peroneus brevis tendon nonanatomic deltoid ligament reconstruction is useful in providing medial ankle stability during or after primary and revision total ankle replacement.

  2. Propulsion System with Pneumatic Artificial Muscles for Powering Ankle-Foot Orthosis

    NASA Astrophysics Data System (ADS)

    Veneva, Ivanka; Vanderborght, Bram; Lefeber, Dirk; Cherelle, Pierre

    2013-12-01

    The aim of this paper is to present the design of device for control of new propulsion system with pneumatic artificial muscles. The propulsion system can be used for ankle joint articulation, for assisting and rehabilitation in cases of injured ankle-foot complex, stroke patients or elderly with functional weakness. Proposed device for control is composed by microcontroller, generator for muscles contractions and sensor system. The microcontroller receives the control signals from sensors and modulates ankle joint flex- ion and extension during human motion. The local joint control with a PID (Proportional-Integral Derivative) position feedback directly calculates desired pressure levels and dictates the necessary contractions. The main goal is to achieve an adaptation of the system and provide the necessary joint torque using position control with feedback.

  3. [Ankle brachial index measurement].

    PubMed

    Rucigaj, Tanja Planinsek

    2014-10-01

    Ultrasound examinations are noninvasive diagnostic methods which, along with appropriate history and clinical examination, provide basic information on the etiology and spread of the disease, as well as on treatment options required in patients with chronic venous insufficiency and arterial flow impairment. Doppler flow meter offers useful data on venous blood return, primarily in great veins, while both deep and superficial veins as well as arteries can be visualized and data on venous and arterial hemodynamics obtained by duplex ultrasonography. In addition, Doppler flow meter provides data on the peripheral arterial system action through ankle brachial index measurement, which will guide the choice of compression therapy when deciding on the treatment of peripheral arterial disease and mixed arteriovenous leg ulcers. However, diagnosis of arterial insufficiency requires additional examinations.

  4. The hematoma block: a simple, effective technique for closed reduction of ankle fracture dislocations.

    PubMed

    Ross, Adrianne; Catanzariti, Alan R; Mendicino, Robert W

    2011-01-01

    Management of a dislocated ankle fracture can be challenging because of instability of the ankle mortise, a compromised soft tissue envelope, and the potential neurovascular compromise. Every effort should be made to quickly and efficiently relocate the disrupted ankle joint. Within the emergency department setting, narcotics and benzodiazepines can be used to sedate the patient before attempting closed reduction. The combination of narcotics and benzodiazepines provides relief of pain and muscle guarding; however, it conveys a risk of seizure as well as respiratory arrest. An alternative to conscious sedation is the hematoma block, or an intra-articular local anesthetic injection in the ankle joint and the associated fracture hematoma. The hematoma block offers a comparable amount of analgesia to conscious sedation without the additional cardiovascular risk, hospital cost, and procedure time.

  5. A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking.

    PubMed

    Tanska, Petri; Mononen, Mika E; Korhonen, Rami K

    2015-06-01

    Mechanical signals experienced by chondrocytes (articular cartilage cells) modulate cell synthesis and cartilage health. Multi-scale modeling can be used to study how forces are transferred from joint surfaces through tissues to chondrocytes. Therefore, estimation of chondrocyte behavior during certain physical activities, such as walking, could provide information about how cells respond to normal and abnormal loading in joints. In this study, a 3D multi-scale model was developed for evaluating chondrocyte and surrounding peri- and extracellular matrix responses during gait loading within healthy and medial meniscectomy knee joints. The knee joint geometry was based on MRI, whereas the input used for gait loading was obtained from the literature. Femoral and tibial cartilages were modeled as fibril-reinforced poroviscoelastic materials, whereas menisci were considered as transversely isotropic. Fluid pressures in the chondrocyte and cartilage tissue increased up to 2MPa (an increase of 30%) in the meniscectomy joint compared to the normal, healthy joint. The elevated level of fluid pressure was observed during the entire stance phase of gait. A medial meniscectomy caused substantially larger (up to 60%) changes in maximum principal strains in the chondrocyte compared to those in the peri- or extracellular matrices. Chondrocyte volume or morphology did not change substantially due to a medial meniscectomy. Current findings suggest that during walking chondrocyte deformations are not substantially altered due to a medial meniscectomy, while abnormal joint loading exposes chondrocytes to elevated levels of fluid pressure and maximum principal strains (compared to strains in the peri- or extracellular matrices). These might contribute to cell viability and the onset of osteoarthritis.

  6. Normal radiological unossified hip joint space and femoral head size development during growth in 675 children and adolescents.

    PubMed

    Wegener, Veronika; Jorysz, Gabriele; Arnoldi, Andreas; Utzschneider, Sandra; Wegener, Bernd; Jansson, Volkmar; Heimkes, Bernhard

    2017-03-01

    Evaluation of hip joint space width during child growth is important to aid in the early diagnosis of hip pathology in children. We established reference values for hip joint space and femoral head size for each age. Hip joint space development during growth was retrospectively investigated medial and cranial in 1350 hip joints of children using standard anteroposterior supine plain pelvic radiographs. Maximum capital femoral epiphysis diameter and femoral radii were further more investigated. Hip joint space values show a slow decline during growth. Joint space was statistically significantly (p < 0.006) larger in boys than girls. Our hip joint space measurements on supine subjects seem slightly larger than those reported by Hughes on standing subjects. Evaluation of the femoral head diameter and the radii showed a size curve quite parallel to the known body growth charts. Radii medial and perpendicular to the physis are not statistically significantly different. We recommend to compare measurements of hip joint space at two locations to age dependent charts using the same imaging technique. During growth, a divergence in femoral head size from the expected values or loss of the spherical shape should raise the question of hip disorder. Clin. Anat. 30:267-275, 2017. © 2016 Wiley Periodicals, Inc.

  7. Rotational stiffness of American football shoes affects ankle biomechanics and injury severity.

    PubMed

    Button, Keith D; Braman, Jerrod E; Davison, Mark A; Wei, Feng; Schaeffer, Maureen C; Haut, Roger C

    2015-06-01

    While previous studies have investigated the effect of shoe-surface interaction on injury risk, few studies have examined the effect of rotational stiffness of the shoe. The hypothesis of the current study was that ankles externally rotated to failure in shoes with low rotational stiffness would allow more talus eversion than those in shoes with a higher rotational stiffness, resulting in less severe injury. Twelve (six pairs) cadaver lower extremities were externally rotated to gross failure while positioned in 20 deg of pre-eversion and 20 deg of predorsiflexion by fixing the distal end of the foot, axially loading the proximal tibia, and internally rotating the tibia. One ankle in each pair was constrained by an American football shoe with a stiff upper, while the other was constrained by an American football shoe with a flexible upper. Experimental bone motions were input into specimen-specific computational models to examine levels of ligament elongation to help understand mechanisms of ankle joint failure. Ankles in flexible shoes allowed 6.7±2.4 deg of talus eversion during rotation, significantly greater than the 1.7±1.0 deg for ankles in stiff shoes (p = 0.01). The significantly greater eversion in flexible shoes was potentially due to a more natural response of the ankle during rotation, possibly affecting the injuries that were produced. All ankles failed by either medial ankle injury or syndesmotic injury, or a combination of both. Complex (more than one ligament or bone) injuries were noted in 4 of 6 ankles in stiff shoes and 1 of 6 ankles in flexible shoes. Ligament elongations from the computational model validated the experimental injury data. The current study suggested flexibility (or rotational stiffness) of the shoe may play an important role in both the severity of ankle injuries for athletes.

  8. Three-dimensional computer graphics-based ankle morphometry with computerized tomography for total ankle replacement design and positioning.

    PubMed

    Kuo, Chien-Chung; Lu, Hsuan-Lun; Leardini, Alberto; Lu, Tung-Wu; Kuo, Mei-Ying; Hsu, Horng-Chaung

    2014-05-01

    Morphometry of the bones of the ankle joint is important for the design of joint replacements and their surgical implantations. However, very little three-dimensional (3D) data are available and not a single study has addressed the Chinese population. Fifty-eight fresh frozen Chinese cadaveric ankle specimens, 26 females, and 32 males, were CT-scanned in the neutral position and their 3D computer graphics-based models were reconstructed. The 3D morphology of the distal tibia/fibula segment and the full talus was analyzed by measuring 31 parameters, defining the relevant dimensions, areas, and volumes from the models. The measurements were compared statistically between sexes and with previously reported data from Caucasian subjects. The results showed that, within a general similarity of ankle morphology between the current Chinese and previous Caucasian subjects groups, there were significant differences in 9 out of the 31 parameters analyzed. From a quantitative comparison with available prostheses designed for the Caucasian population, few of these designs have both tibial and talar components suitable in dimension for the Chinese population. The current data will be helpful for the sizing, design, and surgical positioning of ankle replacements and for surgical instruments, especially for the Chinese population.

  9. Use of the Taylor spatial frame in compression arthrodesis of the ankle: a study of 10 cases.

    PubMed

    Thiryayi, Wasiq A; Naqui, Zafar; Khan, Sohail A

    2010-01-01

    Ankle fusion is a well established way of managing a variety of recalcitrant ankle pathologies including severe osteoarthritis and infected malunion of ankle fractures. Compression arthrodesis has been a widely accepted surgical means of achieving ankle fusion. The authors describe compression arthrodesis of the tibiotalar joint in 10 cases using the Taylor-Spatial Frame (TSF). From 2003 to 2005, 10 patients (9 male and 1 female) aged between 48 and 71 years (median age 61 years) underwent application of the TSF to achieve compression arthrodesis of 10 ankle joints. The TSF is an external fixator system supported by a computer program. After input of the radiological deformities referenced to one of the rings, the computer provides the detailed strut adjustments necessary to bring about gradual correction. The underlying pathology was severe posttraumatic arthritis (2 cases), malunion (1 case), nonunion of pilon fracture (1 case), and infected ankle (1 case). Five cases presented with previous failed surgical arthrodesis. Clinical, subjective, objective, and radiological analyses were performed regularly and at the end of an average follow-up of 16.7 months (range 12-26 months). Solid fusion in anatomical alignment with return to a fully functional status was obtained in 10 out of 10 ankles. The TSF has shown encouraging results as a simple, effective and versatile means of achieving compression arthrodesis of the ankle joint.

  10. Impulsive ankle push-off powers leg swing in human walking.

    PubMed

    Lipfert, Susanne W; Günther, Michael; Renjewski, Daniel; Seyfarth, Andre

    2014-04-15

    Rapid unloading and a peak in power output of the ankle joint have been widely observed during push-off in human walking. Model-based studies hypothesize that this push-off causes redirection of the body center of mass just before touch-down of the leading leg. Other research suggests that work done by the ankle extensors provides kinetic energy for the initiation of swing. Also, muscle work is suggested to power a catapult-like action in late stance of human walking. However, there is a lack of knowledge about the biomechanical process leading to this widely observed high power output of the ankle extensors. In our study, we use kinematic and dynamic data of human walking collected at speeds between 0.5 and 2.5 m s(-1) for a comprehensive analysis of push-off mechanics. We identify two distinct phases, which divide the push-off: first, starting with positive ankle power output, an alleviation phase, where the trailing leg is alleviated from supporting the body mass, and second, a launching phase, where stored energy in the ankle joint is released. Our results show a release of just a small part of the energy stored in the ankle joint during the alleviation phase. A larger impulse for the trailing leg than for the remaining body is observed during the launching phase. Here, the buckling knee joint inhibits transfer of power from the ankle to the remaining body. It appears that swing initiation profits from an impulsive ankle push-off resulting from a catapult without escapement.

  11. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons.

    PubMed

    Jiménez-Fabián, R; Verlinden, O

    2012-05-01

    This review focuses on control strategies for robotic ankle systems in active and semiactive lower-limb orthoses, prostheses, and exoskeletons. Special attention is paid to algorithms for gait phase identification, adaptation to different walking conditions, and motion intention recognition. The relevant aspects of hardware configuration and hardware-level controllers are discussed as well. Control algorithms proposed for other actuated lower-limb joints (knee and/or hip), with potential applicability to the development of ankle devices, are also included.

  12. Foot and Ankle Conditioning Program

    MedlinePlus

    ... and ankle pain and prevent further injury. Flexibility: Stretching the muscles that you strengthen is important for restoring range of motion and preventing injury. Gently stretching after strengthening exercises can help reduce muscle soreness ...

  13. Foot, leg, and ankle swelling

    MedlinePlus

    ... feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... 51. Trayes KP, Studdiford JS, Pickle S, Tully AS. Edema: Diagnosis and management. Am Fam Phys . 2013;88( ...

  14. The natural history of osteochondral lesions in the ankle.

    PubMed

    van Dijk, C Niek; Reilingh, Mikel L; Zengerink, Maartje; van Bergen, Christiaan J A

    2010-01-01

    Most osteochondral lesions (defects) of the talar dome are caused by trauma, which may be a single event or repeated, less intense events (microtrauma). A lesion may heal, remain asymptomatic, or progress to deep ankle pain on weight bearing, prolonged joint swelling, and the formation of subchondral bone cysts. During loading, compression of the cartilage forces water into the microfractured subchondral bone. The increased flow and pressure of fluid in the subchondral bone can cause osteolysis and the slow development of a subchondral cyst. The pain does not arise from the cartilage lesion but most likely is caused by repetitive high fluid pressure during walking and a concomitant decrease in pH produced by osteoclasts, which sensitize the highly innervated subchondral bone. Prevention of further degeneration depends on several factors, including the repair of the subchondral bone plate and the correct alignment of the ankle joint.

  15. Testing the influence of vertical, pre-existing joints on normal faulting using analogue and 3D discrete element models (DEM)

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; von Hagke, Christoph; Virgo, Simon; Urai, Janos L.

    2015-04-01

    Brittle rocks are often affected by different generations of fractures that influence each other. We study pre-existing vertical joints followed by a faulting event. Understanding the effect of these interactions on fracture/fault geometries as well as the development of dilatancy and the formation of cavities as potential fluid pathways is crucial for reservoir quality prediction and production. Our approach combines scaled analogue and numerical modeling. Using cohesive hemihydrate powder allows us to create open fractures prior to faulting. The physical models are reproduced using the ESyS-Particle discrete element Modeling Software (DEM), and different parameters are investigated. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. We tested the influence of different angles between the strike of the basement fault and the joint set (0°, 4°, 8°, 12°, 16°, 20°, and 25°). During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. We observe that no faults or fractures occur parallel to basement-fault strike. Secondary fractures are mostly oriented normal to primary joints. At the final stage of the experiments we analyzed semi-quantitatively the number of connected joints, number of secondary fractures, degree of segmentation (i.e. number of joints accommodating strain), damage zone width, and the map-view area fraction of open gaps. Whereas the area fraction does not change

  16. Effects of ankle balance taping with kinesiology tape for a patient with chronic ankle instability.

    PubMed

    Kim, Byeong-Jo; Lee, Jung-Hoon; Kim, Chang-Tae; Lee, Sun-Min

    2015-07-01

    [Purpose] To report the effects of ankle balance taping for a patient with chronic ankle instability (CAI). [Subject] A 33-year-old man with a 10 year history of chronic ankle stability. [Methods] ABT with kinesiology tape was performed for 2 months (average, 16 h/day) around the right ankle. [Results] At the end of two months, no ankle instability was noted when ascending and descending the stairs, jumping, turning, operating the pedals while driving, and lifting heavy objects. [Conclusion] The repeated use of kinesiology tape in ankle balance taping may be an effective treatment for recovering the ankle stability of patients with chronic ankle instability.

  17. Effects of ankle balance taping with kinesiology tape for a patient with chronic ankle instability

    PubMed Central

    Kim, Byeong-Jo; Lee, Jung-Hoon; Kim, Chang-Tae; Lee, Sun-Min

    2015-01-01

    [Purpose] To report the effects of ankle balance taping for a patient with chronic ankle instability (CAI). [Subject] A 33-year-old man with a 10 year history of chronic ankle stability. [Methods] ABT with kinesiology tape was performed for 2 months (average, 16 h/day) around the right ankle. [Results] At the end of two months, no ankle instability was noted when ascending and descending the stairs, jumping, turning, operating the pedals while driving, and lifting heavy objects. [Conclusion] The repeated use of kinesiology tape in ankle balance taping may be an effective treatment for recovering the ankle stability of patients with chronic ankle instability. PMID:26311206

  18. The painful total ankle arthroplasty: a diagnostic and treatment algorithm.

    PubMed

    Vulcano, E; Myerson, M S

    2017-01-01

    The last decade has seen a considerable increase in the use of in total ankle arthroplasty (TAA) to treat patients with end-stage arthritis of the knee. However, the longevity of the implants is still far from that of total knee and hip arthroplasties. The aim of this review is to outline a diagnostic and treatment algorithm for the painful TAA to be used when considering revision surgery. Cite this article: Bone Joint J 2017;99-B:5-11.

  19. The foot and ankle of Australopithecus sediba.

    PubMed

    Zipfel, Bernhard; DeSilva, Jeremy M; Kidd, Robert S; Carlson, Kristian J; Churchill, Steven E; Berger, Lee R

    2011-09-09

    A well-preserved and articulated partial foot and ankle of Australopithecus sediba, including an associated complete adult distal tibia, talus, and calcaneus, have been discovered at the Malapa site, South Africa, and reported in direct association with the female paratype Malapa Hominin 2. These fossils reveal a mosaic of primitive and derived features that are distinct from those seen in other hominins. The ankle (talocrural) joint is mostly humanlike in form and inferred function, and there is some evidence for a humanlike arch and Achilles tendon. However, Au. sediba is apelike in possessing a more gracile calcaneal body and a more robust medial malleolus than expected. These observations suggest, if present models of foot function are correct, that Au. sediba may have practiced a unique form of bipedalism and some degree of arboreality. Given the combination of features in the Au. sediba foot, as well as comparisons between Au. sediba and older hominins, homoplasy is implied in the acquisition of bipedal adaptations in the hominin foot.

  20. New Technology in Imaging Cartilage of the Ankle.

    PubMed

    Schreiner, Markus M; Mlynarik, Vladimir; Zbýň, Štefan; Szomolanyi, Pavol; Apprich, Sebastian; Windhager, Reinhard; Trattnig, Siegfried

    2017-01-01

    The incidence of osteochondral lesions, as well as osteoarthritis of the ankle joint following osteochondritis dissecans and trauma, has been reappraised in recent years. Consequently, an increasing number of surgical interventions using different cartilage repair techniques is performed in the ankle joint, which has resulted in a growing demand for repetitive and objective assessment of cartilage tissue and its repair. While morphological imaging does enable monitoring of macroscopic changes with increasing precision, it fails to provide information about the ultrastructural composition of cartilage. The significance of molecular changes in cartilage matrix composition, however, is increasingly recognized, as it is assumed that macroscopic cartilage degeneration is preceded by a loss in glycosaminoglycans and a disorganization of the collagen network. Recent advances in biochemical magnetic resonance imaging (MRI) have yielded sequences sensitive to these changes, thus providing invaluable insight into both early cartilage degeneration and maturation of repair tissue, on a molecular level. The aim of this review was to provide a comprehensive overview of these techniques, including water and collagen-sensitive T2/T2* mapping, as well as glycosaminoglycan-sensitive sequences such as delayed gadolinium-enhanced MRI of cartilage dGEMRIC, and sodium imaging, and describe their applications for the ankle joint.

  1. Treatment of common deficits associated with chronic ankle instability.

    PubMed

    Holmes, Alison; Delahunt, Eamonn

    2009-01-01

    Lateral ankle sprains are amongst the most common injuries incurred by athletes, with the high rate of reoccurrence after initial injury becoming of great concern. Chronic ankle instability (CAI) refers to the development of repetitive ankle sprains and persistent residual symptoms post-injury. Some of the initial symptoms that occur in acute sprains may persist for at least 6 months post-injury in the absence of recurrent sprains, despite the athlete having returned to full functional activity. CAI is generally thought to be caused by mechanical instability (MI) or functional instability (FI), or both. Although previously discussed as separate entities, recent research has demonstrated that deficits associated with both MI and FI may co-exist to result in CAI. For clinicians, the main deficits associated with CAI include deficits in proprioception, neuromuscular control, strength and postural control. Based on the literature reviewed, it does seem that subjects with CAI have a deficit in frontal plane ankle joint positional sense. Subjects with CAI do not appear to exhibit any increased latency in the peroneal muscles in response to an external perturbation. Preliminary data suggest that feed-forward neuromuscular control may be more important than feed-back neuromuscular control and interventions are now required to address deficits in feed-forward neuromuscular control. Balance training protocols have consistently been shown to improve postural stability in subjects with CAI. Subjects with CAI do not experience decreased peroneus longus strength, but instead may experience strength deficits in the ankle joint invertor muscles. These findings are of great clinical significance in terms of understanding the mechanisms and deficits associated with CAI. An appreciation of these is vital to allow clinicians to develop effective prevention and treatment programmes in relation to CAI.

  2. Fixation orientation in ankle fractures with syndesmosis injury.

    PubMed

    Nimick, Craig J; Collman, David R; Lagaay, Pieter

    2013-01-01

    Accurate reduction of the syndesmosis has been shown to be an important prognostic factor for functional outcome in ankle injuries that disrupt the syndesmosis. The purpose of the present case series was to assess the fixation orientation and the position of the fibula within the tibial incisura after open reduction and internal fixation of ankle fractures with syndesmosis injury. Computed tomography was used to assess the accuracy of the reduction. Twelve patients were included in the present case series. A ratio representing the relationship between the tibia and fibula and the orientation of the syndesmotic fixation was measured preoperatively and postoperatively and compared with the uninjured contralateral ankle, representing the patient's normal anatomy. The measurements were accomplished electronically to one tenth of 1 mm using Stentor Intelligent Informatics, I-site, version 3.3.1 (Phillips Electronics; Andover, MA). Posteriorly oriented syndesmotic fixation caused posterior translation of the fibula with respect to the tibia and anteriorly oriented syndesmotic fixation caused anterior translation.

  3. Chronic ankle instability.

    PubMed

    Gerstner Garces, Juan Bernardo

    2012-09-01

    Chronic instability of the ankle and anterolateral impingement syndrome are abnormalities that present as a result of inversion and forced plantar-flexion traumas of the foot, despite strict conservative management in the ER and in rehabilitation. A conservative approach is always the first choice of treatment, including anti-inflammatory medications, rehabilitation and proprioception, infiltration with steroids in impingement cases, and use of orthotics, whose true effectiveness is the subject of multiple studies and much debate. Good to excellent results can be obtained surgically with a minimally invasive approach, such as the arthroscopic technique presented herein. Such an approach is useful in managing a combination of conditions such as anterolateral impingement, synovitis, and osteochondral lesions of the talus. The method is easily reproducible, its learning curve is rapid, and it has the advantage of not preventing the use other arthroscopic methods, or open anatomic or nonanatomic methods (tendon transfers), in the case of failure. No nerve lesion was recorded, probably owing to the use of the security zone, and neither was there any arthrofibrosis, possibly related to the use of nonsteroidal anti-inflammatory medications in the immediate postsurgical period coupled with aggressive rehabilitation from the fourth week. The success of the technique is due to multidisciplinary team work leading to the ultimate achievement of patient satisfaction. This technique is not indicated for patients with a high sports demand or for sport professionals, until further biomechanical studies on its use and success are completed.

  4. Joint feedback analysis modeling of nonesterified fatty acids in obese Zucker rats and normal Sprague-Dawley rats after different routes of administration of nicotinic acid.

    PubMed

    Tapani, Sofia; Almquist, Joachim; Leander, Jacob; Ahlström, Christine; Peletier, Lambertus A; Jirstrand, Mats; Gabrielsson, Johan

    2014-08-01

    Data were pooled from several studies on nicotinic acid (NiAc) intervention of fatty acid turnover in normal Sprague-Dawley and obese Zucker rats in order to perform a joint PKPD of data from more than 100 normal Sprague-Dawley and obese Zucker rats, exposed to several administration routes and rates. To describe the difference in pharmacodynamic parameters between obese and normal rats, we modified a previously published nonlinear mixed effects model describing tolerance and oscillatory rebound effects of NiAc on nonesterified fatty acids plasma concentrations. An important conclusion is that planning of experiments and dose scheduling cannot rely on pilot studies on normal animals alone. The obese rats have a less-pronounced concentration-response relationship and need higher doses to exhibit desired response. The relative level of fatty acid rebound after cessation of NiAc administration was also quantified in the two rat populations. Building joint normal-disease models with scaling parameter(s) to characterize the "degree of disease" can be a useful tool when designing informative experiments on diseased animals, particularly in the preclinical screen. Data were analyzed using nonlinear mixed effects modeling, for the optimization, we used an improved method for calculating the gradient than the usually adopted finite difference approximation.

  5. Biomechanical Comparison of 3 Ankle Braces With and Without Free Rotation in the Sagittal Plane

    PubMed Central

    Alfuth, Martin; Klein, Dieter; Koch, Raphael; Rosenbaum, Dieter

    2014-01-01

    Context: Various designs of braces including hinged and nonhinged models are used to provide external support of the ankle. Hinged ankle braces supposedly allow almost free dorsiflexion and plantar flexion of the foot in the sagittal plane. It is unclear, however, whether this additional degree of freedom affects the stabilizing effect of the brace in the other planes of motion. Objective: To investigate the dynamic and passive stabilizing effects of 3 ankle braces, 2 hinged models that provide free plantar flexion–dorsiflexion in the sagittal plane and 1 ankle brace without a hinge. Design: Crossover study. Setting: University Movement Analysis Laboratory. Patients or Other Participants: Seventeen healthy volunteers (5 women, 12 men; age = 25.4 ± 4.8 years; height = 180.3 ± 6.5 cm; body mass = 75.5 ± 10.4 kg). Intervention(s): We dynamically induced foot inversion on a tilting platform and passively induced foot movements in 6 directions via a custom-built apparatus in 3 brace conditions and a control condition (no brace). Main Outcome Measure(s): Maximum inversion was determined dynamically using an in-shoe electrogoniometer. Passively induced maximal joint angles were measured using a torque and angle sensor. We analyzed differences among the 4 ankle-brace conditions (3 braces, 1 control) for each of the dependent variables with Friedman and post hoc tests (P < .05). Results: Each ankle brace restricted dynamic foot-inversion movements on the tilting platform as compared with the control condition, whereas only the 2 hinged ankle braces differed from each other, with greater movement restriction caused by the Ankle X model. Passive foot inversion was reduced with all ankle braces. Passive plantar flexion was greater in the hinged models as compared with the nonhinged brace. Conclusions: All ankle braces showed stabilizing effects against dynamic and passive foot inversion. Differences between the hinged braces and the nonhinged brace did not appear to be

  6. The effect of a powered ankle foot orthosis on walking in a stroke subject: a case study

    PubMed Central

    Pourghasem, Ali; Takamjani, Ismail Ebrahimi; Karimi, Mohammad Taghi; Kamali, Mohammad; Jannesari, Mohammad; Salafian, Iman

    2016-01-01

    [Purpose] Standing and walking are impaired in stroke patients. Therefore, assisted devices are required to restore their walking abilities. The ankle foot orthosis with an external powered source is a new type of orthosis. The aim of this study was to evaluate the performance of a powered ankle foot orthosis compared with unpowered orthoses in a stroke patient. [Subjects and Methods] A single stroke subject participated in this study. The subject was fitted with three types of ankle foot orthosis (powered, posterior leg spring, and carbon ankle foot orthoses). He was asked to walk with and without the three types of orthoses, and kinetic and kinematic parameters were measured. [Results] The results of the study showed that the moments applied on the ankle, knee, and hip joints increased while walking with the powered ankle foot orthosis. [Conclusion] As the powered ankle foot orthosis influences the moments of the ankle, knee, and hip joints, it can increase the standing and walking abilities of stroke patients more than other available orthoses. Therefore, it is recommended to be used in rehabilitation programs for stroke patients. PMID:27942156

  7. Are movement disorders and sensorimotor injuries pathologic synergies? When normal multi-joint movement synergies become pathologic.

    PubMed

    Santello, Marco; Lang, Catherine E

    2014-01-01

    The intact nervous system has an exquisite ability to modulate the activity of multiple muscles acting at one or more joints to produce an enormous range of actions. Seemingly simple tasks, such as reaching for an object or walking, in fact rely on very complex spatial and temporal patterns of muscle activations. Neurological disorders such as stroke and focal dystonia affect the ability to coordinate multi-joint movements. This article reviews the state of the art of research of muscle synergies in the intact and damaged nervous system, their implications for recovery and rehabilitation, and proposes avenues for research aimed at restoring the nervous system's ability to control movement.

  8. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis

    PubMed Central

    Simon, Ann M.; Hargrove, Levi J.

    2016-01-01

    Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees. This study assessed the relative contributions of stance phase knee swing initiation, increasing ankle stiffness and powered plantarflexion as three unilateral transfemoral amputees walked overground at their self-selected walking speed. Five combinations of knee and ankle conditions were evaluated regarding the kinematics and kinetics of the amputated and intact legs using repeated measures analyses of variance. We found eliminating active knee swing initiation or powered plantarflexion was linked to increased compensations of the ipsilateral hip joint during the subsequent swing phase. The elimination of knee swing initiation or powered plantarflexion also led to reduced braking ground reaction forces of the amputated and intact legs, and influenced both sagittal and frontal plane loading of the intact knee joint. Gradually increasing prosthetic ankle stiffness influenced the shape of the prosthetic ankle plantarflexion moment, more closely mirroring the intact ankle moment. Increasing ankle stiffness also corresponded to increased prosthetic ankle power generation (despite a similar maximum stiffness value across conditions) and increased braking ground reaction forces of the amputated leg. These findings further our understanding of how to deliver assistance with powered knee-ankle prostheses and the compensations that occur when specific aspects of assistance are added/removed. PMID:26807889

  9. TOTAL ANKLE ARTHROPLASTY: BRAZILIAN EXPERIENCE WITH THE HINTEGRA PROSTHESIS.

    PubMed

    Nery, Caio; Fernandes, Túlio Diniz; Réssio, Cibele; Fuchs, Mauro Luiz; Godoy Santos, Alexandre Leme de; Ortiz, Rafael Trevisan

    2010-01-01

    Ankle arthrosis is becoming more and more common. The search for solutions that preserve joint function has led to a new generation of prosthesis with three components and more degrees of freedom. This paper presents the results achieved for ten patients treated with the HINTEGRA Prosthesis (Integra, New Deal), through collaborative action between the Foot and Ankle Groups of the Orthopedics and Traumatology divisions of Escola Paulista de Medicina, Unifesp, and the School of Medicine of the University of São Paulo (USP). The ten patients (six women and four men, aged between 29 and 66 years), underwent a surgical procedure consisting of Hintermann's technique, between January and June 2005. They were evaluated at prearranged intervals, and the data were subjected to statistical analysis. The surgery led to a significant improvement in ankle mobility. Radiological evaluation showed no signs of loosening or failure in the prosthetic components in any of the patients studied. Although the complication rate in our sample was high, it was equivalent to the rates found by other authors, and directly represents the learning curve associate with this kind of procedure. Four years after the procedure, it was found that the patients pain levels had significantly decreased, and that their functional patterns had significantly improved, with AOFAS and Hintermann scores indicating results that were excellent for 20%, good for 70% and poor for 10%. Treatment of ankle arthritis by means of total arthroplasty using the HINTEGRA prosthesis was capable of providing good results over an average observation period of four years.

  10. Normal sheep synovium has similar appearances and constitutive expression of inflammatory cytokines within and between knee joints: a baseline histological and molecular analysis.

    PubMed

    Solbak, Nathan; Achari, Yamini; Chung, May; Shrive, Nigel G; Hart, David A; Frank, Cyril B

    2014-04-01

    Abstract Clinical evidence suggests that synovium can add to adjacent articular cartilage damage, potentially contributing to the development of osteoarthritis (OA). Inflammation of the synovium (synovitis) is dependent on the type of injury sustained, the time after injury and concomitant changes in other joint tissues. To define the role of synovitis in OA development, there is a need for baseline measures that can reliably distinguish synovial inflammation from normal synovium both within and between joints. This study tested the hypothesis that normal synovium from distinct anatomical locations in young and adult sheep is homogeneous with respect to consistently low molecular expression of the inflammatory mediators - tumour necrosis factor alpha (TNF-α) and interleukins (IL) such as IL-1β, IL-1Ra, IL-6 and IL-8. Additionally, maturation will not influence the expression of these select inflammatory biomarkers. Samples of synovium from four anatomic locations (medial and lateral margins, suprapatellar pouch (patella region), posterior to the posterior cruciate ligament, from each joint of 5 adult and 4 immature animals were graded histologically or analyzed for mRNA expression of inflammatory cytokines. Histologically, no evidence of synovitis was noted although some variance in sub-intimal fibrosis was observed between sample locations in mature sheep. Molecular expression of all inflammatory mediators was low and homogeneously expressed at constitutive levels in all sample locations. These findings confirm the hypothesis that the normal sheep synovium is a homogeneous tissue throughout the joint and establishes the baseline expression levels for several pro-inflammatory mediators in both immature and mature sheep.

  11. American Orthopaedic Foot and Ankle Society

    MedlinePlus

    ... education site of the American Orthopaedic Foot & Ankle Society. Patients Visit the official patient education site of the American Orthopaedic Foot & Ankle Society. Patients Visit the official patient education site of ...

  12. American College of Foot and Ankle Surgeons

    MedlinePlus

    ... Week @ ACFAS Poll Results Arthroscopy e-Book The Journal of Foot & Ankle Surgery Read some of the latest research from the official peer-reviewed scientific journal of ACFAS, The Journal of Foot & Ankle Surgery ( ...

  13. Results of Arthroscopic Ankle Arthrodesis with Fixation Using Two Parallel Headless Compression Screws in a Heterogenic Group of Patients

    PubMed Central

    Kolodziej, Lukas; Sadlik, Boguslaw; Sokolowski, Sebastian; Bohatyrewicz, Andrzej

    2017-01-01

    Background: As orthopedic surgeons become skilled in ankle arthroscopy technique and evidence -based data is supporting its use, arthroscopic ankle arthrodesis (AAA) will likely continue to increase, but stabilization methods have not been described clearly. We present a technique for two parallel 7.3-mm headless compression screws fixation (HCSs) for AAA in cases of ankle arthritis with different etiology, both traumatic and non-traumatic, including neuromuscular and inflammatory patients. Materials and Methods: We retrospectively verified 24 consecutive patients (25 ankles) who underwent AAA between 2011 and 2015. The average follow-up was 26 months (range 18 to 52 months). Arthrodesis was performed in 16 patients due to posttraumatic arthritis (in 5 as a sequela of pilon, 6 ankles, 3 tibia fractures, and 2 had arthritis due to chronic instability after lateral ligament injury), in 4 patients due to neuromuscular ankle joint deformities, and in 4 patients due to rheumatoid arthritis. Results: Fusion occurred in 23 joints (92%) over an average of 12 weeks (range 6 to 18 weeks). Ankle arthrodesis was not achieved in 2 joints (8%), both in post-pilon fracture patients. The correct foot alignment was not achieved in 4 feet (16%). None of the treated patients required hardware removal. Conclusion: The presented technique was effective in achieving a high fusion rate in a variety of diseases, decreasing intra- and post-operative hardware complications while maintaining adequate bone stability.

  14. Subperiosteal Hematoma of the Ankle

    PubMed Central

    Hui, S H; Lui, T H

    2016-01-01

    Introduction: Periosteal reaction has a long list of differential diagnoses ranging from trauma, infection, metabolic disease to malignancy. The morphology of periosteal reaction shown in imaging studies helps to narrow down the list of differential diagnoses. Case report: A 25 year old gentleman had an inversion injury to his left ankle. He complained of lateral ankle and posterior heel pain and swelling after the injury. Radiograph of his left ankle revealed solid, smooth periosteal reaction at posterior aspect of left distal tibia. MRI showed periosteal reaction at the corresponding site, which was better demonstrated in CT scan. Follow up MRI and CT showed maturation of the new bone formation at the site of periosteal reaction. Findings were compatible with subperiosteal hematoma formation from injury, which ossified with time. Conclusion: Smooth, thick periosteal reaction favours benign process, while interrupted pattern is an alarming feature for more aggressive causes. PMID:27299131

  15. Quantitative characterization of brain β-amyloid in 718 normal subjects using a joint PiB/FDG PET image histogram

    NASA Astrophysics Data System (ADS)

    Camp, Jon J.; Hanson, Dennis P.; Lowe, Val J.; Kemp, Bradley J.; Senjem, Matthew L.; Murray, Melissa E.; Dickson, Dennis W.; Parisi, Joseph E.; Petersen, Ronald C.; Robb, Richard A.; Holmes, David R.

    2016-03-01

    We have previously described an automated system for the co-registration of PiB and FDG PET images with structural MRI and a neurological anatomy atlas to produce region-specific quantization of cortical activity and amyloid burden. We also reported a global joint PiB/FDG histogram-based measure (FDG-Associated PiB Uptake Ratio - FAPUR) that performed as well as regional PiB ratio in stratifying Alzheimer's disease (AD) and Lewy Body Dementia (LBD) patients from normal subjects in an autopsy-verified cohort of 31. In this paper we examine results of this analysis on a clinically-verified cohort of 718 normal volunteers. We found that the global FDG ratio correlated negatively with age (r2 = 0.044) and global PiB ratio correlated positively with age (r2=0.038). FAPUR also correlated negatively with age (r2-.025), and in addition, we introduce a new metric - the Pearson's correlation coefficient (r2) of the joint PiB/FDG histogram which correlates positively (r2=0.014) with age. We then used these measurements to construct age-weighted Z-scores for all measurements made on the original autopsy cohort. We found similar stratification using Z-scores compared to raw values; however, the joint PiB/FDG r2 Z-score showed the greatest stratification ability.

  16. Effects of ankle eversion taping using kinesiology tape in a patient with ankle inversion sprain

    PubMed Central

    Lee, Sun-Min; Lee, Jung-Hoon

    2016-01-01

    [Purpose] The aim of this study was to report the effects of ankle eversion taping using kinesiology tape on ankle inversion sprain. [Subject] The subject was a 21-year-old woman with Grade 2 ankle inversion sprain. [Methods] Ankle eversion taping was applied to the sprained left ankle using kinesiology tape for 4 weeks (average, 15 h/day). [Results] Ankle instability and pain were reduced, and functional dynamic balance was improved after ankle eversion taping for 4 weeks. The Cumberland Ankle Instability Tool score and reach distances in the Y-Balance and lunge tests were increased. [Conclusion] Repeated ankle eversion taping may be an effective treatment intervention for ankle inversion sprain. PMID:27064668

  17. Interindividual differences in H reflex modulation during normal walking.

    PubMed

    Simonsen, Erik B; Dyhre-Poulsen, Poul; Alkjaer, Tine; Aagaard, Per; Magnusson, S Peter

    2002-01-01

    Based on previous studies, at least two different types of soleus Hoffmann (H) reflex modulation were likely to be found during normal human walking. Accordingly, the aim of the present study was to identify different patterns of modulation of the soleus H reflex and to examine whether or not subjects with different H reflex modulation would exhibit different walking mechanics and different EMG activity. Fifteen subjects walked across two force platforms at 4.5 km/h (+/-10%) while the movements were recorded on video. The soleus H reflex and EMG activity were recorded separately during treadmill walking at 4.5 km/h. Using a two-dimensional analysis joint angles, angular velocities, accelerations, linear velocities and accelerations were calculated, and net joint moments about the ankle, knee and hip joint were computed by inverse dynamics from the video and force plate data. Six subjects (group S) showed a suppressed H reflex during the swing phase, and 9 subjects (group LS) showed increasing reflex excitability during the swing phase. The plantar flexor dominated moment about the ankle joint was greater for group LS. In contrast, the extensor dominated moment about the knee joint was greater for the S group. The hip joint moment was similar for the groups. The EMG activity in the vastus lateralis and anterior tibial muscles was greater prior to heel strike for the S group. These data indicate that human walking exhibits at least two different motor patterns as evaluated by gating of afferent input to the spinal cord, by EMG activity and by walking mechanics. Increasing H reflex excitability during the swing phase appears to protect the subject against unexpected perturbations around heel strike by a facilitated stretch reflex in the triceps surae muscle. Alternatively, in subjects with a suppressed H reflex in the swing phase the knee joint extensors seem to form the primary protection around heel strike.

  18. The Incidence of Ankle Sprains in Orienteering.

    ERIC Educational Resources Information Center

    Ekstrand, Jan; And Others

    1990-01-01

    Investigates relationship between ankle sprains and participation time in competitive orienteering. Examined 15,474 competitors in races in the Swedish O-ringen 5-day event in 1987. Injuries requiring medical attention were analyzed, showing 137 (23.9 percent) ankle sprains. Injury incidence was 8.4/10,000 hours. Incidence of ankle sprains was…

  19. Power Doppler ultrasonographic assessment of the ankle in patients with inflammatory rheumatic diseases.

    PubMed

    Suzuki, Takeshi

    2014-11-18

    Ankle involvement is frequent in patients with inflammatory rheumatic diseases, but accurate evaluation by physical examination is often difficult because of the complex anatomical structures of the ankle. Over the last decade, ultrasound (US) has become a practical imaging tool for the assessment of articular and periarticular pathologies, including joint synovitis, tenosynovitis, and enthesitis in rheumatic diseases. Progress in power Doppler (PD) technology has enabled evaluation of the strength of ongoing inflammation. PDUS is very useful for identifying the location and kind of pathologies in rheumatic ankles as well as for distinguishing between inflammatory processes and degenerative changes or between active inflammation and residual damage. The aim of this paper is to illustrate the US assessment of ankle lesions in patients with inflammatory rheumatic diseases, including rheumatoid arthritis, spondyloarthritis, and systemic lupus erythematosus, focusing on the utility of PDUS.

  20. Are Movement Disorders and Sensorimotor Injuries Pathologic Synergies? When Normal Multi-Joint Movement Synergies Become Pathologic

    PubMed Central

    Santello, Marco; Lang, Catherine E.

    2015-01-01

    The intact nervous system has an exquisite ability to modulate the activity of multiple muscles acting at one or more joints to produce an enormous range of actions. Seemingly simple tasks, such as reaching for an object or walking, in fact rely on very complex spatial and temporal patterns of muscle activations. Neurological disorders such as stroke and focal dystonia affect the ability to coordinate multi-joint movements. This article reviews the state of the art of research of muscle synergies in the intact and damaged nervous system, their implications for recovery and rehabilitation, and proposes avenues for research aimed at restoring the nervous system’s ability to control movement. PMID:25610391

  1. Analysis of 3-dimensional finite element after reconstruction of impaired ankle deltoid ligament

    PubMed Central

    Ji, Yunhan; Tang, Xianzhong; Li, Yifan; Xu, Wei; Qiu, Wenjun

    2016-01-01

    We compared four repair techniques for impaired ankle ligament deltoideum, namely Wiltberger, Deland, Kitaoka and Hintermann using a 3-dimensional finite element. We built an ankle ligament deltoideum model, including six pieces of bone structures, gristles and main ligaments around the ankle. After testing the model, we built an impaired ligament deltoideum model plus four reconstruction models. Subsequently, different levels of force on ankles with different flexion were imposed and ankle biomechanics were compared. In the course of bending, from plantar flexion 20° to back flexion 20°, the extortion of talus decreased while the eversion increased. Four reconstruction models failed to bring back the impaired ankle to normal, with an obvious increase of extortion and eversion. The Kitaoka technique was useful to reduce the extortion angle in a consequential manner. Compared with the other three techniques, the Kitaoka technique produced better results for extortion angle and the difference was statistically significant. However, in case of eversion, there was no significant difference among the four techniques (P>0.05). Lateral ligament's stress in all the four models was different from the normal one. When the ankle was imposed with extortion moment of force, stress of anterior talofibular ligament with the Kitaoka reconstruction method was close to that of the complete deltoid ligament. When ankle was imposed with eversion moment of force, stress of anterior talofibular ligament with Kitaoka and Deland reconstruction methods were close to that of the complete deltoid ligament. We concluded that Kitaoka and Deland tendon reconstruction technique could recover impaired ankle deltoid ligament and re-established its normal biomechanics characteristics. PMID:28105122

  2. Analysis of 3-dimensional finite element after reconstruction of impaired ankle deltoid ligament.

    PubMed

    Ji, Yunhan; Tang, Xianzhong; Li, Yifan; Xu, Wei; Qiu, Wenjun

    2016-12-01

    We compared four repair techniques for impaired ankle ligament deltoideum, namely Wiltberger, Deland, Kitaoka and Hintermann using a 3-dimensional finite element. We built an ankle ligament deltoideum model, including six pieces of bone structures, gristles and main ligaments around the ankle. After testing the model, we built an impaired ligament deltoideum model plus four reconstruction models. Subsequently, different levels of force on ankles with different flexion were imposed and ankle biomechanics were compared. In the course of bending, from plantar flexion 20° to back flexion 20°, the extortion of talus decreased while the eversion increased. Four reconstruction models failed to bring back the impaired ankle to normal, with an obvious increase of extortion and eversion. The Kitaoka technique was useful to reduce the extortion angle in a consequential manner. Compared with the other three techniques, the Kitaoka technique produced better results for extortion angle and the difference was statistically significant. However, in case of eversion, there was no significant difference among the four techniques (P>0.05). Lateral ligament's stress in all the four models was different from the normal one. When the ankle was imposed with extortion moment of force, stress of anterior talofibular ligament with the Kitaoka reconstruction method was close to that of the complete deltoid ligament. When ankle was imposed with eversion moment of force, stress of anterior talofibular ligament with Kitaoka and Deland reconstruction methods were close to that of the complete deltoid ligament. We concluded that Kitaoka and Deland tendon reconstruction technique could recover impaired ankle deltoid ligament and re-established its normal biomechanics characteristics.

  3. Treatment of Varus Ankle Osteoarthritis and Instability With a Novel Mortise-Plasty Osteotomy Procedure.

    PubMed

    Kobayashi, Hayato; Kageyama, Yasunori; Shido, Yoji

    2016-01-01

    Although joint-preserving surgery for intermediate ankle osteoarthritis has been reported to be effective, failures of supramalleolar osteotomy and plafond-plasty can occur because of persistent malalignment of the distal tibia and incongruent ankle mortise. We introduce a novel opening wedge distal tibial osteotomy procedure (mortise-plasty) with rigid plate fixation combined with synthetic bone wedges. We performed 27 mortise-plasties in 25 patients with varus ankle osteoarthritis and instability. Six males (24%) and 19 females (76%), with a mean age of 63 (range 28 to 79) years, were followed up for a mean of 27.3 (range 14 to 45) months. The mean preoperative visual analog scale score, American Orthopaedic Foot and Ankle Society score, and Takakura ankle scale score were 7.4 (range 5.4 to 10), 58.7 (range 18 to 84), and 55.9 (range 29 to 88), respectively. These scores improved significantly to 2.1 (range 0 to 6.5), 89.3 (range 67 to 100), and 84.7 (range 55 to 100) postoperatively (p < .001). The mean preoperative tibial-anterior surface angle and talar tilt angle were 84.9° (range 78° to 90°) and 8.3° (range 3° to 21°), respectively. At the most recent follow-up visit, the corresponding values were 95.0° (range 82° to 99°) and 1.8° (range 0° to 8°), respectively (p < .001). Computed tomography scans indicated that the ankle mortise narrowed by approximately 1.8 mm and the tibial plafond was lowered after osteotomy. No patients underwent lateral ligament reconstruction, ankle joint replacement, or arthrodesis. Mortise-plasty osteotomy corrects the intra-articular and extra-articular deformities simultaneously and provides good clinical and radiographic outcomes for patients with varus ankle osteoarthritis and instability.

  4. Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis.

    PubMed

    Tkach, D C; Lipschutz, R D; Finucane, S B; Hargrove, L J

    2013-06-01

    Technological advances have enabled clinical use of powered foot-ankle prostheses. Although the fundamental purposes of such devices are to restore natural gait and reduce energy expenditure by amputees during walking, these powered prostheses enable further restoration of ankle function through possible voluntary control of the powered joints. Such control would greatly assist amputees in daily tasks such as reaching, dressing, or simple limb repositioning for comfort. A myoelectric interface between an amputee and the powered foot-ankle prostheses may provide the required control signals for accurate control of multiple degrees of freedom of the ankle joint. Using a pattern recognition classifier we compared the error rates of predicting up to 7 different ankle-joint movements using electromyographic (EMG) signals collected from below-knee, as well as below-knee combined with above-knee muscles of 12 trans-tibial amputee and 5 control subjects. Our findings suggest very accurate (5.3 ± 0.5%SE mean error) real-time control of a 1 degree of freedom (DOF) of ankle joint can be achieved by amputees using EMG from as few as 4 below-knee muscles. Reliable control (9.8 ± 0.7%SE mean error) of 3 DOFs can be achieved using EMG from 8 below-knee and above-knee muscles.

  5. Anterior Approach Total Ankle Arthroplasty: Superficial Peroneal Nerve Branches at Risk.

    PubMed

    McAlister, Jeffrey E; DeMill, Shyler L; Hyer, Christopher F; Berlet, Gregory C

    2016-01-01

    In ankle arthroplasty, little attention has been given to intraoperative nerve injury and its postoperative sequelae. The aim of the present anatomic study was to determine the relationship of the superficial peroneal nerve to the standard anterior approach for total ankle arthroplasty. The superficial peroneal nerve was dissected in 10 below-the-knee cadaver specimens. The medial and intermediate dorsal cutaneous branches were identified. A needle was placed at the ankle joint. The following measurements were recorded: bifurcation into the medial and intermediate dorsal cutaneous branches, reference needle to the branches of the medial and intermediate superficial peroneal nerve, and the crossing branches of the medial dorsal cutaneous nerve. Two specimens (20%) had a medial dorsal cutaneous branch cross from medially to laterally. Eight specimens (80%) had a crossing branch of the medial dorsal cutaneous branch within 5 cm of the incision. No intermediate dorsal cutaneous branches were within the incision. The results from the present cadaver study suggest that during an anterior ankle approach, aberrant branches of the superficial peroneal nerve could require transection in 20% of patients at the joint level and ≤80% of patients with distal extension >35 mm from the ankle joint. The risk of injury to branches of the superficial peroneal nerve is substantial. The risk of nerve injury can be decreased with meticulous operative technique, smaller incisions, and the avoidance of aggressive retraction.

  6. Reflex ankle stiffness is inversely correlated with natural body sway.

    PubMed

    Julien, Brianna L; Bendrups, Andrew P

    2016-02-01

    We aimed to determine whether effective ankle stiffness (EAS), measured during slow unperceived perturbations of stance, is related to natural anterior-posterior body sway. Because the perturbations are not perceived, any neural component of the response to perturbation is assumed to be "reflex", in the broad sense of an involuntary response to a stimulus. Subjects stood on a force platform for three 10-min trials. EAS was obtained from the average slope (Δτ/Δα) of the relation between ankle torque (τ) and ankle angle (α), recorded during repeated perturbations delivered at the waist by a weak spring. EAS was normalised using the subject's "load stiffness" (LS), calculated from mass (m) and height (h) above the ankle joint (m·g·h). Sway was obtained from fluctuations in ankle angle prior to perturbation. Variation in EAS and sway between subjects provided spread of data for correlation. There were no significant changes in EAS or sway across trials. All subjects had higher EAS than LS and mean EAS (1124 N m/rad) was significantly greater (p<0.01) than mean LS (531 N m/rad). There was a strong significant inverse correlation between mean sway and mean normalised EAS (r=-0.68, p=0.03). We conclude that the body, in response to slow unperceived perturbations, simulates an inverted pendulum with a stiffness of about twice LS and that EAS is largely generated by neural modulation of postural muscles. The inverse correlation between EAS and body sway suggests that the reflex mechanisms responding to perturbation also influence the extent of natural sway.

  7. Three-Dimensional Ankle Moments and Nonlinear Summation of Rat Triceps Surae Muscles

    PubMed Central

    Tijs, Chris; van Dieën, Jaap H.; Baan, Guus C.; Maas, Huub

    2014-01-01

    The Achilles tendon and epimuscular connective tissues mechanically link the triceps surae muscles. These pathways may cause joint moments exerted by each muscle individually not to sum linearly, both in magnitude and direction. The aims were (i) to assess effects of sagittal plane ankle angle (varied between 150° and 70°) on isometric ankle moments, in both magnitude and direction, exerted by active rat triceps surae muscles, (ii) to assess ankle moment summation between those muscles for a range of ankle angles and (iii) to assess effects of sagittal plane ankle angle and muscle activation on Achilles tendon length. At each ankle angle, soleus (SO) and gastrocnemius (GA) muscles were first excited separately to assess ankle-angle moment characteristics and subsequently both muscles were excited simultaneously to investigate moment summation. The magnitude of ankle moment exerted by SO and GA, the SO direction in the transverse and sagittal planes, and the GA direction in the transverse plane were significantly affected by ankle angle. SO moment direction in the frontal and sagittal planes were significantly different from that of GA. Nonlinear magnitude summation varied between 0.6±2.9% and −3.6±2.9%, while the nonlinear direction summation varied between 0.3±0.4° and −0.4±0.7° in the transverse plane, between 0.5±0.4° and 0.1±0.4° in the frontal plane, and between 3.0±7.9° and 0.3±2.3° in the sagittal plane. Changes in tendon length caused by SO contraction were significantly lower than those during contraction of GA and GA+SO simultaneously. Thus, moments exerted by GA and SO sum nonlinearly both in the magnitude and direction. The limited degree of nonlinear summation may be explained by different mechanisms acting in opposite directions. PMID:25360524

  8. Three-dimensional ankle moments and nonlinear summation of rat triceps surae muscles.

    PubMed

    Tijs, Chris; van Dieën, Jaap H; Baan, Guus C; Maas, Huub

    2014-01-01

    The Achilles tendon and epimuscular connective tissues mechanically link the triceps surae muscles. These pathways may cause joint moments exerted by each muscle individually not to sum linearly, both in magnitude and direction. The aims were (i) to assess effects of sagittal plane ankle angle (varied between 150° and 70°) on isometric ankle moments, in both magnitude and direction, exerted by active rat triceps surae muscles, (ii) to assess ankle moment summation between those muscles for a range of ankle angles and (iii) to assess effects of sagittal plane ankle angle and muscle activation on Achilles tendon length. At each ankle angle, soleus (SO) and gastrocnemius (GA) muscles were first excited separately to assess ankle-angle moment characteristics and subsequently both muscles were excited simultaneously to investigate moment summation. The magnitude of ankle moment exerted by SO and GA, the SO direction in the transverse and sagittal planes, and the GA direction in the transverse plane were significantly affected by ankle angle. SO moment direction in the frontal and sagittal planes were significantly different from that of GA. Nonlinear magnitude summation varied between 0.6±2.9% and -3.6±2.9%, while the nonlinear direction summation varied between 0.3±0.4° and -0.4±0.7° in the transverse plane, between 0.5±0.4° and 0.1±0.4° in the frontal plane, and between 3.0±7.9° and 0.3±2.3° in the sagittal plane. Changes in tendon length caused by SO contraction were significantly lower than those during contraction of GA and GA+SO simultaneously. Thus, moments exerted by GA and SO sum nonlinearly both in the magnitude and direction. The limited degree of nonlinear summation may be explained by different mechanisms acting in opposite directions.

  9. Biochemical T2* MR quantification of ankle arthrosis in pes cavovarus.

    PubMed

    Krause, Fabian G; Klammer, Georg; Benneker, Lorin M; Werlen, Stefan; Mamisch, Tallal C; Weber, Martin

    2010-12-01

    Pes cavovarus affects the ankle biomechanics and may lead to ankle arthrosis. Quantitative T2 STAR (T2*) magnetic resonance (MR) mapping allows high resolution of thin cartilage layers and quantitative grading of cartilage degeneration. Detection of ankle arthrosis using T2* mapping in cavovarus feet was evaluated. Eleven cavovarus patients with symptomatic ankle arthrosis (13 feet, mean age 55.6 years, group 1), 10 cavovarus patients with no or asymptomatic, mild ankle arthrosis (12 feet, mean age 41.8 years, group 2), and 11 controls without foot deformity (18 feet, mean age 29.8 years, group 3) had quantitative T2* MR mapping. Additional assessment included plain radiographs and the American Orthopaedic Foot and Ankle Society (AOFAS) score (groups 1 and 2 only). Mean global T2* relaxation time was significantly different between groups 1 and 2 (p = 0.001) and groups 1 and 3 (p = 0.017), but there was no significance for decreased global T2* values in group 2 compared to group 3 (p = 0.345). Compared to the medial compartment T2* values of the lateral compartment were significantly (p = 0.025) higher within group 1. T2* values in the medial ankle joint compartment of group 2 were significantly lower than those of group 1 (p = 0.019). Ankle arthrosis on plain radiographs and the AOFAS score correlated significantly with T2* values in the medial compartment of group 1 (p = 0.04 and 0.039, respectively). Biochemical, quantitative T2* MR mapping is likely effective to evaluate ankle arthrosis in cavovarus feet but further studies are required.

  10. Running with a powered knee and ankle prosthesis.

    PubMed

    Shultz, Amanda H; Lawson, Brian E; Goldfarb, Michael

    2015-05-01

    This paper presents a running control architecture for a powered knee and ankle prosthesis that enables a transfemoral amputee to run with a biomechanically appropriate running gait and to intentionally transition between a walking and running gait. The control architecture consists firstly of a coordination level controller, which provides gait biomechanics representative of healthy running, and secondly of a gait selection controller that enables the user to intentionally transition between a running and walking gait. The running control architecture was implemented on a transfemoral prosthesis with powered knee and ankle joints, and the efficacy of the controller was assessed in a series of running trials with a transfemoral amputee subject. Specifically, treadmill trials were conducted to assess the extent to which the coordination controller provided a biomechanically appropriate running gait. Separate trials were conducted to assess the ability of the user to consistently and reliably transition between walking and running gaits.

  11. Endoscopic Resection of the Lateral Ankle Bursa With Synovial Chondromatosis.

    PubMed

    Lui, Tun Hing

    2016-06-01

    Bursal chondromatosis is synovial chondromatosis of the bursae. It is a rare disease entity that can involve the adventitial bursa of the lateral ankle. Complete synovectomy, removal of loose bodies, and bursectomy comprise the treatment of choice. Detailed preoperative radiologic assessment and surgical planning are the keys to success. Any accompanying synovial chondromatosis of the ankle or subtalar joint or tenosynovial chondromatosis of the peroneal tendon sheath should be treated together with the bursectomy. Endoscopic bursectomy can be performed through the bursal portal. The proximal and distal peroneal tendoscopy portals serve as viewing portals. The resection of the diseased tissues should be performed in a step-by-step zonal manner. Complete synovectomy and removal of loose bodies should be performed before bursectomy. Internal drainage of the bursal sac into the peroneal tendon sheath may be indicated if the sac is adherent to the skin. It should only be performed after complete synovectomy and removal of loose bodies.

  12. Ankle inversion taping using kinesiology tape for treating medial ankle sprain in an amateur soccer player

    PubMed Central

    Lee, Sun-Min; Lee, Jung-Hoon

    2015-01-01

    [Purpose] The purpose of this study was to report the effects of ankle inversion taping using kinesiology tape in a patient with a medial ankle sprain. [Subject] A 28-year-old amateur soccer player suffered a Grade 2 medial ankle sprain during a match. [Methods] Ankle inversion taping was applied to the sprained ankle every day for 2 months. [Results] His symptoms were reduced after ankle inversion taping application for 2 months. The self-reported function score, the reach distances in the Star Excursion Balance Test, and the weight-bearing ankle dorsiflexion were increased. [Conclusion] This study showed that ankle inversion taping using kinesiology tape may be an effective therapy for a patient with a medial ankle sprain. PMID:26311991

  13. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.

    PubMed

    Khurelbaatar, Tsolmonbaatar; Kim, Kyungsoo; Lee, SuKyoung; Kim, Yoon Hyuk

    2015-06-01

    To analyze human motion such as daily activities or sports outside of the laboratory, wearable motion analysis systems have been recently developed. In this study, the joint forces and moments in whole-body joints during gait were evaluated using a wearable motion analysis system consisting of an inertial motion measurement system and an in-shoe pressure sensor system. The magnitudes of the joint forces and the moments in nine joints (cervical, thoracic, lumbar, right shoulder, right elbow, right wrist, right hip, right knee, and right ankle) during gait were calculated using the wearable system and the conventional system, respectively, based on a standard inverse dynamics analysis. The averaged magnitudes of the joint forces and moments of five subjects were compared between the wearable and conventional systems in terms of the Pearson's correlation coefficient and the normalized root mean squared error to the maximum value from the conventional system. The results indicated that both the joint forces and joint moments in human whole body joints using wearable inertial motion sensors and in-shoe pressure sensors were feasible for normal motions with a low speed such as walking, although the lower extremity joints showed the strongest correlation and overall the joint moments were associated with relatively smaller correlation coefficients and larger normalized root mean squared errors in comparison with the joint forces. The portability and mobility of this wearable system can provide wide applicability in both clinical and sports motion analyses.

  14. Sensorimotor posture control in the blind: superior ankle proprioceptive acuity does not compensate for vision loss.

    PubMed

    Ozdemir, Recep A; Pourmoghaddam, Amir; Paloski, William H

    2013-09-01

    To better understand sensorimotor posture control differences between blind and sighted individuals, we examined the role of ankle joint proprioception and ankle muscle strength on postural control in healthy blind (n=13, 25-58 years) and age- and sex-matched sighted (n=15, 20-65 years) volunteers. We measured ankle joint proprioceptive acuity and isokinetic muscle strength in plantarflexion and dorsiflexion using an isokinetic dynamometer. We also assessed postural control performance during quiet bipedal stance with and without sudden postural perturbations, and during quiet unipedal stance. We found that while our blind subjects exhibited significantly better proprioceptive acuity than our sighted subjects their postural control performance was significantly poorer than that of the sighted group with eyes open, and no different from that of the sighted group with eyes closed suggesting that their superior proprioceptive acuity does not translate to improved balance control.

  15. Use of infrared thermography for the diagnosis and grading of sprained ankle injuries

    NASA Astrophysics Data System (ADS)

    Oliveira, João; Vardasca, Ricardo; Pimenta, Madalena; Gabriel, Joaquim; Torres, João

    2016-05-01

    Ankle joint sprains are a common medical condition estimated to be responsible for 15-25% of all musculoskeletal injuries worldwide. The pathophysiology of the lesion can represent considerable time lost to injury, as well as long-term disability in up to 60% of patients. A percentage between 10% and 20% may complicate with chronic instability of the ankle joint and disability in walking, contributing to morbidity and poor life quality. Ankle sprains can be classified as grade I, II, or III, based on the extent of damage and number of ligaments affected. The diagnostic grading is important for setting further treatment and rehabilitation, since more severe injuries carries risk of recurrence, added morbidity and decrease in life quality. The aim of this work was to evaluate the adequacy of infrared thermography as a potential complimentary diagnostic tool of the distinct lesions grades. Evaluation of different thermographic values of the ankle region (in both affected and non-affected foot) was conducted for this purpose. The principal results to be highlighted are that some of the regions, namely anterior view for non defined time after injury analysis, and anterior, frontal, posterior and anterior talofibular ligament regions and proximal calcaneofibular ligament regions in acute lesions (herein defined as less than 6 h post-traumatic event) presented consistent profiles of variation. The analyses were performed considering affected and non-affected ankles results on plotted graphics representing termographic evaluation and grading of these lesions performed using ultrasound by experimented medical radiologists. An increase in temperature values was observed when progressing from mild to severe ankle sprain injuries, with these regions presenting lower values for the affected ankle when compared to the non-affected ankle in all the analysis performed. The remaining analysed regions did not present the same variations. Statistical analysis using Kruskal

  16. Is joint effusion on MRI specific for haemophilia?

    PubMed

    Foppen, W; van der Schaaf, I C; Witkamp, T D; Fischer, K

    2014-07-01

    Magnetic resonance imaging (MRI) scores for haemophilic arthropathy are useful for evaluation of early and moderate arthropathy. The most recent additive International Prophylaxis Study Group (IPSG) MRI scale for haemophilic arthropathy includes joint effusion. However, it is unknown whether joint effusion is haemophilia specific. Correct interpretation of joint effusion is needed for outcome assessment of prophylactic therapies in haemophilia care. The aim of this study was to compare joint effusion on MRI between young adults with haemophilia and healthy controls. MRI's of both knees and ankles of 26 haemophilic patients (104 joints) and 30 healthy active men (120 joints) were assessed. Scans in both groups were performed in 2009/2010 and 2012 respectively. Joint effusion was measured and scored according to the MRI atlas referred by the IPSG MRI scale for haemophilic arthropathy. Median age of haemophilic patients and healthy controls was 21 and 24 years respectively. In haemophilic patients 23% of knees and 22% of ankles showed joint effusion. Healthy controls had significantly more positive scores for knee effusion (67%, P < 0.01) and a comparable scores for effusion in the ankle (17%). Joint effusion according to criteria of the IPSG MRI scale was observed significantly more often in knees of healthy controls, while findings in ankles were similar. These data suggest that joint effusion in knees and ankles is not haemophilia specific. Inclusion of joint effusion in the MRI scale is expected to reduce its specificity for haemophilic arthropathy.

  17. Alpha 5 Integrin Mediates Osteoarthritic Changes in Mouse Knee Joints

    PubMed Central

    Candela, Maria Elena; Wang, Chao; Gunawardena, Aruni T.; Zhang, Kairui; Cantley, Leslie; Yasuhara, Rika; Usami, Yu; Francois, Noelle; Iwamoto, Masahiro; van der Flier, Arjan; Zhang, Yejia; Qin, Ling; Han, Lin; Enomoto-Iwamoto, Motomi

    2016-01-01

    Osteoarthritis (OA) is one of most common skeletal disorders and can affect synovial joints such as knee and ankle joints. α5 integrin, a major fibronectin receptor, is expressed in articular cartilage and has been demonstrated to play roles in synovial joint development and in the regulation of chondrocyte survival and matrix degradation in articular cartilage. We hypothesized that α5 integrin signaling is involved in pathogenesis of OA. To test this, we generated compound mice that conditionally ablate α5 integrin in the synovial joints using the Gdf5Cre system. The compound mice were born normally and had an overall appearance similar to the control mice. However, when the mutant mice received the OA surgery, they showed stronger resistance to osteoarthritic changes than the control. Specifically the mutant knee joints presented lower levels of cartilage matrix and structure loss and synovial changes and showed stronger biomechanical properties than the control knee joints. These findings indicate that α5 integrin may not be essential for synovial joint development but play a causative role in induction of osteoarthritic changes. PMID:27280771

  18. Computed Tomographic Evaluation of Condylar Symmetry and Condyle-Fossa Relationship of the Temporomandibular Joint in Subjects with Normal Occlusion and Malocclusion: A Comparative Study

    PubMed Central

    Ponnada, Swaroopa Rani; Gaddam, Kranthi Praveen Raju; Perumalla, Kiran; Khan, Imran; Mohammed, Naqeed Abdul

    2017-01-01

    Introduction The relationship of the condyle and the mandibular fossa differs in shape with type of malocclusion and skeletal pattern. A review of literature shows till date there are no studies on Temporomandibular Joint (TMJ) condyle-fossa relation to the type of malocclusion based on growth pattern. Computed Tomography (CT) provides optimal imaging of the osseous components of the TMJ. Aim The purpose of this study was to investigate the condyle-fossa relationship and the dimensional and positional symmetries between the right and left condyles in subjects with normal occlusion and malocclusion in different growth patterns utilizing the CT scans of the TMJ. Materials and Methods Sixty subjects with age group of 18-30 years were selected for the study. The sample was divided into three groups based on overbite and growth pattern. The groups included 20 subjects with normal occlusion and average growth pattern, 20 patients with horizontal growth pattern and deep bite, 20 patients with vertical growth pattern and deep bite. The depth of the mandibular fossa, the condyle-fossa relationship, and the concentric position of the condyles were evaluated by the images obtained from the sagittal slices. ANOVA was performed to assess the significance. If it was found significant, post-hoc Tukey’s test was performed to see which two groups were statistically significant. Results No statistically significant difference was found in the anterior joint space and the superior joint space in horizontal and vertical growers with deep bite. Statistically significant (p <0.05) posterior positioning of the condyles was observed (nonconcentric positioning) in vertical growers with deep bite. Conclusion There is a significant change in the position of the condyle in vertical growers compared to average and horizontal growers. Left condyle is more anteriorly placed than the right condyle in all the three groups. There is no significant change in the vertical depth of the mandibular

  19. Is it possible to reduce the knee joint compression force during level walking with hiking poles?

    PubMed

    Jensen, S B; Henriksen, M; Aaboe, J; Hansen, L; Simonsen, E B; Alkjaer, T

    2011-12-01

    Walking with hiking poles has become a popular way of exercising. Walking with poles is advocated as a physical activity that significantly reduces the loading of the hip, knee and ankle joints. We have previously observed that pole walking does not lead to a reduction of the load on the knee joint. However, it is unclear whether an increased force transmitted through the poles can reduce the load on the knee joint. Thus, the purpose of the present study was to investigate if an increased load transmitted through the arms to the poles could reduce the knee joint compression force during level walking with poles. We hypothesized that an increased pole force would result in a reduction of the knee joint compression force. Gait analyses from 10 healthy subjects walking with poles were obtained. The pole force was measured simultaneously during the gait analyses. The knee joint compression forces were estimated by using a biomechanical knee joint model. The results showed that the subjects were able to increase the pole force by 2.4 times the normal pole force. However, this did not lead to a reduction in the knee joint compressive force and we rejected our hypothesis. In conclusion, the use of poles during level walking does not seem to reduce knee joint compressive loads. However, it is possible that the use of poles in other populations (e.g. osteoarthritis patients) and in terrain would unload the knee joint. This should be investigated in the future.

  20. Haemophilia Joint Health Score in healthy adults playing sports.

    PubMed

    Sluiter, D; Foppen, W; de Kleijn, P; Fischer, K

    2014-03-01

    To evaluate outcome of prophylactic clotting factor replacement in children with haemophilia, the Haemophilia Joint Health Score (HJHS) was developed aiming at scoring early joint changes in children aged 4-18. The HJHS has been used for adults on long-term prophylaxis but interpretation of small changes remains difficult. Some changes in these patients may be due to sports-related injuries. Evaluation of HJHS score in healthy adults playing sports could improve the interpretation of this score in haemophilic patients. The aim of this study was to evaluate the HJHS scores in a cohort of young, healthy men participating in sports. Concomitant with a project collecting MRI images of ankles and knees in normal young adults, HJHS scores were assessed in 30 healthy men aged 18-26, participating in sports one to three times per week. One physiotherapist assessed their clinical function using the HJHS 2.1. History of joint injuries was documented. MRI images were scored by a single radiologist, using the International Prophylaxis Study Group additive MRI score. Median age of the study group was 24.3 years (range 19.0-26.4) and median frequency of sports activities was three times per week (range 1-4). Six joints (five knees, one ankle) had a history of sports-related injury. The median overall HJHS score was 0 out of 124 (range 0-3), with 60% of subjects showing no abnormalities on HJHS. All joints were normal on MRI. These results suggest that frequent sports participation and related injuries are not related with abnormalities in HJHS scores.

  1. A Comparative Analysis of Speed Profile Models for Ankle Pointing Movements: Evidence that Lower and Upper Extremity Discrete Movements are Controlled by a Single Invariant Strategy

    PubMed Central

    Michmizos, Konstantinos P.; Vaisman, Lev; Krebs, Hermano Igo

    2014-01-01

    Little is known about whether our knowledge of how the central nervous system controls the upper extremities (UE), can generalize, and to what extent to the lower limbs. Our continuous efforts to design the ideal adaptive robotic therapy for the lower limbs of stroke patients and children with cerebral palsy highlighted the importance of analyzing and modeling the kinematics of the lower limbs, in general, and those of the ankle joints, in particular. We recruited 15 young healthy adults that performed in total 1,386 visually evoked, visually guided, and target-directed discrete pointing movements with their ankle in dorsal–plantar and inversion–eversion directions. Using a non-linear, least-squares error-minimization procedure, we estimated the parameters for 19 models, which were initially designed to capture the dynamics of upper limb movements of various complexity. We validated our models based on their ability to reconstruct the experimental data. Our results suggest a remarkable similarity between the top-performing models that described the speed profiles of ankle pointing movements and the ones previously found for the UE both during arm reaching and wrist pointing movements. Among the top performers were the support-bounded lognormal and the beta models that have a neurophysiological basis and have been successfully used in upper extremity studies with normal subjects and patients. Our findings suggest that the same model can be applied to different “human” hardware, perhaps revealing a key invariant in human motor control. These findings have a great potential to enhance our rehabilitation efforts in any population with lower extremity deficits by, for example, assessing the level of motor impairment and improvement as well as informing the design of control algorithms for therapeutic ankle robots. PMID:25505881

  2. An ankle-foot orthosis powered by artificial pneumatic muscles.

    PubMed

    Ferris, Daniel P; Czerniecki, Joseph M; Hannaford, Blake

    2005-05-01

    We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury.

  3. An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles

    PubMed Central

    Ferris, Daniel P.; Czerniecki, Joseph M.; Hannaford, Blake

    2005-01-01

    We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury. PMID:16082019

  4. Analysis of Ankle Kinetics during Walking in Individuals with Down Syndrome.

    ERIC Educational Resources Information Center

    Cioni, Matteo; Cocilovo, Anna; Rossi, Fabio; Paci, Domenico; Valle, Maria Stella

    2001-01-01

    The biomechanical characteristics of the ankle during gait of 17 participants with Down syndrome (ages 8-36) were investigated. Participants showed significant decreases of plantar-flexor moments and of A1 and A2 joint powers. Correlation between kinetic and temporal spatial parameters was markedly reduced or weak in comparison to 10 controls.…

  5. A systematic review on ankle injury and ankle sprain in sports.

    PubMed

    Fong, Daniel Tik-Pui; Hong, Youlian; Chan, Lap-Ki; Yung, Patrick Shu-Hang; Chan, Kai-Ming

    2007-01-01

    This article systematically reviews epidemiological studies on sports injury from 1977 to 2005 in which ankle injury was included. A total of 227 studies reporting injury pattern in 70 sports from 38 countries were included. A total of 201,600 patients were included, with 32,509 ankle injuries. Ankle injury information was available from 14,098 patients, with 11 847 ankle sprains. Results show that the ankle was the most common injured body site in 24 of 70 included sports, especially in aeroball, wall climbing, indoor volleyball, mountaineering, netball and field events in track and field. Ankle sprain was the major ankle injury in 33 of 43 sports, especially in Australian football, field hockey, handball, orienteering, scooter and squash. In sports injuries throughout the countries studied, the ankle was the second most common injured body site after the knee, and ankle sprain was the most common type of ankle injury. The incidence of ankle injury and ankle sprain was high in court games and team sports, such as rugby, soccer, volleyball, handball and basketball. This systematic review provides a summary of the epidemiology of ankle injury in sports.

  6. Treatment of Hemophilic Ankle Arthropathy with One-Step Arthroscopic Bone Marrow–Derived Cells Transplantation

    PubMed Central

    Buda, Roberto; Cavallo, Marco; Cenacchi, Annarita; Natali, Simone; Vannini, Francesca; Giannini, Sandro

    2015-01-01

    Objective Ankle arthropathy is a frequent and invalidating manifestation of hemophilia. Arthrodesis is the gold standard surgical procedure in end-stage disease, with many drawbacks in young patients. Recent literature has shown increase interest in regenerative procedures in hemophilic arthropathy, which may be desirable to delay or even avoid arthrodesis. The aim of this article is to present five cases of osteochondral lesions in ankle hemophilic arthropathy treated with a regenerative procedure: bone marrow–derived cells transplantation (BMDCT). Design We report five hemophilic patients (four cases with hemophilia type A; one case with hemophilia type B) who have undergone BMDCT treatment, synovectomy, and arthroscopic debridement, with the use of autologous platelet-rich fibrin, to treat osteochondral lesions in hemophilic ankle arthropathy. The patients, included within this retrospective study, were clinically and radiologically evaluated with serial follow-ups, using the American Orthopaedic Foot and Ankle Society (AOFAS) scores, radiographs, and magnetic resonance imaging (MRI). Results The mean preoperative AOFAS score was 35. After a mean follow-up of 2 years, the mean postoperative AOFAS score was 81, which included three patients returning back to sporting activities. The MRI Mocart score demonstrated signs of regeneration of chondral and bony tissue. No progression of joint degeneration was shown radiographically. Conclusion BMDCT is a promising regenerative treatment for osteochondral lesions in mild ankle hemophilic arthropathy, which may be useful to delay or even avoid ankle arthrodesis. Nevertheless, longer follow-ups and a larger case series are required. PMID:26175860

  7. Design and development of ankle-foot prosthesis with delayed release of plantarflexion.

    PubMed

    Mitchell, Michael; Craig, Katelynn; Kyberd, Peter; Biden, Edmund; Bush, Greg

    2013-01-01

    A computer-controlled mechanism that fits a standard ankle-foot prosthesis was designed to capture the absorbed energy in the ankle and delay its release until specific times in the gait cycle. This mechanism used a direct current motor to take up and hold the compression of a carbon-fiber ankle joint. Based on the timing of the contact forces between the foot and the ground, a microprocessor released the spring at preset times later in the gait cycle. This mechanism was added to a Talux prosthetic foot and was employed by a user of a conventional energy-storage ankle-foot prosthesis. His gait was recorded using a motion analysis system. Five settings: 0, 55, 65, 75, and 85 ms delay were tested on separate days, and the standard kinematic and kinetic gait data were recorded. The user reported some settings were more comfortable than others. When these preferences were tested with a randomized double-blind trial, the preferences were not consistent. A second user showed a preference for the 55 ms delay. The modifications to the device resulted in changes to the gait of the subjects, including increased cadence and kinematics of the unaffected joints and a longer, slower push from the ankle, which was noticed by both of the subjects.

  8. Physical validation of a patient-specific contact finite element model of the ankle.

    PubMed

    Anderson, Donald D; Goldsworthy, Jane K; Li, Wendy; James Rudert, M; Tochigi, Yuki; Brown, Thomas D

    2007-01-01

    A validation study was conducted to determine the extent to which computational ankle contact finite element (FE) results agreed with experimentally measured tibio-talar contact stress. Two cadaver ankles were loaded in separate test sessions, during which ankle contact stresses were measured with a high-resolution (Tekscan) pressure sensor. Corresponding contact FE analyses were subsequently performed for comparison. The agreement was good between FE-computed and experimentally measured mean (3.2% discrepancy for one ankle, 19.3% for the other) and maximum (1.5% and 6.2%) contact stress, as well as for contact area (1.7% and 14.9%). There was also excellent agreement between histograms of fractional areas of cartilage experiencing specific ranges of contact stress. Finally, point-by-point comparisons between the computed and measured contact stress distributions over the articular surface showed substantial agreement, with correlation coefficients of 90% for one ankle and 86% for the other. In the past, general qualitative, but little direct quantitative agreement has been demonstrated with articular joint contact FE models. The methods used for this validation enable formal comparison of computational and experimental results, and open the way for objective statistical measures of regional correlation between FE-computed contact stress distributions from comparison articular joint surfaces (e.g., those from an intact versus those with residual intra-articular fracture incongruity).

  9. Effects of visual gain on force control at the elbow and ankle.

    PubMed

    Prodoehl, Janey; Vaillancourt, David E

    2010-01-01

    Visual feedback is essential when minimizing force fluctuations. Varying degrees of somatotopic organization have been shown in different regions of the brain for the upper and lower extremities, and visual feedback may be processed differently based on the body effector where feedback-based corrections are used. This study compared the effect of changes in visual gain on the control of steady-state force at the elbow and ankle. Ten subjects produced steady-state isometric force to targets at 5 and 40% of their maximum voluntary contraction at seven visual gain levels. Visual gain was used effectively at both joints to reduce variability of the force signal and to improve accuracy, with a greater effect of visual gain at the elbow than the ankle. Visual gain significantly decreased the regularity of force output, and this effect was more pronounced at the elbow than the ankle. There were accompanying changes in the proportion of power in the 0-4, 4-8, and 8-12 Hz frequency bins of the force signal across visual gain at the elbow. Changes in visual gain were accompanied by changes in both agonist and antagonist electromyographic (EMG) activation at the elbow. At the ankle joint, there were only changes in agonist EMG. The results suggest better use of visual information in the control of elbow force than ankle force and this improved control may be related to the changes in the pattern of agonist and antagonist activation.

  10. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking

    PubMed Central

    Huang, Tzu-wei P.; Shorter, Kenneth A.; Adamczyk, Peter G.; Kuo, Arthur D.

    2015-01-01

    ABSTRACT The human ankle produces a large burst of ‘push-off’ mechanical power late in the stance phase of walking, reduction of which leads to considerably poorer energy economy. It is, however, uncertain whether the energetic penalty results from poorer efficiency when the other leg joints substitute for the ankle's push-off work, or from a higher overall demand for work due to some fundamental feature of push-off. Here, we show that greater metabolic energy expenditure is indeed explained by a greater demand for work. This is predicted by a simple model of walking on pendulum-like legs, because proper push-off reduces collision losses from the leading leg. We tested this by experimentally restricting ankle push-off bilaterally in healthy adults (N=8) walking on a treadmill at 1.4 m s−1, using ankle–foot orthoses with steel cables limiting motion. These produced up to ∼50% reduction in ankle push-off power and work, resulting in up to ∼50% greater net metabolic power expenditure to walk at the same speed. For each 1 J reduction in ankle work, we observed 0.6 J more dissipative collision work by the other leg, 1.3 J more positive work from the leg joints overall, and 3.94 J more metabolic energy expended. Loss of ankle push-off required more positive work elsewhere to maintain walking speed; this additional work was performed by the knee, apparently at reasonably high efficiency. Ankle push-off may contribute to walking economy by reducing dissipative collision losses and thus overall work demand. PMID:26385330

  11. Experimental and analytical program to determine strains in 737 LAP splice joints subjected to normal fuselage pressurization loads

    SciTech Connect

    Roach, D.P.; Jeong, D.Y.

    1996-02-01

    The Federal Aviation Administration Technical Center (FAATC) has initiated several research projects to assess the structural integrity of the aging commercial aircraft fleet. One area of research involves the understanding of a phenomenon known as ``Widespread Fatigue Damage`` or WFD, which refers to a type of multiple element cracking that degrades the damage tolerance capability of an aircraft structure. Research on WFD has been performed both experimentally and analytically including finite element modeling of fuselage lap splice joints by the Volpe Center. Fuselage pressurization tests have also been conducted at the FAA`s Airworthiness Assurance NDI Validation Center (AANC) to obtain strain gage data from select locations on the FAA/AANC 737 Transport Aircraft Test Bed. One-hundred strain channels were used to monitor five different lap splice bays including the fuselage skin and substructure elements. These test results have been used to evaluate the accuracy of the analytical models and to support general aircraft analysis efforts. This paper documents the strain fields measured during the AANC tests and successfully correlates the results with analytical predictions.

  12. Foot and ankle surgery: considerations for the geriatric patient.

    PubMed

    Lee, Daniel K; Mulder, Gerit D

    2009-01-01

    The growing number of lower-extremity abnormalities that are seen in inpatient and outpatient settings has paralleled the increased number of elderly in the population. Foot and ankle deformities, disorders, and arthritis, which are not manifested until late in life, have become more common as more individuals attain longer lifespans. Although conservative therapies are a priority when addressing the geriatric population, surgical options may be overlooked secondary to a misunderstanding of their ability to overcome perioperative management. Advanced minimally invasive surgical procedures for the foot and ankle have decreased the complications associated with foot surgery, making surgical intervention a viable option for many of the elderly. The newer procedures do not, however, minimize strict perioperative management, including pharmacological and nutritional assessment, and cardiopulmonary precautions. Outpatient surgical intervention may effectively address many ongoing problems associated with pain, decreased ambulation, and decreased quality of life. Current techniques in joint reconstruction in the forefoot and midfoot allow weight bearing from the day of surgery. Most hindfoot and ankle surgeries now permit minimal bone resection and incision through arthroscopy, resulting in improved muscle and tendon repair and early weight bearing. The changes in surgical approaches for the geriatric foot have permitted more effective and rapid intervention in problems affecting ambulation and quality of life in our aged population.

  13. Operative treatment for ganglion cysts of the foot and ankle.

    PubMed

    Ahn, Jae Hoon; Choy, Won-Sik; Kim, Ha-Yong

    2010-01-01

    The authors analyzed the clinical results of surgical excision for symptomatic or recurrent ganglion cysts of the foot and ankle, and tried to elucidate the prognostic factors. Fifty-three cases of ganglions in the foot and ankle were followed for more than 24 months after excision. The mean duration of follow-up was 3.7 years. As a preceding treatment, 17 cases received a mean of 1.3 aspirations, and 16 cases recurred after a mean of 1.7 operations. The cyst was most common in the dorsum of the foot and ankle, where 35 cases were found. Thirty cases originated from the tendon sheath, 19 cases from the joint, and 4 cases from others. Preoperative mean AOFAS foot scores were low in the cysts associated with the tarsal tunnel syndrome, and in the cysts of the plantar aspect of the first toe. Postoperative mean AOFAS foot scores were significantly increased in the preceding 2 groups. There were 3 (5.7%) cases of recurrence, all of which originated from the tendon sheath. In the case of ganglion cysts originating from the tendon sheath, careful attention should be paid to locate satellite masses to avoid recurrence.

  14. Experimental and computational analysis of composite ankle-foot orthosis.

    PubMed

    Zou, Dequan; He, Tao; Dailey, Michael; Smith, Kirk E; Silva, Matthew J; Sinacore, David R; Mueller, Michael J; Hastings, Mary K

    2014-01-01

    Carbon fiber (CF) ankle-foot orthoses (AFOs) can improve gait by increasing ankle plantar-flexor power and improving plantar-flexor ankle joint moment and energy efficiency compared with posterior leaf spring AFOs made of thermoplastic. However, fabricating a CF AFO to optimize the performance of the individual user may require multiple AFOs and expensive fabrication costs. Finite element analysis (FEA) models were developed to predict the mechanical behavior of AFOs in this study. Three AFOs, two made of CF composite material and one made of thermoplastic material, were fabricated and then mechanically tested to produce force-displacement data. The FEA models were validated by comparing model predictions with mechanical testing data performed under the same loading and boundary conditions. The actual mechanical testing demonstrated that CF performs better than thermoplastic. The simulation results showed that FEA models produced accurate predictions for both types of orthoses. The relative error of the energy return ratio predicted by the CF AFO FEA model developed in this study is less than 3%. We conclude that highly accurate FEA models will allow orthotists to improve CF AFO fabrication without wasting resources (time and money) on trial and error fabrications that are expensive and do not consistently improve AFO and user performance.

  15. Effectiveness of Hindfoot Arthrodesis by Stable Internal Fixation in Various Eichenholtz Stages of Neuropathic Ankle Arthropathy.

    PubMed

    Sundararajan, Silvampatty R; Srikanth, Kanchana P; Nagaraja, Handenahally S; Rajasekaran, Shanmuganathan

    The optimal time to treat neuropathic (Charcot) arthropathy of the ankle and peritalar joint is controversial because of the various treatment options available and the variable results reported in published studies. We sought to determine the outcome of hind foot arthrodesis with stable internal fixation in patients with different Eichenholtz stages of arthropathy. We prospectively studied patients with substantial disabilities caused by neuropathic arthropathy in deformed, unstable ankle and peritalar joints, with or without ulcerations, who had undergone treatment from July 2007 to December 2012. All patients underwent ankle arthrodesis, autologous iliac crest bone grafting, and subtalar joint arthrodesis, with or without talonavicular joint arthrodesis, fixed internally with an intramedullary hindfoot nail, with or without an additional plate or cancellous screws. Of the 33 enrolled patients, 9 (27.3%) had stage I, 13 (39.4%) had stage II, and 11 (33.3%) had stage III Charcot arthropathy. The cause of arthropathy was diabetes mellitus in 25 (75.8%) patients. The duration of symptoms ranged from 1 to 120 (median 7) months. The mean follow-up period was 40 (range 12 to 76) months and did not differ markedly among the groups. The hindfoot scores, rate of salvage or amputation, or complication rates did not differ significantly across Eichenholtz stage. For the patients with stage I, II, and III, the preoperative hindfoot score was 50, 49, and 48, respectively (p = .9). The corresponding postoperative scores were 68, 68, and 70 (p = .5). We found no evidence that the effectiveness of hindfoot arthrodesis by stable fixation varied across the Eichenholtz stage of Charcot arthropathy involving ankle and peritalar joint. Furthermore, we found that stable internal fixation and bone grafting using a hindfoot nail results in an 84.84% union rate and salvages the unstable and disabled foot in 90.9% of patients with ankle and peritalar Charcot arthropathy.

  16. Posterior ankle impingement in the dancer.

    PubMed

    Moser, Brad R

    2011-01-01

    Dancers spend a lot of time in the relevé position in demi-pointe and en pointe in their training and their careers. Pain from both osseous and soft tissue causes may start to occur in the posterior aspect of their ankle. This article reviews the potential causes of posterior ankle impingement in dancers. It will discuss the clinical evaluation of a dancer and the appropriate workup and radiographic studies needed to further evaluate a dancer with suspected posterior ankle impingement.

  17. Ankle instability and arthroscopic lateral ligament repair.

    PubMed

    Acevedo, Jorge I; Mangone, Peter

    2015-03-01

    Over the last 50 years, the surgical management of chronic lateral ankle ligament insufficiency has focused on 2 main categories: local soft-tissue reconstruction and tendon grafts/transfer procedures. There is an increasing interest in the arthroscopic solutions for chronic instability of the ankle. Recent biomechanical studies suggest the at least one of the arthroscopic techniques can provide equivalent results to current open local soft-tissue reconstruction (such as the modified Brostrom technique). Arthroscopic lateral ankle ligament reconstruction is becoming an increasingly acceptable method for the surgical management of chronic lateral ankle instability.

  18. Complications of Pediatric Foot and Ankle Fractures.

    PubMed

    Denning, Jaime R

    2017-01-01

    Ankle fractures account for 5% and foot fractures account for approximately 8% of fractures in children. Some complications are evident early in the treatment or natural history of foot and ankle fractures. Other complications do not become apparent until weeks, months, or years after the original fracture. The incidence of long-term sequelae like posttraumatic arthritis from childhood foot and ankle fractures is poorly studied because decades or lifelong follow-up has frequently not been accomplished. This article discusses a variety of complications associated with foot and ankle fractures in children or the treatment of these injuries.

  19. Fusion following failed total ankle replacement.

    PubMed

    Wünschel, Markus; Leichtle, Ulf G; Leichtle, Carmen I; Walter, Christian; Mittag, Falk; Arlt, Eva; Suckel, Andreas

    2013-04-01

    Although mid- to long-term results after total ankle replacement have improved because of available second- and third-generation devices, failure of total ankle replacement is still more common compared with total hip replacement and total knee replacement. The portfolio of available total ankle replacement revision component options is small. Furthermore, the bone stock of the tibiotalar region is scarce making it difficult and in some situations impossible to perform revision total ankle replacement. In these cases tibiotalar and tibiotalocalcaneal fusions are valuable options. This article describes which surgical procedures should be performed depending on the initial situation and gives detailed advice on surgical technique, postoperative care, and clinical results.

  20. Contributions of knee swing initiation and ankle plantar flexion to the walking mechanics of amputees using a powered prosthesis.

    PubMed

    Ingraham, Kimberly A; Fey, Nicholas P; Simon, Ann M; Hargrove, Levi J

    2014-01-01

    Recently developed powered prostheses are capable of producing near-physiological joint torque at the knee and/or ankle joints. Based on previous studies of biological joint impedance and the mechanics of able-bodied gait, an impedance-based controller has been developed for a powered knee and ankle prosthesis that integrates knee swing initiation and powered plantar flexion in late stance with increasing ankle stiffness throughout stance. In this study, five prosthesis configuration conditions were tested to investigate the individual contributions of each sub-strategy to the overall walking mechanics of four unilateral transfemoral amputees as they completed a clinical 10-m walk test using a powered knee and ankle prosthesis. The baseline condition featured constant ankle stiffness and no swing initiation or powered plantar flexion. The four remaining conditions featured knee swing initiation alone (SI) or in combination with powered plantar flexion (SI+PF), increasing ankle stiffness (SI+IK), or both (SI+PF+IK). Self-selected walking speed did not significantly change between conditions, although subjects tended to walk the slowest in the baseline condition compared to conditions with swing initiation. The addition of powered plantar flexion resulted in significantly higher ankle power generation in late stance irrespective of ankle stiffness. The inclusion of swing initiation resulted in a significantly more flexed knee at toe off and a significantly higher average extensor knee torque following toe off. Identifying individual contributions of intrinsic control strategies to prosthesis biomechanics could help inform the refinement of impedance-based prosthesis controllers and simplify future designs of prostheses and lower-limb assistive devices alike.

  1. [Kirschner wire transfixation of unstable ankle fractures: indication, surgical technique and outcomes].

    PubMed

    Marvan, J; Džupa, V; Bartoška, R; Kachlík, D; Krbec, M; Báča, V

    2015-01-01

    PURPOSE OF THE STUDY The aim of the study was to assess treatment outcomes in patients undergoing K-wire transfixation of unstable ankle fractures and compare the results with those of patients in whom it was possible to perform primary one-stage osteosynthesis. MATERIAL AND METHODS Between 2009 and 2012, a total of 358 patients (191 women and 167 men) had surgery for unstable ankle fracture. At 1-year follow-up, their subjective feelings, objective findings and ankle radiographs were evaluated. The fractures were categorised according to the Weber classification. A patient group treated by one-stage osteosynthesis, a group with definitive transfixation and a group of patients in whom temporary transfixation was converted to definitive osteosynthesis were assessed and compared. RESULTS The group treated by one-stage osteosynthesis included 278 patients with an average age of 47 years; the group of 20 patients with definitive transfixation had an average age of 67 years, and the group of 60 patients who had temporary transfixation with subsequent conversion to internal osteosynthesis were 55 years on average. In the group with one-stage osteosynthesis, 223 (80%) ankle fractures on post-injury radiographs were associated with minor joint dislocations and 55 (20%) with major dislocations. On the other hand, the radiographs of the patients treated by temporary transfixation and delayed open reduction with internal fixation showed major dislocations in 38 (63%) and minor dislocations in the rest of the patients (37%); the difference between the two groups was statistically significant (p<0.001). Posterior malleolar fractures were most frequent in the group with temporary transfixation (60%) and least frequent in the group with primary osteosynthesis (44%); also this difference was statistically significant (p=0.032). At one-year follow-up, in the group with one-stage osteosynthesis, 220 patients (79%) had no radiographic signs of posttraumatic ankle osteoarthritis while

  2. Search the Foot and Ankle: Interactive Foot Diagram

    MedlinePlus

    ... foot and ankle surgeons. All Fellows of the College are board certified by the American Board of Foot and Ankle Surgery. Copyright © 2017 American College of Foot and Ankle Surgeons (ACFAS), All Rights ...

  3. Optimal management of ankle syndesmosis injuries

    PubMed Central

    Porter, David A; Jaggers, Ryan R; Barnes, Adam Fitzgerald; Rund, Angela M

    2014-01-01

    Syndesmosis injuries occur when there is a disruption of the distal attachment of the tibia and fibula. These injuries occur commonly (up to 18% of ankle sprains), and the incidence increases in the setting of athletic activity. Recognition of these injuries is key to preventing long-term morbidity. Diagnosis and treatment of these injuries requires a thorough understanding of the normal anatomy and the role it plays in the stability of the ankle. A complete history and physical examination is of paramount importance. Patients usually experience an external rotation mechanism of injury. Key physical exam features include detailed documentation about areas of focal tenderness (syndesmosis and deltoid) and provocative maneuvers such as the external rotation stress test. Imaging workup in all cases should consist of radiographs with the physiologic stress of weight bearing. If these images are inconclusive, then further imaging with external rotation stress testing or magnetic resonance imaging are warranted. Nonoperative treatment is appropriate for stable injuries. Unstable injuries should be treated operatively. This consists of stabilizing the syndesmosis with either trans-syndesmotic screw or tightrope fixation. In the setting of a concomitant Weber B or C fracture, the fibula is anatomically reduced and stabilized with a standard plate and screw construct. Proximal fibular fractures, as seen in the Maisonneuve fracture pattern, are not repaired operatively. Recent interest is moving toward repair of the deltoid ligament, which may provide increased stability, especially in rehabilitation protocols that involve early weight bearing. Rehabilitation is focused on allowing patients to return to their pre-injury activities as quickly and safely as possible. Protocols initially focus on controlling swelling and recovery from surgery. The protocols then progress to restoration of motion, early protected weight bearing, restoration of strength, and eventually a

  4. The relationship between lateral ankle sprain and ankle tendinitis in ballet dancers.

    PubMed

    Ritter, Stephanie; Moore, Marjorie

    2008-01-01

    The lateral ligament complex of the ankle is the most frequently injured structure in the body. Although most simple ankle sprains do not result in long-term disability, a significant number do not completely resolve, leading to residual symptoms that may persist for years. The most commonly reported symptoms, particularly among athletes, include instability, re-injury, and tendinitis. Ballet dancers are a combination of artist and high-performance athlete; consequently, they are subjected to the same types of injuries as other athletes, including lateral ankle sprains and their sequelae. Furthermore, ballet dancers perform in unusual positions such as en pointe, which places the ankle in extreme plantar flexion, requiring stabilization by surrounding muscles. Dancers' extraordinary performance demands place them at risk for other ankle injuries as well, including inflammation ofseveral tendons, especially the peroneals. This report reviews the relevant literature to characterize the scope of lateral ankle sprains and sequelae, discuss the importance of the peroneal muscles in ankle stability, and explore a relationship between lateral ankle sprain and ankle tendinitis in ballet dancers. Informal interviews were conducted with physical therapists who specialize in treating ballet dancers, providing a clinical context for this report. An extensive review of the literature was conducted, including electronic databases, reference lists from papers, and relevant reference texts. Numerous studies have investigated ankle sprains and residual complaints; nearly all report that lateral ankle sprains commonly lead to chronic ankle instability. Studies exploring ankle stability have demonstrated that the peroneal muscles play a crucial role in ankle stabilization; EMG studies confirm they are the first to contract during ankle inversion stress. The dancer's need for exceptional ankle stabilization may lead to peroneal overuse and tendinitis. Studies have linked peroneal

  5. TOTAL ANKLE ARTHROPLASTY: BRAZILIAN EXPERIENCE WITH THE HINTEGRA PROSTHESIS

    PubMed Central

    Nery, Caio; Fernandes, Túlio Diniz; Réssio, Cibele; Fuchs, Mauro Luiz; Godoy Santos, Alexandre Leme de; Ortiz, Rafael Trevisan

    2015-01-01

    Ankle arthrosis is becoming more and more common. The search for solutions that preserve joint function has led to a new generation of prosthesis with three components and more degrees of freedom. This paper presents the results achieved for ten patients treated with the HINTEGRA Prosthesis (Integra, New Deal), through collaborative action between the Foot and Ankle Groups of the Orthopedics and Traumatology divisions of Escola Paulista de Medicina, Unifesp, and the School of Medicine of the University of São Paulo (USP). The ten patients (six women and four men, aged between 29 and 66 years), underwent a surgical procedure consisting of Hintermann's technique, between January and June 2005. They were evaluated at prearranged intervals, and the data were subjected to statistical analysis. The surgery led to a significant improvement in ankle mobility. Radiological evaluation showed no signs of loosening or failure in the prosthetic components in any of the patients studied. Although the complication rate in our sample was high, it was equivalent to the rates found by other authors, and directly represents the learning curve associate with this kind of procedure. Four years after the procedure, it was found that the patients pain levels had significantly decreased, and that their functional patterns had significantly improved, with AOFAS and Hintermann scores indicating results that were excellent for 20%, good for 70% and poor for 10%. Treatment of ankle arthritis by means of total arthroplasty using the HINTEGRA prosthesis was capable of providing good results over an average observation period of four years. PMID:27022527

  6. US/French Joint Research Program regarding the behavior of polymer base materials subjected to beta radiation. Volume 1. Phase-1 normalization results

    SciTech Connect

    Wyant, F.J.; Buckalew, W.H.; Chenion, J.; Carlin, F.; Gaussens, G.; Le Tutour, P.; Le Meur, M.

    1986-06-01

    As part of the ongoing multi-year joint NRC/CEA international cooperative test program to investigate the dose-damage equivalence of gamma and beta radiation on polymer base materials, dosimetry and ethylene-propylene rubber (EPR) specimens were exchanged, irradiated, and evaluated for property changes at research facilities in the US (Sandia National Laboratories) and France (Compagnie ORIS Industrie). The purpose of this Phase-1 test series was to normalize and cross-correlate the results obtained by one research center to the other, in terms of exposure (1.0 MeV accelerated electrons and /sup 60/Co gammas) and postirradiation testing (ultimate elongation and tensile strength, hardness, and density) techniques. The dosimetry and material specimen results indicate good agreement between the two countries regarding the exposure conditions and postirradiation evaluation techniques employed.

  7. Current Concepts in the Management of Ankle Osteoarthritis: A Systematic Review.

    PubMed

    Bloch, Benjamin; Srinivasan, Suresh; Mangwani, Jitendra

    2015-01-01

    Ankle osteoarthritis is less common than hip or knee osteoarthritis; however, it is a relatively common presentation and is predominantly related to previous trauma. Treatments have traditionally consisted of temporizing measures such as analgesia, physiotherapy, and injections until operative treatment in the form of arthrodesis is required. More recently, interest has been increasing in both nonoperative and alternative operative options, including joint-sparing surgery, minimal access arthrodesis, and new arthroplasty designs. The present systematic instructional review has summarized the current evidence for the treatment options available for ankle osteoarthritis.

  8. Leg joint function during walking acceleration and deceleration.

    PubMed

    Qiao, Mu; Jindrich, Devin L

    2016-01-04

    Although constant-average-velocity walking has been extensively studied, less is known about walking maneuvers that change speed. We investigated the function of individual leg joints when humans walked at a constant speed, accelerated or decelerated. We hypothesized that leg joints make different functional contributions to maneuvers. Specifically, we hypothesized that the hip generates positive mechanical work (acting like a "motor"), the knee generates little mechanical work (acting like a "strut"), and the ankle absorbs energy during the first half of stance and generates energy during the second half (consistent with "spring"-like function). We recorded full body kinematics and kinetics, used inverse dynamics to estimate net joint moments, and decomposed joint function into strut-, motor-, damper-, and spring-like components using indices based on net joint work. Although overall leg mechanics were primarily strut-like, individual joints did not act as struts during stance. The hip functioned as a power generating "motor," and ankle function was consistent with spring-like behavior. Even though net knee work was small, the knee did not behave solely as a strut but also showed motor-, and damper-like function. Acceleration involved increased motor-like function of the hip and ankle. Deceleration involved decreased hip motor-like function and ankle spring-like function and increased damping at the knee and ankle. Changes to joint mechanical work were primarily due to changes in joint angular displacements and not net moments. Overall, joints maintain different functional roles during unsteady locomotion.

  9. A case of intra-articular angioleiomyoma of the talocrural joint.

    PubMed

    Thung, Irene; Mahooti, Sepi; Xu, Xiangdong

    2016-01-01

    Angioleiomyoma is a benign pericytic neoplasm with smooth muscle differentiation. Intra-articular angioleiomyoma is exceptionally rare with only four cases reported, all involving the knee joint. Here we report the first case of intra-articular angioleiomyoma entirely localized within the ankle joint. An 83-year-old male presented with progressively worsening ankle pain. Subsequent magnetic resonance imaging showed a soft tissue mass within the talocrural joint. Histologic examination and ancillary testing demonstrated fascicles of smooth muscle cells and interspersed, often compressed, vascular channels, consistent with an angioleiomyoma. This case highlights the importance of including angioleiomyoma in the differential diagnosis of an ankle joint mass.

  10. A case of intra-articular angioleiomyoma of the talocrural joint

    PubMed Central

    THUNG, IRENE; MAHOOTI, SEPI; XU, XIANGDONG

    2016-01-01

    Angioleiomyoma is a benign pericytic neoplasm with smooth muscle differentiation. Intra-articular angioleiomyoma is exceptionally rare with only four cases reported, all involving the knee joint. Here we report the first case of intra-articular angioleiomyoma entirely localized within the ankle joint. An 83-year-old male presented with progressively worsening ankle pain. Subsequent magnetic resonance imaging showed a soft tissue mass within the talocrural joint. Histologic examination and ancillary testing demonstrated fascicles of smooth muscle cells and interspersed, often compressed, vascular channels, consistent with an angioleiomyoma. This case highlights the importance of including angioleiomyoma in the differential diagnosis of an ankle joint mass. PMID:28217663

  11. SIRT2 regulates nuclear envelope reassembly through ANKLE2 deacetylation

    PubMed Central

    Kaufmann, Tanja; Kukolj, Eva; Brachner, Andreas; Beltzung, Etienne; Bruno, Melania; Kostrhon, Sebastian; Opravil, Susanne; Hudecz, Otto; Mechtler, Karl; Warren, Graham

    2016-01-01

    ABSTRACT Sirtuin 2 (SIRT2) is an NAD-dependent deacetylase known to regulate microtubule dynamics and cell cycle progression. SIRT2 has also been implicated in the pathology of cancer, neurodegenerative diseases and progeria. Here, we show that SIRT2 depletion or overexpression causes nuclear envelope reassembly defects. We link this phenotype to the recently identified regulator of nuclear envelope reassembly ANKLE2. ANKLE2 acetylation at K302 and phosphorylation at S662 are dynamically regulated throughout the cell cycle by SIRT2 and are essential for normal nuclear envelope reassembly. The function of SIRT2 therefore extends beyond the regulation of microtubules to include the regulation of nuclear envelope dynamics. PMID:27875273

  12. Explosive Resistance Training Increases Rate of Force Development in Ankle Dorsiflexors and Gait Function in Adults With Cerebral Palsy.

    PubMed

    Kirk, Henrik; Geertsen, Svend S; Lorentzen, Jakob; Krarup, Kasper B; Bandholm, Thomas; Nielsen, Jens B

    2016-10-01

    Kirk, H, Geertsen, SS, Lorentzen, J, Krarup, KB, Bandholm, T, and Nielsen, JB. Explosive resistance training increases rate of force development in ankle dorsiflexors and gait function in adults with cerebral palsy. J Strength Cond Res 30(10): 2749-2760, 2016-Alterations in passive elastic properties of muscles and reduced ability to quickly generate muscle force contribute to impaired gait function in adults with cerebral palsy (CP). In this study, we investigated whether 12 weeks of explosive and progressive heavy-resistance training (PRT) increases rate of force development of ankle dorsiflexors (RFDdf), improves gait function, and affects passive ankle joint stiffness in adults with CP. Thirty-five adults (age: 36.5; range: 18-59 years) with CP were nonrandomly assigned to a PRT or nontraining control (CON) group in this explorative trial. The PRT group trained ankle dorsiflexion, plantarflexion, leg press, hamstring curls, abdominal curls, and back extension 3 days per week for 12 weeks, with 3 sets per exercise and progressing during the training period from 12 to 6 repetition maximums. RFDdf, 3-dimensional gait analysis, functional performance, and ankle joint passive and reflex-mediated muscle stiffness were evaluated before and after. RFDdf increased significantly after PRT compared to CON. PRT also caused a significant increase in toe lift late in swing and a significantly more dorsiflexed ankle joint at ground contact and during stance. The increased toe-lift amplitude was correlated to the increased RFDdf (r = 0.73). No other between-group differences were observed. These findings suggest that explosive PRT may increase RFDdf and facilitate larger range of movement in the ankle joint during gait. Explosive PRT should be tested in clinical practice as part of a long-term training program for adults with CP.

  13. Assessment of acute foot and ankle sprains.

    PubMed

    Lynam, Louise

    2006-07-01

    Acute ankle and foot trauma is a regular emergency presentation and prompt strategic assessment skills are required to enable nurses to categorise and prioritise these injuries appropriately. This article provides background information on the anatomy and physiology of the lower limb to help nurses to identify various grades of ankle sprain as well as injuries that are limb threatening

  14. How to Care for a Sprained Ankle

    MedlinePlus

    ... in shape with good muscle balance, flexibility and strength in your soft tissues. Additional Resources How to Stretch Your Ankle After a Sprain How to Strengthen Your Ankle After a Sprain This material was codeveloped by the American Academy of Orthopaedic ...

  15. Tumours of the foot and ankle.

    PubMed

    Khan, Zeeshan; Hussain, Shakir; Carter, Simon R

    2015-09-01

    Sarcomas are rare tumours and particularly rarer in the foot and ankle region. The complex anatomy of the foot and ankle makes it unique and hence poses a challenge to the surgeon for limb salvage surgery. Other lesions found in the foot and ankle region are benign bone and soft tissue tumours, metastasis and infection. The purpose of this article is to discuss the relevance of the complex anatomy of the foot and ankle in relation to tumours, clinical features, their general management principles and further discussion about some of the more common bone and soft tissue lesions. Discussion of every single bone and soft tissue lesion in the foot and ankle region is beyond the scope of this article.

  16. Simulation of an ankle rehabilitation system based on scotch- yoke mechanism

    NASA Astrophysics Data System (ADS)

    Racu (Cazacu, C. M.; Doroftei, I.; Plesu, Ghe; Doroftei, I. A.

    2016-08-01

    Due to injuries that occur on the ankle joint, everyday all around the world, more and more rehabilitation devices have been developed in recent years. The prices for ankle rehabilitation systems are still high, thus we developed a new device that we indented to be low cost and easy to manufacture. A model of an ankle rehabilitation device is presented in this paper. The device has two degrees of freedom, for flexion-extension and inversion-eversion move, and will ensure functionality with minimum dimensions. For the 3D model that we design, the dimensions are taken so that the proposed system will ensure functionality but also have a small dimensions and low mass, considering the physiological dimensions of the foot and lower leg.

  17. Effect of end-stage hip, knee, and ankle osteoarthritis on walking mechanics.

    PubMed

    Schmitt, Daniel; Vap, Alexander; Queen, Robin M

    2015-09-01

    This study tested the hypothesis that the presence of isolated ankle (A-OA; N=30), knee (K-OA; N=20), or hip (H-OA; N=30) osteoarthritis (OA) compared to asymptomatic controls (N=15) would lead to mechanical changes in the affected joint but also in all other lower limb joints and gait overall. Stride length, stance and swing times, as well as joint angles and moments at the hip, knee, and ankle were derived from 3-D kinematic and kinetic data collected from seven self-selected speed walking trial. Values were compared across groups using a 1×4 ANCOVA, covarying for walking speed. With walking speed controlled, the results indicated a reduction in hip and knee extension and ankle plantar flexion in accordance with the joint affected. In addition, OA in one joint had strong effects on other joints. In both H-OA and K-OA groups the hip never passed into extension, and A-OA subjects significantly changed hip kinematics to compensate for lack of plantar flexion. Finally, OA in any joint led to lower peak vertical forces as well as extension and plantar flexion moments compared to controls. The presence of end-stage OA at various lower extremity joints results in compensatory gait mechanics that cause movement alterations throughout the lower extremity. This work reinforces our understanding of the complex interaction of joints of the lower limb and the importance of focusing on the mechanics of the entire lower limb when considering gait disability and potential interventions in patients with isolated OA.

  18. Is ankle involvement underestimated in rheumatoid arthritis? Results of a multicenter ultrasound study.

    PubMed

    Gutierrez, Marwin; Pineda, Carlos; Salaffi, Fausto; Raffeiner, Bernd; Cazenave, Tomas; Martinez-Nava, Gabriela A; Bertolazzi, Chiara; Vreju, Florentin; Inanc, Nevsun; Villaman, Eduardo; Delle Sedie, Andrea; Dal Pra, Fernando; Rosemffet, Marcos

    2016-11-01

    The aim of this study is to investigate the prevalence of subclinical ankle involvement by ultrasound in patients with rheumatoid arthritis (RA). The study was conducted on 216 patients with RA and 200 healthy sex- and age-matched controls. Patients with no history or clinical evidence of ankle involvement underwent US examination. For each ankle, tibio-talar (TT) joint, tibialis anterior (TA) tendon, extensor halux (EH) and extensor common (EC) tendons, tibialis posterior (TP) tendon, flexor common (FC) tendon and flexor hallux (FH) tendon, peroneous brevis (PB) and longus (PL) tendons, Achilles tendon (AT) and plantar fascia (PF) were assessed. The following abnormalities were recorded: synovitis, tenosynovitis, bursitis, enthesopathy and rupture. BMI, DAS28, RF ESR and CRP were also obtained. A total of 432 ankles of patients with RA and 400 ankles of healthy controls were assessed. In 188 (87%) patients with RA, US showed ankle abnormalities whereas, in control group, US found abnormalities in 57 (28.5 %) subjects (p = 0.01). The most frequent US abnormality in RA patients was TP tenosynovits (69/216) (31.9 %), followed by PL tenosynovitis (58/216) (26.9 %), TT synovitis (54/216) (25 %), PB tenosynovitis (51/216) (23.6 %), AT enthesopathy (41/216) (19 %) and AT bursitis (22/216) (10.2 %). In 118 RA patients out of 216 (54.6%), a positive PD was found. No statistically significant correlation was found between the US findings and age, disease duration, BMI, DAS28, RF, ESR and CRP. The present study provides evidence of the higher prevalence of subclinical ankle involvement in RA patients than in age- and gender-matched healthy controls identified by US.

  19. Incidence and Severity of Foot and Ankle Injuries in Men’s Collegiate American Football

    PubMed Central

    Lievers, W. Brent; Adamic, Peter F.

    2015-01-01

    Background: American football is an extremely physical game with a much higher risk of injury than other sports. While many studies have reported the rate of injury for particular body regions or for individual injuries, very little information exists that compares the incidence or severity of particular injuries within a body region. Such information is critical for prioritizing preventative interventions. Purpose: To retrospectively analyze epidemiological data to identify the most common and most severe foot and ankle injuries in collegiate men’s football. Study Design: Descriptive epidemiology study. Methods: Injury data were obtained from the National Collegiate Athletic Association (NCAA) Injury Surveillance System (ISS) for all foot and ankle injuries during the 2004-2005 to 2008-2009 seasons. Injuries were analyzed in terms of incidence and using multiple measures of severity (time loss, surgeries, medical disqualifications). This frequency and severity information is summarized in tabular form as well as in a 4 × 4 quantitative injury risk assessment matrix (QIRAM). Results: The rate of foot and ankle injuries was 15 per 10,000 athletic exposures (AEs). Five injuries were found to be responsible for more than 80% of all foot and ankle injuries: lateral ankle ligament sprains, syndesmotic (high ankle) sprains, medial ankle ligament sprains, midfoot injuries, and first metatarsophalangeal joint injuries. Ankle dislocations were found to be the most severe in terms of median time loss (100 days), percentage of surgeries (83%), and percentage of medical disqualifications (94%), followed by metatarsal fractures (38 days, 36%, and 49%, respectively) and malleolus fractures (33 days, 41%, and 59%, respectively). Statistical analysis suggests that the 3 measures of severity are highly correlated (r > 0.94), thereby justifying the use of time loss as a suitable proxy for injury severity in the construction of the QIRAM. Conclusion: Based on the QIRAM analysis

  20. Within-socket myoelectric prediction of continuous ankle kinematics for control of a powered transtibial prosthesis

    NASA Astrophysics Data System (ADS)

    Farmer, Samuel; Silver-Thorn, Barbara; Voglewede, Philip; Beardsley, Scott A.

    2014-10-01

    Objective. Powered robotic prostheses create a need for natural-feeling user interfaces and robust control schemes. Here, we examined the ability of a nonlinear autoregressive model to continuously map the kinematics of a transtibial prosthesis and electromyographic (EMG) activity recorded within socket to the future estimates of the prosthetic ankle angle in three transtibial amputees. Approach. Model performance was examined across subjects during level treadmill ambulation as a function of the size of the EMG sampling window and the temporal ‘prediction’ interval between the EMG/kinematic input and the model’s estimate of future ankle angle to characterize the trade-off between model error, sampling window and prediction interval. Main results. Across subjects, deviations in the estimated ankle angle from the actual movement were robust to variations in the EMG sampling window and increased systematically with prediction interval. For prediction intervals up to 150 ms, the average error in the model estimate of ankle angle across the gait cycle was less than 6°. EMG contributions to the model prediction varied across subjects but were consistently localized to the transitions to/from single to double limb support and captured variations from the typical ankle kinematics during level walking. Significance. The use of an autoregressive modeling approach to continuously predict joint kinematics using natural residual muscle activity provides opportunities for direct (transparent) control of a prosthetic joint by the user. The model’s predictive capability could prove particularly useful for overcoming delays in signal processing and actuation of the prosthesis, providing a more biomimetic ankle response.

  1. A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop

    PubMed Central

    Chin, Robin; Hsiao-Wecksler, Elizabeth T; Loth, Eric; Kogler, Géza; Manwaring, Scott D; Tyson, Serena N; Shorter, K Alex; Gilmer, Joel N

    2009-01-01

    Background A self-contained, self-controlled, pneumatic power harvesting ankle-foot orthosis (PhAFO) to manage foot-drop was developed and tested. Foot-drop is due to a disruption of the motor control pathway and may occur in numerous pathologies such as stroke, spinal cord injury, multiple sclerosis, and cerebral palsy. The objectives for the prototype PhAFO are to provide toe clearance during swing, permit free ankle motion during stance, and harvest the needed power with an underfoot bellow pump pressurized during the stance phase of walking. Methods The PhAFO was constructed from a two-part (tibia and foot) carbon composite structure with an articulating ankle joint. Ankle motion control was accomplished through a cam-follower locking mechanism actuated via a pneumatic circuit connected to the bellow pump and embedded in the foam sole. Biomechanical performance of the prototype orthosis was assessed during multiple trials of treadmill walking of an able-bodied control subject (n = 1). Motion capture and pressure measurements were used to investigate the effect of the PhAFO on lower limb joint behavior and the capacity of the bellow pump to repeatedly generate the required pneumatic pressure for toe clearance. Results Toe clearance during swing was successfully achieved during all trials; average clearance 44 ± 5 mm. Free ankle motion was observed during stance and plantarflexion was blocked during swing. In addition, the bellow component repeatedly generated an average of 169 kPa per step of pressure during ten minutes of walking. Conclusion This study demonstrated that fluid power could be harvested with a pneumatic circuit built into an AFO, and used to operate an actuated cam-lock mechanism that controls ankle-foot motion at specific periods of the gait cycle. PMID:19527526

  2. Effect Of Ankle Mobility And Segment Ratios On Trunk Lean In The Barbell Back Squat.

    PubMed

    Fuglsang, Emil Isager; Telling, Anders Stampe; Sørensen, Henrik

    2017-03-13

    The barbell back squat is a popular exercise used for both performance enhancing and rehabilitation purposes. However, injuries are common and people with a history of lower back pain are especially vulnerable. Past studies have shown that higher trunk angles (less forward lean) generate less stress on the lower back; thus, it seems appropriate to investigate the factors presumed to influence the trunk angle. Therefore, the aim in this study was to investigate how ankle mobility and the segment ratios between the thoracic spine, thighs and shanks influence the trunk angle in the back squat. While recorded with motion capture, eleven male subjects performed 3 repetitions at app. 75% of 1RM in the squat to a parallel position (thighs horizontal) or lower. Furthermore, subjects performed a weight bearing lunge test (WBLT) to determine maximal range of motion (ROM) of the ankle joint. Segment angles of the shank, thigh and trunk segments as well as ankle joint angles were calculated by two-dimensional kinematic analysis. Simple linear and multiple regressions were used to test the correlation between the lower extremity angles, segment ratios and the trunk angle. On average, subjects had a 11.4±4.4 degree deficit in dorsiflexion ROM between maximal ROM and ROM in the parallel squat, which was independent of maximal ROM. Ankle mobility showed to significantly negatively correlate with trunk lean, thereby showing that a subject with greater ankle ROM had a more upright torso in the parallel squat position. This study was unable to find a significant correlation between the segment ratios and trunk angle. Furthermore, when combined, no significant relationship between ankle mobility, segment length ratios and trunk angle were found, although it was noticed that this more complex model showed the greatest R-value.

  3. Balance control under different passive contributions of the ankle extensors: quiet standing on inclined surfaces.

    PubMed

    Sasagawa, Shun; Ushiyama, Junichi; Masani, Kei; Kouzaki, Motoki; Kanehisa, Hiroaki

    2009-07-01

    Human bipedal stance is often modeled as a single inverted pendulum that pivots at the ankle joints in the sagittal plane. Because the center of body mass is usually maintained in front of the ankle joints, ankle extensor torque is continuously required to prevent the body from falling. During quiet standing, both passive and active mechanisms contribute to generate the ankle extensor torque counteracting gravity. This study aimed to investigate the active stabilization mechanism in more detail. Eight healthy subjects were requested to stand quietly on three different surfaces of 1) toes-up, 2) level, and 3) toes-down. Surface electromyogram (EMG) was recorded from the medial head of the gastrocnemius (MG), soleus (SOL), and tibialis anterior muscles. Inclination angle of the body was simultaneously measured. As a result, we found that EMG activities of MG and SOL were lowest during the toes-up standing and highest during the toes-down, indicating that increased (decreased) passive contribution required less (more) extensor torque generated by active muscle contraction. Frequency domain analysis also revealed that sway-related modulation of the ankle extensor activity (0.12-4.03 Hz) was unchanged among the three foot inclinations. On the other hand, isometric contraction strength of these muscles increased as the slope declined (toes-up < level < toes-down). These results support the idea that by regulating the isometric contraction strength, the CNS maintains a constant level of muscle tone and resultant ankle stiffness irrespective of the passive contribution. Such control scheme would be crucial when we consider the low bandwidth of the intermittent controller.

  4. Design and validation of a platform robot for determination of ankle impedance during ambulation.

    PubMed

    Rouse, Elliott J; Hargrove, Levi J; Peshkin, Michael A; Kuiken, Todd A

    2011-01-01

    In order to provide natural, biomimetic control to recently developed powered ankle prostheses, we must characterize the impedance of the ankle during ambulation tasks. To this end, a platform robot was developed that can apply an angular perturbation to the ankle during ambulation and simultaneously acquire ground reaction force data. In this study, we detail the design of the platform robot and characterize the impedance of the ankle during quiet standing. Subjects were perturbed by a 3° dorsiflexive ramp perturbation with a length of 150 ms. The impedance was defined parametrically, using a second order model to map joint angle to the torque response. The torque was determined using the inverted pendulum assumption, and impedance was identified by the least squares best estimate, yielding an average damping coefficient of 0.03 ± 0.01 Nms/° and an average stiffness coefficient of 3.1 ± 1.2 Nm/°. The estimates obtained by the proposed platform robot compare favorably to those published in the literature. Future work will investigate the impedance of the ankle during ambulation for powered prosthesis controller development.

  5. The "not so simple" ankle fracture: avoiding problems and pitfalls to improve patient outcomes.

    PubMed

    Hak, David J; Egol, Kenneth A; Gardner, Michael J; Haskell, Andrew

    2011-01-01

    Ankle fractures are among the most common injuries managed by orthopaedic surgeons. Many ankle fractures are simple, with straightforward management leading to successful outcomes. Some fractures, however, are challenging, and debate arises regarding the best treatment to achieve an optimal outcome. Some patients have medical comorbidities that increase the risk for complications or may require modifications to standard surgical techniques and fixation methods. Several recent investigations have highlighted the pitfalls in accurately reducing syndesmotic injuries. Controversy remains regarding the number and diameter of screws, the duration of weight-bearing limitations, and the need or timing of screw removal. Open reduction may allow more accurate reduction than standard closed methods. Direct fixation of associated posterior malleolus fractures may provide improved syndesmotic stability. Posterior malleolus fractures vary in size and can be classified based on the orientation of the fracture line. As the size of the posterior malleolus fracture fragment increases, the load pattern in the ankle is altered. Direct or indirect reduction and surgical fixation may be required to prevent posterior talar subluxation and restore articular congruency. The supination-adduction fracture pattern is also important to recognize. Articular depression of the medial tibial plafond may require reduction and bone grafting. Optimal fixation requires directing screws parallel to the ankle joint or using a buttress plate. Identifying ankle fractures that may present additional treatment challenges is essential to achieving a successful outcome. A careful review of radiographs and CT scans, a thorough patient assessment, and detailed preoperative planning are needed to improve patient outcomes.

  6. A brief history of total ankle replacement and a review of the current status.

    PubMed

    Vickerstaff, John A; Miles, Anthony W; Cunningham, James L

    2007-12-01

    Total ankle replacement (TAR) was first attempted in the early 1970s, but poor early results lead to it being abandoned in favour of arthrodesis. Arthrodesis is not totally satisfactory, often causing further hindfoot arthritis and this has lead to a resurgence of interest in joint replacement. New designs which more closely approximated the natural anatomy of the ankle and associated biomechanics have produced more encouraging results and led to renewed interest in total ankle replacement. Three prostheses dominate the market: Agility, Buechel-Pappas and STAR, and improving clinical results with these devices have led to more designs appearing on the market. Modern designs of prosthetic ankles almost exclusively consist of three part prostheses with a mobile bearing component, similar to the Buechel-Pappas and STAR. Clinical results of these newer designs are limited and short-term and have often been carried out by the designers of the implants. This paper presents a brief history of the development of total ankle replacement and a review of the current status.

  7. How to Stretch Your Ankle After a Sprain

    MedlinePlus

    ... ankle, which orthopaedic foot and ankle specialists call proprioception. Consider these home exercises when recuperating from an ankle sprain. Perform them twice per day. While seated, bring your ankle and foot all the way up as much as you can. Do this slowly, ...

  8. [Study on the control of dynamic artificial limb ankle based on central pattern generator].

    PubMed

    Guo, Xin; Xu, Caiyu; Li, Mingyue; Su, Longtao

    2014-12-01

    In order to obtain the normal gait for the prosthesis-carrier with the change of external environment and gait, we designed a model of dynamic ankle prosthesis and control system and introduced the strategy of central pattern generator (CPG) about the moving trail of dynamic ankle prosthesis. The dynamic parts, which are incorporated in the model of dynamic ankle prosthesis, provide power in order to have anthropic function and character. The tool of Matlab/simulink was used to simulate the strategy. The simulation results showed that the strategy of CPG learn- ing control in this study was effective and could track the reference trail rapidly and fit the moving trail of a person's normal limb. It can make the prosthetic timely regulation and action, enhance the prosthetic intelligence. It has im- portant practical value for intelligent prosthesis development based on this analysis of technology.

  9. The Split Second Effect: The Mechanism of How Equinus Can Damage the Human Foot and Ankle

    PubMed Central

    Amis, James

    2016-01-01

    We are currently in the process of discovering that many, if not the majority, of the non-traumatic acquired adult foot and ankle problems are caused by a singular etiology: non-neuromuscular equinus or the isolated gastrocnemius contracture. There is no question that this biomechanical association exists and in time much more will be uncovered. There are three basic questions that must be answered: why would our calves tighten as we normally age, how does a tight calf, or equinus, actually cause problems remotely in the foot and ankle, and how do the forces produced by equinus cause so many seemingly unrelated pathologies in the foot and ankle? The purpose of this paper is to address the second question: how does a tight calf mechanically cause problems remotely in the foot and ankle? There has been little evidence in the literature addressing the biomechanical mechanisms by which equinus creates damaging forces upon the foot and ankle, and as a result, a precise, convincing mechanism is still lacking. Thus, the mere concept that equinus has anything to do with foot pathology is generally unknown or disregarded. The split second effect, described here, defines exactly how the silent equinus contracture creates incremental and significant damage and injury to the human foot and ankle resulting in a wide variety of pathological conditions. The split second effect is a dissenting theory based on 30 years of clinical and academic orthopedic foot and ankle experience, keen clinical observation along the way, and review of the developing literature, culminating in examination of many hours of slow motion video of normal and abnormal human gait. To my knowledge, no one has ever described the mechanism in detail this precise. PMID:27512692

  10. The Split Second Effect: The Mechanism of How Equinus Can Damage the Human Foot and Ankle.

    PubMed

    Amis, James

    2016-01-01

    We are currently in the process of discovering that many, if not the majority, of the non-traumatic acquired adult foot and ankle problems are caused by a singular etiology: non-neuromuscular equinus or the isolated gastrocnemius contracture. There is no question that this biomechanical association exists and in time much more will be uncovered. There are three basic questions that must be answered: why would our calves tighten as we normally age, how does a tight calf, or equinus, actually cause problems remotely in the foot and ankle, and how do the forces produced by equinus cause so many seemingly unrelated pathologies in the foot and ankle? The purpose of this paper is to address the second question: how does a tight calf mechanically cause problems remotely in the foot and ankle? There has been little evidence in the literature addressing the biomechanical mechanisms by which equinus creates damaging forces upon the foot and ankle, and as a result, a precise, convincing mechanism is still lacking. Thus, the mere concept that equinus has anything to do with foot pathology is generally unknown or disregarded. The split second effect, described here, defines exactly how the silent equinus contracture creates incremental and significant damage and injury to the human foot and ankle resulting in a wide variety of pathological conditions. The split second effect is a dissenting theory based on 30 years of clinical and academic orthopedic foot and ankle experience, keen clinical observation along the way, and review of the developing literature, culminating in examination of many hours of slow motion video of normal and abnormal human gait. To my knowledge, no one has ever described the mechanism in detail this precise.

  11. Synergistic interaction between ankle and knee during hopping revealed through induced acceleration analysis.

    PubMed

    João, Filipa; Veloso, António; Cabral, Sílvia; Moniz-Pereira, Vera; Kepple, Thomas

    2014-02-01

    The forces produced by the muscles can deliver energy to a target segment they are not attached to, by transferring this energy throughout the other segments in the chain. This is a synergistic way of functioning, which allows muscles to accelerate or decelerate segments in order to reach the target one. The purpose of this study was to characterize the contribution of each lower extremity joint to the vertical acceleration of the body's center of mass during a hopping exercise. To accomplish this, an induced acceleration analysis was performed using a model with eight segments. The results indicate that the strategies produced during a hopping exercise rely on the synergy between the knee and ankle joints, with most of the vertical acceleration being produced by the knee extensors, while the ankle plantar flexors act as stabilizers of the foot. This synergy between the ankle and the knee is perhaps a mechanism that allows the transfer of power from the knee muscles to the ground, and we believe that in this particular task the net action of the foot and ankle moments is to produce a stable foot with little overall acceleration.

  12. The effect of ankle bracing on knee kinetics and kinematics during volleyball-specific tasks.

    PubMed

    West, T; Ng, L; Campbell, A

    2014-12-01

    The purpose of this study was to examine the effects of ankle bracing on knee kinetics and kinematics during volleyball tasks. Fifteen healthy, elite, female volleyball players performed a series of straight-line and lateral volleyball tasks with no brace and when wearing an ankle brace. A 14-camera Vicon motion analysis system and AMTI force plate were used to capture the kinetic and kinematic data. Knee range of motion, peak knee anterior-posterior and medial-lateral shear forces, and peak ground reaction forces that occurred between initial contact with the force plate and toe off were compared using paired sample t-tests between the braced and non-braced conditions (P < 0.05). The results revealed no significant effect of bracing on knee kinematics or ground reaction forces during any task or on knee kinetics during the straight-line movement volleyball tasks. However, ankle bracing was demonstrated to reduce knee lateral shear forces during all of the lateral movement volleyball tasks. Wearing the Active Ankle T2 brace will not impact knee joint range of motion and may in fact reduce shear loading to the knee joint in volleyball players.

  13. Ankle fractures in elderly patients.

    PubMed

    Giannini, Sandro; Chiarello, Eugenio; Persiani, Valentina; Luciani, Deianira; Cadossi, Matteo; Tedesco, Giuseppe

    2013-10-01

    The incidence of ankle fractures (AFs) in the elderly is rising due to the increase in life expectancy. Rather than directly related to osteoporosis, AFs are a predictor of osteoporotic fractures in other sites. In women AFs are associated with weight and BMI. AFs are difficult to categorize; therapeutic options are non-operative treatment with plaster casts or surgical treatment with Kirschner's wires, plates and screws. The choice of treatment should be based not only on the fracture type but also on the local and general comorbidity of the patient. Considering the new evidence that postmenopausal women with AFs have disrupted microarchitecture and decreased stiffness of the bone compared with women with no fracture history, in our opinion low-trauma AFs should be considered in a similar way to the other classical osteoporotic fractures.

  14. Position versus force control: using the 2-DOF robotic ankle trainer to assess ankle's motor control.

    PubMed

    Farjadian, Amir B; Nabian, Mohsen; Hartman, Amber; Corsino, Johnathan; Mavroidis, Constantinos; Holden, Maureen K

    2014-01-01

    An estimated of 2,000,000 acute ankle sprains occur annually in the United States. Furthermore, ankle disabilities are caused by neurological impairments such as traumatic brain injury, cerebral palsy and stroke. The virtually interfaced robotic ankle and balance trainer (vi-RABT) was introduced as a cost-effective platform-based rehabilitation robot to improve overall ankle/balance strength, mobility and control. The system is equipped with 2 degrees of freedom (2-DOF) controlled actuation along with complete means of angle and torque measurement mechanisms. Vi-RABT was used to assess ankle strength, flexibility and motor control in healthy human subjects, while playing interactive virtual reality games on the screen. The results suggest that in the task with 2-DOF, subjects have better control over ankle's position vs. force.

  15. Foot and ankle injuries in theatrical dancers.

    PubMed

    Hardaker, W T; Margello, S; Goldner, J L

    1985-10-01

    The theatrical dancer is a unique combination of athlete and artist. The physical demands of dance class, rehearsal, and performance can lead to injury, particularly to the foot and ankle. Ankle sprains are the most common acute injury. Chronic injuries predominate and relate primarily to the repeated impact loading of the foot and ankle on the dance floor. Contributing factors include anatomic variation, improper technique, and fatigue. Early and aggressive conservative management is usually successful and surgery is rarely indicated. Orthotics play a limited but potentially useful role in treatment. Following treatment, a structured rehabilitation program is fundamental to the successful return to dance.

  16. The Salto Talaris XT Revision Ankle Prosthesis.

    PubMed

    Roukis, Thomas S

    2015-10-01

    The Salto Talaris XT Revision Ankle Prosthesis is an anatomically designed fixed-bearing prosthesis available in the United States based on the design of previous Salto systems. The Salto Talaris XT Revision Ankle Prosthesis design optimizes surface area, cortical contact, and ultrahigh-molecular-weight polyethylene conformity. Two tibial component designs, both with the same base plate dimensions, are available, the standard conical fixation plug affixed to a short keel and a long-stemmed version. The author presents an overview of the Salto Talaris XT Revision Ankle Prosthesis surgical technique and pearls for successful application.

  17. All-inside, anatomical lateral ankle stabilization for revision and complex primary lateral ankle stabilization: a technique guide.

    PubMed

    Prissel, Mark A; Roukis, Thomas S

    2014-12-01

    Lateral ankle instability is a common mechanical problem that often requires surgical management when conservative efforts fail. Historically, myriad open surgical approaches have been proposed. Recently, consideration for arthroscopic management of lateral ankle instability has become popular, with promising results. Unfortunately, recurrent inversion ankle injury following lateral ankle stabilization can occur and require revision surgery. To date, arthroscopic management for revision lateral ankle stabilization has not been described. We present a novel arthroscopic technique combining an arthroscopic lateral ankle stabilization kit with a suture anchor ligament augmentation system for revision as well as complex primary lateral ankle stabilization.

  18. Transfibular ankle arthrodesis: A novel method for ankle fusion – A short term retrospective study

    PubMed Central

    Balaji, S Muthukumar; Selvaraj, V; Devadoss, Sathish; Devadoss, Annamalai

    2017-01-01

    Background: Ankle arthrodesis has long been the traditional operative treatment for posttraumatic arthritis, rheumatoid arthritis, infection, neuromuscular conditions, and salvage of failed ankle arthroplasty. It remains the treatment of choice for patients in whom heavy and prolonged activity is anticipated. We present our short term followup study of functional outcome of patients who underwent transfibular ankle arthrodesis for arthritis of ankle due to various indications. Materials and Methods: 29 transfibular ankle arthrodesis in 29 patients performed between April 2009 and April 2014 were included in this study. The mean age was 50 years (range 22-75 years). The outcome analysis with a minimum of 1-year postoperative followup were included. All the patients were assessed with the American Orthopaedic Foot and Ankle Society (AOFAS) Hindfoot scale. Results: All cases of ankle fusions (100%) progressed to solid union in a mean postoperative duration of 3.8 months (range 3–6 months). All patients had sound arthrodesis. The mean followup period was 32.52 months (standard deviation ± 10.34). The mean AOFAS score was 74 (pain score = 32, functional score = 42). We found that twenty patients (68.96%) out of 29, had excellent results, 7 (24.13%) had good, and 2 (6.89%) showed fair results. Conclusion: Transfibular ankle arthrodesis is a simple and effective procedure for ankle arthritis. It achieves a high rate of union and good functional outcome on midterm followup. PMID:28216754

  19. Lichen simplex chronicus on the ankle (image)

    MedlinePlus

    Lichen simplex chronicus on the ankle: Lichen simplex chronicus is also known as neurodermatitis. A minor itch may encourage scratching which increases the irritation, leading to more scratching. This ...

  20. Foot and ankle injuries in dance.

    PubMed

    Kadel, Nancy J

    2006-11-01

    Although dancers develop overuse injuries common in other athletes, they are also susceptible to unique injuries. This article reviews common foot and ankle problems seen in dancers and provides some basic diagnosis and treatment strategies.