Science.gov

Sample records for normal bone cell

  1. Laser Light Induced Photosensitization Of Lymphomas Cells And Normal Bone Marrow Cells

    NASA Astrophysics Data System (ADS)

    Gulliya, Kirpal S.; Pervaiz, Shazib; Nealon, Don G.; VanderMeulen, David L.

    1988-06-01

    Dye mediated, laser light induced photosensitization was tested in an in vitro model for its efficacy in eliminating the contaminating tumor cells for ex vivo autologous bone marrow purging. Daudi and U-937 cells (3 x 106/ml) in RPMI-1640 supplemented with 0.25% human albumin were mixed with 20 µg/ml and 25 µg/ml of MC-540, respectively. These cell-dye mixtures were then exposed to 514 nm argon laser light. Identical treatment was given to the normal bone marrow cells. Viability was determined by the trypan blue exclusion method. Results show that at 31.2 J/cm2 irradiation, 99.9999% Daudi cells were killed while 87% of the normal bone marrow cells survived. No regrowth of Daudi cells was observed for 30 days in culture. However, a light dose of 93.6 J/cm2 was required to obtain 99.999% U-937 cell kill with 80% normal bone marrow cell survival. Mixing of irradiated bone marrow cells with an equal number of lymphoma cells did not interfere with the photodynamic killing of lymphoma cells. Exposure of cells to low doses of recombinant interferon-alpha prior to photodynamic therapy increased the viability of lymphoma cells.

  2. Regulation of heme metabolism in normal and sideroblastic bone marrow cells in culture

    SciTech Connect

    Ibraham, N.G.; Lutton, J.D.; Hoffman, R.; Levere, R.D.

    1985-05-01

    Heme metabolism was examined in developing in vitro erythroid colonies (CFUE) and in bone marrow samples taken directly from four normal donors and four patients with sideroblastic anemia. Maximum activities of delta-aminolevulinic acid synthase (ALAS), ALA dehydratase (ALAD), and /sup 14/C-ALA incorporation into heme were achieved in normal marrow CFUE after 8 days of culture, whereas heme oxygenase progressively decreased to low levels of activity during the same period. Assays on nucleated bone marrow cells taken directly from patients revealed that ALAS activity was considerably reduced in idiopathic sideroblastic anemia (IASA) and X-linked sideroblastic anemia (X-SA) bone marrow specimens, whereas the activity increased more than twofold (normal levels) when cells were assayed from 8-day CFUE. In all cases, ALAD activity appeared to be within normal levels. Measurement of heme synthesis revealed that normal levels of /sup 14/C-ALA incorporation into heme were achieved in IASA cells but were reduced in X-SA cells. In marked contrast to levels in normal cells, heme oxygenase was found to be significantly elevated (two- to fourfold) in bone marrow cells taken directly from patients with IASA and X-SA. Results from this study demonstrate that IASA and X-SA bone marrow cells have disturbances in ALAS and heme metabolism, and that erythropoiesis (CFUE) can be restored to normal levels when cells are cultured in methylcellulose.

  3. Glycosaminoglycan metabolism and cytokine release in normal and otosclerotic human bone cells interleukin-1 treated.

    PubMed

    Bodo, M; Carinci, P; Venti, G; Giammarioli, M; Donti, E; Stabellini, G; Paludetti, G; Becchetti, E

    1997-01-01

    Glycosaminoglycans (GAGs), normal components of the extracellular matrix (ECM), and the glycosidases, that degrade them, play a key role in the bone remodelling process. The effects of interleukin-1 alpha (IL-1 alpha) on GAG metabolism in normal and otosclerotic human bone cells as well as its capacity to modulate IL-1 alpha, IL-1 beta and IL-6 secretion in both populations was analyzed. The amount of radiolabeled GAGs was lower in otosclerotic than in normal bone cells. IL-1 alpha reduced newly synthesized cellular and extracellular GAGs in normal cells, but only those of the cellular compartment in otosclerotic bone cells. It depressed heparan sulphate (HS) more in normal cells and chondroitin sulphate (CS) more in otosclerotic bone cells. The HA/total sulphated GAG ratio was shifted in favour of the latter in otosclerotic cells, whereas the opposite effect was seen after IL-1 alpha treatment. There was little difference in the beta-D-glucuronidase levels of the normal and pathological cells, while beta-N-acetyl-D-glucosaminidase was significantly increased in otosclerotic bone cells. As the activity of neither enzyme was modified by treatment with IL-1 alpha, the cytokine seems to exert its influences on GAG synthesis rather than on the degradation process. IL-1 alpha, IL-1 beta and IL-6 secretion was markedly higher in otosclerotic cells. IL-1 alpha modulated the secretion of each interleukin differently, thus resulting in a cytokine cascade that may act in autocrine/paracrine manner on target cells. The authors suggest that changes in the cytokine network may have a specific, yet still unknown, role during normal and pathological osteogenesis.

  4. Altered mesenchymal niche cells impede generation of normal hematopoietic progenitor cells in leukemic bone marrow.

    PubMed

    Lim, M; Pang, Y; Ma, S; Hao, S; Shi, H; Zheng, Y; Hua, C; Gu, X; Yang, F; Yuan, W; Cheng, T

    2016-01-01

    Degeneration of normal hematopoietic cells is a shared feature of malignant diseases in the hematopoietic system. Previous studies have shown the exhaustion of hematopoietic progenitor cells (HPCs) in leukemic marrow, whereas hematopoietic stem cells (HSCs) remain functional upon relocation to non-leukemic marrow. However, the underlying cellular mechanisms, especially the specific niche components that are responsible for the degeneration of HPCs, are unknown. In this study, we focused on murine bone mesenchymal stem cells (MSCs) and their supporting function for normal hematopoietic cells in Notch1-induced acute T-cell lymphocytic leukemia (T-ALL) mice. We demonstrate that the proliferative capability and differentiation potential of T-ALL MSCs were impaired due to accelerated cellular senescence. RNA-seq analysis revealed significant transcriptional alterations in leukemic MSCs. After co-cultured with the MSCs from T-ALL mice, a specific inhibitory effect on HPCs was defined, whereas in vivo repopulating potential of normal HSCs was not compromised. Furthermore, osteoprotegerin was identified as a cytokine to improve the function of T-ALL MSCs and to enhance normal HPC output via the p38/ERK pathway. Therefore, this study reveals a novel cellular mechanism underlying the inhibition of HPC generation in T-ALL. Leukemic MSCs may serve as a cellular target for improving normal hematopoietic regeneration therapeutically.

  5. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates

    PubMed Central

    Vilchis-Ordoñez, Armando; Contreras-Quiroz, Adriana; Dorantes-Acosta, Elisa; Reyes-López, Alfonso; Quintela-Nuñez del Prado, Henry Martin; Venegas-Vázquez, Jorge; Mayani, Hector; Ortiz-Navarrete, Vianney; López-Martínez, Briceida; Pelayo, Rosana

    2015-01-01

    B-cell acute lymphoblastic leukemia (B-ALL) is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13+CD33+ population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow. PMID:26090405

  6. Recruitment of Bone Marrow-Derived Valve Interstitial Cells is a Normal Homeostatic Process

    PubMed Central

    Hajdu, Zoltan; Romeo, Stephen J.; Fleming, Paul A.; Markwald, Roger R.; Visconti, Richard P.; Drake, Christopher J.

    2011-01-01

    Advances in understanding of the maintenance of the cardiac valves during normal cardiac function and response to injury have lead to several novel findings, including that there is contribution of extra-cardiac cells to the major cellular population of the valve: the valve interstitial cell (VIC). While suggested to occur in human heart studies, we have been able to experimentally demonstrate, using a mouse model, that cells of bone marrow hematopoietic stem cell origin engraft into the valves and synthesize collagen type I. Based on these initial findings, we sought to further characterize this cell population in terms of its similarity to VICs and begin to elucidate its contribution to valve homeostasis. To accomplish this, chimeric mice whose bone marrow was repopulated with enhanced green fluorescent protein (EGFP) expressing total nucleated bone marrow cells were used to establish a profile of EGFP+ valve cells in terms of their expression of hematopoietic antigens, progenitor markers, fibroblast- and myofibroblast-related molecules, as well as their distribution within the valves. Using this profile, we show that normal (non-irradiated, non-transplanted) mice have BM-derived cell populations that exhibit identical morphology and phenotype to those observed in transplanted mice. Collectively, our findings establish that the engraftment of bone marrow-derived cells occurs as part of normal valve homeostasis. Further, our efforts demonstrate that the use of myeloablative irradiation, which is commonly employed in studies involving bone marrow transplantation, does not elicit changes in the bone marrow-derived VIC phenotype in recipient mice. PMID:21871458

  7. Increased survival of normal cells during laser photodynamic therapy: implications for ex vivo autologous bone marrow purging

    SciTech Connect

    Gulliya, K.S.; Matthews, J.L.; Fay, J.W.; Dowben, R.M.

    1988-01-01

    Laser light-induced, dye-mediated photolysis of leukemic cells was tested in an in vitro model for its efficacy in eliminating occult tumor cells for ex vivo autologous bone marrow purging. Merocyanine 540 (MC540) was mixed with acute promyelocytic leukemia (HL-60) cells in the presence of human albumin. This cell-dye mixture was irradiated with 514 nm argon laser light. Results show that in the presence of 0.1%, 0.25% and 0.5% albumin, laser light doses of 62.4 J/cm/sup 2/, 93.6 J/cm/sup 2/ and 109.2 J/cm/sup 2/, respectively, were required for a 5 log reduction in the survival of leukemic cells. Under identical conditions, 80% to 84% of the normal bone marrow cells and 41% of the granulocyte-macrophage colony forming cells survived. The number of surviving stromal cells was reduced (1+) compared to the untreated control (4+). Mixing of irradiated bone marrow cells with equal number of HL-60 cells did not interfere with the killing of HL-60 cells treated with MC540 and laser light. The non-specific cytotoxicity of laser light alone was less than 6% for normal bone marrow cells. These results suggest that the concentration of human albumin plays an important role in laser light-induced phototoxicity. This laser light-induced selective photolysis of leukemic cells can be used in ex vivo purging of tumor cell-contaminated bone marrow grafts to achieve very high survival rates of normal bone marrow cells and granulocyte-macrophage colony forming cells.

  8. Normalization of red cell enolase level following allogeneic bone marrow transplantation in a child with Diamond-Blackfan anemia.

    PubMed

    Park, Jeong A; Lim, Yeon Jung; Park, Hyeon Jin; Kong, Sun Young; Park, Byung Kiu; Ghim, Thad T

    2010-04-01

    We describe a girl with Diamond-Blackfan anemia with accompanying red cell enolase deficiency. At the age of 9 yr old, the patient received allogeneic bone marrow transplantation from her HLA-identical sister who had normal red cell enolase activity. While the post transplant DNA analysis with short tandem repeat has continuously demonstrated a stable mixed chimerism on follow-up, the patient remains transfusion independent and continues to show a steady increase in red cell enolase activity for over two and a half years following bone marrow transplantation.

  9. Deubiquitinase MYSM1 Is Essential for Normal Bone Formation and Mesenchymal Stem Cell Differentiation

    PubMed Central

    Li, Ping; Yang, Yan-Mei; Sanchez, Suzi; Cui, Dian-Chao; Dang, Rui-Jie; Wang, Xiao-Yan; Lin, Qiu-Xia; Wang, Yan; Wang, Changyong; Chen, Da-Fu; Chen, Si-Yi; Jiang, Xiao-Xia; Wen, Ning

    2016-01-01

    Deubiquitinase MYSM1 has been shown to play a critical role in hematopoietic cell differentiation and hematopoietic stem cell (HSC) maintenance. Mesenchymal stem cells (MSCs) are multipotent stromal cells within the bone marrow. MSCs are progenitors to osteoblasts, chondrocytes, adipocytes, and myocytes. Although, MSCs have been extensively studied, the roles of MYSM1 in these cells remain unclear. Here we describe the function of MYSM1 on MSC maintenance and differentiation. In this report, we found that Mysm1−/− mice had a lower bone mass both in long bone and calvaria compared with their control counterpart. Preosteoblasts from Mysm1−/− mice did not show changes in proliferation or osteogenesis when compared to WT mice. Conversely, Mysm1−/− MSCs showed enhanced autonomous differentiation and accelerated adipogenesis. Our results demonstrate that MYSM1 plays a critical role in MSC maintenance and differentiation. This study also underscores the biological significance of deubiquitinase activity in MSC function. Mysm1 may represent a potential therapeutic target for controlling MSC lineage differentiation, and possibly for the treatment of metabolic bone diseases such as osteoporosis. PMID:26915790

  10. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells.

    PubMed

    Zhan, Fenghuang; Hardin, Johanna; Kordsmeier, Bob; Bumm, Klaus; Zheng, Mingzhong; Tian, Erming; Sanderson, Ralph; Yang, Yang; Wilson, Carla; Zangari, Maurizio; Anaissie, Elias; Morris, Christopher; Muwalla, Firas; van Rhee, Frits; Fassas, Athanasios; Crowley, John; Tricot, Guido; Barlogie, Bart; Shaughnessy, John

    2002-03-01

    Bone marrow plasma cells (PCs) from 74 patients with newly diagnosed multiple myeloma (MM), 5 with monoclonal gammopathy of undetermined significance (MGUS), and 31 healthy volunteers (normal PCs) were purified by CD138(+) selection. Gene expression of purified PCs and 7 MM cell lines were profiled using high-density oligonucleotide microarrays interrogating about 6800 genes. On hierarchical clustering analysis, normal and MM PCs were differentiated and 4 distinct subgroups of MM (MM1, MM2, MM3, and MM4) were identified. The expression pattern of MM1 was similar to normal PCs and MGUS, whereas MM4 was similar to MM cell lines. Clinical parameters linked to poor prognosis, abnormal karyotype (P =.002) and high serum beta(2)-microglobulin levels (P =.0005), were most prevalent in MM4. Also, genes involved in DNA metabolism and cell cycle control were overexpressed in a comparison of MM1 and MM4. In addition, using chi(2) and Wilcoxon rank sum tests, 120 novel candidate disease genes were identified that discriminate normal and malignant PCs (P <.0001); many are involved in adhesion, apoptosis, cell cycle, drug resistance, growth arrest, oncogenesis, signaling, and transcription. A total of 156 genes, including FGFR3 and CCND1, exhibited highly elevated ("spiked") expression in at least 4 of the 74 MM cases (range, 4-25 spikes). Elevated expression of these 2 genes was caused by the translocation t(4;14)(p16;q32) or t(11;14)(q13;q32). Thus, novel candidate MM disease genes have been identified using gene expression profiling and this profiling has led to the development of a gene-based classification system for MM.

  11. Bone morphogenetic protein-6 is a marker of serous acinar cell differentiation in normal and neoplastic human salivary gland.

    PubMed

    Heikinheimo, K A; Laine, M A; Ritvos, O V; Voutilainen, R J; Hogan, B L; Leivo, I V; Heikinheimo, A K

    1999-11-15

    Bone morphogenetic protein (BMP-6, also known as vegetal-pale-gene-related and decaplentaplegic-vegetal-related) is a member of the transforming growth factor-beta superfamily of multifunctional signaling molecules. BMP-6 appears to play various biological roles in developing tissues, including regulation of epithelial differentiation. To study the possible involvement of BMP-6 in normal and neoplastic human salivary glands, we compared its mRNA and protein expression in 4 fetal and 15 adult salivary glands and in 22 benign and 32 malignant salivary gland tumors. In situ hybridization and Northern blot analysis indicated that BMP-6 transcripts are expressed at low levels in acinar cells of adult submandibular glands but not in ductal or stromal cells. BMP-6 was immunolocated specifically in serous acini of parotid and submandibular glands. None was found in primitive fetal acini or any other types of cell in adult salivary glands, including mucous acini and epithelial cells of intercalated, striated, and excretory ducts. All 16 cases of acinic cell carcinoma consistently exhibited cytoplasmic BMP-6 staining in the acinar tumor cells. Other cell types in these tumors, including intercalated duct-like cells, clear, vacuolated cells, and nonspecific glandular cells, exhibited no cytoplasmic BMP-6 staining. Other benign and malignant salivary gland tumors lacked BMP-6 immunoreactivity, except in areas of squamous differentiation. The results indicate that in salivary glands, BMP-6 expression is uniquely associated with acinar cell differentiation and suggest that BMP-6 may play a role in salivary gland function. More importantly, our experience of differential diagnostic problems related to salivary gland tumors suggests that the demonstration of consistent and specific BMP-6 immunoreactivity in acinic cell carcinoma is likely to be of clinical value.

  12. Competition between clonal plasma cells and normal cells for potentially overlapping bone marrow niches is associated with a progressively altered cellular distribution in MGUS vs myeloma.

    PubMed

    Paiva, B; Pérez-Andrés, M; Vídriales, M-B; Almeida, J; de las Heras, N; Mateos, M-V; López-Corral, L; Gutiérrez, N C; Blanco, J; Oriol, A; Hernández, M T; de Arriba, F; de Coca, A G; Terol, M-J; de la Rubia, J; González, Y; Martín, A; Sureda, A; Schmidt-Hieber, M; Schmitz, A; Johnsen, H E; Lahuerta, J-J; Bladé, J; San-Miguel, J F; Orfao, A

    2011-04-01

    Disappearance of normal bone marrow (BM) plasma cells (PC) predicts malignant transformation of monoclonal gammopathy of undetermined significance (MGUS) and smoldering myeloma (SMM) into symptomatic multiple myeloma (MM). The homing, behavior and survival of normal PC, but also CD34(+) hematopoietic stem cells (HSC), B-cell precursors, and clonal PC largely depends on their interaction with stromal cell-derived factor-1 (SDF-1) expressing, potentially overlapping BM stromal cell niches. Here, we investigate the distribution, phenotypic characteristics and competitive migration capacity of these cell populations in patients with MGUS, SMM and MM vs healthy adults (HA) aged >60 years. Our results show that BM and peripheral blood (PB) clonal PC progressively increase from MGUS to MM, the latter showing a slightly more immature immunophenotype. Of note, such increased number of clonal PC is associated with progressive depletion of normal PC, B-cell precursors and CD34(+) HSC in the BM, also with a parallel increase in PB. In an ex vivo model, normal PC, B-cell precursors and CD34(+) HSC from MGUS and SMM, but not MM patients, were able to abrogate the migration of clonal PC into serial concentrations of SDF-1. Overall, our results show that progressive competition and replacement of normal BM cells by clonal PC is associated with more advanced disease in patients with MGUS, SMM and MM. PMID:21252988

  13. Normal Untreated Jurkat Cells

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. The objective of the research was to define a way to differentiate between effects due to microgravity and those due to possible stress from non-optimal spaceflight conditions. These Jurkat cells, a human acute T-cell leukemia was obtained to evaluate three types of potential experimental stressors: a) Temperature elevation; b) Serum starvation; and c) Centrifugal force. The data from previous spaceflight experiments showed that actin filaments and cell shape are significantly different for the control. These normal cells serve as the baseline for future spaceflight experiments.

  14. In Vivo Tracking of Systemically Administered Allogeneic Bone Marrow Mesenchymal Stem Cells in Normal Rats through Bioluminescence Imaging

    PubMed Central

    Cao, Juan; Hou, Shike; Ding, Hui; Liu, Ziquan; Song, Meijuan; Qin, Xiaojing; Wang, Xue; Yu, Mengyang; Sun, Zhiguang; Liu, Jinyang; Sun, Shuli; Xiao, Peixin

    2016-01-01

    Recently, mesenchymal stem cells (MSCs) are increasingly used as a panacea for multiple types of disease short of effective treatment. Dozens of clinical trials published demonstrated strikingly positive therapeutic effects of MSCs. However, as a specific agent, little research has focused on the dynamic distribution of MSCs after in vivo administration. In this study, we track systemically transplanted allogeneic bone marrow mesenchymal stem cells (BMSCs) in normal rats through bioluminescence imaging (BLI) in real time. Ex vivo organ imaging, immunohistochemistry (IHC), and RT-PCR were conducted to verify the histological distribution of BMSCs. Our results showed that BMSCs home to the dorsal skin apart from the lungs and kidneys after tail vein injection and could not be detected 14 days later. Allogeneic BMSCs mainly appeared not at the parenchymatous organs but at the subepidermal connective tissue and adipose tissue in healthy rats. There were no significant MSCs-related adverse effects except for transient decrease in neutrophils. These findings will provide experimental evidences for a better understanding of the biocharacteristics of BMSCs.

  15. In Vivo Tracking of Systemically Administered Allogeneic Bone Marrow Mesenchymal Stem Cells in Normal Rats through Bioluminescence Imaging.

    PubMed

    Cao, Juan; Hou, Shike; Ding, Hui; Liu, Ziquan; Song, Meijuan; Qin, Xiaojing; Wang, Xue; Yu, Mengyang; Sun, Zhiguang; Liu, Jinyang; Sun, Shuli; Xiao, Peixin; Lv, Qi; Fan, Haojun

    2016-01-01

    Recently, mesenchymal stem cells (MSCs) are increasingly used as a panacea for multiple types of disease short of effective treatment. Dozens of clinical trials published demonstrated strikingly positive therapeutic effects of MSCs. However, as a specific agent, little research has focused on the dynamic distribution of MSCs after in vivo administration. In this study, we track systemically transplanted allogeneic bone marrow mesenchymal stem cells (BMSCs) in normal rats through bioluminescence imaging (BLI) in real time. Ex vivo organ imaging, immunohistochemistry (IHC), and RT-PCR were conducted to verify the histological distribution of BMSCs. Our results showed that BMSCs home to the dorsal skin apart from the lungs and kidneys after tail vein injection and could not be detected 14 days later. Allogeneic BMSCs mainly appeared not at the parenchymatous organs but at the subepidermal connective tissue and adipose tissue in healthy rats. There were no significant MSCs-related adverse effects except for transient decrease in neutrophils. These findings will provide experimental evidences for a better understanding of the biocharacteristics of BMSCs. PMID:27610137

  16. In Vivo Tracking of Systemically Administered Allogeneic Bone Marrow Mesenchymal Stem Cells in Normal Rats through Bioluminescence Imaging

    PubMed Central

    Cao, Juan; Hou, Shike; Ding, Hui; Liu, Ziquan; Song, Meijuan; Qin, Xiaojing; Wang, Xue; Yu, Mengyang; Sun, Zhiguang; Liu, Jinyang; Sun, Shuli; Xiao, Peixin

    2016-01-01

    Recently, mesenchymal stem cells (MSCs) are increasingly used as a panacea for multiple types of disease short of effective treatment. Dozens of clinical trials published demonstrated strikingly positive therapeutic effects of MSCs. However, as a specific agent, little research has focused on the dynamic distribution of MSCs after in vivo administration. In this study, we track systemically transplanted allogeneic bone marrow mesenchymal stem cells (BMSCs) in normal rats through bioluminescence imaging (BLI) in real time. Ex vivo organ imaging, immunohistochemistry (IHC), and RT-PCR were conducted to verify the histological distribution of BMSCs. Our results showed that BMSCs home to the dorsal skin apart from the lungs and kidneys after tail vein injection and could not be detected 14 days later. Allogeneic BMSCs mainly appeared not at the parenchymatous organs but at the subepidermal connective tissue and adipose tissue in healthy rats. There were no significant MSCs-related adverse effects except for transient decrease in neutrophils. These findings will provide experimental evidences for a better understanding of the biocharacteristics of BMSCs. PMID:27610137

  17. Difference in glycerol levels between leukemia and normal bone marrow stem cells

    PubMed Central

    QIN, YING-SONG; BU, DAN-XIA; CUI, YING-YING; ZHANG, XIANG-YU

    2014-01-01

    Aquaglyceroporin 9 (AQP9) is considered to be involved in numerous types of carcinogenic processes, particularly in liver carcinoma. AQP9 expression is significantly decreased in the human hepatocellular carcinoma when compared with the non-tumourigenic liver, which leads to increased resistance to apoptosis. In addition, AQP9 is permeable to glycerol and urea. The involvement of AQP9 in leukemia has not been fully delineated. It is proposed that abnormal proliferation of hematopoietic stem cells (HSCs) contributes to leukemia carcinogenesis. Therefore, the present study aimed to investigate the possible roles of AQP9 in HSCs and its effect on the intracellular glycerol content. HSCs and non-HSCs (nHSCs) were isolated via magnetic-activated cell sorting and then subjected to flow cytometry for evaluation of purity. White blood cells (WBCs) were isolated from peripheral blood from healthy volunteers. Furthermore, AQP9 expression was examined at the mRNA and protein levels using western blotting and reverse transcription-polymerase chain reaction (RT-PCR). The glycerol content of HSCs, nHSCs and WBCs was evaluated by ELISA. Finally, in order to observe the morphology of HSCs and nHSCs, a blood smear was conducted and the cells were observed with Wright-Giemsa staining. The results indicated that the glycerol content in the HSCs was markedly greater than that in the nHSCs. AQP9 mRNA and protein expression was not detected in the HSCs and nHSCs, but was identified in the WBCs. Moreover, the HSC morphological characteristics included round or oval cells with round, slightly oval or irregularly shaped nuclei. Additionally, the nuclei occupied almost the entire cell, were located in the middle or were biased toward one side, and were stained light purple or red. Overall, our results indicated that intracellular glycerol is involved in HSC proliferation, despite the fact that glycerol is not mediated by AQP9. Hence, our findings may be useful in further understanding the

  18. Effects of Glucosinolates from Turnip (Brassica rapa L.) Root on Bone Formation by Human Osteoblast-Like MG-63 Cells and in Normal Young Rats.

    PubMed

    Jeong, Jaehoon; Park, Heajin; Hyun, Hanbit; Kim, Jihye; Kim, Haesung; Oh, Hyun Il; Hwang, Hye Seong; Kim, Dae Kyong; Kim, Ha Hyung

    2015-06-01

    Turnip (Brassica rapa L.) root ethanol extract (TRE) was prepared, and its chemical constituents were characterized by ultra-performance liquid chromatography and mass spectrometry. Thirteen glucosinolates (GSLs) were identified, comprising eight aliphatic, four indolic, and one aromatic compounds. The effects of these GSLs on bone formation were investigated in vitro by incubating human osteoblast-like MG-63 cells with TRE and then analyzing their viability, alkaline phosphatase (ALP) activity, collagen content, and mineralization and in vivo by administering TRE orally to normal young rats (500 mg/kg/day) and assessing subsequent changes in serum osteocalcin and bone microstructure in these animals. No TRE-related toxicity was found, and the levels of cell viability, ALP activity, collagen synthesis, and mineralization were significantly increased relative to the negative control. In particular, stimulatory effects on the differentiation of MG-63 cells were strongly enhanced as compared with a positive control (daidzein). Serum osteocalcin was also significantly increased, and some important bone microstructural parameters were improved in TRE-administered rats compared with their saline-administered counterparts. GSLs therefore appear to have a stimulatory effect on bone formation in both MG-63 cells and normal young rats. This is the first report on the usefulness of turnip root and its GSL compounds for bone formation.

  19. Bone Vascularization in Normal and Disease Conditions

    PubMed Central

    Carulli, Christian; Innocenti, Massimo; Brandi, Maria Luisa

    2013-01-01

    Bone vasculature is essential for many processes, such as skeletal development and growth, bone modeling and remodeling, and healing processes. Endothelium is an integral part of bone tissue, expressing a physiological paracrine function via growth factors and chemokines release, and interacting with several cellular lines. Alterations of the complex biochemical interactions between vasculature and bone cells may lead to various clinical manifestations. Two different types of pathologies result: a defect or an excess of bone vasculature or endothelium metabolism. Starting from the molecular basis of the interactions between endothelial and bone cells, the Authors present an overview of the recent acquisitions in the physiopathology of the most important clinical patterns, and the modern therapeutic strategies for their treatments. PMID:23986744

  20. Normalizing the bone marrow microenvironment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation

    SciTech Connect

    Nguyen, Aaron N.; Stebbins, Elizabeth G.; Henson, Margaret; O'Young, Gilbert; Choi, Sun J.; Quon, Diana; Damm, Debby; Reddy, Mamatha; Ma, Jing Y.; Haghnazari, Edwin; Kapoun, Ann M.; Medicherla, Satyanarayana; Protter, Andy; Schreiner, George F.; Kurihara, Noriyoshi; Anderson, Judy; Roodman, G. David; Navas, Tony A.; Higgins, Linda S. . E-mail: lhiggin3@scius.jnj.com

    2006-06-10

    The multiple myeloma (MM) bone marrow (BM) microenvironment plays a critical role in supporting tumor growth and survival as well as in promoting formation of osteolytic lesions. Recent results suggest that the p38 mitogen-activated protein kinase (MAPK) is an important factor in maintaining this activated environment. In this report, we demonstrate that the p38{alpha} MAPK inhibitor, SCIO-469, suppresses secretion of the tumor-supportive factors IL-6 and VEGF from BM stromal cells (BMSCs) as well as cocultures of BMSCs with MM cells, resulting in reduction in MM cell proliferation. Additionally, we show that SCIO-469 prevents TNF{alpha}-induced adhesion of MM cells to BMSCs through an ICAM-1- and VCAM-1-independent mechanism. Microarray analysis revealed a novel set of TNF{alpha}-induced chemokines in BMSCs that is strongly inhibited by SCIO-469. Furthermore, reintroduction of chemokines CXCL10 and CCL8 to BMSCs overcomes the inhibitory effect of SCIO-469 on TNF{alpha}-induced MM adhesion. Lastly, we show that SCIO-469 inhibits secretion and expression of the osteoclast-activating factors IL-11, RANKL, and MIP-1{alpha} as well as prevents human osteoclast formation in vitro. Collectively, these results suggest that SCIO-469 treatment can suppress factors in the bone marrow microenvironment to inhibit MM cell proliferation and adhesion and also to alleviate osteolytic activation in MM.

  1. Do vegetarians have a normal bone mass?

    PubMed

    New, Susan A

    2004-09-01

    Public health strategies targeting the prevention of poor bone health on a population-wide basis are urgently required, with particular emphasis being placed on modifiable factors such as nutrition. The aim of this review was to assess the impact of a vegetarian diet on indices of skeletal integrity to address specifically whether vegetarians have a normal bone mass. Analysis of existing literature, through a combination of observational, clinical and intervention studies were assessed in relation to bone health for the following: lacto-ovo-vegetarian and vegan diets versus omnivorous, predominantly meat diets, consumption of animal versus vegetable protein, and fruit and vegetable consumption. Mechanisms of action for a dietary "component" effect were examined and other potential dietary differences between vegetarians and non-vegetarians were also explored. Key findings included: (i) no differences in bone health indices between lacto-ovo-vegetarians and omnivores; (ii) conflicting data for protein effects on bone with high protein consumption (particularly without supporting calcium/alkali intakes) and low protein intake (particularly with respect to vegan diets) being detrimental to the skeleton; (iii) growing support for a beneficial effect of fruit and vegetable intake on bone, with mechanisms of action currently remaining unclarified. The impact of a "vegetarian" diet on bone health is a hugely complex area since: 1) components of the diet (such as calcium, protein, alkali, vitamin K, phytoestrogens) may be varied; 2) key lifestyle factors which are important to bone (such as physical activity) may be different; 3) the tools available for assessing consumption of food are relatively weak. However, from data available and given the limitations stipulated above, "vegetarians" do certainly appear to have "normal" bone mass. What remains our challenge is to determine what components of a vegetarian diet are of particular benefit to bone, at what levels and under

  2. Radiosensitivity of human clonogenic myeloma cells and normal bone marrow precursors: Effect of different dose rates and fractionation

    SciTech Connect

    Glueck, S.; Van Dyk, J.; Messner, H.A. )

    1994-03-01

    Evaluation of radiation dose rate and fractionation effects on clonogenic myeloma cells was carried out. The radiosensitivity of clonogenic myeloma cells was evaluated for seven human myeloma cell lines. The lines were maintained in liquid suspension culture. Following radiation, cells were plated in semisolid medium using methylcellulose as viscous support. Radiation doses up to 12 Gy were delivered at dose rates of 0.05 and 0.5 Gy/min by a [sup 60]Co source. Each total dose was administered either as a single dose or in multiple fractions of 2 Gy. The data were analyzed according to the linear quadratic and multi target model of irradiation. Clonogenic progenitors of the seven myeloma cell lines differed in their radiosensitivity as measured by multiple parameters. The differences were mainly observed at low dose. The most effective cytoreduction was seen when radiation was administered in a single fraction at high dose rate. The cytoreductive effect on clonogenic myeloma cells was compared for clinically practiced total body irradiation (TBI) schedules delivered either in a single or in multiple fractions without causing significant pulmonary toxicity. The administration of 12 Gy delivered in six fractions of 2 Gy resulted in a superior reduction of clonogenic cells compared to a single fraction of 5 Gy. The preparation of bone marrow transplant recipients with multiple myeloma using fractionated radiation with a total dose of 12 Gy appears to afford better ablation than a single dose of 5 Gy while maintaining a low incidence of pulmonary toxicity. 20 refs., 4 figs., 4 tabs.

  3. [Coupling and communication between bone cells].

    PubMed

    Nakashima, Tomoki

    2014-06-01

    Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Coupling has been understood as a balanced induction of osteoblastic bone formation in response to osteoclastic bone resorption. An imbalance of this coupling is often linked to various bone diseases. TGF-β and IGF released from bone matrix during osteoclastic bone resorption are the favored candidates as classical coupling factor. Recently, several reports suggest that osteoclast-derived molecules/cytokines (clastokine) mediate directional signaling between osteoblasts and osteoclasts into the bone microenvironment. Thus, the elucidation of the regulatory mechanisms involved in bone cell communication and coupling is critical for a deeper understanding of the skeletal system in health and disease.

  4. Bone regeneration and stem cells

    PubMed Central

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  5. P-glycoprotein expression in normal and reactive bone marrows.

    PubMed Central

    Hegewisch-Becker, S.; Fliegner, M.; Tsuruo, T.; Zander, A.; Zeller, W.; Hossfeld, D. K.

    1993-01-01

    The expression of mdr1 gene product P-glycoprotein (P-gp) was investigated in 53 normal and reactive bone marrows by means of immunocytochemistry, using the monoclonal antibody (mAb) C219 and the alkaline phosphatase anti-alkaline phosphatase method. In a limited number of patients, data were confirmed by using the mAb MRK16 or a polymerase chain reaction assay for mdr1 gene expression. There was no history of prior chemotherapy or any malignancy in this group. Bone marrow aspirates were obtained as part of a routine diagnostic programme in bone marrow donors or in patients presenting with a variety of diagnoses such as unexplained gammopathy, fever, anaemia, other changes in peripheral blood smear, rheumatoid arthritis, vasculitis, or urticaria pigmentosa. Morphologically the bone marrow was normal in 23 patients, a megaloblastic erythropoiesis was seen in two patients and unspecific changes were seen in 28 patients. Twenty-seven of 53 samples were found to be positive for P-gp expression with the percentage of positive cells ranging from 2%-80% (mean = 24%). With a cutoff point of 10%, five of 23 normal (22%) and 13 of 28 reactive bone marrows (46%) were considered positive for P-gp expression. There was no obvious correlation between diagnosis or age and P-gp expression. Additional staining for the early surface marker CD-34 was performed in 12 samples, with none of them revealing more than 1% positivity. Since P-gp expression has so far been described only in CD-34 positive bone marrow cells, data suggest that P-gp expression may be reinduced in CD-34 negative cells under conditions which remain to be determined. Images Figure 1 Figure 2 PMID:8094974

  6. Bone-immune cell crosstalk: bone diseases.

    PubMed

    Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta; Brunetti, Giacomina

    2015-01-01

    Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma. PMID:26000310

  7. Bone-immune cell crosstalk: bone diseases.

    PubMed

    Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta; Brunetti, Giacomina

    2015-01-01

    Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma.

  8. Physiological effects of microgravity on bone cells.

    PubMed

    Arfat, Yasir; Xiao, Wei-Zhong; Iftikhar, Salman; Zhao, Fan; Li, Di-Jie; Sun, Yu-Long; Zhang, Ge; Shang, Peng; Qian, Ai-Rong

    2014-06-01

    Life on Earth developed under the influence of normal gravity (1g). With evidence from previous studies, scientists have suggested that normal physiological processes, such as the functional integrity of muscles and bone mass, can be affected by microgravity during spaceflight. During the life span, bone not only develops as a structure designed specifically for mechanical tasks but also adapts for efficiency. The lack of weight-bearing forces makes microgravity an ideal physical stimulus to evaluate bone cell responses. One of the most serious problems induced by long-term weightlessness is bone mineral loss. Results from in vitro studies that entailed the use of bone cells in spaceflights showed modification in cell attachment structures and cytoskeletal reorganization, which may be involved in bone loss. Humans exposed to microgravity conditions experience various physiological changes, including loss of bone mass, muscle deterioration, and immunodeficiency. In vitro models can be used to extract valuable information about changes in mechanical stress to ultimately identify the different pathways of mechanotransduction in bone cells. Despite many in vivo and in vitro studies under both real microgravity and simulated conditions, the mechanism of bone loss is still not well defined. The objective of this review is to summarize the recent research on bone cells under microgravity conditions based on advances in the field.

  9. Bone mineral content in normal US whites

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.; Cameron, J. R.

    1974-01-01

    Photon absorptiometry with I-125 was used to measure the bone mineral content and the bone width on 763 children between the ages of 5 and 19 years, on 538 adults between the ages of 20 and 49 years, and on 550 adults over the age of 50 years. Measurements were made on the midshaft and the distal end of the radius and the ulna, and on the humerus midshaft. This has permitted analysis of annual bone growth in children, and the rate of change in elderly adults per decade. Male and female children grew at about the same rate until adolescence. After adolescence females grew at a slow rate until the mid-twenties, while males reached adult mineralization by age 20. Males remained relatively constant until the fifties, and females began their decline in the forties.

  10. Chondrogenesis of periodontal ligament stem cells by transforming growth factor-β3 and bone morphogenetic protein-6 in a normal healthy impacted third molar.

    PubMed

    Choi, Sunyoung; Cho, Tae-Jun; Kwon, Soon-Keun; Lee, Gene; Cho, Jaejin

    2013-03-01

    The periodontal ligament-derived mesenchymal stem cell is regarded as a source of adult stem cells due to its multipotency. However, the proof of chondrogenic potential of the cells is scarce. Therefore, we investigated the chondrogenic differentiation capacity of periodontal ligament derived mesenchymal stem cells induced by transforming growth factor (TGF)-β3 and bone morphogenetic protein (BMP)-6. After isolation of periodontal ligament stem cells (PDLSCs) from human periodontal ligament, the cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 20% fetal bovine serum (FBS). A mechanical force initiated chondrogenic differentiation of the cells. For chondrogenic differentiation, 10 µg·L⁻¹ TGF-β3 or 100 µg∙L⁻¹ BMP-6 and the combination treating group for synergistic effect of the growth factors. We analyzed the PDLSCs by fluorescence-activated cell sorting and chondrogenesis were evaluated by glycosaminoglycans assay, histology, immunohistochemistry and genetic analysis. PDLSCs showed mesenchymal stem cell properties proved by FACS analysis. Glycosaminoglycans contents were increased 217% by TGF-β3 and 220% by BMP-6. The synergetic effect of TGF-β3 and BMP-6 were shown up to 281% compared to control. The combination treatment increased Sox9, aggrecan and collagen II expression compared with not only controls, but also TGF-β3 or BMP-6 single treatment dramatically. The histological analysis also indicated the chondrogenic differentiation of PDLSCs in our conditions. The results of the present study demonstrate the potential of the dental stem cell as a valuable cell source for chondrogenesis, which may be applicable for regeneration of cartilage and bone fracture in the field of cell therapy.

  11. Occurrence and pattern of long bone fractures in growing dogs with normal and osteopenic bones.

    PubMed

    Kumar, K; Mogha, I V; Aithal, H P; Kinjavdekar, P; Singh, G R; Pawde, A M; Kushwaha, R B

    2007-11-01

    A retrospective study was undertaken to record the occurrence and pattern of long bone fractures, and the efficacy of Intramedullary (IM) Steinmann pin fixing in growing dogs. All the records of growing dogs during a 10-year-period were screened to record the cause of trauma, the age and sex of the animal, the bone involved, the type and location of the fracture, the status of fixation, alignment, maintenance of fixation and fracture healing. The results were analysed and comparisons were made between growing dogs with normal and osteopenic bones. Among the 310 cases of fractures recorded, the bones were osteopenic in 91 cases (29%). Minor trauma was the principal cause of fracture in dogs with osteopenia (25%), and indigenous breeds were most commonly affected (38%). Fractures in dogs with osteopenic bones were most commonly recorded in the age group of 2-4 months (53%), whereas fractures in normal dogs were almost equally distributed between 2 and 8 months of age. Male dogs were affected significantly more often in both groups. In osteopenic bones, most fractures were recorded in the femur (56%), and they were distributed equally along the length of the bone. Whereas in normal bones, fractures were almost equally distributed in radius/ulna, femur and tibia, and were more often recorded at the middle and distal third of long bones. Oblique fractures were most common in both groups; however, comminuted fractures were more frequent in normal bones, whereas incomplete fractures were more common in osteopenic bones. Ninety-nine fracture cases treated with IM pinning (66 normal, 33 osteopenic) were evaluated for the status of fracture reduction and healing. In a majority of the cases (61%) with osteopenic bones, the diameter of the pin was relatively smaller than the diameter of the medullary cavity (<70-75%), whereas in 68% of the cases in normal bones the pin diameter was optimum. The status of fracture fixing was satisfactory to good in significantly more

  12. Cell therapy for bone repair.

    PubMed

    Rosset, P; Deschaseaux, F; Layrolle, P

    2014-02-01

    When natural bone repair mechanisms fail, autologous bone grafting is the current standard of care. The osteogenic cells and bone matrix in the graft provide the osteo-inductive and osteo-conductive properties required for successful bone repair. Bone marrow (BM) mesenchymal stem cells (MSCs) can differentiate into osteogenic cells. MSC-based cell therapy holds promise for promoting bone repair. The amount of MSCs available from iliac-crest aspirates is too small to be clinically useful, and either concentration or culture must therefore be used to expand the MSC population. MSCs can be administered alone via percutaneous injection or implanted during open surgery with a biomaterial, usually biphasic hydroxyapatite/β-calcium-triphosphate granules. Encouraging preliminary results have been obtained in patients with delayed healing of long bone fractures or avascular necrosis of the femoral head. Bone tissue engineering involves in vitro MSC culturing on biomaterials to obtain colonisation of the biomaterial and differentiation of the cells. The biomaterial-cell construct is then implanted into the zone to be treated. Few published data are available on bone tissue engineering. Much work remains to be done before determining whether this method is suitable for the routine filling of bone tissue defects. Increasing cell survival and promoting implant vascularisation are major challenges. Improved expertise with culturing techniques, together with the incorporation of regulatory requirements, will open the way to high-quality clinical trials investigating the usefulness of cell therapy as a method for achieving bone repair. Cell therapy avoids the drawbacks of autologous bone grafting, preserving the bone stock and diminishing treatment invasiveness.

  13. Microgravity and bone cell mechanosensitivity.

    PubMed

    Klein-Nulend, J; Bacabac, R G; Veldhuijzen, J P; Van Loon, J J W A

    2003-01-01

    The capacity of bone tissue to alter its mass and structure in response to mechanical demands has long been recognized but the cellular mechanisms involved remained poorly understood. Bone not only develops as a structure designed specifically for mechanical tasks, but it can adapt during life toward more efficient mechanical performance. Mechanical adaptation of bone is a cellular process and needs a biological system that senses the mechanical loading. The loading information must then be communicated to the effector cells that form new bone or destroy old bone. The in vivo operating cell stress derived from bone loading is likely the flow of interstitial fluid along the surface of osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin (PG) synthesis and expression of prostaglandin G/H synthase inducible cyclooxygenase (COX-2). Cultured bone cells also rapidly produce nitric oxide (NO) in response to fluid flow as a result of activation of endothelial nitric oxide synthase (ecNOS), which enzyme also mediates the adaptive response of bone tissue to mechanical loading. Earlier studies have shown that the disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction. Microgravity, or better near weightlessness, is associated with the loss of bone in astronauts, and has catabolic effects on mineral metabolism in bone organ cultures. This might be explained as resulting from an exceptional form of disuse under near weightlessness conditions. However, under near weightlessness conditions the assembly of cytoskeletal elements may be altered since it has been shown that the direction of the gravity vector determines microtubular pattern formation in vivo. We found earlier that the transduction of mechanical signals in bone cells also involves the cytoskeleton and is related to PGE2 production. Therefore it is possible that the

  14. Microgravity and bone cell mechanosensitivity

    NASA Astrophysics Data System (ADS)

    Klein-Nulend, J.; Bacabac, R. G.; Veldhuijzen, J. P.; Van Loon, J. J. W. A.

    2003-10-01

    The capacity of bone tissue to alter its mass and structure in response to mechanical demands has long been recognized but the cellular mechanisms involved remained poorly understood. Bone not only develops as a structure designed specifically for mechanical tasks, but it can adapt during life toward more efficient mechanical performance. Mechanical adaptation of bone is a cellular process and needs a biological system that senses the mechanical loading. The loading information must then be communicated to the effector cells that form new bone or destroy old bone. The in vivo operating cell stress derived from bone loading is likely the flow of interstitial fluid along the surface of osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin (PG) synthesis and expression of prostaglandin G/H synthase inducible cyclooxygenase (COX-2). Cultured bone cells also rapidly produce nitric oxide (NO) in response to fluid flow as a result of activation of endothelial nitric oxide synthase (ecNOS), which enzyme also mediates the adaptive response of bone tissue to mechanical loading. Earlier studies have shown that the disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction. Microgravity, or better near weightlessness, is associated with the loss of bone in astronauts, and has catabolic effects on mineral metabolism in bone organ cultures. This might be explained as resulting from an exceptional form of disuse under near weightlessness conditions. However, under near weightlessness conditions the assembly of cytoskeletal elements may be altered since it has been shown that the direction of the gravity vector determines microtubular pattern formation in vivo. We found earlier that the transduction of mechanical signals in bone cells also involves the cytoskeleton and is related to PGEZ production. Therefore it is possible that the

  15. The normal Langerhans cell and the LCH cell.

    PubMed

    Chu, T; Jaffe, R

    1994-09-01

    The epidermal Langerhans cell is the bone marrow-derived dendritic, antigen-presenting cell of the skin. It is characterised by a unique intracytoplasmic organelle--the Birbeck granule--and constitutively expresses class II MHC molecules and the CD1a glycoprotein. The Langerhans cell represents one of the most potent antigen-presenting cells of the body, and fulfils an important role in detecting foreign antigen entering the body through the skin and in immune surveillance. The distribution of Langerhans cells is restricted to the skin, lymph nodes, bronchial mucosa and thymus. The discovery by Nézelof in 1973 that the lesional cells in the disease then called 'Histiocytosis X' contained Birbeck granules established the close relationship between the Langerhans cell and this disease and led ultimately to the adoption of the name Langerhans cell histiocytosis to replace the older term. The LCH cell expresses the phenotype of a Langerhans cell apparently 'fixed' at an early stage of cell activation. The LCH cell is, however, functionally defective in antigen presentation, and the tissue distribution of the disease--affecting bone, skin, lymph node, lung, liver, spleen, CNS, gastro-intestinal tract and bone marrow--is quite different from the normal distribution of the Langerhans cell. Studies are now under way throughout the world to investigate the relationship between the normal Langerhans cell and the LCH cell. Specifically we need to identify whether the LCH cell is a cell arrested at a specific time in normal Langerhans cell ontogeny or if it represents a response to a biological insult to the mature Langerhans cell or its precursors. PMID:7521202

  16. Microgravity and Bone Cell Mechanosensitivity

    NASA Astrophysics Data System (ADS)

    Klein-Nulend, J.; Bacabac, R.; Veldhuijzen, J.; van Loon, J.

    The capacity of bone tissue to alter its mass and structure in response to mechanical demands has long been recognized but the cellular mechanisms involved remained poorly understood. Bone not only develops as a structure designed specifically for mechanical tasks, but it can adapt during life toward more efficient mechanical performance. Mechanical adaptation of bone is a cellular process and needs a biological system that senses the mechanical loading. The loading information must then be communicated to the effector cells that form new bone or destroy old bone.The in vivo operating cell stress derived from bone loading is likely flow of interstitial fluid along the surface of osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin (PG) synthesis and expression of prostaglandin G/H synthase inducible cyclooxygenase (COX-2). Cultured bone cells also rapidly produce nitric oxide (NO) in response to fluid flow as a result of activation of endothelial nitric oxide synthase (ecNOS), which enzyme also mediates the adaptive response of bone tissue to mechanical loading. Disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction.Microgravity, or better near weightlessness, has catabolic effects on the skeleton of astronauts, and on mineral metabolism in bone organ cultures. This might be explained as resulting from an exceptional form of disuse under near weightlessness conditions. However, under near weightlessness conditions the assembly of cytoskeletal elements may be altered since it has been shown that the direction of the gravity vector determines microtubular pattern formation in vivo. We found that the transduction of mechanical signals in bone cells also involves the cytoskeleton and is related to PGE2 production. Therefore it is possible that the mechanosensitivity of bone cells is altered under near weightlessness conditions

  17. Bone cells-biomaterials interactions.

    PubMed

    Marquis, Marie-Eve; Lord, Etienne; Bergeron, Eric; Drevelle, Olivier; Park, Hyunjin; Cabana, Francois; Senta, Helena; Faucheux, Nathalie

    2009-01-01

    With the aging population, the incidence of bone defects due to fractures, tumors and infection will increase. Therefore, bone replacement will become an ever bigger and more costly problem. The current standard for bone replacement is autograft, because these transplants are osteoconductive and osteoinductive. However, harvesting an autograft requires additional surgery at the donor site that is related to high level of morbidity. In addition, the quantity of bone tissue that can be harvested is limited. These limitations have necessitated the pursuit of alternatives using biomaterials. The control of bone tissue cell adhesion to biomaterials is an important requirement for the successful incorporation of implants or the colonization of scaffolds for tissue repair. Controlling cells-biomaterials interactions appears of prime importance to influence subsequent biological processes such as cell proliferation and differentiation. Therefore, interactions of cells with biomaterials have been widely studied especially on two-dimensional systems. This review focuses on these interactions.

  18. Metastatic prostatic pulmonary nodules with normal bone image

    SciTech Connect

    Petras, A.F.; Wollett, F.C.

    1983-11-01

    Asymptomatic prostatic caricnoma presented as multiple bilateral pulmonary modules in a patient without any evidence of skeletal involvement by normal bone image. Percutaneous biopsy provided the initial clue to diagnosis. The authors recommend that asymptomatic prostatic carcinoma be included in the differential diagnosis of pulmonary nodules, even when there is no evidence of skeletal metastasis.

  19. Flow cytometric differentiation of abnormal and normal plasma cells in the bone marrow in patients with multiple myeloma and its precursor diseases.

    PubMed

    Tembhare, Prashant R; Yuan, Constance M; Venzon, David; Braylan, Raul; Korde, Neha; Manasanch, Elisabet; Zuchlinsky, Diamond; Calvo, Katherine; Kurlander, Roger; Bhutani, Manisha; Tageja, Nishant; Maric, Irina; Mulquin, Marcia; Roschewski, Mark; Kwok, Mary; Liewehr, David; Landgren, Ola; Stetler-Stevenson, Maryalice

    2014-03-01

    Flow cytometric (FC) enumeration of abnormal plasma cells (APCs) for diagnosis and prognostication of plasma cell dyscrasias (PCD) is challenging. We studied antigen expression in normal plasma cells (NPC) (N = 34) and APC in a series of unselected PCD (N = 59). NPC subpopulations often demonstrated CD19(-), CD20(+), CD45(-) or dim and CD56(+), an immunophenotype observed in PCD. However abnormal CD81 was only observed in APCs (APC detection sensitivity 95%; specificity 100%). We evaluated differences in antigen expression patterns among MGUS (N = 14), SMM (N = 35) and MM (N = 10), finding the combination of CD45 and CD56 helpful in differentiating MGUS from SMM and MM (p = 0.0002). PMID:24462038

  20. Cell proliferation in normal epidermis

    SciTech Connect

    Weinstein, G.D.; McCullough, J.L.; Ross, P.

    1984-06-01

    A detailed examination of cell proliferation kinetics in normal human epidermis is presented. Using tritiated thymidine with autoradiographic techniques, proliferative and differentiated cell kinetics are defined and interrelated. The proliferative compartment of normal epidermis has a cell cycle duration (Tc) of 311 h derived from 3 components: the germinative labeling index (LI), the duration of DNA synthesis (ts), and the growth fraction (GF). The germinative LI is 2.7% +/- 1.2 and ts is 14 h, the latter obtained from a composite fraction of labeled mitoses curve obtained from 11 normal subjects. The GF obtained from the literature and from human skin xenografts to nude mice is estimated to be 60%. Normal-appearing epidermis from patients with psoriasis appears to have a higher proliferation rate. The mean LI is 4.2% +/- 0.9, approximately 50% greater than in normal epidermis. Absolute cell kinetic values for this tissue, however, cannot yet be calculated for lack of other information on ts and GF. A kinetic model for epidermal cell renewal in normal epidermis is described that interrelates the rate of birth/entry, transit, and/or loss of keratinocytes in the 3 epidermal compartments: proliferative, viable differentiated (stratum malpighii), and stratum corneum. Expected kinetic homeostasis in the epidermis is confirmed by the very similar ''turnover'' rates in each of the compartments that are, respectively, 1246, 1417, and 1490 cells/day/mm2 surface area. The mean epidermal turnover time of the entire tissue is 39 days. The Tc of 311 h in normal cells in 8-fold longer than the psoriatic Tc of 36 h and is necessary for understanding the hyperproliferative pathophysiologic process in psoriasis.

  1. Microgravity and bone cell mechanosensitivity.

    PubMed

    Burger, E H; Klein-Nulend, J

    1998-05-01

    Bone cells, in particular osteocytes, are extremely sensitive to mechanical stress, a quality that is probably linked to the process of mechanical adaptation (Wolff's law). The in vivo operating cell stress derived from bone loading is likely a flow of an interstitial fluid along the surface of the osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin synthesis and expression of inducible prostaglandin G/H synthase (PGHS-2 or inducible cyclooxygenase, COX-2), an enzyme that mediates the induction of bone formation by mechanical loading in vivo. Disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction. Microgravity has catabolic effects on the skeleton of astronauts, as well as on mineral metabolism in bone organ cultures. This might be explained simply as resulting from an exceptional form of disuse under weightlessness conditions. However, under microgravity conditions, the assembly of cytoskeletal elements may be altered, as gravity has been shown to determine the pattern of microtubular orientation assembled in vitro. Therefore, it is possible that the mechanosensitivity of bone cells is altered under microgravity conditions, and that this abnormal mechanosensation contributes to the disturbed bone metabolism observed in astronauts. In vitro experiments on the International Space Station should test this hypothesis experimentally.

  2. Bone Marrow Mesenchymal Stromal Cells from Patients with Acute and Chronic Graft-versus-Host Disease Deploy Normal Phenotype, Differentiation Plasticity, and Immune-Suppressive Activity.

    PubMed

    Copland, Ian B; Qayed, Muna; Garcia, Marco A; Galipeau, Jacques; Waller, Edmund K

    2015-05-01

    The success of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is often limited by the development of acute and/or chronic graft-versus-host disease (GVHD). The lack of effective therapies to treat steroid-refractory GVHD patients has bolstered clinical evaluation of mesenchymal stromal cell (MSC) therapy for GVHD. Currently, testing of MSCs for the treatment of GVHD has exclusively used allogeneic MSCs despite emerging evidence that MSCs lose their immunoprivileged status in vivo. We hypothesized that autologous MSCs could be a viable alternative MSC source for treating active GVHD. MSCs were isolated and successfully expanded from the bone marrow of 12 volunteers (ages 2 to 55 years) who had allo-HSCT transplants and subsequently developed GVHD. MSCs from subjects with GVHD demonstrated an initial lag in growth compared with healthy control subjects; however, this lag disappeared with continued ex vivo expansion. Immunophenotype and mesodermal differentiation capacity of MSCs from GVHD patients were indistinguishable from that of healthy control MSCs. In vitro immunomodulatory functional analyses also demonstrated that GVHD MSCs were equivalent to healthy control MSCs with regards to dose dependently suppressing T cell proliferation and up-regulating indoleamine 2,3-dioxygenase expression when primed with IFN-γ. Single tandem repeat chimerism analyses further demonstrated that MSCs expanded from GVHD patients were exclusively recipient derived. Based on these data, we conclude that recipient-derived MSCs from patients with GVHD are analogous to MSCs from healthy volunteers and represent a viable option for clinical testing as an immunomodulatory option for symptomatic GVHD.

  3. Mesenchymal progenitor cells in red and yellow bone marrow.

    PubMed

    Gurevitch, O; Slavin, S; Resnick, I; Khitrin, S; Feldman, A

    2009-01-01

    Marrow cavities in all bones of newborn mammals contain haematopoietic tissue and stromal microenvironment that support haematopoiesis (haematopoietic microenvironment), known as red bone marrow (BM). From the early postnatal period onwards, the haematopoietic microenvironment, mainly in tubular bones of the extremities, is replaced by mesenchymal cells that accumulate lipid drops, known as yellow BM, whereas haematopoietic tissue gradually disappears. We analysed the ability of mesenchymal cell progenitors in red and yellow BM to produce bone and haematopoietic microenvironment in vivo after transplantation into normal or haematopoietically deficient (irradiated and old) recipients. We found that (1) normal substitution of red with yellow BM results from a gradual loss of mesenchymal stem cells (MSCs) capable of developing bone and haematopoietic microenvironment; (2) the mesenchymal cell population in tubular bones still containing active haematopoietic tissue gradually becomes depleted of MSCs, starting from a young age; (3) haematopoietic microenvironment is incapable of self-maintenance and its renewal depends on the presence of precursor cells; (4) the mesenchymal cell population remaining in areas with yellow BM contains cells able to develop functionally active haematopoietic microenvironment in conditions of haematopoietic insufficiency. Our data also indicate the possible existence of bi-potential stromal precursor cells producing either bone in normal, or bone together with active haematopoietic microenvironment in irradiated or old recipients. This study opens a spectrum of opportunities for the extension of haematopoietic territories by substituting the fat contents of BM cavities with haematopoietic tissue, thereby improving haematopoiesis compromised by cytotoxic treatments, irradiation, ageing, etc.

  4. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow.

    PubMed

    Yu, Vionnie W C; Saez, Borja; Cook, Colleen; Lotinun, Sutada; Pardo-Saganta, Ana; Wang, Ying-Hua; Lymperi, Stefania; Ferraro, Francesca; Raaijmakers, Marc H G P; Wu, Joy Y; Zhou, Lan; Rajagopal, Jayaraj; Kronenberg, Henry M; Baron, Roland; Scadden, David T

    2015-05-01

    Production of the cells that ultimately populate the thymus to generate α/β T cells has been controversial, and their molecular drivers remain undefined. Here, we report that specific deletion of bone-producing osteocalcin (Ocn)-expressing cells in vivo markedly reduces T-competent progenitors and thymus-homing receptor expression among bone marrow hematopoietic cells. Decreased intrathymic T cell precursors and decreased generation of mature T cells occurred despite normal thymic function. The Notch ligand DLL4 is abundantly expressed on bone marrow Ocn(+) cells, and selective depletion of DLL4 from these cells recapitulated the thymopoietic abnormality. These data indicate that specific mesenchymal cells in bone marrow provide key molecular drivers enforcing thymus-seeding progenitor generation and thereby directly link skeletal biology to the production of T cell-based adaptive immunity.

  5. Computed tomography of temporal bone pneumatization. 1. Normal pattern and morphology

    SciTech Connect

    Virapongse, C.; Sarwar, M.; Bhimani, S.; Sasaki, C.; Shapiro, R.

    1985-09-01

    The pneumatization of 141 normal temporal bones on computed tomography (CT) was evaluated in 100 patients. Because of the controversy surrounding the sclerotic squamomastoid (mastoid), temporal bones with this finding were discarded. A CT index of pneumatization was based on the pneumatized area and the number of cells seen within a representative scanning section. Results suggest that squamomastoid pneumatization follows the classic normal distribution and does not correlate with age, gender, or laterality. A high degree of symmetry was found in 41 patients who had both ears examined. Air-cell configuration was variable. Air-cell size tended to increase progressively from the mastoid antrum. The scutum pseudotumor appearance caused by incomplete pneumatization was seen frequently, and should not be mistaken for mastoiditis or an osteoma. Thick sections producing partial-volume effect may also produce this spurious finding. Therefore, when searching for mucosal thickening due to mastoiditis, large air cells should preferably be analyzed.

  6. Choline kinase beta is required for normal endochondral bone formation

    PubMed Central

    Li, Zhuo; Wu, Gengshu; Sher, Roger B.; Khavandgar, Zohreh; Hermansson, Martin; Cox, Gregory A.; Doschak, Michael R.; Murshed, Monzur; Beier, Frank; Vance, Dennis E.

    2014-01-01

    Background Choline kinase has three isoforms encoded by the genes Chka and Chkb. Inactivation of Chka in mice results in embryonic lethality, whereas Chkb−/− mice display neonatal forelimb bone deformations. Methods To understand the mechanisms underlying the bone deformations, we compared the biology and biochemistry of bone formation from embryonic to young adult wild-type (WT) and Chkb−/− mice. Results The deformations are specific to the radius and ulna during the late embryonic stage. The radius and ulna of Chkb−/− mice display expanded hypertrophic zones, unorganized proliferative columns in their growth plates, and delayed formation of primary ossification centers. The differentiation of chondrocytes of Chkb−/− mice was impaired, as was chondrocyte proliferation and expression of matrix metalloproteinases 9 and 13. In chondrocytes from Chkb−/− mice, phosphatidylcholine was slightly lower than in WT mice whereas the amount of phosphocholine was decreased by approximately 75%. In addition, the radius and ulna from Chkb−/− mice contained fewer osteoclasts along the cartilage/bone interface. Conclusions Chkb has a critical role in the normal embryogenic formation of the radius and ulna in mice. PMID:24637075

  7. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow

    PubMed Central

    Yu, Vionnie W.C.; Saez, Borja; Cook, Colleen; Lotinun, Sutada; Pardo-Saganta, Ana; Wang, Ying-Hua; Lymperi, Stefania; Ferraro, Francesca; Raaijmakers, Marc H.G.P.; Wu, Joy Y.; Zhou, Lan; Rajagopal, Jayaraj; Kronenberg, Henry M.; Baron, Roland

    2015-01-01

    Production of the cells that ultimately populate the thymus to generate α/β T cells has been controversial, and their molecular drivers remain undefined. Here, we report that specific deletion of bone-producing osteocalcin (Ocn)-expressing cells in vivo markedly reduces T-competent progenitors and thymus-homing receptor expression among bone marrow hematopoietic cells. Decreased intrathymic T cell precursors and decreased generation of mature T cells occurred despite normal thymic function. The Notch ligand DLL4 is abundantly expressed on bone marrow Ocn+ cells, and selective depletion of DLL4 from these cells recapitulated the thymopoietic abnormality. These data indicate that specific mesenchymal cells in bone marrow provide key molecular drivers enforcing thymus-seeding progenitor generation and thereby directly link skeletal biology to the production of T cell–based adaptive immunity. PMID:25918341

  8. Generation of clinical grade human bone marrow stromal cells for use in bone regeneration.

    PubMed

    Robey, Pamela G; Kuznetsov, Sergei A; Ren, Jiaqiang; Klein, Harvey G; Sabatino, Marianna; Stroncek, David F

    2015-01-01

    In current orthopaedic practice, there is a need to increase the ability to reconstruct large segments of bone lost due to trauma, resection of tumors and skeletal deformities, or when normal regenerative processes have failed such as in non-unions and avascular necrosis. Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells), when used in conjunction with appropriate carriers, represent a means by which to achieve bone regeneration in such cases. While much has been done at the bench and in pre-clinical studies, moving towards clinical application requires the generation of clinical grade cells. What is described herein is an FDA-approved cell manufacturing procedure for the ex vivo expansion of high quality, biologically active human BMSCs. This article is part of a Special Issue entitled Stem Cells and Bone. PMID:25064527

  9. Cancer Cell Colonisation in the Bone Microenvironment

    PubMed Central

    Kan, Casina; Vargas, Geoffrey; Le Pape, François; Clézardin, Philippe

    2016-01-01

    Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow. PMID:27782035

  10. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue.

    PubMed

    Mullender, M; El Haj, A J; Yang, Y; van Duin, M A; Burger, E H; Klein-Nulend, J

    2004-01-01

    Mechanical force plays an important role in the regulation of bone remodelling in intact bone and bone repair. In vitro, bone cells demonstrate a high responsiveness to mechanical stimuli. Much debate exists regarding the critical components in the load profile and whether different components, such as fluid shear, tension or compression, can influence cells in differing ways. During dynamic loading of intact bone, fluid is pressed through the osteocyte canaliculi, and it has been demonstrated that fluid shear stress stimulates osteocytes to produce signalling molecules. It is less clear how mechanical loads act on mature osteoblasts present on the surface of cancellous or trabecular bone. Although tissue strain and fluid shear stress both cause cell deformation, these stimuli could excite different signalling pathways. This is confirmed by our experimental findings, in human bone cells, that strain applied through the substrate and fluid flow stimulate the release of signalling molecules to varying extents. Nitric oxide and prostaglandin E2 values increased by between two- and nine-fold after treatment with pulsating fluid flow (0.6 +/- 0.3 Pa). Cyclic strain (1000 microstrain) stimulated the release of nitric oxide two-fold, but had no effect on prostaglandin E2. Furthermore, substrate strains enhanced the bone matrix protein collagen I two-fold, whereas fluid shear caused a 50% reduction in collagen I. The relevance of these variations is discussed in relation to bone growth and remodelling. In applications such as tissue engineering, both stimuli offer possibilities for enhancing bone cell growth in vitro.

  11. Evidence for multiple bone resorption-stimulating factors produced by normal human keratinocytes in culture.

    PubMed

    Fried, R M; Voelkel, E F; Rice, R H; Levine, L; Tashjian, A H

    1988-06-01

    Conditioned medium from cultured normal human foreskin keratinocytes enhanced the release of calcium from neonatal mouse calvaria in organ culture. Unfractionated keratinocyte-conditioned medium (KCM) stimulated bone resorption in a dose-dependent manner, but it did not increase the concentration of prostaglandin E2 (PGE2) in the bone culture medium until a maximal dose of KCM for resorption was used. Furthermore, inhibitors of PGE2 synthesis, indomethacin, ibuprofen, and piroxicam, did not inhibit KCM-induced calcium release. High concentrations of KCM increased cAMP production by calvaria in the presence of isobutylmethylxanthine, but the increase was small compared with that produced by a dose of bovine PTH that caused a similar level of bone resorption. The bone resorption-stimulating activity of KCM was not lost after incubation at 56 C for 60 min, but it was lost after heating at 100 C for 10 min. Fractionation of KCM by gel filtration chromatography revealed two distinct peaks of bone resorption-stimulating activity. One peak, KCMI, caused a significant increase in bone resorption at 2 micrograms protein/ml. KCMI did not increase medium PGE2, and inhibition of PGE2 synthesis in bone had no effect on KCMI-induced bone resorption. KCMI failed to increase cAMP production by human osteosarcoma SaOS-2 cells. Another peak, KCMII, caused a dose-dependent increase in bone resorption, and a significant increase in medium calcium was noted at a 20-fold lower concentration (0.1 microgram protein/ml) than with KCMI. In contrast to KCMI, the increase in bone resorption stimulated by KCMII was accompanied by a parallel increase in the production of PGE2, and inhibition of PGE2 synthesis completely inhibited the bone resorption-stimulating activity of KCMII. KCMII also caused an increase in cAMP production by SaOS-2 cells. We conclude that KCM contains at least two distinct bone resorption-stimulating factors, one of which acts via a PG-mediated mechanism and the other by

  12. [Bone and Stem Cells. Intravital imaging of bone marrow microenvironment].

    PubMed

    Mizuno, Hiroki; Kikuta, Junichi; Ishii, Masaru

    2014-04-01

    Various kinds of cell types, such as osteoclasts, osteoblasts, hematopoietic cells, and mesenchymal cells, have been reported to exist in the bone marrow and communicate with each other. Although there have been many previous studies about bone marrow microenvironment, most of them were analyzed by conventional methods such as histological analysis and flow cytometry. These methods could not observe the dynamic cell movement in living bone marrow. Recently rapid development of fluorescent imaging techniques enables us to understand the cellular dynamics in vivo . That's why we have originally established an advanced imaging system for visualizing living bone tissues with intravital two-photon microscopy. Here we show the latest data and the detailed methodology of intravital imaging of bone marrow microenvironment, and also discuss its further application.

  13. Remodelling of bone and bones: growth of normal and transplanted caudal vertebrae.

    PubMed

    Feik, S A; Storey, E

    1983-01-01

    Changes in the rate of growth, shape and structure of the 8th, 16th and 22nd caudal vertebrae of 4 and 24-27 days old Sprague-Dawley rats were studied in situ and in three different non-functional transplantation sites for 12 weeks. With increasing size, maturity and age the three vertebrae showed progressively decreasing growth, changes in shape and structural abnormalities. The smallest anlages grew faster and matured sooner than normal, so that their length equalled that of controls. Central endochondral necrosis in older bones was associated with decreased longitudinal growth but in some younger ones, despite a perforation of the cartilage and herniation of the nucleus pulposus into the marrow cavity of the shaft, growth proceeded at near normal rates. The free ends of older, larger transplants grew faster than the abutting ends joined by joint connective tissue, indicating that central necrosis of cartilage resulted from impaired nutrient diffusion. The results suggest that the cartilage model may possess an inherent capacity to produce a certain limited amount of bone tissue which may be distributed either in the form of long and thin or short and inwaisted bones, depending on the balance of forces between interstitial cartilage expansion and the restraining ensheathing periosteal-perichondrial tissues. This basic form may be modified further by functional forces.

  14. High-Dose α-Tocopherol Supplementation Does Not Induce Bone Loss in Normal Rats.

    PubMed

    Kasai, Shunji; Ito, Akemi; Shindo, Kaori; Toyoshi, Tohru; Bando, Masahiro

    2015-01-01

    Oxidative stress affects bone turnover. Preventative effects of antioxidants such as vitamin E on reduced bone mineral density and fractures associated with aging, osteoporosis, and smoking have been examined in animals and humans. The effects of vitamin E (α-tocopherol; αT) on bone health have yielded conflicting and inconclusive results from animal studies. In this study, to determine the bone effects of αT, we investigated the in vivo effects of αT on the bone mineral density, bone mass, bone microstructure, bone resorption, and osteogenesis through peripheral quantitative computed tomography (pQCT) measurements, micro-computed tomography (micro-CT) analyses, and bone histomorphometry of lumbar vertebrae and femurs in normal female Wistar rats fed diets containing αT in different quantities (0, 30, 120, or 600 mg/kg diet) for 8 weeks. To validate our hypotheses regarding bone changes, we examined ovariectomized rats as an osteoporosis model and control sham-operated rats in parallel. As expected, ovariectomized rats had reduced bone mineral density in lumbar vertebrae and the distal metaphyses of their femurs, reduced bone mass and deteriorated microstructure of cancellous bones in the vertebral body and distal femur metaphyses, and reduced bone mass due to resorption-dominant enhanced bone turnover in secondary cancellous bones in these sites. In comparison, αT administered to normal rats, even at the highest dose, did not induce reduced bone mineral density of lumbar vertebrae and femurs or a reduced bone mass or fragile microstructure of cancellous bones of the vertebral body and distal femur metaphyses. Instead, αT-fed rats showed a tendency for an osteogenesis-dominant bone mass increase in secondary cancellous bones in the vertebral body, in which active bone remodeling occurs. Thus, αT consumption may have beneficial effects on bone health. PMID:26147575

  15. Reversing bone loss by directing mesenchymal stem cells to bone.

    PubMed

    Yao, Wei; Guan, Min; Jia, Junjing; Dai, Weiwei; Lay, Yu-An E; Amugongo, Sarah; Liu, Ruiwu; Olivos, David; Saunders, Mary; Lam, Kit S; Nolta, Jan; Olvera, Diana; Ritchie, Robert O; Lane, Nancy E

    2013-09-01

    Bone regeneration by systemic transplantation of mesenchymal stem cells (MSCs) is problematic due to the inability to control the MSCs' commitment, growth, and differentiation into functional osteoblasts on the bone surface. Our research group has developed a method to direct the MSCs to the bone surface by conjugating a synthetic peptidomimetic ligand (LLP2A) that has high affinity for activated α4β1 integrin on the MSC surface, with a bisphosphonates (alendronate) that has high affinity for bone (LLP2A-Ale), to direct the transplanted MSCs to bone. Our in vitro experiments demonstrated that mobilization of LLP2A-Ale to hydroxyapatite accelerated MSC migration that was associated with an increase in the phosphorylation of Akt kinase and osteoblastogenesis. LLP2A-Ale increased the homing of the transplanted MSCs to bone as well as the osteoblast surface, significantly increased the rate of bone formation and restored both trabecular and cortical bone loss induced by estrogen deficiency or advanced age in mice. These results support LLP2A-Ale as a novel therapeutic option to direct the transplanted MSCs to bone for the treatment of established bone loss related to hormone deficiency and aging.

  16. Isolation and identification of normal killer cells from Syrian hamsters

    SciTech Connect

    Matveeva, V.A.; Klyuchareva, T.E.

    1986-09-01

    This paper gives data on isolation of normal killer cells from the blood and various tissues of Syrian hamsters in a Percoll density gradient and their identification on the basis of morphologic criteria and cytotoxic activity (CTA). CTA of the isolated cells was studied in the cytotoxic test with target cells of a human MOLT-4 thymoma cell labeled with /sup 51/Cr. Isolation of large granular lymphocytes from blood, spleen, and bone marrow of Syrian hamsters in Percoll density gradient is shown in the results of five experiments used for cells of each type.

  17. Renal Cell Carcinoma Metastasized to Pagetic Bone

    PubMed Central

    Ramirez, Ashley; Liu, Bo; Rop, Baiywo; Edison, Michelle; Valente, Michael

    2016-01-01

    Paget’s disease of the bone, historically known as osteitis deformans, is an uncommon disease typically affecting individuals of European descent. Patients with Paget’s disease of the bone are at increased risk for primary bone neoplasms, particularly osteosarcoma. Many cases of metastatic disease to pagetic bone have been reported. However, renal cell carcinoma metastasized to pagetic bone is extremely rare. A 94-year-old male presented to the emergency department complaining of abdominal pain. A computed tomography scan of the abdomen demonstrated a large mass in the right kidney compatible with renal cell carcinoma. The patient was also noted to have Paget’s disease of the pelvic bones and sacrum. Within the pagetic bone of the sacrum, there was an enhancing mass compatible with renal cell carcinoma. A subsequent biopsy of the renal lesion confirmed renal cell carcinoma. Paget’s disease of the bone places the patient at an increased risk for bone neoplasms. The most commonly reported sites for malignant transformation are the femur, pelvis, and humerus. In cases of malignant transformation, osteosarcoma is the most common diagnosis. Breast, lung, and prostate carcinomas are the most common to metastasize to pagetic bone. Renal cell carcinoma associated with Paget’s disease of the bone is very rare, with only one prior reported case. Malignancy in Paget's disease of the bone is uncommon with metastatic disease to pagetic bone being extremely rare. We report a patient diagnosed with concomitant renal cell carcinoma and metastatic disease within Paget’s disease of the sacrum. Further research is needed to assess the true incidence of renal cell carcinoma associated with pagetic bone.

  18. Renal Cell Carcinoma Metastasized to Pagetic Bone.

    PubMed

    Ramirez, Ashley; Liu, Bo; Rop, Baiywo; Edison, Michelle; Valente, Michael; Burt, Jeremy

    2016-01-01

    Paget's disease of the bone, historically known as osteitis deformans, is an uncommon disease typically affecting individuals of European descent. Patients with Paget's disease of the bone are at increased risk for primary bone neoplasms, particularly osteosarcoma. Many cases of metastatic disease to pagetic bone have been reported. However, renal cell carcinoma metastasized to pagetic bone is extremely rare. A 94-year-old male presented to the emergency department complaining of abdominal pain. A computed tomography scan of the abdomen demonstrated a large mass in the right kidney compatible with renal cell carcinoma. The patient was also noted to have Paget's disease of the pelvic bones and sacrum. Within the pagetic bone of the sacrum, there was an enhancing mass compatible with renal cell carcinoma. A subsequent biopsy of the renal lesion confirmed renal cell carcinoma. Paget's disease of the bone places the patient at an increased risk for bone neoplasms. The most commonly reported sites for malignant transformation are the femur, pelvis, and humerus. In cases of malignant transformation, osteosarcoma is the most common diagnosis. Breast, lung, and prostate carcinomas are the most common to metastasize to pagetic bone. Renal cell carcinoma associated with Paget's disease of the bone is very rare, with only one prior reported case. Malignancy in Paget's disease of the bone is uncommon with metastatic disease to pagetic bone being extremely rare. We report a patient diagnosed with concomitant renal cell carcinoma and metastatic disease within Paget's disease of the sacrum. Further research is needed to assess the true incidence of renal cell carcinoma associated with pagetic bone.

  19. Renal Cell Carcinoma Metastasized to Pagetic Bone.

    PubMed

    Ramirez, Ashley; Liu, Bo; Rop, Baiywo; Edison, Michelle; Valente, Michael; Burt, Jeremy

    2016-01-01

    Paget's disease of the bone, historically known as osteitis deformans, is an uncommon disease typically affecting individuals of European descent. Patients with Paget's disease of the bone are at increased risk for primary bone neoplasms, particularly osteosarcoma. Many cases of metastatic disease to pagetic bone have been reported. However, renal cell carcinoma metastasized to pagetic bone is extremely rare. A 94-year-old male presented to the emergency department complaining of abdominal pain. A computed tomography scan of the abdomen demonstrated a large mass in the right kidney compatible with renal cell carcinoma. The patient was also noted to have Paget's disease of the pelvic bones and sacrum. Within the pagetic bone of the sacrum, there was an enhancing mass compatible with renal cell carcinoma. A subsequent biopsy of the renal lesion confirmed renal cell carcinoma. Paget's disease of the bone places the patient at an increased risk for bone neoplasms. The most commonly reported sites for malignant transformation are the femur, pelvis, and humerus. In cases of malignant transformation, osteosarcoma is the most common diagnosis. Breast, lung, and prostate carcinomas are the most common to metastasize to pagetic bone. Renal cell carcinoma associated with Paget's disease of the bone is very rare, with only one prior reported case. Malignancy in Paget's disease of the bone is uncommon with metastatic disease to pagetic bone being extremely rare. We report a patient diagnosed with concomitant renal cell carcinoma and metastatic disease within Paget's disease of the sacrum. Further research is needed to assess the true incidence of renal cell carcinoma associated with pagetic bone. PMID:27660736

  20. Renal Cell Carcinoma Metastasized to Pagetic Bone

    PubMed Central

    Ramirez, Ashley; Liu, Bo; Rop, Baiywo; Edison, Michelle; Valente, Michael

    2016-01-01

    Paget’s disease of the bone, historically known as osteitis deformans, is an uncommon disease typically affecting individuals of European descent. Patients with Paget’s disease of the bone are at increased risk for primary bone neoplasms, particularly osteosarcoma. Many cases of metastatic disease to pagetic bone have been reported. However, renal cell carcinoma metastasized to pagetic bone is extremely rare. A 94-year-old male presented to the emergency department complaining of abdominal pain. A computed tomography scan of the abdomen demonstrated a large mass in the right kidney compatible with renal cell carcinoma. The patient was also noted to have Paget’s disease of the pelvic bones and sacrum. Within the pagetic bone of the sacrum, there was an enhancing mass compatible with renal cell carcinoma. A subsequent biopsy of the renal lesion confirmed renal cell carcinoma. Paget’s disease of the bone places the patient at an increased risk for bone neoplasms. The most commonly reported sites for malignant transformation are the femur, pelvis, and humerus. In cases of malignant transformation, osteosarcoma is the most common diagnosis. Breast, lung, and prostate carcinomas are the most common to metastasize to pagetic bone. Renal cell carcinoma associated with Paget’s disease of the bone is very rare, with only one prior reported case. Malignancy in Paget's disease of the bone is uncommon with metastatic disease to pagetic bone being extremely rare. We report a patient diagnosed with concomitant renal cell carcinoma and metastatic disease within Paget’s disease of the sacrum. Further research is needed to assess the true incidence of renal cell carcinoma associated with pagetic bone. PMID:27660736

  1. Communication between bone marrow niches in normal bone marrow function and during hemopathies progression

    PubMed Central

    Lamorte, Sara; Remédio, Leonor; Dias, Sergio

    2009-01-01

    Hematopoietic stem cell (HSC) chemotaxis, adhesion, proliferation, quiescence and differentiation are regulated by interactions with bone marrow (BM) niches. Two niches have been identified in the adult BM: the endosteal (close to the bone) and the perivascular niche (close to blood vessels). A vast body of literature has revealed the molecular basis for the interaction of HSCs with the two niches. However, the signals that regulate the communication between the two niches have not been well defined. Taking in consideration several clinical and experimental arguments this review highlights the molecular cues, involved in the communication between the BM niches, which regulate the basic properties of HSCs in physiological and malignant conditions. As such, it aims at clarifying the most important advances in basic and clinical research focusing on the role of different factors in the regulation of the BM microenvironment.

  2. Normal and Leukemic Stem Cell Niches: Insights and Therapeutic Opportunities

    PubMed Central

    Schepers, Koen; Campbell, Timothy B.; Passegué, Emmanuelle

    2015-01-01

    Hematopoietic stem cells (HSC) rely on instructive cues from the bone marrow (BM) niche to maintain their quiescence and adapt blood production to the organism’s needs. Alterations in the BM niche are commonly observed in blood malignancies and directly contribute to the aberrant function of disease-initiating leukemic stem cells (LSC). Here, we review recent insights into the cellular and molecular determinants of the normal HSC niche and describe how genetic changes in stromal cells and leukemia-induced BM niche remodeling contribute to blood malignancies. Moreover, we discuss how these findings can be applied to non cell-autonomous therapies targeting the LSC niche. PMID:25748932

  3. Quantitation of Haemopoietic Cells from Normal and Leukaemic RFM Mice Using an In Vivo Colony Assay

    PubMed Central

    Gordon, M. Y.

    1974-01-01

    The conventional diffusion chamber (CDC) as described by Benestad (1970) had been modified to assay the colony forming capacity of RFM bone marrow and spleen cells in agar diffusion chambers (ADCs). The colonies are morphologically identical to those formed by the CFUc in agar culture in vitro and have an incidence of approximately 1 in 103 normal nucleated bone marrow cells, and 1 in 104 nucleated spleen cells. Comparison of the growth of normal bone marrow cells in CDCs and in ADCs suggests that cell proliferation in diffusion chambers may result from the same precursor cell as detected by colony formation in agar culture in vitro. This proposal is supported by the suicide of approximately 46% of the ADC colony precursor cells following incubation with 3H-labelled thymidine. Colony formation by haemopoietic cells taken from leukaemic mice appears to be due to the proliferation of a remaining normal cell population alone, while the leukaemic cells in the inoculum form a background of uniformly distributed blast cells. In the case of leukaemic cell culture, there are differences in the results from CDCs and ADCs, and data from colonies in leukaemic ADC cultures are similar to those from normal ADC colonies. These comparisons imply that the ADC technique may be used to monitor the functional capacity of normal bone marrow, by its ability to form colonies, during the development of leukaemia. A humoral effect of a leukaemic environment on the growth of normal bone marrow cells in ADCs has also been detected. PMID:4534200

  4. Stem cells in bone tissue engineering.

    PubMed

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Mantalaris, Anathathios; Hwang, Yu-Shik

    2010-12-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone.

  5. Recovery of hair coat color in Gray Collie (cyclic neutropenia)-normal bone marrow transplant chimeras.

    PubMed Central

    Yang, T. J.

    1978-01-01

    Gray Collie-normal bone marrow transplantation chimeras showed normal coloration of the hair coat on tails and several other areas 2 years after successful transplantation of bone marrow to correct cyclic neutropenia of the Gray Collie syndrome. Images Figures 1-2 PMID:347941

  6. Smpd3 Expression in both Chondrocytes and Osteoblasts Is Required for Normal Endochondral Bone Development.

    PubMed

    Li, Jingjing; Manickam, Garthiga; Ray, Seemun; Oh, Chun-do; Yasuda, Hideyo; Moffatt, Pierre; Murshed, Monzur

    2016-09-01

    Sphingomyelin phosphodiesterase 3 (SMPD3), a lipid-metabolizing enzyme present in bone and cartilage, has been identified to be a key regulator of skeletal development. A homozygous loss-of-function mutation called fragilitas ossium (fro) in the Smpd3 gene causes poor bone and cartilage mineralization resulting in severe congenital skeletal deformities. Here we show that Smpd3 expression in ATDC5 chondrogenic cells is downregulated by parathyroid hormone-related peptide through transcription factor SOX9. Furthermore, we show that transgenic expression of Smpd3 in the chondrocytes of fro/fro mice corrects the cartilage but not the bone abnormalities. Additionally, we report the generation of Smpd3(flox/flox) mice for the tissue-specific inactivation of Smpd3 using the Cre-loxP system. We found that the skeletal phenotype in Smpd3(flox/flox); Osx-Cre mice, in which the Smpd3 gene is ablated in both late-stage chondrocytes and osteoblasts, closely mimics the skeletal phenotype in fro/fro mice. On the other hand, Smpd3(flox/flox); Col2a1-Cre mice, in which the Smpd3 gene is knocked out in chondrocytes only, recapitulate the fro/fro mouse cartilage phenotype. This work demonstrates that Smpd3 expression in both chondrocytes and osteoblasts is required for normal endochondral bone development. PMID:27325675

  7. Detection of Bone Marrow Derived Lung Epithelial Cells

    PubMed Central

    Kassmer, Susannah H.; Krause, Diane S.

    2010-01-01

    Studies on the ability of bone marrow derived cells to adopt the morphology and protein expression of epithelial cells in vivo have expanded rapidly over the last decade, and hundreds of publications report that bone marrow derived cells can become epithelial cells of multiple organs including lung, liver, GI tract, skin, pancreas and others. In this review, we critically evaluate the literature related to engraftment of bone marrow derived cells as epithelial cells in the lung. Over 40 manuscripts focused on whether bone marrow cells can differentiate into lung epithelial cells have been published, nearly all of which claim to identify marrow derived epithelial cells. A few investigations have concluded that no such cells are present and that the phenomenon of marrow derived epithelial cells is based on detection artifacts. Here we discuss the problems that exist in published papers identifying marrow derived epithelial cells, and propose standards for detection methods that provide the most definitive data. Identification of BM derived epithelial cells requires reliable and sensitive techniques for their detection, which must include cell identification based on the presence of an epithelial marker and the absence of blood cell markers as well as a marker for donor BM origin. In order for these studies to be rigorous, they must also use approaches to rule out cell overlap by microscopy or single cell isolation. Once these stringent criteria for identification of marrow derived epithelial cells are used universally, then the field can move forward to address the critical questions regarding which bone marrow derived cells are responsible for engraftment as epithelial cells, the mechanisms by which this occurs, whether these cells play a role in normal tissue repair, and whether specific cell subsets can be used for therapeutic benefit. PMID:20447442

  8. Autologous bone marrow stromal cells are promising candidates for cell therapy approaches to treat bone degeneration in sickle cell disease.

    PubMed

    Lebouvier, Angélique; Poignard, Alexandre; Coquelin-Salsac, Laura; Léotot, Julie; Homma, Yasuhiro; Jullien, Nicolas; Bierling, Philippe; Galactéros, Frédéric; Hernigou, Philippe; Chevallier, Nathalie; Rouard, Hélène

    2015-11-01

    Osteonecrosis of the femoral head is a frequent complication in adult patients with sickle cell disease (SCD). To delay hip arthroplasty, core decompression combined with concentrated total bone marrow (BM) treatment is currently performed in the early stages of the osteonecrosis. Cell therapy efficacy depends on the quantity of implanted BM stromal cells. For this reason, expanded bone marrow stromal cells (BMSCs, also known as bone marrow derived mesenchymal stem cells) can be used to improve osteonecrosis treatment in SCD patients. In this study, we quantitatively and qualitatively evaluated the function of BMSCs isolated from a large number of SCD patients with osteonecrosis (SCD-ON) compared with control groups (patients with osteonecrosis not related to SCD (ON) and normal donors (N)). BM total nuclear cells and colony-forming efficiency values (CFE) were significantly higher in SCD-ON patients than in age and sex-matched controls. The BMSCs from SCD-ON patients were similar to BMSCs from the control groups in terms of their phenotypic and functional properties. SCD-ON patients have a higher frequency of BMSCs that retain their bone regeneration potential. Our findings suggest that BMSCs isolated from SCD-ON patients can be used clinically in cell therapy approaches. This work provides important preclinical data that is necessary for the clinical application of expanded BMSCs in advanced therapies and medical products. PMID:26492634

  9. Autologous bone marrow stromal cells are promising candidates for cell therapy approaches to treat bone degeneration in sickle cell disease.

    PubMed

    Lebouvier, Angélique; Poignard, Alexandre; Coquelin-Salsac, Laura; Léotot, Julie; Homma, Yasuhiro; Jullien, Nicolas; Bierling, Philippe; Galactéros, Frédéric; Hernigou, Philippe; Chevallier, Nathalie; Rouard, Hélène

    2015-11-01

    Osteonecrosis of the femoral head is a frequent complication in adult patients with sickle cell disease (SCD). To delay hip arthroplasty, core decompression combined with concentrated total bone marrow (BM) treatment is currently performed in the early stages of the osteonecrosis. Cell therapy efficacy depends on the quantity of implanted BM stromal cells. For this reason, expanded bone marrow stromal cells (BMSCs, also known as bone marrow derived mesenchymal stem cells) can be used to improve osteonecrosis treatment in SCD patients. In this study, we quantitatively and qualitatively evaluated the function of BMSCs isolated from a large number of SCD patients with osteonecrosis (SCD-ON) compared with control groups (patients with osteonecrosis not related to SCD (ON) and normal donors (N)). BM total nuclear cells and colony-forming efficiency values (CFE) were significantly higher in SCD-ON patients than in age and sex-matched controls. The BMSCs from SCD-ON patients were similar to BMSCs from the control groups in terms of their phenotypic and functional properties. SCD-ON patients have a higher frequency of BMSCs that retain their bone regeneration potential. Our findings suggest that BMSCs isolated from SCD-ON patients can be used clinically in cell therapy approaches. This work provides important preclinical data that is necessary for the clinical application of expanded BMSCs in advanced therapies and medical products.

  10. Bone marrow chimera experiments to determine the contribution of hematopoietic stem cells to cerebral angiogenesis.

    PubMed

    Machein, Marcia Regina; Plate, Karl H

    2014-01-01

    The generation of bone marrow chimera in mice is a valuable tool to study a variety of cellular processes. Donor bone marrow cells expressing reporter genes have been used to study the process of cell differentiation and the mechanisms involved in bone marrow cell recruitment. Bone marrow cells bearing genetic manipulation have been used in bone marrow chimeras to elucidate the role of molecules in different physiological and pathological settings. Since in the normal adult brain angiogenesis does not occur, models of brain injury like ischemia and tumor growth have been used to study the contribution of bone marrow-derived cells to the cerebral vasculature. This chapter describes the procedures to perform bone marrow transplantation in order to study the contribution of bone marrow-derived cells to vascularization in an orthotopic glioma model.

  11. Bone Metastasis from Renal Cell Carcinoma.

    PubMed

    Chen, Szu-Chia; Kuo, Po-Lin

    2016-01-01

    About one-third of patients with advanced renal cell carcinoma (RCC) have bone metastasis that are often osteolytic and cause substantial morbidity, such as pain, pathologic fracture, spinal cord compression and hypercalcemia. The presence of bone metastasis in RCC is also associated with poor prognosis. Bone-targeted treatment using bisphosphonate and denosumab can reduce skeletal complications in RCC, but does not cure the disease or improve survival. Elucidating the molecular mechanisms of tumor-induced changes in the bone microenvironment is needed to develop effective treatment. The "vicious cycle" hypothesis has been used to describe how tumor cells interact with the bone microenvironment to drive bone destruction and tumor growth. Tumor cells secrete factors like parathyroid hormone-related peptide, transforming growth factor-β and vascular endothelial growth factor, which stimulate osteoblasts and increase the production of the receptor activator of nuclear factor κB ligand (RANKL). In turn, the overexpression of RANKL leads to increased osteoclast formation, activation and survival, thereby enhancing bone resorption. This review presents a general survey on bone metastasis in RCC by natural history, interaction among the immune system, bone and tumor, molecular mechanisms, bone turnover markers, therapies and healthcare burden. PMID:27338367

  12. Bone Metastasis from Renal Cell Carcinoma

    PubMed Central

    Chen, Szu-Chia; Kuo, Po-Lin

    2016-01-01

    About one-third of patients with advanced renal cell carcinoma (RCC) have bone metastasis that are often osteolytic and cause substantial morbidity, such as pain, pathologic fracture, spinal cord compression and hypercalcemia. The presence of bone metastasis in RCC is also associated with poor prognosis. Bone-targeted treatment using bisphosphonate and denosumab can reduce skeletal complications in RCC, but does not cure the disease or improve survival. Elucidating the molecular mechanisms of tumor-induced changes in the bone microenvironment is needed to develop effective treatment. The “vicious cycle” hypothesis has been used to describe how tumor cells interact with the bone microenvironment to drive bone destruction and tumor growth. Tumor cells secrete factors like parathyroid hormone-related peptide, transforming growth factor-β and vascular endothelial growth factor, which stimulate osteoblasts and increase the production of the receptor activator of nuclear factor κB ligand (RANKL). In turn, the overexpression of RANKL leads to increased osteoclast formation, activation and survival, thereby enhancing bone resorption. This review presents a general survey on bone metastasis in RCC by natural history, interaction among the immune system, bone and tumor, molecular mechanisms, bone turnover markers, therapies and healthcare burden. PMID:27338367

  13. Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

    NASA Astrophysics Data System (ADS)

    Dezawa, Mari; Ishikawa, Hiroto; Itokazu, Yutaka; Yoshihara, Tomoyuki; Hoshino, Mikio; Takeda, Shin-ichi; Ide, Chizuka; Nabeshima, Yo-ichi

    2005-07-01

    Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

  14. Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair

    PubMed Central

    Yu, Yan Yiu; Lieu, Shirley; Lu, Chuanyong; Colnot, Céline

    2010-01-01

    Bone repair depends on the coordinated action of numerous growth factors and cytokines to stimulate new skeletal tissue formation. Among all the growth factors involved in bone repair, Bone Morphogenetic Proteins (BMPs) are the only molecules now used therapeutically to enhance healing. Although BMPs are known as strong bone inducers, their role in initiating skeletal repair is not entirely elucidated. The aim of this study was to define the role of BMP2 during the early stages of bone regeneration and more specifically in regulating the fate of skeletal progenitors. During healing of non-stabilized fractures via endochondral ossification, exogenous BMP2 increased the deposition and resorption of cartilage and bone, which was correlated with a stimulation of osteoclastogenesis but not angiogenesis in the early phase of repair. During healing of stabilized fractures, which normally occurs via intramembranous ossification, exogenous BMP2 induced cartilage formation suggesting a role in regulating cell fate decisions. Specifically, the periosteum was found to be a target of exogenous BMP2 as shown by activation of the BMP pathway in this tissue. Using cell lineage analyses, we further show that BMP2 can direct cell differentiation towards the chondrogenic lineage within the periosteum but not the endosteum, indicating that skeletal progenitors within periosteum and endosteum respond differently to BMP signals. In conclusion, BMP2 plays an important role in the early stages of repair by recruiting local sources of skeletal progenitors within periosteum and endosteum and by determining their differentiation towards the chondrogenic and osteogenic lineages. PMID:20348041

  15. Differentiation of macrophages from normal human bone marrow in liquid culture. Electron microscopy and cytochemistry.

    PubMed Central

    Bainton, D R; Golde, D W

    1978-01-01

    To study the various stages of human mononuclear phagocyte maturation, we cultivated bone marrow in an in vitro diffusion chamber with the cells growing in suspension and upon a dialysis membrane. At 2, 7, and 14 days, the cultured cells were examined by electron microscopy and cytochemical techniques for peroxidase and for more limited analysis of acid phosphatase and arylsulfatase. Peroxidase was being synthesized in promonocytes of 2- and 7-day cultures, as evidenced by reaction product in the rough-surfaced endoplasmic reticulum, Golgi complex, and storage granules. Peroxidase synthesis had ceased in monocytes and the enzyme appeared only in some granules. By 7 days, large macrophages predominated, containing numerous peroxidase-positive storage granules, and heterophagy of dying cells was evident. By 14 days, the most prevalent cell type was the large peroxidase-negative macrophage. Thus, peroxidase is present in high concentrations in immature cells but absent at later stages, presumably a result of degranulation of peroxidase-positive storage granules. Clusters of peroxidase-negative macrophages with indistinct borders (epithelioid cells), as well as obvious multinucleated giant cells, were noted. Frequently, the interdigitating plasma membranes of neighboring macrophages showed a modification resembling a septate junction--to our knowledge, representing the first documentation of this specialized cell contact between normal macrophages. We suggest that such junctions may serve as zones of adhesion between epithelioid cells. Images PMID:659615

  16. Stem cells and bone diseases: new tools, new perspective.

    PubMed

    Riminucci, Mara; Remoli, Cristina; Robey, Pamela G; Bianco, Paolo

    2015-01-01

    Postnatal skeletal stem cells are a unique class of progenitors with biological properties that extend well beyond the limits of stemness as commonly defined. Skeletal stem cells sustain skeletal tissue homeostasis, organize and maintain the complex architectural structure of the bone marrow microenvironment and provide a niche for hematopoietic progenitor cells. The identification of stem cells in the human post-natal skeleton has profoundly changed our approach to the physiology and pathology of this system. Skeletal diseases have been long interpreted essentially in terms of defective function of differentiated cells and/or abnormal turnover of the matrix that they produce. The notion of a skeletal stem cell has brought forth multiple, novel concepts in skeletal biology that provide potential alternative concepts. At the same time, the recognition of the complex functions played by skeletal progenitors, such as the structural and functional organization of the bone marrow, has provided an innovative, unifying perspective for understanding bone and bone marrow changes simultaneously occurring in many disorders. Finally, the possibility to isolate and highly enrich for skeletal progenitors, enables us to reproduce perfectly normal or pathological organ miniatures. These, in turn, provide suitable models to investigate and manipulate the pathogenetic mechanisms of many genetic and non-genetic skeletal diseases. This article is part of a Special Issue entitled Stem cells and Bone.

  17. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect.

    PubMed

    Kumar, Sanjay; Ponnazhagan, Selvarangan

    2012-04-01

    Although the number of mesenchymal stem cells (MSC) in the bone marrow is sufficient to maintain skeletal homeostasis, in osteopenic pathology, aggravated osteoclast activity or insufficient osteoblast numbers ensue, affecting normal bone remodeling. Most of the currently available therapies are anti-resorptive with limited osteogenic potential. Since mobilization of stem/progenitors from the BM is a prerequisite for their participation in tissue repair, amplification of endogenous stem cells may provide an alternative approach in these conditions. The present study determined the potential of MSC mobilization in vivo, using combinations of different growth factors with the CXCR4 antagonist, AMD3100, in a mouse model of segmental bone defect. Results indicated that among several factors tested IGF1 had maximum proliferative ability of MSC in vitro. Results of the in vivo studies indicated that the combination of IGF1 and AMD3100 provided significant augmentation of bone growth as determined by DXA, micro-CT and histomorphometry in mice bearing segmental fractures. Further, characterization of MSC isolated from mice treated with IGF1 and AMD3100 indicated Akt/PI3K, MEK1/2-Erk1/2 and smad2/3 as key signaling pathways mediating this effect. These data indicate the potential of in vivo stem cell mobilization as a novel alternative for bone healing.

  18. [Bone and Stem Cells. Immune cell regulation by the bone marrow niche].

    PubMed

    Terashima, Asuka; Takayanagi, Hiroshi

    2014-04-01

    Adult hematopoietic stem cells (HSCs) are maintained in the bone marrow and give rise to all blood cell types. The maintenance and the differentiation of blood cells including immune cells are essential for host defense and oxygen delivery. HSCs are maintained in microenvironments called stem cell niches, which consists of various cell types in bone marrow. Recently, new visualization technologies and assay systems brought advances in studies on the stem cell niche. In addition, several reports demonstrated that osteoblasts and osteocytes regulate not only HSC homeostasis but also immune cell differentiation, suggesting a close relationship between bone cells and HSCs.

  19. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies.

  20. Bone marrow stem cell as a potential treatment for diabetes.

    PubMed

    Li, Ming; Ikehara, Susumu

    2013-01-01

    Diabetes mellitus (DM) is a group of metabolic diseases in which a person has high blood glucose levels resulting from defects in insulin secretion and insulin action. The chronic hyperglycemia damages the eyes, kidneys, nerves, heart, and blood vessels. Curative therapies mainly include diet, insulin, and oral hypoglycemic agents. However, these therapies fail to maintain blood glucose levels in the normal range all the time. Although pancreas or islet-cell transplantation achieves better glucose control, a major obstacle is the shortage of donor organs. Recently, research has focused on stem cells which can be classified into embryonic stem cells (ESCs) and tissue stem cells (TSCs) to generate functional β cells. TSCs include the bone-marrow-, liver-, and pancreas-derived stem cells. In this review, we focus on treatment using bone marrow stem cells for type 1 and 2 DM. PMID:23671865

  1. A Novel Population of Cells Expressing Both Hematopoietic and Mesenchymal Markers Is Present in the Normal Adult Bone Marrow and Is Augmented in a Murine Model of Marrow Fibrosis

    PubMed Central

    Ohishi, Masanobu; Ono, Wanida; Ono, Noriaki; Khatri, Richa; Marzia, Marilena; Baker, Emma K.; Root, Sierra H.; Wilson, Tremika Le-Shan; Iwamoto, Yukihide; Kronenberg, Henry M.; Aguila, Hector L.; Purton, Louise E.; Schipani, Ernestina

    2012-01-01

    Bone marrow (BM) fibrosis is a feature of severe hyperparathyroidism. Consistent with this observation, mice expressing constitutively active parathyroid hormone (PTH)/PTH-related peptide receptors (PPR) in osteoblasts (PPR*Tg) display BM fibrosis. To obtain insight into the nature of BM fibrosis in such a model, a double-mutant mouse expressing constitutively active PPR and green fluorescent protein (GFP) under the control of the type I collagen promoter (PPR*Tg/GFP) was generated. Confocal microscopy and flow cytometry revealed the presence of a cell population expressing GFP (GFP+) that was also positive for the hematopoietic marker CD45 in the BM of both PPR*Tg/GFP and control animals. This cell population was expanded in PPR*Tg/GFP. The existence of cells expressing both type I collagen and CD45 in the adult BM was confirmed by IHC and fluorescence-activated cell sorting. An analysis of total RNA extracted from sorted GFP+CD45+ cells showed that these cells produced type I collagen and PTH/PTH-related peptide receptor and receptor activator for NF-κB mRNAs, further supporting their features of being both mesenchymal and hematopoietic lineages. Similar cells, known as fibrocytes, are also present in pathological fibroses. Our findings, thus, indicate that the BM is a permissive microenvironment for the differentiation of fibrocyte-like cells and raise the possibility that these cells could contribute to the pathogenesis of BM fibrosis. PMID:22155108

  2. Mesenchymal precursor cells in the blood of normal individuals.

    PubMed

    Zvaifler, N J; Marinova-Mutafchieva, L; Adams, G; Edwards, C J; Moss, J; Burger, J A; Maini, R N

    2000-01-01

    STATEMENT OF FINDINGS: Mesenchymal precursor cells found in the blood (BMPCs) of normal persons adhere to plastic and glass and proliferate logarithmically in DMEM-20% fetal calf serum (FCS) without growth factors. They form cells with fibroblast-like and stromal morphology, which is not affected by eliminating CD34, CD3, or CD14 cells. Osteogenic supplements (dexamethasone, ascorbic acid, and beta-glycerophosphate) added to the culture inhibited fibroblast formation, and BMPCs assumed the cuboidal shape of osteoblasts. After 5 days in supplemented medium, the elutriated cells displayed alkaline phosphatase (AP), and the addition of bone morphogenetic protein (BMP)2 (1 ng) doubled AP production (P < 0.04). Two weeks later, 30% of the cells were very large and reacted with anti-osteocalcin antibody. The same cultures also contained sudanophlic adipocytes and multinucleated giant cells that stained for tartrate-resistant acid phosphatase (TRAP) and vitronectin receptors. Cultured BMPCs immunostain with antibodies to vimentin, type I collagen, and BMP receptors, heterodimeric structures expressed on mesenchymal lineage cells. In addition, BMPCs stain with anti-CD105 (endoglin), a putative marker for bone-marrow mesenchymal stem cells (MSCs). PMID:11056678

  3. Induction of angiogenesis by normal and malignant plasma cells.

    PubMed

    Hose, Dirk; Moreaux, Jérôme; Meissner, Tobias; Seckinger, Anja; Goldschmidt, Hartmut; Benner, Axel; Mahtouk, Karène; Hillengass, Jens; Rème, Thierry; De Vos, John; Hundemer, Michael; Condomines, Maud; Bertsch, Uta; Rossi, Jean-François; Jauch, Anna; Klein, Bernard; Möhler, Thomas

    2009-07-01

    Abundant bone marrow angiogenesis is present in almost all myeloma patients requiring therapy and correlated to treatment response and survival. We assessed the expression of 402 angiogenesis-associated genes by Affymetrix DNA microarrays in 466 samples, including CD138-purified myeloma cells (MMCs) from 300 previously untreated patients, in vivo microcirculation by dynamic contrast-enhanced magnetic resonance imaging, and in vitro angiogenesis (AngioKit-assay). Normal bone marrow plasma cells (BMPCs) express a median of 39 proangiogenic (eg, VEGFA, ADM, IGF-1) and 28 antiangiogenic genes (eg, TIMP1, TIMP2). Supernatants of BMPCs unlike those of memory B cells induce angiogenesis in vitro. MMCs do not show a significantly higher median number of expressed proangiogenic (45) or antiangiogenic (31) genes, but 97% of MMC samples aberrantly express at least one of the angiogenic factors HGF, IL-15, ANG, APRIL, CTGF, or TGFA. Supernatants of MMCs and human myeloma cell lines induce significantly higher in vitro angiogenesis compared with BMPCs. In conclusion, BMPCs express a surplus of proangiogenic over antiangiogenic genes transmitting to the ability to induce in vitro angiogenesis. Aberrant expression of proangiogenic and down-regulation of antiangiogenic genes by MMCs further increases the angiogenic stimulus, together leading to bone marrow angiogenesis at various degrees in all myeloma patients.

  4. [Cellular interplay of bone cells and vascular endothelial cells in bone].

    PubMed

    Hasegawa, Tomoka; Tsuchiya, Erika; Abe, Miki; Amizuka, Norio

    2016-05-01

    During endochondral bone development, the longitudinal vascular invasion into cartilage primordium initially takes place, by which mineralized cartilage matrix would be exposed into bone. Thereafter, osteogenic cells differentiate into mature osteoblasts to deposit new bone onto the exposed mineralized cartilage. New bone formation at the chondro-osseous junction appears to be achieved by the process of modeling, but not by bone remodeling based on cellular coupling between osteoclasts and osteoblasts. Recently, a specific vessel subtype in bone was reported:Vascular endothelial cells close to the chondro-oseous junction showed intense CD31/Endomucin(CD31(hi)Emcn(hi), type H), while the endothelial cells of sinusoidal vessels in diaphysis revealed only weak CD31/Endomucin(CD31(lo)Emcnlo, type L). It is suggested crucial roles of endothelial HIF in controlling bone angiogenesis, type H vessel abundance, endothelial growth factor expression and osteogenesis.

  5. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    PubMed Central

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020

  6. The Effect of Spaceflight on Bone Cell Cultures

    NASA Technical Reports Server (NTRS)

    Landis, William J.

    1999-01-01

    Understanding the response of bone to mechanical loading (unloading) is extremely important in defining the means of adaptation of the body to a variety of environmental conditions such as during heightened physical activity or in extended explorations of space or the sea floor. The mechanisms of the adaptive response of bone are not well defined, but undoubtedly they involve changes occurring at the cellular level of bone structure. This proposal has intended to examine the hypothesis that the loading (unloading) response of bone is mediated by specific cells through modifications of their activity cytoskeletal elements, and/or elaboration of their extracellular matrices. For this purpose, this laboratory has utilized the results of a number of previous studies defining molecular biological, biochemical, morphological, and ultrastructural events of the reproducible mineralization of a primary bone cell (osteoblast) culture system under normal loading (1G gravity level). These data and the culture system then were examined following the use of the cultures in two NASA shuttle flights, STS-59 and STS-63. The cells collected from each of the flights were compared to respective synchronous ground (1G) control cells examined as the flight samples were simultaneously analyzed and to other control cells maintained at 1G until the time of shuttle launch, at which point they were terminated and studied (defined as basal cells). Each of the cell cultures was assayed in terms of metabolic markers- gene expression; synthesis and secretion of collagen and non-collagenous proteins, including certain cytoskeletal components; assembly of collagen into macrostructural arrays- formation of mineral; and interaction of collagen and mineral crystals during calcification of the cultures. The work has utilized a combination of biochemical techniques (radiolabeling, electrophoresis, fluorography, Western and Northern Blotting, and light microscopic immunofluorescence) and structural

  7. HOW DO BONE CELLS SENSE MECHANICAL LOADING?

    PubMed Central

    Gusmão, Carlos Vinícius Buarque de; Belangero, William Dias

    2015-01-01

    Influenced by gravidity, bone tissue experiences stronger or lighter deformation according to the strength of the activities of daily life. Activities resulting in impact are particularly known to stimulate osteogenesis, thus reducing bone mass loss. Knowing how bone cells recognize the mechanical deformation imposed to the bone and trigger a series of biochemical chain reactions is of crucial importance for the development of therapeutic and preventive practices in orthopaedic activity. There is still a long way to run until we can understand the whole process, but current knowledge has shown a strong progression, with researches being conducted focused on therapies. For a mechanical sign to be transformed into a biological one (mechanotransduction), it must be amplified at cell level by the histological structure of bone tissue, producing tensions in cell membrane proteins (integrins) and changing their spatial structure. Such change activates bindings between these and the cytoskeleton, producing focal adhesions, where cytoplasmatic proteins are recruited to enable easier biochemical reactions. Focal adhesion kinase (FAK) is the most important one being self-activated when its structure is changed by integrins. Activated FAK triggers a cascade of reactions, resulting in the activation of ERK-1/2 and Akt, which are proteins that, together with FAK, regulate the production of bone mass. Osteocytes are believed to be the mechanosensor cells of the bone and to transmit the mechanical deformation to osteoblasts and osteoclasts. Ionic channels and gap junctions are considered as intercellular communication means for biochemical transmission of a mechanical stimulus. These events occur continuously on bone tissue and regulate bone remodeling. PMID:27022510

  8. Incorporation of Bone Marrow Cells in Pancreatic Pseudoislets Improves Posttransplant Vascularization and Endocrine Function

    PubMed Central

    Wittig, Christine; Laschke, Matthias W.; Scheuer, Claudia; Menger, Michael D.

    2013-01-01

    Failure of revascularization is known to be the major reason for the poor outcome of pancreatic islet transplantation. In this study, we analyzed whether pseudoislets composed of islet cells and bone marrow cells can improve vascularization and function of islet transplants. Pancreatic islets isolated from Syrian golden hamsters were dispersed into single cells for the generation of pseudoislets containing 4×103 cells. To create bone marrow cell-enriched pseudoislets 2×103 islet cells were co-cultured with 2×103 bone marrow cells. Pseudoislets and bone marrow cell-enriched pseudoislets were transplanted syngeneically into skinfold chambers to study graft vascularization by intravital fluorescence microscopy. Native islet transplants served as controls. Bone marrow cell-enriched pseudoislets showed a significantly improved vascularization compared to native islets and pseudoislets. Moreover, bone marrow cell-enriched pseudoislets but not pseudoislets normalized blood glucose levels after transplantation of 1000 islet equivalents under the kidney capsule of streptozotocin-induced diabetic animals, although the bone marrow cell-enriched pseudoislets contained only 50% of islet cells compared to pseudoislets and native islets. Fluorescence microscopy of bone marrow cell-enriched pseudoislets composed of bone marrow cells from GFP-expressing mice showed a distinct fraction of cells expressing both GFP and insulin, indicating a differentiation of bone marrow-derived cells to an insulin-producing cell-type. Thus, enrichment of pseudoislets by bone marrow cells enhances vascularization after transplantation and increases the amount of insulin-producing tissue. Accordingly, bone marrow cell-enriched pseudoislets may represent a novel approach to increase the success rate of islet transplantation. PMID:23875013

  9. [Bone and Stem Cells. Bone marrow microenvironment niches for hematopoietic stem and progenitor cells].

    PubMed

    Nagasawa, Takashi

    2014-04-01

    In bone marrow, the special microenvironments known as niches control proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs) . However, the identity and functions of the niches has been a subject of longstanding debate. Although it has been reported previously that osteoblasts lining the bone surface act as HSC niches, their precise role in HSC maintenance remains unclear. On the other hand, the adipo-osteogenic progenitors with long processes, termed CXCL12-abundant reticular (CAR) cells, which preferentially express the chemokine CXCL12, stem cell factor (SCF) , leptin receptor and PDGF receptor-β were identified in the bone marrow. Recent studies revealed that endothelial cells of bone marrow vascular sinuses and CAR cells provided niches for HSCs. The identity and functions of various other candidate HSC niche cells, including nestin-expressing cells and Schwann cells would also be discussed in this review.

  10. Bone cell proliferation on carbon nanotubes.

    PubMed

    Zanello, Laura P; Zhao, Bin; Hu, Hui; Haddon, Robert C

    2006-03-01

    We explored the use of carbon nanotubes (CNTs) as suitable scaffold materials for osteoblast proliferation and bone formation. With the aim of controlling cell growth, osteosarcoma ROS 17/2.8 cells were cultured on chemically modified single-walled (SW) and multiwalled (MW) CNTs. CNTs carrying neutral electric charge sustained the highest cell growth and production of plate-shaped crystals. There was a dramatic change in cell morphology in osteoblasts cultured on MWNTs, which correlated with changes in plasma membrane functions.

  11. The stem cell niches in bone

    PubMed Central

    Yin, Tong; Li, Linheng

    2006-01-01

    The stem cell niche is composed of a specialized population of cells that plays an essential role in regulating adult stem cell self-renewal and differentiation. In adults, osteoblasts, responsible for osteogenesis, and hematopoietic cells, responsible for hematopoiesis, are closely associated in the bone marrow, suggesting a reciprocal relationship between the two. It was recently discovered that a subset of osteoblasts functions as a key component of the HSC niche (namely, the osteoblastic niche), controlling HSC numbers. HSCs interact not only with osteoblasts but also with other stromal cells, including endothelial cells. Sinusoidal endothelial cells in bone marrow have been revealed as an alternative HSC niche called the vascular niche. In this Review we compare the architecture of these 2 HSC niches in bone marrow. We also highlight the function of osteoblasts in maintaining a quiescent HSC microenvironment and the likely role of the vascular niche in regulating stem cell proliferation, differentiation, and mobilization. In addition, we focus on studies of animal models and in vitro assays that have provided direct insights into the actions of these osteoblastic and vascular niches, revealing central roles for numerous signaling and adhesion molecules. Many of the discoveries described herein may contribute to future clinical treatments for hematopoietic and bone-related disorders, including cancer. PMID:16670760

  12. Noninvasive markers of bone metabolism in the rhesus monkey: normal effects of age and gender

    NASA Technical Reports Server (NTRS)

    Cahoon, S.; Boden, S. D.; Gould, K. G.; Vailas, A. C.

    1996-01-01

    Measurement of bone turnover in conditions such as osteoporosis has been limited by the need for invasive iliac bone biopsy to reliably determine parameters of bone metabolism. Recent advances in the area of serum and urinary markers of bone metabolism have raised the possibility for noninvasive measurements; however, little nonhuman primate data exist for these parameters. The purpose of this experiment was to define the normal range and variability of several of the newer noninvasive bone markers which are currently under investigation in humans. The primary intent was to determine age and gender variability, as well as provide some normative data for future experiments in nonhuman primates. Twenty-four rhesus macaques were divided into equal groups of male and female according to the following age groupings: 3 years, 5-10 years, 15-20 years, and > 25 years. Urine was collected three times daily for a four-day period and measured for several markers of bone turnoverm including pyridinoline (PYD), deoxypyrodinoline (DPD), hydroxyproline, and creatinine. Bone mineral density measurements of the lumbar spine were performed at the beginning and end of the study period. Serum was also obtained at the time of bone densitometry for measurement of osteocalcin levels by radioimmunoassay. There were no significant differences in bone mineral density, urine PYD, or urine DPD based on gender. Bone density was lowest in the youngest animals, peaked in the 15-20-year group, but again decreased in the oldest animals. The osteocalcin, PYD, and DPD levels followed an inversely related pattern to bone density. The most important result was the relative age insensitivity of the ratio of PYD:DPD in monkeys up to age 20 years. Since bone density changes take months or years to become measurable and iliac biopsies are invasive, the PYD/DPD marker ratio may have important implications for rapid noninvasive measurement of the effects of potential treatments for osteoporosis in the non

  13. Disseminated prostate cancer cells can instruct hematopoietic stem and progenitor cells to regulate bone phenotype.

    PubMed

    Joseph, Jeena; Shiozawa, Yusuke; Jung, Younghun; Kim, Jin Koo; Pedersen, Elisabeth; Mishra, Anjali; Zalucha, Janet Linn; Wang, Jingcheng; Keller, Evan T; Pienta, Kenneth J; Taichman, Russell S

    2012-03-01

    Prostate cancer metastases and hematopoietic stem cells (HSC) frequently home to the bone marrow, where they compete to occupy the same HSC niche. We have also shown that under conditions of hematopoietic stress, HSCs secrete the bone morphogenetic proteins (BMP)-2 and BMP-6 that drives osteoblastic differentiation from mesenchymal precursors. As it is not known, we examined whether metastatic prostate cancer cells can alter regulation of normal bone formation by HSCs and hematopoietic progenitor cells (HPC). HSC/HPCs isolated from mice bearing nonmetastatic and metastatic tumor cells were isolated and their ability to influence osteoblastic and osteoclastic differentiation was evaluated. When the animals were inoculated with the LNCaP C4-2B cell line, which produces mixed osteoblastic and osteolytic lesions in bone, HPCs, but not HSCs, were able to induced stromal cells to differentiate down an osteoblastic phenotype. Part of the mechanism responsible for this activity was the production of BMP-2. On the other hand, when the animals were implanted with PC3 cells that exhibits predominantly osteolytic lesions in bone, HSCs derived from these animals were capable of directly differentiating into tartrate-resistant acid phosphatase-positive osteoclasts through an interleukin-6-mediated pathway. These studies for the first time identify HSC/HPCs as novel targets for future therapy involved in the bone abnormalities of prostate cancer.

  14. [CHARACTERISTICS OF OSTEOCYTE CELL LINES FROM BONES FORMED AS A RESULT OF MEMBRANOUS (SKULL BONES) AND CHONDRAL (LONG BONES) OSSIFICATION].

    PubMed

    Avrunin, A S; Doktorov, A A

    2016-01-01

    The aim of this work was to analyze the literature data and the results of authors' own research, to answer the question--if the osteocytes of bone tissues resulting from membranous and chondral ossification, belong to one or to different cell lines. The differences between the cells of osteocyte lines derived from bones resulting from membranous and chondral ossification were established in: 1) the magnitude of the mechanical signal, initiating the development of the process of mechanotransduction; 2) the nature of the relationship between the magnitude of the mechanical signal that initiates the reorganization of the architecture of bone structures and the resource of their strength; in membranous bones significantly lower mechanical signal caused a substantially greater increment of bone strength resource; 3) the biological activity of bone structures, bone fragments formed from membranous tissue were more optimal for transplantation; 4) the characteristics of expression of functional markers of bone cells at different stages of their differentiation; 5) the nature of the reaction of bone cells to mechanical stress; 6) the sensitivity of bone cells to one of the factors controlling the process of mechanotransduction (PGI2); 7) the functioning of osteocytes during lactation. These differences reflect the functional requirements to the bones of the skeleton--the supporting function in the bones of the limbs and the shaping and protection in the bones of the cranial vault. These data suggest that the results of research conducted on the bones of the skull, should not be transferred to the entire skeleton as a whole.

  15. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration.

    PubMed

    Colnot, Céline

    2009-02-01

    Bone repair requires the mobilization of adult skeletal stem cells/progenitors to allow deposition of cartilage and bone at the injury site. These stem cells/progenitors are believed to come from multiple sources including the bone marrow and the periosteum. The goal of this study was to establish the cellular contributions of bone marrow and periosteum to bone healing in vivo and to assess the effect of the tissue environment on cell differentiation within bone marrow and periosteum. Results show that periosteal injuries heal by endochondral ossification, whereas bone marrow injuries heal by intramembranous ossification, indicating that distinct cellular responses occur within these tissues during repair. [corrected] Next, lineage analyses were used to track the fate of cells derived from periosteum, bone marrow, and endosteum, a subcompartment of the bone marrow. Skeletal progenitor cells were found to be recruited locally and concurrently from periosteum and/or bone marrow/endosteum during bone repair. Periosteum and bone marrow/endosteum both gave rise to osteoblasts, whereas the periosteum was the major source of chondrocytes. Finally, results show that intrinsic and environmental signals modulate cell fate decisions within these tissues. In conclusion, this study sheds light into the origins of skeletal stem cells/progenitors during bone regeneration and indicates that periosteum, endosteum, and bone marrow contain pools of stem cells/progenitors with distinct osteogenic and chondrogenic potentials that vary with the tissue environment.

  16. Oxidative stress and hypoxia in normal and leukemic stem cells.

    PubMed

    Testa, Ugo; Labbaye, Catherine; Castelli, Germana; Pelosi, Elvira

    2016-07-01

    The main hematopoietic stem cell (HSC) functions, self-renewal and differentiation, are finely regulated by both intrinsic mechanisms such as transcriptional and epigenetic regulators and extrinsic signals originating in the bone marrow microenvironment (HSC niche) or in the body (humoral mediators). The interaction between regulatory signals and cellular metabolism is an emerging area. Several metabolic pathways function differently in HSCs compared with progenitors and differentiated cells. Hypoxia, acting through hypoxia-inducing factors, has emerged as a key regulator of stem cell biology and acts by maintaining HSC quiescence and a condition of metabolic dormancy based on anaerobic glycolytic energetic metabolism, with consequent low production reactive oxygen species (ROS) and high antioxidant defense. Hematopoietic cell differentiation is accompanied by changes in oxidative metabolism (decrease of anaerobic glycolysis and increase of oxidative phosphorylation) and increased levels of ROS. Leukemic stem cells, defined as the cells that initiate and maintain the leukemic process, show peculiar metabolic properties in that they are more dependent on oxidative respiration than on glycolysis and are more sensitive to oxidative stress than normal HSCs. Several mitochondrial abnormalities have been described in acute myeloid leukemia (AML) cells, explaining the shift to aerobic glycolysis observed in these cells and offering the unique opportunity for therapeutic metabolic targeting. Finally, frequent mutations of the mitochondrial isocitrate dehydrogenase-2 (IDH2) enzyme are observed in AML cells, in which the mutated enzyme acts as an oncogenic driver and can be targeted using specific inhibitors under clinical evaluation with promising results. PMID:27179622

  17. Recent highlights on bone stem cells: a report from Bone Stem Cells 2009, and not only….

    PubMed

    Cenni, Elisabetta; Perut, Francesca; Baglìo, Serena Rubina; Fiorentini, Elisa; Baldini, Nicola

    2010-11-01

    The use of stem cells has opened new prospects for the treatment of orthopaedic conditions characterized by large bone defects. However, many issues still exist to which answers are needed before routine, large-scale application becomes possible. Bone marrow stromal cells (MSC), which are clonogenic, multipotential precursors present in the bone marrow stroma, are generally employed for bone regeneration. Stem cells with multilineage differentiation similar to MSC have also been demonstrated in adipose tissue, peripheral blood, umbilical cord and amniotic fluid. Each source presents its own advantages and drawbacks. Unfortunately, no unique surface antigen is expressed by MSC, and this hampers simple MSC enrichment from heterogeneous populations. MSC are identified through a combination of physical, morphological and functional assays. Different in vitro and in vivo models have been described for the research on bone stem cells. These models should predict the in vivo bone healing capacity of MSC and if the induced osteogenesis is similar to the physiological one. Although stem cells offer an exciting possibility of a renewable source of cells and tissues for replacement, orthopaedic applications often represent case reports whereas controlled randomized trials are still lacking. Further biological aspects of bone stem cells should be elucidated and a general consensus on the best models, protocols and proper use of scaffolds and growth factors should be achieved.

  18. Bone scanning.

    PubMed

    Greenfield, L D; Bennett, L R

    1975-03-01

    Scanning is based on the uptake of a nuclide by the crystal lattice of bone and is related to bone blood flow. Cancer cells do not take up the tracer. Normally, the scan visualizes the highly vascular bones. Scans are useful and are indicated in metastatic bone disease, primary bone tumors, hematologic malignancies and some non-neoplastic diseases. The scan is more sensitive than x-ray in the detection of malignant diseases of the skeleton. PMID:1054210

  19. Spaceflight effects on cultured embryonic chick bone cells

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; Block, D.; Toma, C. D.; Gerstenfeld, L. C.

    2000-01-01

    A model calcifying system of primary osteoblast cell cultures derived from normal embryonic chicken calvaria has been flown aboard the shuttle, Endeavour, during the National Aeronautics and Space Administration (NASA) mission STS-59 (April 9-20, 1994) to characterize unloading and other spaceflight effects on the bone cells. Aliquots of cells (approximately 7 x 10(6)) grown in Dulbecco's modified Eagle's medium (DMEM) + 10% fetal bovine serum (FBS) were mixed with microcarrier beads, inoculated into cartridge culture units of artificial hollow fiber capillaries, and carried on the shuttle. To promote cell differentiation, cartridge media were supplemented with 12.5 microg/ml ascorbate and 10 mM beta-glycerophosphate for varying time periods before and during flight. Four cartridges contained cells from 17-day-old embryos grown for 5 days in the presence of ascorbate prior to launch (defined as flight cells committed to the osteoblastic lineage) and four cartridges supported cells from 14-day-old embryos grown for 10 days with ascorbate before launch (uncommitted flight cells). Eight cartridges prepared in the same manner were maintained under normal gravity throughout the flight (control cells) and four additional identical cartridges under normal gravity were terminated on the day of launch (basal cells). From shuttle launch to landing, all cartridges were contained in closed hardware units maintaining 5% CO2, 37 degrees C, and media delivery at a rate of approximately 1.5 ml/6 h. During day 3 and day 5 of flight, duplicate aliquots of conditioned media and accumulated cell products were collected in both the flight and the control hardware units. At the mission end, comparisons among flight, basal, and control samples were made in cell metabolism, gene expression for type I collagen and osteocalcin, and ultrastructure. Both committed and uncommitted flight cells were metabolically active, as measured by glucose uptake and lactate production, at approximately the

  20. Signaling between tumor cells and the host bone marrow microenvironment.

    PubMed

    Kovacic, Natasa; Croucher, Peter I; McDonald, Michelle M

    2014-01-01

    Tumor cells with high skeletal homing affinity express numerous cell surface receptors that bind ligands produced in bone. Upon arrival, these cells survive in the host environment, encompassed in close proximity to bone marrow cells. Interactions between tumor cells and cells of the host microenvironment are essential to not only tumor cell survival but also their activation and proliferation into environment-modifying tumors. Through the production of RANKL, PTHrP, cytokines, and integrins, activated tumor cells stimulate osteoclastogenesis, enhance bone resorption, and subsequently release matrix-bound proteins that further promote tumor growth and bone resorption. In addition, alterations in the TGF-β/BMP and Wnt signaling pathways via tumor cell growth can either stimulate or suppress osteoblastic bone formation and function, leading to sclerotic or lytic bone disease, respectively. Hence, the presence of tumor cells in bone dysregulates bone remodeling, dramatically impairing skeletal integrity. Furthermore, through complex mechanisms, cells of the immune system interact with tumor cells to further impact bone remodeling. Lastly, with alterations in bone cell activity, the environment is permissive to promoting tumor growth further, suggesting an interdependence between tumor cells and bone cells in metastatic bone disease and multiple myeloma.

  1. Cell Biology of Thiazide Bone Effects

    NASA Astrophysics Data System (ADS)

    Gamba, Gerardo; Riccardi, Daniela

    2008-09-01

    The thiazide-sensitive Na+:Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian kidney. The activity of NCC is not only related to salt metabolism, but also to calcium and magnesium homeostasis due to the inverse relationship between NCC activity and calcium reabsorption. Hence, the thiazide-type diuretics that specifically block NCC have been used for years, not only for treatment of hypertension and edematous disease, but also for the management of renal stone disease. Epidemiological studies have shown that chronic thiazide treatment is associated with higher bone mineral density and reduced risk of bone fractures, which can only partly be explained in terms of their effects on the kidney. In this regard, we have recently shown that NCC is expressed in bone cells and that inhibition of NCC in bone, either by thiazides or by reduction of NCC protein with specific siRNA, is associated with increased mineralization in vitro. These observations open a field of study to begin to understand the cell biology of the beneficial effects of thiazides in bone.

  2. Total bone calcium in normal women: effect of age and menopause status

    SciTech Connect

    Gallagher, J.C.; Goldgar, D.; Moy, A.

    1987-12-01

    Bone density in different regions of the skeleton was measured in 392 normal women aged 20-80 years by dual photon absorpiometry. In premenopausal women, aged 25-50 years, multiple regression analysis of regional bone density on age, height, and weight showed a small significant decrease in total bone density (less than 0.01) but no significant change in other regions of the skeleton. In postmenopausal women there were highly significant decreases in all regions of the skeleton (p less than 0.001), and bone density in these areas decreased as a logarithmic function of years since menopause. Based on multiple regression analyses, the decrease in spine density and total bone calcium was 2.5-3.0 times greater in the 25 years after menopause than the 25 years before menopause. The largest change, however, occurred in the first five years after menopause. During this time the estimated annual change in spine density and total bone calcium was about 10 times greater than that in the premenopausal period. These results demonstrate the important effect of the menopause in determining bone mass in later life.

  3. The effect of normal development and of severe undernutrition on some minor components of cortical bone

    PubMed Central

    McCance, R. A.; Southgate, D. A. T.; Spencer, P. J.; Weston, P. D.

    1966-01-01

    1. The amounts of calcium, magnesium, sodium and citric acid in the bones of undernourished pigs 1 year old were compared with the amounts in the bones of smaller newborn animals, normal animals of the same weight aged 4 weeks and of the same age weighing 170kg. 2. The differences that were found between 4 weeks and 1 year of age in the normal animals were expected as effects of aging. However, between birth and 4 weeks of age the changes in composition were in the opposite direction to those between 4 weeks and 1 year. 3. Undernutrition produced a bone that resembled chemically that of an animal 1 year old. PMID:5968547

  4. [The influence of mesenchymal stem cells on bone tissue regeneration upon implantation of demineralized bone matrix].

    PubMed

    Krugliakov, P V; Sokolova, I B; Zin'kova, N N; Viĭde, S V; Cherednichenko, N N; Kisliakova, T V; Polyntsev, D G

    2005-01-01

    Mesenchymal stem cells (MSC) are resident pluripotent cells of bone marrow stroma. MSC are able to differentiate into chondroblasts, adipocytes, neurons, glia, cardiomyocytes, or osteoblasts. The problem of MSC usage in cell therapy of bone defects is widely discussed at present. The experiments were carried out using rats of inbred line Wistar-Kyoto. MSC were isolated from bone marrow and cultivated in vitro. Demineralized bone matrices (DBM) were obtained from parietal bones of rats and hens. Part of DBM was loaded with MSC. Bone defects were made in cranium parietal regions. DBM with or without MSC or metal plates were transplanted in these regions. It was shown that the application of MSC increased angiogenesis and osteogenesis in the damaged bone. The implantation of rat's DBM with MSC led to the formation of a full value bone. MSC suppressed inflammation, when transplantation of hen's DBM was carried out. The application of MSC always improved bone tissue regeneration.

  5. Transcriptional link between blood and bone: the stem cell leukemia gene and its +19 stem cell enhancer are active in bone cells.

    PubMed

    Pimanda, John E; Silberstein, Lev; Dominici, Massimo; Dekel, Benjamin; Bowen, Mark; Oldham, Scott; Kallianpur, Asha; Brandt, Stephen J; Tannahill, David; Göttgens, Berthold; Green, Anthony R

    2006-04-01

    Blood and vascular cells are generated during early embryogenesis from a common precursor, the hemangioblast. The stem cell leukemia gene (SCL/tal 1) encodes a basic helix-loop-helix transcription factor that is essential for the normal development of blood progenitors and blood vessels. We have previously characterized a panel of SCL enhancers including the +19 element, which directs expression to hematopoietic stem cells and endothelium. Here we demonstrate that SCL is expressed in bone primordia during embryonic development and in adult osteoblasts. Despite consistent expression in cells of the osteogenic lineage, SCL protein is not required for bone specification of embryonic stem cells. In transgenic mice, the SCL +19 core enhancer directed reporter gene expression to vascular smooth muscle and bone in addition to blood and endothelium. A 644-bp fragment containing the SCL +19 core enhancer was active in both blood and bone cell lines and was bound in vivo by a common array of Ets and GATA transcription factors. Taken together with the recent observation that a common progenitor can give rise to blood and bone cells, our results suggest that the SCL +19 enhancer targets a mesodermal progenitor capable of generating hematopoietic, vascular, and osteoblastic progeny.

  6. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma.

    PubMed

    Corre, J; Mahtouk, K; Attal, M; Gadelorge, M; Huynh, A; Fleury-Cappellesso, S; Danho, C; Laharrague, P; Klein, B; Rème, T; Bourin, P

    2007-05-01

    Recent literature suggested that cells of the microenvironment of tumors could be abnormal as well. To address this hypothesis in multiple myeloma (MM), we studied bone marrow mesenchymal stem cells (BMMSCs), the only long-lived cells of the bone marrow microenvironment, by gene expression profiling and phenotypic and functional studies in three groups of individuals: patients with MM, patients with monoclonal gamopathy of undefined significance (MGUS) and healthy age-matched subjects. Gene expression profile independently classified the BMMSCs of these individuals in a normal and in an MM group. MGUS BMMSCs were interspersed between these two groups. Among the 145 distinct genes differentially expressed in MM and normal BMMSCs, 46% may account for a tumor-microenvironment cross-talk. Known soluble factors implicated in MM pathophysiologic features (i.e. IL (interleukin)-6, DKK1) were revealed and new ones were found which are involved in angiogenesis, osteogenic differentiation or tumor growth. In particular, GDF15 was found to induce dose-dependent growth of MOLP-6, a stromal cell-dependent myeloma cell line. Functionally, MM BMMSCs induced an overgrowth of MOLP-6, and their capacity to differentiate into an osteoblastic lineage was impaired. Thus, MM BMMSCs are abnormal and could create a very efficient niche to support the survival and proliferation of the myeloma cells.

  7. [Telomere Recombination in Normal Mammalian Cells].

    PubMed

    Zhdanova, N S; Rubtsov, N B

    2016-01-01

    Two mechanisms of telomere length maintenance are known to date. The first includes the use of a special enzymatic telomerase complex to solve the problems that arise during the replication of linear DNA in a normal diploid and part of tumor cells. Alternative lengthening of telomeres (ALT), which is based on the homologous recombination of telomere DNA, represents the second mechanism. Until recently, ALT was assumed to be expressed only in 15-20% of tumors lacking active telomerase and, together with telomerase reactivation represented one of two possibilities to overcome the replicative senescence observed in somatic mammalian cells due to aging or during cell culturing in vitro. Previously described sporadic cases of combinations of the two mechanisms of telomere length maintenance in several cell lines in vitro were attributed to the experimental design rather than to a real biological phenomenon, since active cellular division without active telomerase was considered to be the "gold standard" of ALT. The present review describes the morphological and functional reorganizations of mammalian telomeres observed with ALT activation, as well as recently observed,and well-documented cases of combinations between ALT-like and telomerase-dependent mechanisms in mammalian cells. The possible role of telomere recombination in telomerase-dependent cells is discussed.

  8. Radionuclide bone scanning in giant cell tumor

    SciTech Connect

    Van Nostrand, D.; Madewell, J.E.; McNiesh, L.M.; Kyle, R.W.; Sweet, D.

    1986-03-01

    Radionuclide bone scan findings are described and correlated with pathology in 23 patients with giant cell tumor (GCT) of the bone. The degree of radionuclide activity was markedly increased in 20 (87%), minimally increased in three (13%), and decreased in none of the patients. Of the 23 patients with increased radioactivity, the pattern was diffuse in 11 (48%) and doughnut in 12 (52%). Extended patterns of radioactivity were present in 19 of 22 patients; however, none were associated with true tumor extension. Bone scanning did not aid in the detection of GCT, was nonspecific, and did not differentiate benign from malignant GCT. Although radioactivity extended beyond the radiographic abnormality in the majority of patients, this was most likely secondary to other bony abnormalities or local and/or regional hyperemia, and caution should be taken in ascribing this extension to either tumor or metastasis.

  9. Cell of origin associated classification of B-cell malignancies by gene signatures of the normal B-cell hierarchy.

    PubMed

    Johnsen, Hans Erik; Bergkvist, Kim Steve; Schmitz, Alexander; Kjeldsen, Malene Krag; Hansen, Steen Møller; Gaihede, Michael; Nørgaard, Martin Agge; Bæch, John; Grønholdt, Marie-Louise; Jensen, Frank Svendsen; Johansen, Preben; Bødker, Julie Støve; Bøgsted, Martin; Dybkær, Karen

    2014-06-01

    Recent findings have suggested biological classification of B-cell malignancies as exemplified by the "activated B-cell-like" (ABC), the "germinal-center B-cell-like" (GCB) and primary mediastinal B-cell lymphoma (PMBL) subtypes of diffuse large B-cell lymphoma and "recurrent translocation and cyclin D" (TC) classification of multiple myeloma. Biological classification of B-cell derived cancers may be refined by a direct and systematic strategy where identification and characterization of normal B-cell differentiation subsets are used to define the cancer cell of origin phenotype. Here we propose a strategy combining multiparametric flow cytometry, global gene expression profiling and biostatistical modeling to generate B-cell subset specific gene signatures from sorted normal human immature, naive, germinal centrocytes and centroblasts, post-germinal memory B-cells, plasmablasts and plasma cells from available lymphoid tissues including lymph nodes, tonsils, thymus, peripheral blood and bone marrow. This strategy will provide an accurate image of the stage of differentiation, which prospectively can be used to classify any B-cell malignancy and eventually purify tumor cells. This report briefly describes the current models of the normal B-cell subset differentiation in multiple tissues and the pathogenesis of malignancies originating from the normal germinal B-cell hierarchy. PMID:23998255

  10. Stromal cells and stem cells in clinical bone regeneration

    PubMed Central

    Grayson, Warren L.; Bunnell, Bruce A.; Martin, Elizabeth; Frazier, Trivia; Hung, Ben P.; Gimble, Jeffrey M.

    2015-01-01

    Stem-cell-mediated bone repair has been used in clinical trials for the regeneration of large craniomaxillofacial defects, to slow the process of bone degeneration in patients with osteonecrosis of the femoral head and for prophylactic treatment of distal tibial fractures. Successful regenerative outcomes in these investigations have provided a solid foundation for wider use of stromal cells in skeletal repair therapy. However, employing stromal cells to facilitate or enhance bone repair is far from being adopted into clinical practice. Scientific, technical, practical and regulatory obstacles prevent the widespread therapeutic use of stromal cells. Ironically, one of the major challenges lies in the limited understanding of the mechanisms via which transplanted cells mediate regeneration. Animal models have been used to provide insight, but these models largely fail to reproduce the nuances of human diseases and bone defects. Consequently, the development of targeted approaches to optimize cell-mediated outcomes is difficult. In this Review, we highlight the successes and challenges reported in several clinical trials that involved the use of bone-marrow-derived mesenchymal or adipose-tissue-derived stromal cells. We identify several obstacles blocking the mainstream use of stromal cells to enhance skeletal repair and highlight technological innovations or areas in which novel techniques might be particularly fruitful in continuing to advance the field of skeletal regenerative medicine. PMID:25560703

  11. Technetium Tc 99m diphosphonate bone scan. False-normal findings in elderly patients with hematogenous vertebral osteomyelitis

    SciTech Connect

    Schlaeffer, F.; Mikolich, D.J.; Mates, S.M.

    1987-11-01

    Hematogenous osteomyelitis is usually diagnosed by an abnormal technetium Tc 99m diphosphonate bone scan in symptomatic patients who have positive blood cultures. False-normal 99mTc bone scans have been described recently in neonates with biopsy-proved osteomyelitis. This phenomenon seems to be extremely rare in adults. Two elderly patients with hematogenous vertebral osteomyelitis had normal technetium Tc 99m diphosphonate bone scans when first evaluated. In both cases the bone scans became abnormal four to six weeks after onset of symptoms and two to four weeks after the initial normal results of the study. When suggested by the clinical picture, hematogenous osteomyelitis cannot be ruled out by a normal 99mTc bone scan at any age. Gallium scan, computed tomographic scan, or bone biopsy can be helpful in such cases.

  12. Stem Cells in Teeth and Craniofacial Bones

    PubMed Central

    Zhao, H.; Chai, Y.

    2015-01-01

    Stem cells are remarkable, and stem cell–based tissue engineering is an emerging field of biomedical science aiming to restore damaged tissue or organs. In dentistry and reconstructive facial surgery, it is of great interest to restore lost teeth or craniofacial bone defects using stem cell–mediated therapy. In the craniofacial region, various stem cell populations have been identified with regeneration potential. In this review, we provide an overview of the current knowledge concerning the various types of tooth- and craniofacial bone–related stem cells and discuss their in vivo identities and regulating mechanisms. PMID:26350960

  13. Giant Cell Tumor of Bone - An Overview

    PubMed Central

    Sobti, Anshul; Agrawal, Pranshu; Agarwala, Sanjay; Agarwal, Manish

    2016-01-01

    Giant Cell tumors (GCT) are benign tumors with potential for aggressive behavior and capacity to metastasize. Although rarely lethal, benign bone tumors may be associated with a substantial disturbance of the local bony architecture that can be particularly troublesome in peri-articular locations. Its histogenesis remains unclear. It is characterized by a proliferation of mononuclear stromal cells and the presence of many multi- nucleated giant cells with homogenous distribution. There is no widely held consensus regarding the ideal treatment method selection. There are advocates of varying surgical techniques ranging from intra-lesional curettage to wide resection. As most giant cell tumors are benign and are located near a joint in young adults, several authors favor an intralesional approach that preserves anatomy of bone in lieu of resection. Although GCT is classified as a benign lesion, few patients develop progressive lung metastases with poor outcomes. Treatment is mainly surgical. Options of chemotherapy and radiotherapy are reserved for selected cases. Recent advances in the understanding of pathogenesis are essential to develop new treatments for this locally destructive primary bone tumor. PMID:26894211

  14. Cure of murine thalassemia by bone marrow transplantation without eradication of endogenous stem cells

    SciTech Connect

    Wagemaker, G.; Visser, T.P.; van Bekkum, D.W.

    1986-09-01

    alpha-Thalassemic heterozygous (Hbath/+) mice were used to investigate the possible selective advantage of transplanted normal (+/+) hemopoietic cells. Without conditioning by total-body irradiation (TBI), infusion of large numbers of normal bone marrow cells failed to correct the thalassemic peripheral blood phenotype. Since the recipients' stem cells are normal with respect to number and differentiation capacity, it was thought that the transplanted stem cells were not able to lodge, or that they were not stimulated to proliferate. Therefore, a nonlethal dose of TBI was given to temporarily reduce endogenous stem cell numbers and hemopoiesis. TBI doses of 2 or 3 Gy followed by infusion of normal bone marrow cells proved to be effective in replacing the thalassemic red cells by normal red cells, whereas a dose of 1 Gy was ineffective. It is concluded that cure of thalassemia by bone marrow transplantation does not necessarily require eradication of thalassemic stem cells. Consequently, the objectives of conditioning regimens for bone marrow transplantation of thalassemic patients (and possibly other nonmalignant hemopoietic disorders) should be reconsidered.

  15. COMPARATIVE STUDIES UPON CANCER CELLS AND NORMAL CELLS

    PubMed Central

    Lambert, Robert A.

    1913-01-01

    1. In primary cultures sarcoma cells exhibit a much greater activity than do normal connective tissue cells grown from the adult blood vessel; there is a shorter latent period, ameboid phenomena are more marked, and cell multiplication proceeds more rapidly. 2. In secondary cultures sarcoma cells are less active than in primary cultures; connective tissue cells, on the other hand, show a markedly accelerated growth. 3. Connective tissue cells are more easily propagated over long periods in vitro than are sarcoma cells; they multiply actively in cultures more than three months old. 4. The method of tissue cultivation is well adapted to the study of normal and pathological cell division; the nuclear changes are easily discernible in the living cell as division proceeds, and staining methods may be applied to verify observations upon the unstained structures. 5. Atypical mitoses of several kinds are found in cultures of sarcoma cells but are not seen in growths of connective tissue. 6. The time required for division in rat connective tissue cells kept at body temperature (38° C.) varies within relatively narrow limits (twenty to fifty minutes); sarcoma cells, on the contrary, exhibit marked variations and several hours may be required. 7. In studies upon living cells amitotic division has not been observed in either normal or tumor tissue. Evidences of nuclear budding, however, with the formation of cells containing several nuclei of irregular size have been noted.3 The development of a cell with two nuclei from a mononuclear cell by mitotic division of the nucleus without division of the cytoplasm has also been observed. PMID:19867661

  16. [Pulmonary arterial hypertension, bone marrow, endothelial cell precursors and serotonin].

    PubMed

    Ayme-Dietrich, Estelle; Banas, Sophie M; Monassier, Laurent; Maroteaux, Luc

    2016-01-01

    Serotonin and bone-marrow-derived stem cells participate together in triggering pulmonary hypertension. Our work has shown that the absence of 5-HT2B receptors generates permanent changes in the composition of the blood and bone-marrow in the myeloid lineages, particularly in endothelial cell progenitors. The initial functions of 5-HT2B receptors in pulmonary arterial hypertension (PAH) are restricted to bone-marrow cells. They contribute to the differentiation/proliferation/mobilization of endothelial progenitor cells from the bone-marrow. Those bone-marrow-derived cells have a critical role in the development of pulmonary hypertension and pulmonary vascular remodeling. These data indicate that bone-marrow derived endothelial progenitors play a key role in the pathogenesis of PAH and suggest that interactions involving serotonin and bone morphogenic protein type 2 receptor (BMPR2) could take place at the level of the bone-marrow. PMID:27687599

  17. Geometric indices of hip bone strength in obese, overweight, and normal-weight adolescent girls.

    PubMed

    El Hage, Rawad; El Hage, Zaher; Moussa, Elie; Jacob, Christophe; Zunquin, Gautier; Theunynck, Denis

    2013-01-01

    The aim of this study was to compare hip bone strength indices in obese, overweight, and normal-weight adolescent girls using hip structure analysis (HSA). This study included 64 postmenarcheal adolescent girls (14 obese, 21 overweight, and 29 normal weight). The 3 groups (obese, overweight, and normal weight) were matched for maturity (years since menarche). Body composition and bone mineral density (BMD) of whole body, lumbar spine, and proximal femur were assessed by dual-energy X-ray absorptiometry (DXA). To evaluate hip bone strength, DXA scans were analyzed at the femoral neck (FN) at its narrow neck (NN) region, the intertrochanteric (IT), and the femoral shaft (FS) by the HSA program. Cross-sectional area and section modulus were measured from hip BMD profiles. Total hip BMD and FN BMD were significantly higher in obese and overweight girls in comparison with normal-weight girls (p < 0.05). However, after adjusting for weight, using a one-way analysis of covariance, there were no significant differences among the 3 groups regarding HSA variables. This study suggests that in obese and overweight adolescent girls, axial strength and bending strength indices of the NN, IT, and FS are adapted to the increased body weight.

  18. Relating micromechanical properties and mineral densities in severely suppressed bone turnover patients, osteoporotic patients, and normal subjects.

    PubMed

    Tjhia, Crystal K; Stover, Susan M; Rao, D Sudhaker; Odvina, Clarita V; Fyhrie, David P

    2012-07-01

    Mineralization of bone, from the tissue level to whole bones, is associated with mechanical properties. The relationship between bone tissue mineralization and micromechanical properties may be affected by age, disease, and drug treatment. Patients with severely suppressed bone turnover (SSBT) suffered atypical fractures while on bisphosphonate treatment. The role of tissue level mineralization in predicting material level properties of SSBT bone may be different from that of other osteoporotic patients and of normal subjects. The aim of this study was to compare the relationships between mineralization and micromechanical properties of bone biopsies from patients with SSBT, bisphosphonate-naive osteoporotic patients with typical vertebral fracture, and normal young and age-matched subjects. We used nanoindentation and quantitative backscattered electron microscopy to characterize the elastic modulus, contact hardness, plastic deformation resistance, and tissue mineralization of the biopsies at site-matched locations within each biopsy. The linear mineralization-mechanical property relationships were different among the groups with respect to the intercepts for only cortical bone tissue but not the slopes for cortical and trabecular bone tissues. For a given mineral density, there was a trend of greater plastic deformation resistance in SSBT cortical bone compared to young normal bone. Similarly, there was a trend of greater plastic deformation resistance in osteoporotic trabecular bone compared to young normal bone for a given mineral density. The age-matched normal group had higher elastic modulus and a trend of higher contact hardness compared to the young normal group for a given mineral density. However, the mechanical property-mineralization relationships within an individual were weak, and only 21 of 53 biopsies that were analyzed had at least one significant association between mineralization and a mechanical property measurement for either cortical or

  19. Recent advances in bone regeneration using adult stem cells.

    PubMed

    Zigdon-Giladi, Hadar; Rudich, Utai; Michaeli Geller, Gal; Evron, Ayelet

    2015-04-26

    Bone is a highly vascularized tissue reliant on the close spatial and temporal association between blood vessels and bone cells. Therefore, cells that participate in vasculogenesis and osteogenesis play a pivotal role in bone formation during prenatal and postnatal periods. Nevertheless, spontaneous healing of bone fracture is occasionally impaired due to insufficient blood and cellular supply to the site of injury. In these cases, bone regeneration process is interrupted, which might result in delayed union or even nonunion of the fracture. Nonunion fracture is difficult to treat and have a high financial impact. In the last decade, numerous technological advancements in bone tissue engineering and cell-therapy opened new horizon in the field of bone regeneration. This review starts with presentation of the biological processes involved in bone development, bone remodeling, fracture healing process and the microenvironment at bone healing sites. Then, we discuss the rationale for using adult stem cells and listed the characteristics of the available cells for bone regeneration. The mechanism of action and epigenetic regulations for osteogenic differentiation are also described. Finally, we review the literature for translational and clinical trials that investigated the use of adult stem cells (mesenchymal stem cells, endothelial progenitor cells and CD34(+) blood progenitors) for bone regeneration.

  20. DIRECT AND INDIRECT CONTRIBUTION OF BONE MARROW DERIVED CELLS TO CANCER

    PubMed Central

    Guest, Ian; Ilic, Zoran; Ma, Jun; Grant, Denise; Glinsky, Gennadi; Sell, Stewart

    2010-01-01

    Summary Stromal-epithelial interactions may control the growth and initiation of cancers. Here we not only test the hypothesis that bone marrow derived cells may effect development of cancers arising from other tissue cells by forming tumor stroma, but also that sarcomas may arise by transformation of stem cells from the bone marrow and epithelial cancers may arise by transdifferentiation of bone marrow stem cells to epithelial cancers. Lethally irradiated female FVB/N mice were restored with bone marrow (BM) transplants from a male transgenic mouse carrying the polyoma middle T-oncoprotein under the control of the mouse mammary tumor virus promoter (MMTV-PyMT) and followed for development of lesions. Eight of 8 lethally irradiated female FVB/N recipient mice, restored with BM transplants from a male MMTV-PyMT transgenic mouse, developed Ychromosome negative (Y−) cancers of various organs surrounded by Y+ stroma. One of the female FVB/N recipient mice also developed fibrosarcoma and one a diploid breast adenocarcinoma (BCA) containing Ychromosomes. In contrast, only 1 of 12 control female mice restored with normal male bone marrow developed a tumor (lymphoma) during the same time period.. These results indicate not only that the transgenic bone marrow derived stromal cells may indirectly contribute to development of tumors in recipient mice, but also that sarcomas may arise by transformation of bone marrow stem cells and that breast cancers arise by transdifferentiation of bone marrow stem cells, presumably by mesenchymal-epithelial transition. PMID:19816927

  1. Transplanted Bone Marrow Cells Repair Heart Tissue and Reduce Myocarditis in Chronic Chagasic Mice

    PubMed Central

    Soares, Milena B. P.; Lima, Ricardo S.; Rocha, Leonardo L.; Takyia, Christina M.; Pontes-de-Carvalho, Lain; Campos de Carvalho, Antonio C.; Ribeiro-dos-Santos, Ricardo

    2004-01-01

    A progressive destruction of the myocardium occurs in ∼30% of Trypanosoma cruzi-infected individuals, causing chronic chagasic cardiomyopathy, a disease so far without effective treatment. Syngeneic bone marrow cell transplantation has been shown to cause repair and improvement of heart function in a number of studies in patients and animal models of ischemic cardiopathy. The effects of bone marrow transplant in a mouse model of chronic chagasic cardiomyopathy, in the presence of the disease causal agent, ie, the T. cruzi, are described herein. Bone marrow cells injected intravenously into chronic chagasic mice migrated to the heart and caused a significant reduction in the inflammatory infiltrates and in the interstitial fibrosis characteristics of chronic chagasic cardiomyopathy. The beneficial effects were observed up to 6 months after bone marrow cell transplantation. A massive apoptosis of myocardial inflammatory cells was observed after the therapy with bone marrow cells. Transplanted bone marrow cells obtained from chagasic mice and from normal mice had similar effects in terms of mediating chagasic heart repair. These results show that bone marrow cell transplantation is effective for treatment of chronic chagasic myocarditis and indicate that autologous bone marrow transplant may be used as an efficient therapy for patients with chronic chagasic cardiomyopathy. PMID:14742250

  2. [CHARACTERISTICS OF OSTEOCYTE CELL LINES FROM BONES FORMED AS A RESULT OF MEMBRANOUS (SKULL BONES) AND CHONDRAL (LONG BONES) OSSIFICATION].

    PubMed

    Avrunin, A S; Doktorov, A A

    2016-01-01

    The aim of this work was to analyze the literature data and the results of authors' own research, to answer the question--if the osteocytes of bone tissues resulting from membranous and chondral ossification, belong to one or to different cell lines. The differences between the cells of osteocyte lines derived from bones resulting from membranous and chondral ossification were established in: 1) the magnitude of the mechanical signal, initiating the development of the process of mechanotransduction; 2) the nature of the relationship between the magnitude of the mechanical signal that initiates the reorganization of the architecture of bone structures and the resource of their strength; in membranous bones significantly lower mechanical signal caused a substantially greater increment of bone strength resource; 3) the biological activity of bone structures, bone fragments formed from membranous tissue were more optimal for transplantation; 4) the characteristics of expression of functional markers of bone cells at different stages of their differentiation; 5) the nature of the reaction of bone cells to mechanical stress; 6) the sensitivity of bone cells to one of the factors controlling the process of mechanotransduction (PGI2); 7) the functioning of osteocytes during lactation. These differences reflect the functional requirements to the bones of the skeleton--the supporting function in the bones of the limbs and the shaping and protection in the bones of the cranial vault. These data suggest that the results of research conducted on the bones of the skull, should not be transferred to the entire skeleton as a whole. PMID:27487656

  3. Nanostructured magnesium increases bone cell density

    NASA Astrophysics Data System (ADS)

    Weng, Lucy; Webster, Thomas J.

    2012-12-01

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH- which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  4. Histogenetic Characterization of Giant Cell Tumor of Bone

    PubMed Central

    Salerno, Manuela; Avnet, Sofia; Alberghini, Marco; Giunti, Armando

    2008-01-01

    The unpredictable behavior of giant cell tumor (GCT) parallels its controversial histogenesis. Multinucleated giant cells, stromal cells, and CD68+ monocytes/macrophages are the three elements that interact in GCT. We compared the ability of stromal cells and normal mesenchymal stromal cells to differentiate into osteoblasts. Stromal cells and mesenchymal cells had similar proliferation rates and lifespans. Although stromal cells expressed early osteogenic markers, they were unable to differentiate into osteoblasts but they did express intracellular adhesion molecule-1, a marker of bone-lining cells. They were unable to form clones in a semisolid medium and unable to promote osteoclast differentiation, although they exerted a strong chemotactic effect on osteoclast precursors. Stromal cells may be either immature proliferating osteogenic elements or specialized osteoblast-like cells that fail to show neoplastic features but can induce the differentiation of osteoclast precursors. They might be secondarily induced to proliferate by a paracrine effect induced by monocyte-macrophages and/or giant cells. The increased number of giant cells in GCT may be secondary to an autocrine circuit mediated by the receptor activator of nuclear factor kB. PMID:18543051

  5. Normalization of bone mineral density after five years of treatment with strontium ranelate.

    PubMed

    Sánchez, Julio Ariel

    2015-01-01

    E.F., female, age 58, mother of 4 children and otherwise healthy, had gone into menopause when she was 42. She had received hormone replacement therapy during 8 years. Due to low bone mass she had been treated with oral alendronate during 7 years. She had a normal calcium intake in her diet and engaged in regular physical activity. She did not smoke, and drank alcohol only occasionally. Her mother had sustained a hip fracture at age 90. Bone densitometry of her lumbar spine by DXA showed a T-score of -3.0; standardized bone mineral density (sBMD) had decreased by 11% in the previous 3 years. She was advised to start treatment with strontium ranelate (SrR) 2 g/day, plus oral cholecalciferol (1,000 IU/day). Three months later serum alkaline phosphatase had increased 10%, and serum osteocalcin was 18.9 ng/ml (upper normal limit 13.7). One year later her lumbar BMD had increased by 13.5%. After five years of treatment the BMD value was normal (1.357 g/cm(2); T-score -0.3). The case presented here is noteworthy for two reasons. Firstly, the patient maintained low bone mass after several years of combined treatment with alendronate and hormone replacement; this combination usually induces greater densitometric responses than either treatment given alone. Secondly, she responded promptly and significantly to SrR in spite of the previous long exposure to alendronate. SrR is widely used for the treatment of osteoporosis. It is an effective and safe drug, provided the patients are properly selected. As shown here, it can help some patients to achieve a normal BMD. PMID:26811705

  6. Normalization of bone mineral density after five years of treatment with strontium ranelate

    PubMed Central

    Sánchez, Julio Ariel

    2015-01-01

    Summary E.F., female, age 58, mother of 4 children and otherwise healthy, had gone into menopause when she was 42. She had received hormone replacement therapy during 8 years. Due to low bone mass she had been treated with oral alendronate during 7 years. She had a normal calcium intake in her diet and engaged in regular physical activity. She did not smoke, and drank alcohol only occasionally. Her mother had sustained a hip fracture at age 90. Bone densitometry of her lumbar spine by DXA showed a T-score of −3.0; standardized bone mineral density (sBMD) had decreased by 11% in the previous 3 years. She was advised to start treatment with strontium ranelate (SrR) 2 g/day, plus oral cholecalciferol (1,000 IU/day). Three months later serum alkaline phosphatase had increased 10%, and serum osteocalcin was 18.9 ng/ml (upper normal limit 13.7). One year later her lumbar BMD had increased by 13.5%. After five years of treatment the BMD value was normal (1.357 g/cm2; T-score −0.3). The case presented here is noteworthy for two reasons. Firstly, the patient maintained low bone mass after several years of combined treatment with alendronate and hormone replacement; this combination usually induces greater densitometric responses than either treatment given alone. Secondly, she responded promptly and significantly to SrR in spite of the previous long exposure to alendronate. SrR is widely used for the treatment of osteoporosis. It is an effective and safe drug, provided the patients are properly selected. As shown here, it can help some patients to achieve a normal BMD. PMID:26811705

  7. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling.

    PubMed

    Hambli, Ridha

    2014-01-01

    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone

  8. Thrombospondin 1 promotes synaptic formation in bone marrow-derived neuron-like cells.

    PubMed

    Huang, Yun; Lu, Mingnan; Guo, Weitao; Zeng, Rong; Wang, Bin; Wang, Huaibo

    2013-04-01

    In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse formation. Results showed that there was no significant difference in the differentiation rate of neuron-like cells between bone marrow mesenchymal stem cells with thrombospondin induction and those without. However, the cell shape was more complex and the neurites were dendritic, with unipolar, bipolar or multipolar morphologies, after induction with thrombospondin 1. The induced cells were similar in morphology to normal neurites. Immunohistochemical staining showed that the number of positive cells for postsynaptic density protein 95 and synaptophysin 1 protein was significantly increased after induction with thrombospondin 1. These findings indicate that thrombospondin 1 promotes synapse formation in neuron-like cells that are differentiated from bone marrow mesenchymal stem cells.

  9. Osteogenic activity of bone marrow-derived mesenchymal stem cells (BMSCs) seeded on irradiated allogenic bone.

    PubMed

    Tohma, Yasuaki; Dohi, Yoshiko; Ohgushi, Hajime; Tadokoro, Mika; Akahane, Manabu; Tanaka, Yasuhito

    2012-02-01

    Allogenic bone grafting, a technique used in orthopaedic surgery, has several problems, including low osteogenic activity. To overcome the problem, this study aimed to determine whether in vivo osteogenesis could be enhanced using allogenic irradiated bone grafts after seeding with autologous bone marrow-derived mesenchymal stem cells (BMSCs). The allogenic bone cylinders were extracted from ACI rats and sterilized by irradiation. Donor BMSCs were obtained from fresh Fischer 344 (F344) rat bone marrow by cell culture. The allogenic bone with or without BMSCs were transplanted subcutaneously into syngeneic F344 rats. At 4 weeks after transplantation, high alkaline phosphatase (ALP) activity, bone-specific osteocalcin mRNA expression and newly formed bone were detected in the allogenic bone with BMSCs. The origin of the newly formed bone was derived from cultured donor BMSCs. However, none of these identifiers of osteogenesis were detected in either the fresh or the irradiated allogenic bone without BMSCs. These results indicate the availability of autologous BMSCs to heighten the osteogenic response of allogenic bone. Our present tissue-engineering method might contribute to a wide variety of allogenic bone grafting techniques in clinical settings.

  10. Bone marrow transplantation in sickle cell anaemia.

    PubMed Central

    Vermylen, C; Cornu, G; Philippe, M; Ninane, J; Borja, A; Latinne, D; Ferrant, A; Michaux, J L; Sokal, G

    1991-01-01

    Sickle cell anaemia is still responsible for severe crippling and death in young patients living in developing countries. Apart from prophylaxis and treatment of infections, no active treatment can be safely proposed in such areas of the world. Therefore a bone marrow transplantation was performed in 12 patients staying in Belgium and planning to return to Africa. Twelve patients, aged between 11 months and 23 years (median 4 years), underwent a HLA identical bone marrow transplantation. The conditioning regimen included oral busulphan for four consecutive days (4 mg/kg) followed by four days of intravenous cyclophosphamide (50 mg/kg). In 10 patients the engraftment was rapid and sustained. A further patient suffered transient red cell hypoplasia and another underwent a second bone marrow transplantation from the same donor at day 62 because of graft rejection. All patients are alive and well with a follow up ranging from 9-51 months (median 27 months). In all cases a complete cessation of vaso-occlusive episodes and haemolysis was observed as was a change in the haemoglobin pattern in accordance with the donor's electrophoretic pattern. PMID:1953001

  11. Adipose-Derived Stem Cells in Functional Bone Tissue Engineering: Lessons from Bone Mechanobiology

    PubMed Central

    Bodle, Josephine C.; Hanson, Ariel D.

    2011-01-01

    This review aims to highlight the current and significant work in the use of adipose-derived stem cells (ASC) in functional bone tissue engineering framed through the bone mechanobiology perspective. Over a century of work on the principles of bone mechanosensitivity is now being applied to our understanding of bone development. We are just beginning to harness that potential using stem cells in bone tissue engineering. ASC are the primary focus of this review due to their abundance and relative ease of accessibility for autologous procedures. This article outlines the current knowledge base in bone mechanobiology to investigate how the knowledge from this area has been applied to the various stem cell-based approaches to engineering bone tissue constructs. Specific emphasis is placed on the use of human ASC for this application. PMID:21338267

  12. Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies.

    PubMed

    Lamghari, M; Almeida, M J; Berland, S; Huet, H; Laurent, A; Milet, C; Lopez, E

    1999-08-01

    There is frequently a loss of vertebral bone due to disease or aging. Nacre (mother of pearl from the oyster Pinctada maxima) stimulates bone cell differentiation and bone formation in vitro and in vivo. Experimental bone defects were prepared in the vertebrae of sheep and used to test the suitability of nacre as an injectable osteogenic biomaterial for treating vertebral bone loss. Twenty-one cavities were prepared in the first four upper lumbar vertebrae of 11 sheep and filled with nacre powder. The lumbar vertebrae were removed after 1 to 12 weeks, embedded undecalcified in methacrylate, and processed for histological studies. The nacre slowly dissolved and the experimental cavities contained a large active cell population. By 12 weeks, the experimental cavity was occupied by newly matured bone trabeculae in contact with or adjacent to the dissolving nacre. The functional new bone trabeculae were covered with osteoid lined with osteoblasts, indicating continuing bone formation. The in vitro study on rat bone marrow explants cultured with a water-soluble extract of the nacre organic matrix also resulted in the stimulation of osteogenic bone marrow cells with enhanced alkaline phosphatase activity. Thus, both the in vivo and in vitro findings suggest that nacre contains one or more signal molecules capable of activating osteogenic bone marrow cells.

  13. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.

    PubMed

    Özdal-Kurt, F; Tuğlu, I; Vatansever, H S; Tong, S; Deliloğlu-Gürhan, S I

    2015-01-01

    Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell

  14. Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells

    PubMed Central

    Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2005-01-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal fusion model and cancellous bone matrix was used to compare an enriched cellular composite bone graft alone, bone matrix plus bone marrow clot, and an enriched bone matrix composite graft plus bone marrow clot. Union score, quantitative computed tomography, and mechanical testing were used to define outcome. The union score for the enriched bone matrix plus bone marrow clot composite was superior to the enriched bone matrix alone and the bone matrix plus bone marrow clot. The enriched bone matrix plus bone marrow clot composite also was superior to the enriched bone matrix alone in fusion volume and in fusion area. These data confirm that the addition of a bone marrow clot to an enriched cell-matrix composite graft results in significant improvement in graft performance. Enriched composite grafts prepared using this strategy provide a rapid, simple, safe, and inexpensive method for intraoperative concentration and delivery of bone marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting. PMID:12567137

  15. Effects of ionizing radiation on bone cell differentiation in an experimental murine bone cell model

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, Christa; Lau, Patrick; Hellweg, Christine; Reitz, Guenther

    During long-term space travel astronauts are exposed to a complex mixture of different radiation types under conditions of dramatically reduced weight-bearing activity. It has been validated that astronauts loose a considerable amount of bone mass at a rate up to one to two percent each month in space. Therapeutic doses of ionizing radiation cause bone damage and increase fracture risks after treatment for head-and-neck cancer and in pelvic irradiation. For low radiation doses, the possibility of a disturbed healing potential of bone was described. Radiation induced damage has been discussed to inflict mainly on immature and healing bone. Little is known about radiation effects on bone remodelling and even less on the combined action of microgravity and radiation. Bone remodelling is a life-long process performed by balanced action of cells from the osteoblast and osteoclast lineages. While osteoblasts differentiate either into bone-lining cells or into osteocytes and play a crucial role in bone matrix synthesis, osteoclasts are responsible for bone resorption. We hypothesize that the balance between bone matrix assembly by osteocytes and bone degradation by osteoclasts is modulated by microgravity as well as by ionizing radiation. To address this, a cell model consisting of murine cell lines with the potential to differentiate into bone-forming osteoblasts (OCT-1, MC3T3-E1 S24, and MC3T3-E1 S4) was used for studying radiation response after exposure to simulated components of cosmic radiation. Cells were exposed to graded doses of 150 kV X-rays, α particles (0.525 MeV/u, 160 keV/µm; PTB, Braunschweig, Germany) and accelerated heavy ions (75 MeV/u carbon, 29 keV/µm; 95 MeV/u argon, 230 keV/µm; GANIL, Caen, France). Cell survival was measured as colony forming ability; cell cycle progression was analyzed via fluorescence-activated cell scanning (FACS) by measurement of the content of propidium iodide-stained DNA, DNA damage was visualized by γH2AX

  16. Stromal cell-derived factor-1 mediates changes of bone marrow stem cells during the bone repair process.

    PubMed

    Okada, Kiyotaka; Kawao, Naoyuki; Yano, Masato; Tamura, Yukinori; Kurashimo, Shinzi; Okumoto, Katsumi; Kojima, Kotarou; Kaji, Hiroshi

    2016-01-01

    Osteoblasts, osteoclasts, chondrocytes, and macrophages that participate in the bone repair process are derived from hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). However, the roles of these stem cells during the repair of injured bone tissue are still unclear. In the present study, we examined the effects of bone defect on HSCs and MSCs in bone marrow and spleen in 75 mice and its mechanism. We analyzed the HSC and MSC populations in these tissues of a mouse with femoral bone damage by using flow cytometry. The number of HSCs in the bone marrow of mice with damaged femurs was significantly lower than the number of these cells in the bone marrow of the contralateral intact femurs on day 2 after injury. Meanwhile, the number of MSCs in the bone marrow of mice with damaged femurs was significantly higher than that of the contralateral femurs. Both intraperitoneal administration of AMD3100, a C-X-C chemokine receptor 4 (CXCR4) antagonist, and local treatment with an anti-stromal cell-derived factor-1 (SDF-1) antibody blunted the observed decrease in HSC and increase in MSC populations within the bone marrow of injured femurs. In conclusion, the present study revealed that there is a concurrent decrease and increase in the numbers of HSCs and MSCs, respectively, in the bone marrow during repair of mouse femoral bone damage. Furthermore, the SDF-1/CXCR4 system was implicated as contributing to the changes in these stem cell populations upon bone injury.

  17. Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects

    PubMed Central

    Gao, Xueqin; Usas, Arvydas; Proto, Jonathan D.; Lu, Aiping; Cummins, James H.; Proctor, Alexander; Chen, Chien-Wen; Huard, Johnny

    2014-01-01

    Murine muscle-derived stem cells (MDSCs) have been shown capable of regenerating bone in a critical size calvarial defect model when transduced with BMP 2 or 4; however, the contribution of the donor cells and their interactions with the host cells during the bone healing process have not been fully elucidated. To address this question, C57/BL/6J mice were divided into MDSC/BMP4/GFP, MDSC/GFP, and scaffold groups. After transplanting MDSCs into the critical-size calvarial defects created in normal mice, we found that mice transplanted with BMP4GFP-transduced MDSCs healed the bone defect in 4 wk, while the control groups (MDSC-GFP and scaffold) demonstrated no bone healing. The newly formed trabecular bone displayed similar biomechanical properties as the native bone, and the donor cells directly participated in endochondral bone formation via their differentiation into chondrocytes, osteoblasts, and osteocytes via the BMP4-pSMAD5 and COX-2-PGE2 signaling pathways. In contrast to the scaffold group, the MDSC groups attracted more inflammatory cells initially and incurred faster inflammation resolution, enhanced angiogenesis, and suppressed initial immune responses in the host mice. MDSCs were shown to attract macrophages via the secretion of monocyte chemotactic protein 1 and promote endothelial cell proliferation by secreting multiple growth factors. Our findings indicated that BMP4GFP-transduced MDSCs not only regenerated bone by direct differentiation, but also positively influenced the host cells to coordinate and promote bone tissue repair through paracrine effects.—Gao, X., Usas, A., Proto, J. D., Lu, A., Cummins, J. H., Proctor, A., Chen, C.-W., Huard, J. Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects. PMID:24843069

  18. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  19. Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Jimi, Eijiro

    2016-01-01

    Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment. PMID:27298623

  20. Age related histomorphometric changes in bone in normal British men and women.

    PubMed Central

    Rehman, M T; Hoyland, J A; Denton, J; Freemont, A J

    1994-01-01

    AIMS--To define the iliac crest histomorphometry of static variables in 234 individuals aged 16-100 years (91 men, 143 women) and of dynamic variables in 84 individuals aged 19-94 years (33 men, 51 women) from the North West of England. METHODS--Iliac crest biopsy specimens were sectioned, undecalcified, and examined using image analysis. RESULTS--The decrease in the quantity of cortical and trabecular bone and the connectivity of trabecular bone was more pronounced in women than men. This was associated with a reduction in bone formation and increased bone resorption which was greater in women at both the tissue and cellular level. Some of these histomorphometric differences first became evident at the natural menopause, and therefore provide clues as to the cause of the high prevalence of osteoporosis in postmenopausal women. CONCLUSIONS--These results show an age and sex dependent variation both in static and dynamic parameters, which differ, in some respects, from other studies and confirm the need for large regional studies to provide a database of normal morphometric results for a specific population. PMID:8063935

  1. Effects of ionizing radiation on bone cell differentiation in an experimental murine bone cell model

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, Christa; Lau, Patrick; Hellweg, Christine; Reitz, Guenther

    During long-term space travel astronauts are exposed to a complex mixture of different radiation types under conditions of dramatically reduced weight-bearing activity. It has been validated that astronauts loose a considerable amount of bone mass at a rate up to one to two percent each month in space. Therapeutic doses of ionizing radiation cause bone damage and increase fracture risks after treatment for head-and-neck cancer and in pelvic irradiation. For low radiation doses, the possibility of a disturbed healing potential of bone was described. Radiation induced damage has been discussed to inflict mainly on immature and healing bone. Little is known about radiation effects on bone remodelling and even less on the combined action of microgravity and radiation. Bone remodelling is a life-long process performed by balanced action of cells from the osteoblast and osteoclast lineages. While osteoblasts differentiate either into bone-lining cells or into osteocytes and play a crucial role in bone matrix synthesis, osteoclasts are responsible for bone resorption. We hypothesize that the balance between bone matrix assembly by osteocytes and bone degradation by osteoclasts is modulated by microgravity as well as by ionizing radiation. To address this, a cell model consisting of murine cell lines with the potential to differentiate into bone-forming osteoblasts (OCT-1, MC3T3-E1 S24, and MC3T3-E1 S4) was used for studying radiation response after exposure to simulated components of cosmic radiation. Cells were exposed to graded doses of 150 kV X-rays, α particles (0.525 MeV/u, 160 keV/µm; PTB, Braunschweig, Germany) and accelerated heavy ions (75 MeV/u carbon, 29 keV/µm; 95 MeV/u argon, 230 keV/µm; GANIL, Caen, France). Cell survival was measured as colony forming ability; cell cycle progression was analyzed via fluorescence-activated cell scanning (FACS) by measurement of the content of propidium iodide-stained DNA, DNA damage was visualized by γH2AX

  2. Injectable bone tissue engineering using expanded mesenchymal stem cells.

    PubMed

    Yamada, Yoichi; Nakamura, Sayaka; Ito, Kenji; Umemura, Eri; Hara, Kenji; Nagasaka, Tetsuro; Abe, Akihiro; Baba, Shunsuke; Furuichi, Yasushi; Izumi, Yuichi; Klein, Ophir D; Wakabayashi, Toshihiko

    2013-03-01

    Patients suffering from bone defects are often treated with autologous bone transplants, but this therapy can cause many complications. New approaches are therefore needed to improve treatment for bone defects, and stem cell therapy presents an exciting alternative approach. Although extensive evidence from basic studies using stem cells has been reported, few clinical applications using stem cells for bone tissue engineering have been developed. We investigated whether injectable tissue-engineered bone (TEB) composed of mesenchymal stem cells (MSCs) and platelet-rich plasma was able to regenerate functional bone in alveolar deficiencies. We performed these studies in animals and subsequently carried out large-scale clinical studies in patients with long-term follow-up; these showed good bone formation using minimally invasive MSC transplantation. All patients exhibited significantly improved bone volume with no side effects. Newly formed bone areas at 3 months were significantly increased over the preoperation baseline (p < .001) and reached levels equivalent to that of native bone. No significant bone resorption occurred during long-term follow-up. Injectable TEB restored masticatory function in patients. This novel clinical approach represents an effective therapeutic utilization of bone tissue engineering.

  3. Morphologic and histochemical studies of bone cells from SL-3 rats

    NASA Technical Reports Server (NTRS)

    Doty, S. B.

    1985-01-01

    Previous studies of rat bone following space flight indicate a significant reduction in new bone formation as a result of hypogravity. In the present study of animals from SL-3 flight, the cellular activity of the bone forming cells, the osteoblasts, was investigated. Measurements of alkaline and acid phosphatase, Golgi activity, secretory granule size, and lysosomal activity, all indicated very little difference between flight and flight-simulated controls. However, there was a tendency for osteoblasts in compact bone of flight animals to show a smaller cytoplasmic volume compared to non-flight controls. If, as in previous studies, a significant reduction in bone formation occurred, it could be due to a normal level of procollagen degradation within these smaller osteoblasts, resulting in less collagen secretion per cell.

  4. Langerhans cell histiocytosis of bone: MR imaging.

    PubMed

    George, J C; Buckwalter, K A; Cohen, M D; Edwards, M K; Smith, R R

    1994-01-01

    Magnetic resonance (MR) images of 12 pathologically proven lesions of Langerhans cell histiocytosis (LCH) of bone were reviewed retrospectively. MR identified all lesions, three of which were not identified on plain radiographs. In all cases, MR showed greater abnormality than did plain radiographs. With one exception, all lesions were hypointense on T1-weighted images and hyperintense on T2-weighted images. The lesions and associated soft tissue abnormalities were very conspicuous on short TI inversion sequences and T1-weighted post-contrast images. Follow-up MR studies in two patients after chemotherapy showed decreased size and enhancement of lesions compared with baseline studies.

  5. Phenotypic and functional analysis of bone marrow progenitor cell compartment in bone marrow failure.

    PubMed

    Maciejewski, J P; Anderson, S; Katevas, P; Young, N S

    1994-06-01

    Many laboratory findings have demonstrated that the haemopoietic stem cell compartment is defective in aplastic anaemia (AA). AA bone marrow (BM) and peripheral blood (PB) are profoundly deficient in colony-forming cells, and AA progenitors fail to proliferate in long-term assays even in the presence of an intact stroma. Our study was designed to characterize some quantitative and qualitative aspects of the progenitor cell defect in AA. Using flow cytometric analysis of BM from new AA patients and from those recovering after immunosuppressive therapy, we determined that the numbers of CD34+ and CD33+ cells were markedly decreased in AA. Although PB neutrophil counts did not correlate with BM CD34+ cell numbers in acute disease, there was an association between the overall severity of the disease and the degree of CD34+ cell reduction. A decrease in BM CD33+ cells was a common finding in MDS patients, but reduction in CD34+ cells was found only in some hypoplastic MDS cases. Sorting experiments demonstrated lower plating efficiency for purified CD34+ cells from AA BM in comparison to controls. Thus, diminished colony formation of total BM appeared to result from both quantitative and qualitative defects. Based on the association between increased cycling and c-kit receptor expression on CD34+ cells, we found that the mitotically active CD34+ cells bearing the c-kit antigen were reduced in AA. With clinical improvement, CD34+ and CD33+ cells increased in correlation with PB parameters, but they did not return to normal values. Sorted CD34+ cells from recovered patents showed improved plating efficiency.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Strain-rate dependence of the compressive properties of normal and carbon-fiber-reinforced bone cement.

    PubMed

    Saha, S; Pal, S

    1983-11-01

    Normal and carbon-fiber-reinforced (1 wt. %) bone cement samples were tested in compression at various strain rates. Both the compressive strength and proportional limit increased in general with increasing strain rate. Similar strain-rate sensitivity was also shown by the carbon-fiber-reinforced bone cement. The mechanical properties, namely the modulus of elasticity, the proportional limit, and the compressive strength of the carbon-fiber-reinforced bone cement showed highly significant positive correlations with the strain rate. PMID:6654926

  7. Immunomodulation regulates mesenchymal stem cell-based bone regeneration.

    PubMed

    Su, Y; Shi, S; Liu, Y

    2014-10-01

    Mesenchymal stem cell (MSC)-based regenerative medicine represents a promising frontier for bone reconstruction. Significant efforts have been devoted to clarifying the capacities of MSCs to repair or reconstruct bone tissue. This review provides a concise summary of current knowledge pertaining to the possible mechanisms of MSC action in the regeneration of bone, with particular focus on the interplay between donor MSCs and host immune response in the process of new bone regeneration.

  8. Resveratrol Increases the Bone Marrow Hematopoietic Stem and Progenitor Cell Capacity

    PubMed Central

    Rimmelé, Pauline; Lofek-Czubek, Sébastien; Ghaffari, Saghi

    2014-01-01

    Resveratrol is a plant-derived polyphenol that has shown protective effects against many disorders including, several types of cancers and other age-associated diseases as well as blood disorders in cultured cells and/or animal models. However, whether resveratrol has any impact specifically on normal blood stem cells remains unknown. Here we show that a three-week treatment of resveratrol increases the frequency and total numbers of normal bone marrow hematopoietic stem cells (HSC) without any impact on their competitive repopulation capacity. In addition, we show that resveratrol enhances the bone marrow multipotent progenitor capacity in vivo. These results have therapeutic value for disorders of hematopoietic stem and progenitor cells (HSPC) as well as for bone marrow transplantation settings. PMID:25163926

  9. Identification of molecular markers related to human alveolar bone cells and pathway analysis in diabetic patients.

    PubMed

    Sun, X; Ren, Q H; Bai, L; Feng, Q

    2015-10-28

    Alveolar bone osteoblasts are widely used in dental and related research. They are easily affected by systemic diseases such as diabetes. However, the mechanism of diabetes-induced alveolar bone absorption remains unclear. This study systematically explored the changes in human alveolar bone cell-related gene expression and biological pathways, which may facilitate the investigation of its mechanism. Alveolar bone osteoblasts isolated from 5 male diabetics and 5 male healthy adults were cultured. Total RNA was extracted from these cells and subjected to gene microarray analysis. Differentially expressed genes were screened, and a gene interaction network was constructed. An enrichment pathway analysis was simultaneously performed on differentially expressed genes to identify the biological pathways associated with changes in the alveolar bone cells of diabetic humans. In total, we identified 147 mRNAs that were differentially expressed in diabetic alveolar bone cells (than in the normal cells; 91 upregulated and 36 downregulated mRNAs). The constructed co-expression network showed 3 pairs of significantly-expressed genes. High-enrichment pathway analysis identified 8 pathways that were affected by changes in gene expression; three of the significant pathways were related to metabolism (inositol phosphate metabolism, propanoate metabolism, and pyruvate metabolism). Here, we identified a few potential genes and biological pathways for the diagnosis and treatment of alveolar bone cells in diabetic patients.

  10. Quantitative evaluation of regularized phase retrieval algorithms on bone scaffolds seeded with bone cells

    NASA Astrophysics Data System (ADS)

    Weber, L.; Langer, M.; Tavella, S.; Ruggiu, A.; Peyrin, F.

    2016-05-01

    In the field of regenerative medicine, there has been a growing interest in studying the combination of bone scaffolds and cells that can maximize newly formed bone. In-line phase-contrast x-ray tomography was used to image porous bone scaffolds (Skelite©), seeded with bone forming cells. This technique allows the quantification of both mineralized and soft tissue, unlike with classical x-ray micro-computed tomography. Phase contrast images were acquired at four distances. The reconstruction is typically performed in two successive steps: phase retrieval and tomographic reconstruction. In this work, different regularization methods were applied to the phase retrieval process. The application of a priori terms for heterogeneous objects enables quantitative 3D imaging of not only bone morphology, mineralization, and soft tissue formation, but also cells trapped in the pre-bone matrix. A statistical study was performed to derive statistically significant information on the different culture conditions.

  11. Response and adaptation of bone cells to simulated microgravity

    NASA Astrophysics Data System (ADS)

    Hu, Lifang; Li, Runzhi; Su, Peihong; Arfat, Yasir; Zhang, Ge; Shang, Peng; Qian, Airong

    2014-11-01

    Bone loss induced by microgravity during space flight is one of the most deleterious factors on astronaut's health and is mainly attributed to an unbalance in the process of bone remodeling. Studies from the space microgravity have demonstrated that the disruption of bone remodeling is associated with the changes of four main functional bone cells, including osteoblast, osteoclast, osteocyte, and mesenchymal stem cells. For the limited availability, expensive costs and confined experiment conditions for conducting space microgravity studies, the mechanism of bone cells response and adaptation to microgravity is still unclear. Therefore, some ground-based simulated microgravity methods have been developed to investigate the bioeffects of microgravity and the mechanisms. Here, based on our studies and others, we review how bone cells (osteoblasts, osteoclasts, osteocytes and mesenchymal stem cells) respond and adapt to simulated microgravity.

  12. Does hormone replacement normalize bone geometry in adolescents with anorexia nervosa?

    PubMed

    DiVasta, Amy D; Feldman, Henry A; Beck, Thomas J; LeBoff, Meryl S; Gordon, Catherine M

    2014-01-01

    Young women with anorexia nervosa (AN) have reduced secretion of dehydroepiandrosterone (DHEA) and estrogen contributing to skeletal deficits. In this randomized, placebo-controlled trial, we investigated the effects of oral DHEA + combined oral contraceptive (COC) versus placebo on changes in bone geometry in young women with AN. Eighty women with AN, aged 13 to 27 years, received a random, double-blinded assignment to micronized DHEA (50 mg/day) + COC (20 µg ethinyl estradiol/0.1 mg levonorgestrel) or placebo for 18 months. Measurements of areal bone mineral density (aBMD) at the total hip were obtained by dual-energy X-ray absorptiometry at 0, 6, 12, and 18 months. We used the Hip Structural Analysis (HSA) program to determine BMD, cross-sectional area (CSA), and section modulus at the femoral neck and shaft. Each measurement was expressed as a percentage of the age-, height-, and lean mass-specific mean from an independent sample of healthy adolescent females. Over the 18 months, DHEA + COC led to stabilization in femoral shaft BMD (0.0 ± 0.5% of normal mean for age, height, and lean mass/year) compared with decreases in the placebo group (-1.1 ± 0.5% per year, p = 0.03). Similarly, CSA, section modulus, and cortical thickness improved with treatment. In young women with AN, adrenal and gonadal hormone replacement improved bone health and increased cross-sectional geometry. Our results indicate that this combination treatment has a beneficial impact on surrogate measures of bone strength, and not only bone density, in young women with AN.

  13. Mechanical property and tissue mineral density differences among severely suppressed bone turnover (SSBT) patients, osteoporotic patients, and normal subjects.

    PubMed

    Tjhia, Crystal K; Odvina, Clarita V; Rao, D Sudhaker; Stover, Susan M; Wang, Xiang; Fyhrie, David P

    2011-12-01

    Pathogenesis of atypical fractures in patients on long term bisphosphonate therapy is poorly understood, and the type, the manner in which they occur and the fracture sites are quite different from the usual osteoporotic fractures. We hypothesized that the tissue-level mechanical properties and mean degree of mineralization of the iliac bone would differ among 1) patients with atypical fractures and severely suppressed bone turnover (SSBT) associated with long-term bisphosphonate therapy, 2) age-matched, treatment-naïve osteoporotic patients with vertebral fracture, 3) age-matched normals and 4) young normals. Large differences in tissue-level mechanical properties and/or mineralization among these groups could help explain the underlying mechanism(s) for the occurrence of typical osteoporotic and the atypical femoral shaft fractures. Elastic modulus, contact hardness, plastic deformation resistance, and tissue mineral densities of cortical and trabecular bone regions of 55 iliac bone biopsies--12 SSBT patients (SSBT; aged 49-77), 11 age-matched untreated osteoporotic patients with vertebral fracture (Osteoporotic), 12 age-matched subjects without bone fracture (Age-Matched Normal), and 20 younger subjects without bone fracture (Young Normal)--were measured using nanoindentation and quantitative backscattered electron microscopy. For cortical bone nanoindentation properties, only plastic deformation resistance was different among the groups (p<0.05), with greater resistance to plastic deformation in the SSBT group compared to all other groups. For trabecular bone, all nanoindentation properties and mineral density of the trabecular bone were different among the groups (p<0.05). The SSBT group had greater plastic deformation resistance and harder trabecular bone compared to the other three groups, stiffer bone compared to the Osteoporotic and Young Normal groups, and a trend of higher mineral density compared to the Age-Matched Normal and Osteoporotic groups. Lower

  14. Intramuscular injection of bone marrow mononuclear cells contributes to bone repair following midpalatal expansion in rats

    PubMed Central

    CHE, XIAOXIA; GUO, JIE; LI, XIANGDONG; WANG, LVE; WEI, SILONG

    2016-01-01

    Healing from injury requires the activation and proliferation of stem cells for tissue repair. Previous studies have demonstrated that bone marrow is a central pool of stem cells. The present study aimed to investigate the route undertaken by bone marrow mononuclear cells (BMMCs) following BMMC transplantation by masseter injection in a rat model of midpalatal expansion. The rats were divided into five groups according to the types of midpalatal expansion, incision and BMMC transplantation. Samples of midpalatal bone from the rats in each group were used for histological and immunohistochemical assessments to track and evaluate the differential potentials of the transplanted BMMCs in the masseter muscle and midpalatal bone. Bromodeoxyuridine was used as a BMMC tracing label, and M-cadherin was used to detect muscle satellite cells. The BMMCs injected into the masseter were observed, not only in the masseter, but also in the blood vessels and oral mucosa, and enveloped the midpalatal bone. A number of the BMMCs transformed into osteoblasts at the boundary of the neuromuscular bundle, and were embedded in the newly formed bone during midpalatal bone regeneration. The results of the present study suggested that BMMCs entered the circulation and migrated from muscle to the bone tissue, where they were involved in bone repair. Therefore, BMMCs may prove useful in the treatment of various types of cancer. PMID:26648442

  15. Selenium in bone health: roles in antioxidant protection and cell proliferation.

    PubMed

    Zeng, Huawei; Cao, Jay J; Combs, Gerald F

    2013-01-10

    Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health.

  16. Temporal bone squamous cell carcinoma - Penang experience.

    PubMed

    Ng, S Y; Pua, K C; Zahirrudin, Z

    2015-12-01

    Temporal bone squamous cell carcinoma (TBSCC) is rare and poses difficulties in diagnosing, staging and management. We describe a case series with six patients who were diagnosed TBSCC, from January 2009 to June 2014, with median age of 62 years old. All patients presented with blood-stain discharge and external auditory canal mass, showing that these findings should highly alert the diagnosis of TBSCC. Three patients staged T3 and another three with T4 disease. High-resolution CT (HRCT) temporal findings were noted to be different from intraoperative findings and therefore we conclude that MRI should be done to look for middle ear involvement or other soft tissue invasion for more accurate staging. Lateral temporal bone resection (LTBR) and parotidectomy was done for four patients with or without neck dissection. Patients with positive margin, perineural invasion or parotid and glenoid involvement carry poorer prognosis and postoperative radiotherapy may improve the survival rate. One patient had successful tumor resection via piecemeal removal approach in contrast with the recommended en bloc resection shows that with negative margin achieved, piecemeal removal approach can be a good option for patients with T2-3 disease. In general, T4 tumor has dismal outcome regardless of surgery or radiotherapy given.

  17. Bone reconstruction of large defects using bone marrow derived autologous stem cells.

    PubMed

    Lucarelli, Enrico; Donati, Davide; Cenacchi, Annarita; Fornasari, Pier Maria

    2004-04-01

    Bone is a tissue that has the ability to heal itself when fractured. Occasionally, a critical defect can be formed when part of the bone is lost or excised, in this case the bone fails to heal and requires bone reconstruction to prevent a non-union defect. Autogenous cancellous bone is the current gold standard treatment in bone loss. Because the amount of autogenous cancellous bone that can be harvested is limited, the expanding need for bone reconstruction is paired by the growth of interest in the discipline of tissue engineering. Labs worldwide are working to provide the right carrier and the right set of cells that, once retransplanted, will ensure bone repair. Several investigators have focused their attention on a subset of autologous non-hematopoietic stem/progenitor cells contained in the adult bone marrow stroma, referred to as stromal stem cells (SSC), as the appropriate cells to be transplanted. The use of autologous cells is facilitated by less stringent ethical and regulatory issues and does not require the patient to be immunologically suppressed. In pre-clinical and clinical protocols of critical defects in which SSC are employed, two approaches are mainly used: in the first, SSC are derived from bone marrow and directly introduced at the lesion site, in the second, SSC are derived from several sites and are expanded ex vivo before being implanted. Both approaches, equally correct in principle, will have to demonstrate, with definitive evidence of their efficacy, their capability of solving a critical clinical problem such as non-union. In this report we outline the difficulties of working with SSC.

  18. Integrins and bone metastasis: integrating tumor cell and stromal cell interactions.

    PubMed

    Schneider, Jochen G; Amend, Sarah R; Weilbaecher, Katherine N

    2011-01-01

    Integrins on both tumor cells and the supporting host stromal cells in bone (osteoclasts, new blood vessels, inflammatory cells, platelets and bone marrow stromal cells) play key roles in enhancing bone metastasis. Tumor cells localize to specific tissues through integrin-mediated contacts with extracellular matrix and stromal cells. Integrin expression and signaling are perturbed in cancer cells, allowing them to "escape" from cell-cell and cell-matrix tethers, invade, migrate and colonize within new tissues and matrices. Integrin signaling through αvβ3 and VLA-4 on tumor cells can promote tumor metastasis to and proliferation in the bone microenvironment. Osteoclast (OC) mediated bone resorption is a critical component of bone metastasis and can promote tumor growth in bone and αvβ3 integrins are critical to OC function and development. Tumors in the bone microenvironment can recruit new blood vessel formation, platelets, pro-tumor immune cells and bone marrow stromal cells that promote tumor growth and invasion in bone. Integrins and their ligands play critical roles in platelet aggregation (αvβ3 and αIIbβ3), hematopoietic cell mobilization (VLA-4 and osteopontin), neoangiogenesis (αvβ3, αvβ5, α6β4, and β1 integrin) and stromal function (osteopontin and VLA-4). Integrins are involved in the pathogenesis of bone metastasis at many levels and further study to define integrin dysregulation by cancer will yield new therapeutic targets for the prevention and treatment of bone metastasis.

  19. Restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, M.J.; Weaver, V.M.

    1998-12-08

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying {beta}{sub 1} integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive. 14 figs.

  20. Restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, Mina J.; Weaver, Valerie M.

    1998-01-01

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying .beta..sub.1 integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive.

  1. Stem cell derived endochondral cartilage stimulates bone healing by tissue transformation

    PubMed Central

    Bahney, Chelsea S; Hu, Diane P; Taylor, Aaron J; Ferro, Federico; Britz, Hayley M; Hallgrimsson, Benedikt; Johnstone, Brian; Miclau, Theodore; Marcucio, Ralph S

    2016-01-01

    Although bone has great capacity for repair, there are a number of clinical situations (fracture non-unions, spinal fusions, revision arthroplasty, segmental defects) in which auto- or allografts augment bone regeneration. Critical failures associated with current grafting treatments include osteonecrosis and limited integration between graft and host tissue. We speculated that the underlying problem with current bone grafting techniques is that they promote bone regeneration through direct osteogenesis. We hypothesized that using cartilage to promote endochondral bone regeneration would leverage normal developmental and repair sequences to produce a well-vascularized regenerate that integrates with the host tissue. In this study we use a translational murine model of a segmental tibia defect to test the clinical utility of bone regeneration from a cartilage graft. We further test the mechanism by which cartilage promotes bone regeneration using in vivo lineage tracing and in vitro culture experiments. Our data show that cartilage grafts support regeneration of a vascularized and integrated bone tissue in vivo, and subsequently propose a translational tissue engineering platform using chondrogenesis of MSCs. Interestingly, lineage tracing experiments show the regenerate was graft derived, suggesting transformation of the chondrocytes into bone. In vitro culture data shows that cartilage explants mineralize with the addition of BMP or by exposure to HUVEC conditioned medium, indicating that endothelial cells directly promote ossification. This study provides pre-clinical data for endochondral bone repair that has potential to significantly improve patient outcomes in a variety of musculoskeletal diseases and injuries. Further, in contrast to the dogmatic view that hypertrophic chondrocytes undergo apoptosis prior to bone formation, our data suggest cartilage can transform into bone by activating the pluripotent transcription factor Oct4A. Together these data

  2. Mesenchymal stem cells: mechanisms and role in bone regeneration

    PubMed Central

    Qin, Yunhao; Guan, Junjie; Zhang, Changqing

    2014-01-01

    Stimulating bone growth and regeneration, especially in patients with delayed union or non-union of bone, is a challenge for orthopaedic surgeons. Treatments employed for bone regeneration are based on the use of cells, biomaterials and factors. Among these therapies, cell treatment with mesenchymal stem cells (MSCs) has a number of advantages as MSCs: (1) are multipotent cells that can migrate to sites of injury; (2) are capable of suppressing the local immune response; and (3) are available in large quantities from the patients themselves. MSC therapies have been used for stimulating bone regeneration in animal models and in patients. Methods of application range from direct MSC injection, seeding MSCs on synthetic scaffolds, the use of gene-modified MSCs, and hetero-MSCs application. However, only a small number of these cell-based strategies are in clinical use, and none of these treatments has become the gold standard treatment for delayed or non-union of bone. PMID:25335795

  3. Effects of OK-432 on murine bone marrow and the production of natural killer cells

    SciTech Connect

    Pollack, S.B.; Rosse, C.

    1985-01-01

    The streptococcal preparation, OK-432, which augments anti-tumor responses in humans and mice, has been shown to be a potent immunomodulator. Among its effects is a pronounced augmentation of natural killer (NK) activity. The hypothesis that OK-432 alters the rates of production and maturation of NK cells in the bone marrow was tested. Studies to determine the kinetic parameters of NK cell production in normal C57BL/6J mice using tritiated thymidine, /sup 3/H-TdR, as a DNA marker are described. We are now extending those studies to determine the effect of OK-432 on the bone marrow and on the production of NK cells in the marrow. Initial observations are reported which indicate that OK-432 has profound effects on the cellularity and mitotic activity of the bone marrow, and in particular, on cells with the characteristics of natural killer cells within the marrow. 17 refs., 3 figs., 4 tabs.

  4. Osteoclast-independent bone resorption by fibroblast-like cells

    PubMed Central

    Pap, Thomas; Claus, Anja; Ohtsu, Susumu; Hummel, Klaus M; Schwartz, Peter; Drynda, Susanne; Pap, Géza; Machner, Andreas; Stein, Bernhard; George, Michael; Gay, Renate E; Neumann, Wolfram; Gay, Steffen; Aicher, Wilhelm K

    2003-01-01

    To date, mesenchymal cells have only been associated with bone resorption indirectly, and it has been hypothesized that the degradation of bone is associated exclusively with specific functions of osteoclasts. Here we show, in aseptic prosthesis loosening, that aggressive fibroblasts at the bone surface actively contribute to bone resorption and that this is independent of osteoclasts. In two separate models (a severe combined immunodeficient mouse coimplantation model and a dentin pit formation assay), these cells produce signs of bone resorption that are similar to those in early osteoclastic resorption. In an animal model of aseptic prosthesis loosening (i.e. intracranially self-stimulated rats), it is shown that these fibroblasts acquire their ability to degrade bone early on in their differentiation. Upon stimulation, such fibroblasts readily release acidic components that lower the pH of their pericellular milieu. Through the use of specific inhibitors, pericellular acidification is shown to involve the action of vacuolar type ATPases. Although fibroblasts, as mesenchymal derived cells, are thought to be incapable of resorbing bone, the present study provides the first evidence to challenge this widely held belief. It is demonstrated that fibroblast-like cells, under pathological conditions, may not only enhance but also actively contribute to bone resorption. These cells should therefore be considered novel therapeutic targets in the treatment of bone destructive disorders. PMID:12723988

  5. Osteoprogenitor cells from bone marrow and cortical bone: understanding how the environment affects their fate.

    PubMed

    Corradetti, Bruna; Taraballi, Francesca; Powell, Sebastian; Sung, David; Minardi, Silvia; Ferrari, Mauro; Weiner, Bradley K; Tasciotti, Ennio

    2015-05-01

    Bone is a dynamic organ where skeletal progenitors and hematopoietic cells share and compete for space. Presumptive mesenchymal stem cells (MSC) have been identified and harvested from the bone marrow (BM-MSC) and cortical bone fragments (CBF-MSC). In this study, we demonstrate that despite the cells sharing a common ancestor, the differences in the structural properties of the resident tissues affect cell behavior and prime them to react differently to stimuli. Similarly to the bone marrow, the cortical portion of the bone contains a unique subset of cells that stains positively for the common MSC-associated markers. These cells display different multipotent differentiation capability, clonogenic expansion, and immunosuppressive potential. In particular, when compared with BM-MSC, CBF-MSC are bigger in size, show a lower proliferation rate at early passages, have a greater commitment toward the osteogenic lineage, constitutively produce nitric oxide as a mediator for bone remodeling, and more readily respond to proinflammatory cytokines. Our data suggest that the effect of the tissue's microenvironment makes the CBF-MSC a superior candidate in the development of new strategies for bone repair.

  6. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects

    NASA Technical Reports Server (NTRS)

    Zerwekh, J. E.; Ruml, L. A.; Gottschalk, F.; Pak, C. Y.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    This study was undertaken to examine the effects of 12 weeks of skeletal unloading on parameters of calcium homeostasis, calcitropic hormones, bone histology, and biochemical markers of bone turnover in 11 normal subjects (9 men, 2 women; 34 +/- 11 years of age). Following an ambulatory control evaluation, all subjects underwent 12 weeks of bed rest. An additional metabolic evaluation was performed after 12 days of reambulation. Bone mineral density declined at the spine (-2.9%, p = 0.092) and at the hip (-3.8%, p = 0.002 for the trochanter). Bed rest prompted a rapid, sustained, significant increase in urinary calcium and phosphorus as well as a significant increase in serum calcium. Urinary calcium increased from a pre-bed rest value of 5.3 mmol/day to values as high as 73 mmol/day during bed rest. Immunoreactive parathyroid hormone and serum 1,25-dihydroxyvitamin D declined significantly during bed rest, although the mean values remained within normal limits. Significant changes in bone histology included a suppression of osteoblastic surface for cancellous bone (3.1 +/- 1.3% to 1.9 +/- 1.5%, p = 0.0142) and increased bone resorption for both cancellous and cortical bone. Cortical eroded surface increased from 3.5 +/- 1.1% to 7.3 +/- 4.0% (p = 0.018) as did active osteoclastic surface (0.2 +/- 0.3% to 0.7 +/- 0.7%, p = 0.021). Cancellous eroded surface increased from 2.1 +/- 1.1% to 4.7 +/- 2.2% (p = 0.002), while mean active osteoclastic surface doubled (0.2 +/- 0.2% to 0.4 +/- 0.3%, p = 0.020). Serum biochemical markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, and type I procollagen extension peptide) did not change significantly during bed rest. Urinary biochemical markers of bone resorption (hydroxyproline, deoxypyridinoline, and N-telopeptide of type I collagen) as well as a serum marker of bone resorption (type I collagen carboxytelopeptide) all demonstrated significant increases during bed rest which declined toward normal

  7. FOXP1 Expression in Normal and Neoplastic Erythroid and Myeloid Cells.

    PubMed

    Lovrić, Eva; Pavlov, Katarina Horvat; Korać, Petra; Dominis, Mara

    2015-09-01

    FOXP1 protein was firstly analyzed in normal tissues, and afterwards in different tumor tissues, mainly carcinoma and lymphoma. In B-cell malignancies, its role was well explored; its expression was shown to be connected with disease prognosis in certain B-non Hodgkin lymphomas. In this study, 16 bone marrow trephine samples from patients with no hematopoietic malignancies and 10 samples from peripheral blood of healthy individuals were immunostained with anti-FOXP1 antibody. Positive cells in bone marrows were not only lymphocytes, but also cells that are immunohistochemically positive for glycophorin C or myeloperoxidase. Peripheral blood samples showed no other positive cells, but small round lymphocytes. Additionally 60 samples from patients with myeloid lineage neoplasms were analyzed. 25 samples from patients with myelodysplastic syndrome (MDS) and 35 patients with myeloproliferative disease (MPD) were double immunostained with anti-FOXP1/anti-glycophorin C and anti-FOXP1/anti-myeloperoxidase antibodies. FOXP1 was found to be expressed in 22 cases of MDS and in none of MPD cases. Its expression in MDS was observed mostly in myeloperoxidase positive cells in contrast to gylcophorin C positive cells. Only two cases revealed both myeloperoxidase positive cells and gylcophorin C positive cells expressing FOXP1 transcription factor. Our results show that FOXP1 is present in normal cells of erythroid and myeloid linages and thus suggest its possible role in development of all hematopoetic cells as well as possible involvement in neoplasm development of myeloid disorders. PMID:26898077

  8. Modeling Selective Elimination of Quiescent Cancer Cells from Bone Marrow

    PubMed Central

    Cavnar, Stephen P.; Rickelmann, Andrew D.; Meguiar, Kaille F.; Xiao, Annie; Dosch, Joseph; Leung, Brendan M.; Cai Lesher-Perez, Sasha; Chitta, Shashank; Luker, Kathryn E.; Takayama, Shuichi; Luker, Gary D.

    2015-01-01

    Patients with many types of malignancy commonly harbor quiescent disseminated tumor cells in bone marrow. These cells frequently resist chemotherapy and may persist for years before proliferating as recurrent metastases. To test for compounds that eliminate quiescent cancer cells, we established a new 384-well 3D spheroid model in which small numbers of cancer cells reversibly arrest in G1/G0 phase of the cell cycle when cultured with bone marrow stromal cells. Using dual-color bioluminescence imaging to selectively quantify viability of cancer and stromal cells in the same spheroid, we identified single compounds and combination treatments that preferentially eliminated quiescent breast cancer cells but not stromal cells. A treatment combination effective against malignant cells in spheroids also eliminated breast cancer cells from bone marrow in a mouse xenograft model. This research establishes a novel screening platform for therapies that selectively target quiescent tumor cells, facilitating identification of new drugs to prevent recurrent cancer. PMID:26408255

  9. Silorane resin supports proliferation, differentiation, and mineralization of MLO-A5 bone cells in vitro and bone formation in vivo

    PubMed Central

    Eick, J. David; Barragan-Adjemian, Cielo; Rosser, Jennifer; Melander, Jennifer R.; Dusevich, Vladimir; Weiler, Rachel A.; Miller, Bradley D.; Kilway, Kathleen V.; Dallas, Mark R.; Bi, Lianxing; Nalvarte, Elisabet L.; Bonewald, Lynda F.

    2015-01-01

    Methyl methacrylate used in bone cements has drawbacks of toxicity, high exotherm, and considerable shrinkage. A new resin, based on silorane/oxirane chemistry, has been shown to have little toxicity, low exotherm, and low shrinkage. We hypothesized that silorane-based resins may also be useful as components of bone cements as well as other bone applications and began testing on bone cell function in vitro and in vivo. MLO-A5, late osteoblast cells, were exposed to polymerized silorane (SilMix) resin (and a standard polymerized bisGMA/TEGDMA methacrylate (BT) resin and compared to culture wells without resins as control. A significant cytotoxic effect was observed with the BT resin resulting in no cell growth, whereas in contrast, SilMix resin had no toxic effects on MLO-A5 cell proliferation, differentiation, nor mineralization. The cells cultured with SilMix produced increasing amounts of alkaline phosphatase (1.8-fold) compared to control cultures. Compared to control cultures, an actual enhancement of mineralization was observed in the silorane resin-containing cultures at days 10 and 11 as determined by von Kossa (1.8–2.0 fold increase) and Alizarin red staining (1.8-fold increase). A normal bone calcium/phosphate atomic ratio was observed by elemental analysis along with normal collagen formation. When used in vivo to stabilize osteotomies, no inflammatory response was observed, and the bone continued to heal. In conclusion, the silorane resin, SilMix, was shown to not only be non cytototoxic, but actually supported bone cell function. Therefore, this resin has significant potential for the development of a nontoxic bone cement or bone stabilizer. PMID:22278990

  10. Bone marrow derived stem cells in joint and bone diseases: a concise review.

    PubMed

    Marmotti, Antonio; de Girolamo, Laura; Bonasia, Davide Edoardo; Bruzzone, Matteo; Mattia, Silvia; Rossi, Roberto; Montaruli, Angela; Dettoni, Federico; Castoldi, Filippo; Peretti, Giuseppe

    2014-09-01

    Stem cells have huge applications in the field of tissue engineering and regenerative medicine. Their use is currently not restricted to the life-threatening diseases but also extended to disorders involving the structural tissues, which may not jeopardize the patients' life, but certainly influence their quality of life. In fact, a particularly popular line of research is represented by the regeneration of bone and cartilage tissues to treat various orthopaedic disorders. Most of these pioneering research lines that aim to create new treatments for diseases that currently have limited therapies are still in the bench of the researchers. However, in recent years, several clinical trials have been started with satisfactory and encouraging results. This article aims to review the concept of stem cells and their characterization in terms of site of residence, differentiation potential and therapeutic prospective. In fact, while only the bone marrow was initially considered as a "reservoir" of this cell population, later, adipose tissue and muscle tissue have provided a considerable amount of cells available for multiple differentiation. In reality, recently, the so-called "stem cell niche" was identified as the perivascular space, recognizing these cells as almost ubiquitous. In the field of bone and joint diseases, their potential to differentiate into multiple cell lines makes their application ideally immediate through three main modalities: (1) cells selected by withdrawal from bone marrow, subsequent culture in the laboratory, and ultimately transplant at the site of injury; (2) bone marrow aspirate, concentrated and directly implanted into the injury site; (3) systemic mobilization of stem cells and other bone marrow precursors by the use of growth factors. The use of this cell population in joint and bone disease will be addressed and discussed, analysing both the clinical outcomes but also the basic research background, which has justified their use for the

  11. Osteoblastic Wnts differentially regulate bone remodeling and the maintenance of bone marrow mesenchymal stem cells.

    PubMed

    Wan, Yong; Lu, Cheng; Cao, Jingjing; Zhou, Rujiang; Yao, Yiyun; Yu, Jian; Zhang, Lingling; Zhao, Haixia; Li, Hanjun; Zhao, Jianzhi; Zhu, Xuming; He, Lin; Liu, Yongzhong; Yao, Zhengju; Yang, Xiao; Guo, Xizhi

    2013-07-01

    Wnt signaling has important roles in embryonic bone development and postnatal bone remodeling, but inconsistent impact on bone property is observed in different genetic alterations of Lrp5 and β-catenin. More importantly, it is still controversial whether Lrp5 regulate bone formation locally or globally through gut-derived serotonin. Here we explored the function of Wnt proteins in osteoblastic niche through inactivation of the Wntless (Wls) gene, which abrogates the secretion of Wnts. The depletion of Wls in osteoblast progenitor cells resulted in severe osteopenia with more profound defects in osteoblastogenesis, osteoclastogenesis and maintenance of bone marrow mesenchymal stem cells (BMSCs) compared to that observed in Lrp5 and β-catenin mutants. These findings support the point of view that Wnt/Lrp5 signaling locally regulates bone mass accrual through multiple effects of osteoblastic Wnts on osteoblastic bone formation and osteoclastic bone resorption. Moreover, osteoblastic Wnts confer a niche role for maintenance of BMSCs, providing novel cues for the definition of BMSCs niche in bone marrow.

  12. Effect of human milk on blood and bone marrow cells in a malnourished mice model; comparative study with cow milk.

    PubMed

    García, Isabel; Salva, Susana; Zelaya, Hortensia; Villena, Julio; Agüero, Graciela

    2013-11-01

    We studied the impact of human (HM) and cow (CM) milk on the recovery of blood and bone marrow cells in malnourished mice. Results: both milks normalized serum albumin levels and improved thymus weight. HM was less effective than CM to increase body weight and serum transferrin levels. In contrast, HM was more effective than CM to increase the number of leukocytes and lymphocytes in peripheral blood. Both milks induced an increment in mitotic pool cells in bone marrow and α-naphthyl butyrate esterase positive cells in peripheral blood. They also normalized phagocytic function in blood neutrophils and oxidative burst in peritoneal cells. Conclusion: both milks were equally effective to exert favorable effects on the number of the bone marrow cells and the functions of the blood and peritoneal cells involved in immune response. However, only HM normalized the number of leukocytes and increased the number of neutrophils in peripheral blood.

  13. Bone marrow processing for transplantation using Cobe Spectra cell separator.

    PubMed

    Veljković, Dobrila; Nonković, Olivera Šerbić; Radonjić, Zorica; Kuzmanović, Miloš; Zečević, Zeljko

    2013-06-01

    Concentration of bone marrow aspirates is an important prerequisite prior to infusion of ABO incompatible allogeneic marrow and prior to cryopreservation and storage of autologous marrow. In this paper we present our experience in processing 15 harvested bone marrow for ABO incompatible allogeneic and autologous bone marrow (BM) transplantation using Cobe Spectra® cell separator. BM processing resulted in the median recovery of 91.5% CD34+ cells, erythrocyte depletion of 91% and volume reduction of 81%. BM processing using cell separator is safe and effective technique providing high rate of erythrocyte depletion and volume reduction, and acceptable recovery of the CD34+ cells.

  14. Bone marrow cells differentiation into organ cells using stem cell therapy.

    PubMed

    Yang, Y-J; Li, X-L; Xue, Y; Zhang, C-X; Wang, Y; Hu, X; Dai, Q

    2016-07-01

    Bone marrow cells (BMC) are progenitors of bone, cartilage, skeletal tissue, the hematopoiesis-supporting stroma and adipocyte cells. BMCs have the potential to differentiate into neural cells, cardiac myocytes, liver hepatocytes, chondrocytes, renal, corneal, blood, and myogenic cells. The bone marrow cell cultures from stromal and mesenchymal cells are called multipotent adult progenitor cells (MAPCs). MAPCs can differentiate into mesenchymal cells, visceral mesoderm, neuroectoderm and endoderm in vitro. It has been shown that the stem cells derived from bone marrow cells (BMCs) can regenerate cardiac myocytes after myocardial infarction (MI). Adult bone marrow mesenchymal stem cells have the ability to regenerate neural cells. Neural stem/progenitor cells (NS/PC) are ideal for treating central nervous system (CNS) diseases, such as Alzheimer's, Parkinson's and Huntington disease. However, there are important ethical issues about the therapeutic use of stem cells. Neurons, cardiac myocytes, hepatocytes, renal cells, blood cells, chondrocytes and adipocytes regeneration from BMCs are very important in disease control. It is known that limbal epithelial stem cells in the cornea can repair the eye sight and remove symptoms of blindness. Stem cell therapy (SCT) is progressing well in animal models, but the use of SCT in human remains to be explored further.

  15. Stem and progenitor cells: advancing bone tissue engineering.

    PubMed

    Tevlin, R; Walmsley, G G; Marecic, O; Hu, Michael S; Wan, D C; Longaker, M T

    2016-04-01

    Unlike many other postnatal tissues, bone can regenerate and repair itself; nevertheless, this capacity can be overcome. Traditionally, surgical reconstructive strategies have implemented autologous, allogeneic, and prosthetic materials. Autologous bone--the best option--is limited in supply and also mandates an additional surgical procedure. In regenerative tissue engineering, there are myriad issues to consider in the creation of a functional, implantable replacement tissue. Importantly, there must exist an easily accessible, abundant cell source with the capacity to express the phenotype of the desired tissue, and a biocompatible scaffold to deliver the cells to the damaged region. A literature review was performed using PubMed; peer-reviewed publications were screened for relevance in order to identify key advances in stem and progenitor cell contribution to the field of bone tissue engineering. In this review, we briefly introduce various adult stem cells implemented in bone tissue engineering such as mesenchymal stem cells (including bone marrow- and adipose-derived stem cells), endothelial progenitor cells, and induced pluripotent stem cells. We then discuss numerous advances associated with their application and subsequently focus on technological advances in the field, before addressing key regenerative strategies currently used in clinical practice. Stem and progenitor cell implementation in bone tissue engineering strategies have the ability to make a major impact on regenerative medicine and reduce patient morbidity. As the field of regenerative medicine endeavors to harness the body's own cells for treatment, scientific innovation has led to great advances in stem cell-based therapies in the past decade.

  16. Prostate cancer cells and bone stromal cells mutually interact with each other through bone morphogenetic protein-mediated signals.

    PubMed

    Nishimori, Hikaru; Ehata, Shogo; Suzuki, Hiroshi I; Katsuno, Yoko; Miyazono, Kohei

    2012-06-01

    Functional interactions between cancer cells and the bone microenvironment contribute to the development of bone metastasis. Although the bone metastasis of prostate cancer is characterized by increased ossification, the molecular mechanisms involved in this process are not fully understood. Here, the roles of bone morphogenetic proteins (BMPs) in the interactions between prostate cancer cells and bone stromal cells were investigated. In human prostate cancer LNCaP cells, BMP-4 induced the production of Sonic hedgehog (SHH) through a Smad-dependent pathway. In mouse stromal MC3T3-E1 cells, SHH up-regulated the expression of activin receptor IIB (ActR-IIB) and Smad1, which in turn enhanced BMP-responsive reporter activities in these cells. The combined stimulation with BMP-4 and SHH of MC3T3-E1 cells cooperatively induced the expression of osteoblastic markers, including alkaline phosphatase, bone sialoprotein, collagen type II α1, and osteocalcin. When MC3T3-E1 cells and LNCaP cells were co-cultured, the osteoblastic differentiation of MC3T3-E1 cells, which was induced by BMP-4, was accelerated by SHH from LNCaP cells. Furthermore, LNCaP cells and BMP-4 cooperatively induced the production of growth factors, including fibroblast growth factor (FGF)-2 and epidermal growth factor (EGF) in MC3T3-E1 cells, and these may promote the proliferation of LNCaP cells. Taken together, our findings suggest that BMPs provide favorable circumstances for the survival of prostate cancer cells and the differentiation of bone stromal cells in the bone microenvironment, possibly leading to the osteoblastic metastasis of prostate cancer.

  17. Bcl-2+ tonsillar plasma cells are rescued from apoptosis by bone marrow fibroblasts

    PubMed Central

    1996-01-01

    Plasma cells represent the final stage of B lymphocyte differentiation. Most plasma cells in secondary lymphoid tissues live for a few days, whereas those in the lamina propria of mucosa and in bone marrow live for several weeks. To investigate the regulation of human plasma cell survival, plasma cells were isolated from tonsils according to high CD38 and low CD20 expression. Tonsillar plasma cells express CD9, CD19, CD24, CD37, CD40, CD74, and HLA-DR, but not CD10, HLA-DQ, CD28, CD56, and Fas/CD95. Although plasma cells express intracytoplasmic Bcl-2, they undergo swift apoptosis in vitro and do not respond to CD40 triggering. Bone marrow fibroblasts and rheumatoid synoviocytes, however, prevented plasma cells from undergoing apoptosis in a contact- dependent fashion. These data indicate that fibroblasts may form a microenvironment favorable for plasma cell survival under normal and pathological conditions. PMID:8551226

  18. Bortezomib Inhibits Giant Cell Tumor of Bone through Induction of Cell Apoptosis and Inhibition of Osteoclast Recruitment, Giant Cell Formation, and Bone Resorption.

    PubMed

    Xu, Leqin; Luo, Jian; Jin, Rongrong; Yue, Zhiying; Sun, Peng; Yang, Zhengfeng; Yang, Xinghai; Wan, Wei; Zhang, Jishen; Li, Shichang; Liu, Mingyao; Xiao, Jianru

    2016-05-01

    Giant cell tumor of bone (GCTB) is a rare and highly osteolytic bone tumor that usually leads to an extensive bone lesion. The purpose of this study was to discover novel therapeutic targets and identify potential agents for treating GCTB. After screening the serum cytokine profiles in 52 GCTB patients and 10 normal individuals using the ELISA assay, we found that NF-κB signaling-related cytokines, including TNFα, MCP-1, IL1α, and IL17A, were significantly increased in GCTB patients. The results were confirmed by IHC that the expression and activity of p65 were significantly increased in GCTB patients. Moreover, all of the NF-κB inhibitors tested suppressed GCTB cell growth, and bortezomib (Velcade), a well-known proteasome inhibitor, was the most potent inhibitor in blocking GCTB cells growth. Our results showed that bortezomib not only induced GCTB neoplastic stromal cell (NSC) apoptosis, but also suppressed GCTB NSC-induced giant cell differentiation, formation, and resorption. Moreover, bortezomib specifically suppressed GCTB NSC-induced preosteoclast recruitment. Furthermore, bortezomib ameliorated GCTB cell-induced bone destruction in vivo As a result, bortezomib suppressed NF-κB-regulated gene expression in GCTB NSC apoptosis, monocyte migration, angiogenesis, and osteoclastogenesis. Particularly, the inhibitory effects of bortezomib were much better than zoledronic acid, a drug currently used in treating GCTB, in our in vitro experimental paradigms. Together, our results demonstrated that NF-κB signaling pathway is highly activated in GCTB, and bortezomib could suppress GCTB and osteolysis in vivo and in vitro, indicating that bortezomib is a potential agent in the treatment of GCTB. Mol Cancer Ther; 15(5); 854-65. ©2016 AACR.

  19. Bone marrow long label-retaining cells reside in the sinusoidal hypoxic niche

    SciTech Connect

    Kubota, Yoshiaki; Takubo, Keiyo; Suda, Toshio

    2008-02-08

    In response to changing signals, quiescent hematopoietic stem cells (HSCs) can be induced to an activated cycling state and provide multi-lineage hematopoietic cells to the whole body via blood vessels. However, the precise localization of quiescent HSCs in bone marrow microenvironment is not fully characterized. Here, we performed whole-mount immunostaining of bone marrow and found that BrdU label-retaining cells (LRCs) definitively reside in the sinusoidal hypoxic zone distant from the 'vascular niche'. Although LRCs expressed very low level of a well-known HSC marker, c-kit in normal circumstances, myeloablation by 5-FU treatment caused LRCs to abundantly express c-kit and proliferate actively. These results demonstrate that bone marrow LRCs reside in the sinusoidal hypoxic niche, and function as a regenerative cell pool of HSCs.

  20. RPE Cell and Sheet Properties in Normal and Diseased Eyes.

    PubMed

    Rashid, Alia; Bhatia, Shagun K; Mazzitello, Karina I; Chrenek, Micah A; Zhang, Qing; Boatright, Jeffrey H; Grossniklaus, Hans E; Jiang, Yi; Nickerson, John M

    2016-01-01

    Previous studies of human retinal pigment epithelium (RPE) morphology found spatial differences in density: a high density of cells in the macula, decreasing peripherally. Because the RPE sheet is not perfectly regular, we anticipate that there will be differences between conditions and when and where damage is most likely to begin. The purpose of this study is to establish relationships among RPE morphometrics in age, cell location, and disease of normal human and AMD eyes that highlight irregularities reflecting damage. Cadaveric eyes from 11 normal and 3 age-related macular degeneration (AMD) human donors ranging from 29 to 82 years of age were used. Borders of RPE cells were identified with phalloidin. RPE segmentation and analysis were conducted with CellProfiler. Exploration of spatial point patterns was conducted using the "spatstat" package of R. In the normal human eye, with increasing age, cell size increased, and cells lost their regular hexagonal shape. Cell density was higher in the macula versus periphery. AMD resulted in greater variability in size and shape of the RPE cell. Spatial point analysis revealed an ordered distribution of cells in normal and high spatial disorder in AMD eyes. Morphometrics of the RPE cell readily discriminate among young vs. old and normal vs. diseased in the human eye. The normal RPE sheet is organized in a regular array of cells, but AMD exhibited strong spatial irregularity. These findings reflect on the robust recovery of the RPE sheet after wounding and the circumstances under which it cannot recover. PMID:26427486

  1. Rejection of normal and neoplastic hemopoietic cells by lethally irradiated mice

    SciTech Connect

    Afifi, M.S.H.

    1985-01-01

    The objective of this study was to investigate the mechanisms of rejection of normal and neoplastic hemopoietic cells by lethally irradiated mice, in part by investigating the hypothesis that two or more cell types are involved in recognition and rejection of hemopoietic cells. Interferon (IFN) was used as a tool for investigating such mechanisms. IFN alpha/beta stimulated the rejection of normal hemopoietic marrow cell grafts in Fl hybrid and in allogeneic host mice but did not affect the growth of cells in syngeneic mice. IFN alpha/beta was effective in hosts pretreated with silica but not in hosts pretreated with cyclophosphamide (Cy) or with anti-asialoGMI serum. Rabbit anti-IFN alpha/beta, but not anti-IFN gamma, serum inhibited genetic resistance to bone marrow cells. These results indicated that IFN alpha/beta was acting indirectly during the rejection of normal hemopoietic cells. It is proposed that four events occur in succession: a host cell recognizes the hemopoietic histocompatibility (Hh) antigens expressed on the surface of incompatible stem cells; this recognition leads to secretion of IFN; IFN activates natural killer (NK) cells; NK cells lyse donor stem cells. Silica interrupts one or both of the first two events. i.e., recognition and/or interrupts one or both of the first two events, i.e. recognition and/or IGN secretion.

  2. Bone tissue engineering with a collagen–hydroxyapatite scaffold and culture expanded bone marrow stromal cells

    PubMed Central

    Villa, Max M.; Wang, Liping; Huang, Jianping; Rowe, David W.; Wei, Mei

    2015-01-01

    Osteoprogenitor cells combined with supportive biomaterials represent a promising approach to advance the standard of care for bone grafting procedures. However, this approach faces challenges, including inconsistent bone formation, cell survival in the implant, and appropriate biomaterial degradation. We have developed a collagen–hydroxyapatite (HA) scaffold that supports consistent osteogenesis by donor derived osteoprogenitors, and is more easily degraded than a pure ceramic scaffold. Herein, the material properties are characterized as well as cell attachment, viability, and progenitor distribution in vitro. Furthermore, we examined the biological performance in vivo in a critical-size mouse calvarial defect. To aid in the evaluation of the in-house collagen–HA scaffold, the in vivo performance was compared with a commercial collagen–HA scaffold (Healos®, Depuy). The in-house collagen–HA scaffold supported consistent bone formation by predominantly donor-derived osteoblasts, nearly completely filling a 3.5 mm calvarial defect with bone in all samples (n=5) after 3 weeks of implantation. In terms of bone formation and donor cell retention at 3 weeks postimplantation, no statistical difference was found between the in-house and commercial scaffold following quantitative histomorphometry. The collagen–HA scaffold presented here is an open and well-defined platform that supports robust bone formation and should facilitate the further development of collagen–hydroxyapatite biomaterials for bone tissue engineering. PMID:24909953

  3. Reduced bone mass and normal calcium metabolism in systemic sclerosis with and without calcinosis.

    PubMed

    Di Munno, O; Mazzantini, M; Massei, P; Ferdeghini, M; Pitaro, N; Latorraca, A; Ferri, C

    1995-07-01

    Forty-three female patients with systemic sclerosis divided into subgroups based on the extent of skin involvement and the presence of calcinosis, and 50 sex and age-matched healthy controls were investigated for bone mineral density (BMD) on the basis of radial (dual photon absorptiometry, Osteograph, NIM), lumbar, and total body measurements (dual energy X-ray absorptiometry, Lunar DPX, Lunar Corp.), and for parameters of calcium metabolism. The patients showed a lower BMD (mean +/- SD; mg/cm2) than the controls at the radial (313 +/- 69 vs 347 +/- 73; p < 0.005), lumbar (974 +/- 143 vs 1081 +/- 154; p < 0.005), and total body (997 +/- 82 vs 1075 +/- 109; p < 0.05) determinations. The patients with the diffuse form of skin involvement had lower values than those with the limited form. There was a negative correlation between BMD and the duration of the disease. The presence of calcinosis was not found to have any effect on BMD. Calcium metabolism was found to be normal in each subgroup. It may be concluded that generalized osteoporosis is a feature of systemic sclerosis, with and without calcinosis. The extent and duration of the disease may play a role in determining bone loss. PMID:7586976

  4. Age- and gender-related changes in the distribution of osteocalcin in the extracellular matrix of normal male and female bone. Possible involvement of osteocalcin in bone remodeling.

    PubMed Central

    Ingram, R T; Park, Y K; Clarke, B L; Fitzpatrick, L A

    1994-01-01

    With increasing age, bone undergoes changes in remodeling that ultimately compromise the structural integrity of the skeleton. The presence of osteocalcin in bone matrix may alter bone remodeling by promoting osteoclast activity. Whether age- and/or gender-related differences exist in the distribution of osteocalcin within individual bone remodeling units is not known. In this study, we determined the immunohistochemical distribution of osteocalcin in the extracellular matrix of iliac crest bone biopsies obtained from normal male and female volunteers, 20-80 yr old. Four different distribution patterns of osteocalcin within individual osteons were arbitrarily defined as types I, II, III, or IV. The frequency of appearance of each osteon type was determined as a percent of the total osteons per histologic section. The proportion of osteons that stained homogeneously throughout the concentric lamellae (type I) decreased in females and males with increasing age. The proportion of osteons that lack osteocalcin in the matrix immediately adjacent to Haversian canals (type III) increased in females and males with age. Osteons staining intensely in the matrix adjacent to Haversian canals (type II) increased in females and was unchanged in aging males. Osteons that contained osteocalcin-positive resting lines (type IV) increased in bone obtained from males with increasing age but were unchanged in females. Sections of bone immunostained for osteopontin (SPP-I), osteonectin, and decorin did not reveal multiple patterns or alterations in staining with gender or increasing age. We suggest that the morphology of individual bone remodeling units is heterogeneous and the particular morphologic pattern of osteocalcin distribution changes with age and gender. These results suggest that differences in the distribution of osteocalcin in bone matrix may be responsible, in part, for the altered remodeling of bone associated with gender and aging. Images PMID:8132785

  5. The role of bone marrow-derived cells during the bone healing process in the GFP mouse bone marrow transplantation model.

    PubMed

    Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi

    2013-03-01

    Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.

  6. Roberts syndrome with normal cell division.

    PubMed

    Keppen, L D; Gollin, S M; Seibert, J J; Sisken, J E

    1991-01-01

    Roberts-SC phocomelia syndrome (RS) is an autosomal recessive disorder of symmetric limb defects, craniofacial abnormalities, pre- and postnatal growth retardation, and mental retardation. Patients with RS have been reported to have premature separation of heterochromatin of many chromosomes and abnormalities in the cell-division cycle. We report an infant whose clinical and radiologic findings resemble those of RS but who lacks the cytogenetic and cell division abnormalities reported in RS. This patient may represent a variant of RS or a new syndrome.

  7. Chondrogenically differentiated mesenchymal stromal cell pellets stimulate endochondral bone regeneration in critical-sized bone defects.

    PubMed

    van der Stok, J; Koolen, M K E; Jahr, H; Kops, N; Waarsing, J H; Weinans, H; van der Jagt, O P

    2014-02-19

    Grafting bone defects or atrophic non-unions with mesenchymal stromal cells (MSCs)-based grafts is not yet successful. MSC-based grafts typically use undifferentiated or osteogenically differentiated MSCs and regenerate bone through intramembranous ossification. Endochondral ossification might be more potent but requires chondrogenic differentiation of MSCs. Here, we determined if chondrogenically differentiated MSC (ch-MSC) pellets could induce bone regeneration in an orthotopic environment through endochondral ossification. Undifferentiated MSC pellets (ud-MSC) and ch-MSC pellets were generated from MSCs of human donors cultured on chondrogenic medium for respectively 3 (ud-MSC) and 21 (ch-MSC) days. A 6 mm femoral bone defect was made and stabilised with an internal plate in 27 athymic rats. Defects were left empty for 6 weeks to develop an atrophic non-union before they were grafted with ch-MSC pellets or ud-MSC pellets. Micro-CT scans made 4 and 8 weeks after grafting showed that ch-MSC pellets resulted in significantly more bone than ud-MSC pellets. This regenerated bone could completely bridge the defect, but the amount of bone regeneration was donor-dependent. Histology after 7 and 14 days showed slowly mineralising pellets containing hypertrophic chondrocytes, as well as TRAP-positive and CD34-positive cells around the ch-MSC pellets, indicating osteoclastic resorption and vascularisation typical for endochondral ossification. In conclusion, grafting critical femoral bone defects with chondrogenically differentiated MSC pellets led to rapid and pronounced bone regeneration through endochondral ossification and may therefore be a more successful MSC-based graft to repair large bone defects or atrophic non-unions. But, since bone regeneration was donor-depend, the generation of potent chondrogenically differentiated MSC pellets for each single donor needs to be established first.

  8. Bone marrow transplantation for CVID-like humoral immune deficiency associated with red cell aplasia.

    PubMed

    Sayour, Elias J; Mousallem, Talal; Van Mater, David; Wang, Endi; Martin, Paul; Buckley, Rebecca H; Barfield, Raymond C

    2016-10-01

    Patients with common variable immunodeficiency (CVID) have a higher incidence of autoimmune disease, which may mark the disease onset; however, anemia secondary to pure red cell aplasia is an uncommon presenting feature. Here, we describe a case of CVID-like humoral immune deficiency in a child who initially presented with red cell aplasia and ultimately developed progressive bone marrow failure. Although bone marrow transplantation (BMT) has been associated with high mortality in CVID, our patient was successfully treated with a matched sibling BMT and engrafted with >98% donor chimerism and the development of normal antibody titers to diphtheria and tetanus toxoids. PMID:27273469

  9. Alterations in bone forming cells due to reduced weight bearing

    NASA Technical Reports Server (NTRS)

    Doty, S. B.; Morey-Holton, E.

    1984-01-01

    A reduction in new bone formation occurred as a result of space flight (Cosmos 1129) and in the suspended animal model of Morey-Holton (1979, 1980). The results indicate that alkaline phosphatase activity of the bone-forming cells is also reduced under these conditions, and the cells in the diaphysis are more affected than those in the metaphyseal region. In addition, these cells show (1) reduced proline incorporation into bone matrix, and (2) increased intracellular lysosomal activity. A change in the cytoskeleton could be the common factor in explaining these results. This suggestion is futher supported by the previous observations that colchicine injections result in decreased osteoblastic function.

  10. Quantitative image analysis of cell colocalization in murine bone marrow.

    PubMed

    Mokhtari, Zeinab; Mech, Franziska; Zehentmeier, Sandra; Hauser, Anja E; Figge, Marc Thilo

    2015-06-01

    Long-term antibody production is a key property of humoral immunity and is accomplished by long-lived plasma cells. They mainly reside in the bone marrow, whose importance as an organ hosting immunological memory is becoming increasingly evident. Signals provided by stromal cells and eosinophils may play an important role for plasma cell maintenance, constituting a survival microenvironment. In this joint study of experiment and theory, we investigated the spatial colocalization of plasma cells, eosinophils and B cells by applying an image-based systems biology approach. To this end, we generated confocal fluorescence microscopy images of histological sections from murine bone marrow that were subsequently analyzed in an automated fashion. This quantitative analysis was combined with computer simulations of the experimental system for hypothesis testing. In particular, we tested the observed spatial colocalization of cells in the bone marrow against the hypothesis that cells are found within available areas at positions that were drawn from a uniform random number distribution. We find that B cells and plasma cells highly colocalize with stromal cells, to an extent larger than in the simulated random situation. While B cells are preferentially in contact with each other, i.e., form clusters among themselves, plasma cells seem to be solitary or organized in aggregates, i.e., loosely defined groups of cells that are not necessarily in direct contact. Our data suggest that the plasma cell bone marrow survival niche facilitates colocalization of plasma cells with stromal cells and eosinophils, respectively, promoting plasma cell longevity.

  11. Normalization.

    ERIC Educational Resources Information Center

    Cuevas, Eduardo J.

    1997-01-01

    Discusses cornerstone of Montessori theory, normalization, which asserts that if a child is placed in an optimum prepared environment where inner impulses match external opportunities, the undeviated self emerges, a being totally in harmony with its surroundings. Makes distinctions regarding normalization, normalized, and normality, indicating how…

  12. Multiple melanocortin receptors are expressed in bone cells

    NASA Technical Reports Server (NTRS)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  13. Different Inhibitory Effect and Mechanism of Hydroxyapatite Nanoparticles on Normal Cells and Cancer Cells In Vitro and In Vivo

    NASA Astrophysics Data System (ADS)

    Han, Yingchao; Li, Shipu; Cao, Xianying; Yuan, Lin; Wang, Youfa; Yin, Yixia; Qiu, Tong; Dai, Honglian; Wang, Xinyu

    2014-11-01

    Hydroxyapatite (HAP), similar to inorganic phase in bones, shows good biocompatibility and bioactivity as bone defect repairing material. Recently, nanoscaled HAP shows the special properties differing from bulk HAP in physics, chemistry and biology. This paper demonstrates that HAP nanoparticle (nHAP) possesses the ability for inhibiting cancer cell growth in vitro and in vivo. In vitro, after treatment with nHAP for 3 days, proliferation of human cancer cells are inhibited by more than 65% and by less than 30% for human normal cells. In vivo, injection of nHAP in transplanted tumor results in significant reduction (about 50%) of tumor size. The anticancer effect of nHAP is mainly attributed to high amount by endocytosis in cancer cells and inhibition on protein synthesis in cells. The abundant nHAP internalized in cancer cells around endoplasmic reticulum may inhibit the protein synthesis by decreasing the binding of mRNA to ribosome due to its high adsorption capacity for ribosome and arrest cell cycle in G0/G1 phase. nHAP shows no ROS-involved cytotoxicity and low cytotoxicity to normal cells. These results strongly suggest that nHAP can inhibit cancer cell proliferation and have a potential application in cancer treatment.

  14. Different Inhibitory Effect and Mechanism of Hydroxyapatite Nanoparticles on Normal Cells and Cancer Cells In Vitro and In Vivo

    PubMed Central

    Han, Yingchao; Li, Shipu; Cao, Xianying; Yuan, Lin; Wang, Youfa; Yin, Yixia; Qiu, Tong; Dai, Honglian; Wang, Xinyu

    2014-01-01

    Hydroxyapatite (HAP), similar to inorganic phase in bones, shows good biocompatibility and bioactivity as bone defect repairing material. Recently, nanoscaled HAP shows the special properties differing from bulk HAP in physics, chemistry and biology. This paper demonstrates that HAP nanoparticle (nHAP) possesses the ability for inhibiting cancer cell growth in vitro and in vivo. In vitro, after treatment with nHAP for 3 days, proliferation of human cancer cells are inhibited by more than 65% and by less than 30% for human normal cells. In vivo, injection of nHAP in transplanted tumor results in significant reduction (about 50%) of tumor size. The anticancer effect of nHAP is mainly attributed to high amount by endocytosis in cancer cells and inhibition on protein synthesis in cells. The abundant nHAP internalized in cancer cells around endoplasmic reticulum may inhibit the protein synthesis by decreasing the binding of mRNA to ribosome due to its high adsorption capacity for ribosome and arrest cell cycle in G0/G1 phase. nHAP shows no ROS-involved cytotoxicity and low cytotoxicity to normal cells. These results strongly suggest that nHAP can inhibit cancer cell proliferation and have a potential application in cancer treatment. PMID:25409543

  15. Detection of apoptosis of bone cells in vitro.

    PubMed

    Bellido, Teresita; Plotkin, Lilian I

    2008-01-01

    Studies during the last decade demonstrated that apoptosis is as important as mitosis for the growth and maintenance of the skeleton and provided information on the significance and molecular regulation of apoptosis of bone cells. It is now known that: (1) all osteoclasts die by apoptosis after completing a bone resorption cycle; (2) the majority of osteoblasts also die, whereas the remainder become lining cells or osteocytes; and (3) osteocytes, although long-living cells, also can die prematurely. Furthermore, mounting evidence indicates that systemic hormones, local growth factors, cytokines, and pharmacological agents, as well as mechanical forces regulate the rate of bone cell apoptosis. This chapter summarizes the methods developed in the last few years to examine apoptosis of cultured bone cells and identify the signaling pathways and molecules involved in apoptosis regulation by diverse skeletal stimuli.

  16. Altered Mechanical Environment of Bone Cells in an Animal Model of Short- and Long-Term Osteoporosis

    PubMed Central

    Verbruggen, Stefaan W.; Mc Garrigle, Myles J.; Haugh, Matthew G.; Voisin, Muriel C.; McNamara, Laoise M.

    2015-01-01

    Alterations in bone tissue composition during osteoporosis likely disrupt the mechanical environment of bone cells and may thereby initiate a mechanobiological response. It has proved challenging to characterize the mechanical environment of bone cells in vivo, and the mechanical environment of osteoporotic bone cells is not known. The objective of this research is to characterize the local mechanical environment of osteocytes and osteoblasts from healthy and osteoporotic bone in a rat model of osteoporosis. Using a custom-designed micromechanical loading device, we apply strains representative of a range of physical activity (up to 3000 με) to fluorescently stained femur samples from normal and ovariectomized rats. Confocal imaging was simultaneously performed, and digital image correlation techniques were applied to characterize cellular strains. In healthy bone tissue, osteocytes experience higher maximum strains (31,028 ± 4213 με) than osteoblasts (24,921 ± 3,832 με), whereas a larger proportion of the osteoblast experiences strains >10,000 με. Most interestingly, we show that osteoporotic bone cells experience similar or higher maximum strains than healthy bone cells after short durations of estrogen deficiency (5 weeks), and exceeded the osteogenic strain threshold (10,000 με) in a similar or significantly larger proportion of the cell (osteoblast, 12.68% vs. 13.68%; osteocyte, 15.74% vs. 5.37%). However, in long-term estrogen deficiency (34 weeks), there was no significant difference between bone cells in healthy and osteoporotic bone. These results suggest that the mechanical environment of bone cells is altered during early-stage osteoporosis, and that mechanobiological responses act to restore the mechanical environment of the bone tissue after it has been perturbed by ovariectomy. PMID:25863050

  17. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    SciTech Connect

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T.; Jhaveri, Hiral M.; Mishra, Gyan C.; Wani, Mohan R.

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  18. New bone formation by murine osteoprogenitor cells cultured on corticocancellous allograft bone.

    PubMed

    Nelson, Ehren R; Huang, Zhinong; Ma, Ting; Lindsey, Derek; Jacobs, Christopher; Smith, Robert L; Goodman, Stuart B

    2008-12-01

    The gold standard for bone grafting in orthopedics is autograft, however autograft has a limited supply and is associated with significant morbidity at the harvest site. One alternative, allograft bone, provides an osteoconductive scaffold, is in less limited supply, and it does not require a harvest from the patient. However, allograft lacks both osteogenic cells and osteoinductive proteins that make autograft bone so advantageous. This study provides a model to investigate strategies for augmentation of corticocancellous allograft bone discs with bone marrow-derived osteoprogenitor cells (OPCs) plus exogenous growth factors in vitro. In this model, allograft bone discs were created by cutting 1-mm thick slices from the distal femur and proximal tibia of euthanized mice. The allografts were sterilized and scanned by micro-computed tomography (microCT) to provide the pre-culture graft volume and trabecular characteristics. The discs were then seeded with OPCs harvested from murine bone marrow. The seeded grafts were placed in organ culture until harvest, after which they were re-scanned by microCT and the data compared to the corresponding pre-culture data. In addition, bone morphogenetic protein-7 (BMP-7, also know as osteogenic protein-1 or OP-1), basic fibroblast growth factor (bFGF), and OP-1 combined with bFGF were added on a daily basis to the cultures. After final microCT scanning, all grafts were sectioned and evaluated histologically after hematoxylin and eosin (H&E) staining. microCT scans of cultured allografts with cells at 3, 5, and 9 weeks showed a time-dependent, statistically significant increase in bone volume. The trabecular thickness (Tb.Th.) of grafts, from both groups that were augmented with OP-1, showed a statistically significant increase in trabecular thickness of allografts with OPCs. These data suggest that bone marrow-derived OPCs adhere to, and produce, new bone on corticocancellous allograft in vitro. When exogenous OP-1 is added to

  19. Bone cells, sclerostin, and FGF23: what's bred in the bone will come out in the flesh.

    PubMed

    Ott, Susan M

    2015-03-01

    Bone metabolism is linked to systemic diseases, and new research shows that the bone cells have endocrine functions that affect multiple organs. They secrete sclerostin, FGF23, prostaglandins, and osteocalcin. Pereira et al. examined gene expression of cells grown from bone biopsies of adolescents with renal osteodystrophy, as a first step to understanding how the bone-cell abnormalities contribute to cardiovascular and metabolic problems in these patients. PMID:25723633

  20. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia

    Investigations on the space biosatellites has shown that the bone skeleton is one of the most im-portant targets of the effect space flight factors on the organism. Bone tissue cells were studied by electron microscopy in biosamples of rats' long bones flown on the board american station "SLS-2" and in experiments with modelling of microgravity ("tail suspension" method) with using autoradiography. The analysis of data permits to suppose that the processes of remod-eling in bone tissue at microgravity include the following succession of cell-to-cell interactions. Osteocytes as mechanosensory cells are first who respond to a changing "mechanical field". The next stage is intensification of osteolytic processes in osteocytes, leading to a volume en-largement of the osteocytic lacunae and removal of the "excess bone". Then mechanical signals have been transmitted through a system of canals and processes of the osteocytic syncitium to certain superficial bone zones and are perceived by osteoblasts and bone-lining cells (superficial osteocytes), as well as by the bone-marrow stromal cells. The sensitivity of stromal cells, pre-osteoblasts and osteoblasts, under microgravity was shown in a number of works. As a response to microgravity, the system of stromal cells -preosteoblasts -osteoblasts displays retardation of proliferation, differentiation and specific functions of osteogenetic cells. This is supported by the 3H-thymidine studies of the dynamics of differentiation of osteogenetic cells in remodeling zones. But unloading is not adequate and in part of the osteocytes are apoptotic changes as shown by our electron microscopic investigations. An osteocytic apoptosis can play the role in attraction the osteoclasts and in regulation of bone remodeling. The apoptotic bodies with a liquid flow through a system of canals are transferred to the bone surface, where they fulfil the role of haemoattractants for monocytes come here and form osteoclasts. The osteoclasts destroy

  1. Bone marrow and bone marrow derived mononuclear stem cells therapy for the chronically ischemic myocardium

    SciTech Connect

    Waksman, Ron; Baffour, Richard

    2003-09-01

    Bone marrow stem cells have been shown to differentiate into various phenotypes including cardiomyocytes, vascular endothelial cells and smooth muscle. Bone marrow stem cells are mobilized and home in to areas of injured myocardium where they are involved in tissue repair. In addition, bone marrow secretes multiple growth factors, which are essential for angiogenesis and arteriogenesis. In some patients, these processes are not enough to avert clinical symptoms of ischemic disease. Therefore, in vivo administration of an adequate number of stem cells would be a significant therapeutic advance. Unfractionated bone marrow derived mononuclear stem cells, which contain both hematopoietic and nonhematopoietic cells may be more appropriate for cell therapy. Studies in animal models suggest that implantation of different types of stem cells improve angiogenesis and arteriogenesis, tissue perfusion as well as left ventricular function. Several unanswered questions remain. For example, the optimal delivery approach, dosage and timing of the administration of cell therapy as well as durability of improvements need to be studied. Early clinical studies have demonstrated safety and feasibility of various cell therapies in ischemic disease. Randomized, double blind and placebo-controlled clinical trials need to be completed to determine the effectiveness of stem cell.

  2. A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells.

    PubMed

    Griffin, J D; Linch, D; Sabbath, K; Larcom, P; Schlossman, S F

    1984-01-01

    Anti-MY9 is an IgG2b murine monoclonal antibody selected for reactivity with immature normal human myeloid cells. The MY9 antigen is expressed by blasts, promyelocytes and myelocytes in the bone marrow, and by monocytes in the peripheral blood. Erythrocytes, lymphocytes and platelets are MY9 negative. All myeloid colony-forming cells (CFU-GM), a fraction of erythroid burst-forming cells (BFU-E) and multipotent progenitors (CFU-GEMM) are MY9 positive. This antigen is further expressed by the leukemic cells of a majority of patients with AML and myeloid CML-BC. Leukemic stem cells (leukemic colony-forming cells, L-CFC) from most patients tested were also MY9 positive. In contrast, MY9 was not detected on lymphocytic leukemias. Anti-MY9 may be a valuable reagent for the purification of hematopoietic colony-forming cells and for the diagnosis of myeloid-lineage leukemias.

  3. Potency Biomarker Signature Genes from Multiparametric Osteogenesis Assays: Will cGMP Human Bone Marrow Mesenchymal Stromal Cells Make Bone?

    PubMed Central

    Murgia, Alba; Veronesi, Elena; Candini, Olivia; Caselli, Anna; D’souza, Naomi; Rasini, Valeria; Giorgini, Andrea; Catani, Fabio; Iughetti, Lorenzo

    2016-01-01

    In skeletal regeneration approaches using human bone marrow derived mesenchymal stromal cells (hBM-MSC), functional evaluation before implantation has traditionally used biomarkers identified using fetal bovine serum-based osteogenic induction media and time courses of at least two weeks. However, emerging pre-clinical evidence indicates donor-dependent discrepancies between these ex vivo measurements and the ability to form bone, calling for improved tests. Therefore, we adopted a multiparametric approach aiming to generate an osteogenic potency assay with improved correlation. hBM-MSC populations from six donors, each expanded under clinical-grade (cGMP) conditions, showed heterogeneity for ex vivo growth response, mineralization and bone-forming ability in a murine xenograft assay. A subset of literature-based biomarker genes was reproducibly upregulated to a significant extent across all populations as cells responded to two different osteogenic induction media. These 12 biomarkers were also measurable in a one-week assay, befitting clinical cell expansion time frames and cGMP growth conditions. They were selected for further challenge using a combinatorial approach aimed at determining ex vivo and in vivo consistency. We identified five globally relevant osteogenic signature genes, notably TGF-ß1 pathway interactors; ALPL, COL1A2, DCN, ELN and RUNX2. Used in agglomerative cluster analysis, they correctly grouped the bone-forming cell populations as distinct. Although donor #6 cells were correlation slope outliers, they contrastingly formed bone without showing ex vivo mineralization. Mathematical expression level normalization of the most discrepantly upregulated signature gene COL1A2, sufficed to cluster donor #6 with the bone-forming classification. Moreover, attenuating factors causing genuine COL1A2 gene down-regulation, restored ex vivo mineralization. This suggested that the signature gene had an osteogenically influential role; nonetheless no single

  4. Bone mineralization: from tissue to crystal in normal and pathological contexts.

    PubMed

    Bala, Y; Farlay, D; Boivin, G

    2013-08-01

    Bone is a complex and structured material; its mechanical behavior results from an interaction between the properties of each level of its structural hierarchy. The degree of mineralization of bone (bone density measured at tissue level) and the characteristics of the mineral deposited (apatite crystals) are major determinants of bone strength. Bone remodeling activity acts as a regulator of the degree of mineralization and of the distribution of mineral at the tissue level, directly impacting bone mechanical properties. Recent findings have highlighted the need to understand the underlying process occurring at the nanostructure level that may be independent of bone remodeling itself. A more global comprehension of bone qualities will need further works designed to characterize what are the consequences on whole bone strength of changes at nano- or microstructure levels relative to each other.

  5. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment.

    PubMed

    Snyder, Robert

    2014-03-01

    Detection, treatment, and prevention of bone marrow diseases have long been the aims of experimental and clinical hematologists and mechanistically oriented toxicologists. Among these diseases is aplastic anemia, which manifests as the cessation of normal blood cell production; the leukemias, in contrast, feature the production of excessive hematologic cancer cells. Both diseases are associated with exposure to either industrial chemicals or cancer chemotherapeutic agents. Studies of hematopoietic bone marrow cells in culture have shown that the generation of circulating blood cells requires the interaction of hematopoietic stem cells (HSCs) with supporting marrow stromal cells; yet, isolation of HSCs from bone destroys the unique morphology of the marrow stroma in which the HSCs reside. Imaging techniques and related studies have made it possible to examine specific niches where HSCs may either initiate differentiation toward mature blood cells or reside in a dormant state awaiting a signal to begin differentiation. HSCs and related cells may be highly vulnerable to the mutagenic or toxic effects of drugs or other chemicals early in these processes. Additional studies are required to determine the mechanisms by which drug or chemical exposure may affect these cells and lead to either depression of bone marrow function or to leukemia.

  6. Heparin modulates intracellular cyclic AMP in human trabecular bone cells and adherent rheumatoid synovial cells.

    PubMed Central

    Crisp, A J; Roelke, M S; Goldring, S R; Krane, S M

    1984-01-01

    Cells were cultured from explants of human trabecular bone excised from eight patients and incubated usually for 20 minutes with bovine parathyroid hormone, salmon calcitonin, prostaglandin E2, or heparin. The intracellular content of cyclic AMP was measured by radioimmunoassay and was significantly increased by parathyroid hormone in four, by calcitonin in two, by prostaglandin E2 in eight, and by heparin in seven out of eight cultures. In the two cultures containing calcitonin-responsive cells heparin inhibited the cyclic AMP response induced by calcitonin. Heparin did not affect the cyclic AMP response to parathyroid hormone or prostaglandin E2. Heparin also increased the cyclic AMP content of cultured adherent rheumatoid synovial cells. It is proposed that, in certain situations of focal pathological bone resorption, although concentrations of circulating hormones may be normal, the local release of products such as heparin may modify the effect of hormones which regulate connective tissue homoeostasis. local changes in hormone responses could contribute to the enhanced bone resorption associated with inflammatory processes such as rheumatoid arthritis. Images PMID:6089675

  7. A case of Primary Bone Anaplastic Large Cell Lymphoma

    PubMed Central

    Kim, Kyung Hyun; Jung, Yun Hwa; Han, Chi Wha; Woo, In Sook; Son, Jong ho

    2016-01-01

    Patient: Female, 52 Final Diagnosis: Primary bone anaplastic large cell lymphoma Symptoms: Bone pain Medication: — Clinical Procedure: — Specialty: Oncology Objective: Unusual clinical course Background: Anaplastic large cell lymphoma (ALCL) is a relatively rare subtype of non-Hodgkin’s lymphoma (NHL). Like other types of NHL, ALCL primarily involves the nodal area, and sometimes it can involve several extra-nodal sites such as skin, soft tissue, and lungs. However, extensive bone involvement in cases of ALCL is very rare whether it is primary or secondary. Without nodular involvement, ALCL can be misdiagnosed as bone tumor or metastatic carcinoma such as lung, breast, or prostate cancer, which frequently spread to bone. Case Report: A 52-year-old woman with generalized pain and 2 months of fever of unknown origin presented to our institution. After extensive evaluation, only multiple osteolytic bone lesions with periosteal soft tissue reaction were identified. Repeated core needle biopsy revealed only inflammatory cells with histiocytic reactions. After pathologic and chromosomal analysis of sufficient tissue, which was acquired from incisional biopsy, primary bone ALCL was confirmed. Conclusions: Clinicians should keep in mind that ALCL can present with extensive bone involvement without nodal involvement. PMID:27729639

  8. T CELLS: CRITICAL BONE REGULATORS IN HEALTH AND DISEASE

    PubMed Central

    Pacifici, Roberto

    2010-01-01

    Postmenopausal osteoporosis and hyperparathyroidism are to two common forms of bone loss caused primarily by an expansion of the osteoclastic pool only partially compensated by a stimulation of bone formation. The intimate mechanisms by which estrogen deficiency and excessive production of PTH cause bone loss remain to be determined in part because in vitro studies do not provide the means to adequately reproduce the effects of ovx and PTH overproduction observed in vivo. This article examines the connection between T cells and bone in health and disease and reviews the evidence in favor of the hypothesis that T cells play an unexpected critical role in the mechanism of action of estrogen and PTH in bone. PMID:20452473

  9. Conception on the cell mechanisms of bone tissue loss under spase flight conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia; Oganov, Victor; Kabitskaya, Olga

    Basing on the analysis of available literature and the results of our own electron microscopic and radioautographic researches the data are presented about the morpho-functional peculiarities and succession of cellular interactions in adaptive remodeling of bone structures under normal conditions and after exposure of animals (rats, monkeys, mice) to microgravity (SLS-2, Bion-11, BionM-1). The probable cellular mechanisms of the development of osteopenia and osteoporosis are considered. Our conception on remodeling proposes the following sequence in the development of cellular interactions after decrease of the mechanical loading: a primary response of osteocytes (mechanosensory cells) to the mechanical stimulus; osteocytic remodeling (osteolysis); transmission of the mechanical signals through a system of canals and processes to functionally active osteoblasts and surface osteocytes as well as to the bone-marrow stromal cells and to those lying on bone surfaces. As a response to the mechanical stimulus (microgravity) the system of stromal cell-preosteoblast-osteoblast shows a delay in proliferation, differentiation and specific functioning of the osteogenetic cells, some of the osteoblasts undergo apoptosis. Then the osteoclastic reaction occurs (attraction of monocytes and formation of osteoclasts and bone matrix resorption in the loci of apoptosis of osteoblasts and osteocytes). The macrophagal reaction is followed by osteoblastogenesis, which appears to be a rehabilitating process. However, during prolonged absence of mechanical stimuli (microgravity, long-time immobilization) the adaptive activization of osteoblastogenesis doesn’t occur (as it is the case during the physiological remodeling of bone tissue) or it occurs to a smaller degree. The loading deficit leads to an adaptive differentiation of stromal cells to fibroblastic cells and adipocytes in these remodeling loci. These cell reactions are considered as adaptive-compensatory, but they don’t result

  10. Effects of Spaceflight on Cells of Bone Marrow Origin

    PubMed Central

    Özçivici, Engin

    2013-01-01

    Once only a subject for science fiction novels, plans for establishing habitation on space stations, the Moon, and distant planets now appear among the short-term goals of space agencies. This article reviews studies that present biomedical issues that appear to challenge humankind for long-term spaceflights. With particularly focus on cells of bone marrow origin, studies involving changes in bone, immune, and red blood cell populations and their functions due to extended weightlessness were reviewed. Furthermore, effects of mechanical disuse on primitive stem cells that reside in the bone marrow were also included in this review. Novel biomedical solutions using space biotechnology will be required in order to achieve the goal of space exploration without compromising the functions of bone marrow, as spaceflight appears to disrupt homeostasis for all given cell types. Conflict of interest:None declared. PMID:24385745

  11. Stem cell origin differently affects bone tissue engineering strategies

    PubMed Central

    Mattioli-Belmonte, Monica; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Orciani, Monia; Dicarlo, Manuela; Fini, Milena; Orsini, Giovanna; Di Primio, Roberto; Falconi, Mirella

    2015-01-01

    Bone tissue engineering approaches are encouraging for the improvement of conventional bone grafting technique drawbacks. Thanks to their self-renewal and multi-lineage differentiation ability, stem cells are one of the major actors in tissue engineering approaches, and among these adult mesenchymal stem cells (MSCs) hold a great promise for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs) are the first- identified and well-recognized stem cell population used in bone tissue engineering. Nevertheless, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The fruitful selection and combination of tissue engineered scaffold, progenitor cells, and physiologic signaling molecules allowed the surgeon to reconstruct the missing natural tissue. On the basis of these considerations, we analyzed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e., periodontal ligament, maxillary periosteum) as well as adipose-derived stem cells (ASCs), in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, taking into account their specific features, they could be intriguing cell sources in different stem cell-based bone/periodontal tissue regeneration approaches. PMID:26441682

  12. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    PubMed

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic.

  13. High-Frequency Vibration Treatment of Human Bone Marrow Stromal Cells Increases Differentiation toward Bone Tissue

    PubMed Central

    Prè, D.; Ceccarelli, G.; Visai, L.; Benedetti, L.; Imbriani, M.; Cusella De Angelis, M. G.; Magenes, G.

    2013-01-01

    In order to verify whether differentiation of adult stem cells toward bone tissue is promoted by high-frequency vibration (HFV), bone marrow stromal cells (BMSCs) were mechanically stimulated with HFV (30 Hz) for 45 minutes a day for 21 or 40 days. Cells were seeded in osteogenic medium, which enhances differentiation towards bone tissue. The effects of the mechanical treatment on differentiation were measured by Alizarin Red test, (q) real-time PCR, and protein content of the extracellular matrix. In addition, we analyzed the proliferation rate and apoptosis of BMSC subjected to mechanical stimulation. A strong increase in all parameters characterizing differentiation was observed. Deposition of calcium was almost double in the treated samples; the expression of genes involved in later differentiation was significantly increased and protein content was higher for all osteogenic proteins. Lastly, proliferation results indicated that stimulated BMSCs have a decreased growth rate in comparison with controls, but both treated and untreated cells do not enter the apoptosis process. These findings could reduce the gap between research and clinical application for bone substitutes derived from patient cells by improving the differentiation protocol for autologous cells and a further implant of the bone graft into the patient. PMID:23585968

  14. Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow

    PubMed Central

    Dyer, Kimberly D.; Moser, Jennifer M.; Czapiga, Meggan; Siegel, Steven J.; Percopo, Caroline M.; Rosenberg, Helene F.

    2009-01-01

    We have devised an ex vivo culture system which generates large numbers of eosinophils at high purity (>90%) from unselected mouse bone marrow progenitors. In response to four days of culture with recombinant mouse (rm)FLT3-L and rmSCF followed by rmIL-5 alone thereafter, the resulting bone-marrow derived eosinophils (bmEos) express immunoreactive major basic protein, Siglec F, IL-5 receptor alpha chain, and transcripts encoding mouse eosinophil peroxidase, CC chemokine receptor 3, the IL-3/IL-5/GMCSF receptor common beta-chain (βc), and the transcription factor GATA-1. BmEos are functionally competent: they undergo chemotaxis toward mouse eotaxin-1 and produce characteristic cytokines, including interferon-γ, IL-4, MIP-1α and IL-6. The rodent pathogen, pneumonia virus of mice (PVM) replicates in bmEos, and elevated levels of IL-6 are detected in supernatants of bmEos cultures in response to active infection. Finally, differentiating bmEos are readily transfected with lentiviral vectors, suggesting a means for rapid production of genetically manipulated cells. PMID:18768855

  15. The interleukin-6 receptor alpha-chain (CD126) is expressed by neoplastic but not normal plasma cells.

    PubMed

    Rawstron, A C; Fenton, J A; Ashcroft, J; English, A; Jones, R A; Richards, S J; Pratt, G; Owen, R; Davies, F E; Child, J A; Jack, A S; Morgan, G

    2000-12-01

    Interleukin-6 (IL-6) is reported to be central to the pathogenesis of myeloma, inducing proliferation and inhibiting apoptosis in neoplastic plasma cells. Therefore, abrogating IL-6 signaling is of therapeutic interest, particularly with the development of humanized anti-IL-6 receptor (IL-6R) antibodies. The use of such antibodies clinically requires an understanding of IL-6R expression on neoplastic cells, particularly in the cycling fraction. IL-6R expression levels were determined on plasma cells from patients with myeloma (n = 93) and with monoclonal gammopathy of undetermined significance (MGUS) or plasmacytoma (n = 66) and compared with the levels found on normal plasma cells (n = 11). In addition, 4-color flow cytometry was used to assess the differential expression by stage of differentiation and cell cycle status of the neoplastic plasma cells. IL-6R alpha chain (CD126) was not detectable in normal plasma cells, but was expressed in approximately 90% of patients with myeloma. In all groups, the expression levels showed a normal distribution. In patients with MGUS or plasmacytoma, neoplastic plasma cells expressed significantly higher levels of CD126 compared with phenotypically normal plasma cells from the same marrow. VLA-5(-) "immature" plasma cells showed the highest levels of CD126 expression, but "mature" VLA-5(+) myeloma plasma cells also overexpressed CD126 when compared with normal subjects. This study demonstrates that CD126 expression is restricted to neoplastic plasma cells, with little or no detectable expression by normal cells. Stromal cells in the bone marrow microenvironment do not induce the overexpression because neoplastic cells express higher levels of CD126 than normal plasma cells from the same bone marrow in individuals with MGUS. (Blood. 2000;96:3880-3886)

  16. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects.

    PubMed

    Osugi, Masashi; Katagiri, Wataru; Yoshimi, Ryoko; Inukai, Takeharu; Hibi, Hideharu; Ueda, Minoru

    2012-07-01

    Tissue engineering has recently become available as a treatment procedure for bone augmentation. However, this procedure has several problems, such as high capital investment and expensive cell culture, complicated safety and quality management issues regarding cell handling, and patient problems with the invasive procedure of cell collection. Moreover, it was reported that stem cells secrete many growth factors and chemokines during their cultivation, which could affect cellular characteristics and behavior. This study investigated the effect of stem-cell-cultured conditioned media on bone regeneration. Cultured conditioned media from human bone marrow-derived mesenchymal stem cells (MSC-CM) enhanced the migration, proliferation, and expression of osteogenic marker genes, such as osteocalcin and Runx2, of rat MSCs (rMSCs) in vitro. MSC-CM includes cytokines such as insulin-like growth factor-1 and vascular endothelial growth factor. In vivo, a prepared bone defect of a rat calvarial model was implanted in five different rat groups using one of the following graft materials: human MSCs/agarose (MSCs), MSC-CM/agarose (MSC-CM), Dulbecco's modified Eagle's medium without serum [DMEM(-)]/agarose [DMEM(-)], PBS/agarose (PBS), and defect only (Defect). After 4 and 8 weeks, implant sections were evaluated using microcomputed tomography (micro-CT) and histological analysis. Micro-CT analysis indicated that the MSC-CM group had a greater area of newly regenerated bone compared with the other groups (p<0.05) and histological analysis at 8 weeks indicated that the newly regenerated bone bridge almost covered the defect. Interestingly, the effects of MSC-CM were stronger than those of the MSC group. In vivo imaging and immunohistochemical staining of transgenic rats expressing green fluorescent protein also showed that migration of rMSCs to the bone defect in the MSC-CM group was greater than in the other groups. These results demonstrated that MSC-CM can regenerate bone

  17. Bone marrow cell transplantation is associated with fibrogenic cells apoptosis during hepatic regeneration in cholestatic rats.

    PubMed

    Nunes de Carvalho, Simone; da Cunha Lira, Dalvaci; Costa Cortez, Erika Afonso; de Andrade, Daniela Caldas; Thole, Alessandra Alves; Stumbo, Ana Carolina; de Carvalho, Lais

    2013-04-01

    Liver fibrosis is accompanied by hepatocyte death and proliferation of α-SMA(+) fibrogenic cells (activated hepatic stellate cells and myofibroblasts), which synthesize extracellular matrix components that contribute to disorganization of the hepatic parenchyma and loss of liver function. Therefore, apoptosis of these fibrogenic cells is important to hepatic regeneration. This study aimed to analyze the effect of cell therapy using bone marrow mononuclear cell (BMMNC) transplantation on α-SMA expression and on apoptosis of hepatic cells during liver fibrosis induced by bile duct ligation (BDL). Livers were collected from normal rats, fibrotic rats after 14 and 21 days of BDL, and rats that received BMMNC at 14 days of BDL and were analyzed after 7 days. Apoptosis in fibrogenic cells was analyzed by immunoperoxidase, confocal microscopy, and Western blotting, and liver regeneration was assessed by proliferating cell nuclear antigen staining. Results showed that caspase-3 and proliferating cell nuclear antigen expression were significantly increased in the BMMNC-treated group. Additionally, confocal microscopy analysis showed cells coexpressing α-SMA and caspase-3 in these animals, suggesting fibrogenic cell death. These results suggest a novel role for BMMNC in liver regeneration during fibrotic disease by stimulating fibrogenic cells apoptosis and hepatocyte proliferation, probably through secretion of specific cytokines that modulate the hepatic microenvironment toward an antifibrogenic balance.

  18. Double-layered cell transfer technology for bone regeneration.

    PubMed

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-01-01

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called "cell transfer technology", enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174

  19. Double-layered cell transfer technology for bone regeneration.

    PubMed

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-09-14

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called "cell transfer technology", enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration.

  20. Double-layered cell transfer technology for bone regeneration

    PubMed Central

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-01-01

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174

  1. Gallium scintigraphy in bone infarction. Correlation with bone imaging

    SciTech Connect

    Armas, R.R.; Goldsmith, S.J.

    1984-01-01

    The appearance of gallium-67 images in bone infarction was studied in nine patients with sickle cell disease and correlated with the bone scan findings. Gallium uptake in acute infarction was decreased or absent with a variable bone scan uptake, and normal in healing infarcts, which showed increased uptake on bone scan. The significance of these findings is discussed.

  2. The bone marrow niche for haematopoietic stem cells.

    PubMed

    Morrison, Sean J; Scadden, David T

    2014-01-16

    Niches are local tissue microenvironments that maintain and regulate stem cells. Haematopoiesis provides a model for understanding mammalian stem cells and their niches, but the haematopoietic stem cell (HSC) niche remains incompletely defined and beset by competing models. Recent progress has been made in elucidating the location and cellular components of the HSC niche in the bone marrow. The niche is perivascular, created partly by mesenchymal stromal cells and endothelial cells and often, but not always, located near trabecular bone. Outstanding questions concern the cellular complexity of the niche, the role of the endosteum and functional heterogeneity among perivascular microenvironments.

  3. The bone marrow niche for haematopoietic stem cells

    PubMed Central

    Morrison, Sean J.; Scadden, David T.

    2015-01-01

    Preface Niches are local tissue microenvironments that maintain and regulate stem cells. Haematopoiesis provides a paradigm for understanding mammalian stem cells and their niches, yet the haematopoietic stem cell (HSC) niche remains incompletely defined and beset by competing models. Here we review progress in elucidating the location and cellular components of the HSC niche in the bone marrow. The niche is perivascular, created partly by mesenchymal stromal cells and endothelial cells and often, but not always, located near trabecular bone. Outstanding questions concern the cellular complexity of the niche, the role of the endosteum, and functional heterogeneity among perivascular microenvironments. PMID:24429631

  4. Stem cell-based therapies for bone repair.

    PubMed

    Milner, Peter I; Clegg, Peter D; Stewart, Matthew C

    2011-08-01

    This article provides an overview of the cellular and molecular events involved in bone repair and the current approaches to using stem cells as an adjunct to this process. The article emphasizes the key role of osteoprogenitor cells in the formation of bone and where the clinical applications of current research may lend themselves to large animal orthopaedics. The processes involved in osteogenic differentiation are presented and strategies for bone formation, including induction by osteogenic factors, bioscaffolds, and gene therapy, are reviewed. PMID:21872760

  5. Effect of Intravenous Glucose Tolerance Test on Bone Turnover Markers in Adults with Normal Glucose Tolerance

    PubMed Central

    Xiang, Shou-Kui; Wan, Jing-Bo; Jiang, Xiao-Hong; Zhu, Yong-Hua; Ma, Jin-Hong; Hua, Fei

    2016-01-01

    Background It is well known that enteral nutrients result in acute suppression of bone turnover markers (BTMs), and incretin hormones are believed to play a significant role in this physiological skeletal response. However, there is limited research exploring the impact of parenteral nutrients on BTMs. Our aim was to assess the influence of intravenous glucose on BTMs in adults with normal glucose tolerance (NGT). Material/Methods We conducted 1-h intravenous glucose tolerance test (IVGTT) in 24 subjects with NGT. Blood samples were collected before and 5, 10, 15, 20, 30, 60 min after administration of glucose, then serum levels of bone formation marker procollagen type I N-terminal propeptide (P1NP) and resorption marker C-terminal cross-linking telopeptides of collagen type I (CTX) were measured. Results During IVGTT, the fasting CTX level fell gradually and reached a nadir of 80.4% of the basal value at 60 min. Conversely, the fasting P1NP level decreased mildly and reached a nadir of 90.6% of the basal value at 15 min, then gradually increased and reached 96.6% at 60 min. The CTX-to-P1NP ratio increased slightly and reached a peak of 104.3% of the basal value at 10 min, then fell gradually and reached a nadir of 83% at 60 min. Conclusions Our study indicates that intravenous glucose results in an acute suppression of BTMs in the absence of incretin hormones. The mechanism responsible for this needs further investigation. PMID:27447783

  6. TGF-β in cancer and bone: implications for treatment of bone metastases.

    PubMed

    Juárez, Patricia; Guise, Theresa A

    2011-01-01

    Bone metastases are common in patients with advanced breast, prostate and lung cancer. Tumor cells co-opt bone cells to drive a feed-forward cycle which disrupts normal bone remodeling to result in abnormal bone destruction or formation and tumor growth in bone. Transforming growth factor-beta (TGF-β) is a major bone-derived factor, which contributes to this vicious cycle of bone metastasis. TGF-β released from bone matrix during osteoclastic resorption stimulates tumor cells to produce osteolytic factors further increasing bone resorption adjacent to the tumor cells. TGF-β also regulates 1) key components of the metastatic cascade such as epithelial-mesenchymal transition, tumor cell invasion, angiogenesis and immunosuppression as well as 2) normal bone remodeling and coupling of bone resorption and formation. Preclinical models demonstrate that blockade of TGF-β signaling is effective to treat and prevent bone metastases as well as to increase bone mass.

  7. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli

    NASA Technical Reports Server (NTRS)

    Rubin, C.; Xu, G.; Judex, S.

    2001-01-01

    It is generally believed that mechanical signals must be large in order to be anabolic to bone tissue. Recent evidence indicates, however, that extremely low-magnitude (<10 microstrain) mechanical signals readily stimulate bone formation if induced at a high frequency. We examined the ability of extremely low-magnitude, high-frequency mechanical signals to restore anabolic bone cell activity inhibited by disuse. Adult female rats were randomly assigned to six groups: baseline control, age-matched control, mechanically stimulated for 10 min/day, disuse (hind limb suspension), disuse interrupted by 10 min/day of weight bearing, and disuse interrupted by 10 min/day of mechanical stimulation. After a 28 day protocol, bone formation rates (BFR) in the proximal tibia of mechanically stimulated rats increased compared with age-matched control (+97%). Disuse alone reduced BFR (-92%), a suppression only slightly curbed when disuse was interrupted by 10 min of weight bearing (-61%). In contrast, disuse interrupted by 10 min per day of low-level mechanical intervention normalized BFR to values seen in age-matched controls. This work indicates that this noninvasive, extremely low-level stimulus may provide an effective biomechanical intervention for the bone loss that plagues long-term space flight, bed rest, or immobilization caused by paralysis.

  8. Histomorphometric Assessment of Cancellous and Cortical Bone Material Distribution in the Proximal Humerus of Normal and Osteoporotic Individuals

    PubMed Central

    Sprecher, Christoph M.; Schmidutz, Florian; Helfen, Tobias; Richards, R. Geoff; Blauth, Michael; Milz, Stefan

    2015-01-01

    Abstract Osteoporosis is a systemic disorder predominantly affecting postmenopausal women but also men at an advanced age. Both genders may suffer from low-energy fractures of, for example, the proximal humerus when reduction of the bone stock or/and quality has occurred. The aim of the current study was to compare the amount of bone in typical fracture zones of the proximal humerus in osteoporotic and non-osteoporotic individuals. The amount of bone in the proximal humerus was determined histomorphometrically in frontal plane sections. The donor bones were allocated to normal and osteoporotic groups using the T-score from distal radius DXA measurements of the same extremities. The T-score evaluation was done according to WHO criteria. Regional thickness of the subchondral plate and the metaphyseal cortical bone were measured using interactive image analysis. At all measured locations the amount of cancellous bone was significantly lower in individuals from the osteoporotic group compared to the non-osteoporotic one. The osteoporotic group showed more significant differences between regions of the same bone than the non-osteoporotic group. In both groups the subchondral cancellous bone and the subchondral plate were least affected by bone loss. In contrast, the medial metaphyseal region in the osteoporotic group exhibited higher bone loss in comparison to the lateral side. This observation may explain prevailing fracture patterns, which frequently involve compression fractures and certainly has an influence on the stability of implants placed in this medial region. It should be considered when planning the anchoring of osteosynthesis materials in osteoporotic patients with fractures of the proximal humerus. PMID:26705200

  9. In vivo bone formation by human bone marrow cells: effect of osteogenic culture supplements and cell densities.

    PubMed

    Mendes, S C; Van Den Brink, I; De Bruijn, J D; Van Blitterswijk, C A

    1998-12-01

    Bone marrow is known to contain a population of osteoprogenitor cells that can go through complete differentiation when cultured in a medium containing appropriate bioactive factors. In this study, porous particles of a calcium phosphate material were seeded with adult human bone marrow cells in the second passage. After an additional culture period of 1 wk in the particles, these hybrid constructs were subcutaneouslly implanted in nude mice with a survival period of 4 wk. The cell seeding densities range from 0-200 000 cells per particle and the cell culture system was designed to investigate the single and combined effects of dexamethasone and recombinant human bone morphogenetic protein 2 (rhBMP-2). The hybrid "material/tissue" constructs were processed for histology and the amount of de novo bone formation was quantified, for each culture condition, by histomorphometric techniques. The relative percentage of mineralized bone formation reached a maximal value of 19.77+/-5.06, for samples cultured in the presence of rhBMP-2 and with a seeding density of 200 000 cells/particle, compared to 0.52+/-0.45 for samples in which no cells had been cultured and had been incubated in culture medium supplemented with Dex and rhBMP-2. For the tested conditions and for the low cell numbers used in this study, rhBMP-2 proved to be an essential bioactive factor to obtain in vivo bone formation by our culture system. The results from this study prove the potential of cultured adult human bone marrow cells to initiate and accelerate de novo bone formation after transplantation into an ectopic site. PMID:15348953

  10. Evaluation of hematopoietic cells and myeloid/erythroid ratio in the bone marrow of the pheasant (Phasianus colchicus).

    PubMed

    Tadjalli, Mina; Nazifi, Saeed; Haghjoo, Rahil

    2013-01-01

    In order to study the normal hematopoiesis, cellular components and myeloid/erythroid (M/E) ratio in the bone marrow of the pheasant (Phasianus colchicus), bone marrow samples were collected from the proximal tibiotarsus bone of 16 clinically healthy adult pheasant. The bone marrow smears were stained using the Giemsa stain. The results indicated that the development and formation of blood cells in the bone marrow of pheasant were similar to other birds, whereas the morphology of the cells was similar to chickens, ducks, quail, and black-head gull. The mean M/E ratio was 1.24, the mean erythroid percentage was 42.24, the mean myeloid percentage was 52.62, and the mean percentage of all other cells percentage was 5.38. There was no significant difference in any of the cellular composition between male and female.

  11. Molecular profile of osteoprogenitor cells seeded on allograft bone.

    PubMed

    Smith, Kierann E; Huang, Zhinong; Ma, Ting; Irani, Afraaz; Lane Smith, R; Goodman, Stuart B

    2011-10-01

    In order to optimize and modulate bone formation it is essential to understand the expression patterns of key bone-specific growth factors, as osteoprogenitor cells undergo the processes of proliferation, differentiation and maturation. This study reports the sequential expression of bone-related growth and transcription factors when bone marrow-derived osteoprogenitor cells from C57BL mice were cultured on allograft bone discs. Mineralization and osteocalcin protein levels were used to track osteogenic differentiation and maturation. Bone-related growth factors, such as Bmp-2, Bmp-7, Ctnnb-1, Fgf-2, Igf-1, Vegf-a and Tgf-β1, and transcription factors, such as Runx-2 and osteocalcin, were examined by enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR). Total density of mineralized bone was significantly increased 7.6 ± 0.7% in allografts cultured with cells, compared with a 0.5 ± 2.0% increase in the controls without cells (p < 0.01). Osteocalcin protein levels peaked at day 4. Protein expression showed peaks of BMP-2 and TGF-β1 on day 2, with VEGF peaking on day 8, and IGF-1 decreasing on day 2. mRNA for Pdgf-a peaked on day 2; Bmp-2 on days 4 and 16; Ctnnb-1 on days 8 and 20; Vegf-a, Fgf-2, Runx-2 and Igf-1 on day 12; Tgf-β1 on day 16; and Pdgf-b on day 20. Osteogenic growth factors correlated with Runx-2 and Ctnnb-1, whereas a predominant vascular growth factor, Vegf-a, did not follow this pattern. Specific bone-related genes and proteins were expressed in a time-dependent manner when osteoprogenitor cells were cultured on cortico-cancellous bone discs in vitro. PMID:21953868

  12. Measurement of the normalized broadband ultrasound attenuation in trabecular bone by using a bidirectional transverse transmission technique

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2015-01-01

    A new method for measuring the normalized broadband ultrasound attenuation (nBUA) in trabecular bone by using a bidirectional transverse transmission technique was proposed and validated with measurements obtained by using the conventional transverse transmission technique. There was no significant difference between the nBUA measurements obtained for 14 bovine femoral trabecular bone samples by using the bidirectional and the conventional transverse transmission techniques. The nBUA measured by using the two transverse transmission techniques showed strong positive correlations of r = 0.87 to 0.88 with the apparent bone density, consistent with the behavior in human trabecular bone invitro. We expect that the new method can be usefully applied for improved accuracy and precision in clinical measurements.

  13. Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

    PubMed Central

    Vianna, Verônica Fernandes; Bonfim, Danielle Cabral; Cavalcanti, Amanda dos Santos; Fernandes, Marco Cury; Kahn, Suzana Assad; Casado, Priscila Ladeira; Lima, Inayá Correa; Murray, Samuel S.; Murray, Elsa J. Brochmann; Duarte, Maria Eugenia Leite

    2013-01-01

    Bone marrow stromal cells (BMSCs) are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells) and those that did not adhere by three days but did by six days (L-cells). Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiation in vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stroma in vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics. PMID:23710460

  14. Therapeutic effects of normal cells on ABCD1 deficient cells in vitro and hematopoietic cell transplantation in the X-ALD mouse model.

    PubMed

    Yamada, Takeshi; Ohyagi, Yasumasa; Shinnoh, Nobue; Kikuchi, Hitoshi; Osoegawa, Manabu; Ochi, Hirofumi; Kira, Jun-Ichi; Furuya, Hirokazu

    2004-03-15

    Bone marrow transplantation (BMT) is accepted as an efficient therapy for X-linked adrenoleukodystrophy (ALD). To clarify the mechanisms of this treatment, we examined the effects of hematopoietic cell transplantation (HCT) in an ATP-binding cassette, subfamily D, member 1 (ABCD1) knock out mice and co-culture of ALD patient fibroblasts with normal cells. We treated ABCD1 knock out mice with HCT using lacZ-transgenic mice as donors, which enabled us to detect donor-derived cells. We also examined the effects of co-culturing a normal microglia cell line (N9) with ALD fibroblasts. beta-Galactosidase (beta-GAL) activity was higher in spleen, lung and kidney than in liver, brain and spinal cord of the recipient ABCD1 knock out mice. HCT reduced the accumulation of very long chain fatty acid (VLCFA) in those tissues. The reduction of the VLCFA ratio was significant in spleen and lung; tissues with higher beta-GAL activity. ABCD1 was detectable in spleen from HCT mice. Co-culture of ALD fibroblasts with normal fibroblast cells reduced VLCFA accumulation in ALD cells. This effect was not observed when the cells were co-cultured while separated by a filter membrane. Our data suggest that supplying normal cells for ABCD1 knockout mouse by HCT corrects metabolic abnormalities in ALD tissues through a cell-mediated process. The correction requires direct cell-to-cell contact for recovering normal cell function.

  15. Bone marrow stromal cells contribute to bone formation following infusion into femoral cavities of a mouse model of osteogenesis imperfecta.

    PubMed

    Li, Feng; Wang, Xujun; Niyibizi, Christopher

    2010-09-01

    Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At 6 weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solubilized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in three point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation.

  16. Enhancement of bone marrow allografts from nude mice into mismatched recipients by T cells void of graft-versus-host activity

    SciTech Connect

    Lapidot, T.; Lubin, I.; Terenzi, A.; Faktorowich, Y.; Erlich, P.; Reisner, Y. )

    1990-06-01

    Transplantation of 8 x 10(6) C57BL/6-Nu+/Nu+ (nude) bone marrow cells into C3H/HeJ recipients after conditioning with 8 Gy of total body irradiation has resulted in a markedly higher rate of graft rejection or graft failure compared to that found in recipients of normal C57BL/6 or C57BL/6-Bg+/Bg+ (beige) T-cell-depleted bone marrow. Mixing experiments using different numbers of nude bone marrow cells with or without mature thymocytes (unagglutinated by peanut agglutinin) revealed that engraftment of allogeneic T-cell-depleted bone marrow is T-cell dependent. To ensure engraftment, a large inoculum of nude bone marrow must be supplemented with a trace number of donor T cells, whereas a small bone marrow dose from nude donors requires a much larger number of T cells for engraftment. Marked enhancement of donor type chimerism was also found when F1 thymocytes were added to nude bone marrow cells, indicating that the enhancement of bone marrow engraftment by T cells is not only mediated by alloreactivity against residual host cells but may rather be generated by growth factors, the release of which may require specific interactions between T cells and stem cells or between T cells and bone marrow stroma cells.

  17. Full reconstitution of the immune deficiency in scid mice with normal stem cells requires low-dose irradiation of the recipients

    SciTech Connect

    Fulop, G.M.; Phillips, R.A.

    1986-06-15

    Mice homozygous for an autosomal recessive mutation for the scid gene exhibit a defect that specifically impairs lymphoid differentiation but not myelopoiesis. Such mice can be cured of their lymphoid deficiency by grafts with normal bone marrow, although full reconstitution of lymphoid function is seldom obtained. Long-term bone marrow cultures (LTBMC) are devoid of all mature B and pre-B cells but contain lymphoid stem cells. We therefore reconstituted scid mice with LTBMC cells to study the kinetics of B lymphocyte reconstitution in normal and irradiated (4 Gy) scid recipients and in irradiated (9.5 Gy) co-isogenic C.B-17 mice. Detectable colony-forming B cells rapidly increased in the spleen and bone marrow of irradiated C.B-17 and irradiated scid recipients, reaching normal levels between 4 and 6 wk post-grafting. Unirradiated scid recipients showed limited reconstitution in spleen and very poor reconstitution in bone marrow. Unirradiated scid recipients also had relatively few surface Ig+ cells in spleen or bone marrow, whereas both groups of irradiated recipients had normal numbers between 4 and 6 wk post-reconstitution. Normal levels of cytotoxic T cell activity by 8 wk after reconstitution were observed only in the irradiated C.B-17 and irradiated scid recipients. Analysis of mice reconstituted with cells from LTBMC indicates that these cultures contain lymphoid stem cells with significant proliferative and self-renewal potential, and that full reconstitution of lymphoid function requires prior irradiation of the scid recipient.

  18. Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells.

    PubMed

    Mathews, Smitha; Mathew, Suja Ann; Gupta, Pawan Kumar; Bhonde, Ramesh; Totey, Satish

    2014-02-01

    Extracellular matrix plays an important role in regulating cell growth and differentiation. The biomimetic approach of cell-based tissue engineering is based on mirroring this in vivo micro environment for developing a functional tissue engineered construct. In this study, we treated normal tissue culture plates with selected extracellular matrix components consisting of glycosaminoglycans such as chondroitin-4-sulphate, dermatan sulphate, chondroitin-6-sulphate, heparin and hyaluronic acid. Mesenchymal stem cells isolated from adult human bone marrow were cultured on the glycosaminoglycan treated culture plates to evaluate their regulatory role in cell growth and osteoblast differentiation. Although no significant improvement on human mesenchymal stem cell adhesion and proliferation was observed on the glycosaminoglycan-treated tissue culture plates, there was selective osteoblast differentiation, indicating its potential role in differentiation rather than proliferation. Osteoblast differentiation studies showed high osteogenic potential for all tested glycosaminoglycans except chondroitin-4-sulphate. Osteoblast differentiation-associated genes such as osterix, osteocalcin, integrin binding sialoprotein, osteonectin and collagen, type 1, alpha 1 showed significant upregulation. We identified osterix as the key transcription factor responsible for the enhanced bone matrix deposition observed on hyaluronic acid, heparin and chondroitin-6-sulphate. Hyaluronic acid provided the most favourable condition for osteoblast differentiation and bone matrix synthesis. Our results confirm and emphasise the significant role of extracellular matrix in regulating cell differentiation. To summarise, glycosaminoglycans of extracellular matrix played a significant role in regulating osteoblast differentiation and could be exploited in the biomimetic approach of fabricating or functionalizing scaffolds for stem cell based bone tissue engineering.

  19. Influence of fructose and fatty-rich diet combined with vanadium on bone marrow cells.

    PubMed

    Krośniak, Mirosław; Papież, Monika A; Kaczmarczyk, Joanna; Francik, Renata; Panza, Maria G; Covelli, Vincenzo; Gryboś, Ryszrad

    2013-11-01

    The aim of the study is to investigate the influence of diet treatment on bone marrow cells. Normal male Wistar rats were divided into six groups (n = 6 per group): control with normal diet (C), increased fructose (31 % w/w in fodder) (Fr) and high fatty (30 % w/w of animal fat in fodder) diet (Fa), and the same diets with vanadium complex ([VO(4,4' Me2-2,2' Bpy)2]SO4) · H2O (CV, FrV and FaV). During 5 weeks, the animals had unlimited access to food and water. Immediately after anaesthetizing and sacrificing the animals, bone marrow smears were prepared from the femurs. Different types of cell lines in the animal smears were examined under the microscope: erythroid line, myeloid line, monocytic line, megakariocytic line and lymphoid line. Addition of fructose or animal fat had evident influence on the proportional composition of the bone marrow cells. In erythroid precursors, addition of both investigated products resulted in a statistically significant increase of percentage of this type of cells. A reverse effect was observed for the lymphoid cell line where addition of both tested diets decreased quantity of these cells in comparison to the control diet. In the same lines, addition of vanadium intensified the observed changes. In the case of other types of cell lines, statistically significant changes were not observed.

  20. Make no bones about it: cells could soon be reprogrammed to grow replacement bones?

    PubMed

    de Peppo, Giuseppe Maria; Marolt, Darja

    2014-01-01

    Recent developments in nuclear reprogramming allow the generation of patient-matched stem cells with broad potential for applications in cell therapies, disease modeling and drug discovery. An increasing body of work is reporting the derivation of lineage-specific progenitors from human-induced pluripotent stem cells (hiPSCs), which could in the near future be used to engineer personalized tissue substitutes, including those for reconstructive therapies of bone. Although the potential clinical impact of such technology is not arguable, significant challenges remain to be addressed before hiPSC-derived progenitors can be employed to engineer bone substitutes of clinical relevance. The most important challenge is indeed the construction of personalized multicellular bone substitutes for the treatment of complex skeletal defects that integrate fast, are immune tolerated and display biofunctionality and long-term safety. As recent studies suggest, the merging of iPSC technology with advanced biomaterials and bioreactor technologies offers a way to generate bone substitutes in a controllable, automated manner with potential to meet the needs for scale-up and requirements for translation into clinical practice. It is only via the use of state-of-the-art cell culture technologies, process automation under GMP-compliant conditions, application of appropriate engineering strategies and compliance with regulatory policies that personalized lab-made bone grafts can start being used to treat human patients. PMID:24053578

  1. Reactive Oxygen Species in Normal and Tumor Stem Cells

    PubMed Central

    Zhou, Daohong; Shao, Lijian; Spitz, Douglas R.

    2014-01-01

    Reactive oxygen species (ROS) play an important role in determining the fate of normal stem cells. Low levels of ROS are required for stem cells to maintain quiescence and self-renewal. Increases in ROS production cause stem cell proliferation/differentiation, senescence, and apoptosis in a dose-dependent manner, leading to their exhaustion. Therefore, the production of ROS in stem cells is tightly regulated to ensure that they have the ability to maintain tissue homeostasis and repair damaged tissues for the life span of an organism. In this chapter, we discuss how the production of ROS in normal stem cells is regulated by various intrinsic and extrinsic factors and how the fate of these cells is altered by the dysregulation of ROS production under various pathological conditions. In addition, the implications of the aberrant production of ROS by tumor stem cells for tumor progression and treatment are also discussed. PMID:24974178

  2. Differential Uptake Of Benzoporphyrin Derivative (BPD) By Leukemic Versus Normal Cells

    NASA Astrophysics Data System (ADS)

    David; Julia G.; Levy

    1989-06-01

    Spectrofluorometric and FACS (Fluorescence Activated Cell Sorting) analyses were employed to determine 1) the maximal fluorescence excitation and emission peaks characteristic of BPD, benzoporphyrin derivative, 2) which structural analogue of BPD, BPD-monoacid ring A (BPD-MA), BPD-monoacid ring B (BPD-MB), BPD-diacid ring A (BPD-DA) or BPD-diacid ring B (BPD-DB) fluoresced to the greatest extent in the presence of leukemic cells and 3) to determine whether substantive differences existed in the uptake of BPD by human or murine leukemic versus normal human or murine mononuclear cells. Spectrofluorometric analysis revealed that the maximal fluorescence excitation peak of BPD (BPD-diacid ring A) was situated at 420 nm with a less prominent peak at 356 nm. Fluorescence emission scans, in which 420 nm was used as the excitation wavelength, revealed a single prominent fluorescence peak at 690 nm. FACS analysis revealed that negligible differences in fluorescence existed between leukemic cells incubated with BPD-MA, BPD-MB, BPD-DA, or BPD-DB upon excitation with visible light (488nm). However, subsequent to uv excitation cells incubated with BPD-MA fluoresced to the greatest extent followed by BPD-MB, BPD-DA, and BPD-DB respectively. Pronounced differences in red fluorescence were consistently observed between leukemic cells (HL60, K562, and L1210) and normal human or murine bone marrow cells incubated with BPD-MA. These observed differences in BPD-mediated fluorescence provide the rationale for sorting leukemic from normal cells via FACS and may constitute a novel method for extra-corporeal purging of remission marrow in autologous bone marrow transplantation.

  3. Phospholipase C Signaling via the Parathyroid Hormone (PTH)/PTH-Related Peptide Receptor Is Essential for Normal Bone Responses to PTH

    PubMed Central

    Guo, Jun; Liu, Minlin; Yang, Dehong; Bouxsein, Mary L.; Thomas, Clare C.; Schipani, Ernestina; Bringhurst, F. Richard; Kronenberg, Henry M.

    2010-01-01

    We have previously shown that differentiation of hypertrophic chondrocytes is delayed in mice expressing a mutated PTH/PTHrP receptor (PTHR) (called DSEL here) that stimulates adenylyl cyclase normally but fails to activate phospholipase C (PLC). To better understand the role of PLC signaling via the PTHR in skeletal and mineral homeostasis, we examined these mice fed a normal or calcium-deficient diet. On a standard diet, DSEL mice displayed a modest decrease in bone mass. Remarkably, when fed a low-calcium diet or infused with PTH, DSEL mice exhibited strikingly curtailed peritrabecular stromal cell responses and attenuated new bone formation when compared with Wt mice. Attenuated in vitro colony formation was also observed in bone marrow cells derived from DSEL mice fed a low-calcium diet. Furthermore, PTH stimulated proliferation and increased mRNAs encoding cyclin D1 in primary osteoblasts derived from Wt but not from DSEL mice. Our data indicate that PLC signaling through the PTHR is required for skeletal homeostasis. PMID:20501677

  4. Vitamin D receptor alleles and bone mineral density in a normal premenopausal Brazilian female population.

    PubMed

    Lazaretti-Castro, M; Duarte-de-Oliveira, M A; Russo, E M; Vieira, J G

    1997-08-01

    Studies on the association between vitamin D receptor (VDR) polymorphism and bone mineral density (BMD) in different populations have produced conflicting results probably due to ethnic differences in the populations studied. The Brazilian population is characterized by a very broad genetic background and a high degree of miscegenation. Of an initial group of 164, we studied 127 women from the city of São Paulo, aged 20 to 47 years (median, 31 years), with normal menses, a normal diet and no history of diseases or use of any medication that could alter BMD. VDR genotype was assessed by PCR amplification followed by BsmI digestion of DNA isolated from peripheral leukocytes. BMD was measured using dual energy X-ray absorptiometry (Lunar DPX) at the lumbar site (L2-L4) and femoral neck. Most of the women (77.6%) were considered to be of predominantly European ancestry (20.6% of them reported also native American ancestry), 12.8% were of African-Brazilian ancestry and 9.6% of Asian ancestry, 41.0% (52) were classified as bb, 48.8% (62) as Bb and 10.2% (13) as BB. The BB, Bb and bb groups did not differ in age, height, weight, body mass index or age at menarche. Lumbar spine BMD was significantly higher in the bb group (1.22 +/- 0.16 g/cm2) than in the BB group (1.08 +/- 0.14; P < 0.05), and the Bb group presented an intermediate value (1.17 +/- 0.15). Femoral neck BMD was higher in the bb group (0.99 +/- 0.11 g/cm2) compared to Bb (0.93 +/- 0.12) and BB (0.90 +/- 0.09) (P < 0.05). These data indicate that there is a significant correlation between the VDR BsmI genotype and BMD in healthy Brazilian premenopausal females. PMID:9361720

  5. Contribution of Bone Marrow Hematopoietic Stem Cells to Adult Mouse Inner Ear: Mesenchymal Cells and Fibrocytes

    PubMed Central

    Lang, Hainan; Ebihara, Yasuhiro; Schmiedt, Richard A.; Minamiguchi, Hitoshi; Zhou, Daohong; Smythe, Nancy; Liu, Liya; Ogawa, Makio; Schulte, Bradley A.

    2008-01-01

    Bone marrow (BM)-derived stem cells have shown plasticity with a capacity to differentiate into a variety of specialized cells. To test the hypothesis that some cells in the inner ear are derived from BM, we transplanted either isolated whole BM cells or clonally expanded hematopoietic stem cells (HSCs) prepared from transgenic mice expressing enhanced green fluorescent protein (EGFP) into irradiated adult mice. Isolated GFP+ BM cells also were transplanted into conditioned newborn mice derived from pregnant mice injected with busulfan (which ablates HSCs in the newborns). Quantification of GFP+ cells was performed 3-20 months after transplant. GFP+ cells were found in the inner ear with all transplant conditions. They were most abundant within the spiral ligament but were also found in other locations normally occupied by fibrocytes and mesenchymal cells. No GFP+ neurons or hair cells were observed in inner ears of transplanted mice. Dual immunofluorescence assays demonstrated that most of the GFP+ cells were negative for CD45, a macrophage and hematopoietic cell marker. A portion of the GFP+ cells in the spiral ligament expressed immunoreactive Na, K-ATPase or the Na-K-Cl transporter (NKCC), proteins used as markers for specialized ion transport fibrocytes. Phenotypic studies indicated that the GFP+ cells did not arise from fusion of donor cells with endogenous cells. This study provides the first evidence for the origin of inner ear cells from BM and more specifically from HSCs. The results suggest that mesenchymal cells, including fibrocytes in the adult inner ear, may be derived continuously from HSCs. PMID:16538683

  6. Bone Matrix Osteonectin Limits Prostate Cancer Cell Growth and Survival

    PubMed Central

    Kapinas, Kristina; Lowther, Katie M.; Kessler, Catherine B.; Tilbury, Karissa; Lieberman, Jay R.; Tirnauer, Jennifer S.; Campagnola, Paul; Delany, Anne M.

    2012-01-01

    There is considerable interest in understanding prostate cancer metastasis to bone and the interaction of these cells with the bone microenvironment. Osteonectin/SPARC/BM-40 is a collagen binding matricellular protein that is enriched in bone. Its expression is increased in prostate cancer metastases, and it stimulates the migration of prostate carcinoma cells. However, the presence of osteonectin in cancer cells and the stroma may limit prostate tumor development and progression. To determine how bone matrix osteonectin affects the behavior of prostate cancer cells, we modeled prostate cancer cell-bone interactions using the human prostate cancer cell line PC-3, and mineralized matrices synthesized by wild type and osteonectin-null osteoblasts in vitro. We developed this in vitro system because the structural complexity of collagen matrices in vivo is not mimicked by reconstituted collagen scaffolds or by more complex substrates, like basement membrane extracts. Second harmonic generation imaging demonstrated that the wild type matrices had thick collagen fibers organized into longitudinal bundles, whereas osteonectin-null matrices had thinner fibers in random networks. Importantly, a mouse model of prostate cancer metastases to bone showed a collagen fiber phenotype similar to the wild type matrix synthesized in vitro. When PC-3 cells were grown on the wild type matrices, they displayed decreased cell proliferation, increased cell spreading, and decreased resistance to radiation-induced cell death, compared to cells grown on osteonectin-null matrix. Our data support the idea that osteonectin can suppress prostate cancer pathogenesis, expanding this concept to the microenvironment of skeletal metastases. PMID:22525512

  7. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes.

    PubMed

    Urbán, Veronika S; Kiss, Judit; Kovács, János; Gócza, Elen; Vas, Virág; Monostori, Eva; Uher, Ferenc

    2008-01-01

    Several recent studies have suggested that the adult bone marrow harbors cells that can influence beta-cell regeneration in diabetic animals. Other reports, however, have contradicted these findings. To address this issue, we used an animal model of type 1 diabetes in which the disease was induced with streptozotocin in mice. Freshly prepared sex-mismatched bone marrow cells (BMCs) and syngeneic or allogeneic mesenchymal stem cells (MSCs) were concomitantly administrated into sublethally irradiated diabetic mice. Blood glucose and serum insulin concentrations rapidly returned to normal levels, accompanied by efficient tissue regeneration after a single injection of a mixture of 10(6) BMCs per 10(5) MSCs. Neither BMC nor MSC transplantation was effective alone. Successful treatment of diabetic animals was not due to the reconstitution of the damaged islet cells from the transplant, since no donor-derived beta-cells were found in the recovered animals, indicating a graft-initiated endogenous repair process. Moreover, MSC injection caused the disappearance of beta-cell-specific T lymphocytes from diabetic pancreas. Therefore, we suggest that two aspects of this successful treatment regimen operate in parallel and synergistically in our model. First, BMCs and MSCs induce the regeneration of recipient-derived pancreatic insulin-secreting cells. Second, MSCs inhibit T-cell-mediated immune responses against newly formed beta-cells, which, in turn, are able to survive in this altered immunological milieu. Thus, the application of this therapy in human patients suffering from diabetes and/or other tissue destructive autoimmune diseases may be feasible. PMID:17932424

  8. Low Bone Density

    MedlinePlus

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  9. In vitro growth of hematopoietic progenitors and stromal bone marrow cells from patients with multiple myeloma.

    PubMed

    Martínez-Jaramillo, Guadalupe; Vela-Ojeda, Jorge; Flores-Guzmán, Patricia; Mayani, Hector

    2011-02-01

    In the present study we have determined the content of hematopoietic and stromal progenitors in multiple myeloma (MM) bone marrow, and assessed their in vitro growth. Marrow cells were obtained from 17 MM patients at the time of diagnosis, and from 6 hematologically normal subjects. When mononuclear cells (MNC) from MM marrow were cultured, reduced numbers of hematopoietic progenitors were detected and their growth in long-term cultures was deficient, as compared to cultures of normal cells. When cell fractions enriched for CD34(+) Lin(-) cells were obtained, the levels of hematopoietic progenitors from MM marrow were within the normal range, and so was their growth kinetics in liquid suspension cultures. The levels of fibroblast progenitors in MM were not statistically different from those in normal marrow; however, their proliferation potential was significantly reduced. Conditioned media from MM-derived MNC and stroma cells contained factors that inhibited normal progenitor cell growth. Our observations suggest that hematopoietic progenitors in MM marrow are intrinsically normal; however, their growth in LTMC may be hampered by the presence of abnormal accessory and stroma cells. These results suggest that besides its role in the generation of osteolytic lesions and the expansion of the myeloma clone, the marrow microenvironment in MM may have a negative effect on hematopoiesis. PMID:20621354

  10. Tumor-host cell interactions in the bone disease of myeloma

    PubMed Central

    Fowler, Jessica A.; Edwards, Claire M.; Croucher, Peter I.

    2010-01-01

    Multiple myeloma is a hematological malignancy that is associated with the development of a destructive osteolytic bone disease, which is a major cause of morbidity for patients with myeloma. Interactions between myeloma cells and cells of the bone marrow microenvironment promote both tumor growth and survival and bone destruction, and the osteolytic bone disease is now recognized as a contributing component to tumor progression. Since myeloma bone disease is associated with both an increase in osteoclastic bone resorption and a suppression of osteoblastic bone formation, research to date has largely focused upon the role of the osteoclast and osteoblast. However, it is now clear that other cell types within the bone marrow, including cells of the immune system, mesenchymal stem cells and bone marrow stromal cells, can contribute to the development of myeloma bone disease. This review discusses the cellular mechanisms and potential therapeutic targets that have been implicated in myeloma bone disease. PMID:20615487

  11. Impaired function of bone marrow stromal cells in systemic mastocytosis.

    PubMed

    Nemeth, Krisztian; Wilson, Todd M; Ren, Jiaqiang J; Sabatino, Marianna; Stroncek, David M; Krepuska, Miklos; Bai, Yun; Robey, Pamela G; Metcalfe, Dean D; Mezey, Eva

    2015-07-01

    Patients with systemic mastocytosis (SM) have a wide variety of problems, including skeletal abnormalities. The disease results from a mutation of the stem cell receptor (c-kit) in mast cells and we wondered if the function of bone marrow stromal cells (BMSCs; also known as MSCs or mesenchymal stem cells) might be affected by the invasion of bone marrow by mutant mast cells. As expected, BMSCs from SM patients do not have a mutation in c-kit, but they proliferate poorly. In addition, while osteogenic differentiation of the BMSCs seems to be deficient, their adipogenic potential appears to be increased. Since the hematopoietic supportive abilities of BMSCs are also important, we also studied the engraftment in NSG mice of human CD34(+) hematopoietic progenitors, after being co-cultured with BMSCs of healthy volunteers vs. BMSCs derived from patients with SM. BMSCs derived from the bone marrow of patients with SM could not support hematopoiesis to the extent that healthy BMSCs do. Finally, we performed an expression analysis and found significant differences between healthy and SM derived BMSCs in the expression of genes with a variety of functions, including the WNT signaling, ossification, and bone remodeling. We suggest that some of the symptoms associated with SM might be driven by epigenetic changes in BMSCs caused by dysfunctional mast cells in the bone marrow of the patients.

  12. Deletion of FGFR3 in Osteoclast Lineage Cells Results in Increased Bone Mass in Mice by Inhibiting Osteoclastic Bone Resorption.

    PubMed

    Su, Nan; Li, Xiaogang; Tang, Yubin; Yang, Jing; Wen, Xuan; Guo, Jingyuan; Tang, Junzhou; Du, Xiaolan; Chen, Lin

    2016-09-01

    Fibroblast growth factor receptor 3 (FGFR3) participates in bone remodeling. Both Fgfr3 global knockout and activated mice showed decreased bone mass with increased osteoclast formation or bone resorption activity. To clarify the direct effect of FGFR3 on osteoclasts, we specifically deleted Fgfr3 in osteoclast lineage cells. Adult mice with Fgfr3 deficiency in osteoclast lineage cells (mutant [MUT]) showed increased bone mass. In a drilled-hole defect model, the bone remodeling of the holed area in cortical bone was also impaired with delayed resorption of residual woven bone in MUT mice. In vitro assay demonstrated that there was no significant difference between the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts derived from wild-type and Fgfr3-deficient bone marrow monocytes, suggesting that FGFR3 had no remarkable effect on osteoclast formation. The bone resorption activity of Fgfr3-deficient osteoclasts was markedly decreased accompanying with downregulated expressions of Trap, Ctsk, and Mmp 9. The upregulated activity of osteoclastic bone resorption by FGF2 in vitro was also impaired in Fgfr3-deficient osteoclasts, indicating that FGFR3 may participate in the regulation of bone resorption activity of osteoclasts by FGF2. Reduced adhesion but not migration in osteoclasts with Fgfr3 deficiency may be responsible for the impaired bone resorption activity. Our study for the first time genetically shows the direct positive regulation of FGFR3 on osteoclastic bone resorption. © 2016 American Society for Bone and Mineral Research.

  13. Deletion of FGFR3 in Osteoclast Lineage Cells Results in Increased Bone Mass in Mice by Inhibiting Osteoclastic Bone Resorption.

    PubMed

    Su, Nan; Li, Xiaogang; Tang, Yubin; Yang, Jing; Wen, Xuan; Guo, Jingyuan; Tang, Junzhou; Du, Xiaolan; Chen, Lin

    2016-09-01

    Fibroblast growth factor receptor 3 (FGFR3) participates in bone remodeling. Both Fgfr3 global knockout and activated mice showed decreased bone mass with increased osteoclast formation or bone resorption activity. To clarify the direct effect of FGFR3 on osteoclasts, we specifically deleted Fgfr3 in osteoclast lineage cells. Adult mice with Fgfr3 deficiency in osteoclast lineage cells (mutant [MUT]) showed increased bone mass. In a drilled-hole defect model, the bone remodeling of the holed area in cortical bone was also impaired with delayed resorption of residual woven bone in MUT mice. In vitro assay demonstrated that there was no significant difference between the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts derived from wild-type and Fgfr3-deficient bone marrow monocytes, suggesting that FGFR3 had no remarkable effect on osteoclast formation. The bone resorption activity of Fgfr3-deficient osteoclasts was markedly decreased accompanying with downregulated expressions of Trap, Ctsk, and Mmp 9. The upregulated activity of osteoclastic bone resorption by FGF2 in vitro was also impaired in Fgfr3-deficient osteoclasts, indicating that FGFR3 may participate in the regulation of bone resorption activity of osteoclasts by FGF2. Reduced adhesion but not migration in osteoclasts with Fgfr3 deficiency may be responsible for the impaired bone resorption activity. Our study for the first time genetically shows the direct positive regulation of FGFR3 on osteoclastic bone resorption. © 2016 American Society for Bone and Mineral Research. PMID:26990430

  14. Sensitivity of bone cell populations to weightlessness and simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Roberts, W. E.; Morey-Holton, E. R.; Gonsalves, M. R.

    1984-01-01

    A rat suspension model for simulating certain aspects of weightlessness is discussed. Perturbations in physiological systems induced by this head down suspension model are verified by flight data. Findings of a suppression of osteoblast differentiation help explain the inhibition of bone formation inflight and during Earth-bound simulations. Since the anatomical site for these studies was in the maxilla, which is gravity loaded but non weightbearing in ground-based simulations, the similarity of bone cell kinetic changes, both inflight and in the ground-based model, suggest that fluid shifts rather than unloading may play an important role in bone alterations, at least at this sampling site.

  15. Epigenetically Modified Bone Marrow Stromal Cells in Silk Scaffolds Promote Craniofacial Bone Repair and Wound Healing.

    PubMed

    Han, Qianqian; Yang, Pishan; Wu, Yuwei; Meng, Shu; Sui, Lei; Zhang, Lan; Yu, Liming; Tang, Yin; Jiang, Hua; Xuan, Dongying; Kaplan, David L; Kim, Sung Hoon; Tu, Qisheng; Chen, Jake

    2015-08-01

    Epigenetic regulation of gene expression is a central mechanism that governs cell stemness, determination, commitment, and differentiation. It has been recently found that PHF8, a major H4K20/H3K9 demethylase, plays a critical role in craniofacial and bone development. In this study, we hypothesize that PHF8 promotes osteoblastogenesis by epigenetically regulating the expression of a nuclear matrix protein, special AT-rich sequence-binding protein 2 (SATB2) that plays pivotal roles in skeletal patterning and osteoblast differentiation. Our results showed that expression levels of PHF8 and SATB2 in preosteoblasts and bone marrow stromal cells (BMSCs) increased simultaneously during osteogenic induction. Overexpressing PHF8 in these cells upregulated the expression of SATB2, Runx2, osterix, and bone matrix proteins. Conversely, knockdown of PHF8 reduced the expression of these genes. Furthermore, ChIP assays confirmed that PHF8 specifically bound to the transcription start site (TSS) of the SATB2 promoter, and the expression of H3K9me1 at the TSS region of SATB2 decreased in PHF8 overexpressed group. Implantation of the BMSCs overexpressing PHF8 with silk protein scaffolds promoted bone regeneration in critical-sized defects in mouse calvaria. Taken together, our results demonstrated that PHF8 epigenetically modulates SATB2 activity, triggering BMSCs osteogenic differentiation and facilitating bone formation and regeneration in biodegradable silk scaffolds.

  16. Comparative Study of Bone Marrow and Blood B Cells in Infantile and Acquired Agammaglobulinemia

    PubMed Central

    Abdou, Nabih I.; Casella, Salvatore R.; Abdou, Nancy L.; Abrahamsohn, Ises A.

    1973-01-01

    The status of immunoglobulin (Ig) receptors of the bone marrow dependent (B) cells present in either the bone marrow (BM) or peripheral blood (PB) of three patients with infantile agammaglobulinemia (I-AGG), or seven patients with acquired agammaglobulinemia (A-AGG) is compared with those of 12 controls. Quantitative and qualitative changes of the different classes of Ig receptors on B cells were evaluated by their capacity to bind [125I]anti-Ig, to be stained with fluorescinated anti-Ig and their in vitro proliferative capacity upon incubation with the anti-Ig. Patients with I-AGG lacked B cells in both the BM and PB. Whereas BM cells of patients with A-AGG carried receptors similar to control cells, their blood B cells had fewer IgM, IgG, and IgA cells which failed to proliferate in vitro in the presence of the anti-Ig. An anti-IgM of the IgG class was detected in the sera of patients with A-AGG but not in sera of I-AGG. The isolated anti-IgM agglutinated human red cells coated with IgM. The anti-IgM partially blocked the binding of fluorescinated or radiolabeled anti-IgM to IgM peripheral blood lymphocytes of normal controls. The eluted anti-IgM in presence of complement was partially cytotoxic to normal cells. It is concluded that I-AGG-B cell defect is due to failure of B cell development in the bone marrow compartment whereas the peripheral exclusion of IgM cells by an anti-IgM with the subsequent failure of differentiation of both IgG and IgA cells could be an important mechanism in A-AGG-B cell defect. PMID:4580388

  17. Topographical variations in articular cartilage and subchondral bone of the normal rat knee are age-related.

    PubMed

    Hamann, Nina; Brüggemann, Gert-Peter; Niehoff, Anja

    2014-09-01

    In osteoarthritis animal models the rat knee is one of the most frequently investigated joint. However, it is unknown whether topographical variations in articular cartilage and subchondral bone of the normal rat knee exist and how they are linked or influenced by growth and maturation. Detailed knowledge is needed in order to allow interpretation and facilitate comparability of published osteoarthritis studies. For the first time, the present study maps topographical variations in cartilage thickness, cartilage compressive properties and subchondral bone microarchitecture between the medial and lateral tibial compartment of normal growing rat knees (7 vs. 13 weeks). Thickness and compressive properties (aggregate modulus) of cartilage were determined and the subchondral bone was analyzed by micro-computed tomography. We found that articular cartilage thickness is initially homogenous in both compartments, but then differentiates during growth and maturation resulting in greater cartilage thickness in the medial compartment in the 13-week-old animals. Cartilage compressive properties did not vary between the two sites independently of age. In both age-groups, subchondral plate thickness as well as trabecular bone volume ratio and trabecular thickness were greater in the medial compartment. While a high porosity of subchondral bone plate with a high topographical variation (medial/lateral) could be observed in the 7-week-old animals, the porosity was reduced and was accompanied by a reversion in topographical variation when reaching maturity. Our findings highlight that there is a considerable topographical variation in articular cartilage and subchondral bone within the normal rat knee in relation to the developmental status.

  18. Comparisons of mouse mesenchymal stem cells in primary adherent culture of compact bone fragments and whole bone marrow.

    PubMed

    Cai, Yiting; Liu, Tianshu; Fang, Fang; Xiong, Chengliang; Shen, Shiliang

    2015-01-01

    The purification of mouse bone marrow mesenchymal stem cells (BMSCs) by using the standard method of whole bone marrow adherence to plastic still remains ineffective. An increasing number of studies have indicated compact bone as an alternative source of BMSCs. We isolated BMSCs from cultured compact bone fragments and investigated the proliferative capacity, surface immunophenotypes, and osteogenic and adipogenic differentiations of the cells after the first trypsinization. The fragment culture was based on the fact that BMSCs were assembled in compact bones. Thus, the procedure included flushing bone marrow out of bone cavity and culturing the fragments without any collagenase digestion. The cell yield from cultured fragments was slightly less than that from cultured bone marrow using the same bone quantity. However, the trypsinized cells from cultured fragments exhibited significantly higher proliferation and were accompanied with more CD90 and CD44 expressions and less CD45 expression. The osteogenic and adipogenic differentiation capacity of cells from cultured fragments were better than those of cells from bone marrow. The directly adherent culture of compact bone is suitable for mouse BMSC isolation, and more BMSCs with potentially improved proliferation capacity can be obtained in the primary culture.

  19. Role of plasmacytoid dendritic cells in breast cancer bone dissemination

    PubMed Central

    Sawant, Anandi; Ponnazhagan, Selvarangan

    2013-01-01

    Elevated levels of plasmacytoid dendritic cells (pDC) have been observed as breast cancer disseminates to the bone. The selective depletion of pDC in mice led to a total abrogation of bone metastasis as well as to an increase in TH1 antitumor response, suggesting that pDC may be considered as a potential therapeutic target for metastatic breast cancer. PMID:23526329

  20. Maxillofacial-derived stem cells regenerate critical mandibular bone defect.

    PubMed

    Steinhardt, Yair; Aslan, Hadi; Regev, Eran; Zilberman, Yoram; Kallai, Ilan; Gazit, Dan; Gazit, Zulma

    2008-11-01

    Stem cell-based bone tissue regeneration in the maxillofacial complex is a clinical necessity. Genetic engineering of mesenchymal stem cells (MSCs) to follow specific differentiation pathways may enhance the ability of these cells to regenerate and increase their clinical relevance. MSCs isolated from maxillofacial bone marrow (BM) are good candidates for tissue regeneration at sites of damage to the maxillofacial complex. In this study, we hypothesized that MSCs isolated from the maxillofacial complex can be engineered to overexpress the bone morphogenetic protein-2 gene and induce bone tissue regeneration in vivo. To demonstrate that the cells isolated from the maxillofacial complex were indeed MSCs, we performed a flow cytometry analysis, which revealed a high expression of mesenchyme-related markers and an absence of non-mesenchyme-related markers. In vitro, the MSCs were able to differentiate into osteogenic, chondrogenic, and adipogenic lineages. Gene delivery of the osteogenic gene BMP2 via an adenoviral vector revealed high expression levels of BMP2 protein that induced osteogenic differentiation of these cells in vitro and induced bone formation in an ectopic site in vivo. In addition, implantation of genetically engineered maxillofacial BM-derived MSCs into a mandibular defect led to regeneration of tissue at the site of the defect; this was confirmed by performing micro-computed tomography analysis. Histological analysis of the mandibles revealed osteogenic differentiation of implanted cells as well as bone tissue regeneration. We conclude that maxillofacial BM-derived MSCs can be genetically engineered to induce bone tissue regeneration in the maxillofacial complex and that this finding may be clinically relevant. PMID:18636943

  1. Myeloid-derived suppressor cells contribute to bone erosion in collagen-induced arthritis by differentiating to osteoclasts.

    PubMed

    Zhang, Hui; Huang, Yuefang; Wang, Shuang; Fu, Rong; Guo, Chaohuan; Wang, Hongyue; Zhao, Jijun; Gaskin, Felicia; Chen, Jingxian; Yang, Niansheng; Fu, Shu Man

    2015-12-01

    Bone erosion is a sign of severe rheumatoid arthritis and osteoclasts play a major role in the bone resorption. Recently, myeloid-derived suppressor cells (MDSC) has been reported to be increased in collagen-induced arthritis (CIA). The number of circulating MDSCs is shown to correlate with rheumatoid arthritis. These findings suggest that MDSCs are precursor cells involved in bone erosion. In this study, MDSCs isolated from mice with CIA stimulated with M-CSF and RANKL in vitro expressed osteoclast markers and acquired osteoclast bone resorption function. MDSCs sorted from CIA mice were transferred into the tibia of normal DBA/1J mice and bones were subjected to histological and Micro CT analyses. The transferred CIA-MDSCs were shown to differentiate into TRAP(+) osteoclasts that were capable of bone resorption in vivo. MDSCs isolated from normal mice had more potent suppressor activity and much less capability to differentiate to osteoclast. Additional experiments showed that NF-κB inhibitor Bay 11-7082 or IκB inhibitor peptide blocked the differentiation of MDSCs to osteoclast and bone resorption. IL-1Ra also blocked this differentiation. In contrast, the addition of IL-1α further enhanced osteoclast differentiation and bone resorption. These results suggest that MDSCs are a source of osteoclast precursors and inflammatory cytokines such as IL-1, contributing significantly to erosive changes seen in rheumatoid arthritis and related disorders. PMID:26318644

  2. Myeloid-derived suppressor cells contribute to bone erosion in collagen-induced arthritis by differentiating to osteoclasts.

    PubMed

    Zhang, Hui; Huang, Yuefang; Wang, Shuang; Fu, Rong; Guo, Chaohuan; Wang, Hongyue; Zhao, Jijun; Gaskin, Felicia; Chen, Jingxian; Yang, Niansheng; Fu, Shu Man

    2015-12-01

    Bone erosion is a sign of severe rheumatoid arthritis and osteoclasts play a major role in the bone resorption. Recently, myeloid-derived suppressor cells (MDSC) has been reported to be increased in collagen-induced arthritis (CIA). The number of circulating MDSCs is shown to correlate with rheumatoid arthritis. These findings suggest that MDSCs are precursor cells involved in bone erosion. In this study, MDSCs isolated from mice with CIA stimulated with M-CSF and RANKL in vitro expressed osteoclast markers and acquired osteoclast bone resorption function. MDSCs sorted from CIA mice were transferred into the tibia of normal DBA/1J mice and bones were subjected to histological and Micro CT analyses. The transferred CIA-MDSCs were shown to differentiate into TRAP(+) osteoclasts that were capable of bone resorption in vivo. MDSCs isolated from normal mice had more potent suppressor activity and much less capability to differentiate to osteoclast. Additional experiments showed that NF-κB inhibitor Bay 11-7082 or IκB inhibitor peptide blocked the differentiation of MDSCs to osteoclast and bone resorption. IL-1Ra also blocked this differentiation. In contrast, the addition of IL-1α further enhanced osteoclast differentiation and bone resorption. These results suggest that MDSCs are a source of osteoclast precursors and inflammatory cytokines such as IL-1, contributing significantly to erosive changes seen in rheumatoid arthritis and related disorders.

  3. Patterns of plasminogen activator production in cultured normal embryonic cells

    PubMed Central

    1977-01-01

    Cultured normal low-passage embryo fibroblasts, from a number of species, and two untransformed clones of a Balb/3T3 line elaborate increasing amounts of plasminogen activator (PA) as they approach confluence; the low-passage cells then lose this PA activity after reaching confluence, while the 3T3 cells retain it indefinitely. Even at their peaks, however, the PA activities of the low-passage cells remain well below those of the corresponding virally or spontaneously transformed cells. The PA increases in normal cells are probably a result of PA production rather than of adsorption of secreted PA to the cell surface, or of changes in cell-associated protease inhibitors. The elaboration of PA by normal cells is dependent upon their metabolic activity, such that the level of serum supplementation and the growth phase of the culture directly influence the level of cell-associated PA observed. In addition, there may be a component of serum which exerts a negative control on PA production and which is not an acid-labile protease inhibitor. PMID:21193

  4. Phenotype expression of human bone cells cultured on implant substrates.

    PubMed

    Locci, P; Becchetti, E; Pugliese, M; Rossi, L; Belcastro, S; Calvitti, M; Pietrarelli, G; Staffolani, N

    1997-09-01

    Bone cells derived from the human jaw were cultured on titanium, titanium coated with hydroxyapatite (THA) or with plasma spray (TPS) to study the behaviour of the cells anchored to implant substrates. Bone cells were cultured in MEM with the addition of [3H]-thymidine to evaluate cellular proliferation, and [3H]-glucosamine to evaluate GAG synthesis and accumulation in the extra-cellular matrix (ECM). Moreover, to study the degradation of GAG bone cells were cultured in the presence of NH4Cl, an amine known to inhibit lysosomal activity. Our results show that TPS is the substrate that favours both cellular proliferation and the accumulation of GAG in the ECM. PMID:9377794

  5. Stem cells in normal mammary gland and breast cancer.

    PubMed

    Luo, Jie; Yin, Xin; Ma, Tao; Lu, Jun

    2010-04-01

    The mammary gland is a structurally dynamic organ that undergoes dramatic alterations with age, menstrual cycle, and reproductive status. Mammary gland stem cells, the minor cell population within the mature organ, are thought to have multiple functions in regulating mammary gland development, tissue maintenance, major growth, and structural remodeling. In addition, accumulative evidence suggests that breast cancers are initiated and maintained by a subpopulation of tumor cells with stem cell features (called cancer stem cells). A variety of methods have been developed to identify and characterize mammary stem cells, and several signal transduction pathways have been identified to be essential for the self-renewal and differentiation of mammary gland stem cells. Understanding the origin of breast cancer stem cells, their relationship to breast cancer development, and the differences between normal and cancer stem cells may lead to novel approaches to breast cancer diagnosis, prevention, and treatment.

  6. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis—Masters of Survival and Clonality?

    PubMed Central

    Pleyer, Lisa; Valent, Peter; Greil, Richard

    2016-01-01

    Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs. PMID:27355944

  7. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality?

    PubMed

    Pleyer, Lisa; Valent, Peter; Greil, Richard

    2016-01-01

    Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the "reprogramming" of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs. PMID:27355944

  8. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.

    PubMed

    Ye, Xinhai; Yin, Xiaofan; Yang, Dawei; Tan, Jian; Liu, Guangpeng

    2012-07-01

    Tissue engineering approaches using the combination of porous ceramics and bone marrow mesenchymal stem cells (BMSCs) represent a promising bone substitute for repairing large bone defects. Nevertheless, optimal conditions for constructing tissue-engineered bone have yet to be determined. It remains unclear if transplantation of predifferentiated BMSCs is superior to undifferentiated BMSCs or freshly isolated bone marrow mononucleated cells (BMNCs) in terms of new bone formation in vivo. The aim of this study was to investigate the effect of in vitro osteogenic differentiation (β-glycerophosphate, dexamethasone, and l-ascorbic acid) of human BMSCs on the capability to form tissue-engineered bone in unloaded conditions after subcutaneous implantation in nude mice. After isolation from human bone marrow aspirates, BMNCs were divided into three parts: one part was seeded onto porous beta-tricalcium phosphate ceramics immediately and transplanted in a heterotopic nude mice model; two parts were expanded in vitro to passage 2 before cell seeding and in vivo transplantation, either under osteogenic conditions or not. Animals were sacrificed for micro-CT and histological evaluation at 4, 8, 12, 16, and 20 weeks postimplantation. The results showed that BMSCs differentiated into osteo-progenitor cells after induction, as evidenced by the altered cell morphology and elevated alkaline phosphatase activity and calcium deposition, but their clonogenicity, proliferating rate, and seeding efficacy were not significantly affected by osteogenic differentiation, compared with undifferentiated cells. Extensive new bone formed in the pores of all the scaffolds seeded with predifferentiated BMSCs at 4 weeks after implantation, and maintained for 20 weeks. On the contrary, scaffolds containing undifferentiated BMSCs revealed limited bone formation only in 1 out of 6 cases at 8 weeks, and maintained for 4 weeks. For scaffolds with BMNCs, woven bone was observed sporadically only in one

  9. Immunolocalization of BMP-6, a novel TGF-beta-related cytokine, in normal and atherosclerotic smooth muscle cells.

    PubMed

    Schluesener, H J; Meyermann, R

    1995-03-01

    We have analyzed expression of a novel transforming growth factor type beta (TGF-beta)-related cytokine, bone morphogenetic protein-6 (BMP-6) in normal and atherosclerotic brain arteries. BMP-6 immunoreactivity was detected in smooth muscle cells of normal cerebral blood vessels. It is also expressed by smooth muscle cells of intimal plaques in atherosclerotically changed blood vessels. The BMPs regulate tissue modeling and remodeling and aberrant expression of BMPs might contribute to smooth muscle cell migration, proliferation, tissue reorganization and macrophage attraction, which are known mechanisms of atherosclerotic plaque formation. PMID:7605353

  10. STROMAS: A Series of Microgravity Experiments on Bone Forming Cells

    NASA Astrophysics Data System (ADS)

    Yi, Liu; Massimilano, Monticone; Federico, Tortelli; Matalija, Pujic; Alessandra, Ruggiu; Ranieri, Cancedda

    2008-06-01

    We developed a novel 3D in vitro culture system by seeding cells onto porous bioceramics, mimicking the physiological niche of bone turn-over and enhancing cellular differentiation respective to conventional 2D Petri Dish cultures. Having overcome several technological difficulties, in a series of STROMA spaceflight experiments 3D cultures of bone marrow derived mesenchymal stem cells (BMSC) and co-cultures of osteoblasts and osteoclast precursors were maintained and conserved in automated bioreactors on orbit. Genechip analysis revealed an inhibition of cell proliferation in microgravity. Unexpectedly, genes related to various processes of neural development were significantly upregulated in microgravity, raising the question on the lineage restriction in BMSC.

  11. Therapeutic effect of bone marrow mesenchymal stem cells on cold stress induced changes in the hippocampus of rats.

    PubMed

    Kumar, Saravana Kumar Sampath; Perumal, Saraswathi; Rajagopalan, Vijayaraghavan

    2014-10-01

    The present study aims to evaluate the effect of bone marrow mesenchymal stem cells on cold stress induced neuronal changes in hippocampal CA1 region of Wistar rats. Bone marrow mesenchymal stem cells were isolated from a 6-week-old Wistar rat. Bone marrow from adult femora and tibia was collected and mesenchymal stem cells were cultured in minimal essential medium containing 10% heat-inactivated fetal bovine serum and were sub-cultured. Passage 3 cells were analyzed by flow cytometry for positive expression of CD44 and CD90 and negative expression of CD45. Once CD44 and CD90 positive expression was achieved, the cells were cultured again to 90% confluence for later experiments. Twenty-four rats aged 8 weeks old were randomly and evenly divided into normal control, cold water swim stress (cold stress), cold stress + PBS (intravenous infusion), and cold stress + bone marrow mesenchymal stem cells (1 × 10(6); intravenous infusion) groups. The total period of study was 60 days which included 1 month stress period followed by 1 month treatment. Behavioral functional test was performed during the entire study period. After treatment, rats were sacrificed for histological studies. Treatment with bone marrow mesenchymal stem cells significantly increased the number of neuronal cells in hippocampal CA1 region. Adult bone marrow mesenchymal stem cells injected by intravenous administration show potential therapeutic effects in cognitive decline associated with stress-related lesions.

  12. Purification of Bone Marrow Clonal Cells from Patients with Myelodysplastic Syndrome via IGF-IR

    PubMed Central

    He, Qi; Chang, Chun-Kang; Xu, Feng; Zhang, Qing-Xia; Shi, Wen-Hui; Li, Xiao

    2015-01-01

    Malignant clonal cells purification can greatly benefit basic and clinical studies in myelodysplastic syndrome (MDS). In this study, we investigated the potential of using type 1 insulin-like growth factor receptor (IGF-IR) as a marker for purification of malignant bone marrow clonal cells from patients with MDS. The average percentage of IGF-IR expression in CD34+ bone marrow cells among 15 normal controls was 4.5%, 70% of which also express the erythroid lineage marker CD235a. This indicates that IGF-IR mainly express in erythropoiesis. The expression of IGF-IR in CD34+ cells of 55 MDS patients was significantly higher than that of cells from the normal controls (54.0 vs. 4.5%). Based on the pattern of IGF-IR expression in MDS patients and normal controls, sorting of IGF-IR-positive and removal of CD235a-positive erythroid lineage cells with combination of FISH detection were performed on MDS samples with chromosomal abnormalities. The percentage of malignant clonal cells significantly increased after sorting. The enrichment effect was more significant in clonal cells with a previous percentage lower than 50%. This enrichment effect was present in samples from patients with +8, 5q-/-5, 20q-/-20 or 7q-/-7 chromosomal abnormalities. These data suggest that IGF-IR can be used as a marker for MDS bone marrow clonal cells and using flow cytometry for positive IGF-IR sorting may effectively purify MDS clonal cells. PMID:26469401

  13. Preparing normal tissue cells for space flight experiments.

    PubMed

    Koch, Claudia; Kohn, Florian P M; Bauer, Johann

    2016-01-01

    Deterioration of health is a problem in modern space flight business. In order to develop countermeasures, research has been done on human bodies and also on single cells. Relevant experiments on human cells in vitro are feasible when microgravity is simulated by devices such as the Random Positioning Machine or generated for a short time during parabolic flights. However, they become difficult in regard to performance and interpretation when long-term experiments are designed that need a prolonged stay on the International Space Station (ISS). One huge problem is the transport of living cells from a laboratory on Earth to the ISS. For this reason, mainly rapidly growing, rather robust human cells such as cancer cells, embryonic cells, or progenitor cells have been investigated on the ISS up to now. Moreover, better knowledge on the behavior of normal mature cells, which mimic the in vivo situation, is strongly desirable. One solution to the problem could be the use of redifferentiable cells, which grow rapidly and behave like cancer cells in plain medium, but are reprogrammed to normal cells when substances like retinoic acid are added. A list of cells capable of redifferentiation is provided, together with names of suitable drugs, in this review.

  14. Reducing bone cancer cell functions using selenium nanocomposites.

    PubMed

    Stolzoff, Michelle; Webster, Thomas J

    2016-02-01

    Cancer recurrence at the site of tumor resection remains a major threat to patient survival despite modern cancer therapeutic advances. Osteosarcoma, in particular, is a very aggressive primary bone cancer that commonly recurs after surgical resection, radiation, and chemotherapeutic treatment. The objective of the present in vitro study was to develop a material that could decrease bone cancer cell recurrence while promoting healthy bone cell functions. Selenium is a natural part of our diet which has shown promise for reducing cancer cell functions, inhibiting bacteria, and promoting healthy cells functions, yet, it has not been widely explored for osteosarcoma applications. For this purpose, due to their increased surface area, selenium nanoparticles (SeNP) were precipitated on a very common orthopedic tissue engineering material, poly-l-lactic acid (or PLLA). Selenium-coated PLLA materials were shown to selectively decrease long-term osteosarcoma cell density while promoting healthy, noncancerous, osteoblast functions (for example, up to two times more alkaline phosphatase activity on selenium coated compared to osteoblasts grown on typical tissue culture plates), suggesting they should be further studied for replacing tumorous bone tissue with healthy bone tissue. Importantly, results of this study were achieved without the use of chemotherapeutics or pharmaceutical agents, which have negative side effects. PMID:26454004

  15. Interactions between MSCs and Immune Cells: Implications for Bone Healing

    PubMed Central

    Kovach, Tracy K.; Dighe, Abhijit S.; Lobo, Peter I.; Cui, Quanjun

    2015-01-01

    It is estimated that, of the 7.9 million fractures sustained in the United States each year, 5% to 20% result in delayed or impaired healing requiring therapeutic intervention. Following fracture injury, there is an initial inflammatory response that plays a crucial role in bone healing; however, prolonged inflammation is inhibitory for fracture repair. The precise spatial and temporal impact of immune cells and their cytokines on fracture healing remains obscure. Some cytokines are reported to be proosteogenic while others inhibit bone healing. Cell-based therapy utilizing mesenchymal stromal cells (MSCs) is an attractive option for augmenting the fracture repair process. Osteoprogenitor MSCs not only differentiate into bone, but they also exert modulatory effects on immune cells via a variety of mechanisms. In this paper, we review the current literature on both in vitro and in vivo studies on the role of the immune system in fracture repair, the use of MSCs in the enhancement of fracture healing, and interactions between MSCs and immune cells. Insight into this paradigm can provide valuable clues in identifying cellular and noncellular targets that can potentially be modulated to enhance both natural bone healing and bone repair augmented by the exogenous addition of MSCs. PMID:26000315

  16. Reducing bone cancer cell functions using selenium nanocomposites.

    PubMed

    Stolzoff, Michelle; Webster, Thomas J

    2016-02-01

    Cancer recurrence at the site of tumor resection remains a major threat to patient survival despite modern cancer therapeutic advances. Osteosarcoma, in particular, is a very aggressive primary bone cancer that commonly recurs after surgical resection, radiation, and chemotherapeutic treatment. The objective of the present in vitro study was to develop a material that could decrease bone cancer cell recurrence while promoting healthy bone cell functions. Selenium is a natural part of our diet which has shown promise for reducing cancer cell functions, inhibiting bacteria, and promoting healthy cells functions, yet, it has not been widely explored for osteosarcoma applications. For this purpose, due to their increased surface area, selenium nanoparticles (SeNP) were precipitated on a very common orthopedic tissue engineering material, poly-l-lactic acid (or PLLA). Selenium-coated PLLA materials were shown to selectively decrease long-term osteosarcoma cell density while promoting healthy, noncancerous, osteoblast functions (for example, up to two times more alkaline phosphatase activity on selenium coated compared to osteoblasts grown on typical tissue culture plates), suggesting they should be further studied for replacing tumorous bone tissue with healthy bone tissue. Importantly, results of this study were achieved without the use of chemotherapeutics or pharmaceutical agents, which have negative side effects.

  17. High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6

    PubMed Central

    Chen, Guang-Liang; Luo, Yubin; Eriksson, Daniel; Meng, Xianyi; Qian, Cheng; Bäuerle, Tobias; Chen, Xiao-Xiang; Schett, Georg; Bozec, Aline

    2016-01-01

    The impact of metabolic stress induced by obesity on the bone marrow melanoma niche is largely unknown. Here we employed diet induced obese mice model, where mice received high-fat (HFD) or normal diet (ND) for 6 weeks before challenge with B16F10 melanoma cells. Tumor size, bone loss and osteoclasts numbers were assessed histologically in the tibial bones. For defining the molecular pathway, osteopontin knock-out mice, interleukin 6 neutralizing antibody or Janus kinase 2 inhibition were carried out in the same model. Mechanistic studies such as adipocyte-melanoma co-cultures for defining adipocyte induced changes of tumor cell proliferation and expression profiles were also performed. As results, HFD enhanced melanoma burden in bone by increasing tumor area and osteoclast numbers. This process was associated with higher numbers of bone marrow adipocytes expressing IL-6 in direct vicinity to tumor cells. Inhibition of IL-6 or of downstream JAK2 blocked HFD-induced tumor progression. Furthermore, the phenotypic changes of melanoma cells triggered macrophage and osteoclast accumulation accompanied by increased osteopontin expression. Osteopontin triggered osteoclastogenesis and also exerted a positive feedback loop to tumor cells, which was abrogated in its absence. Metabolic stress by HFD promotes melanoma growth in the bone marrow by an increase in bone marrow adipocytes and IL-6-JAK2-osteopontin mediated activation of tumor cells and osteoclast differentiation. PMID:27049717

  18. Cell autonomous roles of Nedd4 in craniofacial bone formation.

    PubMed

    Wiszniak, Sophie; Harvey, Natasha; Schwarz, Quenten

    2016-02-01

    Nedd4 is an E3 ubiquitin ligase that has an essential role in craniofacial development. However, how and when Nedd4 controls skull formation is ill defined. Here we have used a collection of complementary genetic mouse models to dissect the cell-autonomous roles of Nedd4 in the formation of neural crest cell derived cranial bone. Removal of Nedd4 specifically from neural crest cells leads to profound craniofacial defects with marked reduction of cranial bone that was preceded by hypoplasia of bone forming osteoblasts. Removal of Nedd4 after differentiation of neural crest cells into progenitors of chondrocytes and osteoblasts also led to profound deficiency of craniofacial bone in the absence of cartilage defects. Notably, these skull malformations were conserved when Nedd4 was specifically removed from the osteoblast lineage after specification of osteoblast precursors from mesenchymal skeletal progenitors. We further show that absence of Nedd4 in pre-osteoblasts results in decreased cell proliferation and altered osteogenic differentiation. Taken together our data demonstrate a novel cell-autonomous role for Nedd4 in promoting expansion of the osteoblast progenitor pool to control craniofacial development. Nedd4 mutant mice therefore represent a unique mouse model of craniofacial anomalies that provide an ideal resource to explore the cell-intrinsic mechanisms of neural crest cells in craniofacial morphogenesis. PMID:26681395

  19. Synthetic Bone Substitute Engineered with Amniotic Epithelial Cells Enhances Bone Regeneration after Maxillary Sinus Augmentation

    PubMed Central

    Barboni, Barbara; Mangano, Carlo; Valbonetti, Luca; Marruchella, Giuseppe; Berardinelli, Paolo; Martelli, Alessandra; Muttini, Aurelio; Mauro, Annunziata; Bedini, Rossella; Turriani, Maura; Pecci, Raffaella; Nardinocchi, Delia; Zizzari, Vincenzo Luca; Tetè, Stefano; Piattelli, Adriano; Mattioli, Mauro

    2013-01-01

    Background Evidence has been provided that a cell-based therapy combined with the use of bioactive materials may significantly improve bone regeneration prior to dental implant, although the identification of an ideal source of progenitor/stem cells remains to be determined. Aim In the present research, the bone regenerative property of an emerging source of progenitor cells, the amniotic epithelial cells (AEC), loaded on a calcium-phosphate synthetic bone substitute, made by direct rapid prototyping (rPT) technique, was evaluated in an animal study. Material And Methods Two blocks of synthetic bone substitute (∼0.14 cm3), alone or engineered with 1×106 ovine AEC (oAEC), were grafted bilaterally into maxillary sinuses of six adult sheep, an animal model chosen for its high translational value in dentistry. The sheep were then randomly divided into two groups and sacrificed at 45 and 90 days post implantation (p.i.). Tissue regeneration was evaluated in the sinus explants by micro-computer tomography (micro-CT), morphological, morphometric and biochemical analyses. Results And Conclusions The obtained data suggest that scaffold integration and bone deposition are positively influenced by allotransplantated oAEC. Sinus explants derived from sheep grafted with oAEC engineered scaffolds displayed a reduced fibrotic reaction, a limited inflammatory response and an accelerated process of angiogenesis. In addition, the presence of oAEC significantly stimulated osteogenesis either by enhancing bone deposition or making more extent the foci of bone nucleation. Besides the modulatory role played by oAEC in the crucial events successfully guiding tissue regeneration (angiogenesis, vascular endothelial growth factor expression and inflammation), data provided herein show that oAEC were also able to directly participate in the process of bone deposition, as suggested by the presence of oAEC entrapped within the newly deposited osteoid matrix and by their ability to switch

  20. Dendrites of rod bipolar cells sprout in normal aging retina

    PubMed Central

    Liets, Lauren C.; Eliasieh, Kasra; van der List, Deborah A.; Chalupa, Leo M.

    2006-01-01

    The aging nervous system is known to manifest a variety of degenerative and regressive events. Here we report the unexpected growth of dendrites in the retinas of normal old mice. The dendrites of many rod bipolar cells in aging mice were observed to extend well beyond their normal strata within the outer plexiform layer to innervate the outer nuclear layer where they appeared to form contacts with the spherules of rod photoreceptors. Such dendritic sprouting increased with age and was evident at all retinal eccentricities. These results provide evidence of retinal plasticity associated with normal aging. PMID:16880381

  1. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse

    SciTech Connect

    Morgan, J.E.; Hoffman, E.P.; Partridge, T.A. )

    1990-12-01

    Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc). However, it is difficult to determine whether this biochemical rescue results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration. By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily. Here, we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle.

  2. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone.

    PubMed

    Augat, Peter; Simon, Ulrich; Liedert, Astrid; Claes, Lutz

    2005-03-01

    Fracture repair, which aims at regaining the functional competence of a bone, is a complex and multifactorial process. For the success of fracture repair biology and mechanics are of immense importance. The biological and mechanical environments must be compatible with the processes of cell and tissue proliferation and differentiation. The biological environment is characterized by the vascular supply and by many biochemical components, the biochemical milieu. A good vascular supply is a prerequisite for the initiation of the fracture repair process. The biochemical milieu involves complex interactions among local and systemic regulatory factors such as growth factors or cytokines. The mechanical environment is determined by the local stress and strain within the fracture. However, the local stress and strain is not accessible, and the mechanical environment, therefore, is described by global mechanical factors, e.g., gap size or interfragmentary movement. The relationship between local stress and strain and the global mechanical factors can be obtained by numerical models (Finite Element Model). Moreover, there is considerable interaction between biological factors and mechanical factors, creating a biomechanical environment for the fracture healing process. The biomechanical environment is characterized by osteoblasts and osteocytes that sense the mechanical signal and express biological markers, which effect the repair process. This review will focus on the effects of biomechanical factors on fracture repair as well as the effects of age and osteoporosis.

  3. A T Cell View of the Bone Marrow

    PubMed Central

    Bonomo, Adriana; Monteiro, Ana Carolina; Gonçalves-Silva, Triciana; Cordeiro-Spinetti, Eric; Galvani, Rômulo Gonçalves; Balduino, Alex

    2016-01-01

    The majority of T cells present in the bone marrow (BM) represent an activated/memory phenotype and most of these, if not all, are circulating T cells. Their lodging in the BM keeps them activated, turning the BM microenvironment into a “memory reservoir.” This article will focus on how T cell activation in the BM results in both direct and indirect effects on the hematopoiesis. The hematopoietic stem cell niche will be presented, with its main components and organization, along with the role played by T lymphocytes in basal and pathologic conditions and their effect on the bone remodeling process. Also discussed herein will be how “normal” bone mass peak is achieved only in the presence of an intact adaptive immune system, with T and B cells playing critical roles in this process. Our main hypothesis is that the partnership between T cells and cells of the BM microenvironment orchestrates numerous processes regulating immunity, hematopoiesis, and bone remodeling. PMID:27242791

  4. Parathyroid hormone-related protein is a gravisensor in lung and bone cell biology

    NASA Astrophysics Data System (ADS)

    Torday, J. S.

    2003-10-01

    Parathyroid Hormone-related Protein (PTHrP) has been shown to be essential for the development and homeostatic regulation of lung and bone. Since both lung and bone structure and function are affected by microgravity, we hypothesized that 0 × g down-regulates PTHrP signaling. To test this hypothesis, we suspended lung and bone cells in the simulated microgravity environment of a Rotating Wall Vessel Bioreactor, which simulates microgravity, for up to 72 hours. During the first 8 hours of exposure to simulated 0 × g, PTHrP expression fell precipitously, decreasing by 80-90%; during the subsequent 64 hours, PTHrP expression remained at this newly established level of expression. PTHrP production decreased from 12 pg/ml/hour to 1 pg/ml/hour in culture medium from microgravity-exposed cells. The cells were then recultured at unit gravity for 24hours, and PTHrP expression and production returned to normal levels. Based on these findings, we have obtained bones from rats flown in space for 2 weeks (Mission STS-58, SL-2). Analysis of PTHrP expression by femurs and tibias from these animals (n=5) revealed that PTHrP expression was 60% lower than in bones from control ground-based rats. Interestingly, there were no differences in PTHrP expression by parietal bone from space-exposed versus ground-based animals, indicating that the effect of weightlessness on PTHrP expression is due to the unweighting of weight-bearing bones. This finding is consistent with other studies of microgravity-induced osteoporosis. The loss of the PTHrP signaling mechanism may be corrected using chemical agents that up-regulate this pathway. In conclusion, PTHrP represents a stretch-sensitive paracrine signaling mechanism that may sense gravity.

  5. Lasting engraftment of histoincompatible bone marrow cells in dogs

    SciTech Connect

    Vriesendorp, H.M.; Klapwijk, W.M.; van Kessel, A.M.; Zurcher, C.; van Bekkum, D.W.

    1981-05-01

    Conditioning protocols were tested for their efficacy in increasing the incidence of engraftment of histoincompatible dog bone marrow cells. Cyclophosphamide and total body irradation (TBI), Corynebacterium parvum and TBI, a 3- or 5-day delayed transfusion of bone marrow cells after TBI, or an increase in the number of donor bone marrow cells or lymphocytes appeared to be ineffective. These protocols were previously reported to promote recovery of splenic hemopoiesis in mice in short-term assays. The noted discrepancy between studies with mice and dogs invalidated allogeneic resistance as measured in the mouse spleen assay as a model for bone marrow allograft rejection. Intravenous treatment with silica particles or L-asparaginase did improve the engraftment rate after 7.5 Gy TBI. Low efficiency and significant extra toxicity restrict the applicability of these procedures. The most promising conditioning schedule found appeared to be two fractions of 6.0 Gy TBI separated by a 72-hr interval. Prolonged survival was noted after transplantation of bone marrow cells from a one-DLA haplo-type-mismatched donor. Possibilities for further improvement of this protocol are discussed.

  6. The Influence of DNA Methylation on Bone Cells

    PubMed Central

    Reppe, Sjur; Datta, Harish; Gautvik, Kaare M.

    2015-01-01

    DNA methylation in eukaryotes invokes heritable alterations of the of the cytosine base in DNA without changing the underlying genomic DNA sequence. DNA methylation may be modified by environmental exposures as well as gene polymorphisms and may be a mechanistic link between environmental risk factors and the development of disease. In this review, we consider the role of DNA methylation in bone cells (osteoclasts/osteoblasts/osteocytes) and their progenitors with special focus on in vitro and ex vivo analyses. The number of studies on DNA methylation in bone cells is still somewhat limited, nevertheless it is getting increasingly clear that this type of the epigenetic changes is a critical regulator of gene expression. DNA methylation is necessary for proper development and function of bone cells and is accompanied by disease characteristic functional alterations as presently reviewed including postmenopausal osteoporosis and mechanical strain. PMID:27019613

  7. Automated Cell Detection and Morphometry on Growth Plate Images of Mouse Bone

    PubMed Central

    Ascenzi, Maria-Grazia; Du, Xia; Harding, James I; Beylerian, Emily N; de Silva, Brian M; Gross, Ben J; Kastein, Hannah K; Wang, Weiguang; Lyons, Karen M; Schaeffer, Hayden

    2014-01-01

    Microscopy imaging of mouse growth plates is extensively used in biology to understand the effect of specific molecules on various stages of normal bone development and on bone disease. Until now, such image analysis has been conducted by manual detection. In fact, when existing automated detection techniques were applied, morphological variations across the growth plate and heterogeneity of image background color, including the faint presence of cells (chondrocytes) located deeper in tissue away from the image’s plane of focus, and lack of cell-specific features, interfered with identification of cell. We propose the first method of automated detection and morphometry applicable to images of cells in the growth plate of long bone. Through ad hoc sequential application of the Retinex method, anisotropic diffusion and thresholding, our new cell detection algorithm (CDA) addresses these challenges on bright-field microscopy images of mouse growth plates. Five parameters, chosen by the user in respect of image characteristics, regulate our CDA. Our results demonstrate effectiveness of the proposed numerical method relative to manual methods. Our CDA confirms previously established results regarding chondrocytes’ number, area, orientation, height and shape of normal growth plates. Our CDA also confirms differences previously found between the genetic mutated mouse Smad1/5CKO and its control mouse on fluorescence images. The CDA aims to aid biomedical research by increasing efficiency and consistency of data collection regarding arrangement and characteristics of chondrocytes. Our results suggest that automated extraction of data from microscopy imaging of growth plates can assist in unlocking information on normal and pathological development, key to the underlying biological mechanisms of bone growth. PMID:25525552

  8. Engineering bone tissue substitutes from human induced pluripotent stem cells

    PubMed Central

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-01-01

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease. PMID:23653480

  9. Engineering bone tissue substitutes from human induced pluripotent stem cells.

    PubMed

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-05-21

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease.

  10. Anabolic androgens affect the competitive interactions in cell migration and adhesion between normal mouse urothelial cells and urothelial carcinoma cells.

    PubMed

    Huang, Chi-Ping; Hsieh, Teng-Fu; Chen, Chi-Cheng; Hung, Xiao-Fan; Yu, Ai-Lin; Chang, Chawnshang; Shyr, Chih-Rong

    2014-09-26

    The urothelium is constantly rebuilt by normal urothelial cells to regenerate damaged tissues caused by stimuli in urine. However, the urothelial carcinoma cells expand the territory by aberrant growth of tumor cells, which migrate and occupy the damaged tissues to spread outside and disrupt the normal cells and organized tissues and form a tumor. Therefore, the interaction between normal urothelial cells and urothelial carcinoma cells affect the initiation and progression of urothelial tumors if normal urothelial cells fail to migrate and adhere to the damages sites to regenerate the tissues. Here, comparing normal murine urothelial cells with murine urothelial carcinoma cells (MBT-2), we found that normal cells had less migration ability than carcinoma cells. And in our co-culture system we found that carcinoma cells had propensity migrating toward normal urothelial cells and carcinoma cells had more advantages to adhere than normal cells. To reverse this condition, we used anabolic androgen, dihyrotestosterone (DHT) to treat normal cells and found that DHT treatment increased the migration ability of normal urothelial cells toward carcinoma cells and the adhesion capacity in competition with carcinoma cells. This study provides the base of a novel therapeutic approach by using anabolic hormone-enforced normal urothelial cells to regenerate the damage urothelium and defend against the occupancy of carcinoma cells to thwart cancer development and recurrence.

  11. The suture provides a niche for mesenchymal stem cells of craniofacial bones

    PubMed Central

    Zhao, Hu; Feng, Jifan; Ho, Thach-Vu; Grimes, Weston; Urata, Mark; Chai, Yang

    2015-01-01

    Bone tissue undergoes constant turnover supported by stem cells. Recent studies showed that perivascular mesenchymal stem cells (MSCs) contribute to the turnover of long bones. Craniofacial bones are flat bones derived from a different embryonic origin than the long bones. The identity and regulating niche for craniofacial bone MSCs remain unknown. Here, we identify Gli1+ cells within the suture mesenchyme as the major MSC population for craniofacial bones. They are not associated with vasculature, give rise to all craniofacial bones in the adult and are activated during injury repair. Gli1+ cells are typical MSCs in vitro. Ablation of Gli1+ cells leads to craniosynostosis and arrest of skull growth, indicating these cells are an indispensible stem cell population. Twist1+/− mice with craniosynostosis show reduced Gli1+ MSCs in sutures, suggesting that craniosynostosis may result from diminished suture stem cells. Our study indicates that craniofacial sutures provide a unique niche for MSCs for craniofacial bone homeostasis and repair. PMID:25799059

  12. A study of structural differences between liver cancer cells and normal liver cells using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sheng, Daping; Xu, Fangcheng; Yu, Qiang; Fang, Tingting; Xia, Junjun; Li, Seruo; Wang, Xin

    2015-11-01

    Since liver cancer seriously threatens human health, it is very urgent to explore an effective method for diagnosing liver cancer early. In this study, we investigated the structure differences of IR spectra between neoplastic liver cells and normal liver cells. The major differences of absorption bands were observed between liver cancer cells and normal liver cells, the values of A2955/A2921, A1744/A1082, A1640/A1535, H1121/H1020 might be potentially useful factors for distinguishing liver cancer cells from normal liver cells. Curve fitting also provided some important information on structural differences between malignant and normal liver cancer cells. Furthermore, IR spectra combined with hierarchical cluster analysis could make a distinction between liver cancer cells and normal liver cells. The present results provided enough cell basis for diagnosis of liver cancer by FTIR spectroscopy, suggesting FTIR spectroscopy may be a potentially useful tool for liver cancer diagnosis.

  13. Reduced bone mineral content and normal serum osteocalcin in non-steroid-treated patients with juvenile rheumatoid arthritis.

    PubMed Central

    Polito, C; Strano, C G; Rea, L; Alessio, M; Iammarrone, C S; Todisco, N; Marotta, A; Iaccarino, E; Pirozzi, M

    1995-01-01

    OBJECTIVES--To distinguish the effects of juvenile rheumatoid arthritis (JRA) on bone mineralisation from those possibly caused by steroid therapy. METHODS--Bone mineral status was evaluated in 20 children (five boys and 15 girls) with active JRA who never received steroids. Seven had oligoarticular, nine had polyarticular, and four had systemic JRA. Bone mineral content (BMC) was assessed by single beam photon absorptiometry and expressed as a Z score relative to normal values in healthy children. Serum calcium, phosphate, and alkaline phosphatase were measured by colorimetric methods. Whole parathyroid hormone was assayed by Immuno Radiometric Assay. Serum osteocalcin was measured by specific radioimmunoassay. Nutrient intake was assessed by a 24 hours dietary recall. BMC and nutrient intake were also assessed in an age and sex matched control group. RESULTS--BMC was -1.5 (SEM 0.8) Z scores in patients and 0.4 (0.3) in the control group (p = 0.02). BMC averaged -4.9 (2) Z scores in the systemic JRA group, -1 (0.6) in the polyarticular group and 0.3 (0.7) in oligoarticular JRA patients. Serum calcium, phosphate and osteocalcin values were normal in all patients. No significant difference was found between JRA patients and controls in calcium, phosphate, energy, and protein intake. CONCLUSION--JRA subjects have significantly reduced BMC even in the absence of any steroid therapy. Bone demineralisation appears to depend more on disease activity and on reduced motility than on reduced nutrient intake. PMID:7748017

  14. Prospect of Stem Cells in Bone Tissue Engineering: A Review

    PubMed Central

    Yousefi, Azizeh-Mitra; James, Paul F.; Akbarzadeh, Rosa; Subramanian, Aswati; Flavin, Conor; Oudadesse, Hassane

    2016-01-01

    Mesenchymal stem cells (MSCs) have been the subject of many studies in recent years, ranging from basic science that looks into MSCs properties to studies that aim for developing bioengineered tissues and organs. Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) have been the focus of most studies due to the inherent potential of these cells to differentiate into various cell types. Although, the discovery of induced pluripotent stem cells (iPSCs) represents a paradigm shift in our understanding of cellular differentiation. These cells are another attractive stem cell source because of their ability to be reprogramed, allowing the generation of multiple cell types from a single cell. This paper briefly covers various types of stem cell sources that have been used for tissue engineering applications, with a focus on bone regeneration. Then, an overview of some recent studies making use of MSC-seeded 3D scaffold systems for bone tissue engineering has been presented. The emphasis has been placed on the reported scaffold properties that tend to improve MSCs adhesion, proliferation, and osteogenic differentiation outcomes. PMID:26880976

  15. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC).

    PubMed

    Huh, Sung Woo; Shetty, Asode Ananthram; Ahmed, Saif; Lee, Dong Hwan; Kim, Seok Jung

    2016-01-01

    Degenerative and traumatic articular cartilage defects are common, difficult to treat, and progressive lesions that cause significant morbidity in the general population. There have been multiple approaches to treat such lesions, including arthroscopic debridement, microfracture, multiple drilling, osteochondral transplantation and autologous chondrocyte implantation (ACI) that are currently being used in clinical practice. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC) is a single-staged arthroscopic procedure. This method combines a modified microfracture technique with the application of a bone marrow aspirate concentrate (BMAC), hyaluronic acid and fibrin gel to treat articular cartilage defects. We reviewed the current literatures and surgical techniques for mesenchymal cell induced chondrogenesis. PMID:27489409

  16. Bone morphogenetic protein-7 expression and activity in the human adult normal kidney is predominantly localized to the distal nephron.

    PubMed

    Wetzel, P; Haag, J; Câmpean, V; Goldschmeding, R; Atalla, A; Amann, K; Aigner, T

    2006-08-01

    Bone morphogenetic protein-7 (BMP)-7 plays an important role during fetal kidney development. In the adult, BMP-7 is most strongly expressed in the kidney compared to other organs, but the exact expression pattern as well as the function of BMP-7 is unclear. The major aim of the present study was to define which parts of the human kidney do physiologically express BMP-7 and which cells appear to be targets of BMP activity by showing phosphorylated BMP-receptor-associated Smads 1, 5, or 8 and inhibitor of differentiation factor 1 (ID1) expression. BMP-7 expression was localized by immunohistology to the epithelia of the distal tubule as well as the collecting ducts (CDs). Phospho-Smads 1/5/8 and ID1 expression largely colocalized with BMP-7 and was also localized in the epithelia of the distal tubule and the CDs. This was confirmed by polymerase chain reaction-based mRNA expression analysis. In vitro, proximal tubular cells (PTCs) expressed BMP receptors and BMP-receptor-associated Smads and were reactive to BMP-7. Our data indicate that BMP-7 expression in the adult human kidney appears to be more restricted than in the fetal situation and predominantly found in the distal nephron. Also, evidence of in vivo BMP signalling (i.e. phospho-Smads and ID1 expression) was found there. These findings suggest that BMP-7 plays a physiological role mostly in this part of the kidney. Still, as reported previously, PTCs are responsive to BMP-7, but presumably not in an autocrine or paracrine mode in normal adult kidneys. PMID:16807538

  17. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow.

    PubMed

    Zhou, Bo O; Yue, Rui; Murphy, Malea M; Peyer, James G; Morrison, Sean J

    2014-08-01

    Studies of the identity and physiological function of mesenchymal stromal cells (MSCs) have been hampered by a lack of markers that permit both prospective identification and fate mapping in vivo. We found that Leptin Receptor (LepR) is a marker that highly enriches bone marrow MSCs. Approximately 0.3% of bone marrow cells were LepR(+), 10% of which were CFU-Fs, accounting for 94% of bone marrow CFU-Fs. LepR(+) cells formed bone, cartilage, and adipocytes in culture and upon transplantation in vivo. LepR(+) cells were Scf-GFP(+), Cxcl12-DsRed(high), and Nestin-GFP(low), markers which also highly enriched CFU-Fs, but negative for Nestin-CreER and NG2-CreER, markers which were unlikely to be found in CFU-Fs. Fate-mapping showed that LepR(+) cells arose postnatally and gave rise to most bone and adipocytes formed in adult bone marrow, including bone regenerated after irradiation or fracture. LepR(+) cells were quiescent, but they proliferated after injury. Therefore, LepR(+) cells are the major source of bone and adipocytes in adult bone marrow.

  18. The potential of bone marrow stem cells to correct liver dysfunction in a mouse model of Wilson's disease.

    PubMed

    Allen, Katrina J; Cheah, Daphne M Y; Lee, Xiao Ling; Pettigrew-Buck, Nicole E; Vadolas, Jim; Mercer, Julian F B; Ioannou, Panayiotis A; Williamson, Robert

    2004-01-01

    Metabolic liver diseases are excellent targets for correction using novel stem cell, hepatocyte, and gene therapies. In this study, the use of bone marrow stem cell transplantation to correct liver disease in the toxic milk (tx) mouse, a murine model for Wilson's disease, was evaluated. Preconditioning with sublethal irradiation, dietary copper loading, and the influence of cell transplantation sites were assessed. Recipient tx mice were sublethally irradiated (4 Gy) prior to transplantation with bone marrow stem cells harvested from normal congenic (DL) littermates. Of 46 transplanted tx mice, 11 demonstrated genotypic repopulation in the liver. Sublethal irradiation was found to be essential for donor cell engraftment and liver repopulation. Dietary copper loading did not improve cell engraftment and repopulation results. Both intravenously and intrasplenically transplanted cells produced similar repopulation successes. Direct evidence of functionality and disease correction following liver repopulation was observed in the 11 mice where liver copper levels were significantly reduced when compared with mice with no liver repopulation. The reversal of copper loading with bone marrow cells is similar to the level of correction seen when normal congenic liver cells are used. Transplantation of bone marrow cells partially corrects the metabolic phenotype in a mouse model for Wilson's disease.

  19. Craniofacial defect regeneration using engineered bone marrow mesenchymal stromal cells.

    PubMed

    Yang, Yi; Hallgrimsson, Benedikt; Putnins, Edward E

    2011-10-01

    Large craniofacial bony defects remain a significant clinical challenge. Bone marrow mesenchymal stromal cells (BM-MSCs) constitute a multipotent population. Previously, we developed a novel approach for BM-MSC expansion on 3D CultiSpher-S gelatin microcarrier beads in spin culture with preservation of their multipotentiality, reduction of apoptosis, and enhancement of bone formation in vivo. Here, we hypothesized that such cultured BM-MSCs without exogenous growth factors would respond to the orthopedic microenvironment, thus promoting craniofacial defect regeneration. BM-MSCs isolated from green fluorescent protein (GFP) transgenic rats were ex vivo expanded and transplanted into critical-sized (5-mm diameter) rat calvaria defects. Gelatin beads or defect alone served as controls. By 28 and 42 days, rats were sacrificed for microcomputed tomography (microCT), histologic, and immunohistochemistry examination. MicroCT results demonstrated that BM-MSCs were a statistically significant factor contributing to new bone volume regeneration. Histologic assessment showed that the BM-MSCs group produced more and higher quality new bone compared with beads or defect-alone groups in both osteoinductive and osteoconductive manners. Specifically, immunohistochemical staining identified GFP(+) cells residing in new bone lacunae in conjunction with non-GFP(+) cells. Therefore, ex vivo expanded BM-MSCs at least in part regenerated critical-sized calvaria defects by osteogenic differentiation in vivo.

  20. Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures

    SciTech Connect

    Miyahara, Tatsuro; Takata, Masakazu; Miyata, Masaki; Nagai, Miyuki; Sugure, Akemi; Kozuka, Hiroshi; Kuze, Shougo )

    1991-08-01

    Most of cadmium (Cd)-treated animals have been reported to show osteoporosis-like changes in bones. This suggests that Cd may promote bone loss by a direct action on bone. It was found that Cd stimulated prostaglandin E{sub 2}(PGE{sub 2}) production in the osteoblast-like cell, MC3T3-E1. Therefore, Cd stimulates bone resorption by increasing PGE{sub 2} production. Recently, several bone marrow cell culture systems have been developed for examining the formation of osteoclast-like multinucleated cells in vitro. As osteoblasts produce PGE{sub 2} by Cd-induced cyclooxygenase and may play an important role in osteoclast formation, the present study was undertaken to clarify the possibility that Cd might stimulate osteoclast formation in a mouse bone marrow culture system.

  1. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    PubMed Central

    Verboket, René; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C.; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo. PMID:25802865

  2. [Distribution of compact bone mesenchymal stem cells in lung tissue and bone marrow of mouse].

    PubMed

    Wang, Rui-Ping; Wu, Ren-Na; Guo, Yu-Qing; Zhang, Bin; Chen, Hu

    2014-02-01

    This study was aimed to investigate the distribution of compact bone mesenchymal stem cells(MSC) marked with lentiviral plasmid pGC FU-RFP-LV in lung tissue and bone marrow of mouse. The MSC were infected by lentivirus with infection efficiency 78%, the infected MSC were injected into BALB/c mice via tail veins in concentration of 1×10(6) /mouse. The mice were randomly divided into 4 group according to 4 time points as 1, 2, 5 and 7 days. The lung tissue and bone marrow were taken and made of frozen sections and smears respectively in order to observed the distributions of MSC. The results indicated that the lentiviral infected MSC displayed phenotypes and biological characteristics which conformed to MSC by immunophenotyping analysis and induction differentiation detection. After the MSC were infected with optimal viral titer MOI = 50, the cell growth no significantly changed; the fluorescent microscopy revealed that the distributions of MSC in bone marrow on day 1, 2, 5 and 7 were 0.50 ± 0.20, 0.67 ± 0.23, 0.53 ± 0.14, 0.33 ± 0.16; those in lung tissue were 0.55 ± 0.15, 0.47 ± 0.13, 0.29 ± 0.13, 0.26 ± 0.08. It is concluded that the distribution of MSC in lung tissue reaches a peak on day 1, while distribution of MSC in bone marrow reaches a peak on day 2. The distribution of mouse MSC relates with RFP gene expression and implantation of MSC in lung tissue and bone marrow.

  3. Immortalization of human normal and NF1 neurofibroma Schwann cells.

    PubMed

    Li, Hua; Chang, Lung-Ji; Neubauer, Debbie R; Muir, David F; Wallace, Margaret R

    2016-10-01

    Neurofibromas, which are benign Schwann cell tumors, are the hallmark feature in the autosomal dominant condition neurofibromatosis 1 (NF1) and are associated with biallelic loss of NF1 gene function. There is a need for effective therapies for neurofibromas, particularly the larger, plexiform neurofibromas. Tissue culture is an important tool for research. However, it is difficult to derive enriched human Schwann cell cultures, and most enter replicative senescence after 6-10 passages, impeding cell-based research in NF1. Through exogenous expression of human telomerase reverse transcriptase and murine cyclin-dependent kinase (mCdk4), normal (NF1 wild-type), neurofibroma-derived Schwann cells heterozygous for NF1 mutation, and neurofibroma-derived Schwann cells homozygous for NF1 mutation were immortalized, including some matched samples from the same NF1 patient. Initial experiments employed retroviral vectors, while subsequent work utilized lentiviral vectors carrying these genes because of improved efficiency. Expression of both transgenes was required for immortalization. Molecular and immunohistochemical analysis indicated that these cell lines are of Schwann cell lineage and have a range of phenotypes, many of which are consistent with their primary cultures. This is the first report of immortalization and detailed characterization of multiple human NF1 normal nerve and neurofibroma-derived Schwann cell lines, which will be highly useful research tools to study NF1 and other Schwann tumor biology and conditions. PMID:27617404

  4. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    PubMed Central

    Ertel, Adam; Verghese, Arun; Byers, Stephen W; Ochs, Michael; Tozeren, Aydin

    2006-01-01

    Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM). Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs), and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative phosphorylation. Signaling

  5. Differentiation of rabbit bone mesenchymal stem cells into endothelial cells in vitro and promotion of defective bone regeneration in vivo.

    PubMed

    Liu, Jinzhong; Liu, Chao; Sun, Bin; Shi, Ce; Qiao, Chunyan; Ke, Xiaoliang; Liu, Shutai; Liu, Xia; Sun, Hongchen

    2014-04-01

    Tissue engineering strategies often fail to regenerate bones because of inadequate vascularization, especially in the reconstruction of large segmental bone defects. Large volumes of vascular endothelial cells (ECs) that functionally interact with osteoblasts during osteogenesis are difficult to obtain. In this study, we simulated bone healing by co-culturing differentiated ECs and mesenchymal stem cells (MSCs) either on a culture plate or on a polylactide glycolic acid (PLGA) scaffold in vitro. We also evaluated the effect of osteogenesis in repairing rabbit mandible defects in vivo. In this study, MSCs were separated from rabbit as the seed cells. After passage, the MSCs were cultured in an EC-conditioned medium to differentiate into ECs. Immunohistochemical staining analysis with CD34 showed that the induced cells had the characteristics of ECs and MSC. The induced ECs were co-cultured in vitro, and the induction of MSCs to osteoblast served as the control. Alkaline phosphatase (ALP) and alizarin red (AZR) staining experiments were performed, and the Coomassie brilliant blue total protein and ALP activity were measured. The MSCs proliferated and differentiated into osteoblast-like cells through direct contact between the derived ECs and MSCs. The co-cultured cells were seeded on PLGA scaffold to repair 1 cm mandible defects in the rabbit. The effectiveness of the repairs was assessed through soft X-ray and histological analyses. The main findings indicated that MSCs survived well on the scaffold and that the scaffold is biocompatible and noncytotoxic. The results demonstrated that the co-cultured MSC-derived ECs improved MSC osteogenesis and promoted new bone formation. This study may serve as a basis for the use of in vitro co-culturing techniques as an improvisation to bone tissue engineering for the repair of large bone defects.

  6. Production and characterization of an antibody against the human bone GLA protein (BGP/osteocalcin) propeptide and its use in immunocytochemistry of bone cells.

    PubMed

    Kasai, R; Bianco, P; Robey, P G; Kahn, A J

    1994-06-01

    We have generated and characterized an antibody that recognizes the C-terminal sequence of the propeptide of human bone GLA protein (BGP/osteocalcin)(amino acid -26 to -1, with +1 being the amino terminus of the mature protein). The range of sensitivity of the antibody, as determined by enzyme-linked immunosorbent assay (ELISA), was 0.5-250 ng/ml. The antibody effectively recognized pro-BGP in cell layer extracts of transformed cells (KT-005), but did not recognize mature, propeptide-less BGP in the medium from the same cultures. Strong labelling was obtained using this antibody in immunoperoxidase staining or immunofluorescence of both transformed and normal human bone cells in vitro. Monensin significantly altered the intracellular pattern of labelling in immunofluorescence studies, indicating that the recognized antigen was associated with the cellular secretory pathway. We also obtained a specific and strong staining of cells in tissue sections of human fetal bone. Antibodies against the mature protein strongly stained the mineralization front, but did not stain cells to any appreciable level. Newly embedded osteocytes were the predominant cell type stained in such material, suggesting that they may represent the major of BGP in the intact tissue. These observations indicate that BGP synthesis is a late event in osteoblastic development and that antibodies generated against the propeptide sequence are a potentially powerful tool in the analysis of bone tumors and evaluation of osteoblastic differentiation.

  7. Coupling Immunodeficiency factors to a normal cell system growing conjointly with tumor cells

    NASA Astrophysics Data System (ADS)

    Shojania Feizabadi, Mitra; Witten, Tarynn M.

    2014-03-01

    In this work, we modify Witten's conjoint normal-tumor cell model in order to incorporate the presence of a simple immune system. We first examine the behavior of normal and tumor cells when tumor cells interact with surrounding normal cells. We then extend our model and add the effects of a simple immune system, immune-suppression factors and immune-chemotherapeutics agents. The evolution of the system variables is investigated via computer simulation. We show that the evolution of normal and tumor cells population is significantly affected by the choice of drug or immunodeficiency.

  8. Optical Properties of Human Cancer and Normal Cells

    NASA Astrophysics Data System (ADS)

    Sander, Christopher; Sun, Nan; Johnson, Jeffrey; Stack, Sharon; Tanner, Carol; Ruggiero, Steven

    2014-03-01

    We have investigated the optical properties of human oral and ovarian cancer and normal cells. Specifically, we have measured the absolute optical extinction for both whole cells and intra-cellular material in aqueous suspension. Measurements were conducted over a wavelength range of 250 to 1000nm with 1 nm resolution using Light Transmission Spectroscopy (LTS). This provides both the absolute extinction of materials under study and, with Mie inversion, the absolute number of particles of a given diameter as a function of diameter in the range of 1 to 3000 nm. Our preliminary studies show significant differences in both the extinction and particle size distributions associated with cancer versus normal cells, which appear to be correlated with differences in the particle size distribution in the range of ~ 50 to 250 nm.

  9. High Power Tests of Normal Conducting Single-Cell Structures

    SciTech Connect

    Dolgashev, V.A.; Tantawi, S.G.; Nantista, C.D.; Higashi, Y.; Higo, T.; /KEK, Tsukuba

    2007-11-07

    We report the results of the first high power tests of single-cell traveling-wave and standing-wave structures. These tests are part of an experimental and theoretical study of rf breakdown in normal conducting structures at 11.4 GHz. The goal of this study is to determine the gradient potential of normal-conducting rf-powered particle beam accelerators. The test setup consists of reusable mode converters and short test structures and is powered by SLAC's XL-4 klystron. This setup was created for economical testing of different cell geometries, cell materials and preparation techniques with short turn-around time. The mode launchers and structures were manufactured at SLAC and KEK and tested in the SLAC Klystron Test Lab.

  10. Normal human serum contains a natural IgM antibody cytotoxic for human neuroblastoma cells.

    PubMed Central

    Ollert, M W; David, K; Schmitt, C; Hauenschild, A; Bredehorst, R; Erttmann, R; Vogel, C W

    1996-01-01

    Neuroblastoma (NB) is characterized by the second highest spontaneous regression of any human malignant disorder, a phenomenon that remains to be elucidated. In this study, a survey of 94 normal human adult sera revealed a considerable natural humoral cytotoxicity against human NB cell lines in approximately one-third of the tested sera of both genders. Specific cell killing by these sera was in the range of 40% to 95%. Serum cytotoxicity was dependent on an intact classical pathway of complement. By several lines of evidence, IgM antibodies were identified as the cytotoxic factor in the sera. Further analyses revealed that a 260-kDa protein was recognized by natural IgM of cytotoxic sera in Western blots of NB cell extracts. The antigen was expressed on the surface of seven human NB cell lines but not on human melanoma or other control tumor cell lines derived from kidney, pancreas, colon, bone, skeletal muscle, lymphatic system, and bone marrow. Furthermore, no reactivity was observed with normal human fibroblasts, melanocytes, and epidermal keratinocytes. The antigen was expressed in vivo as detected by immunohistochemistry in both the tumor of a NB patient and NB tumors established in nude rats from human NB cell lines. Most interestingly, the IgM anti-NB antibody was absent from the sera of 11 human NB patients with active disease. The anti-NB IgM also could not be detected in tumor tissue obtained from a NB patient. Collectively, our data suggest the existence of a natural humoral immunological tumor defense mechanism, which could account for the in vivo phenomenon of spontaneous NB tumor regression. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8633097

  11. Expression of bone morphogenetic proteins of human neoplastic epithelial cells.

    PubMed

    Hatakeyama, S; Gao, Y H; Ohara-Nemoto, Y; Kataoka, H; Satoh, M

    1997-07-01

    Bone morphogenetic proteins (BMPs) are crucial factors of osteogenesis. We investigated the expressions of BMP subtypes in human salivary adenocarcinoma cell line (HSG-S8), tongue squamous cell (HSC-4) and gingival squamous cell (Ca9-22) carcinoma cell lines, gastric poorly differentiated adenocarcinoma cell (MNK45) and signet ring cell (KATOIII) carcinoma cell lines, rectal adenocarcinoma (RCM-1, RCM-2, and RCM-3), and thyroid (8505C) and bladder (T24) carcinoma cell lines by reverse transcription-polymerase chain reaction (RT-PCR). RT-PCR disclosed that BMP-1 was expressed in all cell lines examined, and BMP-2 was amplified in almost all cells except MKN45. Two squamous cell carcinomas, HSC-4 and Ca9-22, and KATOIII expressed only BMP-1 and BMP-2. MKN45 did not express BMP-2, but expressed BMP-7 and weakly BMP-4 and BMP-5. In addition to the expression BMP-7, and HSG-S8 expressed BMP-6. These findings indicated that the neoplastic epithelial cells possessed a rather great potency to express BMP mRNAs. On the other hand, among these carcinoma cells, HSG-S8 solely induced bone in nude mouse tumors, and HSC-4 and KATOIII contained many calcified masses in tumors while the rest did not induce either. PMID:9247707

  12. Transplanted Human Bone Marrow Mesenchymal Stem Cells Seeded onto Peptide Hydrogel Decrease Alveolar Bone Loss

    PubMed Central

    Karlström, Erik; Cedervall, Jessica; Wendel, Mikael

    2012-01-01

    Abstract Alveolar bone loss can be caused by periodontitis or periodontal trauma. We have evaluated the effects of transplanted undifferentiated human mesenchymal stem cells (hMSCs) on alveolar bone reaction and periodontal ligament healing in an experimental periodontal wound model. The hMSCs seeded onto a self-assembling peptide hydrogel in combination with collagen sponge were implanted into the right mandible of 12 rats and followed for 1 (n=6) or 4 weeks (n=6) postoperatively. The other 12 sham-treated rats were used as controls. Histological and histomorphometrical methods were used to assess the periodontal tissue reaction. The alveolar bone volume density was significantly higher at 1 week after surgery, and the osteoclast number was significantly lower at both 1 week and 4 weeks postoperatively in the mandibles treated with hMSCs. The implanted cells were detected only at 1 week after surgery. In conclusion, transplanted hMSCs can contribute to alveolar bone preservation after a periodontal surgical trauma at least by decreasing local osteoclast number. PMID:23514848

  13. A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images.

    PubMed

    Arslan, Salim; Ozyurek, Emel; Gunduz-Demir, Cigdem

    2014-06-01

    Computer-based imaging systems are becoming important tools for quantitative assessment of peripheral blood and bone marrow samples to help experts diagnose blood disorders such as acute leukemia. These systems generally initiate a segmentation stage where white blood cells are separated from the background and other nonsalient objects. As the success of such imaging systems mainly depends on the accuracy of this stage, studies attach great importance for developing accurate segmentation algorithms. Although previous studies give promising results for segmentation of sparsely distributed normal white blood cells, only a few of them focus on segmenting touching and overlapping cell clusters, which is usually the case when leukemic cells are present. In this article, we present a new algorithm for segmentation of both normal and leukemic cells in peripheral blood and bone marrow images. In this algorithm, we propose to model color and shape characteristics of white blood cells by defining two transformations and introduce an efficient use of these transformations in a marker-controlled watershed algorithm. Particularly, these domain specific characteristics are used to identify markers and define the marking function of the watershed algorithm as well as to eliminate false white blood cells in a postprocessing step. Working on 650 white blood cells in peripheral blood and bone marrow images, our experiments reveal that the proposed algorithm improves the segmentation performance compared with its counterparts, leading to high accuracies for both sparsely distributed normal white blood cells and dense leukemic cell clusters.

  14. Ion implantation induced nanotopography on titanium and bone cell adhesion

    NASA Astrophysics Data System (ADS)

    Braceras, Iñigo; Vera, Carolina; Ayerdi-Izquierdo, Ana; Muñoz, Roberto; Lorenzo, Jaione; Alvarez, Noelia; de Maeztu, Miguel Ángel

    2014-08-01

    Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40-80 keV), fluence (1-2 e17 ion/cm2) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted surfaces, without surface chemistry modification, are in the same range and that such modifications, in certain conditions, do have a statistically significant effect on bone tissue forming cell adhesion.

  15. Ihha induces hybrid cartilage-bone cells during zebrafish jawbone regeneration.

    PubMed

    Paul, Sandeep; Schindler, Simone; Giovannone, Dion; de Millo Terrazzani, Alexandra; Mariani, Francesca V; Crump, J Gage

    2016-06-15

    The healing of bone often involves a cartilage intermediate, yet how such cartilage is induced and utilized during repair is not fully understood. By studying a model of large-scale bone regeneration in the lower jaw of adult zebrafish, we show that chondrocytes are crucial for generating thick bone during repair. During jawbone regeneration, we find that chondrocytes co-express genes associated with osteoblast differentiation and produce extensive mineralization, which is in marked contrast to the behavior of chondrocytes during facial skeletal development. We also identify the likely source of repair chondrocytes as a population of Runx2(+)/Sp7(-) cells that emanate from the periosteum, a tissue that normally contributes only osteoblasts during homeostasis. Analysis of Indian hedgehog homolog a (ihha) mutants shows that the ability of periosteal cells to generate cartilage in response to injury depends on a repair-specific role of Ihha in the induction as opposed to the proliferation of chondrocytes. The large-scale regeneration of the zebrafish jawbone thus employs a cartilage differentiation program distinct from that seen during development, with the bone-forming potential of repair chondrocytes potentially due to their derivation from osteogenic cells in the periosteum. PMID:27122168

  16. Molecular cloning and chromosomal mapping of bone marrow stromal cell surface gene, BST2, that may be involved in pre-B-cell growth

    SciTech Connect

    Ishikawa, Jun; Kaisho, Tsuneyasu; Tomizawa, Hitoshi

    1995-04-10

    Bone marrow stromal cells regulate B-cell growth and development through their surface molecules and cytokines. In this study, we generated a mAb, RS38, that recognized a novel human membrane protein, BST-2, expressed on bone marrow stromal cell lines and synovial cell lines. We cloned a cDNA encoding BST-2 from a rheumatoid arthritis-derived synovial cell line. BST-2 is a 30- to 36-kDa type II transmembrane protein, consisting of 180 amino acids. The BST-2 gene (HGMW-approved symbol BST2) is located on chromosome 19p13.2. BST-2 is expressed not only on certain bone marrow stromal cell lines but also on various normal tissues, although its expression pattern is different from that of another bone marrow stromal cell surface molecule, BST-1. BST-2 surface expression on fibroblast cell lines facilitated the stromal cell-dependent growth of a murine bone marrow-derived pre-B-cell line, DW34. The results suggest that BST-2 may be involved in pre-B-cell growth. 45 refs., 7 figs., 2 tabs.

  17. Ruta 6 selectively induces cell death in brain cancer cells but proliferation in normal peripheral blood lymphocytes: A novel treatment for human brain cancer.

    PubMed

    Pathak, Sen; Multani, Asha S; Banerji, Pratip; Banerji, Prasanta

    2003-10-01

    Although conventional chemotherapies are used to treat patients with malignancies, damage to normal cells is problematic. Blood-forming bone marrow cells are the most adversely affected. It is therefore necessary to find alternative agents that can kill cancer cells but have minimal effects on normal cells. We investigated the brain cancer cell-killing activity of a homeopathic medicine, Ruta, isolated from a plant, Ruta graveolens. We treated human brain cancer and HL-60 leukemia cells, normal B-lymphoid cells, and murine melanoma cells in vitro with different concentrations of Ruta in combination with Ca3(PO4)2. Fifteen patients diagnosed with intracranial tumors were treated with Ruta 6 and Ca3(PO4)2. Of these 15 patients, 6 of the 7 glioma patients showed complete regression of tumors. Normal human blood lymphocytes, B-lymphoid cells, and brain cancer cells treated with Ruta in vitro were examined for telomere dynamics, mitotic catastrophe, and apoptosis to understand the possible mechanism of cell-killing, using conventional and molecular cytogenetic techniques. Both in vivo and in vitro results showed induction of survival-signaling pathways in normal lymphocytes and induction of death-signaling pathways in brain cancer cells. Cancer cell death was initiated by telomere erosion and completed through mitotic catastrophe events. We propose that Ruta in combination with Ca3(PO4)2 could be used for effective treatment of brain cancers, particularly glioma.

  18. Cellular complexity of the bone marrow hematopoietic stem cell niche.

    PubMed

    Calvi, Laura M; Link, Daniel C

    2014-01-01

    The skeleton serves as the principal site for hematopoiesis in adult terrestrial vertebrates. The function of the hematopoietic system is to maintain homeostatic levels of all circulating blood cells, including myeloid cells, lymphoid cells, red blood cells, and platelets. This action requires the daily production of more than 500 billion blood cells. The vast majority of these cells are synthesized in the bone marrow, where they arise from a limited number of hematopoietic stem cells (HSCs) that are multipotent and capable of extensive self-renewal. These attributes of HSCs are best demonstrated by marrow transplantation, where even a single HSC can repopulate the entire hematopoietic system. HSCs are therefore adult stem cells capable of multilineage repopulation, poised between cell fate choices which include quiescence, self-renewal, differentiation, and apoptosis. While HSC fate choices are in part determined by multiple stochastic fluctuations of cell autonomous processes, according to the niche hypothesis, signals from the microenvironment are also likely to determine stem cell fate. While it had long been postulated that signals within the bone marrow could provide regulation of hematopoietic cells, it is only in the past decade that advances in flow cytometry and genetic models have allowed for a deeper understanding of the microenvironmental regulation of HSCs. In this review, we will highlight the cellular regulatory components of the HSC niche.

  19. Claspin promotes normal replication fork rates in human cells.

    PubMed

    Petermann, Eva; Helleday, Thomas; Caldecott, Keith W

    2008-06-01

    The S phase-specific adaptor protein Claspin mediates the checkpoint response to replication stress by facilitating phosphorylation of Chk1 by ataxia-telangiectasia and Rad3-related (ATR). Evidence suggests that these components of the ATR pathway also play a critical role during physiological S phase. Chk1 is required for high rates of global replication fork progression, and Claspin interacts with the replication machinery and might therefore monitor normal DNA replication. Here, we have used DNA fiber labeling to investigate, for the first time, whether human Claspin is required for high rates of replication fork progression during normal S phase. We report that Claspin-depleted HeLa and HCT116 cells display levels of replication fork slowing similar to those observed in Chk1-depleted cells. This was also true in primary human 1BR3 fibroblasts, albeit to a lesser extent, suggesting that Claspin is a universal requirement for high replication fork rates in human cells. Interestingly, Claspin-depleted cells retained significant levels of Chk1 phosphorylation at both Ser317 and Ser345, raising the possibility that Claspin function during normal fork progression may extend beyond facilitating phosphorylation of either individual residue. Consistent with this possibility, depletion of Chk1 and Claspin together doubled the percentage of very slow forks, compared with depletion of either protein alone.

  20. Stem Cell Therapies for the Treatment of Radiation-Induced Normal Tissue Side Effects

    PubMed Central

    Benderitter, Marc; Caviggioli, Fabio; Chapel, Alain; Coppes, Robert P.; Guha, Chandan; Klinger, Marco; Malard, Olivier; Stewart, Fiona; Tamarat, Radia; Luijk, Peter Van

    2014-01-01

    Abstract Significance: Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues surrounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the adverse effects of irradiation, stem cell therapies provide unique opportunities for restoring functionality to the irradiated tissue bed. Recent Advances: Preclinical studies presented in this review provide encouraging proof of concept regarding the therapeutic potential of stem cells for treating the adverse side effects associated with radiotherapy in different organs. Early-stage clinical data for radiation-induced lung, bone, and skin complications are promising and highlight the importance of selecting the appropriate stem cell type to stimulate tissue regeneration. Critical Issues: While therapeutic efficacy has been demonstrated in a variety of animal models and human trials, a range of additional concerns regarding stem cell transplantation for ameliorating radiation-induced normal tissue sequelae remain. Safety issues regarding teratoma formation, disease progression, and genomic stability along with technical issues impacting disease targeting, immunorejection, and clinical scale-up are factors bearing on the eventual translation of stem cell therapies into routine clinical practice. Future Directions: Follow-up studies will need to identify the best possible stem cell types for the treatment of early and late radiation-induced normal tissue injury. Additional work should seek to optimize cellular dosing regimes, identify the best routes of administration, elucidate optimal transplantation windows for introducing cells into more receptive host tissues, and improve immune tolerance for longer-term engrafted cell survival into the irradiated microenvironment. Antioxid. Redox Signal. 21: 338–355. PMID:24147585

  1. Perivascular Stem Cells: A Prospectively Purified Mesenchymal Stem Cell Population for Bone Tissue Engineering

    PubMed Central

    James, Aaron W.; Zara, Janette N.; Zhang, Xinli; Askarinam, Asal; Goyal, Raghav; Chiang, Michael; Yuan, Wei; Chang, Le; Corselli, Mirko; Shen, Jia; Pang, Shen; Stoker, David; Wu, Ben

    2012-01-01

    Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering: it is largely dispensable and readily accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. In the present study, we prospectively purified human perivascular stem cells (PSCs) from adipose tissue and compared their bone-forming capacity with that of traditionally derived SVF. PSCs are a population (sorted by fluorescence-activated cell sorting) of pericytes (CD146+CD34−CD45−) and adventitial cells (CD146−CD34+CD45−), each of which we have previously reported to have properties of mesenchymal stem cells. Here, we found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. We next sought to optimize PSCs for in vivo bone formation, adopting a demineralized bone matrix for osteoinduction and tricalcium phosphate particle formulation for protein release. Patient-matched, purified PSCs formed significantly more bone in comparison with traditionally derived SVF by all parameters. Recombinant bone morphogenetic protein 2 increased in vivo bone formation but with a massive adipogenic response. In contrast, recombinant Nel-like molecule 1 (NELL-1; a novel osteoinductive growth factor) selectively enhanced bone formation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, PSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. Finally, NELL-1 is a candidate growth factor able to induce human PSC osteogenesis. PMID:23197855

  2. Differential agglutination by soybean agglutinin of human leukemia and neuroblastoma cell lines: potential application to autologous bone marrow transplantation.

    PubMed

    Reisner, Y

    1983-11-01

    Normal human bone marrow cells were mixed with radioactively labeled tumor cells from different leukemia and neuroblastoma cell lines, and the cell mixtures were separated by differential agglutination with soybean agglutinin. It is shown that the cell fraction unagglutinated by soybean agglutinin, which was previously found to be capable of reconstituting the hematopoietic system of lethally irradiated recipients, can be purged of tumor cells with varying efficiency depending on the tumor cell expression of soybean agglutinin receptors as detected by flow cytofluorimetry with fluoresceinated soybean agglutinin.

  3. Gap Junctions and Biophysical Regulation of Bone Cells

    PubMed Central

    Lloyd, Shane A. J.

    2013-01-01

    Communication between osteoblasts, osteoclasts, and osteocytes is integral to their ability to build and maintain the skeletal system and respond to physical signals. Various physiological mechanisms, including nerve communication, hormones, and cytokines, play an important role in this process. More recently, the important role of direct, cell–cell communication via gap junctions has been established. In this review, we demonstrate the integral role of gap junctional intercellular communication (GJIC) in skeletal physiology and bone cell mechanosensing. PMID:23762015

  4. Amount of mpl on bone marrow haemopoietic precursor cells from healthy volunteers and patients with refractory anaemia.

    PubMed

    Takeshita, A; Shinjo, K; Naito, K; Nakamura, S; Izumi, M; Ling, P; Ohnishi, K; Ohno, R

    1997-12-01

    Using a non-isotopic ligand binding assay using multi-colour flow cytometry, we quantitatively examined the amount of mpl in megakaryocyte-platelet lineage cells. Firstly, we quantified the amount of mpl on cell lines. Mpl gene-transfected BaF3 cells expressed a large amount of mpl, whereas original BaF3, K562, HL-60 and NOMO-1 cells showed no mpl. In bone marrow cells from healthy volunteers, mpl was expressed on CD34+ cells from the very early stage of differentiation when they had no CD38 antigen. The amount of mpl increased with differentiation to CD34+ CD41+ cells, but decreased with further differentiation to CD34- CD41+ cells. In CD34+ CD41+ cells the amount of mpl varied according to cell size: abundant in large cells, moderate in medium-size cells and a little in small cells. In bone marrow cells from patients with refractory anaemia (RA), the amount of mpl was decreased compared with that in bone marrow cells from healthy volunteers. When analysed by the same CD phenotype and same cell size, the amount of mpl was less in RA patients compared with that in healthy volunteers in all phenotypes and sizes tested. The proportion of large CD34+ CD41+ cells was less in RA patients than in normal volunteers. PMID:9432017

  5. Giant cell tumor of bone in children and adolescents.

    PubMed

    Hoeffel, J C; Galloy, M A; Grignon, Y; Chastagner, P; Floquet, J; Mainard, L; Kadiri, R

    1996-10-01

    Giant cell tumor of bone rarely affects children, in whom it is usually located in a metaphysis in contrast to the predominantly epiphyseal localization in adults. Five cases are reported, two at the femur, two at the fibula and one at the tibia. Plain film radiography and computed tomography are the most informative imaging studies. The differential diagnosis is with aneurysmal bone cyst and, in metaphyseal-epiphyseal forms, with chondroblastoma. Treatment usually consists in curettage of the tumor followed by filling of the cavity; however, more extensive resection is required in some cases. PMID:8938873

  6. Distinctive Mesenchymal-Parenchymal Cell Pairings Govern B Cell Differentiation in the Bone Marrow.

    PubMed

    Yu, Vionnie W C; Lymperi, Stefania; Oki, Toshihiko; Jones, Alexandra; Swiatek, Peter; Vasic, Radovan; Ferraro, Francesca; Scadden, David T

    2016-08-01

    Bone marrow niches for hematopoietic progenitor cells are not well defined despite their critical role in blood homeostasis. We previously found that cells expressing osteocalcin, a marker of mature osteolineage cells, regulate the production of thymic-seeding T lymphoid progenitors. Here, using a selective cell deletion strategy, we demonstrate that a subset of mesenchymal cells expressing osterix, a marker of bone precursors in the adult, serve to regulate the maturation of early B lymphoid precursors by promoting pro-B to pre-B cell transition through insulin-like growth factor 1 (IGF-1) production. Loss of Osx(+) cells or Osx-specific deletion of IGF-1 led to a failure of B cell maturation and the impaired adaptive immune response. These data highlight the notion that bone marrow is a composite of specialized niches formed by pairings of specific mesenchymal cells with parenchymal stem or lineage committed progenitor cells, thereby providing distinctive functional units to regulate hematopoiesis. PMID:27453006

  7. Distinctive Mesenchymal-Parenchymal Cell Pairings Govern B Cell Differentiation in the Bone Marrow.

    PubMed

    Yu, Vionnie W C; Lymperi, Stefania; Oki, Toshihiko; Jones, Alexandra; Swiatek, Peter; Vasic, Radovan; Ferraro, Francesca; Scadden, David T

    2016-08-01

    Bone marrow niches for hematopoietic progenitor cells are not well defined despite their critical role in blood homeostasis. We previously found that cells expressing osteocalcin, a marker of mature osteolineage cells, regulate the production of thymic-seeding T lymphoid progenitors. Here, using a selective cell deletion strategy, we demonstrate that a subset of mesenchymal cells expressing osterix, a marker of bone precursors in the adult, serve to regulate the maturation of early B lymphoid precursors by promoting pro-B to pre-B cell transition through insulin-like growth factor 1 (IGF-1) production. Loss of Osx(+) cells or Osx-specific deletion of IGF-1 led to a failure of B cell maturation and the impaired adaptive immune response. These data highlight the notion that bone marrow is a composite of specialized niches formed by pairings of specific mesenchymal cells with parenchymal stem or lineage committed progenitor cells, thereby providing distinctive functional units to regulate hematopoiesis.

  8. Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering

    PubMed Central

    Sun, Han; Yang, Hui-Lin

    2015-01-01

    Objective: The purpose of this study was to review the current status of calcium phosphate (CaP) scaffolds combined with bone morphogenetic proteins (BMPs) or mesenchymal stem cells (MSCs) in the field of bone tissue engineering (BTE). Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions. PMID:25881610

  9. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium.

    PubMed

    Wang, Ping; Liu, Xian; Zhao, Liang; Weir, Michael D; Sun, Jirun; Chen, Wenchuan; Man, Yi; Xu, Hockin H K

    2015-05-01

    Human induced pluripotent stem cells (hiPSCs) are an exciting cell source with great potential for tissue engineering. Human bone marrow mesenchymal stem cells (hBMSCs) have been used in clinics but are limited by several disadvantages, hence alternative sources of MSCs such as umbilical cord MSCs (hUCMSCs) are being investigated. However, there has been no report comparing hiPSCs, hUCMSCs and hBMSCs for bone regeneration. The objectives of this pilot study were to investigate hiPSCs, hUCMSCs and hBMSCs for bone tissue engineering, and compare their bone regeneration via seeding on biofunctionalized macroporous calcium phosphate cement (CPC) in rat cranial defects. For all three types of cells, approximately 90% of the cells remained alive on CPC scaffolds. Osteogenic genes were up-regulated, and mineral synthesis by cells increased with time in vitro for all three types of cells. The new bone area fractions at 12weeks (mean±sd; n=6) were (30.4±5.8)%, (27.4±9.7)% and (22.6±4.7)% in hiPSC-MSC-CPC, hUCMSC-CPC and hBMSC-CPC respectively, compared to (11.0±6.3)% for control (p<0.05). No significant differences were detected among the three types of stem cells (p>0.1). New blood vessel density was higher in cell-seeded groups than control (p<0.05). De novo bone formation and participation by implanted cells was confirmed via immunohistochemical staining. In conclusion, (1) hiPSCs, hUCMSCs and hBMSCs greatly enhanced bone regeneration, more than doubling the new bone amount of cell-free CPC control; (2) hiPSC-MSCs and hUCMSCs represented viable alternatives to hBMSCs; (3) biofunctionalized macroporous CPC-stem cell constructs had a robust capacity for bone regeneration.

  10. Hyaluronan scaffold supports osteogenic differentiation of bone marrow concentrate cells.

    PubMed

    Cavallo, C; Desando, G; Ferrari, A; Zini, N; Mariani, E; Grigolo, B

    2016-01-01

    Osteochondral lesions are considered a challenge for orthopedic surgeons. Currently, the treatments available are often unsatisfactory and unable to stimulate tissue regeneration. Tissue engineering offers a new therapeutic strategy, taking into account the role exerted by cells, biomaterial and growth factors in restoring tissue damage. In this light, Mesenchymal Stem Cells (MSCs) have been indicated as a fascinating tool for regenerative medicine thanks to their ability to differentiate into bone, cartilage and adipose tissue. However, in vitro-cultivation of MSCs could be associated with some risks such as de-differentiation/reprogramming, infection and contaminations of the cells. To overcome these shortcomings, a new approach is represented by the use of Bone Marrow Concentrate (BMC), that could allow the delivery of cells surrounded by their microenvironment in injured tissue. For this purpose, cells require a tridimensional scaffold that can support their adhesion, proliferation and differentiation. This study is focused on the potentiality of BMC seeded onto a hyaluronan-based scaffold (Hyaff-11) to differentiate into osteogenic lineage. This process depends on the specific interaction between cells derived from bone marrow (surrounded by their niche) and scaffold, that create an environment able to support the regeneration of damaged tissue. The data obtained from the present study demonstrate that BMC grown onto Hyaff-11 are able to differentiate toward osteogenic sense, producing specific osteogenic genes and matrix proteins.

  11. Hyaluronan scaffold supports osteogenic differentiation of bone marrow concentrate cells.

    PubMed

    Cavallo, C; Desando, G; Ferrari, A; Zini, N; Mariani, E; Grigolo, B

    2016-01-01

    Osteochondral lesions are considered a challenge for orthopedic surgeons. Currently, the treatments available are often unsatisfactory and unable to stimulate tissue regeneration. Tissue engineering offers a new therapeutic strategy, taking into account the role exerted by cells, biomaterial and growth factors in restoring tissue damage. In this light, Mesenchymal Stem Cells (MSCs) have been indicated as a fascinating tool for regenerative medicine thanks to their ability to differentiate into bone, cartilage and adipose tissue. However, in vitro-cultivation of MSCs could be associated with some risks such as de-differentiation/reprogramming, infection and contaminations of the cells. To overcome these shortcomings, a new approach is represented by the use of Bone Marrow Concentrate (BMC), that could allow the delivery of cells surrounded by their microenvironment in injured tissue. For this purpose, cells require a tridimensional scaffold that can support their adhesion, proliferation and differentiation. This study is focused on the potentiality of BMC seeded onto a hyaluronan-based scaffold (Hyaff-11) to differentiate into osteogenic lineage. This process depends on the specific interaction between cells derived from bone marrow (surrounded by their niche) and scaffold, that create an environment able to support the regeneration of damaged tissue. The data obtained from the present study demonstrate that BMC grown onto Hyaff-11 are able to differentiate toward osteogenic sense, producing specific osteogenic genes and matrix proteins. PMID:27358127

  12. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    SciTech Connect

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D. )

    1991-05-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymic epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.

  13. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma ch...

  14. The Clinical Approach Toward Giant Cell Tumor of Bone

    PubMed Central

    van der Heijden, Lizz; Dijkstra, P.D. Sander; van de Sande, Michiel A.J.; Kroep, Judith R.; Nout, Remi A.; van Rijswijk, Carla S.P.; Bovée, Judith V.M.G.; Hogendoorn, Pancras C.W.

    2014-01-01

    We provide an overview of imaging, histopathology, genetics, and multidisciplinary treatment of giant cell tumor of bone (GCTB), an intermediate, locally aggressive but rarely metastasizing tumor. Overexpression of receptor activator of nuclear factor κB ligand (RANKL) by mononuclear neoplastic stromal cells promotes recruitment of numerous reactive multinucleated giant cells. Conventional radiographs show a typical eccentric lytic lesion, mostly located in the meta-epiphyseal area of long bones. GCTB may also arise in the axial skeleton and very occasionally in the small bones of hands and feet. Magnetic resonance imaging is necessary to evaluate the extent of GCTB within bone and surrounding soft tissues to plan a surgical approach. Curettage with local adjuvants is the preferred treatment. Recurrence rates after curettage with phenol and polymethylmethacrylate (PMMA; 8%–27%) or cryosurgery and PMMA (0%–20%) are comparable. Resection is indicated when joint salvage is not feasible (e.g., intra-articular fracture with soft tissue component). Denosumab (RANKL inhibitor) blocks and bisphosphonates inhibit GCTB-derived osteoclast resorption. With bisphosphonates, stabilization of local and metastatic disease has been reported, although level of evidence was low. Denosumab has been studied to a larger extent and seems to be effective in facilitating intralesional surgery after therapy. Denosumab was recently registered for unresectable disease. Moderate-dose radiotherapy (40–55 Gy) is restricted to rare cases in which surgery would lead to unacceptable morbidity and RANKL inhibitors are contraindicated or unavailable. PMID:24718514

  15. Giant Cell Reparative Granuloma of the Petrous Temporal Bone

    PubMed Central

    Williams, Joy C.; Thorell, William E.; Treves, John S.; Fidler, Mary E.; Moore, Gary F.; Leibrock, Lyal G.

    2000-01-01

    Giant cell reparative granuloma (GCRG) is an unusual, benign bone lesion that most commonly affects the maxilla and mandible; skull involvement is rare. The etiology is uncertain but may be related to trauma. GCRG is difficult to distinguish from giant cell tumor of the bone and has a lower recurrence rate. Thirteen reports of temporal bone GCRG in 11 patients have been reported. One report of a petrous GCRG in a 3-year-old girl has been identified. A 38-year-old male presented with a 2-year history of fullness in his left ear, ipsilateral hearing loss, and intermittent cacosmia. Computed tomography and magnetic resonance imaging revealed a large left-sided anterior temporal extradural mass. The patient underwent a left frontotemporal craniotomy and resection of a left temporal fossa tumor that involved the petrous and squamous parts of the temporal bone. The patient's post-operative course was uneventful, except for increased hearing loss secondary to opening of the epitympanum. Follow-up at one month revealed no other problems. Histopathology of the specimen was consistent with a giant cell reparative granuloma. ImagesFigure 1Figure 2p91-aFigure 3 PMID:17171108

  16. Developmental-Like Bone Regeneration by Human Embryonic Stem Cell-Derived Mesenchymal Cells

    PubMed Central

    Liu, Yongxing; Boyd, Nolan L.; Dennis, James E.; Jiang, Xi; Xin, Xiaonan; Charles, Lyndon F.; Wang, Liping; Aguila, H. Leonardo; Rowe, David W.; Lichtler, Alexander C.; Goldberg, A. Jon

    2014-01-01

    The in vivo osteogenesis potential of mesenchymal-like cells derived from human embryonic stem cells (hESC-MCs) was evaluated in vivo by implantation on collagen/hydroxyapatite scaffolds into calvarial defects in immunodeficient mice. This study is novel because no osteogenic or chondrogenic differentiation protocols were applied to the cells prior to implantation. After 6 weeks, X-ray, microCT, and histological analysis showed that the hESC-MCs had consistently formed a highly vascularized new bone that bridged the bone defect and seamlessly integrated with host bone. The implanted hESC-MCs differentiated in situ to functional hypertrophic chondrocytes, osteoblasts, and osteocytes forming new bone tissue via an endochondral ossification pathway. Evidence for the direct participation of the human cells in bone morphogenesis was verified by two separate assays: with Alu and by human mitochondrial antigen positive staining in conjunction with co-localized expression of human bone sialoprotein in histologically verified regions of new bone. The large volume of new bone in a calvarial defect and the direct participation of the hESC-MCs far exceeds that of previous studies and that of the control adult hMSCs. This study represents a key step forward for bone tissue engineering because of the large volume, vascularity, and reproducibility of new bone formation and the discovery that it is advantageous to not over-commit these progenitor cells to a particular lineage prior to implantation. The hESC-MCs were able to recapitulate the mesenchymal developmental pathway and were able to repair the bone defect semi-autonomously without preimplantation differentiation to osteo- or chondroprogenitors. PMID:23952622

  17. Bone

    NASA Astrophysics Data System (ADS)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  18. Bone marrow and splenic histology in hairy cell leukaemia.

    PubMed

    Wotherspoon, Andrew; Attygalle, Ayoma; Mendes, Larissa Sena Teixeira

    2015-12-01

    Hairy cell leukaemia is a rare chronic neoplastic B-cell lymphoproliferation that characteristically involves blood, bone marrow and spleen with liver, lymph node and skin less commonly involved. Histologically, the cells have a characteristic appearance with pale/clear cytoplasm and round or reniform nuclei. In the spleen, the infiltrate involves the red pulp and is frequently associated with areas of haemorrhage (blood lakes). The cells stain for B-cell related antigens as well as with antibodies against tartrate-resistant acid phosphatase, DBA44 (CD72), CD11c, CD25, CD103, CD123, cyclin D1 and annexin A1. Mutation of BRAF -V600E is present and antibody to the mutant protein can be used as a specific marker. Bone marrow biopsy is essential in the initial assessment of disease as the bone marrow may be inaspirable or unrepresentative of degree of marrow infiltration as a result of the tumour associated fibrosis preventing aspiration of the tumour cell component. Bone marrow biopsy is important in the assessment of therapy response but in this context staining for CD11c and Annexin A1 is not helpful as they are also markers of myeloid lineage and identification of low level infiltration may be obscured. In this context staining for CD20 may be used in conjunction with morphological assessment and staining of serial sections for cyclin D1 and DBA44 to identify subtle residual infiltration. Staining for CD79a and CD19 is not recommended as these antibodies will identify plasma cells and can lead to over-estimation of disease. Staining for CD20 should not be used in patients following with anti-CD20 based treatments. Down regulation of cyclin D1 and CD25 has been reported in patients following BRAF inhibitor therapy and assessment of these antigens should not be used in this context. Histologically, hairy cell leukaemia needs to be distinguished from other B-cell lymphoproliferations associated with splenomegaly including splenic marginal zone lymphoma, splenic

  19. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-i...

  20. Stem cells in bone grafting: Trinity allograft with stem cells and collagen/beta-tricalcium phosphate with concentrated bone marrow aspirate.

    PubMed

    Guyton, Gregory P; Miller, Stuart D

    2010-12-01

    The orthopedic foot and ankle surgeon needs bone grafts in the clinical situation of fracture healing and in bone-fusion procedures. This article briefly outlines thought processes and techniques for 2 recent options for the surgeon. The Trinity product is a unique combination of allograft bone and allograft stem cells. The beta-tricalcium phosphate and collagen materials provide an excellent scaffold for bone growth; when combined with concentrated bone marrow aspirate, they also offer osteoconductive and osteoinductive as well as osteogenerative sources for new bone formation.

  1. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering.

    PubMed

    Montjovent, Marc-Olivier; Mark, Silke; Mathieu, Laurence; Scaletta, Corinne; Scherberich, Arnaud; Delabarde, Claire; Zambelli, Pierre-Yves; Bourban, Pierre-Etienne; Applegate, Lee Ann; Pioletti, Dominique P

    2008-03-01

    Fetal bone cells were shown to have an interesting potential for therapeutic use in bone tissue engineering due to their rapid growth rate and their ability to differentiate into mature osteoblasts in vitro. We describe hereafter their capability to promote bone repair in vivo when combined with porous scaffolds based on poly(l-lactic acid) (PLA) obtained by supercritical gas foaming and reinforced with 5 wt.% beta-tricalcium phosphate (TCP). Bone regeneration was assessed by radiography and histology after implantation of PLA/TCP scaffolds alone, seeded with primary fetal bone cells, or coated with demineralized bone matrix. Craniotomy critical size defects and drill defects in the femoral condyle in rats were employed. In the cranial defects, polymer degradation and cortical bone regeneration were studied up to 12 months postoperatively. Complete bone ingrowth was observed after implantation of PLA/TCP constructs seeded with human fetal bone cells. Further tests were conducted in the trabecular neighborhood of femoral condyles, where scaffolds seeded with fetal bone cells also promoted bone repair. We present here a promising approach for bone tissue engineering using human primary fetal bone cells in combination with porous PLA/TCP structures. Fetal bone cells could be selected regarding osteogenic and immune-related properties, along with their rapid growth, ease of cell banking and associated safety. PMID:18178142

  2. Photoelastic stress analysis of endodontically treated teeth restored with different post systems: normal and alveolar bone resorption cases.

    PubMed

    Ma, Jinbao; Miura, Hiroyuki; Okada, Daizo; Yusa, Koichiro

    2011-01-01

    The present study examined the influence of different post materials and their lengths on the mechanical stress of endodontically treated incisor roots in two alveolar bone conditions. Two-dimensional photoelastic models were fabricated to simulate the endodontically treated maxillary central incisors restored with three kinds of posts materials (low Young's modulus glass fiber post, high Young's modulus glass fiber post, and prefabricated stainless steel post) and two post lengths (8 and 4 mm). Completed models were placed in a transmission polariscope and loaded with a static force of 150 N at 45° to the tooth axis. Photoelastic photographs and the magnitudes of fringe order revealed stress distribution in the root, and suggest that the glass fiber post with a low Young's modulus and long length can reduce the stress concentration both in normal and alveolar bone resorption conditions.

  3. Creation of New Bone by the Percutaneous Injection of Human Bone Marrow Stromal Cell and HA/TCP Suspensions

    PubMed Central

    Mankani, Mahesh H.; Kuznetsov, Sergei A.; Marshall, Grayson W.; Robey, Pamela Gehron

    2009-01-01

    Background The in vivo transplantation assay has become a valuable tool for assessing the osteogenic potential of diverse cell populations. It has required that cells are cotransplanted with a matrix into recipient animals using large incisions and extensive dissections. Here, we demonstrate that transplants of an osteogenic cell population, bone marrow stromal cells (BMSCs), are capable of assembling into mature bone organs when injected as suspensions of cells and a particulate matrix. Methods Human BMSCs, along with hydroxyapatite/tricalcium phosphate (HA/TCP) particles, were placed either into the dorsal subcutaneous space or onto the calvarium of immunodeficient mice, either via injection or via a wide operative exposure. Transplants were harvested from 7 to 110 weeks later; their histologic and mechanical properties and their cellular origin were analyzed. Results A total of 43 transplants were evaluated. The extent of new bone and hematopoiesis, the bone's adherence to the underlying mouse calvarium, and the bone elastic modulus and hardness were comparable between the two groups. In situ hybridization confirmed a human origin of the new bone. Conclusions Our data indicate that BMSCs and HA/TCP particles, when injected as a suspension, can assemble into mature bone organs, and that this bone has histologic and mechanical properties similar to bone formed in standard transplants delivered through a large incision. These results open the possibility for assessing the osteogenic capacities of cell populations, for modeling bone formation and repair and for treating bone deficits, all in the context of minimal surgical intervention or soft tissue disruption. PMID:18800877

  4. 1,25(OH)2D3 Alters Growth Plate Maturation and Bone Architecture in Young Rats with Normal Renal Function

    PubMed Central

    Idelevich, Anna; Kerschnitzki, Michael; Shahar, Ron; Monsonego-Ornan, Efrat

    2011-01-01

    Whereas detrimental effects of vitamin D deficiency are known over century, the effects of vitamin D receptor activation by 1,25(OH)2D3, the principal hormonal form of vitamin D, on the growing bone and its growth plate are less clear. Currently, 1,25(OH)2D3 is used in pediatric patients with chronic kidney disease and mineral and bone disorder (CKD-MBD) and is strongly associated with growth retardation. Here, we investigate the effect of 1,25(OH)2D3 treatment on bone development in normal young rats, unrelated to renal insufficiency. Young rats received daily i.p. injections of 1 µg/kg 1,25(OH)2D3 for one week, or intermittent 3 µg/kg 1,25(OH)2D3 for one month. Histological analysis revealed narrower tibial growth plates, predominantly in the hypertrophic zone of 1,25(OH)2D3-treated animals in both experimental protocols. This phenotype was supported by narrower distribution of aggrecan, collagens II and X mRNA, shown by in situ hybridization. Concomitant with altered chondrocyte maturation, 1,25(OH)2D3 increased chondrocyte proliferation and apoptosis in terminal hypertrophic cells. In vitro treatment of the chondrocytic cell line ATDC5 with 1,25(OH)2D3 lowered differentiation and increased proliferation dose and time-dependently. Micro-CT analysis of femurs from 1-week 1,25(OH)2D3-treated group revealed reduced cortical thickness, elevated cortical porosity, and higher trabecular number and thickness. 1-month administration resulted in a similar cortical phenotype but without effect on trabecular bone. Evaluation of fluorochrome binding with confocal microscopy revealed inhibiting effects of 1,25(OH)2D3 on intracortical bone formation. This study shows negative effects of 1,25(OH)2D3 on growth plate and bone which may contribute to the exacerbation of MBD in the CKD pediatric patients. PMID:21695192

  5. Mobilised bone marrow-derived cells accelerate wound healing.

    PubMed

    Wang, Yu; Sun, Yu; Yang, Xiao-Yan; Ji, Shi-Zhao; Han, Shu; Xia, Zhao-Fan

    2013-08-01

    Massive skin defects caused by severe burn and trauma are a clinical challenge to surgeons. Timely and effective wound closure is often hindered by the lack of skin donor site. Bone marrow-derived cells (BMDCs) have been shown to 'differentiate' into multiple tissue cells. In this study we focused on the direct manipulation of endogenous BMDCs, avoiding the immunocompatibility issues and complicated cell isolation, purification, identification and amplification procedures in vitro on wound repair. We found that mobilisation of the BMDCs into the circulation significantly increased the amount of BMDCs at the injury site which in turn accelerated healing of large open wound. We used a chimeric green fluorescent protein (GFP) mouse model to track BMDCs and to investigate their role in full-thickness skin excisional wounds. We have shown that bone marrow mobilisation by granulocyte colony stimulating factor (G-CSF) exerted multiple beneficial effects on skin repair, both by increasing the engraftment of BMDCs into the skin to differentiate into multiple skin cell types and by upregulating essential cytokine mRNAs critical to wound repair. The potential trophic effects of G-CSF on bone marrow stem cells to accelerate wound healing could have a significant clinical impact.

  6. Experimental xenoimplantation of antlerogenic cells into mandibular bone lesions in rabbits: two-year follow-up.

    PubMed

    Cegielski, Marek; Dziewiszek, Wojciech; Zabel, Maciej; Dziegiel, Piotr; Kuryszko, Jan; Izykowska, Ilona; Zatoński, Maciej; Bochnia, Marek

    2010-01-01

    Different types of cells require activation, and take part in annual, dynamic growth of deer antlers. Stem cells play the most important role in this process. This report shows the results of a two-year long observation of xenogenic implant of antlerogenic stem cells (cell line MIC-1). The cells were derived from growing antler of a deer (Cervus elaphus), seeded onto Spongostan and placed in postoperative lesions of mandibular bones of 15 experimental rabbits. The healing process observed in the implantation sites in all rabbits was normal, and no local inflammatory response was ever observed. Histological and immunohistochemical evaluations were performed after 1, 2, 6, 12 and 24 months, and confirmed the participation of xenogenic cells in the regeneration processes, as well as a lack of rejection of the implants. The deficiencies in the bones were replaced by newly formed, thick fibrous bone tissue that underwent mineralization and was later remodelled into lamellar bone. The results of the experiment with rabbits allow us to believe that antlerogenic cells could be used in reconstruction of bone tissues in other species as well.

  7. Total body calcium by neutron activation analysis in normals and osteoporotic populations: a discriminator of significant bone mass loss

    SciTech Connect

    Ott, S.M.; Murano, R.; Lewellen, T.K.; Nelp, W.B.; Chesnut, C.M.

    1983-10-01

    Measurements of total body calcium by neutron activation (TBC) in 94 normal individuals and 86 osteoporotic patients are reported. The ability of TBC to discriminate normal from osteoporotic females was evaluated with decision analysis. Bone mineral content (BMC) by single-photon absorptiometry was also measured. TBC was higher in males (range 826 to 1363 gm vs 537 to 1054 in females) and correlated with height in all normals. In females over age 55 there was a negative correlation with age. Thus, for normals an algorithm was derived to allow comparison between measured TBC and that predicted by sex, age, and height (TBCp). In the 28 normal females over age 55, the TBC was 764 +/- 115 gm vs. 616 +/- 90 in the osteoporotics. In 63 of the osteoporotic females an estimated height, from tibial length, was used to predict TBC. In normals the TBC/TBCp ratio was 1.00 +/- 0.12, whereas in osteoporotic females it was 0.80 +/- 0.12. A receiver operating characteristic curve showed better discrimination of osteoporosis with TBC/TBCp than with wrist BMC. By using Bayes' theorem, with a 25% prevalence of osteoporosis (estimate for postmenopausal women), the posttest probability of disease was 90% when the TBC/TBCp ratio was less than 0.84. The authors conclude that a low TBC/TBCp ratio is very helpful in determining osteoporosis.

  8. Characterization of bone marrow derived mesenchymal stem cells in suspension

    PubMed Central

    2012-01-01

    Introduction Bone marrow mesenchymal stem cells (BMMSCs) are a heterogeneous population of postnatal precursor cells with the capacity of adhering to culture dishes generating colony-forming unit-fibroblasts (CFU-F). Here we identify a new subset of BMMSCs that fail to adhere to plastic culture dishes and remain in culture suspension (S-BMMSCs). Methods To catch S-BMMSCs, we used BMMSCs-produced extracellular cell matrix (ECM)-coated dishes. Isolated S-BMMSCs were analyzed by in vitro stem cell analysis approaches, including flow cytometry, inductive multiple differentiation, western blot and in vivo implantation to assess the bone regeneration ability of S-BMMSCs. Furthermore, we performed systemic S-BMMSCs transplantation to treat systemic lupus erythematosus (SLE)-like MRL/lpr mice. Results S-BMMSCs are capable of adhering to ECM-coated dishes and showing mesenchymal stem cell characteristics with distinction from hematopoietic cells as evidenced by co-expression of CD73 or Oct-4 with CD34, forming a single colony cluster on ECM, and failure to differentiate into hematopoietic cell lineage. Moreover, we found that culture-expanded S-BMMSCs exhibited significantly increased immunomodulatory capacities in vitro and an efficacious treatment for SLE-like MRL/lpr mice by rebalancing regulatory T cells (Tregs) and T helper 17 cells (Th17) through high NO production. Conclusions These data suggest that it is feasible to improve immunotherapy by identifying a new subset BMMSCs. PMID:23083975

  9. Cell migration in the normal and pathological postnatal mammalian brain

    PubMed Central

    Canoll, Peter; Goldman, James E.

    2009-01-01

    In the developing brain, cell migration is a crucial process for structural organization, and is therefore highly regulated to allow the correct formation of complex networks, wiring neurons, and glia. In the early postnatal brain, late developmental processes such as the production and migration of astrocyte and oligodendrocyte progenitors still occur. Although the brain is completely formed and structured few weeks after birth, it maintains a degree of plasticity throughout life, including axonal remodeling, synaptogenesis, but also neural cell birth, migration and integration. The subventricular zone (SVZ) and the dentate gyrus of the hippocampus (DG) are the two main neurogenic niches in the adult brain. Neural stem cells reside in these structures and produce progenitors that migrate toward their ultimate location: the olfactory bulb and granular cell layer of the DG respectively. The aim of this review is to synthesize the increasing information concerning the organization, regulation and function of cell migration in a mature brain. In a normal brain, protein involved in cell-cell or cell-matrix interactions together with secreted proteins acting as chemoattractant or chemorepellant play key roles in the regulation of neural progenitor cell migration. In addition, recent data suggest that gliomas arise from the transformation of neural stem cells or progenitor cells and that glioma cell infiltration recapitulates key aspects of glial progenitor migration. Thus, we will consider glioma migration in the context of progenitor migration. Finally, many observations show that brain lesions and neurological diseases trigger neural stem/progenitor cell activation and migration towards altered structures. The factors involved in such cell migration/recruitment are just beginning to be understood. Inflammation which has long been considered as thoroughly disastrous for brain repair is now known to produce some positive effects on stem/progenitor cell recruitment via

  10. Bone marrow skeletal stem/progenitor cell defects in dyskeratosis congenita and telomere biology disorders

    PubMed Central

    Balakumaran, Arun; Mishra, Prasun J.; Pawelczyk, Edyta; Yoshizawa, Sayuri; Sworder, Brian J.; Cherman, Natasha; Kuznetsov, Sergei A.; Bianco, Paolo; Giri, Neelam; Savage, Sharon A.; Merlino, Glenn; Dumitriu, Bogdan; Dunbar, Cynthia E.; Young, Neal S.; Alter, Blanche P.

    2015-01-01

    Dyskeratosis congenita (DC) is an inherited multisystem disorder, characterized by oral leukoplakia, nail dystrophy, and abnormal skin pigmentation, as well as high rates of bone marrow (BM) failure, solid tumors, and other medical problems such as osteopenia. DC and telomere biology disorders (collectively referred to as TBD here) are caused by germline mutations in telomere biology genes leading to very short telomeres and limited proliferative potential of hematopoietic stem cells. We found that skeletal stem cells (SSCs) within the BM stromal cell population (BMSCs, also known as BM–derived mesenchymal stem cells), may contribute to the hematologic phenotype. TBD-BMSCs exhibited reduced clonogenicity, spontaneous differentiation into adipocytes and fibrotic cells, and increased senescence in vitro. Upon in vivo transplantation into mice, TBD-BMSCs failed to form bone or support hematopoiesis, unlike normal BMSCs. TERC reduction (a TBD-associated gene) in normal BMSCs by small interfering TERC-RNA (siTERC-RNA) recapitulated the TBD-BMSC phenotype by reducing proliferation and secondary colony-forming efficiency, and by accelerating senescence in vitro. Microarray profiles of control and siTERC-BMSCs showed decreased hematopoietic factors at the messenger RNA level and decreased secretion of factors at the protein level. These findings are consistent with defects in SSCs/BMSCs contributing to BM failure in TBD. PMID:25499762

  11. Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice

    SciTech Connect

    Otsuru, Satoru; Tamai, Katsuto . E-mail: tamai@gts.med.osaka-u.ac.jp; Yamazaki, Takehiko; Yoshikawa, Hideki; Kaneda, Yasufumi

    2007-03-09

    Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation (GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs) from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the PBMNCs isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accumulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-derived OPCs in circulating blood.

  12. An antigenic study of human plasma cells in normal tissue and in myeloma: identification of a novel plasma cell associated antigen.

    PubMed Central

    Nathan, P D; Walker, L; Hardie, D; Richardson, P; Khan, M; Johnson, G D; Ling, N R

    1986-01-01

    A mouse monoclonal antibody named BU11 which detects an antigen strongly expressed on human plasma cells is described. The antibody stains plasma cells in tonsil sections, fresh and cultured plasmacytoid cells from the bone marrow of patients with multiple myeloma and cells of the plasmacytoid cell line RPMI 8226 used as the immunogen. In vitro studies of pokeweed mitogen (PWM) stimulated peripheral blood B cells and Epstein-Barr virus (EBV) stimulated tonsil B cells show that the antigen is present mainly on cells coexpressing the OKT10 antigen and containing cytoplasmic immunoglobulin (cIg). The BU11 antigen is expressed weakly on some normal B cells and is not present on T cells, monocytes or granulocytes. The antigen is of molecular weight 58kD under reducing conditions and is biochemically distinct from previously described plasma cell antigens. Images Fig. 4 PMID:3024883

  13. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    SciTech Connect

    Yang, Yingbin; Cai, Shaoxi; Yang, Li; Yu, Shuhui; Jiang, Jiahuan; Yan, Xiaoqing; Zhang, Haoxing; Liu, Lan; Liu, Qun; Du, Jun; Cai, Shaohui; Sung, K.L. Paul

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  14. Polycythemia vera. The in vitro response of normal and abnormal stem cell lines to erythropoietin.

    PubMed Central

    Prchal, J F; Adamson, J W; Murphy, S; Steinmann, L; Fialkow, P J

    1978-01-01

    Bone marrow cells from two glucose-6-phosphate dehydrogenase (G-6-PD) heterozygotes with polycythemia vera were cultured to determine whether progenitors which wre not of the polycythemia vera clone were present, and, if present, which cell lines contributed to the increase in erythroid colonies observed in response to added erythropoietin (ESF). To accomplish this, the G-6-PD isoenzyme activity of individual erythroid colonies was determined. All of the erythroid colonies analyzed in cultures without added ESF, contained the G-6-PD isoenzyme type characteristic of the abnormal clone. With higher ESF concentrations in the culture, however, there was an increase in the colonies that were not of the polycythemia vera clone. Analysis of the ratio of the various types of colonies indicated that normal and polycythemia vera cells are capable of responding to ESF in vitro. In selected patients, this technique permits analysis of the ratios of normal to abnormal cells during the course of the disease, in response to therapy and during late complications, such as myelofibrosis or leukemic transformation. PMID:659576

  15. Is repetitive wounding and bone marrow-derived stem cell mediated-repair an etiology of lung cancer development and dissemination?

    PubMed

    Haura, Eric B

    2006-01-01

    The prevailing view of lung cancer is multi-step progression of normal cells into cancer cells through gain of function oncogenes coupled with loss of tumor suppressor genes. This progression of genetic damage ultimately results in the hallmarks of cancer. This theory has strong support from studies finding genetic damage in early stage preneoplastic lesions in lung epithelial cells from current or former smokers. This paper discusses an alternate theory that lung cancer is a bone marrow stem cell derived disease. Chronic cigarette smoking results in lung inflammation and epithelial damage that activates a chronic wound repair program. Recent studies have demonstrated that ability of bone marrow derived stem cells to respond to epithelial wounding and contribute to epithelial repair. The identification of cancer stem cells that are distinct from the bulk tumor cells through their ability of self-renewal may suggest that such cells are important in the development of lung cancer. The evidence supporting the hypothesis along with its implications are discussed. Confirmation of the hypothesis would suggest that the transition time from a normal cell to overt cancer cell may be much shorter than that based on the multi-step cancer progression model. Additionally, if wounding in other organs is a beacon that attracts bone marrow derived tumor cells, efforts to ameliorate areas of epithelial injury and compensatory wounding may block bone marrow derived tumor cell homing, aberrant repair, and metastasis. Finally, a bone marrow derived lung cancer stem cell would require stem cell poisons for cure.

  16. Adenovirus-mediated bone morphogenetic protein-2 gene transfection of bone marrow mesenchymal stem cells combined with nano-hydroxyapatite to construct bone graft material in vitro.

    PubMed

    Li, W C; Wang, D P; Li, L J; Zhu, W M; Zeng, Y J

    2013-04-01

    To study the adhesion, proliferation and expression of bone marrow mesenchymal stem cells (BMSCs) on nano-hydroxyapatite (Nano-HA) bone graft material after transfection of adenovirus-mediated human bone morphogenetic protein-2 expression vector (Ad-BMP-2). BMSCs were transfected using Ad-BMP-2. Immunohistochemistry and Western blot were used to detect BMP-2 expression in transfected cells. After transfection, BMP-2 protein was highly expressed in BMSCs; MTT test assay showed that the Nano-HA bone graft material could not inhibit in vitro proliferation of BMSCs. Ad-BMP-2-transfected BMSCs are well biocompatible with Nano-HA bone graft material, the transfected cells in material can secrete BMP-2 stably for a long time.

  17. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair

    PubMed Central

    Scarfì, Sonia

    2016-01-01

    The extracellular matrix-associated bone morphogenetic proteins (BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell (MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted cell-type lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair. PMID:26839636

  18. FGF23 is endogenously phosphorylated in bone cells.

    PubMed

    Lindberg, Iris; Pang, Hong Weng; Stains, Joseph P; Clark, David; Yang, Austin J; Bonewald, Lynda; Li, Kevin Z

    2015-03-01

    Levels of serum phosphate are controlled by the peptide hormone FGF23, secreted from bone osteocytes. Elevated levels of circulating FGF23 are a key factor in several hypophosphatemic disorders and play a role in chronic kidney disease. Posttranslational processing of FGF23 includes multi-site O-glycosylation, which reduces intracellular cleavage by proprotein convertases. The FGF23 protein also contains four serine phosphorylation consensus sequences (S-X-D/E); in this work, we asked whether FGF23 is a substrate for secretory phosphorylation. Both HEK cells as well as IDG-SW3 cells, an osteocyte model, incorporated radiolabeled orthophosphate into intact FGF23, as well as into the 14-kDa carboxy-terminal-but not the 17-kDa N-terminal-fragment. Sequential serine-to-alanine site-directed mutagenesis of four kinase consensus sites showed that labeling occurred on three serines within the carboxy-terminal fragment, Ser180 (adjacent to the cleavage site), Ser207, and Ser212. Liquid chromatography-coupled mass spectroscopy indicated the presence of phosphate at Ser212 in recombinant R&D mouse FGF23(R179Q) , confirming labeling results. A phosphopeptide-specific antibody was raised against phospho-Ser212 and exhibited immunoreactivity in osteocytes present in mouse long bone, providing further evidence that FGF23 is naturally phosphorylated in bone. Bone SIBLING proteins are serine-phosphorylated by the ubiquitous Golgi secretory kinase FAM20C. Cotransfection of HEK and MC3T3 cells with FGF23 and active, but not inactive, FAM20C kinase increased the storage and release of FGF23 in radiolabeling experiments, indicating potential effects of phosphorylation on FGF23 stability. Collectively, these data point to an important role for phosphorylation of FGF23 in bone.

  19. Growth hormone expression in murine bone marrow cells is independent of the pituitary transcription factor Pit-1.

    PubMed

    Kooijman, R; Malur, A; Van Buul-Offers, S C; Hooghe-Peters, E L

    1997-09-01

    GH has been shown to promote the development and function of leukocytes. The expression of both GH and GH-receptors in lymphoid cells has led to the hypothesis that GH acts in an autocrine or paracrine fashion. The described effects of GH on hematopoiesis and B cell development, led us to investigate GH expression in bone marrow cells. By immunocytochemistry, we show that bone marrow-derived granulocytes and macrophages contain immunoreactive GH. We found that 65 +/- 24% of the granulocytes were stained with anti-GH, whereas 5.8 +/- 1.5% of the granulocytes contained detectable amounts of GH mRNA as assessed by in situ hybridization. To address a possible alternative regulation mechanism in bone marrow and to establish whether locally derived GH might still play a role in pituitary-deficient dwarf mice, we also addressed GH expression in bone marrow from hypopituitary Snell dwarf mice. These mice have a mutated gene for the pituitary transcription factor Pit-1 that is deficient in DNA binding. Our finding that GH expression (immunoreactive protein and mRNA) in bone marrow cells from dwarf mice is similar to that in normal mice points to a Pit-1 independent regulation of GH in mouse bone marrow.

  20. The Impairment of Osteogenesis in Bone Sialoprotein (BSP) Knockout Calvaria Cell Cultures Is Cell Density Dependent

    PubMed Central

    Bouet, Guenaelle; Bouleftour, Wafa; Juignet, Laura; Linossier, Marie-Thérèse; Thomas, Mireille; Vanden-Bossche, Arnaud; Aubin, Jane E.; Vico, Laurence; Marchat, David; Malaval, Luc

    2015-01-01

    Bone sialoprotein (BSP) belongs to the "small integrin-binding ligand N-linked glycoprotein" (SIBLING) family, whose members interact with bone cells and bone mineral. BSP is strongly expressed in bone and we previously showed that BSP knockout (BSP-/-) mice have a higher bone mass than wild type (BSP+/+) littermates, with lower bone remodelling. Because baseline bone formation activity is constitutively lower in BSP-/- mice, we studied the impact of the absence of BSP on in vitro osteogenesis in mouse calvaria cell (MCC) cultures. MCC BSP-/- cultures exhibit fewer fibroblast (CFU-F), preosteoblast (CFU-ALP) and osteoblast colonies (bone nodules) than wild type, indicative of a lower number of osteoprogenitors. No mineralized colonies were observed in BSP-/- cultures, along with little/no expression of either osteogenic markers or SIBLING proteins MEPE or DMP1. Osteopontin (OPN) is the only SIBLING expressed in standard density BSP-/- culture, at higher levels than in wild type in early culture times. At higher plating density, the effects of the absence of BSP were partly rescued, with resumed expression of osteoblast markers and cognate SIBLING proteins, and mineralization of the mutant cultures. OPN expression and amount are further increased in high density BSP-/- cultures, while PHEX and CatB expression are differentiatlly regulated in a manner that may favor mineralization. Altogether, we found that BSP regulates mouse calvaria osteoblast cell clonogenicity, differentiation and activity in vitro in a cell density dependent manner, consistent with the effective skeletogenesis but the low levels of bone formation observed in vivo. The BSP knockout bone microenvironment may alter the proliferation/cell fate of early osteoprogenitors. PMID:25710686

  1. The mechanism of necroptosis in normal and cancer cells

    PubMed Central

    Fulda, Simone

    2013-01-01

    Programmed cell death is a basic cellular process that is critical to maintain tissue homeostasis. Besides apoptosis, necroptosis has more recently been discovered as another form of regulated cell death. Necroptosis plays a pivotal role during normal development and has also been implicated in the pathogenesis of a variety of human diseases. The control of necroptosis by defined signal transduction pathways offers the opportunity to target this cellular process for therapeutic purposes. For example, in cancer necroptosis is often impaired during tumorigenesis and can be engaged by targeted pharmacological approaches. Further insights into the signaling networks involved in the regulation of necroptosis will likely have important implications for the exploitation of this form of programmed cell death for the diagnosis or treatment of many diseases. PMID:24025353

  2. Bone speed of sound and physical activity levels of overweight and normal-weight girls and adolescents.

    PubMed

    Yao, Mathew; Ludwa, Izabella; Corbett, Lauren; Klentrou, Panagiota; Bonsu, Peter; Gammage, Kimberley; Falk, Bareket

    2011-02-01

    Bone properties, reflected by speed of sound (SOS), and physical activity levels were examined in overweight (OW) girls (n = 19) and adolescents (n = 22), in comparison with normal-weight (NW) girls (n = 21) and adolescents (n = 13). Moderate-to-vigorous physical activity (MVPA) was higher in NW than in OW in both age groups. Tibial SOS was lower in OW compared with NW in both age groups. MVPA correlated with tibial SOS, once age was partialed out. The results suggest that overweight girls and adolescents are characterized by low tibial SOS, which may be partially attributed to lower physical activity levels.

  3. Stem Cells for Bone Regeneration: From Cell-Based Therapies to Decellularised Engineered Extracellular Matrices

    PubMed Central

    Fisher, James N.; Peretti, Giuseppe M.; Scotti, Celeste

    2016-01-01

    Currently, autologous bone grafting represents the clinical gold standard in orthopaedic surgery. In certain cases, however, alternative techniques are required. The clinical utility of stem and stromal cells has been demonstrated for the repair and regeneration of craniomaxillofacial and long bone defects although clinical adoption of bone tissue engineering protocols has been very limited. Initial tissue engineering studies focused on the bone marrow as a source of cells for bone regeneration, and while a number of promising results continue to emerge, limitations to this technique have prompted the exploration of alternative cell sources, including adipose and muscle tissue. In this review paper we discuss the advantages and disadvantages of cell sources with a focus on adipose tissue and the bone marrow. Additionally, we highlight the relatively recent paradigm of developmental engineering, which promotes the recapitulation of naturally occurring developmental processes to allow the implant to optimally respond to endogenous cues. Finally we examine efforts to apply lessons from studies into different cell sources and developmental approaches to stimulate bone growth by use of decellularised hypertrophic cartilage templates. PMID:26997959

  4. The effects of simulated hypogravity on murine bone marrow cells

    NASA Technical Reports Server (NTRS)

    Lawless, Desales

    1989-01-01

    Mouse bone marrow cells grown in complete medium at unit gravity were compared with a similar population cultured in conditions that mimic some aspects of microgravity. After the cells adjusted to the conditions that simulated microgravity, they proliferated as fetal or oncogenic populations; their numbers doubled in twelve hour periods. Differentiated subpopulations were depleted from the heterogeneous mixture with time and the undifferentiated hematopoietic stem cells increased in numbers. The cells in the control groups in unit gravity and those in the bioreactors in conditions of microgravity were monitored under a number of parameters. Each were phenotyped as to cell surface antigens using a panel of monoclonal antibodies and flow cytometry. Other parameters compared included: pH, glucose uptake, oxygen consumption and carbon-dioxide production. Nuclear DNA was monitored by flow cytometry. Functional responses were studied by mitogenic stimulation by various lectins. The importance of these findings should have relevance to the space program. Cells should behave predictably in zero gravity; specific populations can be eliminated from diverse populations and other populations isolated. The availability of stem cell populations will enhance both bone marrow and gene transplant programs. Stem cells will permit developmental biologists study the paths of hematopoiesis.

  5. Dexamethasone Enhances Osteogenic Differentiation of Bone Marrow- and Muscle-Derived Stromal Cells and Augments Ectopic Bone Formation Induced by Bone Morphogenetic Protein-2

    PubMed Central

    Yuasa, Masato; Yamada, Tsuyoshi; Taniyama, Takashi; Masaoka, Tomokazu; Xuetao, Wei; Yoshii, Toshitaka; Horie, Masaki; Yasuda, Hiroaki; Uemura, Toshimasa; Okawa, Atsushi; Sotome, Shinichi

    2015-01-01

    We evaluated whether dexamethasone augments the osteogenic capability of bone marrow-derived stromal cells (BMSCs) and muscle tissue-derived stromal cells (MuSCs), both of which are thought to contribute to ectopic bone formation induced by bone morphogenetic protein-2 (BMP-2), and determined the underlying mechanisms. Rat BMSCs and MuSCs were cultured in growth media with or without 10-7 M dexamethasone and then differentiated under osteogenic conditions with dexamethasone and BMP-2. The effects of dexamethasone on cell proliferation and osteogenic differentiation, and also on ectopic bone formation induced by BMP-2, were analyzed. Dexamethasone affected not only the proliferation rate but also the subpopulation composition of BMSCs and MuSCs, and subsequently augmented their osteogenic capacity during osteogenic differentiation. During osteogenic induction by BMP-2, dexamethasone also markedly affected cell proliferation in both BMSCs and MuSCs. In an in vivo ectopic bone formation model, bone formation in muscle-implanted scaffolds containing dexamethasone and BMP-2 was more than two fold higher than that in scaffolds containing BMP-2 alone. Our results suggest that dexamethasone potently enhances the osteogenic capability of BMP-2 and may thus decrease the quantity of BMP-2 required for clinical application, thereby reducing the complications caused by excessive doses of BMP-2. Highlights: 1. Dexamethasone induced selective proliferation of bone marrow- and muscle-derived cells with higher differentiation potential. 2. Dexamethasone enhanced the osteogenic capability of bone marrow- and muscle-derived cells by altering the subpopulation composition. 3. Dexamethasone augmented ectopic bone formation induced by bone morphogenetic protein-2. PMID:25659106

  6. Plasma cell gingivitis with severe alveolar bone loss.

    PubMed

    Kumar, Vivek; Tripathi, Amitandra Kumar; Saimbi, Charanjit Singh; Sinha, Jolly

    2015-01-16

    Plasma cell gingivitis is a rare benign condition of the gingiva characterised by sharply demarcated erythaematous and oedematous gingiva often extending up to the muco gingival junction. It is considered a hypersensitive reaction. It presents clinically as a diffuse, erythaematous and papillary lesion of the gingiva, which frequently bleeds, with minimal trauma. This paper presents a case of a 42-year-old man who was diagnosed with plasma cell gingivitis, based on the presence of plasma cells in histological sections, and severe alveolar bone loss at the affected site, which was managed by surgical intervention.

  7. Signal transduction pathways involved in mechanotransduction in bone cells

    SciTech Connect

    Liedert, Astrid . E-mail: astrid.liedert@uni-ulm.de; Kaspar, Daniela; Blakytny, Robert; Claes, Lutz; Ignatius, Anita

    2006-10-13

    Several in vivo and in vitro studies with different loading regimens showed that mechanical stimuli have an influence on proliferation and differentiation of bone cells. Prerequisite for this influence is the transduction of mechanical signals into the cell, a phenomenon that is termed mechanotransduction, which is essential for the maintenance of skeletal homeostasis in adults. Mechanoreceptors, such as the integrins, cadherins, and stretch-activated Ca{sup 2+} channels, together with various signal transduction pathways, are involved in the mechanotransduction process that ultimately regulates gene expression in the nucleus. Mechanotransduction itself is considered to be regulated by hormones, the extracellular matrix of the osteoblastic cells and the mode of the mechanical stimulus.

  8. Clear cell chondrosarcoma with secondary aneurysmal bone cyst changes

    PubMed Central

    Tay, Timothy; Wong, Steven Bak Siew; Sittampalam, Kesavan s/o; Lie, Denny Tjiauw Tjoen

    2014-01-01

    Clear cell chondrosarcoma is a rare cartilaginous tumour of low-grade malignancy. Although it has a characteristic histological appearance, its radiological features and clinical presentation often mimic a benign lesion. Herein, we describe the case of a patient with a clear cell chondrosarcoma of the right proximal femur that had an atypical appearance of chronic avascular necrosis on initial plain radiographs, which made preoperative diagnosis a challenge. In addition, the tumour also had extensive areas of aneurysmal bone cyst-like changes, which is not only a rare histologic phenomenon in clear cell chondrosarcoma, but also a confounding factor in the interpretation of the radiologic findings. PMID:24664395

  9. The effect of magnetic field during freezing and thawing of rat bone marrow-derived mesenchymal stem cells.

    PubMed

    Shikata, H; Kaku, M; Kojima, S-I; Sumi, H; Kojima, S-T; Yamamoto, T; Yashima, Y; Kawata, T; Tanne, K; Tanimoto, K

    2016-08-01

    Previous studies showed that a programmed freezer with magnetic field can maintain a high survival rate of mesenchymal stem cells (MSCs). The purpose of this study was to evaluate the influences of magnetic field during freezing and thawing on the survival of MSCs isolated from rat bone marrow. The cells were frozen by a normal programmed freezer or a programmed freezer with magnetic field (CAS-LAB1) and cryopreserved for 7 days at -150 °C. Then, the cells were thawed in the presence or absence of magnetic field. Immediately after thawing, the number of surviving or viable cells was counted. The cell proliferation was examined after 1-week culture. Cryopreserved MSCs which were frozen by a normal freezer or a CAS freezer were transplanted into bone defects artificially made in calvaria of 4-week-old rats. Non-cryopreserved MSCs were used as a control. The rats were sacrificed at 8, 16, or 24 weeks after transplantation and the bone regeneration area was measured. Proliferation rates of MSCs after 1 week were significantly higher in the CAS-freezing-thawing group than in the CAS-freezing group. The extent of new bone formation in the CAS-freezing-thawing group tended to be larger than in CAS-freezing group 24 weeks after transplantation. These results suggest that a magnetic field enhances cell survival during thawing as well as freezing.

  10. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    NASA Astrophysics Data System (ADS)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    Spaceflight factors, including microgravity and space radiation, have many detrimental short-term effects on human physiology, including muscle and bone degradation, and immune system dysfunction. The long-term progression of these physiological effects is still poorly understood, and a serious concern for long duration spaceflight missions. We hypothesized that some of the degenerative effects of spaceflight may be caused in part by an inability of stem cells to proliferate and differentiate normally resulting in an impairment of tissue regenerative processes. Furthermore, we hypothesized that long-term bone tissue degeneration in space may be mediated by activation of the p53 signaling network resulting in cell cycle arrest and/or apoptosis in osteoprogenitors. In our analyses we found that spaceflight caused significant bone loss in the weight-bearing bones of mice with a 6.3% reduction in bone volume and 11.9% decrease in bone thickness associated with increased osteoclastic activity. Along with this rapid bone loss we also observed alterations in the cell cycle characterized by an increase in the Cdkn1a/p21 cell cycle arrest molecule independent of Trp53. Overexpression of Cdkn1a/p21 was localized to osteoblasts lining the periosteal surface of the femur and chondrocytes in the head of the femur, suggesting an inhibition of proliferation in two key regenerative cell types of the femur in response to spaceflight. Additionally we found overexpression of several matrix degradation molecules including MMP-1a, 3 and 10, of which MMP-10 was localized to osteocytes within the shaft of the femur. This, in conjunction with 40 nm resolution synchrotron nano-Computed Tomography (nano-CT) observations of an increase in osteocyte lacunae cross-sectional area, perimeter and a decrease in circularity indicates a potential role for osteocytic osteolysis in the observed bone degeneration in spaceflight. To further investigate the genetic response of bone to mechanical

  11. PDGFBB promotes PDGFR{alpha}-positive cell migration into artificial bone in vivo

    SciTech Connect

    Yoshida, Shigeyuki; Iwasaki, Ryotaro; Kawana, Hiromasa; Miyauchi, Yoshiteru; Hoshi, Hiroko; Miyamoto, Hiroya; Mori, Tomoaki; Kanagawa, Hiroya; Katsuyama, Eri; Fujie, Atsuhiro; Hao, Wu; and others

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We examined effects of PDGFBB in PDGFR{alpha} positive cell migration in artificial bones. Black-Right-Pointing-Pointer PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. Black-Right-Pointing-Pointer PDGFBB promoted PDGFR{alpha} positive cell migration into artificial bones but not osteoblast proliferation. Black-Right-Pointing-Pointer PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure. Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor {alpha} (PDGFR{alpha})-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGF{beta}) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.

  12. WWP2 is required for normal cell cycle progression.

    PubMed

    Choi, Byeong Hyeok; Che, Xun; Chen, Changyan; Lu, Luo; Dai, Wei

    2015-09-01

    WWP2 is a ubiquitin E3 ligase belonging to the Nedd4-like family. Given that WWP2 target proteins including PTEN that are crucial for regulating cell proliferation or suppressing tumorigenesis, we have asked whether WWP2 plays a role in controlling cell cycle progression. Here we report that WWP2 is necessary for normal cell cycle progression as its silencing significantly reduces the cell proliferation rate. We have identified that an isoform of WWP2 (WWP2-V4) is highly expressed in the M phase of the cell cycle. Silencing of WWP2 accelerates the turnover of cyclin E, which is accompanied by increased levels of phospho-histone H3 (p-H3) and cyclin B. Moreover, silencing of WWP2 results in compromised phosphorylation of Akt(S473), a residue whose phosphorylation is tightly associated with the activation of the kinase. Combined, these results strongly suggest that WWP2 is an important component in regulating the Akt signaling cascade, as well as cell cycle progression. PMID:26622940

  13. WWP2 is required for normal cell cycle progression

    PubMed Central

    Choi, Byeong Hyeok; Che, Xun; Chen, Changyan; Lu, Luo; Dai, Wei

    2015-01-01

    WWP2 is a ubiquitin E3 ligase belonging to the Nedd4-like family. Given that WWP2 target proteins including PTEN that are crucial for regulating cell proliferation or suppressing tumorigenesis, we have asked whether WWP2 plays a role in controlling cell cycle progression. Here we report that WWP2 is necessary for normal cell cycle progression as its silencing significantly reduces the cell proliferation rate. We have identified that an isoform of WWP2 (WWP2-V4) is highly expressed in the M phase of the cell cycle. Silencing of WWP2 accelerates the turnover of cyclin E, which is accompanied by increased levels of phospho-histone H3 (p-H3) and cyclin B. Moreover, silencing of WWP2 results in compromised phosphorylation of AktS473, a residue whose phosphorylation is tightly associated with the activation of the kinase. Combined, these results strongly suggest that WWP2 is an important component in regulating the Akt signaling cascade, as well as cell cycle progression. PMID:26622940

  14. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking.

    PubMed

    Ratajczak, M Z

    2015-04-01

    This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of the complement cascade as a trigger for egress of hematopoietic stem cells from bone marrow into blood as well as the emerging role of novel homing factors and priming mechanisms that support stromal-derived factor 1-mediated homing of hematopoietic stem/progenitor cells after transplantation.

  15. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking

    PubMed Central

    Ratajczak, M Z

    2015-01-01

    This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of the complement cascade as a trigger for egress of hematopoietic stem cells from bone marrow into blood as well as the emerging role of novel homing factors and priming mechanisms that support stromal-derived factor 1-mediated homing of hematopoietic stem/progenitor cells after transplantation. PMID:25486871

  16. Cas Proteins in Normal and Pathological Cell Growth Control

    PubMed Central

    Tikhmyanova, Nadezhda; Little, Joy L.; Golemis, Erica A.

    2009-01-01

    Proteins of the CAS (Crk-Associated Substrate) family (BCAR1/p130Cas, NEDD9/HEF1/Cas-L, EFS/SIN and CASS4/HEPL) are integral players in normal and pathological cell biology. CAS proteins act as scaffolds to regulate protein complexes controlling migration and chemotaxis, apoptosis, cell cycle, and differentiation, and have more recently been linked to a role in progenitor cell function. Reflecting these complex functions, over-expression of CAS proteins has now been strongly linked to poor prognosis and increased metastasis in cancer, as well as resistance to first-line chemotherapeutics in multiple tumor types including breast and lung cancers, glioblastoma, and melanoma. Further, CAS proteins have also been linked to additional pathological conditions including inflammatory disorders, Alzheimer’s and Parkinson’s disease, as well as developmental defects. This review will explore the roles of the CAS proteins in normal and pathological states in the context of the many mechanistic insights into CAS protein function that have emerged in the past decade. PMID:19937461

  17. Healing of normal and osteopenic bone with titanium implant and low-level laser therapy (GaAlAs): a histomorphometric study in rats.

    PubMed

    de Vasconcellos, Luana Marotta Reis; Barbara, Mary Anne Moreira; Deco, Camila Porto; Junqueira, Juliana Campos; do Prado, Renata Falchete; Anbinder, Ana Lia; de Vasconcellos, Luis Gustavo Oliveira; Cairo, Carlos Alberto Alves; Carvalho, Yasmin Rodarte

    2014-03-01

    The study investigates the influence of low-level laser therapy (LLLT) on bone healing in the femur of osteopenic and normal rats with titanium implants. Ovariectomy and control group were randomly submitted to LLLT, which was applied by gallium-aluminum-arsenium (GaAlAs) laser at the surgical site before and after placing the implant, for seven times. Histomorphometric and statistical analysis were performed. Most irradiated groups showed higher values than the nonirradiated groups. The GaAlAs infrared diode laser may improve the osseointegration process in osteopenic and normal bone, particularly based on its effects in the initial phase of bone formation.

  18. Deregulation of bone forming cells in bone diseases and anabolic effects of strontium-containing agents and biomaterials.

    PubMed

    Tan, Shuang; Zhang, Binbin; Zhu, Xiaomei; Ao, Ping; Guo, Huajie; Yi, Weihong; Zhou, Guang-Qian

    2014-01-01

    Age-related bone loss and osteoporosis are associated with bone remodeling changes that are featured with decreased trabecular and periosteal bone formation relative to bone resorption. Current anticatabolic therapies focusing on the inhibition of bone resorption may not be sufficient in the prevention or reversal of age-related bone deterioration and there is a big need in promoting osteoblastogenesis and bone formation. Enhanced understanding of the network formed by key signaling pathways and molecules regulating bone forming cells in health and diseases has therefore become highly significant. The successful development of agonist/antagonist of the PTH and Wnt signaling pathways are profits of the understanding of these key pathways. As the core component of an approved antiosteoporosis agent, strontium takes its effect on osteoblasts at multilevel through multiple pathways, representing a good example in revealing and exploring anabolic mechanisms. The recognition of strontium effects on bone has led to its expected application in a variety of biomaterial scaffolds used in tissue engineering strategies aiming at bone repairing and regeneration. While summarizing the recent progress in these respects, this review also proposes the new approaches such as systems biology in order to reveal new insights in the pathology of osteoporosis as well as possible discovery of new therapies. PMID:24800251

  19. Deregulation of Bone Forming Cells in Bone Diseases and Anabolic Effects of Strontium-Containing Agents and Biomaterials

    PubMed Central

    Tan, Shuang; Zhang, Binbin; Zhu, Xiaomei; Ao, Ping; Guo, Huajie; Yi, Weihong; Zhou, Guang-Qian

    2014-01-01

    Age-related bone loss and osteoporosis are associated with bone remodeling changes that are featured with decreased trabecular and periosteal bone formation relative to bone resorption. Current anticatabolic therapies focusing on the inhibition of bone resorption may not be sufficient in the prevention or reversal of age-related bone deterioration and there is a big need in promoting osteoblastogenesis and bone formation. Enhanced understanding of the network formed by key signaling pathways and molecules regulating bone forming cells in health and diseases has therefore become highly significant. The successful development of agonist/antagonist of the PTH and Wnt signaling pathways are profits of the understanding of these key pathways. As the core component of an approved antiosteoporosis agent, strontium takes its effect on osteoblasts at multilevel through multiple pathways, representing a good example in revealing and exploring anabolic mechanisms. The recognition of strontium effects on bone has led to its expected application in a variety of biomaterial scaffolds used in tissue engineering strategies aiming at bone repairing and regeneration. While summarizing the recent progress in these respects, this review also proposes the new approaches such as systems biology in order to reveal new insights in the pathology of osteoporosis as well as possible discovery of new therapies. PMID:24800251

  20. Deregulation of bone forming cells in bone diseases and anabolic effects of strontium-containing agents and biomaterials.

    PubMed

    Tan, Shuang; Zhang, Binbin; Zhu, Xiaomei; Ao, Ping; Guo, Huajie; Yi, Weihong; Zhou, Guang-Qian

    2014-01-01

    Age-related bone loss and osteoporosis are associated with bone remodeling changes that are featured with decreased trabecular and periosteal bone formation relative to bone resorption. Current anticatabolic therapies focusing on the inhibition of bone resorption may not be sufficient in the prevention or reversal of age-related bone deterioration and there is a big need in promoting osteoblastogenesis and bone formation. Enhanced understanding of the network formed by key signaling pathways and molecules regulating bone forming cells in health and diseases has therefore become highly significant. The successful development of agonist/antagonist of the PTH and Wnt signaling pathways are profits of the understanding of these key pathways. As the core component of an approved antiosteoporosis agent, strontium takes its effect on osteoblasts at multilevel through multiple pathways, representing a good example in revealing and exploring anabolic mechanisms. The recognition of strontium effects on bone has led to its expected application in a variety of biomaterial scaffolds used in tissue engineering strategies aiming at bone repairing and regeneration. While summarizing the recent progress in these respects, this review also proposes the new approaches such as systems biology in order to reveal new insights in the pathology of osteoporosis as well as possible discovery of new therapies.

  1. Disruption of glucocorticoid signaling in chondrocytes delays metaphyseal fracture healing but does not affect normal cartilage and bone development

    PubMed Central

    Tu, Jinwen; Henneicke, Holger; Zhang, Yaqing; Stoner, Shihani; Cheng, Tegan L.; Schindeler, Aaron; Chen, Di; Tuckermann, Jan; Cooper, Mark S.; Seibel, Markus J.; Zhou, Hong

    2014-01-01

    States of glucocorticoid excess are associated with defects in chondrocyte function. Most prominently there is a reduction in linear growth but delayed healing of fractures that require endochondral ossification to also occur. In contrast, little is known about the role of endogenous glucocorticoids in chondrocyte function. As glucocorticoids exert their cellular actions through the glucocorticoid receptor (GR), we aimed to elucidate the role of endogenous glucocorticoids in chondrocyte function in vivo through characterization of tamoxifen-inducible chondrocyte-specific GR knockout (chGRKO) mice in which the GR was deleted at various post-natal ages. Knee joint architecture, cartilage structure, growth plates, intervertebral discs, long bone length and bone micro-architecture were similar in chGRKO and control mice at all ages. Analysis of fracture healing in chGRKO and control mice demonstrated that in metaphyseal fractures, chGRKO mice formed a larger cartilaginous callus at 1 and 2 week post-surgery, as well as a smaller amount of well-mineralized bony callus at the fracture site 4 week post-surgery, when compared to control mice. In contrast, chondrocyte-specific GR knockout did not affect diaphyseal fracture healing. We conclude that endogenous GC signaling in chondrocytes plays an important role during metaphyseal fracture healing but is not essential for normal long bone growth. PMID:25193158

  2. Genome-Wide Linkage Scan for Quantitative Trait Loci Underlying Normal Variation in Heel Bone Ultrasound Measures

    PubMed Central

    Lee, M.; Choh, A.C.; Williams, K.D.; Schroeder, V.; Dyer, T.D.; Blangero, J.; Cole, S.A.; Chumlea, WM.C.; Duren, D.L.; Sherwood, R.J.; Siervogel, R.M.; Towne, B.; Czerwinski, S.A.

    2012-01-01

    Quantitative ultrasound (QUS) traits are correlated with bone mineral density (BMD), but predict risk for future fracture independent of BMD. Only a few studies, however, have sought to identify specific genes influencing calcaneal QUS measures. The aim of this study was to conduct a genome-wide linkage scan to identify quantitative trait loci (QTL) influencing normal variation in QUS traits. QUS measures were collected from a total of 719 individuals (336 males and 383 females) from the Fels Longitudinal Study who have been genotyped and have at least one set of QUS measurements. Participants ranged in age from 18.0 to 96.6 years and were distributed across 110 nuclear and extended families. Using the Sahara ® bone sonometer, broadband ultrasound attenuation (BUA), speed of sound (SOS) and stiffness index (QUI) were collected from the right heel. Variance components based linkage analysis was performed on the three traits using 400 polymorphic short tandem repeat (STR) markers spaced approximately 10 cM apart across the autosomes to identify QTL influencing the QUS traits. Age, sex, and other significant covariates were simultaneously adjusted. Heritability estimates (h2) for the QUS traits ranged from 0.42 to 0.57. Significant evidence for a QTL influencing BUA was found on chromosome 11p15 near marker D11S902 (LOD = 3.11). Our results provide additional evidence for a QTL on chromosome 11p that harbors a potential candidate gene(s) related to BUA and bone metabolism. PMID:22237995

  3. Ex Vivo Expanded Allogeneic Mesenchymal Stem Cells With Bone Marrow Transplantation Improved Osteogenesis in Infants With Severe Hypophosphatasia.

    PubMed

    Taketani, Takeshi; Oyama, Chigusa; Mihara, Aya; Tanabe, Yuka; Abe, Mariko; Hirade, Tomohiro; Yamamoto, Satoshi; Bo, Ryosuke; Kanai, Rie; Tadenuma, Taku; Michibata, Yuko; Yamamoto, Soichiro; Hattori, Miho; Katsube, Yoshihiro; Ohnishi, Hiroe; Sasao, Mari; Oda, Yasuaki; Hattori, Koji; Yuba, Shunsuke; Ohgushi, Hajime; Yamaguchi, Seiji

    2015-01-01

    Patients with severe hypophosphatasia (HPP) develop osteogenic impairment with extremely low alkaline phosphatase (ALP) activity, resulting in a fatal course during infancy. Mesenchymal stem cells (MSCs) differentiate into various mesenchymal lineages, including bone and cartilage. The efficacy of allogeneic hematopoietic stem cell transplantation for congenital skeletal and storage disorders is limited, and therefore we focused on MSCs for the treatment of HPP. To determine the effect of MSCs on osteogenesis, we performed multiple infusions of ex vivo expanded allogeneic MSCs for two patients with severe HPP who had undergone bone marrow transplantation (BMT) from asymptomatic relatives harboring the heterozygous mutation. There were improvements in not only bone mineralization but also muscle mass, respiratory function, and mental development, resulting in the patients being alive at the age of 3. After the infusion of MSCs, chimerism analysis of the mesenchymal cell fraction isolated from bone marrow in the patients demonstrated that donor-derived DNA sequences existed. Adverse events of BMT were tolerated, whereas those of MSC infusion did not occur. However, restoration of ALP activity was limited, and normal bony architecture could not be achieved. Our data suggest that multiple MSC infusions, following BMT, were effective and brought about clinical benefits for patients with lethal HPP. Allogeneic MSC-based therapy would be useful for patients with other congenital bone diseases and tissue disorders if the curative strategy to restore clinically normal features, including bony architecture, can be established.

  4. Degradation of polysaccharide hydrogels seeded with bone marrow stromal cells.

    PubMed

    Jahromi, Shiva H; Grover, Liam M; Paxton, Jennifer Z; Smith, Alan M

    2011-10-01

    In order to produce hydrogel cell culture substrates that are fit for the purpose, it is important that the mechanical properties are well understood not only at the point of cell seeding but throughout the culture period. In this study the change in the mechanical properties of three biopolymer hydrogels alginate, low methoxy pectin and gellan gum have been assessed in cell culture conditions. Samples of the gels were prepared encapsulating rat bone marrow stromal cells which were then cultured in osteogenic media. Acellular samples were also prepared and incubated in standard cell culture media. The rheological properties of the gels were measured over a culture period of 28 days and it was found that the gels degraded at very different rates. The degradation occurred most rapidly in the order alginate > Low methoxy pectin > gellan gum. The ability of each hydrogel to support differentiation of bone marrow stromal cells to osteoblasts was also verified by evidence of mineral deposits in all three of the materials. These results highlight that the mechanical properties of biopolymer hydrogels can vary greatly during in vitro culture, and provide the potential of selecting hydrogel cell culture substrates with mechanical properties that are tissue specific.

  5. Transplanted Bone Marrow-Derived Cells Contribute to Human Adipogenesis.

    PubMed

    Rydén, Mikael; Uzunel, Mehmet; Hård, Joanna L; Borgström, Erik; Mold, Jeff E; Arner, Erik; Mejhert, Niklas; Andersson, Daniel P; Widlund, Yvonne; Hassan, Moustapha; Jones, Christina V; Spalding, Kirsty L; Svahn, Britt-Marie; Ahmadian, Afshin; Frisén, Jonas; Bernard, Samuel; Mattsson, Jonas; Arner, Peter

    2015-09-01

    Because human white adipocytes display a high turnover throughout adulthood, a continuous supply of precursor cells is required to maintain adipogenesis. Bone marrow (BM)-derived progenitor cells may contribute to mammalian adipogenesis; however, results in animal models are conflicting. Here we demonstrate in 65 subjects who underwent allogeneic BM or peripheral blood stem cell (PBSC) transplantation that, over the entire lifespan, BM/PBSC-derived progenitor cells contribute ∼10% to the subcutaneous adipocyte population. While this is independent of gender, age, and different transplantation-related parameters, body fat mass exerts a strong influence, with up to 2.5-fold increased donor cell contribution in obese individuals. Exome and whole-genome sequencing of single adipocytes suggests that BM/PBSC-derived progenitors contribute to adipose tissue via both differentiation and cell fusion. Thus, at least in the setting of transplantation, BM serves as a reservoir for adipocyte progenitors, particularly in obese subjects. PMID:26190649

  6. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    SciTech Connect

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  7. Overview of bone marrow and peripheral blood stem cell transplantation.

    PubMed

    Poliquin, C M

    1997-01-01

    Bone marrow transplantation (BMT) and peripheral blood stem cell transplantation (PBSCT) are treatments used with increasing frequency for a growing number of cancers. As technology develops, so, too, does the complexity of nursing care. In addition, as the number of patients who receive BMT or PBSCT increases, more and more nurses will be involved in their care. Knowledge of what problems to anticipate, comprehensive assessment, clear patient and family education, and strong emotional support provide the key to successful patient management.

  8. Increased reactive oxygen species and exhaustion of quiescent CD34-positive bone marrow cells may contribute to poor graft function after allotransplants

    PubMed Central

    Hu, Yue; Shi, Min-Min; Wang, Yu-Tong; Wang, Yu; Zhang, Xiao-Hui; Xu, Lan-Ping; Liu, Kai-Yan; Deng, Hong-Kui; Huang, Xiao-Jun

    2016-01-01

    Poor graft function (PGF) is a fatal complication following allogeneic haematopoietic stem cell transplantation. However, the underlying mechanism is unclear. Effective cross-talk between haematopoietic stem cells (HSCs) and bone marrow microenvironment is important for normal haematopoiesis. Normal HSCs reside in a hypoxic bone marrow microenvironment that protects them from oxidative stress that would otherwise inhibit their self-renewal and results in bone marrow failure. Whether an increased level of reactive oxygen species (ROS) causes PGF following allotransplant is unclear. Using a prospective case-pair study, we identified increased levels of ROS in CD34+ bone marrow cells in subjects with PGF. Elevated ROS levels was associated with an increased frequency of DNA strand breaks, apoptosis, exhaustion of quiescent CD34+ cells and defective colony-forming unit plating efficiency, particularly in the CD34+CD38− fraction. Up-regulated intracellular p53, p21, caspase-3 and caspase-9 levels (but not p38) were detected in CD34+ cells, particularly in the CD34+CD38− fraction. To further study the potential role of ROS levels in post-transplant haematopoiesis, CD34+ bone marrow cells from subjects with good graft function were treated with H2O2. This increased ROS levels resulting in defective CD34+ cells, an effect partially reversed by N-acetyl-L-cysteine. Moreover, CD34+ bone marrow cells from the donors to subjects with poor or good graft function exhibited comparable haematopoietic reconstitution capacities in the xeno-transplanted NOD-PrkdcscidIL2rgnull mice. Thus, even if the transplanted donors' bone marrow CD34+ cells are functionally normal pre-transplant, ROS-induced apoptosis may contribute to the exhaustion of CD34+ bone marrow cells in subjects with PGF following allotransplant. PMID:27105530

  9. Human Normal Bronchial Epithelial Cells: A Novel In Vitro Cell Model for Toxicity Evaluation

    PubMed Central

    Huang, Haiyan; Xia, Bo; Liu, Hongya; Li, Jie; Lin, Shaolin; Li, Tiyuan; Liu, Jianjun; Li, Hui

    2015-01-01

    Human normal cell-based systems are needed for drug discovery and toxicity evaluation. hTERT or viral genes transduced human cells are currently widely used for these studies, while these cells exhibited abnormal differentiation potential or response to biological and chemical signals. In this study, we established human normal bronchial epithelial cells (HNBEC) using a defined primary epithelial cell culture medium without transduction of exogenous genes. This system may involve decreased IL-1 signaling and enhanced Wnt signaling in cells. Our data demonstrated that HNBEC exhibited a normal diploid karyotype. They formed well-defined spheres in matrigel 3D culture while cancer cells (HeLa) formed disorganized aggregates. HNBEC cells possessed a normal cellular response to DNA damage and did not induce tumor formation in vivo by xenograft assays. Importantly, we assessed the potential of these cells in toxicity evaluation of the common occupational toxicants that may affect human respiratory system. Our results demonstrated that HNBEC cells are more sensitive to exposure of 10~20 nm-sized SiO2, Cr(VI) and B(a)P compared to 16HBE cells (a SV40-immortalized human bronchial epithelial cells). This study provides a novel in vitro human cells-based model for toxicity evaluation, may also be facilitating studies in basic cell biology, cancer biology and drug discovery. PMID:25861018

  10. Perinatal stem cells: A promising cell resource for tissue engineering of craniofacial bone

    PubMed Central

    Si, Jia-Wen; Wang, Xu-Dong; Shen, Steve GF

    2015-01-01

    In facing the mounting clinical challenge and suboptimal techniques of craniofacial bone defects resulting from various conditions, such as congenital malformations, osteomyelitis, trauma and tumor resection, the ongoing research of regenerative medicine using stem cells and concurrent advancement in biotechnology have shifted the focus from surgical reconstruction to a novel stem cell-based tissue engineering strategy for customized and functional craniofacial bone regeneration. Given the unique ontogenetical and cell biological properties of perinatal stem cells, emerging evidence has suggested these extraembryonic tissue-derived stem cells to be a promising cell source for extensive use in regenerative medicine and tissue engineering. In this review, we summarize the current achievements and obstacles in stem cell-based craniofacial bone regeneration and subsequently we address the characteristics of various types of perinatal stem cells and their novel application in tissue engineering of craniofacial bone. We propose the promising feasibility and scope of perinatal stem cell-based craniofacial bone tissue engineering for future clinical application. PMID:25621114

  11. Stromal cell migration precedes hemopoietic repopulation of the bone marrow after irradiation

    SciTech Connect

    Werts, E.D.; Gibson, D.P.; Knapp, S.A.; DeGowin, R.L.

    1980-01-01

    Circulation of hemopoietic stem cells into an irradiated site has been thoroughly documented, but migration of stromal cells to repair radiation damage has not. We determined the radiosensitivity of mouse bone marrow stroma and evaluated stromal and hemopoietic repopulation in x-irradiated marrow. The D/sub 0/ for growth of colonies of marrow stromal cells (MSC) was 215 to 230 rad. Total-body irradiation (TB) obliterated marrow stromal and hemopoietic cells within 3 days. In contrast, 1 day after 1000 rad leg irradiation (LI), MSC rose to 80% of normal, but fell to 34% by 3 days and recovered to 72% by 30 days. However, femoral nucleated cells diminished to 20% by 3 days and recovered to 74% of normal by 30 days. Likewise, differentiated marrow cells and hemopoietic stem cells were initially depleted. With 1000 rad LI followed 3 h later by 1000 rad to the body while shielding the leg, MSC and femoral nucleated cells recovered to values intermediate between 1000 rad TB and 1000 rad LI. We concluded that: (1) the D/sub 0/ for MSC was 215 to 230 rad, (2) stromal repopulation preceded hemopoietic recovery, and (3) immigration of stromal cells from an unirradiated sanctuary facilitated hemopoietic repopulation of a heavily irradiated site.

  12. Progesterone Upregulates Gene Expression in Normal Human Thyroid Follicular Cells.

    PubMed

    Bertoni, Ana Paula Santin; Brum, Ilma Simoni; Hillebrand, Ana Caroline; Furlanetto, Tania Weber

    2015-01-01

    Thyroid cancer and thyroid nodules are more prevalent in women than men, so female sex hormones may have an etiological role in these conditions. There are no data about direct effects of progesterone on thyroid cells, so the aim of the present study was to evaluate progesterone effects in the sodium-iodide symporter NIS, thyroglobulin TG, thyroperoxidase TPO, and KI-67 genes expression, in normal thyroid follicular cells, derived from human tissue. NIS, TG, TPO, and KI-67 mRNA expression increased significantly after TSH 20 μUI/mL, respectively: 2.08 times, P < 0.0001; 2.39 times, P = 0.01; 1.58 times, P = 0.0003; and 1.87 times, P < 0.0001. In thyroid cells treated with 20 μUI/mL TSH plus 10 nM progesterone, RNA expression of NIS, TG, and KI-67 genes increased, respectively: 1.78 times, P < 0.0001; 1.75 times, P = 0.037; and 1.95 times, P < 0.0001, and TPO mRNA expression also increased, though not significantly (1.77 times, P = 0.069). These effects were abolished by mifepristone, an antagonist of progesterone receptor, suggesting that genes involved in thyroid cell function and proliferation are upregulated by progesterone. This work provides evidence that progesterone has a direct effect on thyroid cells, upregulating genes involved in thyroid function and growth. PMID:26089899

  13. Progesterone Upregulates Gene Expression in Normal Human Thyroid Follicular Cells

    PubMed Central

    Bertoni, Ana Paula Santin; Brum, Ilma Simoni; Hillebrand, Ana Caroline; Furlanetto, Tania Weber

    2015-01-01

    Thyroid cancer and thyroid nodules are more prevalent in women than men, so female sex hormones may have an etiological role in these conditions. There are no data about direct effects of progesterone on thyroid cells, so the aim of the present study was to evaluate progesterone effects in the sodium-iodide symporter NIS, thyroglobulin TG, thyroperoxidase TPO, and KI-67 genes expression, in normal thyroid follicular cells, derived from human tissue. NIS, TG, TPO, and KI-67 mRNA expression increased significantly after TSH 20 μUI/mL, respectively: 2.08 times, P < 0.0001; 2.39 times, P = 0.01; 1.58 times, P = 0.0003; and 1.87 times, P < 0.0001. In thyroid cells treated with 20 μUI/mL TSH plus 10 nM progesterone, RNA expression of NIS, TG, and KI-67 genes increased, respectively: 1.78 times, P < 0.0001; 1.75 times, P = 0.037; and 1.95 times, P < 0.0001, and TPO mRNA expression also increased, though not significantly (1.77 times, P = 0.069). These effects were abolished by mifepristone, an antagonist of progesterone receptor, suggesting that genes involved in thyroid cell function and proliferation are upregulated by progesterone. This work provides evidence that progesterone has a direct effect on thyroid cells, upregulating genes involved in thyroid function and growth. PMID:26089899

  14. RF Breakdown in Normal Conducting Single-Cell Structures

    SciTech Connect

    Dolgashev, V.A.; Nantista, C.D.; Tantawi, S.G.; Higashi, Y.; Higo, T.; /KEK, Tsukuba

    2006-02-22

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM{sub 01} mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials and preparation techniques with short turn-around time. Simple 2D geometry of the test structures simplifies modeling of the breakdown currents and their thermal effects.

  15. A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells

    SciTech Connect

    Mao-Ying, Q.-L.; Zhao Jun; Dong Zhiqiang; Wang Jun; Yu Jin; Yan Minfen; Zhang Yuqiu; Wu Gencheng; Wang Yanqing . E-mail: wangyanqing@shmu.edu.cn

    2006-07-14

    This study described a modified rat model of bone cancer pain. Syngeneic Walker 256 mammary gland carcinoma cells were injected into the tibia medullary cavity via intercondylar eminence. Series of tests were carried out including bone radiology, bone histology, ambulatory pain, thermal hyperalgesia, mechanical allodynia, weight bearing ability, and electrophysiological recording from primary afferent fibers. The rats inoculated with carcinoma cells showed significant ambulatory pain, mechanical allodynia, and reduction in weight bearing, as well as increased incidence of spontaneous activity in A{beta} fibers in affected limb, whereas PBS (vehicle) or heat-killed cells (sham) injected rats showed no significant difference in comparison to normal rats. The pain hypersensitive behaviors were aggravated with time and destruction of bone. Interestingly, mechanical allodynia was also observed in the contralateral limb, indicating the involvement of 'mirror image' pain in bone cancer pain. In summary, the present study provided a useful and easily established rat model of bone cancer pain which will contribute to further study of the mechanisms underlying cancer pain.

  16. Mouse bone marrow stromal cells differentiate to neuron-like cells upon inhibition of BMP signaling.

    PubMed

    Saxena, Monika; Prashar, Paritosh; Yadav, Prem Swaroop; Sen, Jonaki

    2016-01-01

    Bone marrow stromal cells (BMSCs) are a source of autologous stem cells that have the potential for undergoing differentiation into multiple cell types including neurons. Although the neuronal differentiation of mesenchymal stem cells has been studied for a long time, the molecular players involved are still not defined. Here we report that the genetic deletion of two members of the bone morphogenetic protein (Bmp) family, Bmp2 and Bmp4 in mouse BMSCs causes their differentiation into cells with neuron-like morphology. Surprisingly these cells expressed certain markers characteristic of both neuronal and glial cells. Based on this observation, we inhibited BMP signaling in mouse BMSCs through a brief exposure to Noggin protein which also led to their differentiation into cells expressing both neuronal and glial markers. Such cells seem to have the potential for further differentiation into subtypes of neuronal and glial cells and thus could be utilized for cell-based therapeutic applications.

  17. T cells stimulate catabolic gene expression by the stromal cells from giant cell tumor of bone

    SciTech Connect

    Cowan, Robert W.; Ghert, Michelle; Singh, Gurmit

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer Two T cell lines stimulate PTHrP, RANKL, MMP13 gene expression in GCT cell cultures. Black-Right-Pointing-Pointer CD40 expressed by stromal cells; CD40L detected in whole tumor but not cultures. Black-Right-Pointing-Pointer Effect of CD40L treatment on GCT cells increased PTHrP and MMP13 gene expression. Black-Right-Pointing-Pointer PTHrP treatment increased MMP13 expression, while inhibition decreased expression. Black-Right-Pointing-Pointer T cells may stimulate GCT stromal cells and promote the osteolysis of the tumor. -- Abstract: The factors that promote the localized bone resorption by giant cell tumor of bone (GCT) are not fully understood. We investigated whether T cells could contribute to bone resorption by stimulating expression of genes for parathyroid hormone-related protein (PTHrP), matrix metalloproteinase (MMP)-13, and the receptor activator of nuclear-factor {kappa}B ligand (RANKL). Two cell lines, Jurkat clone E6-1 and D1.1, were co-cultured with isolated GCT stromal cells. Real-time PCR analyses demonstrated a significant increase of all three genes following 48 h incubation, and PTHrP and MMP-13 gene expression was also increased at 24 h. Further, we examined the expression of CD40 ligand (CD40L), a protein expressed by activated T cells, and its receptor, CD40, in GCT. Immunohistochemistry results revealed expression of the CD40 receptor in both the stromal cells and giant cells of the tumor. RNA collected from whole GCT tissues showed expression of CD40LG, which was absent in cultured stromal cells, and suggests that CD40L is expressed within GCT. Stimulation of GCT stromal cells with CD40L significantly increased expression of the PTHrP and MMP-13 genes. Moreover, we show that inhibition of PTHrP with neutralizing antibodies significantly decreased MMP13 expression by the stromal cells compared to IgG-matched controls, whereas stimulation with PTHrP (1-34) increased MMP-13 gene expression. These

  18. Giant cell tumor of bone arising in long bones possibly originates from the metaphyseal region

    PubMed Central

    FUTAMURA, NAOHISA; URAKAWA, HIROSHI; TSUKUSHI, SATOSHI; ARAI, EISUKE; KOZAWA, EIJI; ISHIGURO, NAOKI; NISHIDA, YOSHIHIRO

    2016-01-01

    Giant cell tumor of bone (GCTB) is a primary benign bone tumor with a locally aggressive character. Definitive descriptions of the site of origin for this type of tumor are not available. The aim of the present study was to evaluate the site of origin of GCTB of long bones with regards to epiphyseal lines by means of radiographic examination. For that purpose, plain X-ray scans of 71 GCTBs arising in long bones were retrospectively reviewed. The tumor locations were the distal femur in 31 cases, proximal femur in 11 cases, proximal tibia in 13 cases, distal radius in 6 cases, proximal humerus in 5 cases and proximal fibula in 5 cases. The vertical center (VC) of the tumor was determined with X-ray anteroposterior view, and the correlation between the VC and the epiphyseal line, and between the distance from the epiphyseal line to the VC and tumor area or volume were analyzed using a regression model equation based on scatter plot diagrams. The VC of the tumor was located in the metaphyseal region in 57 cases, in the epiphyseal line in 11 cases and in the epiphyseal region in 3 cases. In cases of GCTB located in the distal femur or proximal tibia, significant correlations between the distance from the VC to the epiphyseal line and tumor area or volume were identified. The site of origin of GCTB was estimated to be located in the metaphyseal region. GCTB often occurs in mature patients, which renders it challenging to estimate the true site of origin of this lesion, since the metaphyseal line has disappeared in mature patients. The results of the present study suggest that GCTB possibly originates in the metaphyseal region. PMID:27073530

  19. Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation

    NASA Astrophysics Data System (ADS)

    Palin, Erica; Liu, Huinan; Webster, Thomas J.

    2005-09-01

    There is a great need to design better orthopaedic implant devices by modifying their surface properties. In this respect, one approach that has received much attention of late is the simulation of the surface roughness of bone in synthetic orthopaedic implant materials. Bone has numerous nanometre features due to the presence of nanostructured entities such as collagen and hydroxyapatite. Despite this fact, current orthopaedic implant materials are smooth at the nanoscale. Previous studies have measured increased osteoblast (bone-forming cell) functions on biologically inspired nanophase titania compared to conventional titania formulations. In fact, in vitro calcium deposition by osteoblasts was up to three times higher on nanostructured compared to conventional titania. However, it was unclear in those studies what underlying surface properties (roughness, crystallinity, crystal phase, chemistry, etc) promoted enhanced functions of osteoblasts on nanophase titania. For that reason, the objective of the present in vitro study was to specifically determine the role nanostructured surface roughness of titania had on increasing functions of osteoblasts. To achieve this, the surface roughness of nanophase and conventional titania was transferred to a model tissue engineering polymer: poly-lactic-co-glycolic acid (PLGA). Results of the present study demonstrated greater osteoblast adhesion and proliferation for up to 5 days of culture on PLGA moulds of nanophase compared to conventional titania. In this manner, this study elucidated that the property of nanophase titania which increased osteoblast function was a large degree of nanometre surface features that mimicked bone. For this reason, nanophase materials deserve more attention in improving orthopaedic implant applications.

  20. Anti-tetanus toxoid antibody production after mismatched T cell-depleted bone marrow transplantation.

    PubMed

    Benkerrou, M; Wara, D W; Elder, M; Dror, Y; Merino, A; Colombe, B W; Garovoy, M; Cowan, M J

    1994-03-01

    We explored B-cell function after tetanus toxoid (TT) immunization in 12 children with severe combined immunodeficiency disease or leukemia who were long-term survivors of an HLA-matched sibling or haplocompatible T cell-depleted parental bone marrow transplant (BMT), 10 of their healthy donors, and 13 normal controls. Specific in vivo and in vitro anti-TT antibody (Ab) production were measured by ELISA. We studied donors' and recipients' peripheral blood mononuclear cells (PBMC) and mixed E- (non-T cells) and E+ cells (T cells) spontaneously and after stimulation by TT in the absence or presence of interleukin-2 (IL-2), IL-4, and IL-6. Five of the 12 patients and all donors and controls responded with in vivo anti-TT Ab. In vitro anti-TT Ab production correlated with the in vivo response. All seven of the nonresponders were either fully engrafted or mixed chimeras (donor T cells but autologous B cells and monocytes). We could not identify a T-cell defect in four of the five nonresponders who were tested. In contrast, E- cells from three of three responders cooperated with fresh donor E+ cells even when they shared only one HLA haplotype. In three of seven nonresponders, in vitro anti-TT Ab production was restored after the addition of IL-4 or IL-6 but not IL-2. Our results suggest that the humoral immunodeficiency that exists post mismatched T cell-depleted BMT is either a B-cell, a monocyte, or a B-cell/T-cell cooperation defect which, in some patients, may be correctible with the addition of a cytokine. Also, it is not necessary to engraft donor B cells to achieve normal antibody responses and the ability to respond does not appear to correlate with pretransplant chemotherapy.

  1. Pulmonary clearance and phagocytic cell response to normal pharyngeal flora.

    PubMed

    Onofrio, J M; Shulkin, A N; Heidbrink, P J; Toews, G B; Pierce, A K

    1981-02-01

    Because human lungs are repetitively inoculated with the normal bacterial flora of the pharynx, we determined the pulmonary clearance of representative species after aerosol inoculation of a murine model, and characterized the phagocytic cell response by bronchoalveolar lavage. Viable bacteria remaining in the lungs at 1, 2, and 4 h were: Streptococcus sanguis, 24%, 8%, and 1%; Streptococcus salivarius, 49%, 24%, and 5%; Neisseria catarrhalis, 69%, 49%, and 22%. Clearance of Streptococcus sanguis was associated with a twofold increase in alveolar macrophages (p less than 0.05); Streptococcus salivarius evoked a doubling of alveolar macrophages and a 20-fold rise in granulocytes (p less than 0.05); the response to Neisseria catarrhalis was a 400-fold increase in granulocytes (p less than 0.05). Thus, normal pharyngeal organisms are cleared rapidly from the lung by a dual phagocytic cell system. It is speculated that bacteria-phagocyte interaction allows the possibility of lung injury from proteolytic enzymes released from either set of phagocytes.

  2. [Bone Cell Biology Assessed by Microscopic Approach. Assessment of bone quality using Raman and infrared spectroscopy].

    PubMed

    Suda, Hiromi Kimura

    2015-10-01

    Bone quality, which was defined as "the sum total of characteristics of the bone that influence the bone's resistance to fracture" at the National Institute of Health (NIH) conference in 2001, contributes to bone strength in combination with bone mass. Bone mass is often measured as bone mineral density (BMD) and, consequently, can be quantified easily. On the other hand, bone quality is composed of several factors such as bone structure, bone matrix, calcification degree, microdamage, and bone turnover, and it is not easy to obtain data for the various factors. Therefore, it is difficult to quantify bone quality. We are eager to develop new measurement methods for bone quality that make it possible to determine several factors associated with bone quality at the same time. Analytic methods based on Raman and FTIR spectroscopy have attracted a good deal of attention as they can provide a good deal of chemical information about hydroxyapatite and collagen, which are the main components of bone. A lot of studies on bone quality using Raman and FTIR imaging have been reported following the development of the two imaging systems. Thus, both Raman and FTIR imaging appear to be promising new bone morphometric techniques.

  3. The Effects of Fungal Volatile Organic Compounds on Bone Marrow Stromal Cells

    PubMed Central

    Hokeness, Kirsten; Lux, Hillary; Kratch, Jaqueline; Nadolny, Christina; Aicardi, Kristie; Reid, Christopher

    2015-01-01

    Evidence has shown that individuals exposed to indoor toxic molds for extended periods of time have elevated risk of developing numerous respiratory illnesses and certain types of cancer. It is not clear at the cellular level, what impact mold exposure has on the immune system. Herein we show that two fungal volatiles (E)-2-octenal and oct-1-en-3-ol have cytotoxic effects on murine bone marrow stromal (BMS) cells. To further analyze alterations to the cell, we evaluated the impact these VOCs have on membrane composition and hence fluidity. Both (E)-2-octenal and oct-1-en-3-ol exposure caused a shift to unsaturated fatty acids and lower cholesterol levels in the membrane. This indicates that the volatile organic compounds (VOCs) under investigation increased membrane fluidity. These vast changes to the cell membrane are known to contribute to the breakdown of normal cell function and possibly lead to death. Since bone marrow stromal cells are vital for the appropriate development and activation of immune cells, this study provides the foundation for understanding the mechanism at a cellular level for how mold exposure can lead to immune-related disease conditions. PMID:24392920

  4. Development of bone-targeted catalase derivatives for inhibition of bone metastasis of tumor cells in mice.

    PubMed

    Zheng, Yunlong; Nishikawa, Makiya; Ikemura, Mai; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2012-02-01

    Removal of hydrogen peroxide by delivering catalase to the vicinity of metastasizing tumor cells is a promising approach for inhibiting tumor metastasis. To inhibit bone metastasis, catalase was conjugated with 3,5-di(ethylamino-2,2-bisphosphono)benzoic acid (Bip), a derivative of bone-seeking bisphosphonates, polyethylene glycol (PEG), or both. Bip-conjugated catalase derivatives, that is, catalase-Bip and PEG-catalase-Bip, exhibited a higher affinity for bone matrix as compared with their counterparts without Bip. The tissue distribution of (111) In-labeled catalase derivatives indicated that the accumulation of radioactivity in bones was increased by conjugation of either Bip or PEG with catalase. An experimental bone metastasis model was developed by injecting male C57BL/6 mice with murine melanoma B16-BL6/Luc cells, which stably express firefly luciferase into left ventricle. Repeated injections of catalase to tumor-bearing mice had no significant effect on the number of melanoma cells in tibiae and femurs, whereas injections of catalase-Bip, PEG-catalase, or PEG-catalase-Bip significantly reduced the number. These results indicate that targeted delivery of catalase to the bones can be achieved by conjugating the enzyme with either Bip or PEG, and this delivery is effective in inhibiting the bone metastasis of tumor cells. PMID:21953593

  5. A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects.

    PubMed

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan

    2015-09-01

    Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans.

  6. A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects.

    PubMed

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan

    2015-09-01

    Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. PMID:26011163

  7. Lysophosphatidic acid-induced chemotaxis of bone cells.

    SciTech Connect

    Karagiosis, Sue A.; Masiello, Lisa M.; Bollinger, Nikki; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a platelet-derived bioactive lipid that is postulated to regulate wound healing. LPA activates G protein-coupled receptors to induce Ca2+ signaling in MC3T3-E1 pre-osteoblasts, and is a potent chemotactic stimulus for these cells. Since bone fracture healing requires the migration of osteoblast progenitors, we postulate that LPA is among the factors that stimulate bone repair. UMR 106-01 cells, which express a more mature osteoblastic phenotype than MC3T3-E1 cells, did not migrate in response to LPA, although they express LPA receptors and exhibit LPA-induced Ca2+ signals. This suggests that LPA differentially induces pre-osteoblast chemotaxis, consistent with our hypothesis that LPA stimulates the motility of osteoblast progenitors during bone healing. LPA-stimulated MC3T3-E1 cells exhibit striking changes in morphology and F-actin architecture, and phosphatidylinositol-3 kinase (PI3K) is required for motility-associated cytoskeletal rearrangements in many cell types. We found a dose-dependent reduction in LPA-induced osteoblast migration when cells also were treated with the PI3K inhibitor, LY294002. Treatment of many cell types with LPA is associated with an autocrine/paracrine transactivation of the EGF receptor (EGFR) via shedding of surface-tethered EGFR ligands, a phenomenon often required for LPA-induced chemotaxis. MC3T3-E1 cells express multiple EGFR ligands (epigen, epiregulin, HB-EGF and amphiregulin) and migrated in response to EGF. However, while EGF-stimulated motility in MC3T3-E1 cells was blocked by an EGFR inhibitor, there was no significant effect on LPA-induced chemotaxis. Activation of MAP kinases is a hallmark of EGFR-mediated signaling, and EGF treatment of MC3T3-E1 cells led to a strong stimulation of ERK1/2 kinase. In contrast, LPA induced only a minor elevation in ERK activity. Thus, it is likely that the increase in ERK activity by LPA is related to cell proliferation associated with lipid treatment. We

  8. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells.

    PubMed

    Abdallah, Basem M; Al-Shammary, Asma; Skagen, Peter; Abu Dawud, Raed; Adjaye, James; Aldahmash, Abdullah; Kassem, Moustapha

    2015-11-01

    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and prospective isolation of BMSCs and committed progenitors are lacking. Here, we compared the transcriptome profile of CD markers expressed at baseline and during the course of osteoblast and adipocyte differentiation of two well-characterized osteogenic-committed murine BMSCs (mBMSC(Bone)) and adipogenic-committed mBMSCs (mBMSC(Adipo)), respectively. Bioinformatic analysis revealed the presence of a core set of canonical mBMSC CD markers with comparable expression levels in mBMSC(Bone) and mBMSC(Adipo) at baseline and during their differentiation. We identified 11 CD markers that are differentially expressed between mBMSC(Adipo) and mBMSC(Bone). Among these, we identified osteoprogenitor-associated CD markers expressed only in mBMSC(Bone): CD34, CD54, CD73, CD132, CD200, CD227 and adipoprogenitor-associated CD markers expressed only in mBMSC(Adipo): CD53, CD80, CD134, CD141 and CD212. FACS analysis confirmed these results. We selected CD34 for further analysis. CD34 was expressed at baseline of mouse stromal cell line ST2, primary mBMSCs, mBMSC(Bone) and its expression decreased during osteoblast differentiation. FACS-sorted CD34(+) primary mBMSCs exhibited higher expression of 70% osteoblast-associated genes, and formed significantly higher heterotopic bone in vivo when implanted subcutaneously in immune-deficient mice compared with CD34(-) primary mBMSCs. Our results demonstrate that a set of CD markers can distinguish osteoprogenitor versus adipoprogenitor populations of mBMSCs. CD34 is suitable for prospective isolation of mouse bone marrow osteoprogenitors. PMID:26413784

  9. Age-related bone resorption in the normal incus: a case of maladaptive remodelling?

    PubMed Central

    Lannigan, F J; O'Higgins, P; Oxnard, C E; McPhie, P

    1995-01-01

    The changes that occur in the normal human incus with age have been investigated. Evidence for age-related changes in this ossicle, especially in the region of the long process, has been accumulating over the last 30-40 years and yet they have neither been confirmed quantitatively nor explained satisfactorily. In this study the results of a morphometric study of the long processes of a series of normal incudes are presented. These demonstrate that the lenticular and long processes undergo progressive symmetric resorption with advancing age. We consider these findings in the light of previous considerations of incudal remodelling and propose that these remodelling changes may reflect a normal adaptive response to the biomechanical milieu of the human middle ear. PMID:7559138

  10. Bone marrow transplantation following total lymphoid irradiation. I. Correlation with field size and suppressor cell induction

    SciTech Connect

    Lowry, R.P.; Carpenter, C.B.; Gurley, K.E.; Merrill, J.P.

    1983-07-01

    Total lymphoid irradiation (TLI) induces a unique state of immunosuppression. Although permanent bone marrow chimerism has been obtained in rodents prepared by TLI, uniform marrow engraftment has been more difficult to obtain in larger mammals. Accordingly, studies were performed to assess the immunologic perturbations induced by TLI in inbred LEW rats, and to explore the effect of altering field size of irradiation on the induction of suppressor cells and the success of allogeneic bone marrow transplantation. Additional abdominal shielding to protect a single kidney (right) from irradiation during TLI presented successful of bone marrow engraftment (WF leads to LEW, N . 5) but chimerism was uniformly obtained (N . 3) using the full irradiation field (P less than .05) Lymphopenia and a relative monocytosis were noted in all rats subjected to TLI. Although TLI using the full irradiation field eliminated alloreactivity of nylon-wool-purified spleen cells, significant, if reduced, alloreactivity was noted in rats subjected to TLI using smaller irradiation fields. Irradiated (1500 rads) nylon-wool-purified splenic T cells of rats subjected to TLI using the full field effected significantly greater suppression (P less than .001) of a normal mixed lymphocyte culture than did cells from rats subjected to TLI with right kidney shields in place (relative response reduced to 15.2 +/- 5.7% versus 64.3 +/- 11.7%). Success of bone marrow engraftment in rats prepared by TLI was correlated, therefore, with the induction of a profound lymphopenia, elimination of alloreactivity, and the development of a potent splenic suppressor system.

  11. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.

    PubMed

    Prat, Aleix; Karginova, Olga; Parker, Joel S; Fan, Cheng; He, Xiaping; Bixby, Lisa; Harrell, J Chuck; Roman, Erick; Adamo, Barbara; Troester, Melissa; Perou, Charles M

    2013-11-01

    Five molecular subtypes (luminal A, luminal B, HER2-enriched, basal-like, and claudin-low) with clinical implications exist in breast cancer. Here, we evaluated the molecular and phenotypic relationships of (1) a large in vitro panel of human breast cancer cell lines (BCCLs), human mammary fibroblasts (HMFs), and human mammary epithelial cells (HMECs); (2) in vivo breast tumors; (3) normal breast cell subpopulations; (4) human embryonic stem cells (hESCs); and (5) bone marrow-derived mesenchymal stem cells (hMSC). First, by integrating genomic data of 337 breast tumor samples with 93 cell lines we were able to identify all the intrinsic tumor subtypes in the cell lines, except for luminal A. Secondly, we observed that the cell lines recapitulate the differentiation hierarchy detected in the normal mammary gland, with claudin-low BCCLs and HMFs cells showing a stromal phenotype, HMECs showing a mammary stem cell/bipotent progenitor phenotype, basal-like cells showing a luminal progenitor phenotype, and luminal B cell lines showing a mature luminal phenotype. Thirdly, we identified basal-like and highly migratory claudin-low subpopulations of cells within a subset of triple-negative BCCLs (SUM149PT, HCC1143, and HCC38). Interestingly, both subpopulations within SUM149PT were enriched for tumor-initiating cells, but the basal-like subpopulation grew tumors faster than the claudin-low subpopulation. Finally, claudin-low BCCLs resembled the phenotype of hMSCs, whereas hESCs cells showed an epithelial phenotype without basal or luminal differentiation. The results presented here help to improve our understanding of the wide range of breast cancer cell line models through the appropriate pairing of cell lines with relevant in vivo tumor and normal cell counterparts.

  12. Cell–cell interaction between vocal fold fibroblasts and bone marrow mesenchymal stromal cells in three-dimensional hyaluronan hydrogel

    PubMed Central

    Chen, Xia; Thibeault, Susan L.

    2013-01-01

    Mesenchymal stromal cells (MSCs) are multipotential adult cells present in all tissues. Paracrine effects and differentiating ability make MSCs an ideal cell source for tissue regeneration. However, little is known about how interactions between implanted MSCs and native cells influence cellular growth, proliferation, and behaviour. By using an in vitro three-dimensional (3D) co-culture assay of normal or scarred human vocal fold fibroblasts (VFFs) and bone marrow-derived MSCs (BM-MSCs) in a uniquely suited hyaluronan hydrogel (HyStem–VF), we investigated cell morphology, survival rate, proliferation and protein and gene expression of VFFs and BM-MSCs. BM-MSCs inhibited cell proliferation of both normal and scarred VFFs without changes in VFF morphology or viability. BM-MSCs demonstrated decreased proliferation and survival rate after 7 days of co-culture with VFFs. Interactions between BM-MSCs and VFFs led to a significant increase in protein secretion of collagen I and hepatocyte growth factor (HGF) and a decrease of vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6). In particular, BM-MSCs significantly upregulated matrix metalloproteinase 1 (MMP1) and HGF gene expression for scarred VFFs compared to normal VFFs, indicating the potential for increases in extracellular matrix remodelling and tissue regeneration. Application of BM-MSCs-hydrogels may play a significant role in tissue regeneration, providing a therapeutic approach for vocal fold scarring. PMID:23653427

  13. Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells.

    PubMed

    Hoogduijn, Martin J; Gorjup, Erwin; Genever, Paul G

    2006-02-01

    We compared the growth and differentiation characteristics of hair follicle-derived dermal stem cells with bone marrow mesenchymal stem cells (MSCs). Follicular dermal cells were isolated from whisker hairs of Wistar rats and bone marrow MSCs were isolated from femora of the same animals. The adherent hair follicle dermal cells showed a fibroblastic morphology in serum-containing culture medium, were CD44(+), CD73(+), CD90(+), and CD34(), and had a population doubling time of 27 h. MSCs isolated from the bone marrow showed a similar morphology and population doubling time and expressed the same cell-surface markers. Following exposure to appropriate induction stimuli, both cell populations had the capacity to differentiate into various mesenchymal lineages, such as osteoblasts, adipocytes, chondrocytes, and myocytes and expressed neuroprogenitor cell markers. The rate and extent of differentiation were remarkably similar for both hair follicleand bone marrow-derived cells, whereas interfollicular dermal cells failed to differentiate. We identified telomerase activity in follicle dermal stem cells and marrow MSCs and demonstrated that they were capable of clonal expansion. In ex vivo analyses, we identified the presence of putative dermal stem cells in the dermal sheath and dermal papillae of the hair follicle. Consequently, the hair follicle may represent a suitable, accessible source for MSCs.

  14. The survival of cryopreserved human bone marrow stem cells.

    PubMed

    Hill, R S; Mackinder, C A; Postlewaight, B F; Blacklock, H A

    1979-07-01

    Two methods for cryopreservation of bone marrow stem cells were compared using bone marrow obtained from 36 patients. Included in this group were 21 persons with the diagnosis of leukaemia including 14 either with acute myeloid or lymphoblastic leukaemia in remission following intensive remission induction chemotherapy. After freeze-preservation and reconstitution, all marrow samples were tested for nucleated cell (NC) recovery and grown on agar to assess colony forming units (CFUC) and cluster forming units in culture (CluFUc). A slow dilution reconstitution method using freezing media containing AB negative plasma resulted in recovery of 85% of the CFUc activity of fresh marrow. This result was significantly better than the 47% CFUc recovery obtained when freezing media without plasma and a rapid dilution reconstitution technique were used. NC recoveries following slow dilution (51%) and rapid dilution (44%) were not significantly different. CluFUc were disproportionately reduced compared with CFUc although yielding similar results with both methods (26% and 32%). No correlation was found for either method between CFUc and NC recovery or between CFUc and CluFUc recovery in cryopreserved bone marrow. PMID:392422

  15. Safety of bone marrow stem cell donation: a review.

    PubMed

    Bosi, A; Bartolozzi, B

    2010-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) represents the first choice of treatment or an important therapeutic option for several diseases, but it is still marked by morbidity and mortality. In contrast, the donation of hematopoietic stem cells (HSCs) is considered to be a safe procedure. The invaluable ethical source of donation and its central role in transplantation implies that the greatest attention be due to the donor and to the donation process through a serious monitoring protocol for donor safety. Both the Joint Accreditation Committee and the European Committee pay particular attention to the notification of adverse events and adverse reactions. Bone marrow donation is a well established procedure, that has now been performed for >30 years. Although it does not require drug administration, there is hospital admission for 1-3 days with 7-10 days off work. The main risk is related to the anesthesia. Pain in the aspiration area, together with astenia are considered to be the most frequent side effects, as shown by the USA National Marrow Donor Program experience in 1,193 donations. In the European Group for Blood and Marrow Transplantation analysis performed between 1993 and 2005 on 27,770 first HSCTs from bone marrow, only 1 fatal event (pulmonary embolism) and 12 serious adverse events were observed. The most frequent adverse events were cardiac. The incidence of adverse events was significantly lower (P < .05) compared with peripheral blood HSC donors, which confirms the necessity of accurate attention to donor selection and evaluation in bone marrow donation.

  16. Comparison of autogenic and allogenic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits.

    PubMed

    Udehiya, Rahul Kumar; Amarpal; Aithal, H P; Kinjavdekar, P; Pawde, A M; Singh, Rajendra; Taru Sharma, G

    2013-06-01

    Autogenic and allogenic bone marrow derived mesenchymal stem cells (BM-MSCs) were compared for repair of bone gap defect in rabbits. BM-MSCs were isolated from bone marrow aspirates and cultured in vitro for allogenic and autogenic transplantation. A 5mm segmental defect was created in mid-diaphysis of the radius bone. The defect was filled with hydroxyapatite alone, hydroxyapatite with autogeneic BM-MSCs and hydroxyapatite with allogenic BM-MSCs in groups A, B and C, respectively. On an average 3.45×10(6) cells were implanted at each defect site. Complete bridging of bone gap with newly formed bone was faster in both treatment groups as compared to control group. Histologically, increased osteogenesis, early and better reorganization of cancellous bone and more bone marrow formation were discernible in treatment groups as compared to control group. It was concluded that in vitro culture expanded allogenic and autogenic BM-MSCs induce similar, but faster and better healing as compared to control.

  17. Effect of substrate stiffness on the osteogenic differentiation of bone marrow stem cells and bone-derived cells.

    PubMed

    Witkowska-Zimny, Malgorzata; Walenko, Katarzyna; Wrobel, Edyta; Mrowka, Piotr; Mikulska, Agnieszka; Przybylski, Jacek

    2013-06-01

    There is a profound dependence of cell behaviour on the stiffness of its microenvironment. To gain a better understanding of the regulation of cellular differentiation by mechanical cues, we investigated the influence of matrix stiffness (E = 1.46 kPa and E = 26.12 kPa) on differentiated osteogenic cell lineage of bone marrow stem cells (BM-MSCs) and bone-derived cells (BDCs) using flexible collagen-coated polyacrylamide substrates. Differentiation potential was determined by measuring alkaline phosphatase activity, expression of osteoblast-specific markers including alkaline phosphatase, osteocalcin, Runx2 and collagen type I, as well as assessment of mineralisation (Alizarin Red S staining). We found that osteogenic differentiation can be regulated by the rigidity of the substrate, which may depend on the commitment in multi- or uni-potent targeting cells. Osteogenic differentiation of BM-MSCs was enhanced on a stiff substrate compared to a soft one, whereas BDCs osteogenic differentiation did not vary depending on the substrate stiffness. The data help in understanding the role of the external mechanical determinants in stem cell differentiation, and can also be useful in translational approach in functional tissue engineering.

  18. The Bone Marrow-Derived Stromal Cells: Commitment and Regulation of Adipogenesis

    PubMed Central

    Tencerova, Michaela; Kassem, Moustapha

    2016-01-01

    Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage and regulation of BM adipocyte formation are not fully understood. In this review, we will discuss recent findings pertaining to identification and characterization of adipocyte progenitor cells in BM and the regulation of differentiation into mature adipocytes. We have also emphasized the clinical relevance of these findings. PMID:27708616

  19. Oxidation of the aromatic amino acids tryptophan and tyrosine disrupts their anabolic effects on bone marrow mesenchymal stem cells.

    PubMed

    El Refaey, Mona; Watkins, Christopher P; Kennedy, Eileen J; Chang, Andrew; Zhong, Qing; Ding, Ke-Hong; Shi, Xing-ming; Xu, Jianrui; Bollag, Wendy B; Hill, William D; Johnson, Maribeth; Hunter, Monte; Hamrick, Mark W; Isales, Carlos M

    2015-07-15

    Age-induced bone loss is associated with greater bone resorption and decreased bone formation resulting in osteoporosis and osteoporosis-related fractures. The etiology of this age-induced bone loss is not clear but has been associated with increased generation of reactive oxygen species (ROS) from leaky mitochondria. ROS are known to oxidize/damage the surrounding proteins/amino acids/enzymes and thus impair their normal function. Among the amino acids, the aromatic amino acids are particularly prone to modification by oxidation. Since impaired osteoblastic differentiation from bone marrow mesenchymal stem cells (BMMSCs) plays a role in age-related bone loss, we wished to examine whether oxidized amino acids (in particular the aromatic amino acids) modulated BMMSC function. Using mouse BMMSCs, we examined the effects of the oxidized amino acids di-tyrosine and kynurenine on proliferation, differentiation and Mitogen-Activated Protein Kinase (MAPK) pathway. Our data demonstrate that amino acid oxides (in particular kynurenine) inhibited BMMSC proliferation, alkaline phosphatase expression and activity and the expression of osteogenic markers (Osteocalcin and Runx2). Taken together, our data are consistent with a potential pathogenic role for oxidized amino acids in age-induced bone loss.

  20. Molecular genetics of calcium sensing in bone cells.

    PubMed

    Purroy, Jesús; Spurr, Nigel K

    2002-10-01

    The molecular mechanisms regulating bone remodelling are only partially understood. One of the controversial issues discussed during the past few years is the role that calcium signalling plays in this process and, in particular, in the functioning of the osteoclast. Calcium is involved in the recruitment and activation of osteoclasts and their subsequent detachment from bone. Parathyroid hormone and vitamin D are part of a systemic mechanism regulating calcium availability, storage and disposal. But there are conflicting results suggesting the presence of a local calcium-sensing mechanism in osteoclasts, in osteoblasts or in both. If this system could be characterized, it would be of therapeutic relevance for diseases such as postmenopausal osteoporosis and rheumatoid arthritis. Genetic data, animal models and cell-based assays have not yet been used to their full extent in this area. Here we review the available data and outline possible future strategies. PMID:12351573

  1. Bone regeneration using coculture of mesenchymal stem cells and angiogenic cells

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Ling; van den Beucken, Jeroen J. J. P.; Pan, Ju-Li; Cui, Fu-Zhai; Chen, Su

    2014-03-01

    Cellular strategies remain a crucial component in bone tissue engineering (BTE). So far, the outcome of cell-based strategies from initial clinical trials is far behind compared to animal studies, which is suggested to be related to insufficient nutrient and oxygen supply inside the tissue-engineered constructs. Cocultures, by introducing angiogenic cells into osteogenic cell cultures, might provide a solution for improving vascularization and hence increasing bone formation for cell-based constructs. So far, pre-clinical studies demonstrated that cocultures enhance vascularization and bone formation compared to monocultures. However, there has been no report on the application of cocultures in clinics. Therefore, this mini-review aims to provide an overview regarding (i) critical parameters in cocultures and the outcomes of cocultures compared to monocultures in the currently available pre-clinical studies using human mesenchymal stem cells implanted in orthotopic animal models; and (ii) the usage of monocultures in clinical application in BTE.

  2. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Kamata, Mayumi; Okitsu, Yoko; Fujiwara, Tohru; Kanehira, Masahiko; Nakajima, Shinji; Takahashi, Taro; Inoue, Ai; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2014-11-01

    The bone marrow microenvironment comprises multiple cell niches derived from bone marrow mesenchymal stem cells. However, the molecular mechanism of bone marrow mesenchymal stem cell differentiation is poorly understood. The transcription factor GATA2 is indispensable for hematopoietic stem cell function as well as other hematopoietic lineages, suggesting that it may maintain bone marrow mesenchymal stem cells in an immature state and also contribute to their differentiation. To explore this possibility, we established bone marrow mesenchymal stem cells from GATA2 conditional knockout mice. Differentiation of GATA2-deficient bone marrow mesenchymal stem cells into adipocytes induced accelerated oil-drop formation. Further, GATA2 loss- and gain-of-function analyses based on human bone marrow mesenchymal stem cells confirmed that decreased and increased GATA2 expression accelerated and suppressed bone marrow mesenchymal stem cell differentiation to adipocytes, respectively. Microarray analysis of GATA2 knockdowned human bone marrow mesenchymal stem cells revealed that 90 and 189 genes were upregulated or downregulated by a factor of 2, respectively. Moreover, gene ontology analysis revealed significant enrichment of genes involved in cell cycle regulation, and the number of G1/G0 cells increased after GATA2 knockdown. Concomitantly, cell proliferation was decreased by GATA2 knockdown. When GATA2 knockdowned bone marrow mesenchymal stem cells as well as adipocytes were cocultured with CD34-positive cells, hematopoietic stem cell frequency and colony formation decreased. We confirmed the existence of pathological signals that decrease and increase hematopoietic cell and adipocyte numbers, respectively, characteristic of aplastic anemia, and that suppress GATA2 expression in hematopoietic stem cells and bone marrow mesenchymal stem cells.

  3. TU-F-12A-02: Quantitative Characterization of Normal Bone Marrow Proliferative Activity with FLT PET/CT

    SciTech Connect

    Weisse, N; Jeraj, R

    2014-06-15

    Purpose: [F-18]FLT PET is a tool for assessing health of bone marrow by evaluating its proliferative activity. This study establishes a baseline quantitative characterization of healthy marrow proliferation to aid in diagnosis of hematological disease. Methods: 31 patients (20 male, 11 female, 41–76 years) being treated for solid cancers with no history of hematological disease, osseous metastatic disease, or radiation therapy received pre-treatment FLT PET/CT scans. Total bone marrow was isolated from whole body FLT PET images by manually removing organs and applying a standardize uptake value (SUV) threshold of 1.0. Because adult marrow is concentrated in the axial skeleton, quantitative total bone marrow analysis (QTBMA) was used to isolate marrow in the lumbar spine, thoracic spine, sacrum, and pelvis for analysis. SUVmean, SUVmax, and SUVCV were used to quantify bone marrow proliferation. Correlations were explored between SUV and patient characteristics including age, weight, height, and BMI using the Spearman coefficient (ρ). Results: The population-averaged whole-skeleton SUVmean, SUVmax, and SUVCV were 3.0±0.6, 18.4±5.7, and 0.6±0.1, respectively. Uptake values in the axial skeleton were similar to the whole-skeleton demonstrated by SUVmean in the thoracic spine (3.6±0.6), lumbar spine (3.3±0.5), sacrum (3.0±0.6), and pelvis regions (2.8±0.5). Whole-skeleton SUVmax correlated with patient weight (ρ=0.47, p<0.01) and BMI (ρ=0.60, p<0.01), suggesting marrow activity is related to the body's burden. SUV measures in the thoracic spine, lumbar spine, sacrum, and pelvis were negatively correlated with age (ρ:−0.41 to −0.46, p≤0.02). These negative correlations reflect the fact that active marrow in the adult skeleton is localized in the axial skeleton and decreases with age. Conclusions: Normal bone marrow characterizations were determined using FLT PET

  4. Histological and Immunohistochemical Evaluation of Autologous Cultured Bone Marrow Mesenchymal Stem Cells and Bone Marrow Mononucleated Cells in Collagenase-Induced Tendinitis of Equine Superficial Digital Flexor Tendon

    PubMed Central

    Crovace, Antonio; Lacitignola, Luca; Rossi, Giacomo; Francioso, Edda

    2010-01-01

    The aim of this study was to compare treatment with cultured bone marrow stromal cells (cBMSCs), bone marrow Mononucleated Cells (BMMNCs), and placebo to repair collagenase-induced tendinitis in horses. In six adult Standardbred horses, 4000 IU of collagenase were injected in the superficial digital flexor tendon (SDFT). Three weeks after collagenase treatment, an average of either 5.5 × 106 cBMSCs or 1.2 × 108 BMMNCs, fibrin glue, and saline solution was injected intralesionally in random order. In cBMSC- and BMMNCS-treated tendons, a high expression of cartilage oligomeric matrix protein (COMP) and type I collagen, but low levels of type III collagen were revealed by immunohistochemistry, with a normal longitudinally oriented fiber pattern. Placebo-treated tendons expressed very low quantities of COMP and type I collagen but large numbers of randomly oriented type III collagen fibers. Both cBMSC and BMMNCS grafts resulted in a qualitatively similar heling improvement of tendon extracellular matrix, in terms of the type I/III collagen ratio, fiber orientation, and COMP expression. PMID:20445779

  5. FGF7 supports hematopoietic stem and progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro

    SciTech Connect

    Ishino, Ruri; Minami, Kaori; Tanaka, Satowa; Nagai, Mami; Matsui, Keiji; Hasegawa, Natsumi; Roeder, Robert G.; Asano, Shigetaka; Ito, Mitsuhiro

    2013-10-11

    Highlights: •FGF7 is downregulated in MED1-deficient mesenchymal cells. •FGF7 produced by mesenchymal stromal cells is a novel hematopoietic niche molecule. •FGF7 supports hematopoietic progenitor cells and niche-dependent leukemia cells. •FGF7 activates FGFR2IIIb of bone marrow stromal cells in an autocrine manner. •FGF7 indirectly acts on hematopoietic cells lacking FGFR2IIIb via stromal cells. -- Abstract: FGF1 and FGF2 support hematopoietic stem and progenitor cells (HSPCs) under stress conditions. In this study, we show that fibroblast growth factor (FGF7) may be a novel niche factor for HSPC support and leukemic growth. FGF7 expression was attenuated in mouse embryonic fibroblasts (MEFs) deficient for the MED1 subunit of the Mediator transcriptional coregulator complex. When normal mouse bone marrow (BM) cells were cocultured with Med1{sup +/+} MEFs or BM stromal cells in the presence of anti-FGF7 antibody, the growth of BM cells and the number of long-time culture-initiating cells (LTC-ICs) decreased significantly. Anti-FGF7 antibody also attenuated the proliferation and cobblestone formation of MB1 stromal cell-dependent myeloblastoma cells. The addition of recombinant FGF7 to the coculture of BM cells and Med1{sup −/−} MEFs increased BM cells and LTC-ICs. FGF7 and its cognate receptor, FGFR2IIIb, were undetectable in BM cells, but MEFs and BM stromal cells expressed both. FGF7 activated downstream targets of FGFR2IIIb in Med1{sup +/+} and Med1{sup −/−} MEFs and BM stromal cells. Taken together, we propose that FGF7 supports HSPCs and leukemia-initiating cells indirectly via FGFR2IIIb expressed on stromal cells.

  6. Automated quantification of hematopoietic cell - stromal cell interactions in histological images of undecalcified bone.

    PubMed

    Zehentmeier, Sandra; Cseresnyes, Zoltan; Escribano Navarro, Juan; Niesner, Raluca A; Hauser, Anja E

    2015-01-01

    Confocal microscopy is the method of choice for the analysis of localization of multiple cell types within complex tissues such as the bone marrow. However, the analysis and quantification of cellular localization is difficult, as in many cases it relies on manual counting, thus bearing the risk of introducing a rater-dependent bias and reducing interrater reliability. Moreover, it is often difficult to judge whether the co-localization between two cells results from random positioning, especially when cell types differ strongly in the frequency of their occurrence. Here, a method for unbiased quantification of cellular co-localization in the bone marrow is introduced. The protocol describes the sample preparation used to obtain histological sections of whole murine long bones including the bone marrow, as well as the staining protocol and the acquisition of high-resolution images. An analysis workflow spanning from the recognition of hematopoietic and non-hematopoietic cell types in 2-dimensional (2D) bone marrow images to the quantification of the direct contacts between those cells is presented. This also includes a neighborhood analysis, to obtain information about the cellular microenvironment surrounding a certain cell type. In order to evaluate whether co-localization of two cell types is the mere result of random cell positioning or reflects preferential associations between the cells, a simulation tool which is suitable for testing this hypothesis in the case of hematopoietic as well as stromal cells, is used. This approach is not limited to the bone marrow, and can be extended to other tissues to permit reproducible, quantitative analysis of histological data.

  7. Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties.

    PubMed

    Gallant, Maxime A; Brown, Drew M; Hammond, Max; Wallace, Joseph M; Du, Jiang; Deymier-Black, Alix C; Almer, Jonathan D; Stock, Stuart R; Allen, Matthew R; Burr, David B

    2014-04-01

    Raloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups (OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle X-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength.

  8. Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties

    PubMed Central

    Gallant, Maxime A.; Brown, Drew M.; Hammond, Max; Wallace, Joseph M.; Du, Jiang; Deymier-Black, Alix C.; Almer, Jonathan D.; Stock, Stuart R.; Allen, Matthew R.; Burr, David B.

    2014-01-01

    Raloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups (−OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle x-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength. PMID:24468719

  9. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    SciTech Connect

    Taguchi, Kazuhiro . E-mail: s3061@nms.ac.jp; Ogawa, Rei; Migita, Makoto; Hanawa, Hideki; Ito, Hiromoto; Orimo, Hideo

    2005-05-27

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses.

  10. Bone metastasis: mechanisms and therapeutic opportunities

    PubMed Central

    Suva, Larry J.; Washam, Charity; Nicholas, Richard W.; Griffin, Robert J.

    2011-01-01

    The skeleton is one of the most common sites for metastatic cancer, and tumors arising from the breast or prostate possess an increased propensity to spread to this site. The growth of disseminated tumor cells in the skeleton requires tumor cells to inhabit the bone marrow, from which they stimulate local bone cell activity. Crosstalk between tumor cells and resident bone and bone marrow cells disrupts normal bone homeostasis, which leads to tumor growth in bone. The metastatic tumor cells have the ability to elicit responses that stimulate bone resorption, bone formation or both. The net result of these activities is profound skeletal destruction that can have dire consequences for patients. The molecular mechanisms that underlie these painful and often incurable consequences of tumor metastasis to bone are beginning to be recognized, and they represent promising new molecular targets for therapy. PMID:21200394

  11. Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells

    SciTech Connect

    Long, G.J.; Rosen, J.F.; Pounds, J.G. )

    1990-02-01

    A knowledge of bone lead metabolism is critical for understanding the toxicological importance of bone lead, as a toxicant both to bone cells and to soft tissues of the body, as lead is mobilized from large reservoirs in hard tissues. To further understand the processes that mediate metabolism of lead in bone, it is necessary to determine lead metabolism at the cellular level. Experiments were conducted to determine the intracellular steady-state {sup 210}Pb kinetics in cultures of primary and clonal osteoblastic bone cells. Osteoblastic bone cells obtained by sequential collagenase digestion of mouse calvaria or rat osteosarcoma (ROS 17/2.8) cells were labeled with {sup 210}Pb as 5 microM lead acetate for 20 hr, and kinetic parameters were determined by measuring the efflux of {sup 210}Pb from the cells over a {sup 210}-min period. The intracellular metabolism of {sup 210}Pb was characterized by three kinetic pools of {sup 210}Pb in both cell types. Although the values of these parameters differed between the primary osteoblastic cells and ROS cells, the profile of {sup 210}Pb was remarkably similar in both cell types. Both types exhibited one large, slowly exchanging pool (S3), indicative of mitochondrial lead. These data show that primary osteoblastic bone cells and ROS cells exhibit similar steady-state lead kinetics, and intracellular lead distribution. These data also establish a working model of lead kinetics in osteoblastic bone cells and now permit an integrated view of lead kinetics in bone.

  12. Content of stromal precursor cells in heterotopic transplants of bone marrow in CBA mice of various ages.

    PubMed

    Gorskaya, Yu F; Kuralesova, A I; Shuklina, E Yu; Nesterenko, V G

    2002-02-01

    Efficiency of colony formation of stromal precursor cells in cultured bone marrow transplants from old (24 month) CBA mice implanted to young (2-month-old) mice almost 3-fold surpassed that in cultured transplants implanted to old recipients. The content of nucleated cells in bone marrow transplants from senescence accelerated mice SAMP increased more than 2-fold, if SAMR mice with normal aging rate were used as the recipients instead of SAMP mice. Bone marrow taken from old and young CBA mice endured the same number of transplantations if the recipient mice were of the same age (5 month). It was concluded that stromal tissue considerably changes with age and is under strict control of the body. PMID:12432868

  13. Bone marrow-derived progenitor cells in de novo liver regeneration in liver transplant.

    PubMed

    Lee, Sung-Gyu; Moon, Sung-Hwan; Kim, Hee-Je; Lee, Ji Yoon; Park, Soon-Jung; Chung, Hyung-Min; Ha, Tae-Yong; Song, Gi-Won; Jung, Dong-Hwan; Park, Hojong; Kwon, Tae-Won; Cho, Yong-Pil

    2015-09-01

    The study was designed (1) to examine the hypothesis that circulating progenitor cells play a role in the process of de novo regeneration in human liver transplants and that these cells arise from a cell population originating in, or associated with, the bone marrow and (2) to investigate whether the transplanted liver volume has an effect on the circulating recipient-derived progenitor cells that generate hepatocytes during this process. Clinical data and liver tissue characteristics were analyzed in male individuals who underwent sex-mismatched adult-to-adult living donor liver transplantation using dual left lobe grafts. Dual left lobe grafts were examined at the time of transplantation and 19 to 27 days after transplantation. All recipients showed recovery of normal liver function and a significant increase in the volume of the engrafted left lobes after transplantation. Double staining for a Y-chromosome probe and the CD31 antigen showed the presence of hybrid vessels composed of recipient-derived cells and donor cells within the transplanted liver tissues. Furthermore, CD34-expressing cells were observed commingling with Y-chromosome+ cells. The ratio of recipient-derived vessels and the number of Y+ CD34+ cells tended to be higher when smaller graft volumes underwent transplantation. These findings suggest that the recruitment of circulating bone marrow-derived progenitor cells could contribute to vessel formation and de novo regeneration in human liver transplants. Moreover, graft volume may be an important determinant for the active mobilization of circulating recipient-derived progenitor cells and their contribution to liver regeneration.

  14. MDR1 gene expression enhances long-term engraftibility of cultured bone marrow cells

    SciTech Connect

    Rentala, Satyanarayana; Sagar Balla, Murali Mohan; Khurana, Satish; Mukhopadhyay, Asok . E-mail: asok@nii.res.in

    2005-09-30

    Primitive hematopoietic stem cells are responsible for long-term engraftment in irradiated host. Here, we report that multi-drug resistance 1 (mdr1) gene expressing primitive hematopoietic cells were multiplied in ex vivo culture, with the support of extracellular matrix components and cytokines. About 20-fold expansion of total nucleated cells was achieved in a 10-day culture. Lin{sup -}Sca-1{sup +} and long-term culture-initiating cells were increased by 54- and 26-fold, respectively. Expanded cells were long-term multi-lineage engraftible in sub-lethally irradiated mice. Donor-derived peripheral blood chimerism was significantly higher (73.2 {+-} 9.1%, p < 0.01) in expanded cells than in normal and 5-flurouracil-treated bone marrow cells. Most interestingly, the expression of mdr1 gene was significantly enhanced in cultured cells than in other two sources of donor cells. The mdr1 gene was functional since expanded cells effluxed Hoechst 33342 and Rh123 dyes. These results suggest that primitive engraftible stem cells can be expanded in the presence of suitable microenvironments.

  15. Bone-tissue engineering: complex tunable structural and biological responses to injury, drug delivery, and cell-based therapies.

    PubMed

    Alghazali, Karrer M; Nima, Zeid A; Hamzah, Rabab N; Dhar, Madhu S; Anderson, David E; Biris, Alexandru S

    2015-01-01

    Bone loss and failure of proper bone healing continues to be a significant medical condition in need of solutions that can be implemented successfully both in human and veterinary medicine. This is particularly true when large segmental defects are present, the bone has failed to return to normal form or function, or the healing process is extremely prolonged. Given the inherent complexity of bone tissue - its unique structural, mechanical, and compositional properties, as well as its ability to support various cells - it is difficult to find ideal candidate materials that could be used as the foundation for tissue regeneration from technological platforms. Recently, important developments have been made in the implementation of complex structures built both at the macro- and the nano-level that have been shown to positively impact bone formation and to have the ability to deliver active biological molecules (drugs, growth factors, proteins, cells) for controlled tissue regeneration and the prevention of infection. These materials are diverse, ranging from polymers to ceramics and various composites. This review presents developments in this area with a focus on the role of scaffold structure and chemistry on the biologic processes that influence bone physiology and regeneration.

  16. Aged human bone marrow stromal cells maintaining bone forming capacity in vivo evaluated using an improved method of visualization.

    PubMed

    Stenderup, K; Rosada, C; Justesen, J; Al-Soubky, T; Dagnaes-Hansen, F; Kassem, M

    2004-01-01

    Age-related decreased osteoblast function is a well-known but poorly understood phenomenon. Previous studies that examined the effects of donor age on osteoblast functions employed in vitro assays that may not reflect the true osteoblast capacity for bone formation. Thus, we have developed an in vivo assay for quantifying the bone forming capacity (BFC) and we compared the BFC of osteoblastic cells obtained from young and old donors. Osteoblasts were obtained from human bone marrow stromal cell cultures and implanted subcutaneously in immuno-deficient mice (NOD/LtSz- Prkdc(scid)). After 8 weeks, the implants were removed and embedded un-decalcified in methyl methacrylate (MMA). Sections were stained histochemically with Goldner's Trichrome stain and immuno-histochemically using human-specific antibodies against known osteogenic markers. Implanted human marrow stromal cells (hMSC) were able to form bone in vivo. The donor origin of bone was verified using several human-specific antibodies. Dose-response experiments demonstrated that 5 x 10(5) hMSC per implant gave the maximal bone formation after 8 weeks. No difference in BFC was observed between cells obtained from young (24-30 years old; mean age 27 +/- 2 years, n = 5) and old (71-81 years old; mean age 75 +/- 4 years, n = 5) donors. Our study demonstrates that the capacity of hMSC to form bone in vivo is maintained with age and suggests that the observed senescence-associated decrease in bone formation is due to a defect in the bone microenvironment, the nature of which remains to be determined.

  17. Endothelial cell metabolism in normal and diseased vasculature

    PubMed Central

    Eelen, Guy; de Zeeuw, Pauline; Simons, Michael; Carmeliet, Peter

    2015-01-01

    Higher organisms rely on a closed cardiovascular circulatory system with blood vessels supplying vital nutrients and oxygen to distant tissues. Not surprisingly, vascular pathologies rank among the most life-threatening diseases. At the crux of most of these vascular pathologies are (dysfunctional) endothelial cells (ECs), the cells lining the blood vessel lumen. ECs display the remarkable capability to switch rapidly from a quiescent state to a highly migratory and proliferative state during vessel sprouting. This angiogenic switch has long been considered to be dictated by angiogenic growth factors (eg vascular endothelial growth factor; VEGF) and other signals (eg Notch) alone, but recent findings show that it is also driven by a metabolic switch in ECs. Furthermore, these changes in metabolism may even override signals inducing vessel sprouting. Here, we review how EC metabolism differs between the normal and dysfunctional/diseased vasculature and how it relates to or impacts the metabolism of other cell types contributing to the pathology. We focus on the biology of ECs in tumor blood vessel and diabetic ECs in atherosclerosis as examples of the role of endothelial metabolism in key pathological processes. Finally, current as well as unexplored ‘EC metabolism’-centric therapeutic avenues are discussed. PMID:25814684

  18. Adult bone marrow: which stem cells for cellular therapy protocols in neurodegenerative disorders?

    PubMed

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Rogister, Bernard

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy.

  19. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair.

    PubMed

    Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D; Wang, Ping; Reynolds, Mark A; Zhao, Liang; Xu, Hockin H K

    2016-12-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p<0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p>0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14d was 14-fold that at 1d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27612810

  20. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair.

    PubMed

    Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D; Wang, Ping; Reynolds, Mark A; Zhao, Liang; Xu, Hockin H K

    2016-12-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcripti