Sample records for normal brain maturation

  1. Epigenetic and gene expression changes in the adolescent brain: What have we learned from animal models?

    PubMed

    Mychasiuk, Richelle; Metz, Gerlinde A S

    2016-11-01

    Adolescence is defined as the gradual period of transition between childhood and adulthood that is characterized by significant brain maturation, growth spurts, sexual maturation, and heightened social interaction. Although originally believed to be a uniquely human aspect of development, rodent and non-human primates demonstrate maturational patterns that distinctly support an adolescent stage. As epigenetic processes are essential for development and differentiation, but also transpire in mature cells in response to environmental influences, they are an important aspect of adolescent brain maturation. The purpose of this review article was to examine epigenetic programming in animal models of brain maturation during adolescence. The discussion focuses on animal models to examine three main concepts; epigenetic processes involved in normal adolescent brain maturation, the influence of fetal programming on adolescent brain development and the epigenome, and finally, postnatal experiences such as exercise and drugs that modify epigenetic processes important for adolescent brain maturation. This corollary emphasizes the utility of animal models to further our understanding of complex processes such as epigenetic regulation and brain development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Early parental care is important for hippocampal maturation: evidence from brain morphology in humans.

    PubMed

    Rao, Hengyi; Betancourt, Laura; Giannetta, Joan M; Brodsky, Nancy L; Korczykowski, Marc; Avants, Brian B; Gee, James C; Wang, Jiongjiong; Hurt, Hallam; Detre, John A; Farah, Martha J

    2010-01-01

    The effects of early life experience on later brain structure and function have been studied extensively in animals, yet the relationship between childhood experience and normal brain development in humans remains largely unknown. Using a unique longitudinal data set including ecologically valid in-home measures of early experience during childhood (at age 4 and 8 years) and high-resolution structural brain imaging during adolescence (mean age 14 years), we examined the effects on later brain morphology of two dimensions of early experience: parental nurturance and environmental stimulation. Parental nurturance at age 4 predicts the volume of the left hippocampus in adolescence, with better nurturance associated with smaller hippocampal volume. In contrast, environmental stimulation did not correlate with hippocampal volume. Moreover, the association between hippocampal volume and parental nurturance disappears at age 8, supporting the existence of a sensitive developmental period for brain maturation. These findings indicate that variation in normal childhood experience is associated with differences in brain morphology, and hippocampal volume is specifically associated with early parental nurturance. Our results provide neuroimaging evidence supporting the important role of warm parental care during early childhood for brain maturation.

  3. Prediction of brain maturity based on cortical thickness at different spatial resolutions.

    PubMed

    Khundrakpam, Budhachandra S; Tohka, Jussi; Evans, Alan C

    2015-05-01

    Several studies using magnetic resonance imaging (MRI) scans have shown developmental trajectories of cortical thickness. Cognitive milestones happen concurrently with these structural changes, and a delay in such changes has been implicated in developmental disorders such as attention-deficit/hyperactivity disorder (ADHD). Accurate estimation of individuals' brain maturity, therefore, is critical in establishing a baseline for normal brain development against which neurodevelopmental disorders can be assessed. In this study, cortical thickness derived from structural magnetic resonance imaging (MRI) scans of a large longitudinal dataset of normally growing children and adolescents (n=308), were used to build a highly accurate predictive model for estimating chronological age (cross-validated correlation up to R=0.84). Unlike previous studies which used kernelized approach in building prediction models, we used an elastic net penalized linear regression model capable of producing a spatially sparse, yet accurate predictive model of chronological age. Upon investigating different scales of cortical parcellation from 78 to 10,240 brain parcels, we observed that the accuracy in estimated age improved with increased spatial scale of brain parcellation, with the best estimations obtained for spatial resolutions consisting of 2560 and 10,240 brain parcels. The top predictors of brain maturity were found in highly localized sensorimotor and association areas. The results of our study demonstrate that cortical thickness can be used to estimate individuals' brain maturity with high accuracy, and the estimated ages relate to functional and behavioural measures, underscoring the relevance and scope of the study in the understanding of biological maturity. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Combined Diffusion Tensor and Magnetic Resonance Spectroscopic Imaging Methodology for Automated Regional Brain Analysis: Application in a Normal Pediatric Population.

    PubMed

    Ghosh, Nirmalya; Holshouser, Barbara; Oyoyo, Udo; Barnes, Stanley; Tong, Karen; Ashwal, Stephen

    2017-01-01

    During human brain development, anatomic regions mature at different rates. Quantitative anatomy-specific analysis of longitudinal diffusion tensor imaging (DTI) and magnetic resonance spectroscopic imaging (MRSI) data may improve our ability to quantify and categorize these maturational changes. Computational tools designed to quickly fuse and analyze imaging information from multiple, technically different datasets would facilitate research on changes during normal brain maturation and for comparison to disease states. In the current study, we developed a complete battery of computational tools to execute such data analyses that include data preprocessing, tract-based statistical analysis from DTI data, automated brain anatomy parsing from T1-weighted MR images, assignment of metabolite information from MRSI data, and co-alignment of these multimodality data streams for reporting of region-specific indices. We present statistical analyses of regional DTI and MRSI data in a cohort of normal pediatric subjects (n = 72; age range: 5-18 years; mean 12.7 ± 3.3 years) to establish normative data and evaluate maturational trends. Several regions showed significant maturational changes for several DTI parameters and MRSI ratios, but the percent change over the age range tended to be small. In the subcortical region (combined basal ganglia [BG], thalami [TH], and corpus callosum [CC]), the largest combined percent change was a 10% increase in fractional anisotropy (FA) primarily due to increases in the BG (12.7%) and TH (9%). The largest significant percent increase in N-acetylaspartate (NAA)/creatine (Cr) ratio was seen in the brain stem (BS) (18.8%) followed by the subcortical regions in the BG (11.9%), CC (8.9%), and TH (6.0%). We found consistent, significant (p < 0.01), but weakly positive correlations (r = 0.228-0.329) between NAA/Cr ratios and mean FA in the BS, BG, and CC regions. Age- and region-specific normative MR diffusion and spectroscopic metabolite ranges show brain maturation changes and are requisite for detecting abnormalities in an injured or diseased population. © 2017 S. Karger AG, Basel.

  5. Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis.

    PubMed

    Coupé, Pierrick; Catheline, Gwenaelle; Lanuza, Enrique; Manjón, José Vicente

    2017-11-01

    There is no consensus in literature about lifespan brain maturation and senescence, mainly because previous lifespan studies have been performed on restricted age periods and/or with a limited number of scans, making results instable and their comparison very difficult. Moreover, the use of nonharmonized tools and different volumetric measurements lead to a great discrepancy in reported results. Thanks to the new paradigm of BigData sharing in neuroimaging and the last advances in image processing enabling to process baby as well as elderly scans with the same tool, new insights on brain maturation and aging can be obtained. This study presents brain volume trajectory over the entire lifespan using the largest age range to date (from few months of life to elderly) and one of the largest number of subjects (N = 2,944). First, we found that white matter trajectory based on absolute and normalized volumes follows an inverted U-shape with a maturation peak around middle life. Second, we found that from 1 to 8-10 y there is an absolute gray matter (GM) increase related to body growth followed by a GM decrease. However, when normalized volumes were considered, GM continuously decreases all along the life. Finally, we found that this observation holds for almost all the considered subcortical structures except for amygdala which is rather stable and hippocampus which exhibits an inverted U-shape with a longer maturation period. By revealing the entire brain trajectory picture, a consensus can be drawn since most of the previously discussed discrepancies can be explained. Hum Brain Mapp 38:5501-5518, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Toward Developmental Connectomics of the Human Brain

    PubMed Central

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental dyslexia). Collectively, we showed that delineation of the brain network from a connectomics perspective offers a unique and refreshing view of both normal development and neuropsychiatric disorders. PMID:27064378

  7. The different maturation of the corticospinal tract and corticoreticular pathway in normal brain development: diffusion tensor imaging study

    PubMed Central

    Yeo, Sang Seok; Jang, Sung Ho; Son, Su Min

    2014-01-01

    Background and Purpose: The corticospinal tract (CST) and corticoreticular pathway (CRP) are known to be important neural tracts for motor development. However, little is known about the difference in maturation of the CST and CRP. In this study, using diffusion tensor imaging (DTI), we investigated maturation of the CST and CRP in typically developed children and normal healthy adults. Methods: We recruited 75 normal healthy subjects for this study. DTI was performed using 1.5-T, and the CST and CRP were reconstructed using DTI-Studio software. Values of fractional anisotropy (FA) and fiber volume (FV) of the CST and CRP were measured. Results: In the current study, the threshold points for CST and CRP maturation were different in normal brain development. Change in FA value of the CST showed a steep increase until 7 years of age and then a gradual increase until adulthood, however, the CRP showed a steep increase only until 2 years of age and then a very gradual increase or plateau until adulthood. In terms of FV, the CST showed a steep increase until 12 years and then a gradual increase until adulthood, in contrast, the CRP showed gradual increase of FV across whole age range (0–25 years). Conclusion: The difference in maturation process between CST and CRP appears to be related to different periods of fine and gross motor development. This radiologic information can provide a scientific basis for understanding development in motor function. PMID:25309378

  8. Cystic fibrosis transmembrane conductance regulator protein (CFTR) expression in the developing human brain: comparative immunohistochemical study between patients with normal and mutated CFTR.

    PubMed

    Marcorelles, Pascale; Friocourt, Gaëlle; Uguen, Arnaud; Ledé, Françoise; Férec, Claude; Laquerrière, Annie

    2014-11-01

    Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein has recently been shown to be expressed in the human adult central nervous system (CNS). As CFTR expression has also been documented during embryonic development in several organs, such as the respiratory tract, the intestine and the male reproductive system, suggesting a possible role during development we decided to investigate the expression of CFTR in the human developing CNS. In addition, as some, although rare, neurological symptoms have been reported in patients with CF, we compared the expression of normal and mutated CFTR at several fetal stages. Immunohistochemistry was performed on brain and spinal cord samples of foetuses between 13 and 40 weeks of gestation and compared with five patients with cystic fibrosis (CF) of similar ages. We showed in this study that CFTR is only expressed in neurons and has an early and widespread distribution during development. Although we did not observe any cerebral abnormality in patients with CF, we observed a slight delay in the maturation of several brain structures. We also observed different expression and localization of CFTR depending on the brain structure or the cell maturation stage. Our findings, along with a literature review on the neurological phenotypes of patients with CF, suggest that this gene may play previously unsuspected roles in neuronal maturation or function. © The Author(s) 2014.

  9. Decreased serum levels of mature brain-derived neurotrophic factor (BDNF), but not its precursor proBDNF, in patients with major depressive disorder.

    PubMed

    Yoshida, Taisuke; Ishikawa, Masatomo; Niitsu, Tomihisa; Nakazato, Michiko; Watanabe, Hiroyuki; Shiraishi, Tetsuya; Shiina, Akihiro; Hashimoto, Tasuku; Kanahara, Nobuhisa; Hasegawa, Tadashi; Enohara, Masayo; Kimura, Atsushi; Iyo, Masaomi; Hashimoto, Kenji

    2012-01-01

    Meta-analyses have identified serum levels of brain-derived neurotrophic factor (BDNF) as a potential biomarker for major depressive disorder (MDD). However, at the time, commercially available human ELISA kits are unable to distinguish between proBDNF (precursor of BDNF) and mature BDNF because of limited BDNF antibody specificity. In this study, we examined whether serum levels of proBDNF, mature BDNF, and matrix metalloproteinase-9 (MMP-9), which converts proBDNF to mature BDNF, are altered in patients with MDD. Sixty-nine patients with MDD and 78 age- and gender-matched healthy subjects were enrolled. Patients were evaluated using 17 items on the Structured Interview Guide for the Hamilton Depression Rating Scale. Cognitive impairment was evaluated using the CogState battery. Serum levels of proBDNF, mature BDNF, and MMP-9 were measured using ELISA kits. Serum levels of mature BDNF in patients with MDD were significantly lower than those of normal controls. In contrast, there was no difference in the serum levels of proBDNF and MMP-9 between patients and normal controls. While neither proBDNF nor mature BDNF serum levels was associated with clinical variables, there were significant correlations between MMP-9 serum levels and the severity of depression, quality of life scores, and social function scores in patients. These findings suggest that mature BDNF may serve as a biomarker for MDD, and that MMP-9 may play a role in the pathophysiology of MDD. Further studies using larger sample sizes will be needed to investigate these results.

  10. High cholesterol level is essential for myelin membrane growth.

    PubMed

    Saher, Gesine; Brügger, Britta; Lappe-Siefke, Corinna; Möbius, Wiebke; Tozawa, Ryu-ichi; Wehr, Michael C; Wieland, Felix; Ishibashi, Shun; Nave, Klaus-Armin

    2005-04-01

    Cholesterol in the mammalian brain is a risk factor for certain neurodegenerative diseases, raising the question of its normal function. In the mature brain, the highest cholesterol content is found in myelin. We therefore created mice that lack the ability to synthesize cholesterol in myelin-forming oligodendrocytes. Mutant oligodendrocytes survived, but CNS myelination was severely perturbed, and mutant mice showed ataxia and tremor. CNS myelination continued at a reduced rate for many months, and during this period, the cholesterol-deficient oligodendrocytes actively enriched cholesterol and assembled myelin with >70% of the cholesterol content of wild-type myelin. This shows that cholesterol is an indispensable component of myelin membranes and that cholesterol availability in oligodendrocytes is a rate-limiting factor for brain maturation.

  11. Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function

    PubMed Central

    Spencer, William C.; Deneris, Evan S.

    2017-01-01

    The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling these processes may result in long-lasting changes in brain function in adulthood. Further study of 5-HT neuron gene regulatory networks is likely to provide additional insight into how neurons acquire their mature identities and how terminal selector-type TFs function in postmitotic vertebrate neurons. PMID:28769770

  12. Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function.

    PubMed

    Spencer, William C; Deneris, Evan S

    2017-01-01

    The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling these processes may result in long-lasting changes in brain function in adulthood. Further study of 5-HT neuron gene regulatory networks is likely to provide additional insight into how neurons acquire their mature identities and how terminal selector-type TFs function in postmitotic vertebrate neurons.

  13. Glucose metabolism in the developing brain.

    PubMed

    Vannucci, R C; Vannucci, S J

    2000-04-01

    As in adults, glucose is the predominant cerebral energy fuel for the fetus and newborn. Studies in experimental animals and humans indicate that cerebral glucose utilization initially is low and increases with maturation with increasing regional heterogeneity. The increases in cerebral glucose utilization with advancing age occurs as a consequence of increasing functional activity and cerebral energy demands. The levels of expression of the 2 primary facilitative glucose transporter proteins in brain, GLUT1 (blood-brain barrier and glia) and GLUT3 (neuronal), display a similar maturational pattern. Alternate cerebral energy fuels, specifically the ketone bodies and lactate, can substitute for glucose, especially during hypoglycemia, thereby protecting the immature brain from potential untoward effects of hypoglycemia. Unlike adults, glucose supplementation during hypoxia-ischemia is protective in the immature brain, whereas hypoglycemia is deleterious. Accordingly, glucose plays a critical role in the developing brain, not only as the primary substrate for energy production but also to allow for normal biosynthetic processes to proceed.

  14. Functional Network Development During the First Year: Relative Sequence and Socioeconomic Correlations

    PubMed Central

    Gao, Wei; Alcauter, Sarael; Elton, Amanda; Hernandez-Castillo, Carlos R.; Smith, J. Keith; Ramirez, Juanita; Lin, Weili

    2015-01-01

    The first postnatal year is characterized by the most dramatic functional network development of the human lifespan. Yet, the relative sequence of the maturation of different networks and the impact of socioeconomic status (SES) on their development during this critical period remains poorly characterized. Leveraging a large, normally developing infant sample with multiple longitudinal resting-state functional magnetic resonance imaging scans during the first year (N = 65, scanned every 3 months), we aimed to delineate the relative maturation sequence of 9 key brain functional networks and examine their SES correlations. Our results revealed a maturation sequence from primary sensorimotor/auditory to visual to attention/default-mode, and finally to executive control networks. Network-specific critical growth periods were also identified. Finally, marginally significant positive SES–brain correlations were observed at 6 months of age for both the sensorimotor and default-mode networks, indicating interesting SES effects on functional brain maturation. To the best of our knowledge, this is the first study delineating detailed longitudinal growth trajectories of all major functional networks during the first year of life and their SES correlations. Insights from this study not only improve our understanding of early brain development, but may also inform the critical periods for SES expression during infancy. PMID:24812084

  15. Neuronal survival in the brain: neuron type-specific mechanisms.

    PubMed

    Pfisterer, Ulrich; Khodosevich, Konstantin

    2017-03-02

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.

  16. Cerebral Ketone Metabolism During Development and Injury

    PubMed Central

    Prins, Mayumi L.

    2011-01-01

    Cerebral metabolism of ketones is a normal part of the process of brain development. While the mature brain relies on glucose as a primary fuel source, metabolism of ketone bodies remains an alternative energy source under conditions of starvation. The neuroprotective properties of brain ketone metabolism make this alternative substrate a viable therapeutic option for various pathologies. Since the ability to revert to utilizing ketones as an alternative substrate is greatest in the younger post-weaned brain, this particular therapeutic approach remains an untapped resource particularly for pediatric pathological conditions. PMID:22104087

  17. The impact of junk foods on the adolescent brain.

    PubMed

    Reichelt, Amy C; Rank, Michelle M

    2017-12-01

    Adolescence is a significant period of physical, social, and emotional development, and is characterized by prominent neurobiological changes in the brain. The maturational processes that occur in brain regions responsible for cognitive control and reward seeking may underpin excessive consumption of palatable high fat and high sugar "junk" foods during adolescence. Recent studies have highlighted the negative impact of these foods on brain function, resulting in cognitive impairments and altered reward processing. The increased neuroplasticity during adolescence may render the brain vulnerable to the negative effects of these foods on cognition and behavior. In this review, we describe the mechanisms by which junk food diets influence neurodevelopment during adolescence. Diet can lead to alterations in dopamine-mediated reward signaling, and inhibitory neurotransmission controlled by γ-aminobutyric acid (GABA), two major neurotransmitter systems that are under construction across adolescence. We propose that poor dietary choices may derail the normal adolescent maturation process and influence neurodevelopmental trajectories, which can predispose individuals to dysregulated eating and impulsive behaviors. © 2017 Wiley Periodicals, Inc.

  18. The maturation of cortical sleep rhythms and networks over early development.

    PubMed

    Chu, C J; Leahy, J; Pathmanathan, J; Kramer, M A; Cash, S S

    2014-07-01

    Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. The maturation of cortical sleep rhythms and networks over early development

    PubMed Central

    Chu, CJ; Leahy, J; Pathmanathan, J; Kramer, MA; Cash, SS

    2014-01-01

    Objective Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. Methods We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. Results We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Conclusion Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. Significance This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development. PMID:24418219

  20. Quantification of fetal magnetoencephalographic activity in low-risk fetuses using burst duration and interburst interval.

    PubMed

    Vairavan, Srinivasan; Govindan, Rathinaswamy B; Haddad, Naim; Preissl, Hubert; Lowery, Curtis L; Siegel, Eric; Eswaran, Hari

    2014-07-01

    To identify quantitative MEG indices of spontaneous brain activity for fetal neurological maturation in normal pregnancies and examine the effect of fetal state on these indices. Spontaneous MEG brain activity was examined in 22 low-risk fetal recordings with gestational age (GA) ranging from 30 to 37 weeks. As major quantitative characteristics of spontaneous activity, burst duration (BD) and interburst interval (IBI) were studied in correlation with GA and fetal state. IBI showed a decrease with gestational age (-0.21 s/week, P=0.0031). This trend was only maintained in the quiet-sleep state. With respect to BD, no significant trends were detected with GA and state. IBI can be quantified as a fetal brain maturational parameter. The decrease in IBI over gestation was similar to the trend reported in the preterm neonatal EEG studies. Quiet sleep could be the optimal state to study such MEG maturational indices. With further investigation, indices extracted from spontaneous fetal brain activity may serve as an early warning for fetal neurological distress. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Human face processing is tuned to sexual age preferences

    PubMed Central

    Ponseti, J.; Granert, O.; van Eimeren, T.; Jansen, O.; Wolff, S.; Beier, K.; Deuschl, G.; Bosinski, H.; Siebner, H.

    2014-01-01

    Human faces can motivate nurturing behaviour or sexual behaviour when adults see a child or an adult face, respectively. This suggests that face processing is tuned to detecting age cues of sexual maturity to stimulate the appropriate reproductive behaviour: either caretaking or mating. In paedophilia, sexual attraction is directed to sexually immature children. Therefore, we hypothesized that brain networks that normally are tuned to mature faces of the preferred gender show an abnormal tuning to sexual immature faces in paedophilia. Here, we use functional magnetic resonance imaging (fMRI) to test directly for the existence of a network which is tuned to face cues of sexual maturity. During fMRI, participants sexually attracted to either adults or children were exposed to various face images. In individuals attracted to adults, adult faces activated several brain regions significantly more than child faces. These brain regions comprised areas known to be implicated in face processing, and sexual processing, including occipital areas, the ventrolateral prefrontal cortex and, subcortically, the putamen and nucleus caudatus. The same regions were activated in paedophiles, but with a reversed preferential response pattern. PMID:24850896

  2. Rethinking schizophrenia in the context of normal neurodevelopment

    PubMed Central

    Catts, Vibeke S.; Fung, Samantha J.; Long, Leonora E.; Joshi, Dipesh; Vercammen, Ans; Allen, Katherine M.; Fillman, Stu G.; Rothmond, Debora A.; Sinclair, Duncan; Tiwari, Yash; Tsai, Shan-Yuan; Weickert, Thomas W.; Shannon Weickert, Cynthia

    2013-01-01

    The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to consider how pathological changes identified in adult brain tissue can be accounted for by aberrant developmental processes occurring during fetal, childhood, or adolescent periods. To place schizophrenia neuropathology in a neurodevelopmental context requires solid, scrutinized evidence of changes occurring during normal development of the human brain, particularly in the cortex; however, too often data on normative developmental change are selectively referenced. This paper focuses on the development of the prefrontal cortex and charts major molecular, cellular, and behavioral events on a similar time line. We first consider the time at which human cognitive abilities such as selective attention, working memory, and inhibitory control mature, emphasizing that attainment of full adult potential is a process requiring decades. We review the timing of neurogenesis, neuronal migration, white matter changes (myelination), and synapse development. We consider how molecular changes in neurotransmitter signaling pathways are altered throughout life and how they may be concomitant with cellular and cognitive changes. We end with a consideration of how the response to drugs of abuse changes with age. We conclude that the concepts around the timing of cortical neuronal migration, interneuron maturation, and synaptic regression in humans may need revision and include greater emphasis on the protracted and dynamic changes occurring in adolescence. Updating our current understanding of post-natal neurodevelopment should aid researchers in interpreting gray matter changes and derailed neurodevelopmental processes that could underlie emergence of psychosis. PMID:23720610

  3. Functional brain development in growth-restricted and constitutionally small fetuses: a fetal magnetoencephalography case-control study.

    PubMed

    Morin, E C; Schleger, F; Preissl, H; Braendle, J; Eswaran, H; Abele, H; Brucker, S; Kiefer-Schmidt, I

    2015-08-01

    Fetal magnetoencephalography records fetal brain activity non-invasively. Delayed brain responses were reported for fetuses weighing below the tenth percentile. To investigate whether this delay indicates delayed brain maturation resulting from placental insufficiency, this study distinguished two groups of fetuses below the tenth percentile: growth-restricted fetuses with abnormal umbilical artery Doppler velocity (IUGR) and constitutionally small-for-gestational-age fetuses with normal umbilical artery Doppler findings (SGA) were compared with fetuses of adequate weight for gestational age (AGA), matched for age and behavioural state. A case-control study of matched pairs. Fetal magnetoencephalography-Center at the University Hospital of Tuebingen. Fourteen IUGR fetuses and 23 SGA fetuses were matched for gestational age and fetal behavioural state with 37 healthy, normal-sized fetuses. A 156-channel fetal magentoencephalography system was used to record fetal brain activity. Light flashes as visual stimulation were applied to the fetus. The Student's t-test for paired groups was performed. Latency of fetal visual evoked magnetic responses (VER). The IUGR fetuses showed delayed VERs compared with controls (IUGR, 233.1 ms; controls, 184.6 ms; P = 0.032). SGA fetuses had similar evoked response latencies compared with controls (SGA, 216.1 ms; controls, 219.9 ms; P = 0.828). Behavioural states were similarly distributed. Visual evoked responses are delayed in IUGR fetuses, but not in SGA. Fetal behavioural state as an influencing factor of brain response latency was accounted for in the comparison. This reinforces that delayed brain maturation is the result of placental insufficiency. © 2015 Royal College of Obstetricians and Gynaecologists.

  4. Vascular and neuronal protection induced by the ocular administration of nerve growth factor in diabetic-induced rat encephalopathy.

    PubMed

    Tirassa, Paola; Maccarone, Mattia; Florenzano, Fulvio; Cartolano, Sara; De Nicolò, Sara

    2013-05-01

    Based on our previous findings on the efficacy of ocular applied nerve growth factor as eye drops (oNGF) to act in brain and counteract neuronal damage, we hypothesized that oNGF treatment might revert neuronal atrophy occurring in diabetic brain also by controlling neurotrophin system changes. The major NGF brain target areas, such as the septum and the hippocampus, were used as an experimental paradigma to test this hypothesis. Bilateral oNGF treatment was performed twice a day for 2 weeks in full-blown streptozotocin-treated adult male rats. The forebrain distribution of cholinergic and endothelial cell markers and NGF receptors were studied by confocal microscopy. The septo-hippocampal content of NGF mature and precursor form and NGF receptors expression were also analyzed by Elisa and Western blot. oNGF treatment recovers the morphological alterations and the neuronal atrophy in septum and normalized the expression of mature and pro-NGF, as well as NGF receptors in the septum and hippocampus of diabetic rats. In addition, oNGF stimulated brain vascularization and up-regulated the TRKA receptor in vessel endothelium. Our findings confirm that reduced availability of mature NGF and NGF signaling impairment favors vascular and neuronal alterations in diabetic septo-hippocampal areas and corroborate the ability of oNGF to act as a neuroprotective agent in brain. © 2013 Blackwell Publishing Ltd.

  5. Endocannabinoids in brain plasticity: Cortical maturation, HPA axis function and behavior.

    PubMed

    Dow-Edwards, Diana; Silva, Lindsay

    2017-01-01

    Marijuana use during adolescence has reached virtually every strata of society. The general population has the perception that marijuana use is safe for mature people and therefore is also safe for developing adolescents. However, both clinical and preclinical research shows that marijuana use, particularly prior to age 16, could have long-term effects on cognition, anxiety and stress-related behaviors, mood disorders and substance abuse. These effects derive from the role of the endocannabinoid system, the endogenous cannabinoid system, in the development of cortex, amygdala, hippocampus and hypothalamus during adolescence. Endocannabinoids are necessary for normal neuronal excitation and inhibition through actions at glutamate and GABA terminals. Synaptic pruning at excitatory synapses and sparing of inhibitory synapses likely results in changes in the balance of excitation/inhibition in individual neurons and within networks; processes which are necessary for normal cortical development. The interaction between prefrontal cortex (PFC), amygdala and hippocampus is responsible for emotional memory, anxiety-related behaviors and drug abuse and all utilize the endogenous cannabinoid system to maintain homeostasis. Also, endocannabinoids are required for fast and slow feedback in the normal stress response, processes which mature during adolescence. Therefore, exogenous cannabinoids, such as marijuana, have the potential to alter the course of development of each of these major systems (limbic, hypothalamic-pituitary-adrenal (HPA) axis and neocortex) if used during the critical period of brain development, adolescence. This article is part of a Special Issue entitled SI: Adolescent plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Diffusion-weighted magnetic resonance imaging of the fetal brain in intrauterine growth restriction.

    PubMed

    Arthurs, O J; Rega, A; Guimiot, F; Belarbi, N; Rosenblatt, J; Biran, V; Elmaleh, M; Sebag, G; Alison, M

    2017-07-01

    Diffusion-weighted magnetic resonance imaging (DWI) is a sensitive method for assessing brain maturation and detecting brain lesions, providing apparent diffusion coefficient (ADC) values as a measure of water diffusion. Abnormal ADC values are seen in ischemic brain lesions, such as those associated with acute or chronic hypoxia. The aim of this study was to assess whether ADC values in the fetal brain were different in fetuses with severe intrauterine growth restriction (IUGR) compared with normal controls. Brain magnetic resonance imaging (MRI) with single-shot axial DWI (b = 0 and b = 700 s/mm 2 ) was performed in 30 fetuses with severe IUGR (estimated fetal weight < 3 rd centile with absent or reversed umbilical artery Doppler flow) and in 24 normal controls of similar gestational age. Brain morphology and biometry were analyzed. ADC values were measured in frontal and occipital white matter, centrum semiovale, thalami, cerebellar hemisphere and pons. Frontal-occipital and frontal-cerebellar ADC ratios were calculated, and values were compared between IUGR fetuses and controls. There was no difference in gestational age at MRI between IUGR and control fetuses (IUGR, 30.2 ± 1.6 weeks vs controls, 30.7 ± 1.4 weeks). Fetal brain morphology and signals were normal in all fetuses. Brain dimensions (supratentorial ± infratentorial) were decreased (Z-score, < -2) in 20 (66.7%) IUGR fetuses. Compared with controls, IUGR fetuses had significantly lower ADC values in frontal white matter (1.97 ± 0.23 vs 2.17 ± 0.22 × 10 -3 mm 2 /s; P < 0.0001), thalami (1.04 ± 0.15 vs 1.13 ± 0.10 ×10 -3 mm 2 /s; P = 0.0002), centrum semiovale (1.86 ± 0.22 vs 1.97 ± 0.23 ×10 -3 mm 2 /s; P = 0.01) and pons (0.85 ± 0.19 vs 0.94 ± 0.12 ×10 -3 mm 2 /s; P = 0.043). IUGR fetuses had a lower frontal-occipital ADC ratio than did normal fetuses (1.00 ± 0.11 vs 1.08 ± 0.05; P = 0.003). ADC values in IUGR fetuses were significantly lower than in normal controls in the frontal white matter, thalami, centrum semiovale and pons, suggesting abnormal maturation in these regions. However, the prognostic value of these ADC changes is still unknown. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  7. Diffusion abnormalities in adolescents and young adults with a history of heavy cannabis use.

    PubMed

    Ashtari, Manzar; Cervellione, Kelly; Cottone, John; Ardekani, Babak A; Sevy, Serge; Kumra, Sanjiv

    2009-01-01

    There is growing evidence that adolescence is a key period for neuronal maturation. Despite the high prevalence of marijuana use among adolescents and young adults in the United States and internationally, very little is known about its impact on the developing brain. Based on neuroimaging literature on normal brain developmental during adolescence, we hypothesized that individuals with heavy cannabis use (HCU) would have brain structure abnormalities in similar brain regions that undergo development during late adolescence, particularly the fronto-temporal connection. Fourteen young adult males in residential treatment for cannabis dependence and 14 age-matched healthy male control subjects were recruited. Patients had a history of HCU throughout adolescence; 5 had concurrent alcohol abuse. Subjects underwent structural and diffusion tensor magnetic resonance imaging. White matter integrity was compared between subject groups using voxelwise and fiber tractography analysis. Voxelwise and tractography analyses revealed that adolescents with HCU had reduced fractional anisotropy, increased radial diffusivity, and increased trace in the homologous areas known to be involved in ongoing development during late adolescence, particularly in the fronto-temporal connection via arcuate fasciculus. Our results support the hypothesis that heavy cannabis use during adolescence may affect the trajectory of normal brain maturation. Due to concurrent alcohol consumption in five HCU subjects, conclusions from this study should be considered preliminary, as the DTI findings reported here may be reflective of the combination of alcohol and marijuana use. Further research in larger samples, longitudinal in nature, and controlling for alcohol consumption is needed to better understand the pathophysiology of the effect of cannabis on the developing brain.

  8. Human face processing is tuned to sexual age preferences.

    PubMed

    Ponseti, J; Granert, O; van Eimeren, T; Jansen, O; Wolff, S; Beier, K; Deuschl, G; Bosinski, H; Siebner, H

    2014-05-01

    Human faces can motivate nurturing behaviour or sexual behaviour when adults see a child or an adult face, respectively. This suggests that face processing is tuned to detecting age cues of sexual maturity to stimulate the appropriate reproductive behaviour: either caretaking or mating. In paedophilia, sexual attraction is directed to sexually immature children. Therefore, we hypothesized that brain networks that normally are tuned to mature faces of the preferred gender show an abnormal tuning to sexual immature faces in paedophilia. Here, we use functional magnetic resonance imaging (fMRI) to test directly for the existence of a network which is tuned to face cues of sexual maturity. During fMRI, participants sexually attracted to either adults or children were exposed to various face images. In individuals attracted to adults, adult faces activated several brain regions significantly more than child faces. These brain regions comprised areas known to be implicated in face processing, and sexual processing, including occipital areas, the ventrolateral prefrontal cortex and, subcortically, the putamen and nucleus caudatus. The same regions were activated in paedophiles, but with a reversed preferential response pattern. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. ALL OUR SONS: THE DEVELOPMENTAL NEUROBIOLOGY AND NEUROENDOCRINOLOGY OF BOYS AT RISK.

    PubMed

    Schore, Allan N

    2017-01-01

    Why are boys at risk? To address this question, I use the perspective of regulation theory to offer a model of the deeper psychoneurobiological mechanisms that underlie the vulnerability of the developing male. The central thesis of this work dictates that significant gender differences are seen between male and female social and emotional functions in the earliest stages of development, and that these result from not only differences in sex hormones and social experiences but also in rates of male and female brain maturation, specifically in the early developing right brain. I present interdisciplinary research which indicates that the stress-regulating circuits of the male brain mature more slowly than those of the female in the prenatal, perinatal, and postnatal critical periods, and that this differential structural maturation is reflected in normal gender differences in right-brain attachment functions. Due to this maturational delay, developing males also are more vulnerable over a longer period of time to stressors in the social environment (attachment trauma) and toxins in the physical environment (endocrine disruptors) that negatively impact right-brain development. In terms of differences in gender-related psychopathology, I describe the early developmental neuroendocrinological and neurobiological mechanisms that are involved in the increased vulnerability of males to autism, early onset schizophrenia, attention deficit hyperactivity disorder, and conduct disorders as well as the epigenetic mechanisms that can account for the recent widespread increase of these disorders in U.S. culture. I also offer a clinical formulation of early assessments of boys at risk, discuss the impact of early childcare on male psychopathogenesis, and end with a neurobiological model of optimal adult male socioemotional functions. © 2017 Michigan Association for Infant Mental Health.

  10. Prediction of individual brain maturity using fMRI.

    PubMed

    Dosenbach, Nico U F; Nardos, Binyam; Cohen, Alexander L; Fair, Damien A; Power, Jonathan D; Church, Jessica A; Nelson, Steven M; Wig, Gagan S; Vogel, Alecia C; Lessov-Schlaggar, Christina N; Barnes, Kelly Anne; Dubis, Joseph W; Feczko, Eric; Coalson, Rebecca S; Pruett, John R; Barch, Deanna M; Petersen, Steven E; Schlaggar, Bradley L

    2010-09-10

    Group functional connectivity magnetic resonance imaging (fcMRI) studies have documented reliable changes in human functional brain maturity over development. Here we show that support vector machine-based multivariate pattern analysis extracts sufficient information from fcMRI data to make accurate predictions about individuals' brain maturity across development. The use of only 5 minutes of resting-state fcMRI data from 238 scans of typically developing volunteers (ages 7 to 30 years) allowed prediction of individual brain maturity as a functional connectivity maturation index. The resultant functional maturation curve accounted for 55% of the sample variance and followed a nonlinear asymptotic growth curve shape. The greatest relative contribution to predicting individual brain maturity was made by the weakening of short-range functional connections between the adult brain's major functional networks.

  11. Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia.

    PubMed

    Bossong, Matthijs G; Niesink, Raymond J M

    2010-11-01

    Cannabis use during adolescence increases the risk of developing psychotic disorders later in life. However, the neurobiological processes underlying this relationship are unknown. This review reports the results of a literature search comprising various neurobiological disciplines, ultimately converging into a model that might explain the neurobiology of cannabis-induced schizophrenia. The article briefly reviews current insights into brain development during adolescence. In particular, the role of the excitatory neurotransmitter glutamate in experience-dependent maturation of specific cortical circuitries is examined. The review also covers recent hypotheses regarding disturbances in strengthening and pruning of synaptic connections in the prefrontal cortex, and the link with latent psychotic disorders. In the present model, cannabis-induced schizophrenia is considered to be a distortion of normal late postnatal brain maturation. Distortion of glutamatergic transmission during critical periods may disturb prefrontal neurocircuitry in specific brain areas. Our model postulates that adolescent exposure to Δ9-tetrahydrocannabinol (THC), the primary psychoactive substance in cannabis, transiently disturbs physiological control of the endogenous cannabinoid system over glutamate and GABA release. As a result, THC may adversely affect adolescent experience-dependent maturation of neural circuitries within prefrontal cortical areas. Depending on dose, exact time window and duration of exposure, this may ultimately lead to the development of psychosis or schizophrenia. The proposed model provides testable hypotheses which can be addressed in future studies, including animal experiments, reanalysis of existing epidemiological data, and prospective epidemiological studies in which the role of the dose-time-effect relationship should be central. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Developmental pattern of diacylglycerol lipase-α (DAGLα) immunoreactivity in brain regions important for song learning and control in the zebra finch (Taeniopygia guttata).

    PubMed

    Soderstrom, Ken; Wilson, Ashley R

    2013-11-01

    Zebra finch song is a learned behavior dependent upon successful progress through a sensitive period of late-postnatal development. This learning is associated with maturation of distinct brain nuclei and the fiber tract interconnections between them. We have previously found remarkably distinct and dense CB1 cannabinoid receptor expression within many of these song control brain regions, implying a normal role for endocannabinoid signaling in vocal learning. Activation of CB1 receptors via daily treatments with exogenous agonist during sensorimotor stages of song learning (but not in adulthood) results in persistent alteration of song patterns. Now we are working to understand physiological changes responsible for this cannabinoid-altered vocal learning. We have found that song-altering developmental treatments are associated with changes in expression of endocannabinoid signaling elements, including CB1 receptors and the principal CNS endogenous agonist, 2-AG. Within CNS, 2-AG is produced largely through activity of the α isoform of the enzyme diacylglycerol lipase (DAGLα). To better appreciate the role of 2-AG production in normal vocal development we have determined the spatial distribution of DAGLα expression within zebra finch CNS during vocal development. Early during vocal development at 25 days, DAGLα staining is typically light and of fibroid processes. Staining peaks late in the sensorimotor stage of song learning at 75 days and is characterized by fiber, neuropil and some staining of both small and large cell somata. Results provide insight to the normal role for endocannabinoid signaling in the maturation of brain regions responsible for song learning and vocal-motor output, and suggest mechanisms by which exogenous cannabinoid exposure alters acquisition of this form of vocal communication. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Maturation of a central brain flight circuit in Drosophila requires Fz2/Ca2+ signaling

    PubMed Central

    Agrawal, Tarjani; Hasan, Gaiti

    2015-01-01

    The final identity of a differentiated neuron is determined by multiple signaling events, including activity dependent calcium transients. Non-canonical Frizzled2 (Fz2) signaling generates calcium transients that determine neuronal polarity, neuronal migration, and synapse assembly in the developing vertebrate brain. Here, we demonstrate a requirement for Fz2/Ca2+ signaling in determining the final differentiated state of a set of central brain dopaminergic neurons in Drosophila, referred to as the protocerebral anterior medial (PAM) cluster. Knockdown or inhibition of Fz2/Ca2+ signaling during maturation of the flight circuit in pupae reduces Tyrosine Hydroxylase (TH) expression in the PAM neurons and affects maintenance of flight. Thus, we demonstrate that Fz2/Ca2+ transients during development serve as a pre-requisite for normal adult behavior. Our results support a neural mechanism where PAM neuron send projections to the α' and β' lobes of a higher brain centre, the mushroom body, and function in dopaminergic re-inforcement of flight. DOI: http://dx.doi.org/10.7554/eLife.07046.001 PMID:25955970

  14. Hitting a Moving Target: Basic Mechanisms of Recovery from Acquired Developmental Brain Injury

    PubMed Central

    Giza, Christopher C.; Kolb, Bryan; Harris, Neil G.; Asarnow, Robert F.; Prins, Mayumi L.

    2009-01-01

    Acquired brain injuries represent a major cause of disability in the pediatric population. Understanding responses to developmental acquired brain injuries requires knowledge of the neurobiology of normal development, age-at-injury effects and experience-dependent neuroplasticity. In the developing brain, full recovery cannot be considered as a return to the premorbid baseline, since ongoing maturation means that cerebral functioning in normal individuals will continue to advance. Thus, the recovering immature brain has to ‘hit a moving target’ to achieve full functional recovery, defined as parity with age-matched uninjured peers. This review will discuss the consequences of developmental injuries such as focal lesions, diffuse hypoxia and traumatic brain injury (TBI). Underlying cellular and physiological mechanisms relevant to age-at-injury effects will be described in considerable detail, including but not limited to alterations in neurotransmission, connectivity/network functioning, the extracellular matrix, response to oxidative stress and changes in cerebral metabolism. Finally, mechanisms of experience-dependent plasticity will be reviewed in conjunction with their effects on neural repair and recovery. PMID:19956795

  15. Semi-quantitative Assessment of Brain Maturation by Conventional Magnetic Resonance Imaging in Neonates with Clinically Mild Hypoxic-ischemic Encephalopathy

    PubMed Central

    Gao, Jie; Sun, Qin-Li; Zhang, Yu-Miao; Li, Yan-Yan; Li, Huan; Hou, Xin; Yu, Bo-Lang; Zhou, Xi-Hui; Yang, Jian

    2015-01-01

    Background: Mild hypoxic-ischemic encephalopathy (HIE) injury is becoming the major type in neonatal brain diseases. The aim of this study was to assess brain maturation in mild HIE neonatal brains using total maturation score (TMS) based on conventional magnetic resonance imaging (MRI). Methods: Totally, 45 neonates with clinically mild HIE and 45 matched control neonates were enrolled. Gestated age, birth weight, age after birth and postmenstrual age at magnetic resonance (MR) scan were homogenous in the two groups. According to MR findings, mild HIE neonates were divided into three subgroups: Pattern I, neonates with normal MR appearance; Pattern II, preterm neonates with abnormal MR appearance; Pattern III, full-term neonates with abnormal MR appearance. TMS and its parameters, progressive myelination (M), cortical infolding (C), involution of germinal matrix tissue (G), and glial cell migration bands (B), were employed to assess brain maturation and compare difference between HIE and control groups. Results: The mean of TMS was significantly lower in mild HIE group than it in the control group (mean ± standard deviation [SD] 11.62 ± 1.53 vs. 12.36 ± 1.26, P < 0.001). In four parameters of TMS scores, the M and C scores were significantly lower in mild HIE group. Of the three patterns of mild HIE, Pattern I (10 cases) showed no significant difference of TMS compared with control neonates, while Pattern II (22 cases), III (13 cases) all had significantly decreased TMS than control neonates (mean ± SD 10.56 ± 0.93 vs. 11.48 ± 0.55, P < 0.05; 12.59 ± 1.28 vs. 13.25 ± 1.29, P < 0.05). It was M, C, and GM scores that significantly decreased in Pattern II, while for Pattern III, only C score significantly decreased. Conclusions: The TMS system, based on conventional MRI, is an effective method to detect delayed brain maturation in clinically mild HIE. The conventional MRI can reveal the different retardations in subtle structures and development processes among the different patterns of mild HIE. PMID:25698186

  16. Delayed cerebral development in twins with congenital hyperthyroidism.

    PubMed

    Kopelman, A E

    1983-09-01

    Twins had congenital hyperthyroidism and delayed cerebral development manifested as ventriculomegaly, increased space in the interhemispheric fissure, and an exaggerated gyral pattern on cranial computed tomographic scans. At 3 1/2 years of age, both children had delayed development. Fetal and neonatal hyperthyroidism may interfere with normal brain growth and maturation with both neuranatomic and developmental sequelae.

  17. Adolescent Alcohol Exposure: Burden of Epigenetic Reprogramming, Synaptic Remodeling, and Adult Psychopathology

    PubMed Central

    Kyzar, Evan J.; Floreani, Christina; Teppen, Tara L.; Pandey, Subhash C.

    2016-01-01

    Adolescence represents a crucial phase of synaptic maturation characterized by molecular changes in the developing brain that shape normal behavioral patterns. Epigenetic mechanisms play an important role in these neuromaturation processes. Perturbations of normal epigenetic programming during adolescence by ethanol can disrupt these molecular events, leading to synaptic remodeling and abnormal adult behaviors. Repeated exposure to binge levels of alcohol increases the risk for alcohol use disorder (AUD) and comorbid psychopathology including anxiety in adulthood. Recent studies in the field clearly suggest that adolescent alcohol exposure causes widespread and persistent changes in epigenetic, neurotrophic, and neuroimmune pathways in the brain. These changes are manifested by altered synaptic remodeling and neurogenesis in key brain regions leading to adult psychopathology such as anxiety and alcoholism. This review details the molecular mechanisms underlying adolescent alcohol exposure-induced changes in synaptic plasticity and the development of alcohol addiction-related phenotypes in adulthood. PMID:27303256

  18. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain.

    PubMed

    Currie, Ko W; Molinaro, Alyssa M; Pearson, Bret J

    2016-11-19

    The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx , which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand ( Smed-hh ), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS.

  19. The Amyloid Precursor Protein (APP) Triplicated Gene Impairs Neuronal Precursor Differentiation and Neurite Development through Two Different Domains in the Ts65Dn Mouse Model for Down Syndrome*

    PubMed Central

    Trazzi, Stefania; Fuchs, Claudia; Valli, Emanuele; Perini, Giovanni; Bartesaghi, Renata; Ciani, Elisabetta

    2013-01-01

    Intellectual disability in Down syndrome (DS) appears to be related to severe proliferation impairment during brain development. Recent evidence shows that it is not only cellular proliferation that is heavily compromised in DS, but also cell fate specification and dendritic maturation. The amyloid precursor protein (APP), a gene that is triplicated in DS, plays a key role in normal brain development by influencing neural precursor cell proliferation, cell fate specification, and neuronal maturation. APP influences these processes via two separate domains, the APP intracellular domain (AICD) and the soluble secreted APP. We recently found that the proliferation impairment of neuronal precursors (NPCs) from the Ts65Dn mouse model for DS was caused by derangement of the Shh pathway due to overexpression of patched1(Ptch1), its inhibitory regulator. Ptch1 overexpression was related to increased levels within the APP/AICD system. The overall goal of this study was to determine whether APP contributes to neurogenesis impairment in DS by influencing in addition to proliferation, cell fate specification, and neurite development. We found that normalization of APP expression restored the reduced neuronogenesis, the increased astrogliogenesis, and the reduced neurite length of trisomic NPCs, indicating that APP overexpression underpins all aspects of neurogenesis impairment. Moreover, we found that two different domains of APP impair neuronal differentiation and maturation in trisomic NPCs. The APP/AICD system regulates neuronogenesis and neurite length through the Shh pathway, whereas the APP/secreted AP system promotes astrogliogenesis through an IL-6-associated signaling cascade. These results provide novel insight into the mechanisms underlying brain development alterations in DS. PMID:23740250

  20. A review on neuroimaging studies of genetic and environmental influences on early brain development.

    PubMed

    Gao, Wei; Grewen, Karen; Knickmeyer, Rebecca C; Qiu, Anqi; Salzwedel, Andrew; Lin, Weili; Gilmore, John H

    2018-04-16

    The past decades witnessed a surge of interest in neuroimaging study of normal and abnormal early brain development. Structural and functional studies of normal early brain development revealed massive structural maturation as well as sequential, coordinated, and hierarchical emergence of functional networks during the infancy period, providing a great foundation for the investigation of abnormal early brain development mechanisms. Indeed, studies of altered brain development associated with either genetic or environmental risks emerged and thrived. In this paper, we will review selected studies of genetic and environmental risks that have been relatively more extensively investigated-familial risks, candidate risk genes, and genome-wide association studies (GWAS) on the genetic side; maternal mood disorders and prenatal drug exposures on the environmental side. Emerging studies on environment-gene interactions will also be reviewed. Our goal was not to perform an exhaustive review of all studies in the field but to leverage some representative ones to summarize the current state, point out potential limitations, and elicit discussions on important future directions. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Conditional Deletion of the L-Type Calcium Channel Cav1.2 in NG2-Positive Cells Impairs Remyelination in Mice.

    PubMed

    Santiago González, Diara A; Cheli, Veronica T; Zamora, Norma N; Lama, Tenzing N; Spreuer, Vilma; Murphy, Geoffrey G; Paez, Pablo M

    2017-10-18

    Exploring the molecular mechanisms that drive the maturation of oligodendrocyte progenitor cells (OPCs) during the remyelination process is essential to developing new therapeutic tools to intervene in demyelinating diseases such as multiple sclerosis. To determine whether L-type voltage-gated calcium channels (L-VGCCs) are required for OPC development during remyelination, we generated an inducible conditional knock-out mouse in which the L-VGCC isoform Cav1.2 was deleted in NG2-positive OPCs (Cav1.2 KO ). Using the cuprizone (CPZ) model of demyelination and mice of either sex, we establish that Cav1.2 deletion in OPCs leads to less efficient remyelination of the adult brain. Specifically, Cav1.2 KO OPCs mature slower and produce less myelin than control oligodendrocytes during the recovery period after CPZ intoxication. This reduced remyelination was accompanied by an important decline in the number of myelinating oligodendrocytes and in the rate of OPC proliferation. Furthermore, during the remyelination phase of the CPZ model, the corpus callosum of Cav1.2 KO animals presented a significant decrease in the percentage of myelinated axons and a substantial increase in the mean g-ratio of myelinated axons compared with controls. In addition, in a mouse line in which the Cav1.2 KO OPCs were identified by a Cre reporter, we establish that Cav1.2 KO OPCs display a reduced maturational rate through the entire remyelination process. These results suggest that Ca 2+ influx mediated by L-VGCCs in oligodendroglial cells is necessary for normal remyelination and is an essential Ca 2+ channel for OPC maturation during the remyelination of the adult brain. SIGNIFICANCE STATEMENT Ion channels implicated in oligodendrocyte differentiation and maturation may induce positive signals for myelin recovery. Voltage-gated Ca 2+ channels (VGCCs) are important for normal myelination by acting at several critical steps during oligodendrocyte progenitor cell (OPC) development. To determine whether voltage Ca 2+ entry is involved in oligodendrocyte differentiation and remyelination, we used a conditional knockout mouse for VGCCs in OPCs. Our results indicate that VGCCs can modulate oligodendrocyte maturation in the demyelinated brain and suggest that voltage-gated Ca 2+ influx in OPCs is critical for remyelination. These findings could lead to novel approaches for obtaining a better understanding of the factors that control OPC maturation in order to stimulate this pool of progenitors to replace myelin in demyelinating diseases. Copyright © 2017 the authors 0270-6474/17/3710038-14$15.00/0.

  2. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development.

    PubMed

    Hefti, Marco M; Farrell, Kurt; Kim, SoongHo; Bowles, Kathryn R; Fowkes, Mary E; Raj, Towfique; Crary, John F

    2018-01-01

    The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.

  3. Evidence the U.S. autism epidemic initiated by acetaminophen (Tylenol) is aggravated by oral antibiotic amoxicillin/clavulanate (Augmentin) and now exponentially by herbicide glyphosate (Roundup).

    PubMed

    Good, Peter

    2018-02-01

    Because certain hereditary diseases show autistic behavior, and autism often runs in families, researchers seek genes underlying the pathophysiology of autism, thus core behaviors. Other researchers argue environmental factors are decisive, citing compelling evidence of an autism epidemic in the United States beginning about 1980. Recognition that environmental factors influence gene expression led to synthesis of these views - an 'epigenetic epidemic' provoked by pervasive environmental agents altering expression of vulnerable genes, inducing characteristic autistic biochemistries in many mothers and infants. Two toxins most implicated in the U.S. autism epidemic are analgesic/antipyretic acetaminophen (Tylenol) and oral antibiotic amoxicillin/clavulanate (Augmentin). Recently herbicide glyphosate (Roundup) was exponentially implicated. What do these toxins have in common? Acetaminophen depletes sulfate and glutathione required to detoxify it. Oral antibiotics kill and glyphosate inhibits intestinal bacteria that synthesize methionine (precursor of sulfate and glutathione, and required to methylate DNA), bacteria that synthesize tryptophan (sole precursor of neuroinhibitor serotonin), and bacteria that restrain ammonia-generating anaerobes. Sulfate plus glutathione normally sulfate fetal adrenal androgen dehydroepiandrosterone to DHEAS - major precursor of placental/postnatal estrogens. Glyphosate (and heavy metals) also inhibit aromatase that turns androgens to estrogens. Placental/postnatal estrogens dehydrate/mature brain myelin sheaths, mature corpus callosum and left hemisphere preferentially, dilate brain blood vessels, and elevate brain serotonin and oxytocin. Stress-induced weak androgens and estrogen depletion coherently explain white matter asymmetry and dysconnection in autism, extreme male brain, low brain blood flow, hyperexcitability, social anxiety, and insufficient maternal oxytocin at birth to limit fetal brain chloride/water and mature GABA. Copyright © 2017 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  4. Mapping subcortical brain maturation during adolescence: evidence of hemisphere- and sex-specific longitudinal changes.

    PubMed

    Dennison, Meg; Whittle, Sarah; Yücel, Murat; Vijayakumar, Nandita; Kline, Alexandria; Simmons, Julian; Allen, Nicholas B

    2013-09-01

    Early to mid-adolescence is an important developmental period for subcortical brain maturation, but longitudinal studies of these neurodevelopmental changes are lacking. The present study acquired repeated magnetic resonance images from 60 adolescent subjects (28 female) at ages 12.5 and 16.5 years to map changes in subcortical structure volumes. Automated segmentation techniques optimized for longitudinal measurement were used to delineate volumes of the caudate, putamen, nucleus accumbens, pallidum, hippocampus, thalamus and the whole brain. Amygdala volumes were described using manual tracing methods. The results revealed heterogeneous maturation across the regions of interest (ROIs), and change was differentially moderated by sex and hemisphere. The caudate, thalamus and putamen declined in volume, more for females relative to males, and decreases in the putamen and thalamus were greater in the left hemisphere. The pallidum increased in size, but more so in the left hemisphere. While the left nucleus accumbens increased in size, the right accumbens decreased in size over the follow-up period. Increases in hippocampal volume were greater in the right hemisphere. While amygdala volume did not change over time, the left hemisphere was consistently larger than the right. These results suggest that subcortical brain development from early to middle adolescence is characterized by striking hemispheric specialization and sexual dimorphisms, and provide a framework for interpreting normal and abnormal changes in cognition, affect and behavior. Moreover, the differences in findings compared to previous cross-sectional research emphasize the importance of within-subject assessment of brain development during adolescence. © 2013 John Wiley & Sons Ltd.

  5. Effects of microbeam radiation therapy on normal and tumoral blood vessels.

    PubMed

    Bouchet, Audrey; Serduc, Raphäel; Laissue, Jean Albert; Djonov, Valentin

    2015-09-01

    Microbeam radiation therapy (MRT) is a new form of preclinical radiotherapy using quasi-parallel arrays of synchrotron X-ray microbeams. While the deposition of several hundred Grays in the microbeam paths, the normal brain tissues presents a high tolerance which is accompanied by the permanence of apparently normal vessels. Conversely, the efficiency of MRT on tumor growth control is thought to be related to a preferential damaging of tumor blood vessels. The high resistance of the healthy vascular network was demonstrated in different animal models by in vivo biphoton microscopy, magnetic resonance imaging, and histological studies. While a transient increase in permeability was shown, the structure of the vessels remained intact. The use of a chick chorioallantoic membrane at different stages of development showed that the damages induced by microbeams depend on vessel maturation. In vivo and ultrastructural observations showed negligible effects of microbeams on the mature vasculature at late stages of development; nevertheless a complete destruction of the immature capillary plexus was found in the microbeam paths. The use of MRT in rodent models revealed a preferential effect on tumor vessels. Although no major modification was observed in the vasculature of normal brain tissue, tumors showed a denudation of capillaries accompanied by transient increased permeability followed by reduced tumor perfusion and finally, a decrease in number of tumor vessels. Thus, MRT is a very promising treatment strategy with pronounced tumor control effects most likely based on the anti-vascular effects of MRT. Copyright © 2015. Published by Elsevier Ltd.

  6. Delayed visual maturation in infants: a disorder of figure-ground separation?

    PubMed

    Harris, C M; Kriss, A; Shawkat, F; Taylor, D; Russell-Eggitt, I

    1996-01-01

    Delayed visual maturation (DVM) is characterised by visual unresponsiveness in early infancy, which subsequently improves spontaneously to normal levels. We studied the optokinetic response and recorded pattern reversal VEPs in six infants with DVM (aged 2-4 months) when they were at the stage of complete visual unresponsiveness. Although no saccades or visual tracking with the eyes or head could be elicited to visual objects, a normal full-field rapid buildup OKN response occurred when viewing biocularly or during monocular stimulation in the temporo-nasal direction of the viewing eye. Almost no monocular OKN could be elicited in the naso-temporal direction, which was significantly poorer than normal age-matched infants. No OKN quick phases were missed, and there were no other signs of "ocular motor apraxia." VEPs were normal in amplitude and latency for age. It appears, therefore, that infants with DVM are delayed in orienting to local regions of the visual field, but can respond to full-field motion. The presence of normal OKN quick-phases and slow-phases suggests normal brain stem function, and the presence of normal pattern VEPs suggests a normal retino-geniculo-striate pathway. These oculomotor and electrophysiological findings suggest delayed development of extra-striate cortical structures, possibly involving either an abnormality in figure-ground segregation or in attentional pathways.

  7. Modeling Early Postnatal Brain Growth and Development with CT: Changes in the Brain Radiodensity Histogram from Birth to 2 Years.

    PubMed

    Cauley, K A; Hu, Y; Och, J; Yorks, P J; Fielden, S W

    2018-04-01

    The majority of brain growth and development occur in the first 2 years of life. This study investigated these changes by analysis of the brain radiodensity histogram of head CT scans from the clinical population, 0-2 years of age. One hundred twenty consecutive head CTs with normal findings meeting the inclusion criteria from children from birth to 2 years were retrospectively identified from 3 different CT scan platforms. Histogram analysis was performed on brain-extracted images, and histogram mean, mode, full width at half maximum, skewness, kurtosis, and SD were correlated with subject age. The effects of scan platform were investigated. Normative curves were fitted by polynomial regression analysis. Average total brain volume was 360 cm 3 at birth, 948 cm 3 at 1 year, and 1072 cm 3 at 2 years. Total brain tissue density showed an 11% increase in mean density at 1 year and 19% at 2 years. Brain radiodensity histogram skewness was positive at birth, declining logarithmically in the first 200 days of life. The histogram kurtosis also decreased in the first 200 days to approach a normal distribution. Direct segmentation of CT images showed that changes in brain radiodensity histogram skewness correlated with, and can be explained by, a relative increase in gray matter volume and an increase in gray and white matter tissue density that occurs during this period of brain maturation. Normative metrics of the brain radiodensity histogram derived from routine clinical head CT images can be used to develop a model of normal brain development. © 2018 by American Journal of Neuroradiology.

  8. Brain development and the nature versus nurture debate.

    PubMed

    Stiles, Joan

    2011-01-01

    Over the past three decades, developmental neurobiologists have made tremendous progress in defining basic principles of brain development. This work has changed the way we think about how brains develop. Thirty years ago, the dominant model was strongly deterministic. The relationship between brain and behavioral development was viewed as unidirectional; that is, brain maturation enables behavioral development. The advent of modern neurobiological methods has provided overwhelming evidence that it is the interaction of genetic factors and the experience of the individual that guides and supports brain development. Brains do not develop normally in the absence of critical genetic signaling, and they do not develop normally in the absence of essential environmental input. The fundamental facts about brain development should be of critical importance to neuropsychologists trying to understand the relationship between brain and behavioral development. However, the underlying assumptions of most contemporary psychological models reflect largely outdated ideas about how the biological system develops and what it means for something to be innate. Thus, contemporary models of brain development challenge the foundational constructs of the nature versus nurture formulation in psychology. The key to understanding the origins and emergence of both the brain and behavior lies in understanding how inherited and environmental factors are engaged in the dynamic and interactive processes that define and guide development of the neurobehavioral system. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Developmental changes in organization of structural brain networks.

    PubMed

    Khundrakpam, Budhachandra S; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C

    2013-09-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.

  10. Binocular pattern deprivation interferes with the expression of proteins involved in primary visual cortex maturation in the cat.

    PubMed

    Laskowska-Macios, Karolina; Nys, Julie; Hu, Tjing-Tjing; Zapasnik, Monika; Van der Perren, Anke; Kossut, Malgorzata; Burnat, Kalina; Arckens, Lutgarde

    2015-08-14

    Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17, particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014]. In this study, we probed for related dynamic changes in the cortical proteome. We introduced age, cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the potential of BD-related protein expression changes between central and peripheral area 17 of 2- and 4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-related molecular processes. Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region. These BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual cortex maturation. Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109]. Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life.

  11. Reversible brain atrophy in glutaric aciduria type 1.

    PubMed

    Numata-Uematsu, Yurika; Sakamoto, Osamu; Kakisaka, Yosuke; Okubo, Yukimune; Oikawa, Yoshitsugu; Arai-Ichinoi, Natsuko; Kure, Shigeo; Uematsu, Mitsugu

    2017-06-01

    Glutaric aciduria type 1 (GA1) is a rare metabolic disorder caused by a deficiency of glutaryl-CoA dehydrogenase. The typical clinical onset features an acute encephalopathic crisis developed in early childhood, causing irreversible striatal injury. Recently, tandem mass spectrometry of spots of dried blood has allowed pre-symptomatic detection of GA1 in newborns. Early treatment can prevent irreversible neurological injury. We report the case of a girl with GA1 who exhibited a characteristic reversible change upon brain magnetic resonance imaging (MRI). She was diagnosed with GA1 as a newborn. She commenced dietary carnitine and her intake of lysine and tryptophan were reduced at the age of 4weeks. After treatment commenced, her mean glutarylcarnitine level was lower than that in the previous reports. The plasma lysine and tryptophan levels were maintained below the normal ranges. At 4months, brain MRI revealed a widened operculum with dilatation of the subarachnoid spaces surrounding the atrophic bilateral frontotemporal lobes; this is typical of GA1 patients. However, at 17months, MRI revealed that the atrophic lesion had disappeared and she subsequently underwent normal maturation. She has never suffered a metabolic decompensation episode. At 26months, her development and brain MRI were normal. The present reversible brain atrophy in a patient with GA1 indicates that early dietary modifications with a lower level of glutarylcarnitine and administration of carnitine can lead to normal development. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  12. MET Receptor Tyrosine Kinase as an Autism Genetic Risk Factor

    PubMed Central

    Peng, Yun; Huentelman, Matthew; Smith, Christopher; Qiu, Shenfeng

    2014-01-01

    In this chapter, we will briefly discuss recent literature on the role of MET receptor tyrosine kinase (RTK) in brain development and how perturbation of MET signaling may alter normal neurodevelopmental outcomes. Recent human genetic studies have established MET as a risk factor for autism, and the molecular and cellular underpinnings of this genetic risk are only beginning to emerge from obscurity. Unlike many autism risk genes that encode synaptic proteins, the spatial and temporal expression pattern of MET RTK indicates this signaling system is ideally situated to regulate neuronal growth, functional maturation, and establishment of functional brain circuits, particularly in those brain structures involved in higher levels of cognition, social skills, and executive functions. PMID:24290385

  13. Subcortical heterotopia appearing as huge midline mass in the newborn brain.

    PubMed

    Fukumura, Shinobu; Watanabe, Toshihide; Kimura, Sachiko; Ochi, Satoko; Yoshifuji, Kazuhisa; Tsutsumi, Hiroyuki

    2016-02-01

    We report the case of a 2-year-old boy who showed a huge midline mass in the brain at prenatal assessment. After birth, magnetic resonance imaging (MRI) revealed a conglomerate mass with an infolded microgyrus at the midline, which was suspected as a midline brain-in-brain malformation. MRI also showed incomplete cleavage of his frontal cortex and thalamus, consistent with lobar holoprosencephaly. The patient underwent an incisional biopsy of the mass on the second day of life. The mass consisted of normal central nervous tissue with gray and white matter, representing a heterotopic brain. The malformation was considered to be a subcortical heterotopia. With maturity, focal signal changes and decreased cerebral perfusion became clear on brain imaging, suggesting secondary glial degeneration. Coincident with these MRI abnormalities, the child developed psychomotor retardation and severe epilepsy focused on the side of the intracranial mass.

  14. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification

    PubMed Central

    Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D’Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917

  15. Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence.

    PubMed

    Hu, Shiyan; Pruessner, Jens C; Coupé, Pierrick; Collins, D Louis

    2013-07-01

    Puberty is an important stage of development as a child's sexual and physical characteristics mature because of hormonal changes. To better understand puberty-related effects on brain development, we investigated the magnetic resonance imaging (MRI) data of 306 subjects from 4 to 18 years of age. Subjects were grouped into before and during puberty groups according to their sexual maturity levels measured by the puberty scores. An appearance model-based automatic segmentation method with patch-based local refinement was employed to segment the MRI data and extract the volumes of medial temporal lobe (MTL) structures including the amygdala (AG), the hippocampus (HC), the entorhinal/perirhinal cortex (EPC), and the parahippocampal cortex (PHC). Our analysis showed age-related volumetric changes for the AG, HC, right EPC, and left PHC but only before puberty. After onset of puberty, these volumetric changes then correlate more with sexual maturity level, as measured by the puberty score. When normalized for brain volume, the volumes of the right HC decrease for boys; the volumes of the left HC increase for girls; and the volumes of the left and right PHC decrease for boys. These findings suggest that the rising levels of testosterone in boys and estrogen in girls might have opposite effects, especially for the HC and the PHC. Our findings on sex-specific and sexual maturity-related volumes may be useful in better understanding the MTL developmental differences and related learning, memory, and emotion differences between boys and girls during puberty. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Age-related apparent diffusion coefficient changes in the normal brain.

    PubMed

    Watanabe, Memi; Sakai, Osamu; Ozonoff, Al; Kussman, Steven; Jara, Hernán

    2013-02-01

    To measure the mean diffusional age-related changes of the brain over the full human life span by using diffusion-weighted spin-echo single-shot echo-planar magnetic resonance (MR) imaging and sequential whole-brain apparent diffusion coefficient (ADC) histogram analysis and, secondarily, to build mathematical models of these normal age-related changes throughout human life. After obtaining institutional review board approval, a HIPAA-compliant retrospective search was conducted for brain MR imaging studies performed in 2007 for various clinical indications. Informed consent was waived. The brain data of 414 healthy subjects (189 males and 225 females; mean age, 33.7 years; age range, 2 days to 89.3 years) were obtained with diffusion-weighted spin-echo single-shot echo-planar MR imaging. ADC histograms of the whole brain were generated. ADC peak values, histogram widths, and intracranial volumes were plotted against age, and model parameters were estimated by using nonlinear regression. Four different stages were identified for aging changes in ADC peak values, as characterized by specific mathematical terms: There were age-associated exponential decays for the maturation period and the development period, a constant term for adulthood, and a linear increase for the senescence period. The age dependency of ADC peak value was simulated by using four-term six-coefficient function, including biexponential and linear terms. This model fit the data very closely (R(2) = 0.91). Brain diffusivity as a whole demonstrated age-related changes through four distinct periods of life. These results could contribute to establishing an ADC baseline of the normal brain, covering the full human life span.

  17. Normal variation in early parental sensitivity predicts child structural brain development.

    PubMed

    Kok, Rianne; Thijssen, Sandra; Bakermans-Kranenburg, Marian J; Jaddoe, Vincent W V; Verhulst, Frank C; White, Tonya; van IJzendoorn, Marinus H; Tiemeier, Henning

    2015-10-01

    Early caregiving can have an impact on brain structure and function in children. The influence of extreme caregiving experiences has been demonstrated, but studies on the influence of normal variation in parenting quality are scarce. Moreover, no studies to date have included the role of both maternal and paternal sensitivity in child brain maturation. This study examined the prospective relation between mothers' and fathers' sensitive caregiving in early childhood and brain structure later in childhood. Participants were enrolled in a population-based prenatal cohort. For 191 families, maternal and paternal sensitivity was repeatedly observed when the child was between 1 year and 4 years of age. Head circumference was assessed at 6 weeks, and brain structure was assessed using magnetic resonance imaging (MRI) measurements at 8 years of age. Higher levels of parental sensitivity in early childhood were associated with larger total brain volume (adjusted β = 0.15, p = .01) and gray matter volume (adjusted β = 0.16, p = .01) at 8 years, controlling for infant head size. Higher levels of maternal sensitivity in early childhood were associated with a larger gray matter volume (adjusted β = 0.13, p = .04) at 8 years, independent of infant head circumference. Associations with maternal versus paternal sensitivity were not significantly different. Normal variation in caregiving quality is related to markers of more optimal brain development in children. The results illustrate the important role of both mothers and fathers in child brain development. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Neuroethics vs neurophysiologically and neuropsychologically uninformed influences in child-rearing, education, emerging hunter-gatherers, and artificial intelligence models of the brain.

    PubMed

    Pontius, A A

    1993-04-01

    Potentially negative long-term consequences in four areas are emphasized, if specific neuromaturational, neurophysiological, and neuropsychological facts within a neurodevelopmental and ecological context are neglected in normal functional levels of child development and maturational lag of the frontal lobe system in "Attention Deficit Disorder," in education (reading/writing and arithmetic), in assessment of cognitive functioning in hunter-gatherer populations, specifically modified in the service of their survival, and in constructing computer models of the brain, neglecting consciousness and intentionality as criticized recently by Searle.

  19. Embryonic Cerebrospinal Fluid Increases Neurogenic Activity in the Brain Ventricular-Subventricular Zone of Adult Mice.

    PubMed

    Alonso, Maria I; Lamus, Francisco; Carnicero, Estela; Moro, Jose A; de la Mano, Anibal; Fernández, Jose M F; Desmond, Mary E; Gato, Angel

    2017-01-01

    Neurogenesis is a very intensive process during early embryonic brain development, becoming dramatically restricted in the adult brain in terms of extension and intensity. We have previously demonstrated the key role of embryonic cerebrospinal fluid (CSF) in developing brain neurogenic activity. We also showed that cultured adult brain neural stem cells (NSCs) remain competent when responding to the neurogenic influence of embryonic CSF. However, adult CSF loses its neurogenic inductive properties. Here, by means of an organotypic culture of adult mouse brain sections, we show that local administration of embryonic CSF in the subventricular zone (SVZ) niche is able to trigger a neurogenic program in NSCs. This leads to a significant increase in the number of non-differentiated NSCs, and also in the number of new neurons which show normal migration, differentiation and maturation. These new data reveal that embryonic CSF activates adult brain NSCs, supporting the previous idea that it contains key instructive components which could be useful in adult brain neuroregenerative strategies.

  20. Embryonic Cerebrospinal Fluid Increases Neurogenic Activity in the Brain Ventricular-Subventricular Zone of Adult Mice

    PubMed Central

    Alonso, Maria I.; Lamus, Francisco; Carnicero, Estela; Moro, Jose A.; de la Mano, Anibal; Fernández, Jose M. F.; Desmond, Mary E.; Gato, Angel

    2017-01-01

    Neurogenesis is a very intensive process during early embryonic brain development, becoming dramatically restricted in the adult brain in terms of extension and intensity. We have previously demonstrated the key role of embryonic cerebrospinal fluid (CSF) in developing brain neurogenic activity. We also showed that cultured adult brain neural stem cells (NSCs) remain competent when responding to the neurogenic influence of embryonic CSF. However, adult CSF loses its neurogenic inductive properties. Here, by means of an organotypic culture of adult mouse brain sections, we show that local administration of embryonic CSF in the subventricular zone (SVZ) niche is able to trigger a neurogenic program in NSCs. This leads to a significant increase in the number of non-differentiated NSCs, and also in the number of new neurons which show normal migration, differentiation and maturation. These new data reveal that embryonic CSF activates adult brain NSCs, supporting the previous idea that it contains key instructive components which could be useful in adult brain neuroregenerative strategies. PMID:29311854

  1. Determinants of iron accumulation in the normal aging brain.

    PubMed

    Pirpamer, Lukas; Hofer, Edith; Gesierich, Benno; De Guio, François; Freudenberger, Paul; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Duchesnay, Edouard; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2016-07-01

    In a recent postmortem study, R2* relaxometry in gray matter (GM) of the brain has been validated as a noninvasive measure for iron content in brain tissue. Iron accumulation in the normal aging brain is a common finding and relates to brain maturation and degeneration. The goal of this study was to assess the determinants of iron accumulation during brain aging. The study cohort consisted of 314 healthy community-dwelling participants of the Austrian Stroke Prevention Study. Their age ranged from 38-82 years. Quantitative magnetic resonance imaging was performed on 3T and included R2* mapping, based on a 3D multi-echo gradient echo sequence. The median of R2* values was measured in all GM regions, which were segmented automatically using FreeSurfer. We investigated 25 possible determinants for cerebral iron deposition. These included demographics, brain volume, lifestyle factors, cerebrovascular risk factors, serum levels of iron, and single nucleotide polymorphisms related to iron regulating genes (rs1800562, rs3811647, rs1799945, and rs1049296). The body mass index (BMI) was significantly related to R2* in 15/32 analyzed brain regions with the strongest correlations found in the amygdala (p = 0.0091), medial temporal lobe (p = 0.0002), and hippocampus (p ≤ 0.0001). Further associations to R2* values were found in deep GM for age and smoking. No significant associations were found for gender, GM volume, serum levels of iron, or iron-associated genetic polymorphisms. In conclusion, besides age, the BMI and smoking are the only significant determinants of brain iron accumulation in normally aging subjects. Smoking relates to iron deposition in the basal ganglia, whereas higher BMI is associated with iron content in the neocortex following an Alzheimer-like distribution. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Adolescent Maturity and the Brain: The Promise and Pitfalls of Neuroscience Research in Adolescent Health Policy

    PubMed Central

    Johnson, Sara B.; Blum, Robert W.; Giedd, Jay N.

    2010-01-01

    Longitudinal neuroimaging studies demonstrate that the adolescent brain continues to mature well into the 20s. This has prompted intense interest in linking neuromaturation to maturity of judgment. Public policy is struggling to keep up with burgeoning interest in cognitive neuroscience and neuroimaging. However, empirical evidence linking neurodevelopmental processes and adolescent real-world behavior remains sparse. Nonetheless, adolescent brain development research is already shaping public policy debates about when individuals should be considered mature for policy purposes. With this in mind, in this article we summarize what is known about adolescent brain development and what remains unknown, as well as what neuroscience can and cannot tell us about the adolescent brain and behavior. We suggest that a conceptual framework that situates brain science in the broader context of adolescent developmental research would help to facilitate research-to-policy translation. Furthermore, although contemporary discussions of adolescent maturity and the brain often use a deficit-based approach, there is enormous opportunity for brain science to illuminate the great strengths and potentialities of the adolescent brain. So, too, can this information inform policies that promote adolescent health and well-being. PMID:19699416

  3. Developmental Changes in Organization of Structural Brain Networks

    PubMed Central

    Khundrakpam, Budhachandra S.; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C.; Ball, William S.; Byars, Anna Weber; Schapiro, Mark; Bommer, Wendy; Carr, April; German, April; Dunn, Scott; Rivkin, Michael J.; Waber, Deborah; Mulkern, Robert; Vajapeyam, Sridhar; Chiverton, Abigail; Davis, Peter; Koo, Julie; Marmor, Jacki; Mrakotsky, Christine; Robertson, Richard; McAnulty, Gloria; Brandt, Michael E.; Fletcher, Jack M.; Kramer, Larry A.; Yang, Grace; McCormack, Cara; Hebert, Kathleen M.; Volero, Hilda; Botteron, Kelly; McKinstry, Robert C.; Warren, William; Nishino, Tomoyuki; Robert Almli, C.; Todd, Richard; Constantino, John; McCracken, James T.; Levitt, Jennifer; Alger, Jeffrey; O'Neil, Joseph; Toga, Arthur; Asarnow, Robert; Fadale, David; Heinichen, Laura; Ireland, Cedric; Wang, Dah-Jyuu; Moss, Edward; Zimmerman, Robert A.; Bintliff, Brooke; Bradford, Ruth; Newman, Janice; Evans, Alan C.; Arnaoutelis, Rozalia; Bruce Pike, G.; Louis Collins, D.; Leonard, Gabriel; Paus, Tomas; Zijdenbos, Alex; Das, Samir; Fonov, Vladimir; Fu, Luke; Harlap, Jonathan; Leppert, Ilana; Milovan, Denise; Vins, Dario; Zeffiro, Thomas; Van Meter, John; Lange, Nicholas; Froimowitz, Michael P.; Botteron, Kelly; Robert Almli, C.; Rainey, Cheryl; Henderson, Stan; Nishino, Tomoyuki; Warren, William; Edwards, Jennifer L.; Dubois, Diane; Smith, Karla; Singer, Tish; Wilber, Aaron A.; Pierpaoli, Carlo; Basser, Peter J.; Chang, Lin-Ching; Koay, Chen Guan; Walker, Lindsay; Freund, Lisa; Rumsey, Judith; Baskir, Lauren; Stanford, Laurence; Sirocco, Karen; Gwinn-Hardy, Katrina; Spinella, Giovanna; McCracken, James T.; Alger, Jeffry R.; Levitt, Jennifer; O'Neill, Joseph

    2013-01-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8–8.4 year; late childhood: 8.5–11.3 year; early adolescence: 11.4–14.7 year; late adolescence: 14.8–18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces. PMID:22784607

  4. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta

    2013-08-01

    We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure. Copyright © 2012 Wiley Periodicals, Inc.

  5. MET receptor tyrosine kinase as an autism genetic risk factor.

    PubMed

    Peng, Yun; Huentelman, Matthew; Smith, Christopher; Qiu, Shenfeng

    2013-01-01

    In this chapter, we will briefly discuss recent literature on the role of MET receptor tyrosine kinase (RTK) in brain development and how perturbation of MET signaling may alter normal neurodevelopmental outcomes. Recent human genetic studies have established MET as a risk factor for autism, and the molecular and cellular underpinnings of this genetic risk are only beginning to emerge from obscurity. Unlike many autism risk genes that encode synaptic proteins, the spatial and temporal expression pattern of MET RTK indicates this signaling system is ideally situated to regulate neuronal growth, functional maturation, and establishment of functional brain circuits, particularly in those brain structures involved in higher levels of cognition, social skills, and executive functions. © 2013 Elsevier Inc. All rights reserved.

  6. The autism associated MET receptor tyrosine kinase engages early neuronal growth mechanism and controls glutamatergic circuits development in the forebrain

    PubMed Central

    Peng, Yun; Lu, Zhongming; Li, Guohui; Piechowicz, Mariel; Anderson, Miranda; Uddin, Yasin; Wu, Jie; Qiu, Shenfeng

    2015-01-01

    The human MET gene imparts a replicated risk for autism spectrum disorder (ASD), and is implicated in the structural and functional integrity of brain. MET encodes a receptor tyrosine kinase, MET, which plays a pleiotropic role in embryogenesis and modifies a large number of neurodevelopmental events. Very little is known, however, on how MET signaling engages distinct cellular events to collectively affect brain development in ASD-relevant disease domains. Here, we show that MET protein expression is dynamically regulated and compartmentalized in developing neurons. MET is heavily expressed in neuronal growth cones at early developmental stages and its activation engages small GTPase Cdc42 to promote neuronal growth, dendritic arborization, and spine formation. Genetic ablation of MET signaling in mouse dorsal pallium leads to altered neuronal morphology indicative of early functional maturation. In contrast, prolonged activation of MET represses the formation and functional maturation of glutamatergic synapses. Moreover, manipulating MET signaling levels in vivo in the developing prefrontal projection neurons disrupts the local circuit connectivity made onto these neurons. Therefore, normal time-delimited MET signaling is critical in regulating the timing of neuronal growth, glutamatergic synapse maturation and cortical circuit function. Dysregulated MET signaling may lead to pathological changes in forebrain maturation and connectivity, and thus contribute to the emergence of neurological symptoms associated with ASD. PMID:26728565

  7. Histologic chorioamnionitis in preterm infants: correlation with brain magnetic resonance imaging at term equivalent age.

    PubMed

    Granger, Claire; Spittle, Alicia J; Walsh, Jennifer; Pyman, Jan; Anderson, Peter J; Thompson, Deanne K; Lee, Katherine J; Coleman, Lee; Dagia, Charuta; Doyle, Lex W; Cheong, Jeanie

    2018-02-15

    To explore the associations between histologic chorioamnionitis with brain injury, maturation and size on magnetic resonance imaging (MRI) of preterm infants at term equivalent age. Preterm infants (23-36 weeks' gestational age) were recruited into two longitudinal cohort studies. Presence or absence of chorioamnionitis was obtained from placental histology and clinical data were recorded. MRI at term-equivalent age was assessed for brain injury (intraventricular haemorrhage, cysts, signal abnormalities), maturation (degree of myelination, gyral maturation) and size of cerebral structures (metrics and brain segmentation). Histologic chorioamnionitis was assessed as a predictor of MRI variables using linear and logistic regression, with adjustment for confounding perinatal variables. Two hundred and twelve infants were included in this study, 47 (22%) of whom had histologic chorioamnionitis. Histologic chorioamnionitis was associated with higher odds of intraventricular haemorrhage (odds ratio [OR] (95% confidence interval [CI]) = 7.4 (2.4, 23.1)), less mature gyral maturation (OR (95% CI) = 2.0 (1.0, 3.8)) and larger brain volume (mean difference in cubic centimeter (95% CI) of 14.1 (1.9, 26.2)); but all relationships disappeared following adjustment for perinatal variables. Histologic chorioamnionitis was not independently associated with IVH, less mature gyral maturation or brain volume at term-equivalent age in preterm infants.

  8. Unravelling the development of the visual cortex: implications for plasticity and repair

    PubMed Central

    Bourne, James A

    2010-01-01

    The visual cortex comprises over 50 areas in the human, each with a specified role and distinct physiology, connectivity and cellular morphology. How these individual areas emerge during development still remains something of a mystery and, although much attention has been paid to the initial stages of the development of the visual cortex, especially its lamination, very little is known about the mechanisms responsible for the arealization and functional organization of this region of the brain. In recent years we have started to discover that it is the interplay of intrinsic (molecular) and extrinsic (afferent connections) cues that are responsible for the maturation of individual areas, and that there is a spatiotemporal sequence in the maturation of the primary visual cortex (striate cortex, V1) and the multiple extrastriate/association areas. Studies in both humans and non-human primates have started to highlight the specific neural underpinnings responsible for the maturation of the visual cortex, and how experience-dependent plasticity and perturbations to the visual system can impact upon its normal development. Furthermore, damage to specific nuclei of the visual cortex, such as the primary visual cortex (V1), is a common occurrence as a result of a stroke, neurotrauma, disease or hypoxia in both neonates and adults alike. However, the consequences of a focal injury differ between the immature and adult brain, with the immature brain demonstrating a higher level of functional resilience. With better techniques for examining specific molecular and connectional changes, we are now starting to uncover the mechanisms responsible for the increased neural plasticity that leads to significant recovery following injury during this early phase of life. Further advances in our understanding of postnatal development/maturation and plasticity observed during early life could offer new strategies to improve outcomes by recapitulating aspects of the developmental program in the adult brain. PMID:20722872

  9. TorsinA dysfunction causes persistent neuronal nuclear pore defects.

    PubMed

    Pappas, Samuel S; Liang, Chun-Chi; Kim, Sumin; Rivera, CheyAnne O; Dauer, William T

    2018-02-01

    A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. An Automated Quiet Sleep Detection Approach in Preterm Infants as a Gateway to Assess Brain Maturation.

    PubMed

    Dereymaeker, Anneleen; Pillay, Kirubin; Vervisch, Jan; Van Huffel, Sabine; Naulaers, Gunnar; Jansen, Katrien; De Vos, Maarten

    2017-09-01

    Sleep state development in preterm neonates can provide crucial information regarding functional brain maturation and give insight into neurological well being. However, visual labeling of sleep stages from EEG requires expertise and is very time consuming, prompting the need for an automated procedure. We present a robust method for automated detection of preterm sleep from EEG, over a wide postmenstrual age ([Formula: see text] age) range, focusing first on Quiet Sleep (QS) as an initial marker for sleep assessment. Our algorithm, CLuster-based Adaptive Sleep Staging (CLASS), detects QS if it remains relatively more discontinuous than non-QS over PMA. CLASS was optimized on a training set of 34 recordings aged 27-42 weeks PMA, and performance then assessed on a distinct test set of 55 recordings of the same age range. Results were compared to visual QS labeling from two independent raters (with inter-rater agreement [Formula: see text]), using Sensitivity, Specificity, Detection Factor ([Formula: see text] of visual QS periods correctly detected by CLASS) and Misclassification Factor ([Formula: see text] of CLASS-detected QS periods that are misclassified). CLASS performance proved optimal across recordings at 31-38 weeks (median [Formula: see text], median MF 0-0.25, median Sensitivity 0.93-1.0, and median Specificity 0.80-0.91 across this age range), with minimal misclassifications at 35-36 weeks (median [Formula: see text]). To illustrate the potential of CLASS in facilitating clinical research, normal maturational trends over PMA were derived from CLASS-estimated QS periods, visual QS estimates, and nonstate specific periods (containing QS and non-QS) in the EEG recording. CLASS QS trends agreed with those from visual QS, with both showing stronger correlations than nonstate specific trends. This highlights the benefit of automated QS detection for exploring brain maturation.

  11. Maturation of metabolic connectivity of the adolescent rat brain

    PubMed Central

    Choi, Hongyoon; Choi, Yoori; Kim, Kyu Wan; Kang, Hyejin; Hwang, Do Won; Kim, E Edmund; Chung, June-Key; Lee, Dong Soo

    2015-01-01

    Neuroimaging has been used to examine developmental changes of the brain. While PET studies revealed maturation-related changes, maturation of metabolic connectivity of the brain is not yet understood. Here, we show that rat brain metabolism is reconfigured to achieve long-distance connections with higher energy efficiency during maturation. Metabolism increased in anterior cerebrum and decreased in thalamus and cerebellum during maturation. When functional covariance patterns of PET images were examined, metabolic networks including default mode network (DMN) were extracted. Connectivity increased between the anterior and posterior parts of DMN and sensory-motor cortices during maturation. Energy efficiency, a ratio of connectivity strength to metabolism of a region, increased in medial prefrontal and retrosplenial cortices. Our data revealed that metabolic networks mature to increase metabolic connections and establish its efficiency between large-scale spatial components from childhood to early adulthood. Neurodevelopmental diseases might be understood by abnormal reconfiguration of metabolic connectivity and efficiency. DOI: http://dx.doi.org/10.7554/eLife.11571.001 PMID:26613413

  12. The mating brain: early maturing sneaker males maintain investment into the brain also under fast body growth in Atlantic salmon (Salmo salar).

    PubMed

    Kotrschal, Alexander; Trombley, Susanne; Rogell, Björn; Brannström, Ioana; Foconi, Eric; Schmitz, Monika; Kolm, Niclas

    It has been suggested that mating behaviours require high levels of cognitive ability. However, since investment into mating and the brain both are costly features, their relationship is likely characterized by energetic trade-offs. Empirical data on the subject remains equivocal. We investigated if early sexual maturation was associated with brain development in Atlantic salmon ( Salmo salar ), in which males can either stay in the river and sexually mature at a small size (sneaker males) or migrate to the sea and delay sexual maturation until they have grown much larger (anadromous males). Specifically, we tested how sexual maturation may induce plastic changes in brain development by rearing juveniles on either natural or ad libitum feeding levels. After their first season we compared brain size and brain region volumes across both types of male mating tactics and females. Body growth increased greatly across both male mating tactics and females during ad libitum feeding as compared to natural feeding levels. However, despite similar relative increases in body size, early maturing sneaker males maintained larger relative brain size during ad libitum feeding levels as compared to anadromous males and females. We also detected several differences in the relative size of separate brain regions across feeding treatments, sexes and mating strategies. For instance, the relative size of the cognitive centre of the brain, the telencephalon, was largest in sneaker males. Our data support that a large relative brain size is maintained in individuals that start reproduction early also during fast body growth. We propose that the cognitive demands during complex mating behaviours maintain a high level of investment into brain development in reproducing individuals.

  13. Alpha-Hydroxylation of lignoceric and nervonic acids in the brain. Effects of altered thyroid function on postnatal development of the hydroxylase activity.

    PubMed

    Murad, S; Strycharz, G D; Kishimoto, Y

    1976-09-10

    Rat brain postnuclear preparations catalyzed the alpha-hydroxylation of nervonic acid with an apparent Km of 3 muM. Evidence has been presented which suggests that nervonic acid in the brain is hydroxylated by the same enzyme system which hydroxylates lignoceric acid. The hydroxylase activity in brains of normal (euthyroid) rats increased rapidly from a low in the period immediately following birth to a maximum at the 23rd day and then declined to a low level characteristic of the mature brain. Neonatal hypothyroidism retarded the development of the activity and shifted its peak to the 39th day after birth. Conversely, neonatal hyperthyroidism accelerated the entire developmental pattern and shifted the peak to the 16th day after birth. The hydroxylase activity in mouse brain was also increased by thyroid hormone administration from the 13th through the 18th day after birth. Unlike normal mice, the low activity in jimpy mice was not affected by this treatment. It is concluded that thyroid hormones play an important role in the control of brain fatty acid alpha-hydroxylation. The stimulation of alpha-hydroxy fatty acid synthesis in response to hyperthyroidism during the early postnatal period may be one of the major effects of thyroid hormones in accelerating myelination of the central nervous system.

  14. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain

    PubMed Central

    Andriani, Grasiella A.; Vijg, Jan; Montagna, Cristina

    2017-01-01

    Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. PMID:27013377

  15. Potential mechanisms of development-dependent adverse effects of the herbicide paraquat in 3D rat brain cell cultures.

    PubMed

    Sandström, J; Broyer, A; Zoia, D; Schilt, C; Greggio, C; Fournier, M; Do, K Q; Monnet-Tschudi, F

    2017-05-01

    Exposure to environmental toxicants during vulnerable windows of brain development is suspected to raise the prevalence for neurological dysfunctions at later stages in life. Differentiation processes and changes in morphology, as well as a lack of physiological barriers, might be reasons that render a developing brain more susceptible to neurotoxicants than an adult. However, also the intrinsic capacity of cells to combat toxicant induced cellular stress might differ between the immature- and mature brain. In order to study whether this intrinsic protection capacity differs between immature and maturated brain cells we chose to study the maturation-dependent adverse effects of the known neurotoxicant Paraquat Dichloride (PQ) in 3D rat brain cell cultures. This in vitro system consists of the major brain cell types - neurons, astrocytes, oligodendrocytes and microglia - and over the time in vitro cultured cells undergo differentiation and maturation into a tissue-like organization. PQ was applied repeatedly over ten days in the sub-micromolar range, and effects were evaluated on neurons and glial cells. We observed that despite a higher PQ-uptake in mature cultures, PQ-induced adverse effects on glutamatergic-, GABAergic- and dopaminergic neurons, as assessed by gene expression and enzymatic activity, were more pronounced in immature cultures. This was associated with a stronger astrogliosis in immature- as compared to mature cultures, as well as perturbations of the glutathione-mediated defense against oxidative stress. Furthermore we observed evidence of microglial activation only in mature cultures, whereas immature cultures appeared to down-regulate markers for neuroprotective M2-microglial phenotype upon PQ-exposure. Taken together our results indicate that immature brain cell cultures have less intrinsic capacity to cope with cellular stress elicited by PQ as compared to mature cells. This may render immature brain cells more susceptible to the adverse effects of PQ. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. I've Got the Music in Me: A Study of Peak Musical Memory Age and the Implications for Future Advertising

    ERIC Educational Resources Information Center

    Gerlich, R. Nicholas; Browning, Leigh; Westermann, Lori

    2010-01-01

    Neuropsychologists have demonstrated the effect music has on the human brain, and that a peak "musical memory age" occurs around 14, when normal bodily maturation is in progress. A group of 114 college students between the ages of 19 and 25 was exposed to short clips of the top 20 songs from each of the 11 years during their youth;…

  17. Changes of brain metabolite concentrations during maturation in different brain regions measured by chemical shift imaging.

    PubMed

    Bültmann, Eva; Nägele, Thomas; Lanfermann, Heinrich; Klose, Uwe

    2017-01-01

    We examined the effect of maturation on the regional distribution of brain metabolite concentrations using multivoxel chemical shift imaging. From our pool of pediatric MRI examinations, we retrospectively selected patients showing a normal cerebral MRI scan or no pathologic signal abnormalities at the level of the two-dimensional 1H MRS-CSI sequence and an age-appropriate global neurological development, except for focal neurological deficits. Seventy-one patients (4.5 months-20 years) were identified. Using LC Model, spectra were evaluated from voxels in the white matter, caudate head, and corpus callosum. The concentration of total N-acetylaspartate increased in all regions during infancy and childhood except in the right caudate head where it remained constant. The concentration of total creatine decreased in the caudate nucleus and splenium and minimally in the frontal white matter and genu. It remained largely constant in the parietal white matter. The concentration of choline-containing compounds had the tendency to decrease in all regions except in the parietal white matter where it remained constant. The concentration of myoinositol decreased slightly in the splenium and right frontal white matter, remained constant on the left side and in the caudate nucleus, and rose slightly in the parietal white matter and genu. CSI determined metabolite concentrations in multiple cerebral regions during routine MRI. The obtained data will be helpful in future pediatric CSI measurements deciding whether the ratios of the main metabolites are within the range of normal values or have to be considered as probably pathologic.

  18. Ultrasound evaluation of cortical brain development in fetuses with intrauterine growth restriction.

    PubMed

    Businelli, Caterina; de Wit, Charlotte; Visser, Gerard H A; Pistorius, Lourens R

    2014-09-10

    Abstract Objective: We evaluated the ultrasound appearance of brain volume and cortical development in fetuses with early growth restriction and placental insufficiency. Methods: We examined a cohort of 20 fetuses with severe intrauterine growth restriction (IUGR) and evidence of placental insufficiency by three-dimensional (3D) ultrasound between 24 and 34 weeks. We graded cortical development and measured the supratentorial intracranial volume. The cortical grading and volume were compared to data obtained from a reference population of 28 adequate for gestational age (AGA) fetuses. Results: Ultrasound examinations were performed in 20 fetuses with IUGR. The biometry and brain volume were significantly reduced in IUGR fetuses. There was evidence of accelerated cortical development in IUGR fetuses. Conclusion: This study confirms that the smaller brain volume in IUGR fetuses, with normal or accelerated cortical maturation as previously depicted with postnatal MRI examination, can be demonstrated by prenatal 3D ultrasound.

  19. Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain.

    PubMed

    Gilmore, John H; Lin, Weili; Prastawa, Marcel W; Looney, Christopher B; Vetsa, Y Sampath K; Knickmeyer, Rebecca C; Evans, Dianne D; Smith, J Keith; Hamer, Robert M; Lieberman, Jeffrey A; Gerig, Guido

    2007-02-07

    Although there has been recent interest in the study of childhood and adolescent brain development, very little is known about normal brain development in the first few months of life. In older children, there are regional differences in cortical gray matter development, whereas cortical gray and white matter growth after birth has not been studied to a great extent. The adult human brain is also characterized by cerebral asymmetries and sexual dimorphisms, although very little is known about how these asymmetries and dimorphisms develop. We used magnetic resonance imaging and an automatic segmentation methodology to study brain structure in 74 neonates in the first few weeks after birth. We found robust cortical gray matter growth compared with white matter growth, with occipital regions growing much faster than prefrontal regions. Sexual dimorphism is present at birth, with males having larger total brain cortical gray and white matter volumes than females. In contrast to adults and older children, the left hemisphere is larger than the right hemisphere, and the normal pattern of fronto-occipital asymmetry described in older children and adults is not present. Regional differences in cortical gray matter growth are likely related to differential maturation of sensory and motor systems compared with prefrontal executive function after birth. These findings also indicate that whereas some adult patterns of sexual dimorphism and cerebral asymmetries are present at birth, others develop after birth.

  20. Developmentally regulated switch in alternatively spliced SNAP-25 isoforms alters facilitation of synaptic transmission.

    PubMed

    Bark, Christina; Bellinger, Frederick P; Kaushal, Ashutosh; Mathews, James R; Partridge, L Donald; Wilson, Michael C

    2004-10-06

    Although the basic molecular components that promote regulated neurotransmitter release are well established, the contribution of these proteins as regulators of the plasticity of neurotransmission and refinement of synaptic connectivity during development is elaborated less fully. For example, during the period of synaptic growth and maturation in brain, the expression of synaptosomal protein 25 kDa (SNAP-25), a neuronal t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) essential for action potential-dependent neuroexocytosis, is altered through alternative splicing of pre-mRNA transcripts. We addressed the role of the two splice-variant isoforms of SNAP-25 with a targeted mouse mutation that impairs the shift from SNAP-25a to SNAP-25b. Most of these mutant mice die between 3 and 5 weeks of age, which coincides with the time when SNAP-25b expression normally reaches mature levels in brain and synapse formation is essentially completed. The altered expression of these SNAP-25 isoforms influences short-term synaptic function by affecting facilitation but not the initial probability of release. This suggests that mechanisms controlling alternative splicing between SNAP-25 isoforms contribute to a molecular switch important for survival that helps to guide the transition from immature to mature synaptic connections, as well as synapse regrowth and remodeling after neural injury.

  1. Working memory circuit as a function of increasing age in healthy adolescence: A systematic review and meta-analyses.

    PubMed

    Andre, Julia; Picchioni, Marco; Zhang, Ruibin; Toulopoulou, Timothea

    2016-01-01

    Working memory ability matures through puberty and early adulthood. Deficits in working memory are linked to the risk of onset of neurodevelopmental disorders such as schizophrenia, and there is a significant temporal overlap between the peak of first episode psychosis risk and working memory maturation. In order to characterize the normal working memory functional maturation process through this critical phase of cognitive development we conducted a systematic review and coordinate based meta-analyses of all the available primary functional magnetic resonance imaging studies (n = 382) that mapped WM function in healthy adolescents (10-17 years) and young adults (18-30 years). Activation Likelihood Estimation analyses across all WM tasks revealed increased activation with increasing subject age in the middle frontal gyrus (BA6) bilaterally, the left middle frontal gyrus (BA10), the left precuneus and left inferior parietal gyri (BA7; 40). Decreased activation with increasing age was found in the right superior frontal (BA8), left junction of postcentral and inferior parietal (BA3/40), and left limbic cingulate gyrus (BA31). These results suggest that brain activation during adolescence increased with age principally in higher order cortices, part of the core working memory network, while reductions were detected in more diffuse and potentially more immature neural networks. Understanding the process by which the brain and its cognitive functions mature through healthy adulthood may provide us with new clues to understanding the vulnerability to neurodevelopmental disorders.

  2. Immunoreactive somatostatin and. beta. -endorphin content in the brain of mature rats after neonatal exposure to propylthiouracil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, N.; Sundmark, V.C.; Van Middlesworth, L.

    1982-06-01

    The contents of immunoreactive somatostatin (IR-SRIF) and ..beta..-endorphin (IR-..beta..-EP) in 12 brain regions were examined in rats exposed neonatally to propylthiouracil (PTU) through the mother's milk. Since the dose of PTU used in the study is lower than the usual dose employed to induce hypothyroidism, a milder form of neonatal hypothyroidism resulted. This conclusion is supported by the only mild subnormal growth of rats to adulthood and serum T/sub 4/ and T/sub 3/ concentrations in the normal range. Adult rats treated with PTU neonatally had significantly higher IR-SRIF contents in several brain regions compared to controls, whereas IR-..beta..-EP levels weremore » not significantly different (significant increase only in the thalamus) in most regions. The results indicate that even mild hypothyroidism during early postnatal development causes permanent impairment of brain function, which manifests itself in part by an altered brain content of IR-SRIF.« less

  3. Immunoreactive somatostatin and. beta. -endorphin content in the brain of mature rats after neonatal exposure to propylthiouacil. [Propylthiouracil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, N.; Sundmark, V.C.; Van Middlesworth, L.

    1982-01-01

    The contents of immunoreactive somatostatin (IR-SRIF) and ..beta..-endorphin (IR-..beta..-EP) in 12 brain regions were examined in rats exposed neonatally to propylthiouracil (PTU) through the mother's milk. Since the dose of PTU used in this study is lower than the usual dose employed to induce hypothyroidism, a milder form of neonatal hypothyroidism resulted. This conclusion is supported by the only mild subnormal growth of rats to adulthood and serum T/sub 4/ and T/sub 3/ concentrations in the normal range. Adult rats treated with PTU neonatally had significantly higher IR-SRIF contents in several brain regions compared to controls, whereas IR-..beta..-EP levels weremore » not significantly different in most regions. The results indicate that even mild hypothyroidism during early postnatal development causes permanent impairment of brain function, which manifests itself in part by an altered brain content of IR-SRIF.« less

  4. Evaluation of genetic variability among "Early Mature" Juglans regia using microsatellite markers and morphological traits.

    PubMed

    Ebrahimi, Aziz; Zarei, Abdolkarim; Zamani Fardadonbeh, Mojtaba; Lawson, Shaneka

    2017-01-01

    Limiting the juvenile phase and reducing tree size are the two main challenges for breeders to improve most fruit crops. Early maturation and dwarf cultivars have been reported for many fruit species. "Early mature" and low vigor walnut genotypes were found among seedlings of Persian walnut. Nine microsatellite markers were used to evaluate genetic diversity among "Early Mature" Persian walnut accessions and provide a comparison with "normal growth" accessions. Six maturation related characteristics were also measured in "Early Mature" samples. Phenotypic traits and diversity indices showed relatively high levels of genetic diversity in "Early Mature" seedlings and indicated high differentiation between individuals. Seedling height, the most diverse phenotypic trait, has an important role in the clustering of "Early Mature" accessions. The "Early Mature" type had higher number of alleles, number of effective allele, and Shannon index compared to the "Normal Growth" group. The two types of studied walnuts had different alleles, with more than half of produced alleles specific to a specific group. "Early Mature" and "Normal Growth" walnuts had 27 and 17 private alleles, respectively. Grouping with different methods separated "Early Mature" and "Normal Growth" samples entirely. The presence of moderate to high genetic diversity in "Early Mature" walnuts and high genetic differentiation with "Normal Growth" walnuts, indicated that "Early Mature" walnuts were more diverse and distinct from "Normal Growth" samples. Moreover, our results showed SSR markers were useful for differentiating between "Early Mature" and "Normal Growth" walnuts. A number of identified loci have potential in breeding programs for identification of "Early Mature" walnuts at the germination phase.

  5. [Estrogens and feminine brain maturation during adolescence: emergency contraceptive pill].

    PubMed

    López Moratalla, Natalia; Errasti Alcalá, Tania; Santiago, Esteban

    2011-01-01

    In the period between puberty and maturity takes place the process of brain maturation. Hormone levels induce changes in neurons and direct the architecture and structural functionality thus affecting patterns of development of different brain areas. The onset of puberty brings with it the invasion of the female brain by high levels of hormones, cyclic surges of estrogen and progesterone in addition to steroids produced in situ. Control centers of emotions (amygdala), memory and learning (hippocampus) and sexual activity (hypothalamus) are modified according to the cyclical concentrations of both hormones. Sex hormones stimulate multimodal actions, both short and longer terms, because neurons in various brain areas have different types of receptors, membrane, cytoplasmic and nuclear. The composition of emergency contraceptive pill (postcoital pill) with high hormonal content raises the urgency of a thorough knowledge about the possible effect that the lack of control of the menstrual cycle in a time of consolidation of brain maturation, can bring in structuring and development of brain circuitry. Changes in the availability of sex steroids during puberty and adolescence underlie psychiatric disorders whose prevalence is typically feminine, such as depression, anxiety disorders. It is a fundamental ethical duty to present scientific data about the influence of estrogen in young female brain maturation, both for full information to potential users, and also to induce the appropriate public health measures.

  6. Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain-liver axis.

    PubMed

    Yang, B; Ren, Q; Zhang, J-C; Chen, Q-X; Hashimoto, K

    2017-05-16

    Brain-derived neurotrophic factor (BDNF) has a role in the pathophysiology of psychiatric disorders. The precursor proBDNF is converted to mature BDNF and BDNF pro-peptide, the N-terminal fragment of proBDNF; however, the precise function of these proteins in psychiatric disorders is unknown. We sought to determine whether expression of these proteins is altered in the brain and peripheral tissues from patients with psychiatric disorders. We measured protein expression of proBDNF, mature BDNF and BDNF pro-peptide in the parietal cortex, cerebellum, liver and spleen from control, major depressive disorder (MDD), schizophrenia (SZ) and bipolar disorder (BD) groups. The levels of mature BDNF in the parietal cortex from MDD, SZ and BD groups were significantly lower than the control group, whereas the levels of BDNF pro-peptide in this area were significantly higher than controls. In contrast, the levels of proBDNF and BDNF pro-peptide in the cerebellum of MDD, SZ and BD groups were significantly lower than controls. Moreover, the levels of mature BDNF from the livers of MDD, SZ and BD groups were significantly higher than the control group. The levels of mature BDNF in the spleen did not differ among the four groups. Interestingly, there was a negative correlation between mature BDNF in the parietal cortex and mature BDNF in the liver in all the subjects. These findings suggest that abnormalities in the production of mature BDNF and BDNF pro-peptide in the brain and liver might have a role in the pathophysiology of psychiatric disorders, indicating a brain-liver axis in psychiatric disorders.

  7. Fetal Magnetic Resonance Imaging Findings in Prenatal Zika Virus Infection.

    PubMed

    Sanín-Blair, José Enrique; Gutiérrez-Márquez, Carolina; Herrera, Diego A; Vossough, Arastoo

    2017-01-01

    Brain lesions and malformations have been described on ultrasonography of prenatal Zika infection; however, there are scarce reports about fetal magnetic resonance (MR) findings. We report 3 cases of fetuses with confirmed intrauterine Zika virus infection evaluated by ultrasound and fetal MR. Various morphometric measurements were assessed and brain maturation was calculated with the fetal total maturation score. Fetuses with prenatal Zika virus infection showed retardation in brain maturation indexes evaluated by fetal MR. Brain calcifications were demonstrated by neurosonography in all cases, while fetal MR characterized the specific type of cortical development malformation. © 2017 S. Karger AG, Basel.

  8. Blocked, delayed, or obstructed: What causes poor white matter development in intrauterine growth restricted infants?

    PubMed

    Tolcos, Mary; Petratos, Steven; Hirst, Jonathan J; Wong, Flora; Spencer, Sarah J; Azhan, Aminath; Emery, Ben; Walker, David W

    2017-07-01

    Poor white matter development in intrauterine growth restricted (IUGR) babies remains a major, untreated problem in neonatology. New therapies, guided by an understanding of the mechanisms that underlie normal and abnormal oligodendrocyte development and myelin formation, are required. Much of our knowledge of the mechanisms that underlie impaired myelination come from studies in adult demyelinating disease, preterm brain injury, or experimental models of hypoxia-ischemia. However, relatively less is known for IUGR which is surprising because IUGR is a leading cause of perinatal mortality and morbidity, second only to premature birth. IUGR is also a significant risk factor for the later development of cerebral palsy, and is a greater risk compared to some of the more traditionally researched antecedents - asphyxia and inflammation. Recent evidence suggests that the white matter injury and reduced myelination in the brains of some preterm babies is due to impaired maturation of oligodendrocytes thereby resulting in the reduced capacity to synthesize myelin. Therefore, it is not surprising that the hypomyelination observable in the central nervous system of IUGR infants has similarly lead to investigations identifying a delay or blockade in the progress of maturation of oligodendrocytes in these infants. This review will discuss current ideas thought to account for the poor myelination often present in the neonate's brain following IUGR, and discuss novel interventions that are promising as treatments that promote oligodendrocyte maturation, and thereby repair the myelination deficits that otherwise persist into infancy and childhood and lead to neurodevelopmental abnormalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Healthy adolescents' neural response to reward: associations with puberty, positive affect, and depressive symptoms.

    PubMed

    Forbes, Erika E; Ryan, Neal D; Phillips, Mary L; Manuck, Stephen B; Worthman, Carol M; Moyles, Donna L; Tarr, Jill A; Sciarrillo, Samantha R; Dahl, Ronald E

    2010-02-01

    Changes in reward-related behavior are an important component of normal adolescent affective development. Understanding the neural underpinnings of these normative changes creates a foundation for investigating adolescence as a period of vulnerability to affective disorders, substance use disorders, and health problems. Studies of reward-related brain function have revealed conflicting findings regarding developmental change in the reactivity of the striatum and medial prefrontal cortex (mPFC) and have not considered puberty. The current study focused on puberty-specific changes in brain function and their association with mood. A sample of 77 healthy adolescents (26 pre-/early pubertal, 51 mid-/late pubertal) recruited in a narrow age range (mean = 11.94 years, SD = 0.75) were assessed for sexual maturation and circulating testosterone, completed a functional magnetic resonance imaging (fMRI) guessing task with monetary reward, and underwent experience sampling of mood in natural environments. For comparison, 19 healthy adults completed the fMRI assessment. Adolescents with more advanced pubertal maturation exhibited less striatal and more mPFC reactivity during reward outcome than similarly aged adolescents with less advanced maturation. Testosterone was positively correlated with striatal reactivity in boys during reward anticipation and negatively correlated with striatal reactivity in girls and boys during reward outcome. Striatal reactivity was positively correlated with real-world subjective positive affect and negatively correlated with depressive symptoms. mPFC reactivity was positively correlated with depressive symptoms. Reward-related brain function changes with puberty and is associated with adolescents' positive affect and depressive symptoms. Increased reward-seeking behavior at this developmental point could serve to compensate for these changes.

  10. The effect of the addition of cow brain powder in commercial feed on the gonadal maturity of comet goldfish (Carassius auratus auratus)

    NASA Astrophysics Data System (ADS)

    Andriani, Y.; Subhan, U.; Rosidah; Iskandar; Zidni, I.; Abdillah, A. M.

    2018-04-01

    The aim of this research was to analysis the effect of addition bovine’s brain meal in artificial feed on gonad maturity and to find out the best time of gonad maturity in comet fish.This research was conducted at Fourth Building Hatchery Faculty of Fisheries and Marine Sciences Padjadjaran University on November 2014 until Januari 2015. Freeze drying of bovine brain was conducted at Research Center Inter University Bandung Institute of Technology. The research was using Completely Randomized Design (CRD) with four treatments and three replications.The treatment were 20 mg/kg, 35 mg/kg, 50mg/kg and control. The parameters of this research are Gonado Somatic Index (GSI) and egg maturity level. Addition of bovine brain meal in feed with the dose of 50 mg/kg are giving the best result until 45 days of the care time against gonad maturity of comet fish with GSI result 12.93 %, egg maturity level ripe phase 21.115 and fecundity 1520 grain/g.

  11. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain.

    PubMed

    Andriani, Grasiella A; Vijg, Jan; Montagna, Cristina

    2017-01-01

    Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. Copyright © 2016. Published by Elsevier B.V.

  12. Primary cortical folding in the human newborn: an early marker of later functional development.

    PubMed

    Dubois, J; Benders, M; Borradori-Tolsa, C; Cachia, A; Lazeyras, F; Ha-Vinh Leuchter, R; Sizonenko, S V; Warfield, S K; Mangin, J F; Hüppi, P S

    2008-08-01

    In the human brain, the morphology of cortical gyri and sulci is complex and variable among individuals, and it may reflect pathological functioning with specific abnormalities observed in certain developmental and neuropsychiatric disorders. Since cortical folding occurs early during brain development, these structural abnormalities might be present long before the appearance of functional symptoms. So far, the precise mechanisms responsible for such alteration in the convolution pattern during intra-uterine or post-natal development are still poorly understood. Here we compared anatomical and functional brain development in vivo among 45 premature newborns who experienced different intra-uterine environments: 22 normal singletons, 12 twins and 11 newborns with intrauterine growth restriction (IUGR). Using magnetic resonance imaging (MRI) and dedicated post-processing tools, we investigated early disturbances in cortical formation at birth, over the developmental period critical for the emergence of convolutions (26-36 weeks of gestational age), and defined early 'endophenotypes' of sulcal development. We demonstrated that twins have a delayed but harmonious maturation, with reduced surface and sulcation index compared to singletons, whereas the gyrification of IUGR newborns is discordant to the normal developmental trajectory, with a more pronounced reduction of surface in relation to the sulcation index compared to normal newborns. Furthermore, we showed that these structural measurements of the brain at birth are predictors of infants' outcome at term equivalent age, for MRI-based cerebral volumes and neurobehavioural development evaluated with the assessment of preterm infant's behaviour (APIB).

  13. Iron, transferrin and myelinogenesis

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Baron, B.; Guillou, F.

    2003-09-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5 ' and 3 ' untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport.

  14. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species

    PubMed Central

    Semple, Bridgette D.; Blomgren, Klas; Gimlin, Kayleen; Ferriero, Donna M.; Noble-Haeusslein, Linda J.

    2013-01-01

    Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7–10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxicischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development. PMID:23583307

  15. In vitro 3D regeneration-like growth of human patient brain tissue.

    PubMed

    Tang-Schomer, M D; Wu, W B; Kaplan, D L; Bookland, M J

    2018-05-01

    In vitro culture of primary neurons is widely adapted with embryonic but not mature brain tissue. Here, we extended a previously developed bioengineered three-dimensional (3D) embryonic brain tissue model to resected normal patient brain tissue in an attempt to regenerate human neurons in vitro. Single cells and small sized (diameter < 100 μm) spheroids from dissociated brain tissue were seeded into 3D silk fibroin-based scaffolds, with or without collagen or Matrigel, and compared with two-dimensional cultures and scaffold-free suspension cultures. Changes of cell phenotypes (neuronal, astroglial, neural progenitor, and neuroepithelial) were quantified with flow cytometry and analyzed with a new method of statistical analysis specifically designed for percentage comparison. Compared with a complete lack of viable cells in conventional neuronal cell culture condition, supplements of vascular endothelial growth factor-containing pro-endothelial cell condition led to regenerative growth of neurons and astroglial cells from "normal" human brain tissue of epilepsy surgical patients. This process involved delayed expansion of Nestin+ neural progenitor cells, emergence of TUJ1+ immature neurons, and Vimentin+ neuroepithelium-like cell sheet formation in prolonged cultures (14 weeks). Micro-tissue spheroids, but not single cells, supported the brain tissue growth, suggesting importance of preserving native cell-cell interactions. The presence of 3D scaffold, but not hydrogel, allowed for Vimentin+ cell expansion, indicating a different growth mechanism than pluripotent cell-based brain organoid formation. The slow and delayed process implied an origin of quiescent neural precursors in the neocortex tissue. Further optimization of the 3D tissue model with primary human brain cells could provide personalized brain disease models. Copyright © 2018 John Wiley & Sons, Ltd.

  16. A pediatric brain structure atlas from T1-weighted MR images

    NASA Astrophysics Data System (ADS)

    Shan, Zuyao Y.; Parra, Carlos; Ji, Qing; Ogg, Robert J.; Zhang, Yong; Laningham, Fred H.; Reddick, Wilburn E.

    2006-03-01

    In this paper, we have developed a digital atlas of the pediatric human brain. Human brain atlases, used to visualize spatially complex structures of the brain, are indispensable tools in model-based segmentation and quantitative analysis of brain structures. However, adult brain atlases do not adequately represent the normal maturational patterns of the pediatric brain, and the use of an adult model in pediatric studies may introduce substantial bias. Therefore, we proposed to develop a digital atlas of the pediatric human brain in this study. The atlas was constructed from T1 weighted MR data set of a 9 year old, right-handed girl. Furthermore, we extracted and simplified boundary surfaces of 25 manually defined brain structures (cortical and subcortical) based on surface curvature. Higher curvature surfaces were simplified with more reference points; lower curvature surfaces, with fewer. We constructed a 3D triangular mesh model for each structure by triangulation of the structure's reference points. Kappa statistics (cortical, 0.97; subcortical, 0.91) indicated substantial similarities between the mesh-defined and the original volumes. Our brain atlas and structural mesh models (www.stjude.org/BrainAtlas) can be used to plan treatment, to conduct knowledge and modeldriven segmentation, and to analyze the shapes of brain structures in pediatric patients.

  17. Creatine, Glutamine plus Glutamate, and Macromolecules Are Decreased in the Central White Matter of Premature Neonates around Term

    PubMed Central

    Le Fur, Yann; Viout, Patrick; Ratiney, Hélène; Confort-Gouny, Sylviane; Cozzone, Patrick J.; Girard, Nadine

    2016-01-01

    Preterm birth represents a high risk of neurodevelopmental disabilities when associated with white-matter damage. Recent studies have reported cognitive deficits in children born preterm without brain injury on MRI at term-equivalent age. Understanding the microstructural and metabolic underpinnings of these deficits is essential for their early detection. Here, we used diffusion-weighted imaging and single-voxel 1H magnetic resonance spectroscopy (MRS) to compare brain maturation at term-equivalent age in premature neonates with no evidence of white matter injury on conventional MRI except diffuse excessive high-signal intensity, and normal term neonates. Thirty-two infants, 16 term neonates (mean post-conceptional age at scan: 39.8±1 weeks) and 16 premature neonates (mean gestational age at birth: 29.1±2 weeks, mean post-conceptional age at scan: 39.2±1 weeks) were investigated. The MRI/MRS protocol performed at 1.5T involved diffusion-weighted MRI and localized 1H-MRS with the Point RESolved Spectroscopy (PRESS) sequence. Preterm neonates showed significantly higher ADC values in the temporal white matter (P<0.05), the occipital white matter (P<0.005) and the thalamus (P<0.05). The proton spectrum of the centrum semiovale was characterized by significantly lower taurine/H2O and macromolecules/H2O ratios (P<0.05) at a TE of 30 ms, and reduced (creatine+phosphocreatine)/H2O and (glutamine+glutamate)/H2O ratios (P<0.05) at a TE of 135 ms in the preterm neonates than in full-term neonates. Our findings indicate that premature neonates with normal conventional MRI present a delay in brain maturation affecting the white matter and the thalamus. Their brain metabolic profile is characterized by lower levels of creatine, glutamine plus glutamate, and macromolecules in the centrum semiovale, a finding suggesting altered energy metabolism and protein synthesis. PMID:27547969

  18. Prolonged fasting impairs neural reactivity to visual stimulation.

    PubMed

    Kohn, N; Wassenberg, A; Toygar, T; Kellermann, T; Weidenfeld, C; Berthold-Losleben, M; Chechko, N; Orfanos, S; Vocke, S; Laoutidis, Z G; Schneider, F; Karges, W; Habel, U

    2016-01-01

    Previous literature has shown that hypoglycemia influences the intensity of the BOLD signal. A similar but smaller effect may also be elicited by low normal blood glucose levels in healthy individuals. This may not only confound the BOLD signal measured in fMRI, but also more generally interact with cognitive processing, and thus indirectly influence fMRI results. Here we show in a placebo-controlled, crossover, double-blind study on 40 healthy subjects, that overnight fasting and low normal levels of glucose contrasted to an activated, elevated glucose condition have an impact on brain activation during basal visual stimulation. Additionally, functional connectivity of the visual cortex shows a strengthened association with higher-order attention-related brain areas in an elevated blood glucose condition compared to the fasting condition. In a fasting state visual brain areas show stronger coupling to the inferior temporal gyrus. Results demonstrate that prolonged overnight fasting leads to a diminished BOLD signal in higher-order occipital processing areas when compared to an elevated blood glucose condition. Additionally, functional connectivity patterns underscore the modulatory influence of fasting on visual brain networks. Patterns of brain activation and functional connectivity associated with a broad range of attentional processes are affected by maturation and aging and associated with psychiatric disease and intoxication. Thus, we conclude that prolonged fasting may decrease fMRI design sensitivity in any task involving attentional processes when fasting status or blood glucose is not controlled.

  19. Adolescent binge drinking alters adult brain neurotransmitter gene expression, behavior, brain regional volumes, and neurochemistry in mice

    PubMed Central

    Coleman, Leon G.; He, Jun; Lee, Joohwi; Styner, Martin; Crews, Fulton T.

    2013-01-01

    Background Binge-drinking is common in human adolescents. The adolescent brain is undergoing structural maturation and has a unique sensitivity to alcohol neurotoxicity. Therefore, adolescent binge ethanol may have long-term effects on the adult brain that alter brain structure and behaviors that are relevant to alcohol use disorders. Methods In order to determine if adolescent ethanol binge drinking alters the adult brain, male C57BL/6 mice were treated with either water or ethanol during adolescence (5g/kg/day i.g., post-natal days P28-37) and assessed during adulthood (P60-P88). An array of neurotransmitter-specific genes, behavioral tests (i.e. reversal learning, prepulse inhibition, and open field), and post-mortem brain structure using MRI and immunohistochemistry, were employed to assess persistent alterations in adult brain. Results At P38, 24 hours after adolescent ethanol (AE) binge, many neurotransmitter genes, particularly cholinergic and dopaminergic, were reduced by ethanol treatment. Interestingly, dopamine receptor type 4 mRNA was reduced and confirmed using immunohistochemistry. Normal control maturation (P38-P88) resulted in decreased neurotransmitter mRNA, e.g. an average decrease of 56%. Following adolescent ethanol treatment, adults showed greater gene expression reductions than controls, averaging 73%. Adult spatial learning assessed in the Morris water maze was not changed by adolescent ethanol treatment, but reversal learning experiments revealed deficits. Assessment of adult brain region volumes using MRI indicated that the olfactory bulb and basal forebrain were smaller in adults following adolescent ethanol. Immunohistochemical analyses found reduced basal forebrain area and fewer basal forebrain cholinergic neurons. Conclusions Adolescent binge ethanol treatment reduces adult neurotransmitter gene expression, particularly cholinergic genes, reduces basal forebrain and olfactory bulb volumes, and causes a reduction in the density of basal forebrain acetylcholine neurons. Loss of cholinergic neurons and forebrain structure could underlie adult reversal learning deficits following adolescent binge drinking. PMID:21223304

  20. Searching for Signatures of Brain Maturity: What Are We Searching For?

    PubMed

    Somerville, Leah H

    2016-12-21

    Evidence of continued neurobiological maturation through adolescence is increasingly invoked in discussions of youth-focused policies. This should motivate neuroscientists to grapple with core issues such as the definition of brain maturation, how to quantify it, and how to precisely translate this knowledge to broader audiences. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Age and sex effects levels of choline compounds in the anterior cingulate cortex of adolescent methamphetamine users.

    PubMed

    Cloak, Christine C; Alicata, Daniel; Chang, Linda; Andrews-Shigaki, Brian; Ernst, Thomas

    2011-12-15

    Methamphetamine can be neurotoxic to the adult brain; however, many individuals first use methamphetamine during adolescence, and the drug's impact on this period of brain development is unknown. Therefore, we evaluated young methamphetamine users for possible abnormalities in brain metabolite concentrations. Anterior cingulate cortex (ACC), frontal white matter (FWM), basal ganglia, and thalamus were studied with localized proton magnetic resonance spectroscopy in 54 periadolescent (ages 13-23 years) methamphetamine users and 53 comparison subjects. The concentrations of major brain metabolites and their associations with age, sex and cognition were assessed. FWM total-creatine correlated with age in methamphetamine-using males and comparison females, but not comparison males or methamphetamine-using females, leading to a drug by sex by age interaction (p=0.003) and ACC choline-containing compounds (CHO) correlated with age only in comparison males leading to a drug by sex by age interaction (p=0.03). Higher ACC CHO was associated with faster performance on the Stroop Interference task in the control males. Male methamphetamine users had slowest performance on the Stroop Interference task and did not show age-appropriate levels of ACC CHO. The altered age-appropriate levels of ACC CHO and poorer executive function in male methamphetamine users suggest methamphetamine abuse may interfere with brain maturation. These periadolescents did not have the abnormal neuronal markers previously reported in adult methamphetamine users, suggesting that neuronal abnormalities may be the result of long-term use or interference in normal cortical maturation, emphasizing the need for early intervention for young methamphetamine users. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Age and sex effects levels of choline compounds in the anterior cingulate cortex of adolescent methamphetamine users

    PubMed Central

    Cloak, Christine C.; Alicata, Daniel; Chang, Linda; Andrews-Shigaki, Brian; Ernst, Thomas

    2011-01-01

    Background Methamphetamine can be neurotoxic to the adult brain; however, many individuals first use methamphetamine during adolescence, and the drug’s impact on this period of brain development is unknown. Therefore, we evaluated young methamphetamine users for possible abnormalities in brain metabolite concentrations. Methods Anterior cingulate cortex (ACC), frontal white matter (FWM), basal ganglia, and thalamus were studied with localized proton magnetic resonance spectroscopy in 54 periadolescent (ages 13–23 years) methamphetamine users and 53 comparison subjects. The concentrations of major brain metabolites and their associations with age, sex and cognition were assessed. Results FWM total-creatine correlated with age in methamphetamine-using males and comparison females, but not comparison males or methamphetamine-using females, leading to a drug by sex by age interaction (p=0.003) and ACC choline-containing compounds (CHO) correlated with age only in comparison males leading to a drug by sex by age interaction (p=0.03). Higher ACC CHO was associated with faster performance on the Stroop Interference task in the control males. Male methamphetamine users had slowest performance on the Stroop Interference task and did not show showed age-appropriate levels of ACC CHO. Conclusions The altered age-appropriate levels of ACC CHO and poorer executive function in male methamphetamine users suggest methamphetamine abuse may interfere with brain maturation. These periadolescents did not have the abnormal neuronal markers previously reported in adult methamphetamine users, suggesting that neuronal abnormalities may be the result of long-term use or interference in normal cortical maturation, emphasizing the need for early intervention for young methamphetamine users. PMID:21775074

  3. Cannabis use and memory brain function in adolescent boys: a cross-sectional multicenter functional magnetic resonance imaging study.

    PubMed

    Jager, Gerry; Block, Robert I; Luijten, Maartje; Ramsey, Nick F

    2010-06-01

    Early-onset cannabis use has been associated with later use/abuse, mental health problems (psychosis, depression), and abnormal development of cognition and brain function. During adolescence, ongoing neurodevelopmental maturation and experience shape the neural circuitry underlying complex cognitive functions such as memory and executive control. Prefrontal and temporal regions are critically involved in these functions. Maturational processes leave these brain areas prone to the potentially harmful effects of cannabis use. We performed a two-site (United States and The Netherlands; pooled data) functional magnetic resonance imaging (MRI) study with a cross-sectional design, investigating the effects of adolescent cannabis use on working memory (WM) and associative memory (AM) brain function in 21 abstinent but frequent cannabis-using boys (13-19) years of age and compared them with 24 nonusing peers. Brain activity during WM was assessed before and after rule-based learning (automatization). AM was assessed using a pictorial hippocampal-dependent memory task. Cannabis users performed normally on both memory tasks. During WM assessment, cannabis users showed excessive activity in prefrontal regions when a task was novel, whereas automatization of the task reduced activity to the same level in users and controls. No effect of cannabis use on AM-related brain function was found. In adolescent cannabis users, the WM system was overactive during a novel task, suggesting functional compensation. Inefficient WM recruitment was not related to a failure in automatization but became evident when processing continuously changing information. The results seem to confirm the vulnerability of still developing frontal lobe functioning for early-onset cannabis use. 2010 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Maturing Brain Mechanisms and Developing Behavioral Language Skills

    ERIC Educational Resources Information Center

    Friedrich, Manuela; Friederici, Angela D.

    2010-01-01

    The relation between the maturation of brain mechanisms responsible for the N400 elicitation in the event-related brain potential (ERP) and the development of behavioral language skills was investigated in 12-month-old infants. ERPs to words presented in a picture-word priming paradigm were analyzed according to the infants' production and…

  5. Multimodal imaging of the self-regulating developing brain.

    PubMed

    Fjell, Anders M; Walhovd, Kristine Beate; Brown, Timothy T; Kuperman, Joshua M; Chung, Yoonho; Hagler, Donald J; Venkatraman, Vijay; Roddey, J Cooper; Erhart, Matthew; McCabe, Connor; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Libiger, Ondrej; Darst, Burcu F; Schork, Nicholas J; Casey, B J; Chang, Linda; Ernst, Thomas M; Gruen, Jeffrey R; Kaufmann, Walter E; Kenet, Tal; Frazier, Jean; Murray, Sarah S; Sowell, Elizabeth R; van Zijl, Peter; Mostofsky, Stewart; Jernigan, Terry L; Dale, Anders M

    2012-11-27

    Self-regulation refers to the ability to control behavior, cognition, and emotions, and self-regulation failure is related to a range of neuropsychiatric problems. It is poorly understood how structural maturation of the brain brings about the gradual improvement in self-regulation during childhood. In a large-scale multicenter effort, 735 children (4-21 y) underwent structural MRI for quantification of cortical thickness and surface area and diffusion tensor imaging for quantification of the quality of major fiber connections. Brain development was related to a standardized measure of cognitive control (the flanker task from the National Institutes of Health Toolbox), a critical component of self-regulation. Ability to inhibit responses and impose cognitive control increased rapidly during preteen years. Surface area of the anterior cingulate cortex accounted for a significant proportion of the variance in cognitive performance. This finding is intriguing, because characteristics of the anterior cingulum are shown to be related to impulse, attention, and executive problems in neurodevelopmental disorders, indicating a neural foundation for self-regulation abilities along a continuum from normality to pathology. The relationship was strongest in the younger children. Properties of large-fiber connections added to the picture by explaining additional variance in cognitive control. Although cognitive control was related to surface area of the anterior cingulate independently of basic processes of mental speed, the relationship between white matter quality and cognitive control could be fully accounted for by speed. The results underscore the need for integration of different aspects of brain maturation to understand the foundations of cognitive development.

  6. Maturation of the auditory system in clinically normal puppies as reflected by the brain stem auditory-evoked potential wave V latency-intensity curve and rarefaction-condensation differential potentials.

    PubMed

    Poncelet, L C; Coppens, A G; Meuris, S I; Deltenre, P F

    2000-11-01

    To evaluate auditory maturation in puppies. Ten clinically normal Beagle puppies. Puppies were examined repeatedly from days 11 to 36 after birth (8 measurements). Click-evoked brain stem auditory-evoked potentials (BAEP) were obtained in response to rarefaction and condensation click stimuli from 90 dB normal hearing level to wave V threshold, using steps of 10 dB. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation differential potential (RCDP). Steps of 5 dB were used to determine thresholds of RCDP and wave V. Slope of the low-intensity segment of the wave V latency-intensity curve was calculated. The intensity range at which RCDP could not be recorded (ie, pre-RCDP range) was calculated by subtracting the threshold of wave V from threshold of RCDP RESULTS: Slope of the wave V latency-intensity curve low-intensity segment evolved with age, changing from (mean +/- SD) -90.8 +/- 41.6 to -27.8 +/- 4.1 micros/dB. Similar results were obtained from days 23 through 36. The pre-RCDP range diminished as puppies became older, decreasing from 40.0 +/- 7.5 to 20.5 +/- 6.4 dB. Changes in slope of the latency-intensity curve with age suggest enlargement of the audible range of frequencies toward high frequencies up to the third week after birth. Decrease in the pre-RCDP range may indicate an increase of the audible range of frequencies toward low frequencies. Age-related reference values will assist clinicians in detecting hearing loss in puppies.

  7. Regulation of hippocampal synaptic plasticity by the tyrosine kinase receptor, REK7/EphA5, and its ligand, AL-1/Ephrin-A5.

    PubMed

    Gao, W Q; Shinsky, N; Armanini, M P; Moran, P; Zheng, J L; Mendoza-Ramirez, J L; Phillips, H S; Winslow, J W; Caras, I W

    1998-08-01

    The Eph-related tyrosine kinase receptor, REK7/EphA5, mediates the effects of AL-1/Ephrin-A5 and related ligands and is involved in the guidance of retinal, cortical, and hippocampal axons during development. The continued expression of REK7/EphA5 in the adult brain, in particular in areas associated with a high degree of synaptic plasticity such as the hippocampus, raises the question of its function in the mature nervous system. In this report we examined the role of REK7/EphA5 in synaptic remodeling by asking if agents that either block or activate REK7/EphA5 affect synaptic strength in hippocampal slices from adult mouse brain. We show that a REK7/EphA5 antagonist, soluble REK7/EphA5-IgG, impairs the induction of long-term potentiation (LTP) without affecting other synaptic parameters such as normal synaptic transmission or paired-pulse facilitation. In contrast, perfusion with AL-1/Ephrin-A5-IgG, an activator of REK7/EphA5, induces a sustained increase in normal synaptic transmission that partially mimics LTP. The sustained elevation of normal synaptic transmission could be attributable to a long-lasting binding of the AL-1/Ephrin-A5-IgG to the endogenous REK7/EphA5 receptor, as revealed by immunohistochemistry. Furthermore, maximal electrical induction of LTP occludes the potentiating effects of subsequent treatment with AL-1/Ephrin-A5-IgG. Taken together these results implicate REK7/EphA5 in the regulation of synaptic plasticity in the mature hippocampus and suggest that REK7/EphA5 activation is recruited in the LTP induced by tetanization. Copyright 1998 Academic Press.

  8. Rapid high resolution T1 mapping as a marker of brain development: Normative ranges in key regions of interest.

    PubMed

    Eminian, Sylvain; Hajdu, Steven David; Meuli, Reto Antoine; Maeder, Philippe; Hagmann, Patric

    2018-01-01

    We studied in a clinical setting the age dependent T1 relaxation time as a marker of normal late brain maturation and compared it to conventional techniques, namely the apparent diffusion coefficient (ADC). Forty-two healthy subjects ranging from ages 1 year to 20 years were included in our study. T1 brain maps in which the intensity of each pixel corresponded to T1 relaxation times were generated based on MR imaging data acquired using a MP2RAGE sequence. During the same session, diffusion tensor imaging data was collected. T1 relaxation times and ADC in white matter and grey matter were measured in seven clinically relevant regions of interest and were correlated to subjects' age. In the basal ganglia, there was a small, yet significant, decrease in T1 relaxation time (-0.45 ≤R≤-0.59, p<10-2) and ADC (-0.60≤R≤-0.65, p<10-4) as a function of age. In the frontal and parietal white matter, there was a significant decrease in T1 relaxation time (-0.62≤R≤-0.68, p<10-4) and ADC (-0.81≤R≤-0.85, p<10-4) as a function of age. T1 relaxation time changes in the corpus callosum and internal capsule were less relevant for this age range. There was no significant difference between the correlation of T1 relaxation time and ADC with respect to age (p-value = 0.39). The correlation between T1 relaxation and ADC is strong in the white matter but only moderate in basal ganglia over this age period. T1 relaxation time is a marker of brain maturation or myelination during late brain development. Between the age of 1 and 20 years, T1 relaxation time decreases as a function of age in the white matter and basal ganglia. The greatest changes occur in frontal and parietal white matter. These regions are known to mature in the final stage of development and are mainly composed of association circuits. Age-correlation is not significantly different between T1 relaxation time and ADC. Therefore, T1 relaxation time does not appear to be a superior marker of brain maturation than ADC but may be considered as complementary owing the intrinsic differences in bio-physical sensitivity. This work may serve as normative ranges in clinical imaging routines.

  9. Myelination progression in language-correlated regions in brain of normal children determined by quantitative MRI assessment.

    PubMed

    Su, Peijen; Kuan, Chen-Chieh; Kaga, Kimitaka; Sano, Masaki; Mima, Kazuo

    2008-12-01

    To investigate the myelination progression course in language-correlated regions of children with normal brain development by quantitative magnetic resonance imaging (MRI) analysis compared with histological studies. The subjects were 241 neurologically intact neonates, infants and young children (128 boys and 113 girls) who underwent MRI between 2001 and 2007 at the University of Tokyo Hospital, ranging in age from 0 to 429 weeks corrected by postnatal age. To compare their data with adult values, 25 adolescents and adults (14 men and 11 women, aged from 14 to 83 years) were examined as controls. Axial T2-weighted images were obtained using spin-echo sequences at 1.5 T. Subjects with a history of prematurity, birth asphyxia, low Apgar score, seizures, active systemic disease, congenital anomaly, delayed development, infarcts, hemorrhages, brain lesions, or central nervous system malformation were excluded from the analysis. Seven regions of interest in language-correlated areas, namely Broca's area, Wernicke's area, the arcuate fasciculus, and the angular gyrus, as well as their right hemisphere homologous regions, and the auditory cortex, the motor cortex, and the visual cortex were examined. Signal intensity obtained by a region-of-interest methodology progresses from hyper- to hypointensity during myelination. We chose the inferior cerebellar peduncle as the internal standard of maturation. Myelination in all these seven language-correlated regions examined in this study shared the same curve pattern: no myelination was observed at birth, it reached maturation at about 1.5 years of age, and it continued to progress slowly thereafter into adult life. On the basis of scatter plot results, we put these areas into three groups: Group A, which included the motor cortex, the auditory cortex, and the visual cortex, myelinated faster than Group B, which included Broca's area, Wernicke's area, and the angular gyrus before 1.5 years old; Group C, consisting of the arcuate fasciculus, has similar degree of myelination as Group B before 1.5 years but then myelinated more slowly after 3 years of age. No gender or left-right differences between homologous regions were found. In this study, we determined the sequence of myelination of language-correlated regions in infants and children by quantitative MRI assessment. The higher cortical areas matured later than the primary cortical areas, and the arcuate fasciculus matured last. The observation that myelination reaches maturity after 18 months suggests that myelination may be a reason for the acceleration in vocabulary acquisition observed in children from that age. The slow pace of myelination also suggested the possibility of language development's continuation into early adult life. Myelination assessed by MRI was at least 1 month behind that assessed by histological staining. No gender or left-right hemisphere differences in myelination were noted.

  10. Alterations in Sociability and Functional Brain Connectivity Caused by Early-Life Seizures is Reversed by Bumetanide

    PubMed Central

    Holmes, Gregory L.; Tian, Chengju; Hernan, Amanda E.; Flynn, Sean; Camp, Devon; Barry, Jeremy

    2015-01-01

    There is a well-described association between infantile epilepsy and pervasive cognitive and behavioral deficits, including a high incidence of autism spectrum disorders. Despite the robustness of the relationship between early-life seizures and the development of autism, the pathophysiological mechanism by which this occurs has not been explored. As a result of increasing evidence that autism is a disorder of brain connectivity we hypothesized that early-life seizures would interrupt normal brain connectivity during brain maturation and result in an autistic phenotype. Normal rat pups underwent recurrent flurothyl-induced seizures from postnatal (P) day 5-14 and then tested, along with controls, for developmental alterations of development brain oscillatory activity from P18-25. Specifically we wished to understand how normal changes in rhythmicity in and between brain regions change as a function of age and if this rhythmicity is altered or interrupted by early life seizures. In rat pups with early-life seizures, field recordings from dorsal and ventral hippocampus and prefrontal cortex demonstrated marked increase in coherence as well as a decrease in voltage correlation at all bandwidths compared to controls while there were minimal differences in total power and relative power spectral densities. Rats with early-life seizures had resulting impairment in the sociability and social novelty tests but demonstrated no evidence of increased activity or generalized anxiety as measured in the open field. In addition, rats with early-life seizures had lower seizure thresholds than controls, indicating long-standing alterations in the excitatory/inhibition balance. Bumetanide, a pharmacological agent that blocks the activity of NKCC1 and induces a significant shift of ECl toward more hyperpolarized values, administration at the time of the seizures precluded the subsequent abnormalities in coherence and voltage correlation and resulted in normal sociability and seizure threshold. Taken together these findings indicate that early-life seizures alter the development of oscillations and result in autistic-like behaviors. The altered communication between these brain regions could reflect the physiological underpinnings underlying social cognitive deficits seen in autism spectrum disorders. PMID:25766676

  11. Local functional connectivity suggests functional immaturity in children with attention-deficit/hyperactivity disorder.

    PubMed

    Marcos-Vidal, Luis; Martínez-García, Magdalena; Pretus, Clara; Garcia-Garcia, David; Martínez, Kenia; Janssen, Joost; Vilarroya, Oscar; Castellanos, Francisco X; Desco, Manuel; Sepulcre, Jorge; Carmona, Susanna

    2018-06-01

    Previous studies have associated Attention-Deficit/Hyperactivity Disorder (ADHD) with a maturational lag of brain functional networks. Functional connectivity of the human brain changes from primarily local to more distant connectivity patterns during typical development. Under the maturational lag hypothesis, we expect children with ADHD to exhibit increased local connectivity and decreased distant connectivity compared with neurotypically developing (ND) children. We applied a graph-theory method to compute local and distant connectivity levels and cross-sectionally compared them in a sample of 120 children with ADHD and 120 age-matched ND children (age range = 7-17 years). In addition, we measured if potential group differences in local and distant connectivity were stable across the age range considered. Finally, we assessed the clinical relevance of observed group differences by correlating the connectivity levels and ADHD symptoms severity separately for each group. Children with ADHD exhibited more local connectivity than age-matched ND children in multiple brain regions, mainly overlapping with default mode, fronto-parietal and ventral attentional functional networks (p < .05- threshold free-cluster enhancement-family-wise error). We detected an atypical developmental pattern of local connectivity in somatomotor regions, that is, decreases with age in ND children, and increases with age in children with ADHD. Furthermore, local connectivity within somatomotor areas correlated positively with clinical severity of ADHD symptoms, both in ADHD and ND children. Results suggest an immature functional state of multiple brain networks in children with ADHD. Whereas the ADHD diagnosis is associated with the integrity of the system comprising the fronto-parietal, default mode and ventral attentional networks, the severity of clinical symptoms is related to atypical functional connectivity within somatomotor areas. Additionally, our findings are in line with the view of ADHD as a disorder of deviated maturational trajectories, mainly affecting somatomotor areas, rather than delays that normalize with age. © 2018 Wiley Periodicals, Inc.

  12. Cortical thickness maturation and duration of music training: health-promoting activities shape brain development.

    PubMed

    Hudziak, James J; Albaugh, Matthew D; Ducharme, Simon; Karama, Sherif; Spottswood, Margaret; Crehan, Eileen; Evans, Alan C; Botteron, Kelly N

    2014-11-01

    To assess the extent to which playing a musical instrument is associated with cortical thickness development among healthy youths. Participants were part of the National Institutes of Health (NIH) Magnetic Resonance Imaging (MRI) Study of Normal Brain Development. This study followed a longitudinal design such that participants underwent MRI scanning and behavioral testing on up to 3 separate visits, occurring at 2-year intervals. MRI, IQ, and music training data were available for 232 youths (334 scans), ranging from 6 to 18 years of age. Cortical thickness was regressed against the number of years that each youth had played a musical instrument. Next, thickness was regressed against an "Age × Years of Playing" interaction term. Age, gender, total brain volume, and scanner were controlled for in analyses. Participant ID was entered as a random effect to account for within-person dependence. False discovery rate correction was applied (p ≤ .05). There was no association between thickness and years playing a musical instrument. The "Age × Years of Playing" interaction was associated with thickness in motor, premotor, and supplementary motor cortices, as well as prefrontal and parietal cortices. Follow-up analysis revealed that music training was associated with an increased rate of thickness maturation. Results were largely unchanged when IQ and handedness were included as covariates. Playing a musical instrument was associated with more rapid cortical thickness maturation within areas implicated in motor planning and coordination, visuospatial ability, and emotion and impulse regulation. However, given the quasi-experimental nature of this study, we cannot rule out the influence of confounding variables. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Transcriptome and Small RNA Deep Sequencing Reveals Deregulation of miRNA Biogenesis in Human Glioma

    PubMed Central

    Moore, Lynette M.; Kivinen, Virpi; Liu, Yuexin; Annala, Matti; Cogdell, David; Liu, Xiuping; Liu, Chang-Gong; Sawaya, Raymond; Yli-Harja, Olli; Shmulevich, Ilya; Fuller, Gregory N.; Zhang, Wei; Nykter, Matti

    2013-01-01

    Altered expression of oncogenic and tumor-suppressing microRNAs (miRNAs) is widely associated with tumorigenesis. However, the regulatory mechanisms underlying these alterations are poorly understood. We sought to shed light on the deregulation of miRNA biogenesis promoting the aberrant miRNA expression profiles identified in these tumors. Using sequencing technology to perform both whole-transcriptome and small RNA sequencing of glioma patient samples, we examined precursor and mature miRNAs to directly evaluate the miRNA maturation process, and interrogated expression profiles for genes involved in the major steps of miRNA biogenesis. We found that ratios of mature to precursor forms of a large number of miRNAs increased with the progression from normal brain to low-grade and then to high-grade gliomas. The expression levels of genes involved in each of the three major steps of miRNA biogenesis (nuclear processing, nucleo-cytoplasmic transport, and cytoplasmic processing) were systematically altered in glioma tissues. Survival analysis of an independent data set demonstrated that the alteration of genes involved in miRNA maturation correlates with survival in glioma patients. Direct quantification of miRNA maturation with deep sequencing demonstrated that deregulation of the miRNA biogenesis pathway is a hallmark for glioma genesis and progression. PMID:23007860

  14. What is special about the adolescent (JME) brain?

    PubMed

    Craiu, Dana

    2013-07-01

    Juvenile myoclonic epilepsy (JME) involves cortico-thalamo-cortical networks. Thalamic, frontal gray matter, connectivity, and neurotransmitter disturbances have been demonstrated by structural/functional imaging studies. Few patients with JME show mutations in genes coding ion channels or GABAA (gamma-aminobutyric acid) receptor subunits. Recent research points to EFHC1 gene mutations leading to microdysgenesis and possible aberrant circuitry. Imaging studies have shown massive structural/functional changes of normally developing adolescent brain structures maturing at strikingly different rates and times. Gray matter (GM) volume diminishes in cortical areas (frontal and parietal) and deep structures (anterior thalamus, putamen, and caudate). Diffusion tensor imaging (DTI) findings support continued microstructural change in WM (white matter) during late adolescence with robust developmental changes in thalamocortical connectivity. The GABAA receptor distribution and specific receptor subunits' expression patterns change with age from neonate to adolescent/adult, contributing to age-related changes in brain excitability. Hormonal influence on brain structure development during adolescence is presented. Possible implications of brain changes during adolescence on the course of JME are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. [Clinical interest of fMRI and functional exploration methods of brain activity and interactivity: physical and neurophysiological considerations].

    PubMed

    de Marco, G; Menuel, C; Guillevin, R; Vallée, J-N; Lehmann, P; Fall, S; Quaglino, V; Bourdin, B; Devauchelle, B; Chiras, J

    2008-07-01

    After having provided a brief reminder of the principle of the blood oxygen level-dependent (BOLD) contrast effect, the physiological bases of brain activity and the concepts of functional integration and effective connectivity, we describe the most recent approaches, which permit to explore brain activity and putative networks of interconnected active areas in order to examine the normal brain physiology and its dysfunctions. We present various methods and studies of brain activity analysis clinically applicable, and we detail the concepts of functional and effective connectivity, which allow to study the cerebral plasticity which occurs at the child's during the maturation (e.g., dyslexia), at the adult during the ageing (e.g., Alzheimer disease), or still in schizophrenia or Parkinson disease. The study of specific circuits in networks has to allow defining in a more realistic way the dynamic of the central nervous system, which underlies various cerebral functions, both in physiological and pathological conditions. This connectivity approach should improve the diagnostic and facilitate the development of new therapeutic strategies.

  16. Left-right asymmetry of the Maxwell spot centroids in adults without and with dyslexia.

    PubMed

    Le Floch, Albert; Ropars, Guy

    2017-10-25

    In human vision, the brain has to select one view of the world from our two eyes. However, the existence of a clear anatomical asymmetry providing an initial imbalance for normal neural development is still not understood. Using a so-called foveascope, we found that for a cohort of 30 normal adults, the two blue cone-free areas at the centre of the foveas are asymmetrical. The noise-stimulated afterimage dominant eye introduced here corresponds to the circular blue cone-free area, while the non-dominant eye corresponds to the diffuse and irregular elliptical outline. By contrast, we found that this asymmetry is absent or frustrated in a similar cohort of 30 adults with normal ocular status, but with dyslexia, i.e. with visual and phonological deficits. In this case, our results show that the two Maxwell centroid outlines are both circular but lead to an undetermined afterimage dominance with a coexistence of primary and mirror images. The interplay between the lack of asymmetry and the development in the neural maturation of the brain pathways suggests new implications in both fundamental and biomedical sciences. © 2017 The Author(s).

  17. Patterns of pulmonary maturation in normal and abnormal pregnancy.

    PubMed

    Goldkrand, J W; Slattery, D S

    1979-03-01

    Fetal pulmonary maturation may be a variable event depending on various feto-maternal environmental and biochemical influences. The patterns of maturation were studied in 211 amniotic fluid samples from 123 patients (normal 55; diabetes 23; Rh sensitization 19; preeclampsia 26). The phenomenon of globule formation from the amniotic fluid lipid extract and is relation to pulmonary maturity was utilized for this analysis. Validation of this technique is presented. A normal curve was constructed from 22 to 42 weeks; gestation and compared to the abnormal pregnancies. Patients with class A, B, and C diabetes and Rh-sensitized pregnancies had delayed pulmonary maturation. Patients with class D diabetes and preclampsia paralleled the normal course of maturation. A discussion of these results and their possible cause is presented.

  18. Tactile stimulation partially prevents neurodevelopmental changes in visual tract caused by early iron deficiency.

    PubMed

    Horiquini-Barbosa, Everton; Gibb, Robbin; Kolb, Bryan; Bray, Douglas; Lachat, Joao-Jose

    2017-02-15

    Iron deficiency has a critical impact on maturational mechanisms of the brain and the damage related to neuroanatomical parameters is not satisfactorily reversed after iron replacement. However, emerging evidence suggest that enriched early experience may offer great therapeutic efficacy in cases of nutritional disorders postnatally, since the brain is remarkably responsive to its interaction with the environment. Given the fact that tactile stimulation (TS) treatment has been previously shown to be an effective therapeutic approach and with potential application to humans, here we ask whether exposure to TS treatment, from postnatal day (P) 1 to P32 for 3min/day, could also be employed to prevent neuroanatomical changes in the optic nerve of rats maintained on an iron-deficient diet during brain development. We found that iron deficiency changed astrocyte, oligodendrocyte, damaged fiber, and myelinated fiber density, however, TS reversed the iron-deficiency-induced alteration in oligodendrocyte, damaged fiber and myelinated fiber density, but failed to reverse astrocyte density. Our results suggest that early iron deficiency may act by disrupting the timing of key steps in visual system development thereby modifying the normal progression of optic nerve maturation. However, optic nerve development is sensitive to enriching experiences, and in the current study we show that this sensitivity can be used to prevent damage from postnatal iron deficiency during the critical period. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Global and regional cortical connectivity maturation index (CCMI) of developmental human brain with quantification of short-range association tracts

    NASA Astrophysics Data System (ADS)

    Ouyang, Minhui; Jeon, Tina; Mishra, Virendra; Du, Haixiao; Wang, Yu; Peng, Yun; Huang, Hao

    2016-03-01

    From early childhood to adulthood, synaptogenesis and synaptic pruning continuously reshape the structural architecture and neural connection in developmental human brains. Disturbance of the precisely balanced strengthening of certain axons and pruning of others may cause mental disorders such as autism and schizophrenia. To characterize this balance, we proposed a novel measurement based on cortical parcellation and diffusion MRI (dMRI) tractography, a cortical connectivity maturation index (CCMI). To evaluate the spatiotemporal sensitivity of CCMI as a potential biomarker, dMRI and T1 weighted datasets of 21 healthy subjects 2-25 years were acquired. Brain cortex was parcellated into 68 gyral labels using T1 weighted images, then transformed into dMRI space to serve as the seed region of interest for dMRI-based tractography. Cortico-cortical association fibers initiated from each gyrus were categorized into long- and short-range ones, based on the other end of fiber terminating in non-adjacent or adjacent gyri of the seed gyrus, respectively. The regional CCMI was defined as the ratio between number of short-range association tracts and that of all association tracts traced from one of 68 parcellated gyri. The developmental trajectory of the whole brain CCMI follows a quadratic model with initial decreases from 2 to 16 years followed by later increases after 16 years. Regional CCMI is heterogeneous among different cortical gyri with CCMI dropping to the lowest value earlier in primary somatosensory cortex and visual cortex while later in the prefrontal cortex. The proposed CCMI may serve as sensitive biomarker for brain development under normal or pathological conditions.

  20. Traffic pollution exposure is associated with altered brain connectivity in school children.

    PubMed

    Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi

    2016-04-01

    Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Reproductive age modulates the impact of focal ischemia on the forebrain as well as the effects of estrogen treatment in female rats

    PubMed Central

    Selvamani, Amutha; Sohrabji, Farida

    2009-01-01

    While human observational studies and animal studies report a neuroprotective role for estrogen therapy in stroke, the multicenter placebo-controlled Women's Health Initiative (WHI) study concluded that hormone therapy increased the risk for stroke in postmenopausal women. The present study therefore tested the hypothesis that estrogen replacement would increase the severity of a stroke-like injury in females when this replacement occurs after a prolonged hypoestrogenic period, such as the menopause or reproductive senescence, but not when given to females that were normally cycling immediately prior to the hormone replacement. Two groups of female rats were used: multiparous females with normal but lengthened estrus cycles (mature adults), and older multiparous females currently in a persistent acyclic state (reproductive senescent). Animals were either used intact, or were bilaterally ovariectomized and immediately replaced with a 17β-estradiol pellet or control pellet. Animals were subject to a forelimb placing test (a test for sensorimotor deficit) and thereafter to middle cerebral artery occlusion (MCAo) by stereotaxic injection of the vasoconstrictive peptide endothelin-1, adjacent to the MCA. One week after stroke, behavioral tests were performed again. Cortical and striatal infarct volume, measured from brain slices, was significantly greater in intact reproductive senescent females as compared to intact mature adults. Furthermore, estrogen treatment to ovariectomized mature adult females significantly reduced the cortical infarct volume. Paradoxically, estrogen treatment to ovariectomized reproductive senescent females significantly increased cortical and striatal infarct volumes as compared to control pellet replaced senescent females. Significant post-stroke behavioral deficit was observed in all groups on the side contralateral to the lesion, while senescent females also exhibited deficits on the ipsilateral side, in the cross-midline forelimb placement test. Using an animal model that approximates the natural ovarian aging process, these findings strongly support the hypothesis that the effectiveness of estrogen therapy in protecting brain health may depend critically on the time of initiation with respect to a female's reproductive status. PMID:18829137

  2. Rich-club organization of the newborn human brain

    PubMed Central

    Ball, Gareth; Aljabar, Paul; Zebari, Sally; Tusor, Nora; Arichi, Tomoki; Merchant, Nazakat; Robinson, Emma C.; Ogundipe, Enitan; Rueckert, Daniel; Edwards, A. David; Counsell, Serena J.

    2014-01-01

    Combining diffusion magnetic resonance imaging and network analysis in the adult human brain has identified a set of highly connected cortical hubs that form a “rich club”—a high-cost, high-capacity backbone thought to enable efficient network communication. Rich-club architecture appears to be a persistent feature of the mature mammalian brain, but it is not known when this structure emerges during human development. In this longitudinal study we chart the emergence of structural organization in mid to late gestation. We demonstrate that a rich club of interconnected cortical hubs is already present by 30 wk gestation. Subsequently, until the time of normal birth, the principal development is a proliferation of connections between core hubs and the rest of the brain. We also consider the impact of environmental factors on early network development, and compare term-born neonates to preterm infants at term-equivalent age. Though rich-club organization remains intact following premature birth, we reveal significant disruptions in both in cortical–subcortical connectivity and short-distance corticocortical connections. Rich club organization is present well before the normal time of birth and may provide the fundamental structural architecture for the subsequent emergence of complex neurological functions. Premature exposure to the extrauterine environment is associated with altered network architecture and reduced network capacity, which may in part account for the high prevalence of cognitive problems in preterm infants. PMID:24799693

  3. Delayed Development of Brain Connectivity in Adolescents With Schizophrenia and Their Unaffected Siblings.

    PubMed

    Zalesky, Andrew; Pantelis, Christos; Cropley, Vanessa; Fornito, Alex; Cocchi, Luca; McAdams, Harrison; Clasen, Liv; Greenstein, Deanna; Rapoport, Judith L; Gogtay, Nitin

    2015-09-01

    Abnormalities in structural brain connectivity have been observed in patients with schizophrenia. Mapping these abnormalities longitudinally and understanding their genetic risk via sibship studies will provide crucial insight into progressive developmental changes associated with schizophrenia. To identify corticocortical connections exhibiting an altered developmental trajectory in adolescents with childhood-onset schizophrenia (COS) and to determine whether similar alterations are found in patients' unaffected siblings. Using prospective structural brain magnetic resonance imaging, large-scale corticocortical connectivity was mapped from ages 12 to 24 years in 109 patients with COS (272 images), 86 of their unaffected siblings (184 images), and 102 healthy controls (262 images) over a 20-year period beginning January 1, 1991, through April 30, 2011, as part of the ongoing COS study at the National Institute of Mental Health. Structural connectivity between pairs of cortical regions was estimated using a validated technique based on across-subject covariation in magnetic resonance imaging-derived cortical thickness measurements. Compared with normally developing controls, significant left-hemisphere occipitotemporal deficits in cortical thickness correlations were found in patients with COS as well as their healthy siblings (P < .05). Deficits in siblings normalized by mid-adolescence, whereas patients with COS showed significantly longer maturational delays, with cortical thickness correlations between the left temporal lobe and left occipital cortex not showing evidence of development until early adulthood. The normalization of deficits with age in patients with COS correlated with improvement in symptoms. Compared with controls, left-hemisphere occipitotemporal thickness correlations in a subgroup of patients with high positive symptoms were significantly reduced from age 14 to 18 years (P < .05); however, other patients with low positive symptoms showed no significant deficits. Delayed maturation of occipitotemporal connectivity appears to be a trait marker in patients with COS, with a milder endophenotype in unaffected siblings associated with resilience to developing schizophrenia. These findings indicate genetically influenced and connection-specific developmental abnormalities in the schizophrenia connectome, and lead to the hypothesis that visual hallucinations in patients with COS may be because of delayed development of the inferior longitudinal fasciculus, a prominent occipitotemporal fiber.

  4. Early environmental therapy rescues brain development in a mouse model of Down syndrome.

    PubMed

    Begenisic, Tatjana; Sansevero, Gabriele; Baroncelli, Laura; Cioni, Giovanni; Sale, Alessandro

    2015-10-01

    Down syndrome (DS), the most common genetic disorder associated with intellectual disabilities, is an untreatable condition characterized by a number of developmental defects and permanent deficits in the adulthood. Ts65Dn mice, the major animal model for DS, display severe cognitive and synaptic plasticity defects closely resembling the human phenotype. Here, we employed a multidisciplinary approach to investigate, for the first time in developing Ts65Dn mice, the effects elicited by early environmental enrichment (EE) on brain maturation and function. We report that exposure to EE resulted in a robust increase in maternal care levels displayed by Ts65Dn mothers and led to a normalization of declarative memory abilities and hippocampal plasticity in trisomic offspring. The positive effects of EE on Ts65Dn phenotype were not limited to the cognitive domain, but also included a rescue of visual system maturation. The beneficial EE effects were accompanied by increased BDNF and correction of over-expression of the GABA vesicular transporter vGAT. These findings highlight the beneficial impact of early environmental stimuli and their potential for application in the treatment of major functional deficits in children with DS. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Neocortical maturation during adolescence: change in neuronal soma dimension.

    PubMed

    Rabinowicz, Theodore; Petetot, Jean Macdonald-Comber; Khoury, Jane C; de Courten-Myers, Gabrielle M

    2009-03-01

    During adolescence, cognitive abilities increase robustly. To search for possible related structural alterations of the cerebral cortex, we measured neuronal soma dimension (NSD = width times height), cortical thickness and neuronal densities in different types of neocortex in post-mortem brains of five 12-16 and five 17-24 year-olds (each 2F, 3M). Using a generalized mixed model analysis, mean normalized NSD comparing the age groups shows layer-specific change for layer 2 (p < .0001) and age-related differences between categorized type of cortex: primary/primary association cortex (BA 1, 3, 4, and 44) shows a generalized increase; higher-order regions (BA 9, 21, 39, and 45) also show increase in layers 2 and 5 but decrease in layers 3, 4, and 6 while limbic/orbital cortex (BA 23, 24, and 47) undergoes minor decrease (BA 1, 3, 4, and 44 vs. BA 9, 21, 39, and 45: p = .036 and BA 1, 3, 4, and 44 vs. BA 23, 24, and 47: p = .004). These data imply the operation of cortical layer- and type-specific processes of growth and regression adding new evidence that the human brain matures during adolescence not only functionally but also structurally.

  6. Decreased Regional Cortical Thickness and Thinning Rate Are Associated with Inattention Symptoms in Healthy Children

    PubMed Central

    Ducharme, Simon; Hudziak, James J.; Botteron, Kelly N.; Albaugh, Matthew D.; Nguyen, Tuong-Vi; Karama, Sherif; Evans, Alan C.

    2011-01-01

    Objective Children with attention-deficit/hyperactivity disorder (ADHD) have delayed cortical maturation, evidenced by regionally specific slower cortical thinning. However, the relationship between cortical maturation and attention capacities in typically developing children is unknown. This study examines cortical thickness correlates of inattention symptoms in a large sample of healthy children. Method Data from 357 healthy subjects (6.0–18.4 years of age) were obtained from the NIH MRI Study of Normal Brain Development. In cross-sectional analysis (first visit, n = 257), Child Behavior Checklist Attention Problems (AP) scores were linearly regressed against cortical thickness, controlling for age, gender, total brain volume, and site. For longitudinal data (up to three visits, n = 357/672 scans), similar analyses were performed using mixed-effects linear regressions. Interactions of AP with age and gender were tested. Results A cross-sectional “AP by age” interaction was found in bilateral orbito-frontal cortex, right inferior frontal cortex, bilateral ventromedial prefrontal cortex, bilateral dorsolateral prefrontal cortex, and several additional attention network regions. The interaction was due to negative associations between AP and thickness in younger subjects (6–10 years of age) that gradually disappeared over time secondary to slower cortical thinning. Similar trends were present in longitudinal analyses. Conclusions Higher AP scores were associated with thinner cortex at baseline and slower cortical thinning with aging in multiple areas involved in attention processes. Similar patterns have been identified in ADHD, suggesting a dimensional component to the link between attention and cortical maturation. The identified association between cortical maturation and attention in healthy development will help to inform studies of neuroimaging biomarkers of ADHD. PMID:22176936

  7. Mammalian brain development and our grandmothering life history.

    PubMed

    Hawkes, Kristen; Finlay, Barbara L

    2018-05-02

    Among mammals, including humans, adult brain size and the relative size of brain components depend precisely on the duration of a highly regular process of neural development. Much wider variation is seen in rates of body growth and the state of neural maturation at life history events like birth and weaning. Large brains result from slow maturation, which in humans is accompanied by weaning early with respect to both neural maturation and longevity. The grandmother hypothesis proposes this distinctive combination of life history features evolved as ancestral populations began to depend on foods that just weaned juveniles couldn't handle. Here we trace possible reciprocal connections between brain development and life history, highlighting the resulting extended neural plasticity in a wider cognitive ecology of allomaternal care that distinguishes human ontogeny with consequences for other peculiarities of our lineage. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Protracted development of executive and mnemonic brain systems underlying working memory in adolescence: A longitudinal fMRI study.

    PubMed

    Simmonds, Daniel J; Hallquist, Michael N; Luna, Beatriz

    2017-08-15

    Working memory (WM), the ability to hold information on-line to guide planned behavior, improves through adolescence in parallel with continued maturation of critical brain systems supporting cognitive control. Initial developmental neuroimaging studies with one or two timepoints have provided important though varied results limiting our understanding of which and how neural systems change during this transition into mature WM. In this study, we leverage functional magnetic resonance imaging (fMRI) longitudinal data spanning up to 9 years in 129 normally developing individuals to identify which systems demonstrate growth changes that accompany improvements in WM performance. We used a memory guided saccade task that allowed us to probe encoding, pure maintenance, and retrieval neural processes of WM. Consistent with prior research, we found that WM performance continued to improve into the early 20's. fMRI region of interest (ROI) analyses revealed developmental (1) increases in sensorimotor-related (encoding/retrieval) activity in visual cortex from childhood through early adulthood that were associated with WM accuracy and (2) decreases in sustained (maintenance) activity in executive regions from childhood through mid-adolescence that were associated with response latency in childhood and early adolescence. Together these results provide compelling evidence that underlying the maturation of WM is a transition from reliance on executive systems to specialized regions related to the domain of mnemonic requirements of the task leading to optimal performance. Copyright © 2017. Published by Elsevier Inc.

  9. The influence of sex steroids on structural brain maturation in adolescence.

    PubMed

    Koolschijn, P Cédric M P; Peper, Jiska S; Crone, Eveline A

    2014-01-01

    Puberty reflects a period of hormonal changes, physical maturation and structural brain reorganization. However, little attention has been paid to what extent sex steroids and pituitary hormones are associated with the refinement of brain maturation across adolescent development. Here we used high-resolution structural MRI scans from 215 typically developing individuals between ages 8-25, to examine the association between cortical thickness, surface area and (sub)cortical brain volumes with luteinizing hormone, testosterone and estradiol, and pubertal stage based on self-reports. Our results indicate sex-specific differences in testosterone related influences on gray matter volumes of the anterior cingulate cortex after controlling for age effects. No significant associations between subcortical structures and sex hormones were found. Pubertal stage was not a stronger predictor than chronological age for brain anatomical differences. Our findings indicate that sex steroids are associated with cerebral gray matter morphology in a sex specific manner. These hormonal and morphological differences may explain in part differences in brain development between boys and girls.

  10. Synaptic up-scaling preserves motor circuit output after chronic, natural inactivity

    PubMed Central

    Vallejo, Mauricio; Hartzler, Lynn K

    2017-01-01

    Neural systems use homeostatic plasticity to maintain normal brain functions and to prevent abnormal activity. Surprisingly, homeostatic mechanisms that regulate circuit output have mainly been demonstrated during artificial and/or pathological perturbations. Natural, physiological scenarios that activate these stabilizing mechanisms in neural networks of mature animals remain elusive. To establish the extent to which a naturally inactive circuit engages mechanisms of homeostatic plasticity, we utilized the respiratory motor circuit in bullfrogs that normally remains inactive for several months during the winter. We found that inactive respiratory motoneurons exhibit a classic form of homeostatic plasticity, up-scaling of AMPA-glutamate receptors. Up-scaling increased the synaptic strength of respiratory motoneurons and acted to boost motor amplitude from the respiratory network following months of inactivity. Our results show that synaptic scaling sustains strength of the respiratory motor output following months of inactivity, thereby supporting a major neuroscience hypothesis in a normal context for an adult animal. PMID:28914603

  11. Abnormal brain development in newborns with congenital heart disease.

    PubMed

    Miller, Steven P; McQuillen, Patrick S; Hamrick, Shannon; Xu, Duan; Glidden, David V; Charlton, Natalie; Karl, Tom; Azakie, Anthony; Ferriero, Donna M; Barkovich, A James; Vigneron, Daniel B

    2007-11-08

    Congenital heart disease in newborns is associated with global impairment in development. We characterized brain metabolism and microstructure, as measures of brain maturation, in newborns with congenital heart disease before they underwent heart surgery. We studied 41 term newborns with congenital heart disease--29 who had transposition of the great arteries and 12 who had single-ventricle physiology--with the use of magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and diffusion tensor imaging (DTI) before cardiac surgery. We calculated the ratio of N-acetylaspartate to choline (which increases with brain maturation), the ratio of lactate to choline (which decreases with maturation), average diffusivity (which decreases with maturation), and fractional anisotropy of white-matter tracts (which increases with maturation). We compared these findings with those in 16 control newborns of a similar gestational age. As compared with control newborns, those with congenital heart disease had a decrease of 10% in the ratio of N-acetylaspartate to choline (P=0.003), an increase of 28% in the ratio of lactate to choline (P=0.08), an increase of 4% in average diffusivity (P<0.001), and a decrease of 12% in white-matter fractional anisotropy (P<0.001). Preoperative brain injury, as seen on MRI, was not significantly associated with findings on MRS or DTI. White-matter injury was observed in 13 newborns with congenital heart disease (32%) and in no control newborns. Term newborns with congenital heart disease have widespread brain abnormalities before they undergo cardiac surgery. The imaging findings in such newborns are similar to those in premature newborns and may reflect abnormal brain development in utero. Copyright 2007 Massachusetts Medical Society.

  12. Impact of dietary induced precocious gut maturation on cecal microbiota and its relation to the blood-brain barrier during the postnatal period in rats.

    PubMed

    Marungruang, N; Arévalo Sureda, E; Lefrançoise, A; Weström, B; Nyman, M; Prykhodko, O; Fåk Hållenius, F

    2018-06-01

    Precocious maturation of the gastrointestinal barrier (GIB) in newborn mammals can be induced by dietary provocation, but how this affects the gut microbiota and the gut-brain axis remains unknown. The objective of this study was to investigate effects of induced GIB maturation on gut microbiota composition and blood-brain barrier (BBB) permeability. Suckling rats were studied at 72 h after gavage with phytohemagglutinin (PHA) or microbial protease (PT) to induce maturation of GIB. For comparison, untreated suckling and weaned rats were included (n = 10). Human serum albumin (HSA) was administered orally and analyzed in blood to assess permeability of the GIB, while intraperitoneally injected bovine serum albumin (BSA) was measured in the brain tissue for BBB permeability. The cecal microbial composition, plasma lipopolysaccharide-binding protein (LBP) levels and short-chain fatty acids in serum and brain were analyzed. Cessation of HSA passage to blood after PHA or PT treatment was similar to that seen in weaned rats. Interestingly, concomitant increases in cecal Bacteroidetes and plasma LBP levels were observed after both PHA and PT treatments. The BBB passage of BSA was surprisingly elevated after weaning, coinciding with lower plasma LBP levels and specific microbial taxa and increased acetate uptake into the brain. This study provides evidence that the gut microbiota alteration following induced precocious GIB maturation may induce low-grade systemic inflammation and alter SCFAs utilization in the brain which may also play a potential role in GIB-BBB dysfunction disorders in neonates. © 2018 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  13. Glycosaminoglycan in cerebrum, cerebellum and brainstem of young sheep brain with particular reference to compositional and structural variations of chondroitin-dermatan sulfate and hyaluronan.

    PubMed

    Kilia, Virginia; Skandalis, Spyros S; Theocharis, Achilleas D; Theocharis, Dimitrios A; Karamanos, Nikos K; Papageorgakopoulou, Nickoletta

    2008-09-01

    Recent advances in the structural biology of chondroitin sulfate chains have suggested important biological functions in the development of the brain. Several studies have demonstrated that the composition of chondroitin sulfate chains changes with aging and normal brain maturation. In this study, we determined the concentration of all glycosaminoglycan types, i.e. chondroitin sulfate, dermatan sulfate, keratan sulfate, heparan sulfate, hyaluronan and chondroitin in cerebrum, cerebellum and brainstem of young sheep brain. In all cases, chondroitin sulfate was the predominant glycosaminoglycan type, comprising about 54-58% of total glycosaminoglycans, with hyaluronan being present also in significant amounts of about 19-28%. Of particular interest was the increased presence of the disulfated disaccharides and dermatan sulfate in cerebellum and brainstem, respectively, as well as the detectable and measurable occurrence of chondroitin in young sheep brain. Among the three brain areas, cerebrum was found to be significantly richer in chondroitin sulfate and hyaluronan, two major extracellular matrix components. These findings imply that the extracellular matrix of the cerebrum is different from those of cerebellum and brainstem, and probably this fact is related to the particular histological and functional characteristics of each anatomic area of the brain.

  14. Longitudinal sleep EEG trajectories indicate complex patterns of adolescent brain maturation.

    PubMed

    Feinberg, Irwin; Campbell, Ian G

    2013-02-15

    New longitudinal sleep data spanning ages 6-10 yr are presented and combined with previous data to analyze maturational trajectories of delta and theta EEG across ages 6-18 yr in non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM delta power (DP) increased from age 6 to age 8 yr and then declined. Its highest rate of decline occurred between ages 12 and 16.5 yr. We attribute the delta EEG trajectories to changes in synaptic density. Whatever their neuronal underpinnings, these age curves can guide research into the molecular-genetic mechanisms that underlie adolescent brain development. The DP trajectories in NREM and REM sleep differed strikingly. DP in REM did not initially increase but declined steadily from age 6 to age 16 yr. We hypothesize that the DP decline in REM reflects maturation of the same brain arousal systems that eliminate delta waves in waking EEG. Whereas the DP age curves differed in NREM and REM sleep, theta age curves were similar in both, roughly paralleling the age trajectory of REM DP. The different maturational curves for NREM delta and theta indicate that they serve different brain functions despite having similar within-sleep dynamics and responses to sleep loss. Period-amplitude analysis of NREM and REM delta waveforms revealed that the age trends in DP were driven more by changes in wave amplitude rather than incidence. These data further document the powerful and complex link between sleep and brain maturation. Understanding this relationship would shed light on both brain development and the function of sleep.

  15. [Perinatal clomiphene citrate treatment changes sexual orientations of male mice].

    PubMed

    He, Feng-Qin; Zhang, Heng-Rui

    2013-10-01

    Perinatal period and adolescence are critical for brain development, which is the biological basis of an individual's sexual orientation and sexual behavior. In this study, animals were divided into two groups and their sexual orientations were observed: one group experienced drug treatments during the perinatal period, and the other group was castrated at puberty. The results showed that estradiol treatment had no effect on mature male offspring's sexual orientations, but 9 days and 14 days of clomiphene citrate treatment significantly increased the chance of homosexuality and effeminized behavior. In addition, the sexual orientation of mature normal male offspring, which were castrated when they were 21 days old,was not significant different from the control animals. These findings suggest that the inhibition of perinatal estrogen activities could suppress individual male-typical responses, enhance female-typical responses and induce homosexual orientations. Moreover, the masculinizing effects of estrogen were more obvious during perinatal period than adolescence.

  16. Modeling Psychomotor Retardation using iPSCs from MCT8-Deficient Patients Indicates a Prominent Role for the Blood-Brain Barrier.

    PubMed

    Vatine, Gad D; Al-Ahmad, Abraham; Barriga, Bianca K; Svendsen, Soshana; Salim, Ariel; Garcia, Leslie; Garcia, Veronica J; Ho, Ritchie; Yucer, Nur; Qian, Tongcheng; Lim, Ryan G; Wu, Jie; Thompson, Leslie M; Spivia, Weston R; Chen, Zhaohui; Van Eyk, Jennifer; Palecek, Sean P; Refetoff, Samuel; Shusta, Eric V; Svendsen, Clive N

    2017-06-01

    Inactivating mutations in the thyroid hormone (TH) transporter Monocarboxylate transporter 8 (MCT8) cause severe psychomotor retardation in children. Animal models do not reflect the biology of the human disease. Using patient-specific induced pluripotent stem cells (iPSCs), we generated MCT8-deficient neural cells that showed normal TH-dependent neuronal properties and maturation. However, the blood-brain barrier (BBB) controls TH entry into the brain, and reduced TH availability to neural cells could instead underlie the diseased phenotype. To test potential BBB involvement, we generated an iPSC-based BBB model of MCT8 deficiency, and we found that MCT8 was necessary for polarized influx of the active form of TH across the BBB. We also found that a candidate drug did not appreciably cross the mutant BBB. Our results therefore clarify the underlying physiological basis of this disorder, and they suggest that circumventing the diseased BBB to deliver active TH to the brain could be a viable therapeutic strategy. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Folding, But Not Surface Area Expansion, Is Associated with Cellular Morphological Maturation in the Fetal Cerebral Cortex

    PubMed Central

    Studholme, Colin; Frias, Antonio E.

    2017-01-01

    Altered macroscopic anatomical characteristics of the cerebral cortex have been identified in individuals affected by various neurodevelopmental disorders. However, the cellular developmental mechanisms that give rise to these abnormalities are not understood. Previously, advances in image reconstruction of diffusion magnetic resonance imaging (MRI) have made possible high-resolution in utero measurements of water diffusion anisotropy in the fetal brain. Here, diffusion anisotropy within the developing fetal cerebral cortex is longitudinally characterized in the rhesus macaque, focusing on gestation day (G85) through G135 of the 165 d term. Additionally, for subsets of animals characterized at G90 and G135, immunohistochemical staining was performed, and 3D structure tensor analyses were used to identify the cellular processes that most closely parallel changes in water diffusion anisotropy with cerebral cortical maturation. Strong correlations were found between maturation of dendritic arbors on the cellular level and the loss of diffusion anisotropy with cortical development. In turn, diffusion anisotropy changes were strongly associated both regionally and temporally with cortical folding. Notably, the regional and temporal dependence of diffusion anisotropy and folding were distinct from the patterns observed for cerebral cortical surface area expansion. These findings strengthen the link proposed in previous studies between cellular-level changes in dendrite morphology and noninvasive diffusion MRI measurements of the developing cerebral cortex and support the possibility that, in gyroencephalic species, structural differentiation within the cortex is coupled to the formation of gyri and sulci. SIGNIFICANCE STATEMENT Abnormal brain morphology has been found in populations with neurodevelopmental disorders. However, the mechanisms linking cellular level and macroscopic maturation are poorly understood, even in normal brains. This study contributes new understanding to this subject using serial in utero MRI measurements of rhesus macaque fetuses, from which macroscopic and cellular information can be derived. We found that morphological differentiation of dendrites was strongly associated both regionally and temporally with folding of the cerebral cortex. Interestingly, parallel associations were not observed with cortical surface area expansion. These findings support the possibility that perturbed morphological differentiation of cells within the cortex may underlie abnormal macroscopic characteristics of individuals affected by neurodevelopmental disorders. PMID:28069920

  18. Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks.

    PubMed

    Chen, Yuncai; Baram, Tallie Z

    2016-01-01

    Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Adverse early-life experiences provoke the release and modify the expression of several stress mediators and neurotransmitters within specific brain regions. The interaction of these mediators with developing neurons and neuronal networks may lead to long-lasting structural and functional alterations associated with cognitive and emotional consequences. Although a vast body of work has linked quantitative and qualitative aspects of stress to adolescent and adult outcomes, a number of questions are unclear. What distinguishes 'normal' from pathologic or toxic stress? How are the effects of stress transformed into structural and functional changes in individual neurons and neuronal networks? Which ones are affected? We review these questions in the context of established and emerging studies. We introduce a novel concept regarding the origin of toxic early-life stress, stating that it may derive from specific patterns of environmental signals, especially those derived from the mother or caretaker. Fragmented and unpredictable patterns of maternal care behaviors induce a profound chronic stress. The aberrant patterns and rhythms of early-life sensory input might also directly and adversely influence the maturation of cognitive and emotional brain circuits, in analogy to visual and auditory brain systems. Thus, unpredictable, stress-provoking early-life experiences may influence adolescent cognitive and emotional outcomes by disrupting the maturation of the underlying brain networks. Comprehensive approaches and multiple levels of analysis are required to probe the protean consequences of early-life adversity on the developing brain. These involve integrated human and animal-model studies, and approaches ranging from in vivo imaging to novel neuroanatomical, molecular, epigenomic, and computational methodologies. Because early-life adversity is a powerful determinant of subsequent vulnerabilities to emotional and cognitive pathologies, understanding the underlying processes will have profound implications for the world's current and future children.

  19. Adolescent brain development in normality and psychopathology

    PubMed Central

    LUCIANA, MONICA

    2014-01-01

    Since this journal’s inception, the field of adolescent brain development has flourished, as researchers have investigated the underpinnings of adolescent risk-taking behaviors. Explanations based on translational models initially attributed such behaviors to executive control deficiencies and poor frontal lobe function. This conclusion was bolstered by evidence that the prefrontal cortex and its interconnections are among the last brain regions to structurally and functionally mature. As substantial heterogeneity of prefrontal function was revealed, applications of neuroeconomic theory to adolescent development led to dual systems models of behavior. Current epidemiological trends, behavioral observations, and functional magnetic resonance imaging based brain activity patterns suggest a quadratic increase in limbically mediated incentive motivation from childhood to adolescence and a decline thereafter. This elevation occurs in the context of immature prefrontal function, so motivational strivings may be difficult to regulate. Theoretical models explain this patterning through brain-based accounts of subcortical–cortical integration, puberty-based models of adolescent sensation seeking, and neurochemical dynamics. Empirically sound tests of these mechanisms, as well as investigations of biology–context interactions, represent the field’s most challenging future goals, so that applications to psychopathology can be refined and so that developmental cascades that incorporate neurobiological variables can be modeled. PMID:24342843

  20. Adolescent brain development in normality and psychopathology.

    PubMed

    Luciana, Monica

    2013-11-01

    Since this journal's inception, the field of adolescent brain development has flourished, as researchers have investigated the underpinnings of adolescent risk-taking behaviors. Explanations based on translational models initially attributed such behaviors to executive control deficiencies and poor frontal lobe function. This conclusion was bolstered by evidence that the prefrontal cortex and its interconnections are among the last brain regions to structurally and functionally mature. As substantial heterogeneity of prefrontal function was revealed, applications of neuroeconomic theory to adolescent development led to dual systems models of behavior. Current epidemiological trends, behavioral observations, and functional magnetic resonance imaging based brain activity patterns suggest a quadratic increase in limbically mediated incentive motivation from childhood to adolescence and a decline thereafter. This elevation occurs in the context of immature prefrontal function, so motivational strivings may be difficult to regulate. Theoretical models explain this patterning through brain-based accounts of subcortical-cortical integration, puberty-based models of adolescent sensation seeking, and neurochemical dynamics. Empirically sound tests of these mechanisms, as well as investigations of biology-context interactions, represent the field's most challenging future goals, so that applications to psychopathology can be refined and so that developmental cascades that incorporate neurobiological variables can be modeled.

  1. Effects of chromosomal sex and hormonal influences on shaping sex differences in brain and behavior: Lessons from cases of disorders of sex development.

    PubMed

    Bramble, Matthew S; Lipson, Allen; Vashist, Neerja; Vilain, Eric

    2017-01-02

    Sex differences in brain development and postnatal behavior are determined largely by genetic sex and in utero gonadal hormone secretions. In humans however, determining the weight that each of these factors contributes remains a challenge because social influences should also be considered. Cases of disorders of sex development (DSD) provide unique insight into how mutations in genes responsible for gonadal formation can perturb the subsequent developmental hormonal milieu and elicit changes in normal human brain maturation. Specific forms of DSDs such as complete androgen insensitivity syndrome (CAIS), congenital adrenal hyperplasia (CAH), and 5α-reductase deficiency syndrome have variable effects between males and females, and the developmental outcomes of such conditions are largely dependent on sex chromosome composition. Medical and psychological works focused on CAH, CAIS, and 5α-reductase deficiency have helped form the foundation for understanding the roles of genetic and hormonal factors necessary for guiding human brain development. Here we highlight how the three aforementioned DSDs contribute to brain and behavioral phenotypes that can uniquely affect 46,XY and 46,XX individuals in dramatically different fashions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Age-Related Changes in Transient and Oscillatory Brain Responses to Auditory Stimulation during Early Adolescence

    ERIC Educational Resources Information Center

    Poulsen, Catherine; Picton, Terence W.; Paus, Tomas

    2009-01-01

    Maturational changes in the capacity to process quickly the temporal envelope of sound have been linked to language abilities in typically developing individuals. As part of a longitudinal study of brain maturation and cognitive development during adolescence, we employed dense-array EEG and spatiotemporal source analysis to characterize…

  3. Alterations in the Vaginal Microbiome by Maternal Stress Are Associated With Metabolic Reprogramming of the Offspring Gut and Brain.

    PubMed

    Jašarević, Eldin; Howerton, Christopher L; Howard, Christopher D; Bale, Tracy L

    2015-09-01

    The neonate is exposed to the maternal vaginal microbiota during parturition, providing the primary source for normal gut colonization, host immune maturation, and metabolism. These early interactions between the host and microbiota occur during a critical window of neurodevelopment, suggesting early life as an important period of cross talk between the developing gut and brain. Because perturbations in the prenatal environment such as maternal stress increase neurodevelopmental disease risk, disruptions to the vaginal ecosystem could be a contributing factor in significant and long-term consequences for the offspring. Therefore, to examine the hypothesis that changes in the vaginal microbiome are associated with effects on the offspring gut microbiota and on the developing brain, we used genomic, proteomic and metabolomic technologies to examine outcomes in our mouse model of early prenatal stress. Multivariate modeling identified broad proteomic changes to the maternal vaginal environment that influence offspring microbiota composition and metabolic processes essential for normal neurodevelopment. Maternal stress altered proteins related to vaginal immunity and abundance of Lactobacillus, the prominent taxa in the maternal vagina. Loss of maternal vaginal Lactobacillus resulted in decreased transmission of this bacterium to offspring. Further, altered microbiota composition in the neonate gut corresponded with changes in metabolite profiles involved in energy balance, and with region- and sex-specific disruptions of amino acid profiles in the developing brain. Taken together, these results identify the vaginal microbiota as a novel factor by which maternal stress may contribute to reprogramming of the developing brain that may predispose individuals to neurodevelopmental disorders.

  4. Magnetic resonance spectroscopy of fiber tracts in children with traumatic brain injury: A combined MRS - Diffusion MRI study.

    PubMed

    Dennis, Emily L; Babikian, Talin; Alger, Jeffry; Rashid, Faisal; Villalon-Reina, Julio E; Jin, Yan; Olsen, Alexander; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2018-05-10

    Traumatic brain injury can cause extensive damage to the white matter (WM) of the brain. These disruptions can be especially damaging in children, whose brains are still maturing. Diffusion magnetic resonance imaging (dMRI) is the most commonly used method to assess WM organization, but it has limited resolution to differentiate causes of WM disruption. Magnetic resonance spectroscopy (MRS) yields spectra showing the levels of neurometabolites that can indicate neuronal/axonal health, inflammation, membrane proliferation/turnover, and other cellular processes that are on-going post-injury. Previous analyses on this dataset revealed a significant division within the msTBI patient group, based on interhemispheric transfer time (IHTT); one subgroup of patients (TBI-normal) showed evidence of recovery over time, while the other showed continuing degeneration (TBI-slow). We combined dMRI with MRS to better understand WM disruptions in children with moderate-severe traumatic brain injury (msTBI). Tracts with poorer WM organization, as shown by lower FA and higher MD and RD, also showed lower N-acetylaspartate (NAA), a marker of neuronal and axonal health and myelination. We did not find lower NAA in tracts with normal WM organization. Choline, a marker of inflammation, membrane turnover, or gliosis, did not show such associations. We further show that multi-modal imaging can improve outcome prediction over a single modality, as well as over earlier cognitive function measures. Our results suggest that demyelination plays an important role in WM disruption post-injury in a subgroup of msTBI children and indicate the utility of multi-modal imaging. © 2018 Wiley Periodicals, Inc.

  5. Assessment of dietary factors, dietary practices and exercise on mental distress in young adults versus matured adults: A cross-sectional study.

    PubMed

    Begdache, Lina; Chaar, Maher; Sabounchi, Nasim; Kianmehr, Hamed

    2017-12-11

    The importance of the diet in modulating mental health is uncovering as many dietary factors have been described to alter brain chemistry. Brain maturation may not complete until the age of 30 which may explain the differential emotional control, mindset, and resilience between young adults and matured adults. As a result, dietary factors may influence mental health differently in these two populations. To study dietary intake, dietary practices and exercise in young adults (YA) (18-29 years) versus matured adults (MA) (30 years and older) in relation to mental distress. Another aim was to assess whether mental well-being potentially stimulates healthy eating, healthy practices, and exercising. An anonymous internet-based survey was sent through social media platforms to different professional and social group networks. Best-fit models were constructed using the backward regression analysis to assess the relationship between dietary variables, exercise, and mental distress in YA versus MA. YA mood seems to be dependent on food that increases availability of neurotransmitter precursors and concentrations in the brain (such as frequent meat consumption and exercise, respectively). However, MA mood may be more reliant on food that increases availability of antioxidants (fruits) and abstinence of food that inappropriately activates the sympathetic nervous system (coffee, high glycemic index, and skipping breakfast). Level of brain maturation and age-related changes in brain morphology and functions may necessitate dietary adjustments for improving mental well-being.

  6. The modulation of EEG variability between internally- and externally-driven cognitive states varies with maturation and task performance

    PubMed Central

    Willatt, Stephanie E.; Cortese, Filomeno; Protzner, Andrea B.

    2017-01-01

    Increasing evidence suggests that brain signal variability is an important measure of brain function reflecting information processing capacity and functional integrity. In this study, we examined how maturation from childhood to adulthood affects the magnitude and spatial extent of state-to-state transitions in brain signal variability, and how this relates to cognitive performance. We looked at variability changes between resting-state and task (a symbol-matching task with three levels of difficulty), and within trial (fixation, post-stimulus, and post-response). We calculated variability with multiscale entropy (MSE), and additionally examined spectral power density (SPD) from electroencephalography (EEG) in children aged 8–14, and in adults aged 18–33. Our results suggest that maturation is characterized by increased local information processing (higher MSE at fine temporal scales) and decreased long-range interactions with other neural populations (lower MSE at coarse temporal scales). Children show MSE changes that are similar in magnitude, but greater in spatial extent when transitioning between internally- and externally-driven brain states. Additionally, we found that in children, greater changes in task difficulty were associated with greater magnitude of modulation in MSE. Our results suggest that the interplay between maturational and state-to-state changes in brain signal variability manifest across different spatial and temporal scales, and influence information processing capacity in the brain. PMID:28750035

  7. Stress and the developing adolescent brain.

    PubMed

    Eiland, L; Romeo, R D

    2013-09-26

    Adolescence is a time of continued brain maturation, particularly in limbic and cortical regions, which undoubtedly plays a role in the physiological and emotional changes coincident with adolescence. An emerging line of research has indicated that stressors experienced during this crucial developmental stage may affect the trajectory of this neural maturation and contribute to the increase in psychological morbidities, such as anxiety and depression, often observed during adolescence. In this review, we discuss the short- and long-term effects of periadolescent stress exposure on the structure and function of the brain. More specifically, we examine how stress at prepubertal and early adolescent stages of development affects the morphological plasticity of limbic and cortical brain regions, as well as the enduring effects of adolescent stress exposure on these brain regions in adulthood. We suggest that, due to a number of converging factors during this period of maturation, the adolescent brain may be particularly sensitive to stress-induced neurobehavioral dysfunctions with important consequences on an individual's immediate and long-term health and well-being. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Craniofacial and brain abnormalities in Laron syndrome (primary growth hormone insensitivity).

    PubMed

    Kornreich, L; Horev, G; Schwarz, M; Karmazyn, B; Laron, Z

    2002-04-01

    To investigate abnormalities in the craniofacial structures and in the brain in patients with Laron syndrome. Eleven patients with classical Laron syndrome, nine untreated adults aged 36-68 years and two children aged 4 and 9 years (the latter treated by IGF-I), were studied. Magnetic resonance images of the brain were obtained in all the patients. One patient also underwent computed tomography. The maximal diameter of the maxillary and frontal sinuses was measured and compared with reference values, the size of the sphenoid sinus was evaluated in relation to the sella, and the mastoids were evaluated qualitatively (small or normal). The brain was evaluated for congenital anomalies and parenchymal lesions. In the adult untreated patients, the paranasal sinuses and mastoids were small; in six patients, the bone marrow in the base of the skull was not mature. The diploe of the calvaria was thin. On computed tomography in one adult patient, the sutures were still open. A minimal or mild degree of diffuse brain parenchymal loss was seen in ten patients. One patient demonstrated a lacunar infarct and another periventricular high signals on T2-weighted images. Two patients had cerebellar atrophy. The present study has demonstrated the important role IGF-I plays in the development of the brain and bony structures of the cranium.

  9. "In my before life": relationships, coping and post-traumatic growth in adolescent survivors of a traumatic brain injury.

    PubMed

    Di Battista, Ashley; Godfrey, Celia; Soo, Cheryl; Catroppa, Cathy; Anderson, Vicki

    2014-11-01

    Explore the individual, adolescent phenomeno-logy of quality of life after traumatic brain injury. Adolescent survivors of traumatic brain injury. Qualitative interviews with 10 adolescents, mean age at assessment 17.09 years (SD 1.81). Mean time since injury 4.62 years (SD 2.89). Data were analysed using a primarily interpretative phenomenological analysis approach. Two major findings: (1) perceived quality of life was not automatically impacted by a traumatic brain injury, but when it was, the directionality of impact (positive, negative) varied depending on the life-domain; (2) changes in ability post-traumatic brain injury were attributed to the injury (more often cognitive and physical changes) or to a sense of normal maturation processes (72% and 28%, respectively). Attribution processing permeated themes of personal and social discrepancies, which also yielded themes of: altered family and relationships, roles, responsibilities, independence, coping and post-traumatic growth. All participants reported a happy life at the time of interview. The adolescents' appraisal of their identity from pre- to post-injury life was related to their current sense of well-being. Most notably was the sense of balance; participants addressed the negative and positive consequences of brain injury to qualify their sense of wellbeing.

  10. Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex123

    PubMed Central

    Billeh, Yazan N.; Bernard, Amy; de Vivo, Luisa; Honjoh, Sakiko; Mihalas, Stefan; Ng, Lydia; Koch, Christof

    2016-01-01

    Abstract Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25–P30, ≥50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments. PMID:27351022

  11. Systemic Prenatal Insults Disrupt Telencephalon Development

    PubMed Central

    Robinson, Shenandoah

    2006-01-01

    Infants born prematurely are prone to chronic neurologic deficits including cerebral palsy (CP), epilepsy, cognitive delay, behavioral problems, and neurosensory impairments. In affected children, imaging and neuropathological findings demonstrate significant damage to white matter. The extent of cortical damage has been less obvious. Advances in the understanding of telencephalon development provide insights into how systemic intrauterine insults affect the developing white matter, subplate and cortex, and lead to multiple neurologic impairments. In addition to white matter oligodendrocytes and axons, other elements at risk for perinatal brain injury include subplate neurons, GABAergic neurons migrating through white matter and subplate, and afferents of maturing neurotransmitter systems. Common insults including hypoxia-ischemia and infection often affect the developing brain differently than the mature brain, and insults precipitate a cascade of damage to multiple neural lineages. Insights from development can identify potential targets for therapies to repair the damaged neonatal brain before it has matured. PMID:16061421

  12. Mapping Subcortical Brain Maturation during Adolescence: Evidence of Hemisphere-and Sex-Specific Longitudinal Changes

    ERIC Educational Resources Information Center

    Dennison, Meg; Whittle, Sarah; Yücel, Murat; Vijayakumar, Nandita; Kline, Alexandria; Simmons, Julian; Allen, Nicholas B.

    2013-01-01

    Early to mid-adolescence is an important developmental period for subcortical brain maturation, but longitudinal studies of these neurodevelopmental changes are lacking. The present study acquired repeated magnetic resonance images from 60 adolescent subjects (28 female) at ages 12.5 and 16.5 years to map changes in subcortical structure volumes.…

  13. Universal characteristics of evolution and development are inherent in fetal autonomic brain maturation.

    PubMed

    Schmidt, Alexander; Schukat-Talamazzini, Ernst G; Zöllkau, Janine; Pytlik, Adelina; Leibl, Sophia; Kumm, Kathrin; Bode, Franziska; Kynass, Isabelle; Witte, Otto W; Schleussner, Ekkehard; Schneider, Uwe; Hoyer, Dirk

    2018-07-01

    Adverse prenatal environmental influences to the developing fetus are associated with mental and cardiovascular disease in later life. Universal developmental characteristics such as self-organization, pattern formation, and adaptation in the growing information processing system have not yet been sufficiently analyzed with respect to description of normal fetal development and identification of developmental disturbances. Fetal heart rate patterns are the only non-invasive order parameter of the developing autonomic brain available with respect to the developing complex organ system. The objective of the present study was to investigate whether universal indices, known from evolution and phylogeny, describe the ontogenetic fetal development from 20 weeks of gestation onwards. By means of a 10-fold cross-validated data-driven multivariate regression modeling procedure, relevant indices of heart rate variability (HRV) were explored using 552 fetal heart rate recordings, each lasting over 30 min. We found that models which included HRV indices of increasing fluctuation amplitude, complexity and fractal long-range dependencies largely estimated the maturation age (coefficients of determination 0.61-0.66). Consideration of these characteristics in prenatal care may not only have implications for early identification of developmental disturbances, but also for the development of system-theory-based therapeutic strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Treatment with Thyroxine Restores Myelination and Clinical Recovery after Intraventricular Hemorrhage

    PubMed Central

    Vose, Linnea R.; Vinukonda, Govindaiah; Jo, Sungro; Miry, Omid; Diamond, Daniel; Korumilli, Ritesh; Arshad, Arslan; Zia, Muhammad T. K.; Hu, Furong; Kayton, Robert J.; La Gamma, Edmund F.; Bansal, Rashmi; Bianco, Antonio C.

    2013-01-01

    Intraventricular hemorrhage (IVH) remains a major cause of white matter injury in preterm infants with no viable therapeutic strategy to restore myelination. Maturation of oligodendrocytes and myelination is influenced by thyroid hormone (TH) signaling, which is mediated by TH receptor α (TRα) and TRβ. In the brain, cellular levels of TH are regulated by deiodinases, with deiodinase-2 mediating TH activation and deiodinase-3 TH inactivation. Therefore, we hypothesized that IVH would decrease TH signaling via changes in the expression of deiodinases and/or TRs, and normalization of TH signaling would enhance maturation of oligodendrocytes and myelination in preterm infants with IVH. These hypotheses were tested using both autopsy materials from human preterm infants and a rabbit model of IVH. We found that deiodinase-2 levels were reduced, whereas deiodinase-3 levels were increased in brain samples of both humans and rabbits with IVH compared with controls without IVH. TRα expression was also increased in human infants with IVH. Importantly, treatment with TH accelerated the proliferation and maturation of oligodendrocytes, increased transcription of Olig2 and Sox10 genes, augmented myelination, and restored neurological function in pups with IVH. Consistent with these findings, the density of myelinating oligodendrocytes was almost doubled in TH-treated human preterm infants compared with controls. Thus, in infants with IVH the combined elevation in deiodinase-3 and reduction in deiodinase-2 decreases TH signaling that can be worsened by an increase in unliganded TRα. Given that TH promotes neurological recovery in IVH, TH treatment might improve the neurodevelopmental outcome of preterm infants with IVH. PMID:24174657

  15. QEEG characteristics and spectrum weighted frequency for children diagnosed as autistic spectrum disorder.

    PubMed

    Pop-Jordanova, Nada; Zorcec, Tatjana; Demerdzieva, Aneta; Gucev, Zoran

    2010-09-30

    Autistic spectrum disorders are a group of neurological and developmental disorders associated with social, communication, sensory, behavioral and cognitive impairments, as well as restricted, repetitive patterns of behavior, activities, or interests.The aim of this study was a) to analyze QEEG findings of autistic patients and to compare the results with data base; and b) to introduce the calculation of spectrum weighted frequency (brain rate) as an indicator of general mental arousal in these patients. Results for Q-EEG shows generally increased delta-theta activity in frontal region of the brain. Changes in QEEG pattern appeared to be in a non-linear correlation with maturational processes.Brain rate measured in CZ shows slow brain activity (5. 86) which is significantly lower than normal and corresponds to low general mental arousal.Recent research has shown that autistic disorders have as their basis disturbances of neural connectivity. Neurofeedback seems capable of remediating such disturbances when these data are considered as part of treatment planning. Prognosis of this pervasive disorder depends on the intellectual abilities: the better intellectual functioning, the possibilities for life adaptation are higherQEEG shows generally increased delta-theta activity in frontal region of the brain which is related to poor cognitive abilities.Brain rate measured in CZ shows slow brain activity related to under arousal.Pharmacotherapy combined with behavior therapy, social support and especially neurofeedback technique promise slight improvements.

  16. Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane

    PubMed Central

    Kumar, Ravi; de Mooij, Tristan; Peterson, Timothy E.; Kaptzan, Tatiana; Johnson, Aaron J.; Daniels, David J.; Parney, Ian F.

    2017-01-01

    Glioblastoma is the most common primary tumor of the brain and has few long-term survivors. The local and systemic immunosuppressive environment created by glioblastoma allows it to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs) are a critical component of this immunosuppression. Understanding mechanisms of MDSC formation and function are key to developing effective immunotherapies. In this study, we developed a novel model to reliably generate human MDSCs from healthy-donor CD14+ monocytes by culture in human glioma-conditioned media. Monocytic MDSC frequency was assessed by flow cytometry and confocal microscopy. The resulting MDSCs robustly inhibited T cell proliferation. A cytokine array identified multiple components of the GCM potentially contributing to MDSC generation, including Monocyte Chemoattractive Protein-1, interleukin-6, interleukin-8, and Macrophage Migration Inhibitory Factor (MIF). Of these, Macrophage Migration Inhibitory Factor is a particularly attractive therapeutic target as sulforaphane, a naturally occurring MIF inhibitor derived from broccoli sprouts, has excellent oral bioavailability. Sulforaphane inhibits the transformation of normal monocytes to MDSCs by glioma-conditioned media in vitro at pharmacologically relevant concentrations that are non-toxic to normal leukocytes. This is associated with a corresponding increase in mature dendritic cells. Interestingly, sulforaphane treatment had similar pro-inflammatory effects on normal monocytes in fresh media but specifically increased immature dendritic cells. Thus, we have used a simple in vitro model system to identify a novel contributor to glioblastoma immunosuppression for which a natural inhibitor exists that increases mature dendritic cell development at the expense of myeloid-derived suppressor cells when normal monocytes are exposed to glioma conditioned media. PMID:28666020

  17. Sleep and Development in Genetically Tractable Model Organisms

    PubMed Central

    Kayser, Matthew S.; Biron, David

    2016-01-01

    Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. PMID:27183564

  18. Developmental changes in NMDA receptor expression in the platyfish brain

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Magliulo-Cepriano, L.

    1997-01-01

    We have examined the distribution of the N-methyl-D-aspartate (NMDA) receptor in the brain of a freshwater teleost using an antibody against the R1 subunit of the receptor (NMDAR1). The primary site of localization was the nucleus olfactoretinalis (NOR), a significant gonadotropin releasing hormone (GnRH)-containing brain nucleus. The number of cells expressing NMDAR1 in this nucleus was dependent upon developmental stage, with pubescent and mature animals displaying significantly more stained cells than immature and senescent animals. This is the first reported observation of age- and maturity-related NMDA receptor association with GnRH-containing brain areas.

  19. Is early adulthood a critical developmental stage for psychosis proneness? A survey of delusional ideation in normal subjects.

    PubMed

    Verdoux, H; van Os, J; Maurice-Tison, S; Gay, B; Salamon, R; Bourgeois, M

    1998-02-09

    It has been hypothesized that late adolescence and early adulthood might be a brain developmental stage favoring the clinical expression of psychotic symptoms in psychiatric or neurological diseases. The aim of the present survey was to examine the relationship between age and delusional ideation in a sample of subjects with no psychiatric disorder. The survey was carried out with the Aquitaine Sentinel Network of general practitioners. Consecutive practice attenders were invited to complete the PDI-21 (Peters Delusional Inventory 21 items), a self-report questionnaire designed to measure delusional ideation in the normal population. The study concerned 444 patients who had no lifetime history of psychiatric disorder and who completed the PDI-21. A principal component analysis of the PDI-21 items was performed in order to identify delusional dimensions. An age-related decrease in the likelihood to report delusional ideas was found, younger subjects scoring higher on most dimensions of delusional ideation, such as 'persecution', 'thought disturbance', 'grandiosity' and 'paranormal beliefs'. 'Religiosity' was the only dimension positively associated with age. The results suggest that there may be a physiological neurodevelopmental stage favouring the expression of psychosis proneness in normal subjects, and support the hypothesis that the association between age and positive psychotic symptoms in functional and organic psychoses may be linked to the interaction between normal brain maturational processes and cerebral abnormalities involved in the aetiology of functional and organic psychoses.

  20. Reading skill and structural brain development

    PubMed Central

    Houston, S.M.; Lebel, C.; Katzir, T.; Manis, F.R.; Kan, E.; Rodriguez, G.R.; Sowell, E.R.

    2014-01-01

    Reading is a learned skill that is likely influenced by both brain maturation and experience. Functional imaging studies have identified brain regions important for skilled reading, but the structural brain changes that co-occur with reading acquisition remain largely unknown. We investigated maturational volume changes in brain reading regions and their association with performance on reading measures. Sixteen typically developing children (5-15 years old, 8 male, mean age of sample=10.06 ±3.29) received two magnetic resonance imaging (MRI) scans, (mean inter-scan interval =2.19 years), and were administered a battery of cognitive measures. Volume changes between time points in five bilateral cortical regions of interest were measured, and assessed for relationships to three measures of reading. Better baseline performances on measures of word reading, fluency and rapid naming, independent of age and total cortical gray matter volume change, were associated with volume decrease in the left inferior parietal cortex. Better baseline performance on a rapid naming measure was associated with volume decrease in the left inferior frontal region. These results suggest that children who are better readers, and who perhaps read more than less skilled readers, exhibit different development trajectories in brain reading regions. Understanding relationships between reading performance, reading experience and brain maturation trajectories may help with the development and evaluation of targeted interventions. PMID:24407200

  1. Development of a Novel Method for the Purification and Culture of Rodent Astrocytes

    PubMed Central

    Foo, Lynette C.; Allen, Nicola J.; Bushong, Eric A.; Ventura, P. Britten; Chung, Won-Suk; Zhou, Lu; Cahoy, John D.; Daneman, Richard; Zong, Hui; Ellisman, Mark H.; Barres, Ben A.

    2011-01-01

    Summary The inability to purify and culture astrocytes has long hindered studies of their function. Whereas astrocyte progenitor cells can be cultured from neonatal brain, culture of mature astrocytes from postnatal brain has not been possible. Here we report a new method to prospectively purify astrocytes by immunopanning. These astrocytes undergo apoptosis in culture, but vascular cells and HBEGF promote their survival in serum-free culture. We found that some developing astrocytes normally undergo apoptosis in vivo and that the vast majority of astrocytes contact blood vessels, suggesting that astrocytes are matched to blood vessels by competing for vascular-derived trophic factors such as HBEGF. Compared to traditional astrocyte cultures, the gene profiles of the cultured purified postnatal astrocytes much more closely resemble those of in vivo astrocytes. Although these astrocytes strongly promote synapse formation and function, they do not secrete glutamate in response to stimulation. PMID:21903074

  2. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity.

    PubMed

    Wang, Yanshu; Rattner, Amir; Zhou, Yulian; Williams, John; Smallwood, Philip M; Nathans, Jeremy

    2012-12-07

    Norrin/Frizzled4 (Fz4) signaling activates the canonical Wnt pathway to control retinal vascular development. Using genetically engineered mice, we show that precocious Norrin production leads to premature retinal vascular invasion and delayed Norrin production leads to characteristic defects in intraretinal vascular architecture. In genetic mosaics, wild-type endothelial cells (ECs) instruct neighboring Fz4(-/-) ECs to produce an architecturally normal mosaic vasculature, a cell nonautonomous effect. However, over the ensuing weeks, Fz4(-/-) ECs are selectively eliminated from the mosaic vasculature, implying the existence of a quality control program that targets defective ECs. In the adult retina and cerebellum, gain or loss of Norrin/Fz4 signaling results in a cell-autonomous gain or loss, respectively, of blood retina barrier and blood brain barrier function, indicating an ongoing requirement for Frizzled signaling in barrier maintenance and substantial plasticity in mature CNS vascular structure. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Mature brain-derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues.

    PubMed

    Xiong, Jing; Zhou, L I; Lim, Yoon; Yang, Miao; Zhu, Yu-Hong; Li, Zhi-Wei; Fu, Deng-Li; Zhou, Xin-Fu

    2015-07-01

    There are two forms of brain-derived neurotrophic factor (BDNF), precursor of BDNF (proBDNF) and mature BDNF, which each exert opposing effects through two different transmembrane receptor signaling systems, consisting of p75 neurotrophin receptor (p75NTR) and tyrosine receptor kinase B (TrkB). Previous studies have demonstrated that proBDNF promotes cell death and inhibits the growth and migration of C6 glioma cells through p75NTR in vitro , while mature BDNF has opposite effects on C6 glioma cells. It is hypothesized that mature BDNF is essential in the development of malignancy in gliomas. However, histological data obtained in previous studies were unable distinguish mature BDNF from proBDNF due to the lack of specific antibodies. The present study investigated the expression of mature BDNF using a specific sheep monoclonal anti-mature BDNF antibody in 42 human glioma tissues of different grades and 10 control tissues. The correlation between mature BDNF and TrkB was analyzed. Mature BDNF expression was significantly increased in high-grade gliomas, and was positively correlated with the malignancy of the tumor and TrkB receptor expression. The present data have demonstrated that increased levels of mature BDNF contribute markedly to the development of malignancy of human gliomas through the primary BDNF receptor TrkB.

  4. Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat fetus. A model of neurological cretinism.

    PubMed Central

    Martínez-Galán, J R; Pedraza, P; Santacana, M; Escobar del Ray, F; Morreale de Escobar, G; Ruiz-Marcos, A

    1997-01-01

    The most severe brain damage associated with thyroid dysfunction during development is observed in neurological cretins from areas with marked iodine deficiency. The damage is irreversible by birth and related to maternal hypothyroxinemia before mid gestation. However, direct evidence of this etiopathogenic mechanism is lacking. Rats were fed diets with a very low iodine content (LID), or LID supplemented with KI. Other rats were fed the breeding diet with a normal iodine content plus a goitrogen, methimazole (MMI). The concentrations of -thyroxine (T4) and 3,5,3'triiodo--thyronine (T3) were determined in the brain of 21-d-old fetuses. The proportion of radial glial cell fibers expressing nestin and glial fibrillary acidic protein was determined in the CA1 region of the hippocampus. T4 and T3 were decreased in the brain of the LID and MMI fetuses, as compared to their respective controls. The number of immature glial cell fibers, expressing nestin, was not affected, but the proportion of mature glial cell fibers, expressing glial fibrillary acidic protein, was significantly decreased by both LID and MMI treatment of the dams. These results show impaired maturation of cells involved in neuronal migration in the hippocampus, a region known to be affected in cretinism, at a stage of development equivalent to mid gestation in humans. The impairment is related to fetal cerebral thyroid hormone deficiency during a period of development when maternal thyroxinemia is believed to play an important role. PMID:9169500

  5. Tentative Evidence for Striatal Hyperactivity in Adolescent Cannabis Using Boys: A Cross-Sectional Multicenter fMRI Study

    PubMed Central

    Jager, Gerry; Block, Robert I.; Luijten, Maartje; Ramsey, Nick F.

    2013-01-01

    Adolescents' risk-taking behavior has been linked to a maturational imbalance between reward (“go”) and inhibitory-control (“stop”) related brain circuitry. This may drive adolescent drug-taking, such as cannabis use. In this study we assessed the non-acute effects of adolescent cannabis use on reward-related brain function. We performed a two-site (United States and Netherlands; pooled data) functional magnetic resonance imaging (fMRI) study with a cross-sectional design. Twenty-one abstinent but frequent cannabis-using boys were compared with 24 non-using peers on reward-related brain function, using a monetary incentive delay task with fMRI. Focus was on anticipatory and response stages of reward and brain areas critically involved in reward processing like the striatum. Performance in users was normal. Region-of-interest analysis indicated striatal hyperactivity during anticipatory stages of reward in users. Intriguingly, this effect was most pronounced during non-rewarding events. Striatal hyperactivity in adolescent cannabis users may signify an overly sensitive motivational brain circuitry. Frequent cannabis use during adolescence may induce diminished ability to disengage the motivational circuit when no reward can be obtained. This could strengthen the search for reinforcements like drugs of abuse, even when facing the negative (non-rewarding) consequences. PMID:23909003

  6. The Relationship of Docosahexaenoic Acid (DHA) with Learning and Behavior in Healthy Children: A Review

    PubMed Central

    Kuratko, Connye N.; Barrett, Erin Cernkovich; Nelson, Edward B.; Norman, Salem

    2013-01-01

    Childhood is a period of brain growth and maturation. The long chain omega-3 fatty acid, docosahexaenoic acid (DHA), is a major lipid in the brain recognized as essential for normal brain function. In animals, low brain DHA results in impaired learning and behavior. In infants, DHA is important for optimal visual and cognitive development. The usual intake of DHA among toddlers and children is low and some studies show improvements in cognition and behavior as the result of supplementation with polyunsaturated fatty acids including DHA. The purpose of this review was to identify and evaluate current knowledge regarding the relationship of DHA with measures of learning and behavior in healthy school-age children. A systematic search of the literature identified 15 relevant publications for review. The search found studies which were diverse in purpose and design and without consistent conclusions regarding the treatment effect of DHA intake or biomarker status on specific cognitive tests. However, studies of brain activity reported benefits of DHA supplementation and over half of the studies reported a favorable role for DHA or long chain omega-3 fatty acids in at least one area of cognition or behavior. Studies also suggested an important role for DHA in school performance. PMID:23877090

  7. Tentative evidence for striatal hyperactivity in adolescent cannabis-using boys: a cross-sectional multicenter fMRI study.

    PubMed

    Jager, Gerry; Block, Robert I; Luijten, Maartje; Ramsey, Nick F

    2013-01-01

    Adolescents' risk-taking behavior has been linked to a maturational imbalance between reward ("go") and inhibitory-control ("stop")-related brain circuitry. This may drive adolescent drug-taking, such as cannabis use. In this study, we assessed the non-acute effects of adolescent cannabis use on reward-related brain function. We performed a two-site (United States and Netherlands; pooled data) functional magnetic resonance imaging (fMRI) study with a cross-sectional design. Twenty-one abstinent but frequent cannabis-using boys were compared with 24 non-using peers on reward-related brain function, using a monetary incentive delay task with fMRI. Focus was on anticipatory and response stages of reward and brain areas critically involved in reward processing like the striatum. Performance in users was normal. Region-of-interest analysis indicated striatal hyperactivity during anticipatory stages of reward in users. Intriguingly, this effect was most pronounced during non-rewarding events. Striatal hyperactivity in adolescent cannabis users may signify an overly sensitive motivational brain circuitry. Frequent cannabis use during adolescence may induce diminished ability to disengage the motivational circuit when no reward can be obtained. This could strengthen the search for reinforcements like drugs of abuse, even when facing the negative (non-rewarding) consequences.

  8. Abnormal functional activation and maturation of ventromedial prefrontal cortex and cerebellum during temporal discounting in autism spectrum disorder.

    PubMed

    Murphy, Clodagh M; Christakou, Anastasia; Giampietro, Vincent; Brammer, Michael; Daly, Eileen M; Ecker, Christine; Johnston, Patrick; Spain, Debbie; Robertson, Dene M; Murphy, Declan G; Rubia, Katya

    2017-11-01

    People with autism spectrum disorder (ASD) have poor decision-making and temporal foresight. This may adversely impact on their everyday life, mental health, and productivity. However, the neural substrates underlying poor choice behavior in people with ASD, or its' neurofunctional development from childhood to adulthood, are unknown. Despite evidence of atypical structural brain development in ASD, investigation of functional brain maturation in people with ASD is lacking. This cross-sectional developmental fMRI study investigated the neural substrates underlying performance on a temporal discounting (TD) task in 38 healthy (11-35 years old) male adolescents and adults with ASD and 40 age, sex, and IQ-matched typically developing healthy controls. Most importantly, we assessed group differences in the neurofunctional maturation of TD across childhood and adulthood. Males with ASD had significantly poorer task performance and significantly lower brain activation in typical regions that mediate TD for delayed choices, in predominantly right hemispheric regions of ventrolateral/dorsolateral prefrontal cortices, ventromedial prefrontal cortex, striatolimbic regions, and cerebellum. Importantly, differential activation in ventromedial frontal cortex and cerebellum was associated with abnormal functional brain maturation; controls, in contrast to people with ASD, showed progressively increasing activation with increasing age in these regions; which furthermore was associated with performance measures and clinical ASD measures (stereotyped/restricted interests). Findings provide first cross-sectional evidence that reduced activation of TD mediating brain regions in people with ASD during TD is associated with abnormal functional brain development in these regions between childhood and adulthood, and this is related to poor task performance and clinical measures of ASD. Hum Brain Mapp 38:5343-5355, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Adolescent Emotional Maturation through Divergent Models of Brain Organization

    PubMed Central

    Oron Semper, Jose V.; Murillo, Jose I.; Bernacer, Javier

    2016-01-01

    In this article we introduce the hypothesis that neuropsychological adolescent maturation, and in particular emotional management, may have opposing explanations depending on the interpretation of the assumed brain architecture, that is, whether a componential computational account (CCA) or a dynamic systems perspective (DSP) is used. According to CCA, cognitive functions are associated with the action of restricted brain regions, and this association is temporally stable; by contrast, DSP argues that cognitive functions are better explained by interactions between several brain areas, whose engagement in specific functions is temporal and context-dependent and based on neural reuse. We outline the main neurobiological facts about adolescent maturation, focusing on the neuroanatomical and neurofunctional processes associated with adolescence. We then explain the importance of emotional management in adolescent maturation. We explain the interplay between emotion and cognition under the scope of CCA and DSP, both at neural and behavioral levels. Finally, we justify why, according to CCA, emotional management is understood as regulation, specifically because the cognitive aspects of the brain are in charge of regulating emotion-related modules. However, the key word in DSP is integration, since neural information from different brain areas is integrated from the beginning of the process. Consequently, although the terms should not be conceptually confused, there is no cognition without emotion, and vice versa. Thus, emotional integration is not an independent process that just happens to the subject, but a crucial part of personal growth. Considering the importance of neuropsychological research in the development of educational and legal policies concerning adolescents, we intend to expose that the holistic view of adolescents is dependent on whether one holds the implicit or explicit interpretation of brain functioning. PMID:27602012

  10. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits

    PubMed Central

    Niwa, Minae; Kamiya, Atsushi; Murai, Rina; Kubo, Ken-ichiro; Gruber, Aaron J; Tomita, Kenji; Lu, Lingling; Tomisato, Shuta; Jaaro-Peled, Hanna; Seshadri, Saurav; Hiyama, Hideki; Huang, Beverly; Kohda, Kazuhisa; Noda, Yukihiro; O’Donnell, Patricio; Nakajima, Kazunori; Sawa, Akira; Nabeshima, Toshitaka

    2011-01-01

    SUMMARY Adult brain function and behavior are influenced by neuronal network formation during development. Genetic susceptibility factors for adult psychiatric illnesses, such as Neuregulin-1 and Disrupted-in-Schizophrenia-1 (DISC1), influence adult high brain functions, including cognition and information processing. These factors have roles during neurodevelopment and are likely to cooperate, forming “pathways” or “signalosomes.” Here we report the potential to generate an animal model via in utero gene transfer in order to address an important question of how nonlethal deficits in early development may affect postnatal brain maturation and high brain functions in adulthood, which are impaired in various psychiatric illnesses, such as schizophrenia. We show that transient knockdown of DISC1 in the pre- and peri-natal stages, specifically in a lineage of pyramidal neurons mainly in the prefrontal cortex, leads to selective abnormalities in postnatal mesocortical dopaminergic maturation and behavioral abnormalities associated with disturbed cortical neurocircuitry after puberty. PMID:20188653

  11. Immunoadolescence: Neuroimmune development and adolescent behavior

    PubMed Central

    Brenhouse, Heather C.; Schwarz, Jaclyn M.

    2016-01-01

    The brain is increasingly appreciated to be a constantly rewired organ that yields age-specific behaviors and responses to the environment. Adolescence in particular is a unique period characterized by continued brain maturation, superimposed with transient needs of the organism to traverse a leap from parental dependence to independence. Here we describe how these needs require immune maturation, as well as brain maturation. Our immune system, which protects us from pathogens and regulates inflammation, is in constant communication with our nervous system. Together, neuro-immune signaling regulates our behavioral responses to the environment, making this interaction a likely substrate for adolescent development. We review here the identified as well as understudied components of neuro-immune interactions during adolescence. Synaptic pruning, neurite outgrowth, and neurotransmitter release during adolescence all regulate—and are regulated by—immune signals, which occur via blood-brain barrier dynamics and glial activity. We discuss these processes, as well as how immune signaling during this transitional period of development confers differential effects on behavior and vulnerability to mental illness. PMID:27260127

  12. The Effects of Caffeine on Sleep and Maturational Markers in the Rat

    PubMed Central

    Olini, Nadja; Kurth, Salomé; Huber, Reto

    2013-01-01

    Adolescence is a critical period for brain maturation during which a massive reorganization of cortical connectivity takes place. In humans, slow wave activity (<4.5 Hz) during NREM sleep was proposed to reflect cortical maturation which relies on use-dependent processes. A stimulant like caffeine, whose consumption has recently increased especially in adolescents, is known to affect sleep wake regulation. The goal of this study was to establish a rat model allowing to assess the relationship between cortical maturation and sleep and to further investigate how these parameters are affected by caffeine consumption. To do so, we assessed sleep and markers of maturation by electrophysiological recordings, behavioral and structural readouts in the juvenile rat. Our results show that sleep slow wave activity follows a similar inverted U-shape trajectory as already known in humans. Caffeine treatment exerted short-term stimulating effects and altered the trajectory of slow wave activity. Moreover, caffeine affected behavioral and structural markers of maturation. Thus, caffeine consumption during a critical developmental period shows long lasting effects on sleep and brain maturation. PMID:24023748

  13. Delayed puberty caused by hyperthyroidism in ram lambs is not a result of suppression in body growth.

    PubMed

    Chandrasekhar, Y; D'Occhio, M J; Setchell, B P

    1986-03-01

    Over a period of 8 weeks ram lambs (16 weeks old) were made hyperthyroidal (serum thyroxine approximately equal to 150 ng/ml, compared with control approximately equal to 48 ng/ml) by daily subcutaneous injections of thyroxine or maintained at a constant body weight by restriction of the feed intake. Hyperthyroidal and restricted-intake lambs remained at a constant body weight during the period of treatment whilst control rams gained body weight. Testicular growth was normal in restricted-intake lambs but was suppressed in hyperthyroidal animals. Hyperthyroidism, but not feed restriction, was also associated with decrease in LH pulse frequency (1.3 +/- 0.3/12 h compared with controls 4.8 +/- 0.9/12 h. Hyperthyroidal lambs showed normal LH responses to exogenous LHRH. After cessation of treatment testicular growth continued to be suppressed for up to 16 weeks in previously hyperthyroidic rams; thereafter testes began to increase in size but at 30 weeks after treatment were still smaller than those of control rams. It is concluded that elevated thyroxine concentrations directly influence sexual maturation in ram lambs through actions at hypothalamic and/or higher brain centres which control LH secretion. Transient hyperthyroidism during sexual maturation may cause permanent impairment of sexual development.

  14. Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus

    PubMed Central

    Matas-Rico, Elisa; García-Diaz, Beatriz; Llebrez-Zayas, Pedro; López-Barroso, Diana; Santín, Luis; Pedraza, Carmen; Smith-Fernández, Anibal; Fernández-Llebrez, Pedro; Tellez, Teresa; Redondo; Chun, Jerold; De Fonseca, Fernando Rodríguez; Estivill-Torrús, Guillermo

    2013-01-01

    Neurogenesis persists in certain regions of the adult brain including the subgranular zone of the hippocampal dentate gyrus wherein its regulation is essential, particularly in relation to learning, stress and modulation of mood. Lysophosphatidic acid (LPA) is an extracellular signaling phospholipid with important neural regulatory properties mediated by specific G protein-coupled receptors, LPA1-5. LPA1 is highly expressed in the developing neurogenic ventricular zone wherein it is required for normal embryonic neurogenesis, and, by extension may play a role in adult neurogenesis as well. By means of the analyses of a variant of the original LPA1-null mutant mouse, termed the Malaga variant or “maLPA1-null,” which has recently been reported to have defective neurogenesis within the embryonic cerebral cortex, we report here a role for LPA1 in adult hippocampal neurogenesis. Proliferation, differentiation and survival of newly formed neurons are defective in the absence of LPA1 under normal conditions and following exposure to enriched environment and voluntary exercise. Furthermore, analysis of trophic factors in maLPA1-null mice demonstrated alterations in brain-derived neurotrophic factor and insulin growth factor 1 levels after enrichment and exercise. Morphological analyses of doublecortin positive cells revealed the anomalous prevalence of bipolar cells in the subgranular zone, supporting the operation of LPA1 signaling pathways in normal proliferation, maturation and differentiation of neuronal precursors. PMID:18708146

  15. Visual influences on auditory spatial learning

    PubMed Central

    King, Andrew J.

    2008-01-01

    The visual and auditory systems frequently work together to facilitate the identification and localization of objects and events in the external world. Experience plays a critical role in establishing and maintaining congruent visual–auditory associations, so that the different sensory cues associated with targets that can be both seen and heard are synthesized appropriately. For stimulus location, visual information is normally more accurate and reliable and provides a reference for calibrating the perception of auditory space. During development, vision plays a key role in aligning neural representations of space in the brain, as revealed by the dramatic changes produced in auditory responses when visual inputs are altered, and is used throughout life to resolve short-term spatial conflicts between these modalities. However, accurate, and even supra-normal, auditory localization abilities can be achieved in the absence of vision, and the capacity of the mature brain to relearn to localize sound in the presence of substantially altered auditory spatial cues does not require visuomotor feedback. Thus, while vision is normally used to coordinate information across the senses, the neural circuits responsible for spatial hearing can be recalibrated in a vision-independent fashion. Nevertheless, early multisensory experience appears to be crucial for the emergence of an ability to match signals from different sensory modalities and therefore for the outcome of audiovisual-based rehabilitation of deaf patients in whom hearing has been restored by cochlear implantation. PMID:18986967

  16. The maturational theory of brain development and cerebral excitability in the multifactorially inherited manic-depressive psychosis and schizophrenia.

    PubMed

    Saugstad, L F

    1994-12-01

    An association has been established between the multifactorially inherited rate of physical maturation and the final step in brain development, when some 40% of synapses are eliminated. This may imply that similarly to endocrine disease entities, we have cerebral disease entities at the extremes of the maturational rate continuum. The restriction of prepubertal pruning to excitatory synapses leaving the number of inhibitory ones fairly constant, implies changes in cerebral excitability as a function of rate of maturation (age at puberty). In early maturation there will be an excess in excitatory drive due to prematurely abridged pruning, which compounds a synchronization tendency inherent in excessive synaptic density. Lowering excitatory level with antiepileptics is hypothesized to be a logical treatment in this type of brain dysfunction. In late maturation, a deficit in excitatory drive due to failure to shut down the pruning process associated with a tendency to the breakdown of circuitry and desynchronization, adds to a similar adversity inherent in reduced synaptic density. Raising the excitatory level with convulsants is hypothesized to be the treatment for this type of CNS dysfunction. The maturational theory of Kraepelin's psychoses holds that they are naturally occurring contrasting chemical signaling disorders in the brain at the extremes of the maturational rate continuum: manic depressive psychosis is a disorder of the early maturer and comprises raised cerebral excitability and a raised density of synapses. This is successfully treated with anti-epileptics like sodium valproate and carbamazepin. Schizophrenia is a disorder in late maturation with reduced cerebral excitability and reduced synaptic density. This is accordingly treated with convulsants such as typical and atypical neuroleptics. However, the conventional effective treatments in both disorders act on inhibition only by either lowering or raising inhibitory level. While the neuroleptics drugs are superior anti-psychotics they nevertheless do not affect the deviation in cerebral excitability which would explain why they do not cure. Disturbed circadian rhythms which precede psychotic episodes in manic depressives accord with a primary dysfunction in the CNS, the suprachiasmatic nucleus of the hypothalamus via its direct input the glutamatergic retinohypothalamic tract. The residual deficits in schizophrenia accord with persistently disconnected circuitry and communication which is a consequence of reduced excitatory level and is manifested in insufficient motivation, a reduced drive associated hypofunction, and neuromuscular dysfunction.

  17. On the occurrence of nuclei in mature sieve elements.

    PubMed

    Event, R F; Davis, J D; Tucker, C M; Alfieri, F J

    1970-12-01

    The secondary phloem of 3 species of the Taxodiaceae and 13 species of woody dicotyledons was examined for the occurrence of nuclei in mature sieve elements. Nuclei were found in all mature sieve cells of Metasequoia glyptostroboides, Sequoia sempervirens and Taxodium distichum, and in some mature sieve-tube members in 12 of the 13 species of woody dicotyledons. Except for nuclei of sieve cells undergoing cessation of function, the nuclei in mature sieve cells of M. glyptostroboides, S. sempervirens and T. distichum were normal in appearance. The occurrence and morphology of nuclei in mature sieve-tube members of the woody dicotyledons were quite variable. Only 3 species, Robinia pseudoacacia, Ulmus americana and Vitis riparia, contained some mature sieve elements with apparently normal nuclei.

  18. Brain gene expression changes elicited by peripheral vitellogenin knockdown in the honey bee.

    PubMed

    Wheeler, M M; Ament, S A; Rodriguez-Zas, S L; Robinson, G E

    2013-10-01

    Vitellogenin (Vg) is best known as a yolk protein precursor. Vg also functions to regulate behavioural maturation in adult honey bee workers, but the underlying molecular mechanisms by which it exerts this novel effect are largely unknown. We used abdominal vitellogenin (vg) knockdown with RNA interference (RNAi) and brain transcriptomic profiling to gain insights into how Vg influences honey bee behavioural maturation. We found that vg knockdown caused extensive gene expression changes in the bee brain, with much of this transcriptional response involving changes in central biological functions such as energy metabolism. vg knockdown targeted many of the same genes that show natural, maturation-related differences, but the direction of change for the genes in these two contrasts was not correlated. By contrast, vg knockdown targeted many of the same genes that are regulated by juvenile hormone (JH) and there was a significant correlation for the direction of change for the genes in these two contrasts. These results indicate that the tight coregulatory relationship that exists between JH and Vg in the regulation of honey bee behavioural maturation is manifest at the genomic level and suggest that these two physiological factors act through common pathways to regulate brain gene expression and behaviour. © 2013 Royal Entomological Society.

  19. Distinct Roles for Somatically and Dendritically Synthesized Brain-Derived Neurotrophic Factor in Morphogenesis of Dendritic Spines

    PubMed Central

    Orefice, Lauren L.; Waterhouse, Emily G.; Partridge, John G.; Lalchandani, Rupa R.; Vicini, Stefano

    2013-01-01

    Dendritic spines undergo the processes of formation, maturation, and pruning during development. Molecular mechanisms controlling spine maturation and pruning remain largely unknown. The gene for brain-derived neurotrophic factor (BDNF) produces two pools of mRNA, with either a short or long 3′ untranslated region (3′ UTR). Our previous results show that short 3′ UTR Bdnf mRNA is restricted to cell bodies, whereas long 3′ UTR Bdnf mRNA is also trafficked to dendrites for local translation. Mutant mice lacking long 3′ UTR Bdnf mRNA display normal spines at 3 weeks of age, but thinner and denser spines in adults compared to wild-type littermates. These observations suggest that BDNF translated from long 3′ UTR Bdnf mRNA, likely in dendrites, is required for spine maturation and pruning. In this study, using rat hippocampal neuronal cultures, we found that knocking down long 3′ UTR Bdnf mRNA blocked spine head enlargement and spine elimination, whereas overexpressing long 3′ UTR Bdnf mRNA had the opposite effect. The effect of long 3′ UTR Bdnf mRNA on spine head enlargement and spine elimination was diminished by a human single-nucleotide polymorphism (SNP, rs712442) in its 3′ UTR that inhibited dendritic localization of Bdnf mRNA. Furthermore, we found that overexpression of either Bdnf mRNA increased spine density at earlier time points. Spine morphological alterations were associated with corresponding changes in density, size, and function of synapses. These results indicate that somatically synthesized BDNF promotes spine formation, whereas dendritically synthesized BDNF is a key regulator of spine head growth and spine pruning. PMID:23843530

  20. Circulating anti-Müllerian hormone (AMH) associates with the maturity of boys' drawings: Does AMH slow cognitive development in males?

    PubMed

    Morgan, Kirstie; Ruffman, Ted; Bilkey, David K; McLennan, Ian S

    2017-09-01

    High levels of circulating anti-Müllerian hormone are unique to developing males, but the function of anti-Müllerian hormone in boys is unknown. In mice, anti-Müllerian hormone contributes to the male biases in the brain, but its receptors are present throughout non-sexually dimorphic portions of the brain. In humans, the speed of maturation is the most overt difference between girls and boys. We postulate that this is because anti-Müllerian hormone slows the maturation of the male human brain. One hundred and fourty three 5-year or 6-year-old boys and 38 age-matched girls drew a person and donated a blood sample. The children's drawings were blind-scored to generate a maturity index. The level of anti-Müllerian hormone and the other Sertoli cell hormone, inhibin B, were measured by ELISA. The relationship between the children's age, hormones and maturity index were examined by linear regression analysis. The girls drew more complex and realistic person than the boys (32%, p = 0.001), with their drawings also being larger (39%, p = 0.037) and more coloured-in (235%, p = 0.0005). The maturity index in boys correlated with age (+r = 0.43, p < 0.0005) and anti-Müllerian hormone level (-r = -0.29, p < 0.0005). The association between maturity index and anti-Müllerian hormone level persisted when corrected for age and for inhibin B (r = -0.24, p = 0.0005). The calculated effect of the median level of anti-Müllerian hormone (1 nM) was equal to 0.81 months of development. The size and colouring of the drawings did not correlate with the boys' age, anti-Müllerian hormone or inhibin B. This exploratory study provides the first indicative evidence that circulating anti-Müllerian hormone may influence the development of the human brain.

  1. Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain.

    PubMed

    Yamaguchi, Masahiro; Seki, Tatsunori; Imayoshi, Itaru; Tamamaki, Nobuaki; Hayashi, Yoshitaka; Tatebayashi, Yoshitaka; Hitoshi, Seiji

    2016-05-01

    Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it.

  2. ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain

    PubMed Central

    Vesely, Cornelia; Tauber, Stefanie; Sedlazeck, Fritz J.; Tajaddod, Mansoureh; von Haeseler, Arndt; Jantsch, Michael F.

    2014-01-01

    Adenosine deaminases that act on RNA (ADARs) deaminate adenosines to inosines in double-stranded RNAs including miRNA precursors. A to I editing is widespread and required for normal life. By comparing deep sequencing data of brain miRNAs from wild-type and ADAR2 deficient mouse strains, we detect editing sites and altered miRNA processing at high sensitivity. We detect 48 novel editing events in miRNAs. Some editing events reach frequencies of up to 80%. About half of all editing events depend on ADAR2 while some miRNAs are preferentially edited by ADAR1. Sixty-four percent of all editing events are located within the seed region of mature miRNAs. For the highly edited miR-3099, we experimentally prove retargeting of the edited miRNA to novel 3′ UTRs. We show further that an abundant editing event in miR-497 promotes processing by Drosha of the corresponding pri-miRNA. We also detect reproducible changes in the abundance of specific miRNAs in ADAR2-deficient mice that occur independent of adjacent A to I editing events. This indicates that ADAR2 binding but not editing of miRNA precursors may influence their processing. Correlating with changes in miRNA abundance we find misregulation of putative targets of these miRNAs in the presence or absence of ADAR2. PMID:25260591

  3. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation.

    PubMed

    Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru

    2015-07-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.

  4. An extra-uterine system to physiologically support the extreme premature lamb

    PubMed Central

    Partridge, Emily A.; Davey, Marcus G.; Hornick, Matthew A.; McGovern, Patrick E.; Mejaddam, Ali Y.; Vrecenak, Jesse D.; Mesas-Burgos, Carmen; Olive, Aliza; Caskey, Robert C.; Weiland, Theodore R.; Han, Jiancheng; Schupper, Alexander J.; Connelly, James T.; Dysart, Kevin C.; Rychik, Jack; Hedrick, Holly L.; Peranteau, William H.; Flake, Alan W.

    2017-01-01

    In the developed world, extreme prematurity is the leading cause of neonatal mortality and morbidity due to a combination of organ immaturity and iatrogenic injury. Until now, efforts to extend gestation using extracorporeal systems have achieved limited success. Here we report the development of a system that incorporates a pumpless oxygenator circuit connected to the fetus of a lamb via an umbilical cord interface that is maintained within a closed ‘amniotic fluid' circuit that closely reproduces the environment of the womb. We show that fetal lambs that are developmentally equivalent to the extreme premature human infant can be physiologically supported in this extra-uterine device for up to 4 weeks. Lambs on support maintain stable haemodynamics, have normal blood gas and oxygenation parameters and maintain patency of the fetal circulation. With appropriate nutritional support, lambs on the system demonstrate normal somatic growth, lung maturation and brain growth and myelination. PMID:28440792

  5. Cannabinoid mitigation of neuronal morphological change important to development and learning: insight from a zebra finch model of psychopharmacology.

    PubMed

    Soderstrom, Ken; Gilbert, Marcoita T

    2013-03-19

    Normal CNS development proceeds through late-postnatal stages of adolescent development. The activity-dependence of this development underscores the significance of CNS-active drug exposure prior to completion of brain maturation. Exogenous modulation of signaling important in regulating normal development is of particular concern. This mini-review presents a summary of the accumulated behavioral, physiological and biochemical evidence supporting such a key regulatory role for endocannabinoid signaling during late-postnatal CNS development. Our focus is on the data obtained using a unique zebra finch model of developmental psychopharmacology. This animal has allowed investigation of neuronal morphological effects essential to establishment and maintenance of neural circuitry, including processes related to synaptogenesis and dendritic spine dynamics. Altered neurophysiology that follows exogenous cannabinoid exposure during adolescent development has the potential to persistently alter cognition, learning and memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. An extra-uterine system to physiologically support the extreme premature lamb

    NASA Astrophysics Data System (ADS)

    Partridge, Emily A.; Davey, Marcus G.; Hornick, Matthew A.; McGovern, Patrick E.; Mejaddam, Ali Y.; Vrecenak, Jesse D.; Mesas-Burgos, Carmen; Olive, Aliza; Caskey, Robert C.; Weiland, Theodore R.; Han, Jiancheng; Schupper, Alexander J.; Connelly, James T.; Dysart, Kevin C.; Rychik, Jack; Hedrick, Holly L.; Peranteau, William H.; Flake, Alan W.

    2017-04-01

    In the developed world, extreme prematurity is the leading cause of neonatal mortality and morbidity due to a combination of organ immaturity and iatrogenic injury. Until now, efforts to extend gestation using extracorporeal systems have achieved limited success. Here we report the development of a system that incorporates a pumpless oxygenator circuit connected to the fetus of a lamb via an umbilical cord interface that is maintained within a closed `amniotic fluid' circuit that closely reproduces the environment of the womb. We show that fetal lambs that are developmentally equivalent to the extreme premature human infant can be physiologically supported in this extra-uterine device for up to 4 weeks. Lambs on support maintain stable haemodynamics, have normal blood gas and oxygenation parameters and maintain patency of the fetal circulation. With appropriate nutritional support, lambs on the system demonstrate normal somatic growth, lung maturation and brain growth and myelination.

  7. Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus

    PubMed Central

    Park, Raehee; Moon, Uk Yeol; Park, Jun Young; Hughes, Lucinda J.; Johnson, Randy L.; Cho, Seo-Hee; Kim, Seonhee

    2016-01-01

    Timely generation and normal maturation of ependymal cells along the aqueduct are critical for preventing physical blockage between the third and fourth ventricles and the development of fetal non-communicating hydrocephalus. Our study identifies Yap, the downstream effector of the evolutionarily conserved Hippo pathway, as a central regulator for generating developmentally controlled ependymal cells along the ventricular lining of the aqueduct. Yap function is necessary for proper proliferation of progenitors and apical attachment of ependymal precursor cells. Importantly, an injury signal initiated by lysophosphatidic acid (LPA), an upstream regulator of Yap that can cause fetal haemorrhagic hydrocephalus, deregulates Yap in the developing aqueduct. LPA exposure leads to the loss of N-cadherin concentrations at the apical endfeet, which can be partially restored by forced Yap expression and more efficiently by phosphomimetic Yap. These results reveal a novel function of Yap in retaining tissue junctions during normal development and after fetal brain injury. PMID:26754915

  8. Sleep and Development in Genetically Tractable Model Organisms.

    PubMed

    Kayser, Matthew S; Biron, David

    2016-05-01

    Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. Copyright © 2016 by the Genetics Society of America.

  9. Sex differences in the gut microbiome-brain axis across the lifespan.

    PubMed

    Jašarević, Eldin; Morrison, Kathleen E; Bale, Tracy L

    2016-02-19

    In recent years, the bidirectional communication between the gut microbiome and the brain has emerged as a factor that influences immunity, metabolism, neurodevelopment and behaviour. Cross-talk between the gut and brain begins early in life immediately following the transition from a sterile in utero environment to one that is exposed to a changing and complex microbial milieu over a lifetime. Once established, communication between the gut and brain integrates information from the autonomic and enteric nervous systems, neuroendocrine and neuroimmune signals, and peripheral immune and metabolic signals. Importantly, the composition and functional potential of the gut microbiome undergoes many transitions that parallel dynamic periods of brain development and maturation for which distinct sex differences have been identified. Here, we discuss the sexually dimorphic development, maturation and maintenance of the gut microbiome-brain axis, and the sex differences therein important in disease risk and resilience throughout the lifespan. © 2016 The Author(s).

  10. Moment-to-Moment BOLD Signal Variability Reflects Regional Changes in Neural Flexibility across the Lifespan.

    PubMed

    Nomi, Jason S; Bolt, Taylor S; Ezie, C E Chiemeka; Uddin, Lucina Q; Heller, Aaron S

    2017-05-31

    Variability of neuronal responses is thought to underlie flexible and optimal brain function. Because previous work investigating BOLD signal variability has been conducted within task-based fMRI contexts on adults and older individuals, very little is currently known regarding regional changes in spontaneous BOLD signal variability in the human brain across the lifespan. The current study used resting-state fMRI data from a large sample of male and female human participants covering a wide age range (6-85 years) across two different fMRI acquisition parameters (TR = 0.645 and 1.4 s). Variability in brain regions including a key node of the salience network (anterior insula) increased linearly across the lifespan across datasets. In contrast, variability in most other large-scale networks decreased linearly over the lifespan. These results demonstrate unique lifespan trajectories of BOLD variability related to specific regions of the brain and add to a growing literature demonstrating the importance of identifying normative trajectories of functional brain maturation. SIGNIFICANCE STATEMENT Although brain signal variability has traditionally been considered a source of unwanted noise, recent work demonstrates that variability in brain signals during task performance is related to brain maturation in old age as well as individual differences in behavioral performance. The current results demonstrate that intrinsic fluctuations in resting-state variability exhibit unique maturation trajectories in specific brain regions and systems, particularly those supporting salience detection. These results have implications for investigations of brain development and aging, as well as interpretations of brain function underlying behavioral changes across the lifespan. Copyright © 2017 the authors 0270-6474/17/375539-10$15.00/0.

  11. 7 CFR 51.3746 - Mature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Honey Dew and Honey Ball Type Melons Definitions § 51.3746 Mature. Mature means that the melon has reached the stage of maturity which will insure the proper completion of the normal...

  12. 7 CFR 51.3746 - Mature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Honey Dew and Honey Ball Type Melons Definitions § 51.3746 Mature. Mature means that the melon has reached the stage of maturity which will insure the proper completion of the normal...

  13. Manic depressive psychosis and schizophrenia are neurological disorders at the extremes of CNS maturation and nutritional disorders associated with a deficit in marine fat.

    PubMed

    Saugstad, L F

    2001-12-01

    The maturational theory of brain development comprises manic depressive psychosis and schizophrenia. It holds that the disorders are part of human diversity in growth and maturation, which explains their ubiquity, shared susceptibility genes and multifactorial inheritance. Rate of maturation and age at puberty are the genotype; the disorders are localized at the extremes with normality in between. This is based on the association between onset of puberty and the final regressive event, with pruning of 40% of excitatory synapses leaving the inhibitory ones fairly unchanged. This makes excitability, a fundamental property of nervous tissue, a distinguishing factor: the earlier puberty, the greater excitability--the later puberty, the greater deficit. Biological treatment supports deviation from the norm: neuroleptics are convulsant; antidepressives are anti-epiletogenic. There is an association between onset of puberty and body-build: early maturers are pyknic broad-built, late ones linearly leptosomic. This discrepancy is similar to that in the two disorders, supporting the theory that body-build is the phenotype. Standard of living is the environmental factor, which affects pubertal age and shifts the panorama of mental illness accordingly. Unnatural death has increased with antipsychotics. Other treatment is needed. PUFA deficit has been observed in RBC in both disorders and striking improvements with addition of minor amounts of PUFA. This supports that dietary deficit might cause psychotic development and that prevention is possible. Other neurological disorders also profit from PUFA, underlining a general deficit in the diet.

  14. QEEG characteristics and spectrum weighted frequency for children diagnosed as autistic spectrum disorder

    PubMed Central

    2010-01-01

    Background Autistic spectrum disorders are a group of neurological and developmental disorders associated with social, communication, sensory, behavioral and cognitive impairments, as well as restricted, repetitive patterns of behavior, activities, or interests. The aim of this study was a) to analyze QEEG findings of autistic patients and to compare the results with data base; and b) to introduce the calculation of spectrum weighted frequency (brain rate) as an indicator of general mental arousal in these patients. Results Results for Q-EEG shows generally increased delta-theta activity in frontal region of the brain. Changes in QEEG pattern appeared to be in a non-linear correlation with maturational processes. Brain rate measured in CZ shows slow brain activity (5. 86) which is significantly lower than normal and corresponds to low general mental arousal. Recent research has shown that autistic disorders have as their basis disturbances of neural connectivity. Neurofeedback seems capable of remediating such disturbances when these data are considered as part of treatment planning. Conclusions Prognosis of this pervasive disorder depends on the intellectual abilities: the better intellectual functioning, the possibilities for life adaptation are higher QEEG shows generally increased delta-theta activity in frontal region of the brain which is related to poor cognitive abilities. Brain rate measured in CZ shows slow brain activity related to under arousal. Pharmacotherapy combined with behavior therapy, social support and especially neurofeedback technique promise slight improvements PMID:20920283

  15. CpG methylation patterns and decitabine treatment response in acute myeloid leukemia cells and normal hematopoietic precursors

    PubMed Central

    Negrotto, Soledad; Ng, Kwok Peng; Jankowska, Ania M.; Bodo, Juraj; Gopalan, Banu; Guinta, Kathryn; Mulloy, James C.; Hsi, Eric; Maciejewski, Jaroslaw; Saunthararajah, Yogen

    2011-01-01

    The DNA hypomethylating drug decitabine maintains normal hematopoietic stem cell (HSC) self-renewal but induces terminal differentiation in acute myeloid leukemia (AML) cells. The basis for these contrasting cell-fates, and for selective CpG hypomethylation by decitabine, is poorly understood. Promoter CpGs, with methylation measured by microarray, were classified by the direction of methylation change with normal myeloid maturation. In AML cells, the methylation pattern at maturation-responsive CpG suggested at least partial maturation. Consistent with partial maturation, in gene expression analyses, AML cells expressed high levels of the key lineage-specifying factor CEBPA, but relatively low levels of the key late-differentiation driver CEBPE. In methylation analysis by mass-spectrometry, CEBPE promoter CpG that are usually hypomethylated during granulocyte maturation were significantly hypermethylated in AML cells. Decitabine treatment induced cellular differentiation of AML cells, and the largest methylation decreases were at CpG that are hypomethylated with myeloid maturation, including CEBPE promoter CpG. In contrast, decitabine-treated normal HSC retained immature morphology, and methylation significantly decreased at CpG that are less methylated in immature cells. High expression of lineage-specifying factor and aberrant epigenetic repression of some key late-differentiation genes distinguishes AML cells from normal HSC and could explain the contrasting differentiation and methylation responses to decitabine. PMID:21836612

  16. Adolescent brain development and the mature minor doctrine.

    PubMed

    Silber, Tomas J

    2011-08-01

    The medical rights of minors have been questioned, especially due to information on adolescent brain development and studies on adolescent decision-making. This chapter briefly introduces the mature minor doctrine (MMD) and its history, justification, and practice and then presents some of the objections to the MMD. The article then highlights new knowledge about adolescent brain development (ABD) and what this may contribute to this debate and describes "hot cognition" and "cold cognition". It concludes by alerting the reader to the danger of making inappropriate use of the discoveries of brain science and proposing a prudent approach to adolescent consent and confidentiality, one that incorporates the new knowledge on ABD without "turning back the clock" on the medical rights of minors.

  17. White matter maturation profiles through early childhood predict general cognitive ability.

    PubMed

    Deoni, Sean C L; O'Muircheartaigh, Jonathan; Elison, Jed T; Walker, Lindsay; Doernberg, Ellen; Waskiewicz, Nicole; Dirks, Holly; Piryatinsky, Irene; Dean, Doug C; Jumbe, N L

    2016-03-01

    Infancy and early childhood are periods of rapid brain development, during which brain structure and function mature alongside evolving cognitive ability. An important neurodevelopmental process during this postnatal period is the maturation of the myelinated white matter, which facilitates rapid communication across neural systems and networks. Though prior brain imaging studies in children (4 years of age and above), adolescents, and adults have consistently linked white matter development with cognitive maturation and intelligence, few studies have examined how these processes are related throughout early development (birth to 4 years of age). Here, we show that the profile of white matter myelination across the first 5 years of life is strongly and specifically related to cognitive ability. Using a longitudinal design, coupled with advanced magnetic resonance imaging, we demonstrate that children with above-average ability show differential trajectories of myelin development compared to average and below average ability children, even when controlling for socioeconomic status, gestation, and birth weight. Specifically, higher ability children exhibit slower but more prolonged early development, resulting in overall increased myelin measures by ~3 years of age. These results provide new insight into the early neuroanatomical correlates of cognitive ability, and suggest an early period of prolonged maturation with associated protracted white matter plasticity may result in strengthened neural networks that can better support later development. Further, these results reinforce the necessity of a longitudinal perspective in investigating typical or suspected atypical cognitive maturation.

  18. Murine Glut-1 transporter haploinsufficiency: postnatal deceleration of brain weight and reactive astrocytosis.

    PubMed

    Ullner, Paivi M; Di Nardo, Alessia; Goldman, James E; Schobel, Scott; Yang, Hong; Engelstad, Kristin; Wang, Dong; Sahin, Mustafa; De Vivo, Darryl C

    2009-10-01

    Glucose transporter type 1 (Glut-1) facilitates glucose flux across the blood-brain-barrier. In humans, Glut-1 deficiency causes acquired microcephaly, seizures and ataxia, which are recapitulated in our Glut-1 haploinsufficient mouse model. Postnatal brain weight deceleration and development of reactive astrogliosis were significant by P21 in Glut-1(+/-) mice. The brain weight differences remained constant after P21 whereas the reactive astrocytosis continued to increase and peaked at P90. Brain immunoblots showed increased phospho-mTOR and decreased phospho-GSK3-beta by P14. After fasting, the mature Glut-1(+/-) females showed a trend towards elevated phospho-GSK3-beta, a possible neuroprotective response. Lithium chloride treatment of human skin fibroblasts from control and Glut-1 DS patients produced a 45% increase in glucose uptake. Brain imaging of mature Glut-1(+/-) mice revealed a significantly decreased hippocampal volume. These subtle immunochemical changes reflect chronic nutrient deficiency during brain development and represent the experimental correlates to the human neurological phenotype associated with Glut-1 DS.

  19. Skeletal maturation in obese patients.

    PubMed

    Giuca, Maria Rita; Pasini, Marco; Tecco, Simona; Marchetti, Enrico; Giannotti, Laura; Marzo, Giuseppe

    2012-12-01

    The objective of this study was to compare skeletal maturation in obese patients and in subjects of normal weight to evaluate the best timing for orthopedic and orthodontic treatment. The null hypothesis was that obese and normal-weight patients show similar degrees of skeletal maturation. The sample for this retrospective study consisted of 50 white patients (28 boys, 22 girls) whose x-rays (hand-wrist and lateral cephalometric radiographs) were already available. The test group included 25 obese patients (11 girls, 14 boys; average age, 9.8 ± 2.11 years), and the control group included 25 subjects of normal weight (11 girls, 14 boys; average age, 9.9 ± 2.5 years). Skeletal maturation was determined by using the carpal analysis method and the cervical vertebral maturation method. According to the carpal analysis, there was a significant difference between skeletal and chronologic ages between the test group (11.8 ± 11.4 months) and the control group (-2.9 ± 3.1 months). Furthermore, the obese subjects exhibited a significantly higher mean cervical vertebral maturation score (2.8 ± 0.7) than did the control subjects (2 ± 0.6) (P <0.05). Compared with the normal-weight subjects, the obese subjects showed a higher mean discrepancy between skeletal and chronologic ages according to the carpal analysis and had a significantly higher cervical vertebral maturation score. Thus, to account for the growth in obese patients with skeletal discrepancies, it might be necessary to perform examinations and dentofacial and orthopedic treatments earlier than in normal-weight subjects. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  20. Microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Laissue, Jean A.; Lyubimova, Nadia; Wagner, Hans-Peter; Archer, David W.; Slatkin, Daniel N.; Di Michiel, Marco; Nemoz, Christian; Renier, Michel; Brauer, Elke; Spanne, Per O.; Gebbers, Jan-Olef; Dixon, Keith; Blattmann, Hans

    1999-10-01

    The central nervous system of vertebrates, even when immature, displays extraordinary resistance to damage by microscopically narrow, multiple, parallel, planar beams of x rays. Imminently lethal gliosarcomas in the brains of mature rats can be inhibited and ablated by such microbeams with little or no harm to mature brain tissues and neurological function. Potentially palliative, conventional wide-beam radiotherapy of malignant brain tumors in human infants under three years of age is so fraught with the danger of disrupting the functional maturation of immature brain tissues around the targeted tumor that it is implemented infrequently. Other kinds of therapy for such tumors are often inadequate. We suggest that microbeam radiation therapy (MRT) might help to alleviate the situation. Wiggler-generated synchrotron x-rays were first used for experimental microplanar beam (microbeam) radiation therapy (MRT) at Brookhaven National Laboratory's National Synchrotron Light Source in the early 1990s. We now describe the progress achieved in MRT research to date using immature and adult rats irradiated at the European Synchrotron Radiation Facility in Grenoble, France, and investigated thereafter at the Institute of Pathology of the University of Bern.

  1. Normal Psychosexual Development

    ERIC Educational Resources Information Center

    Rutter, Michael

    1971-01-01

    Normal sexual development is reviewed with respect to physical maturation, sexual interests, sex drive", psychosexual competence and maturity, gender role, object choice, children's concepts of sexual differences, sex role preference and standards, and psychosexual stages. Biologic, psychoanalytic and psychosocial theories are briefly considered.…

  2. Multivariate Meta-Analysis of Brain-Mass Correlations in Eutherian Mammals

    PubMed Central

    Steinhausen, Charlene; Zehl, Lyuba; Haas-Rioth, Michaela; Morcinek, Kerstin; Walkowiak, Wolfgang; Huggenberger, Stefan

    2016-01-01

    The general assumption that brain size differences are an adequate proxy for subtler differences in brain organization turned neurobiologists toward the question why some groups of mammals such as primates, elephants, and whales have such remarkably large brains. In this meta-analysis, an extensive sample of eutherian mammals (115 species distributed in 14 orders) provided data about several different biological traits and measures of brain size such as absolute brain mass (AB), relative brain mass (RB; quotient from AB and body mass), and encephalization quotient (EQ). These data were analyzed by established multivariate statistics without taking specific phylogenetic information into account. Species with high AB tend to (1) feed on protein-rich nutrition, (2) have a long lifespan, (3) delayed sexual maturity, and (4) long and rare pregnancies with small litter sizes. Animals with high RB usually have (1) a short life span, (2) reach sexual maturity early, and (3) have short and frequent gestations. Moreover, males of species with high RB also have few potential sexual partners. In contrast, animals with high EQs have (1) a high number of potential sexual partners, (2) delayed sexual maturity, and (3) rare gestations with small litter sizes. Based on these correlations, we conclude that Eutheria with either high AB or high EQ occupy positions at the top of the network of food chains (high trophic levels). Eutheria of low trophic levels can develop a high RB only if they have small body masses. PMID:27746724

  3. Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease.

    PubMed

    Hou, Xu; Fiesel, Fabienne C; Truban, Dominika; Castanedes Casey, Monica; Lin, Wen-Lang; Soto, Alexandra I; Tacik, Pawel; Rousseau, Linda G; Diehl, Nancy N; Heckman, Michael G; Lorenzo-Betancor, Oswaldo; Ferrer, Isidre; Arbelo, José M; Steele, John C; Farrer, Matthew J; Cornejo-Olivas, Mario; Torres, Luis; Mata, Ignacio F; Graff-Radford, Neill R; Wszolek, Zbigniew K; Ross, Owen A; Murray, Melissa E; Dickson, Dennis W; Springer, Wolfdieter

    2018-06-27

    Although exact causes of Parkinson disease (PD) remain enigmatic, mitochondrial dysfunction is increasingly appreciated as a key determinant of dopaminergic neuron susceptibility in both familial and sporadic PD. Two genes associated with recessive, early-onset PD encode the ubiquitin (Ub) kinase PINK1 and the E3 Ub ligase PRKN/PARK2/Parkin, which together orchestrate a protective mitochondrial quality control (mitoQC) pathway. Upon stress, both enzymes cooperatively identify and decorate damaged mitochondria with phosphorylated poly-Ub (p-S65-Ub) chains. This specific label is subsequently recognized by autophagy receptors that further facilitate mitochondrial degradation in lysosomes (mitophagy). Here, we analyzed human post-mortem brain specimens and identified distinct pools of p-S65-Ub-positive structures that partially colocalized with markers of mitochondria, autophagy, lysosomes and/or granulovacuolar degeneration bodies. We further quantified levels and distribution of the 'mitophagy tag' in 2 large cohorts of brain samples from normal aging and Lewy body disease (LBD) cases using unbiased digital pathology. Somatic p-S65-Ub structures independently increased with age and disease in distinct brain regions and enhanced levels in LBD brain were age- and Braak tangle stage-dependent. Additionally, we observed significant correlations of p-S65-Ub with LBs and neurofibrillary tangle levels in disease. The degree of co-existing p-S65-Ub signals and pathological PD hallmarks increased in the pre-mature stage, but decreased in the late stage of LB or tangle aggregation. Altogether, our study provides further evidence for a potential pathogenic overlap among different forms of PD and suggests that p-S65-Ub can serve as a biomarker for mitochondrial damage in aging and disease.

  4. Loss of EphA4 impairs short-term spatial recognition memory performance and locomotor habituation.

    PubMed

    Willi, R; Winter, C; Wieske, F; Kempf, A; Yee, B K; Schwab, M E; Singer, P

    2012-11-01

    EphA4 receptor (EphA4) tyrosine kinase is an important regulator of central nervous system development and synaptic plasticity in the mature brain, but its relevance to the control of normal behavior remains largely unexplored. This study is the first attempt to obtain a behavioral profile of constitutive homozygous and heterozygous EphA4 knockout mice. A deficit in locomotor habituation in the open field, impairment in spatial recognition in the Y-maze and reduced probability of spatial spontaneous alternation in the T-maze were identified in homozygous EphA4(-/-) mice, while heterozygo us EphA4(+/-) mice appeared normal on these tests in comparison with wild-type (WT) controls. The multiple phenotypes observed in EphA4(-/-) mice might stem from an underlying deficit in habituation learning, reflecting an elementary form of nonassociative learning that is in contrast to Pavlovian associative learning, which appeared unaffected by EphA4 disruption. A deficit in motor coordination on the accelerating rotarod was also demonstrated only in EphA4(-/-) mice--a finding in keeping with the presence of abnormal gait in EphA4(-/-) mice--although they were able to improve performance over training. There was no evidence for substantial changes in major neurochemical markers in various brain regions rich in EphA4 as shown by post-mortem analysis. This excludes the possibility of major neurochemical compensation in the brain of EphA4(-/-) mice. In summary, we have demonstrated for the first time the behavioral significance of EphA4 disruption, supporting further investigation of EphA4 as a possible target for behavioral interventions where habituation deficits are prominent. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  5. Soybean supplementation helps reverse age- and scopolamine-induced memory deficits in mice.

    PubMed

    Bansal, Nitin; Parle, Milind

    2010-12-01

    Phytoestrogens are nonsteroidal plant compounds that are able to exert estrogenic effects. Soybean is a rich source of phytoestrogens, especially isoflavones. Soy isoflavones are utilized for estrogen replacement therapy. Estrogen is reported to influence several areas of brain that are involved in cognition and behavior. Therefore, the present study was undertaken to examine whether dietary supplementation with soybean improves the cognitive function of mice. Soybean was administered in three different concentrations (2%, 5% and 10% [wt/wt]) in the normal diet to young and mature mice for 60 successive days. The passive avoidance paradigm and the elevated plus maze served as the exteroceptive behavioral models, whereas scopolamine (1.4 mg/kg, i.p.) served as the interoceptive behavioral model. The brain acetylcholinesterase activity (AChE) activity, brain thiobarbituric acid-reactive substances (TBARS), reduced glutathione (GSH), and total blood cholesterol levels were also measured in the present study. The administration of soybean for 60 consecutive days protected (P < .05) the animals from developing memory impairment. Soybean administration also resulted in diminished brain AChE activity, decrease in brain TBARS, and increase in GSH levels, thereby indicating facilitated cholinergic transmission, reduced free radical generation, and enhanced scavenging of free radicals. Thus, soybean appears to be a useful remedy for improving memory and for the management of cognitive deficits owing to its pro-estrogenic, antioxidant, procholinergic, and/or neuroprotective properties.

  6. [Disorders of endocrine function after brain tumor therapy in childhood].

    PubMed

    Marx, M; Langer, T; Beck, J D; Dörr, H G

    1999-07-01

    Advances in the therapy of malignant brain tumors in children have led to a significant improvement in survival rates over the last few decades. As a result, the recognition and treatment of late effects have become more important. In addition to secondary tumors and deficiencies in cognitive and intellectual skills, the resulting endocrine disturbances play an important role. Own data and literature review. Deviations from the normal growth hormone secretion are usually recognized first and are most common, and have already been observed after conventional whole brain irradiation with 18 Gy. With some delay, other hypothalamo-pituitary deficiencies may occur, including panhypopituitarism. Puberty may come too early or too late or may not appear at all. Girls in particular, frequently experience an early and rapid pubertal development after brain tumor therapy, which may lead to further reduction in height due to an accelerated bone maturation. Functional disturbances of the thyroid and adrenal glands due to hypothalamic or pituitary deficiency are less common, and usually seen only after a radiation dose of over 40 Gy. Survivors of childhood brain tumors must be considered as long-term survivors, in whom the first therapy-induced long-term side effects appear almost immediately after the end of therapy. Maximum quality of life for the individual patient can only be achieved by long-term care and close cooperation of specialists in the different medical disciplines involved.

  7. Morphometry and Connectivity of the Fronto-Parietal Verbal Working Memory Network in Development

    ERIC Educational Resources Information Center

    Ostby, Ylva; Tamnes, Christian K.; Fjell, Anders M.; Walhovd, Kristine B.

    2011-01-01

    Two distinctly different maturational processes--cortical thinning and white matter maturation--take place in the brain as we mature from late childhood to adulthood. To what extent does each contribute to the development of complex cognitive functions like working memory? The independent and joint contributions of cortical thickness of regions of…

  8. Antenatal Steroids and the IUGR Fetus: Are Exposure and Physiological Effects on the Lung and Cardiovascular System the Same as in Normally Grown Fetuses?

    PubMed Central

    Morrison, Janna L.; Botting, Kimberley J.; Soo, Poh Seng; McGillick, Erin V.; Hiscock, Jennifer; Zhang, Song; McMillen, I. Caroline; Orgeig, Sandra

    2012-01-01

    Glucocorticoids are administered to pregnant women at risk of preterm labour to promote fetal lung surfactant maturation. Intrauterine growth restriction (IUGR) is associated with an increased risk of preterm labour. Hence, IUGR babies may be exposed to antenatal glucocorticoids. The ability of the placenta or blood brain barrier to remove glucocorticoids from the fetal compartment or the brain is compromised in the IUGR fetus, which may have implications for lung, brain, and heart development. There is conflicting evidence on the effect of exogenous glucocorticoids on surfactant protein expression in different animal models of IUGR. Furthermore, the IUGR fetus undergoes significant cardiovascular adaptations, including altered blood pressure regulation, which is in conflict with glucocorticoid-induced alterations in blood pressure and flow. Hence, antenatal glucocorticoid therapy in the IUGR fetus may compromise regulation of cardiovascular development. The role of cortisol in cardiomyocyte development is not clear with conflicting evidence in different species and models of IUGR. Further studies are required to study the effects of antenatal glucocorticoids on lung, brain, and heart development in the IUGR fetus. Of specific interest are the aetiology of IUGR and the resultant degree, duration, and severity of hypoxemia. PMID:23227338

  9. Quantitative cervical vertebral maturation assessment in adolescents with normal occlusion: a mixed longitudinal study.

    PubMed

    Chen, Li-Li; Xu, Tian-Min; Jiang, Jiu-Hui; Zhang, Xing-Zhong; Lin, Jiu-Xiang

    2008-12-01

    The purpose of this study was to establish a quantitative cervical vertebral maturation (CVM) system for adolescents with normal occlusion. Mixed longitudinal data were used. The subjects included 87 children and adolescents from 8 to 18 years old with normal occlusion (32 boys, 55 girls) selected from 901 candidates. Sequential lateral cephalograms and hand-wrist films were taken once a year for 6 years. The lateral cephalograms of all subjects were divided into 11 maturation groups according to the Fishman skeletal maturity indicators. The morphologic characteristics of the second, third, and fourth cervical vertebrae at 11 developmental stages were measured and analyzed. Three characteristic parameters (H4/W4, AH3/PH3, @2) were selected to determine the classification of CVM. With 3 morphologic variables, the quantitative CVM system including 4 maturational stages was established. An equation that can accurately estimate the maturation of the cervical vertebrae was established: CVM stage=-4.13+3.57xH4/W4+4.07xAH3/PH3+0.03x@2. The quantitative CVM method is an efficient, objective, and relatively simple approach to assess the level of skeletal maturation during adolescence.

  10. Phenotypic characterization of spontaneously mutated rats showing lethal dwarfism and epilepsy.

    PubMed

    Suzuki, Hiroetsu; Takenaka, Motoo; Suzuki, Katsushi

    2007-08-01

    We have characterized the phenotype of spontaneously mutated rats, found during experimental inbreeding in a closed colony of Wistar Imamichi rats. Mutant rats showed severe dwarfism, short lifespan (early postnatal lethality), and high incidence of epileptic seizures. Mutant rats showed growth retardation after 3 d of age, and at 21 d their weight was about 56% that of normal rats. Most mutant rats died without reaching maturity, and 95% of the mutant rats had an ataxic gait. About 34% of the dwarf rats experienced epileptic seizures, most of which started as 'wild running' convulsions, progressing to generalized tonic-clonic convulsions. At age 28 d, the relative weight of the testes was significantly lower, and the relative weight of the brain was significantly higher, in mutant than in normal rats. Histologically, increased apoptotic germ cells, lack of spermatocytes, and immature Leydig cells were found in the mutant testes, and extracellular vacuoles of various sizes were present in the hippocampus and amygdala of the mutant brain. Mutant rats had significantly increased concentrations of plasma urea nitrogen, creatinine, and inorganic phosphate, as well as decreased concentrations of plasma growth hormone. Hereditary analysis showed that the defects were inherited as a single recessive trait. We have named the hypothetically mutated gene as lde (lethal dwarfism with epilepsy).

  11. The developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy.

    PubMed

    Sussman, Dafna; Leung, Rachel C; Chakravarty, M Mallar; Lerch, Jason P; Taylor, Margot J

    2016-04-01

    This study is the first to characterize normal development and sex differences across neuroanatomical structures in cortical, subcortical, and cerebellar brain regions in a single large cohort. One hundred and ninety-two magnetic resonance images were examined from 96 typically developing females and 96 age-matched typically developing males from 4 to 18 years of age. Image segmentation of the cortex was conducted with CIVET, while that of the cerebellum, hippocampi, thalamus, and basal ganglia were conducted using the MAGeT algorithm. Cortical thickness analysis revealed that most cortical regions decrease linearly, while surface area increases linearly with age. Volume relative to total cerebrum followed a quadratic trend with age, with only the left supramarginal gyrus showing sexual dimorphism. Hippocampal relative volume increased linearly, while the thalamus, caudate, and putamen decreased linearly, and the cerebellum did not change with age. The relative volumes of several subcortical subregions followed inverted U-shaped trends that peaked at ~12 years of age. Many subcortical structures were found to be larger in females than in males, independently of age, while others showed a sex-by-age interaction. This study provides a comprehensive assessment of cortical, subcortical, and cerebellar growth patterns during normal development, and draws attention to the role of sex on neuroanatomical maturation throughout childhood and adolescence.

  12. Body fat mass, leptin and puberty.

    PubMed

    Kiess, W; Müller, G; Galler, A; Reich, A; Deutscher, J; Klammt, J; Kratzsch, J

    2000-07-01

    Leptin, the ob gene product, provides a molecular basis for the lipostatic theory of the regulation of energy balance. Leptin circulates as a monomeric 16 kDa protein in rodent and human plasma and is also bound to leptin binding proteins that may form large high molecular weight complexes. Initial models of leptin action included leptin-deficient ob/ob mice and leptin-insensitive db/db mice. Peripheral or central administration of leptin reduced body weight, adiposity, and food intake in ob/ob mice but not in db/db mice. In ob/ob mice leptin treatment restored fertility. Leptin interacts with many messenger molecules in the brain. For example, leptin suppresses neuropeptide Y (NPY) expression in the arcuate nucleus. Increased NPY activity has an inhibitory effect on the gonadotropin axis and represents a direct mechanism for inhibiting sexual maturation and reproductive function in conditions of food restriction and/or energy expenditure. By modulating the hypothalamo-pituitary-gonadal axis both directly and indirectly, leptin may thus serve as the signal from fat to the brain about the adequacy of fat stores for pubertal development and reproduction. Normal leptin secretion is necessary for normal reproductive function to proceed and leptin may be a signal allowing for the point of initiation of and progression toward puberty.

  13. Gestational Age and Neonatal Brain Microstructure in Term Born Infants: A Birth Cohort Study

    PubMed Central

    Broekman, Birit F. P.; Wang, Changqing; Li, Yue; Rifkin-Graboi, Anne; Saw, Seang Mei; Chong, Yap-Seng; Kwek, Kenneth; Gluckman, Peter D.; Fortier, Marielle V.; Meaney, Michael J.; Qiu, Anqi

    2014-01-01

    Objective Understanding healthy brain development in utero is crucial in order to detect abnormal developmental trajectories due to developmental disorders. However, in most studies neuroimaging was done after a significant postnatal period, and in those studies that performed neuroimaging on fetuses, the quality of data has been affected due to complications of scanning during pregnancy. To understand healthy brain development between 37–41 weeks of gestational age, our study assessed the in utero growth of the brain in healthy term born babies with DTI scanning soon after birth. Methods A cohort of 93 infants recruited from maternity hospitals in Singapore underwent diffusion tensor imaging between 5 to 17 days after birth. We did a cross-sectional examination of white matter microstructure of the brain among healthy term infants as a function of gestational age via voxel-based analysis on fractional anisotropy. Results Greater gestational age at birth in term infants was associated with larger fractional anisotropy values in early developing brain regions, when corrected for age at scan. Specifically, it was associated with a cluster located at the corpus callosum (corrected p<0.001), as well as another cluster spanning areas of the anterior corona radiata, anterior limb of internal capsule, and external capsule (corrected p<0.001). Conclusions Our findings show variation in brain maturation associated with gestational age amongst ‘term’ infants, with increased brain maturation when born with a relatively higher gestational age in comparison to those infants born with a relatively younger gestational age. Future studies should explore if these differences in brain maturation between 37 and 41 weeks of gestational age will persist over time due to development outside the womb. PMID:25535959

  14. Effects of sex chromosome aneuploidies on brain development: evidence from neuroimaging studies.

    PubMed

    Lenroot, Rhoshel K; Lee, Nancy Raitano; Giedd, Jay N

    2009-01-01

    Variation in the number of sex chromosomes is a relatively common genetic condition, affecting as many as 1/400 individuals. The sex chromosome aneuploidies (SCAs) are associated with characteristic behavioral and cognitive phenotypes, although the degree to which specific individuals are affected can fall within a wide range. Understanding the effects of different dosages of sex chromosome genes on brain development may help to understand the basis for functional differences in affected individuals. It may also be informative regarding how sex chromosomes contribute to typical sexual differentiation. Studies of 47,XXY males make up the bulk of the current literature of neuroimaging studies in individuals with supernumerary sex chromosomes, with a few small studies or case reports of the other SCAs. Findings in 47,XXY males typically include decreased gray and white matter volumes, with most pronounced effects in the frontal and temporal lobes. Functional studies have shown evidence of decreased lateralization. Although the hypogonadism typically found in 47,XXY males may contribute to the decreased brain volume, the observation that 47,XXX females also show decreased brain volume in the presence of normal pubertal maturation suggests a possible direct dosage effect of X chromosome genes. Additional X chromosomes, such as in 49,XXXXY males, are associated with more markedly decreased brain volume and increased incidence of white matter hyperintensities. The limited data regarding effects of having two Y chromosomes (47,XYY) do not find significant differences in brain volume, although there are some reports of increased head size.

  15. Effects of Sex Chromosome Aneuploidies on Brain Development: Evidence From Neuroimaging Studies

    PubMed Central

    Lenroot, Rhoshel K.; Lee, Nancy Raitano; Giedd, Jay N.

    2010-01-01

    Variation in the number of sex chromosomes is a relatively common genetic condition, affecting as many as 1/400 individuals. The sex chromosome aneuploidies (SCAs) are associated with characteristic behavioral and cognitive phenotypes, although the degree to which specific individuals are affected can fall within a wide range. Understanding the effects of different dosages of sex chromosome genes on brain development may help to understand the basis for functional differences in affected individuals. It may also be informative regarding how sex chromosomes contribute to typical sexual differentiation. Studies of 47,XXY males make up the bulk of the current literature of neuroimaging studies in individuals with supernumerary sex chromosomes, with a few small studies or case reports of the other SCAs. Findings in 47,XXY males typically include decreased gray and white matter volumes, with most pronounced effects in the frontal and temporal lobes. Functional studies have shown evidence of decreased lateralization. Although the hypogonadism typically found in 47,XXY males may contribute to the decreased brain volume, the observation that 47,XXX females also show decreased brain volume in the presence of normal pubertal maturation suggests a possible direct dosage effect of X chromosome genes. Additional X chromosomes, such as in 49,XXXXY males, are associated with more markedly decreased brain volume and increased incidence of white matter hyperintensities. The limited data regarding effects of having two Y chromosomes (47,XYY) do not find significant differences in brain volume, although there are some reports of increased head size. PMID:20014372

  16. Lifespan Trajectories of White Matter Changes in Rhesus Monkeys.

    PubMed

    Kubicki, M; Baxi, M; Pasternak, O; Tang, Y; Karmacharya, S; Chunga, N; Lyall, A E; Rathi, Y; Eckbo, R; Bouix, S; Mortazavi, F; Papadimitriou, G; Shenton, M E; Westin, C F; Killiany, R; Makris, N; Rosene, D L

    2018-04-26

    Progress in neurodevelopmental brain research has been achieved through the use of animal models. Such models not only help understanding biological changes that govern brain development, maturation and aging, but are also essential for identifying possible mechanisms of neurodevelopmental and age-related chronic disorders, and to evaluate possible interventions with potential relevance to human disease. Genetic relationship of rhesus monkeys to humans makes those animals a great candidate for such models. With the typical lifespan of 25 years, they undergo cognitive maturation and aging that is similar to this observed in humans. Quantitative structural neuroimaging has been proposed as one of the candidate in vivo biomarkers for tracking white matter brain maturation and aging. While lifespan trajectories of white matter changes have been mapped in humans, such knowledge is not available for nonhuman primates. Here, we analyze and model lifespan trajectories of white matter microstructure using in vivo diffusion imaging in a sample of 44 rhesus monkeys. We report quantitative parameters (including slopes and peaks) of lifespan trajectories for 8 individual white matter tracts. We show different trajectories for cellular and extracellular microstructural imaging components that are associated with white matter maturation and aging, and discuss similarities and differences between those in humans and rhesus monkeys, the importance of our findings, and future directions for the field.Significance Statement: Quantitative structural neuroimaging has been proposed as one of the candidate in vivo biomarkers for tracking brain maturation and aging. While lifespan trajectories of structural white matter changes have been mapped in humans, such knowledge is not available for rhesus monkeys. We present here results of the analysis and modeling of the lifespan trajectories of white matter microstructure using in vivo diffusion imaging in a sample of 44 rhesus monkeys (age 4-27). We report and anatomically map lifespan changes related to cellular and extracellular microstructural components that are associated with white matter maturation and aging.

  17. SAD-B kinase regulates pre-synaptic vesicular dynamics at hippocampal Schaffer collateral synapses and affects contextual fear memory.

    PubMed

    Watabe, Ayako M; Nagase, Masashi; Hagiwara, Akari; Hida, Yamato; Tsuji, Megumi; Ochiai, Toshitaka; Kato, Fusao; Ohtsuka, Toshihisa

    2016-01-01

    Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, such as axon specifications and maturation in central and peripheral nervous systems. At mature pre-synaptic terminals, SAD-B is associated with synaptic vesicles and the active zone cytomatrix; however, how SAD-B regulates neurotransmission and synaptic plasticity in vivo remains unclear. Thus, we used SAD-B knockout (KO) mice to study the function of this pre-synaptic kinase in the brain. We found that the paired-pulse ratio was significantly enhanced at Shaffer collateral synapses in the hippocampal CA1 region in SAD-B KO mice compared with wild-type littermates. We also found that the frequency of the miniature excitatory post-synaptic current was decreased in SAD-B KO mice. Moreover, synaptic depression following prolonged low-frequency synaptic stimulation was significantly enhanced in SAD-B KO mice. These results suggest that SAD-B kinase regulates vesicular release probability at pre-synaptic terminals and is involved in vesicular trafficking and/or regulation of the readily releasable pool size. Finally, we found that hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice. These observations suggest that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, but their roles in mature brains were only partially known. Here, we demonstrated, at mature pre-synaptic terminals, that SAD-B regulates vesicular release probability and synaptic plasticity. Moreover, hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice, suggesting that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. © 2015 International Society for Neurochemistry.

  18. Leigh disease with brainstem involvement in complex I deficiency due to assembly factor NDUFAF2 defect.

    PubMed

    Herzer, M; Koch, J; Prokisch, H; Rodenburg, R; Rauscher, C; Radauer, W; Forstner, R; Pilz, P; Rolinski, B; Freisinger, P; Mayr, J A; Sperl, W

    2010-02-01

    Mitochondrial NADH: ubiquinone oxidoreductase (complex I) deficiency accounts for most defects in mitochondrial oxidative phosphorylation. Pathogenic mutations have been described in all 7 mitochondrial and 12 of the 38 nuclear encoded subunits as well as in assembly factors by interfering with the building of the mature enzyme complex within the inner mitochondrial membrane. We now describe a male patient with a novel homozygous stop mutation in the NDUFAF2 gene. The boy presented with severe apnoea and nystagmus. MRI showed brainstem lesions without involvement of basal ganglia and thalamus, plasma lactate was normal or close to normal. He died after a fulminate course within 2 months after the first crisis. Neuropathology verified Leigh disease. We give a synopsis with other reported patients. Within the clinical spectrum of Leigh disease, patients with mutations in NDUFAF2 present with a distinct clinical pattern with predominantly brainstem involvement on MRI. The diagnosis should not be missed in spite of the normal lactate and lack of thalamus and basal ganglia changes on brain MRI.

  19. Exposure to fine and ultrafine particulate matter during gestation alters postnatal oligodendrocyte maturation, proliferation capacity, and myelination.

    PubMed

    Klocke, Carolyn; Allen, Joshua L; Sobolewski, Marissa; Blum, Jason L; Zelikoff, Judith T; Cory-Slechta, Deborah A

    2018-03-01

    Accumulating studies indicate that the brain is a direct target of air pollution exposure during the fetal period. We have previously demonstrated that exposure to concentrated ambient particles (CAPs) during gestation produces ventriculomegaly, periventricular hypermyelination, and enlargement of the corpus callosum (CC) during postnatal development in mice. This study aimed to further characterize the cellular basis of the observed hypermyelination and determine if this outcome, among other effects, persisted as the brain matured. Analysis of CC-1 + mature oligodendrocytes in the CC at postnatal days (PNDs) 11-15 suggest a premature maturational shift in number and proportion of total cells in prenatally CAPs-exposed males and females, with no overall change in total CC cellularity. The overall number of Olig2 + lineage cells in the CC was not affected in either sex at the same postnatal timepoint. Assessment of myelin status at early brain maturity (PNDs 57-61) revealed persistent hypermyelination in CAPs-exposed animals of both sexes. In addition, ventriculomegaly was persistent in CAPs-treated females, with possible amelioration of ventriculomegaly in CAPs-exposed males. When oligodendrocyte precursor cell (OPC) pool status was analyzed at PNDs 57-61, there were significant CAPs-induced alterations in cycling Ki67 + /Olig2 + cell number and proportion of total cells in the female CC. Total CC cellularity was slightly elevated in CAPs-exposed males at PNDs 57-61. Overall, these data support a growing body of evidence that demonstrate the vulnerability of the developing brain to environmental insults such as ambient particulate matter. The sensitivity of oligodendrocytes and myelin, in particular, to such an insult warrants further investigation into the mechanistic underpinnings of OPC and myelin disruption by constituent air pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Development of a method for the purification and culture of rodent astrocytes.

    PubMed

    Foo, Lynette C; Allen, Nicola J; Bushong, Eric A; Ventura, P Britten; Chung, Won-Suk; Zhou, Lu; Cahoy, John D; Daneman, Richard; Zong, Hui; Ellisman, Mark H; Barres, Ben A

    2011-09-08

    The inability to purify and culture astrocytes has long hindered studies of their function. Whereas astrocyte progenitor cells can be cultured from neonatal brain, culture of mature astrocytes from postnatal brain has not been possible. Here, we report a new method to prospectively purify astrocytes by immunopanning. These astrocytes undergo apoptosis in culture, but vascular cells and HBEGF promote their survival in serum-free culture. We found that some developing astrocytes normally undergo apoptosis in vivo and that the vast majority of astrocytes contact blood vessels, suggesting that astrocytes are matched to blood vessels by competing for vascular-derived trophic factors such as HBEGF. Compared to traditional astrocyte cultures, the gene profiles of the cultured purified postnatal astrocytes much more closely resemble those of in vivo astrocytes. Although these astrocytes strongly promote synapse formation and function, they do not secrete glutamate in response to stimulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. The Olfactory Transcriptome and Progression of Sexual Maturation in Homing Chum Salmon Oncorhynchus keta.

    PubMed

    Palstra, Arjan P; Fukaya, Kosuke; Chiba, Hiroaki; Dirks, Ron P; Planas, Josep V; Ueda, Hiroshi

    2015-01-01

    Reproductive homing migration of salmonids requires accurate interaction between the reception of external olfactory cues for navigation to the spawning grounds and the regulation of sexual maturation processes. This study aimed at providing insights into the hypothesized functional link between olfactory sensing of the spawning ground and final sexual maturation. We have therefore assessed the presence and expression levels of olfactory genes by RNA sequencing (RNAseq) of the olfactory rosettes in homing chum salmon Oncorhynchus keta Walbaum from the coastal sea to 75 km upstream the rivers at the pre-spawning ground. The progression of sexual maturation along the brain-pituitary-gonadal axis was assessed through determination of plasma steroid levels by time-resolved fluoroimmunoassays (TR-FIA), pituitary gonadotropin subunit expression and salmon gonadotropin-releasing hormone (sgnrh) expression in the brain by quantitative real-time PCR. RNAseq revealed the expression of 75 known and 27 unknown salmonid olfactory genes of which 13 genes were differentially expressed between fish from the pre-spawning area and from the coastal area, suggesting an important role of these genes in homing. A clear progression towards final maturation was characterised by higher plasma 17α,20β-dihydroxy-4-pregnen-3-one (DHP) levels, increased pituitary luteinizing hormone β subunit (lhβ) expression and sgnrh expression in the post brain, and lower plasma testosterone (T) and 17β-estradiol (E2) levels. Olfactomedins and ependymin are candidates among the differentially expressed genes that may connect olfactory reception to the expression of sgnrh to regulate final maturation.

  2. The Olfactory Transcriptome and Progression of Sexual Maturation in Homing Chum Salmon Oncorhynchus keta

    PubMed Central

    Palstra, Arjan P.; Fukaya, Kosuke; Chiba, Hiroaki; Dirks, Ron P.; Planas, Josep V.; Ueda, Hiroshi

    2015-01-01

    Reproductive homing migration of salmonids requires accurate interaction between the reception of external olfactory cues for navigation to the spawning grounds and the regulation of sexual maturation processes. This study aimed at providing insights into the hypothesized functional link between olfactory sensing of the spawning ground and final sexual maturation. We have therefore assessed the presence and expression levels of olfactory genes by RNA sequencing (RNAseq) of the olfactory rosettes in homing chum salmon Oncorhynchus keta Walbaum from the coastal sea to 75 km upstream the rivers at the pre-spawning ground. The progression of sexual maturation along the brain-pituitary-gonadal axis was assessed through determination of plasma steroid levels by time-resolved fluoroimmunoassays (TR-FIA), pituitary gonadotropin subunit expression and salmon gonadotropin-releasing hormone (sgnrh) expression in the brain by quantitative real-time PCR. RNAseq revealed the expression of 75 known and 27 unknown salmonid olfactory genes of which 13 genes were differentially expressed between fish from the pre-spawning area and from the coastal area, suggesting an important role of these genes in homing. A clear progression towards final maturation was characterised by higher plasma 17α,20β-dihydroxy-4-pregnen-3-one (DHP) levels, increased pituitary luteinizing hormone β subunit (lhβ) expression and sgnrh expression in the post brain, and lower plasma testosterone (T) and 17β-estradiol (E2) levels. Olfactomedins and ependymin are candidates among the differentially expressed genes that may connect olfactory reception to the expression of sgnrh to regulate final maturation. PMID:26397372

  3. The transcription factor Nfix is essential for normal brain development.

    PubMed

    Campbell, Christine E; Piper, Michael; Plachez, Céline; Yeh, Yu-Ting; Baizer, Joan S; Osinski, Jason M; Litwack, E David; Richards, Linda J; Gronostajski, Richard M

    2008-05-13

    The Nuclear Factor I (NFI) multi-gene family encodes site-specific transcription factors essential for the development of a number of organ systems. We showed previously that Nfia-deficient mice exhibit agenesis of the corpus callosum and other forebrain defects; Nfib-deficient mice have defects in lung maturation and show callosal agenesis and forebrain defects resembling those seen in Nfia-deficient animals, while Nfic-deficient mice have defects in tooth root formation. Recently the Nfix gene has been disrupted and these studies indicated that there were largely uncharacterized defects in brain and skeletal development in Nfix-deficient mice. Here we show that disruption of Nfix by Cre-recombinase mediated excision of the 2nd exon results in defects in brain development that differ from those seen in Nfia and Nfib KO mice. In particular, complete callosal agenesis is not seen in Nfix-/- mice but rather there appears to be an overabundance of aberrant Pax6- and doublecortin-positive cells in the lateral ventricles of Nfix-/- mice, increased brain weight, expansion of the cingulate cortex and entire brain along the dorsal ventral axis, and aberrant formation of the hippocampus. On standard lab chow Nfix-/- animals show a decreased growth rate from ~P8 to P14, lose weight from ~P14 to P22 and die at ~P22. If their food is supplemented with a soft dough chow from P10, Nfix-/- animals show a lag in weight gain from P8 to P20 but then increase their growth rate. A fraction of the animals survive to adulthood and are fertile. The weight loss correlates with delayed eye and ear canal opening and suggests a delay in the development of several epithelial structures in Nfix-/- animals. These data show that Nfix is essential for normal brain development and may be required for neural stem cell homeostasis. The delays seen in eye and ear opening and the brain morphology defects appear independent of the nutritional deprivation, as rescue of perinatal lethality with soft dough does not eliminate these defects.

  4. Moderate and late preterm birth: effect on brain size and maturation at term-equivalent age.

    PubMed

    Walsh, Jennifer M; Doyle, Lex W; Anderson, Peter J; Lee, Katherine J; Cheong, Jeanie L Y

    2014-10-01

    To compare the size of multiple brain structures, maturation in terms of both brain myelination and gyral development, and evidence of brain injury between moderate and late preterm (MLPT) and term-born infants at term-equivalent age. The study was approved by the human research ethics committees of the participating hospitals, and informed parental consent was obtained for all infants. One hundred ninety-nine MLPT and 50 term-born infants underwent 3-T magnetic resonance (MR) imaging brain examinations at 38-44 weeks of corrected gestational age. T1- and T2-weighted MR images were compared between groups for size of multiple cerebral structures, degree of myelination in the posterior limb of the internal capsule, gyral maturation, signal intensity abnormalities, and presence of cysts by a single assessor who was blinded to the gestational group and perinatal course of the infants. Group differences were compared by using linear regression for continuous variables and logistic regression for categorical variables, and interrater and intrarater reliability was assessed by using intraclass correlation coefficients. Compared with those in the term-born control group, measurements of brain biparietal diameter, corpus callosum, basal ganglia and thalami, and cerebellum were smaller in infants in the MLPT group (all P ≤ .01), while extracerebral space was larger (P < .0001). Myelination of the posterior limb of the internal capsule was less developed, and gyral maturation was delayed in the MLPT group (both P < .001). Signal intensity abnormalities and cysts were uncommon in both groups, with 13 (6.5%) MLPT infants and one (2%) term infant having abnormalities. Inter- and intrarater reliability was good for most measures, with intraclass correlation coefficients generally greater than 0.68. MLPT birth is associated with smaller brain size, less-developed myelination of the posterior limb of the internal capsule, and more immature gyral folding than those associated with full-term birth. These brain changes may form the basis of some of the long-term neurodevelopmental deficits observed in MLPT children. Online supplemental material is available for this article. © RSNA, 2014.

  5. Fetal heart rate intermittency

    NASA Astrophysics Data System (ADS)

    Yum, Myung-Kul; Kim, Jong-Hwa; Kim, Kyungsik

    2003-03-01

    We noticed that fetal heart rates(FHR) of immature fetuses intermittently showed unstable falls below baseline FHR which do not occur in mature fetuses. We aim to investigate the nature and maturational changes of intermittency of the FHR in normal fetuses, and to present the intermittency values of normal fetuses according to gestational weeks. FHR data of 450 normal fetuses between 23 and 40 weeks of gestation were studied. We performed multifractal analysis and calcualted a intermittency (C_1). The C1 values exhibited a strong negative linear correlation(P=0.0001) with the gestational weeks. At 27-28, 29-30, 33-34, and 37-38 gestational weeks, the C1 values were significantly lower than those of the previous two or four gestational weeks. The maturation of normal fetuses is related to decreasing the severity of the unstable falls in FHR that is measured by C_1, the intermittency. The C1 values according to the gestational weeks we presented can be used as credible values when estimating the degree of maturity of certain FHR.

  6. Contribution of Neuroimaging Studies to Understanding Development of Human Cognitive Brain Functions

    PubMed Central

    Morita, Tomoyo; Asada, Minoru; Naito, Eiichi

    2016-01-01

    Humans experience significant physical and mental changes from birth to adulthood, and a variety of perceptual, cognitive and motor functions mature over the course of approximately 20 years following birth. To deeply understand such developmental processes, merely studying behavioral changes is not sufficient; simultaneous investigation of the development of the brain may lead us to a more comprehensive understanding. Recent advances in noninvasive neuroimaging technologies largely contribute to this understanding. Here, it is very important to consider the development of the brain from the perspectives of “structure” and “function” because both structure and function of the human brain mature slowly. In this review, we first discuss the process of structural brain development, i.e., how the structure of the brain, which is crucial when discussing functional brain development, changes with age. Second, we introduce some representative studies and the latest studies related to the functional development of the brain, particularly for visual, facial recognition, and social cognition functions, all of which are important for humans. Finally, we summarize how brain science can contribute to developmental study and discuss the challenges that neuroimaging should address in the future. PMID:27695409

  7. Body growth and brain development in premature babies: an MRI study.

    PubMed

    Tzarouchi, Loukia C; Drougia, Aikaterini; Zikou, Anastasia; Kosta, Paraskevi; Astrakas, Loukas G; Andronikou, Styliani; Argyropoulou, Maria I

    2014-03-01

    Prematurity and intrauterine growth restriction are associated with neurodevelopmental disabilities. To assess the relationship between growth status and regional brain volume (rBV) and white matter microstructure in premature babies at around term-equivalent age. Premature infants (n= 27) of gestational age (GA): 29.8 ± 2.1 weeks, with normal brain MRI scans were studied at corrected age: 41.2 ± 1.4 weeks. The infants were divided into three groups: 1) appropriate for GA at birth and at the time of MRI (AGA), 2) small for GA at birth with catch-up growth at the time of MRI (SGAa) and 3) small for GA at birth with failure of catch-up growth at the time of MRI (SGAb). The T1-weighted images were segmented into 90 rBVs using the SPM8/IBASPM and differences among groups were assessed. Fractional anisotropy (FA) was measured bilaterally in 15 fiber tracts and its relationship to GA and somatometric measurements was explored. Lower rBV was observed in SGAb in superior and anterior brain areas. A positive correlation was demonstrated between FA and head circumference and body weight. Body weight was the only significant predictor for FA (P< 0.05). In premature babies, catch-up growth is associated with regional brain volume catch-up at around term-equivalent age, starting from the brain areas maturing first. Body weight seems to be a strong predictor associated with WM microstructure in brain areas related to attention, language, cognition, memory and executing functioning.

  8. AGE-DEPENDENT EFFECTS OF AROCLOR 1254 ON CALCIUM UPTAKE BY SUBCELLULAR ORGANELLES IN SELECTED BRAIN REGIONS OF RATS.

    EPA Science Inventory

    Earlier reports from our laboratory have indicated that polychlorinated biphenyls (PCBs) affect signal transduction mechanisms in brain, including Ca2+ homeostasis, phosphoinositol hydrolysis, and protein kinase C (PKC) translocation in mature neurons and adult brain homogenate p...

  9. Demystifying the Adolescent Brain

    ERIC Educational Resources Information Center

    Steinberg, Laurence

    2011-01-01

    Understanding the nature of brain development in adolescence helps explain why adolescents can vacillate so often between mature and immature behavior. Early and middle adolescence, in particular, are times of heightened vulnerability to risky and reckless behavior because the brain's reward center is easily aroused, but the systems that control…

  10. Large-brained frogs mature later and live longer.

    PubMed

    Yu, Xin; Zhong, Mao Jun; Li, Da Yong; Jin, Long; Liao, Wen Bo; Kotrschal, Alexander

    2018-05-01

    Brain sizes vary substantially across vertebrate taxa, yet, the evolution of brain size appears tightly linked to the evolution of life histories. For example, larger brained species generally live longer than smaller brained species. A larger brain requires more time to grow and develop at a cost of exceeded gestation period and delayed weaning age. The cost of slower development may be compensated by better homeostasis control and increased cognitive abilities, both of which should increase survival probabilities and hence life span. To date, this relationship between life span and brain size seems well established in homoeothermic animals, especially in mammals. Whether this pattern occurs also in other clades of vertebrates remains enigmatic. Here, we undertake the first comparative test of the relationship between life span and brain size in an ectothermic vertebrate group, the anuran amphibians. After controlling for the effects of shared ancestry and body size, we find a positive correlation between brain size, age at sexual maturation, and life span across 40 species of frogs. Moreover, we also find that the ventral brain regions, including the olfactory bulbs, are larger in long-lived species. Our results indicate that the relationship between life history and brain evolution follows a general pattern across vertebrate clades. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  11. Neuroanatomical prerequisites for language functions in the maturing brain.

    PubMed

    Brauer, Jens; Anwander, Alfred; Friederici, Angela D

    2011-02-01

    The 2 major language-relevant cortical regions in the human brain, Broca's area and Wernicke's area, are connected via the fibers of the arcuate fasciculus/superior longitudinal fasciculus (AF/SLF). Here, we compared this pathway in adults and children and its relation to language processing during development. Comparison of fiber properties demonstrated lower anisotropy in children's AF/SLF, arguing for an immature status of this particular pathway with conceivably a lower degree of myelination. Combined diffusion tensor imaging (DTI) data and functional magnetic resonance imaging (fMRI) data indicated that in adults the termination of the AF/SLF fiber projection is compatible with functional activation in Broca's area, that is pars opercularis. In children, activation in Broca's area extended from the pars opercularis into the pars triangularis revealing an alternative connection to the temporal lobe (Wernicke's area) via the ventrally projecting extreme capsule fiber system. fMRI and DTI data converge to indicate that adults make use of a more confined language network than children based on ongoing maturation of the structural network. Our data suggest relations between language development and brain maturation and, moreover, indicate the brain's plasticity to adjust its function to available structural prerequisites.

  12. Genetic Otx2 mis-localization delays critical period plasticity across brain regions.

    PubMed

    Lee, H H C; Bernard, C; Ye, Z; Acampora, D; Simeone, A; Prochiantz, A; Di Nardo, A A; Hensch, T K

    2017-05-01

    Accumulation of non-cell autonomous Otx2 homeoprotein in postnatal mouse visual cortex (V1) has been implicated in both the onset and closure of critical period (CP) plasticity. Here, we show that a genetic point mutation in the glycosaminoglycan recognition motif of Otx2 broadly delays the maturation of pivotal parvalbumin-positive (PV+) interneurons not only in V1 but also in the primary auditory (A1) and medial prefrontal cortex (mPFC). Consequently, not only visual, but also auditory plasticity is delayed, including the experience-dependent expansion of tonotopic maps in A1 and the acquisition of acoustic preferences in mPFC, which mitigates anxious behavior. In addition, Otx2 mis-localization leads to dynamic turnover of selected perineuronal net (PNN) components well beyond the normal CP in V1 and mPFC. These findings reveal widespread actions of Otx2 signaling in the postnatal cortex controlling the maturational trajectory across modalities. Disrupted PV+ network function and deficits in PNN integrity are implicated in a variety of psychiatric illnesses, suggesting a potential global role for Otx2 function in establishing mental health.

  13. Optic radiation structure and anatomy in the normally developing brain determined using diffusion MRI and tractography.

    PubMed

    Dayan, Michael; Munoz, Monica; Jentschke, Sebastian; Chadwick, Martin J; Cooper, Janine M; Riney, Kate; Vargha-Khadem, Faraneh; Clark, Chris A

    2015-01-01

    The optic radiation (OR) is a component of the visual system known to be myelin mature very early in life. Diffusion tensor imaging (DTI) and its unique ability to reconstruct the OR in vivo were used to study structural maturation through analysis of DTI metrics in a cohort of 90 children aged 5-18 years. As the OR is at risk of damage during epilepsy surgery, we measured its position relative to characteristic anatomical landmarks. Anatomical distances, DTI metrics and volume of the OR were investigated for age, gender and hemisphere effects. We observed changes in DTI metrics with age comparable to known trajectories in other white matter tracts. Left lateralization of DTI metrics was observed that showed a gender effect in lateralization. Sexual dimorphism of DTI metrics in the right hemisphere was also found. With respect to OR dimensions, volume was shown to be right lateralised and sexual dimorphism demonstrated for the extent of the left OR. The anatomical results presented for the OR have potentially important applications for neurosurgical planning.

  14. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.

    PubMed

    Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao

    2018-04-12

    Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating structural changes of the brain during early development provides new insights into the complicated processes of both typical development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional maturation gradients in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. The PPARgamma agonist FMOC-L-leucine protects both mature and immature brain.

    PubMed

    Maurois, Pierre; Rocchi, Stéphane; Pages, Nicole; Bac, Pierre; Stables, James P; Gressens, Pierre; Vamecq, Joseph

    2008-01-01

    (N-[9-fluorenylmethoxycarbonyl]-)-L-leucine (FMOC-L-leucine) and rosiglitazone, two ligands of peroxisome proliferator-activated receptor gamma (PPARgamma), were evaluated in mature (adult mice) and immature (pups) brain injury models. In adult magnesium-deficient mice, a model responsive to both neuroprotective and anti-seizure compounds, FMOC-L-leucine, but not rosiglitazone, protected against audiogenic seizures. The protection afforded by FMOC-L-leucine was alleviated by the PPARgamma antagonist GW9662 (1-2 mg/kg) and was induced in 50% animals by 4.8+/-1.2 mg/kg. At this dose, FMOC-L-leucine modified audiogenic seizure phase durations in convulsing mice differently than prototype antiepileptic drugs did. FMOC-L-leucine (up to 100 mg/kg) was inactive in the 6 Hz seizure test, an adult animal model largely responsive to anti-seizure drugs. In a model of neonatal brain injury, FMOC-L-leucine (4 microg/kg) was neuroprotective against cerebral ibotenate toxicity. It reduced significantly the size of lesions in grey but not in white matter, while rosiglitazone (10 microg/kg) was inactive. Taken as a whole, the present data support neuroprotective potentialities of FMOC-L-leucine towards both mature and immature brain. The PPAR-based protection of immature brain is more important as it is known that classic adult brain protectants (GABA(A) activators, N-methyl-D-aspartate and sodium channel blockers) may be toxic for immature brain. The PPARgamma agonist FMOC-L-leucine is likely to be devoid of these classic protective mechanisms because of its inactivity in the 6 Hz seizure test, its activity in the audiogenic test being explained by neuroprotective rather than intrinsic anti-seizure mechanisms. Targeting PPARs might be thus a promising way to protect immature brain.

  16. Neurotrophin and FGF Signaling Adapter Proteins, FRS2 and FRS3, Regulate Dentate Granule Cell Maturation and Excitatory Synaptogenesis.

    PubMed

    Nandi, Sayan; Alviña, Karina; Lituma, Pablo J; Castillo, Pablo E; Hébert, Jean M

    2018-01-15

    Dentate granule cells (DGCs) play important roles in cognitive processes. Knowledge about how growth factors such as FGFs and neurotrophins contribute to the maturation and synaptogenesis of DGCs is limited. Here, using brain-specific and germline mouse mutants we show that a module of neurotrophin and FGF signaling, the FGF Receptor Substrate (FRS) family of intracellular adapters, FRS2 and FRS3, are together required for postnatal brain development. In the hippocampus, FRS promotes dentate gyrus morphogenesis and DGC maturation during developmental neurogenesis, similar to previously published functions for both neurotrophins and FGFs. Consistent with a role in DGC maturation, two-photon imaging revealed that Frs2,3-double mutants have reduced numbers of dendritic branches and spines in DGCs. Functional analysis further showed that double-mutant mice exhibit fewer excitatory synaptic inputs onto DGCs. These observations reveal roles for FRS adapters in DGC maturation and synaptogenesis and suggest that FRS proteins may act as an important node for FGF and neurotrophin signaling in postnatal hippocampal development. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Brain perfusion SPECT in the mouse: normal pattern according to gender and age.

    PubMed

    Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph

    2012-12-01

    Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1.7%, p=0.000) and at young adult age (AI=2.4 ± 1.7%, p=0.000). Gender had no effect on asymmetry. Voxel-wise testing confirmed the ROI-based findings. In conclusion, high-resolution HMPAO SPECT is a promising technique for measuring rCBF in preclinical research. It indicates lateral asymmetry of rCBF in the mouse brain as well as age-related changes during late maturation. ECD is not suitable as tracer for brain SPECT in the mouse because of its fast clearance from tissue indicating an interspecies difference in esterase activity between mice and humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Evolution of structural abnormalities in the rat brain following in utero exposure to maternal immune activation: A longitudinal in vivo MRI study.

    PubMed

    Crum, William R; Sawiak, Stephen J; Chege, Winfred; Cooper, Jonathan D; Williams, Steven C R; Vernon, Anthony C

    2017-07-01

    Genetic and environmental risk factors for psychiatric disorders are suggested to disrupt the trajectory of brain maturation during adolescence, leading to the development of psychopathology in adulthood. Rodent models are powerful tools to dissect the specific effects of such risk factors on brain maturational profiles, particularly when combined with Magnetic Resonance Imaging (MRI; clinically comparable technology). We therefore investigated the effect of maternal immune activation (MIA), an epidemiological risk factor for adult-onset psychiatric disorders, on rat brain maturation using atlas and tensor-based morphometry analysis of longitudinal in vivo MR images. Exposure to MIA resulted in decreases in the volume of several cortical regions, the hippocampus, amygdala, striatum, nucleus accumbens and unexpectedly, the lateral ventricles, relative to controls. In contrast, the volumes of the thalamus, ventral mesencephalon, brain stem and major white matter tracts were larger, relative to controls. These volumetric changes were maximal between post-natal day 50 and 100 with no differences between the groups thereafter. These data are consistent with and extend prior studies of brain structure in MIA-exposed rodents. Apart from the ventricular findings, these data have robust face validity to clinical imaging findings reported in studies of individuals at high clinical risk for a psychiatric disorder. Further work is now required to address the relationship of these MRI changes to behavioral dysfunction and to establish thier cellular correlates. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Breath-holding spells may be associated with maturational delay in myelination of brain stem.

    PubMed

    Vurucu, Sebahattin; Karaoglu, Abdulbaki; Paksu, Sukru M; Oz, Oguzhan; Yaman, Halil; Gulgun, Mustafa; Babacan, Oguzhan; Unay, Bulent; Akin, Ridvan

    2014-02-01

    To evaluate possible contribution of maturational delay of brain stem in the etiology of breath-holding spells in children using brain stem auditory evoked potentials. The study group included children who experienced breath-holding spells. The control group consisted of healthy age- and sex-matched children. Age, gender, type and frequency of spell, hemoglobin, and ferritin levels in study group and brain stem auditory evoked potentials results in both groups were recorded. Study group was statistically compared with control group for brain stem auditory evoked potentials. The mean age of study and control groups was 26.3 ± 14.6 and 28.9 ± 13.9 months, respectively. The III-V and I-V interpeak latencies were significantly prolonged in the study group compared with the control group (2.07 ± 0.2 milliseconds; 1.92 ± 0.13 milliseconds and 4.00 ± 0.27 milliseconds; 3.83 ± 0.19 milliseconds; P = 0.009 and P = 0.03, respectively). At the same time, III-V and I-V interpeak latencies of patients without anemia in the study group compared with those of control group were significantly prolonged (2.09 ± 0.24 milliseconds; 1.92 ± 0.13 milliseconds and 4.04 ± 0.28 milliseconds; 3.83 ± 0.19 milliseconds; P = 0.007 and P = 0.01, respectively). Our results consider that maturational delay in myelination of brain stem may have a role in the etiology of breath-holding spells in children.

  20. Sex Differences in Intelligence and Brain Size: A Developmental Theory.

    ERIC Educational Resources Information Center

    Lynn, Richard

    1999-01-01

    Proposes a developmental theory of sex differences in intelligence that states that the faster maturation and brain size growth in girls up to age 15 compensates for their smaller brain size so that sex differences in intelligence are very small. Discusses evidence that supports this theory. (SLD)

  1. Effects of age and sex on developmental neural networks of visual-spatial attention allocation.

    PubMed

    Rubia, Katya; Hyde, Zoe; Halari, Rozmin; Giampietro, Vincent; Smith, Anna

    2010-06-01

    Compared to our understanding of the functional maturation of brain networks underlying complex cognitive abilities, hardly anything is known of the neurofunctional development of simpler cognitive abilities such as visuo-spatial attention allocation. Furthermore, nothing is known on the effect of gender on the functional development of attention allocation. This study employed event related functional magnetic resonance imaging to investigate effects of age, sex, and sex by age interactions on the brain activation of 63 males and females, between 13 to 38years, during a visual-spatial oddball task. Behaviourally, with increasing age, speed was traded for accuracy, indicative of a less impulsive performance style in older subjects. Increasing age was associated with progressively increased activation in typical areas of selective attention of lateral fronto-striatal and temporo-parietal brain regions. Sex difference analysis showed enhanced activation in right-hemispheric inferior frontal and superior temporal regions in females, and in left-hemispheric inferior temporo-parietal regions in males. Importantly, the age by sex interaction findings showed that these sex-dimorphic patterns of brain activation may be the result of underlying sex differences in the functional maturation of these brain regions, as females had sex-specific progressive age-correlations in the same right inferior fronto-striato-temporal areas, while male-specific age-correlations were in left medial temporal and parietal areas. The findings demonstrate progressive functional maturation of fronto-striato-parieto-temporal networks of the relatively simple function of attention allocation between early adolescence and mid-adulthood. They furthermore show that sex-dimorphic patterns of enhanced reliance on right inferior frontal, striatal and superior temporal regions in females and of left temporo-parietal regions in males during attention allocation may be the result of underlying sex differences in the functional maturation of these brain regions. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Impact of brain injury on functional measures of amplitude-integrated EEG at term equivalent age in premature infants.

    PubMed

    El Ters, N M; Vesoulis, Z A; Liao, S M; Smyser, C D; Mathur, A M

    2017-08-01

    To evaluate the association between qualitative and quantitative amplitude-integrated EEG (aEEG) measures at term equivalent age (TEA) and brain injury on magnetic resonance imaging (MRI) in preterm infants. A cohort of premature infants born at <30 weeks of gestation and with moderate-to-severe MRI injury on a TEA MRI scan was identified. A contemporaneous group of gestational age-matched control infants also born at <30 weeks of gestation with none/mild injury on MRI was also recruited. Quantitative aEEG measures, including maximum and minimum amplitudes, bandwidth span and spectral edge frequency (SEF 90 ), were calculated using an offline software package. The aEEG recordings were qualitatively scored using the Burdjalov system. MRI scans, performed on the same day as aEEG, occurred at a mean postmenstrual age of 38.0 (range 37 to 42) weeks and were scored for abnormality in a blinded manner using an established MRI scoring system. Twenty-eight (46.7%) infants had a normal MRI or mild brain abnormality, while 32 (53.3%) infants had moderate-to-severe brain abnormality. Univariate regression analysis demonstrated an association between severity of brain abnormality and quantitative measures of left and right SEF 90 and bandwidth span (β=-0.38, -0.40 and 0.30, respectively) and qualitative measures of cyclicity, continuity and total Burdjalov score (β=-0.10, -0.14 and -0.12, respectively). After correcting for confounding variables, the relationship between MRI abnormality score and aEEG measures of SEF 90 , bandwidth span and Burdjalov score remained significant. Brain abnormalities on MRI at TEA in premature infants are associated with abnormalities on term aEEG measures, suggesting that anatomical brain injury may contribute to delay in functional brain maturation as assessed using aEEG.

  3. Social behavioral testing and brain magnetic resonance imaging in chicks exposed to mobile phone radiation during development.

    PubMed

    Zhou, Zien; Shan, Jiehui; Zu, Jinyan; Chen, Zengai; Ma, Weiwei; Li, Lei; Xu, Jianrong

    2016-06-10

    The potential adverse effect of mobile phone radiation is currently an area of great concern in the field of public health. In the present study, we aimed to investigate the effect of mobile phone radiation (900 MHz radiofrequency) during hatching on postnatal social behaviors in chicks, as well as the effect on brain size and structural maturity estimated using 3.0 T magnetic resonance imaging. At day 4 of incubation, 76 normally developing chick embryos were divided into the control group (n = 39) and the radiation group (n = 37). Eggs in the radiation group were exposed to mobile phone radiation for 10 h each day from day 4 to 19 of incubation. Behavioral tests were performed 4 days after hatching. T2-weighted MR imaging and diffusion tensor imaging (DTI) were subsequently performed. The size of different brain subdivisions (telencephalon, optic lobe, brain stem, and cerebellum) and corresponding DTI parameters were measured. The Chi-square test and the student's t test were used for statistical analysis. P < 0.05 was considered statistically significant. Compared with controls, chicks in the radiation group showed significantly slower aggregation responses (14.87 ± 10.06 vs. 7.48 ± 4.31 s, respectively; P < 0.05), lower belongingness (23.71 ± 8.72 vs. 11.45 ± 6.53 s, respectively; P < 0.05), and weaker vocalization (53.23 ± 8.60 vs. 60.01 ± 10.45 dB/30 s, respectively; P < 0.05). No significant differences were found between the radiation and control group for brain size and structural maturity, except for cerebellum size, which was significantly smaller in the radiation group (28.40 ± 1.95 vs. 29.95 ± 1.41 cm(2), P < 0.05). The hatching and heteroplasia rates were also calculated and no significant difference was found between the two groups. Mobile phone radiation exposure during chick embryogenesis impaired social behaviors after hatching and possibly induced cerebellar retardation. This indicates potential adverse effects of mobile phone radiation on brain development.

  4. The Power of Teen Brains

    ERIC Educational Resources Information Center

    Jensen, Frances E.

    2015-01-01

    The last decade has yielded an unprecedented amount of new science relating to the unique strengths and weaknesses of the adolescent and young adult brain. It is now crystal clear that when it comes to the brain, adolescents are not simply adults with fewer miles on them. In fact, the brain is the last organ in the body to mature, and is finally…

  5. Convergent synaptic and circuit substrates underlying autism genetic risks.

    PubMed

    McGee, Aaron; Li, Guohui; Lu, Zhongming; Qiu, Shenfeng

    2014-02-01

    There has been a surge of diagnosis of autism spectrum disorders (ASD) over the past decade. While large, high powered genome screening studies of children with ASD have identified numerous genetic risk factors, research efforts to understanding how each of these risk factors contributes to the development autism has met with limited success. Revealing the mechanisms by which these genetic risk factors affect brain development and predispose a child to autism requires mechanistic understanding of the neurobiological changes underlying this devastating group of developmental disorders at multifaceted molecular, cellular and system levels. It has been increasingly clear that the normal trajectory of neurodevelopment is compromised in autism, in multiple domains as much as aberrant neuronal production, growth, functional maturation, patterned connectivity, and balanced excitation and inhibition of brain networks. Many autism risk factors identified in humans have been now reconstituted in experimental mouse models to allow mechanistic interrogation of the biological role of the risk gene. Studies utilizing these mouse models have revealed that underlying the enormous heterogeneity of perturbed cellular events, mechanisms directing synaptic and circuit assembly may provide a unifying explanation for the pathophysiological changes and behavioral endophenotypes seen in autism, although synaptic perturbations are far from being the only alterations relevant for ASD. In this review, we discuss synaptic and circuit abnormalities obtained from several prevalent mouse models, particularly those reflecting syndromic forms of ASD that are caused by single gene perturbations. These compiled results reveal that ASD risk genes contribute to proper signaling of the developing gene networks that maintain synaptic and circuit homeostasis, which is fundamental to normal brain development.

  6. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    PubMed Central

    Panigrahy, Ashok; Wisnowski, Jessica L.; Furtado, Andre; Lepore, Natasha; Paquette, Lisa; Bluml, Stefan

    2013-01-01

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage IVH and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the “connectome” is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long-term neurodevelopmental outcomes, instruments to assess the efficacy of neuroprotective agents and maneuvers in the NICU, and as screening instruments to appropriately select infants for longitudinal developmental interventions. PMID:22395719

  7. Maturation of Sensori-Motor Functional Responses in the Preterm Brain.

    PubMed

    Allievi, Alessandro G; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J; Edwards, A David; Burdet, Etienne

    2016-01-01

    Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults. © The Author 2015. Published by Oxford University Press.

  8. Sex differences in thickness, and folding developments throughout the cortex.

    PubMed

    Mutlu, A Kadir; Schneider, Maude; Debbané, Martin; Badoud, Deborah; Eliez, Stephan; Schaer, Marie

    2013-11-15

    While significant differences in male and female brain structures have commonly been reported, only a few studies have focused on the sex differences in the way the cortex matures over time. Here, we investigated cortical thickness maturation between the age of 6 to 30 years, using 209 longitudinally-acquired brain MRI scans. Significant sex differences in the trajectories of cortical thickness change with age were evidenced using non-linear mixed effects models. Similar statistical analyses were computed to quantify the differences between cortical gyrification changes with age in males and females. During adolescence, we observed a statistically significant higher rate of cortical thinning in females compared to males in the right temporal regions, the left temporoparietal junction and the left orbitofrontal cortex. This finding is interpreted as a faster maturation of the social brain areas in females. Concomitantly, statistically significant sex differences in cortical folding changes with age were observed only in one cluster of the right prefrontal regions, suggesting that the mechanisms underlying cortical thickness and gyrification changes with age are quite distinct. Sexual dimorphism in the developmental course of the cortical maturation may be associated with the different age of onset and clinical presentation of many psychiatric disorders between males and females. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Maturational trajectories of local and long-range functional connectivity in autism during face processing.

    PubMed

    Mamashli, Fahimeh; Khan, Sheraz; Bharadwaj, Hari; Losh, Ainsley; Pawlyszyn, Stephanie M; Hämäläinen, Matti S; Kenet, Tal

    2018-06-26

    Autism spectrum disorder (ASD) is characterized neurophysiologically by, among other things, functional connectivity abnormalities in the brain. Recent evidence suggests that the nature of these functional connectivity abnormalities might not be uniform throughout maturation. Comparing between adolescents and young adults (ages 14-21) with ASD and age- and IQ-matched typically developing (TD) individuals, we previously documented, using magnetoencephalography (MEG) data, that local functional connectivity in the fusiform face areas (FFA) and long-range functional connectivity between FFA and three higher order cortical areas were all reduced in ASD. Given the findings on abnormal maturation trajectories in ASD, we tested whether these results extend to preadolescent children (ages 7-13). We found that both local and long-range functional connectivity were in fact normal in this younger age group in ASD. Combining the two age groups, we found that local and long-range functional connectivity measures were positively correlated with age in TD, but negatively correlated with age in ASD. Last, we showed that local functional connectivity was the primary feature in predicting age in ASD group, but not in the TD group. Furthermore, local functional connectivity was only correlated with ASD severity in the older group. These results suggest that the direction of maturation of functional connectivity for processing of faces from childhood to young adulthood is itself abnormal in ASD, and that during the processing of faces, these trajectory abnormalities are more pronounced for local functional connectivity measures than they are for long-range functional connectivity measures. © 2018 Wiley Periodicals, Inc.

  10. A positive correlation between serum levels of mature brain-derived neurotrophic factor and negative symptoms in schizophrenia.

    PubMed

    Niitsu, Tomihisa; Ishima, Tamaki; Yoshida, Taisuke; Hashimoto, Tasuku; Matsuzawa, Daisuke; Shirayama, Yukihiko; Nakazato, Michiko; Shimizu, Eiji; Hashimoto, Kenji; Iyo, Masaomi

    2014-02-28

    A meta-analysis study reported serum brain-derived neurotrophic factor (BDNF) levels as a potential biomarker for schizophrenia. However, at the time, commercially available human ELISA kits were unable to distinguish between pro-BDNF (precursor BDNF) and mature BDNF, because of limited antibody specificity. Here, we used new ELISA kits, to examine serum levels of mature BDNF and matrix metalloproteinase-9 (MMP-9), which converts pro-BDNF to mature BDNF in schizophrenia. Sixty-three patients with chronic schizophrenia and 52 age- and sex-matched healthy controls were enrolled. Patients were evaluated using the Brief Psychiatry Rating Scale, the Scale for the Assessment of Negative Symptoms (SANS) and neuropsychological tests. Neither serum mature BDNF nor MMP-9 levels differed between patients and controls. In male subgroups, serum MMP-9 levels of smoking patients were higher than those of non-smoking patients, but this was not observed in male controls or the female subgroup. In patients, serum mature BDNF levels were associated with SANS total scores and the Information subtest scores of the Wechsler Adult Intelligence Scale Revised (WAIS-R), while serum MMP-9 levels were associated with smoking and category fluency scores. These findings suggest that neither mature BDNF nor MMP-9 is a suitable biomarker for schizophrenia, although further studies using large samples are needed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine.

    PubMed

    Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi

    2013-11-27

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition

    PubMed Central

    Savage, Julie C.; Hui, Chin Wai; Bisht, Kanchan

    2016-01-01

    Abstract Microglia are the only immune cells that permanently reside in the central nervous system (CNS) alongside neurons and other types of glial cells. The past decade has witnessed a revolution in our understanding of their roles during normal physiological conditions. Cutting‐edge techniques revealed that these resident immune cells are critical for proper brain development, actively maintain health in the mature brain, and rapidly adapt their function to physiological or pathophysiological needs. In this review, we highlight recent studies on microglial origin (from the embryonic yolk sac) and the factors regulating their differentiation and homeostasis upon brain invasion. Elegant experiments tracking microglia in the CNS allowed studies of their unique roles compared with other types of resident macrophages. Here we review the emerging roles of microglia in brain development, plasticity and cognition, and discuss the implications of the depletion or dysfunction of microglia for our understanding of disease pathogenesis. Immune activation, inflammation and various other conditions resulting in undesirable microglial activity at different stages of life could severely impair learning, memory and other essential cognitive functions. The diversity of microglial phenotypes across the lifespan, between compartments of the CNS, and sexes, as well as their crosstalk with the body and external environment, is also emphasised. Understanding what defines particular microglial phenotypes is of major importance for future development of innovative therapies controlling their effector functions, with consequences for cognition across chronic stress, ageing, neuropsychiatric and neurological diseases. PMID:27104646

  13. Impact of socio-emotional context, brain development, and pubertal maturation on adolescent risk-taking.

    PubMed

    Smith, Ashley R; Chein, Jason; Steinberg, Laurence

    2013-07-01

    While there is little doubt that risk-taking is generally more prevalent during adolescence than before or after, the underlying causes of this pattern of age differences have long been investigated and debated. One longstanding popular notion is the belief that risky and reckless behavior in adolescence is tied to the hormonal changes of puberty. However, the interactions between pubertal maturation and adolescent decision making remain largely understudied. In the current review, we discuss changes in decision making during adolescence, focusing on the asynchronous development of the affective, reward-focused processing system and the deliberative, reasoned processing system. As discussed, differential maturation in the structure and function of brain systems associated with these systems leaves adolescents particularly vulnerable to socio-emotional influences and risk-taking behaviors. We argue that this asynchrony may be partially linked to pubertal influences on development and specifically on the maturation of the affective, reward-focused processing system. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Language Lateralization Shifts with Learning by Adults

    PubMed Central

    Plante, Elena; Almryde, Kyle; Patterson, Dianne K.; Vance, Christopher J.; Asbjørnsen, Arve E.

    2014-01-01

    For the majority of the population, language is a left hemisphere lateralized function. During childhood, a pattern of increasing left lateralization for language has been described in brain imaging studies, suggesting this trait develops. This development could reflect change due to brain maturation or change due to skill acquisition, given that children acquire and refine language skills as they mature. We test the possibility that skill acquisition, independent of age-associated maturation can result in shifts in language lateralization in classic language cortex. We imaged adults exposed to unfamiliar language during three successive fMRI scans. Participants were then asked to identify specific words embedded in Norwegian sentences. Exposure to these sentences, relative to complex tones, resulted in consistent activation in the left and right superior temporal gyrus. Activation in this region became increasingly left lateralized with repeated exposure to the unfamiliar language. These results demonstrate that shifts in lateralization can be produced in the short-term within a learning context, independent of maturation. PMID:25285756

  15. Serum human chorionic gonadotropin levels on the day before oocyte retrieval do not correlate with oocyte maturity.

    PubMed

    Levy, Gary; Hill, Micah J; Ramirez, Christina; Plowden, Torrie; Pilgrim, Justin; Howard, Robin S; Segars, James H; Csokmay, John

    2013-05-01

    To evaluate the correlation of preretrieval quantitative serum hCG level with oocyte maturity. Retrospective cohort study. Military assisted reproductive technology (ART) program. Fresh autologous ART cycles. Serum hCG level the day before oocyte retrieval. Linear regression was used to correlate serum hCG levels and oocyte maturity rates. Normal oocyte maturity was defined as ≥75% and the Wilcoxon rank sum test was used to compare serum hCG levels in patients with normal and low oocyte maturity. Threshold analysis was performed to determine hCG levels that could predict oocyte maturity. A total of 468 ART cycles were analyzed. Serum hCG level was not correlated with hCG dose; however, it was negatively correlated with body mass index (BMI). Serum hCG levels did not differ between patients with oocyte maturity of <75% and ≥75%. Serum hCG levels did not correlate with oocyte maturity rates. Receiver operator characteristic and less than efficiency curves failed to demonstrate thresholds at which hCG could predict oocyte maturity. Serum hCG levels were not correlated with oocyte maturity. Although a positive hCG was reassuring that mature oocytes would be retrieved for most patients, the specific value was not helpful. Copyright © 2013. Published by Elsevier Inc.

  16. Self-Control and the Developing Brain

    ERIC Educational Resources Information Center

    Tarullo, Amanda R.; Obradovic, Jelena; Gunnar, Megan R.

    2009-01-01

    Self-control is a skill that children need to succeed academically, socially, and emotionally. Brain regions essential to self-control are immature at birth and develop slowly throughout childhood. From ages 3 to 6 years, as these brain regions become more mature, children show improved ability to control impulses, shift their attention flexibly,…

  17. ADHD Experts Fear Brain-Growth Study Being Misconstrued

    ERIC Educational Resources Information Center

    Viadero, Debra

    2007-01-01

    This article reports on the results of a groundbreaking brain-imaging study suggesting that attention deficit hyperactivity disorder stems from delayed brain maturation. Implicit in some of the news coverage was the hopeful idea that many--even most--children eventually grow out of the disorder. But that's not exactly true, according to a…

  18. The Brain Dynamics of Intellectual Development: Waxing and Waning White and Gray Matter

    ERIC Educational Resources Information Center

    Tamnes, Christian K.; Fjell, Anders M.; Ostby, Ylva; Westlye, Lars T.; Due-Tonnessen, Paulina; Bjornerud, Atle; Walhovd, Kristine B.

    2011-01-01

    Distributed brain areas support intellectual abilities in adults. How structural maturation of these areas in childhood enables development of intelligence is not established. Neuroimaging can be used to monitor brain development, but studies to date have typically considered single imaging modalities. To explore the impact of structural brain…

  19. Adolescent Brain Development and Drugs

    ERIC Educational Resources Information Center

    Winters, Ken C.; Arria, Amelia

    2011-01-01

    Research now suggests that the human brain is still maturing during adolescence. The developing brain may help explain why adolescents sometimes make decisions that are risky and can lead to safety or health concerns, including unique vulnerabilities to drug abuse. This article explores how this new science may be put to use in our prevention and…

  20. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.

    PubMed

    Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan

    2016-04-01

    Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Structural and Maturational Covariance in Early Childhood Brain Development.

    PubMed

    Geng, Xiujuan; Li, Gang; Lu, Zhaohua; Gao, Wei; Wang, Li; Shen, Dinggang; Zhu, Hongtu; Gilmore, John H

    2017-03-01

    Brain structural covariance networks (SCNs) composed of regions with correlated variation are altered in neuropsychiatric disease and change with age. Little is known about the development of SCNs in early childhood, a period of rapid cortical growth. We investigated the development of structural and maturational covariance networks, including default, dorsal attention, primary visual and sensorimotor networks in a longitudinal population of 118 children after birth to 2 years old and compared them with intrinsic functional connectivity networks. We found that structural covariance of all networks exhibit strong correlations mostly limited to their seed regions. By Age 2, default and dorsal attention structural networks are much less distributed compared with their functional maps. The maturational covariance maps, however, revealed significant couplings in rates of change between distributed regions, which partially recapitulate their functional networks. The structural and maturational covariance of the primary visual and sensorimotor networks shows similar patterns to the corresponding functional networks. Results indicate that functional networks are in place prior to structural networks, that correlated structural patterns in adult may arise in part from coordinated cortical maturation, and that regional co-activation in functional networks may guide and refine the maturation of SCNs over childhood development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster.

    PubMed

    Ganchrow, Donald; Ganchrow, Judith R; Verdin-Alcazar, Mary; Whitehead, Mark C

    2003-01-01

    The neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), as well as their respective tyrosine kinase (Trk) receptors, TrkB and TrkC, influence peripheral target cell innervation, survival, and proliferation. In the mature taste system the role of neurotrophins and their receptors is not known. The mature hamster is an intriguing model because anterior lingual fungiform, unlike posterior lingual foliate and circumvallate, taste buds survive denervation. In light of this difference, we examined whether the degree of neurotrophin- or neurotrophin receptor-like immunoreactivity (IR) normally differs among lingual gemmal fields. In single- and double-labeled immunofluorescent experiments, 3,209 taste bud sections (profiles) from 13 hamsters were examined for immunopositive gemmal cells or nerve fibers using antibodies to BDNF and NT-3, their respective receptors TrkB and TrkC, and the neural marker ubiquitin c-terminal hydrolase L-1 [protein gene product (PGP) 9.5]. In each gemmal field, more than 75% of taste bud profiles showed immunopositivity to BDNF, NT-3, and TrkB. Across bud fields, BDNF-, TrkB-, and BDNF/TrkB-like IR, as well as PGP 9.5 and PGP 9.5/BDNF-like IR in centrally located, fungiform bud cells was greater (P < 0.0001 to P < 0.002) than in circumvallate or foliate buds. Within bud fields, the number of BDNF-like, labeled bud cells/bud profile was greater than that for NT-3-like IR in fungiform (P < 0.0002) and foliate (P < 0.0001) buds. TrkC was immunonegative in gemmal cells. The average density of TrkB- and TrkC-like fiber IR was more pronounced in fungiform than posterior gemmal-bearing papillae. Thus, fungiform papillae, whose taste buds are least affected by denervation, exhibit specific neurotrophin and receptor enrichment. Copyright 2002 Wiley-Liss, Inc.

  3. Characterization of cortical neuronal and glial alterations during culture of organotypic whole brain slices from neonatal and mature mice.

    PubMed

    Staal, Jerome A; Alexander, Samuel R; Liu, Yao; Dickson, Tracey D; Vickers, James C

    2011-01-01

    Organotypic brain slice culturing techniques are extensively used in a wide range of experimental procedures and are particularly useful in providing mechanistic insights into neurological disorders or injury. The cellular and morphological alterations associated with hippocampal brain slice cultures has been well established, however, the neuronal response of mouse cortical neurons to culture is not well documented. In the current study, we compared the cell viability, as well as phenotypic and protein expression changes in cortical neurons, in whole brain slice cultures from mouse neonates (P4-6), adolescent animals (P25-28) and mature adults (P50+). Cultures were prepared using the membrane interface method. Propidium iodide labeling of nuclei (due to compromised cell membrane) and AlamarBlue™ (cell respiration) analysis demonstrated that neonatal tissue was significantly less vulnerable to long-term culture in comparison to the more mature brain tissues. Cultures from P6 animals showed a significant increase in the expression of synaptic markers and a decrease in growth-associated proteins over the entire culture period. However, morphological analysis of organotypic brain slices cultured from neonatal tissue demonstrated that there were substantial changes to neuronal and glial organization within the neocortex, with a distinct loss of cytoarchitectural stratification and increased GFAP expression (p<0.05). Additionally, cultures from neonatal tissue had no glial limitans and, after 14 DIV, displayed substantial cellular protrusions from slice edges, including cells that expressed both glial and neuronal markers. In summary, we present a substantial evaluation of the viability and morphological changes that occur in the neocortex of whole brain tissue cultures, from different ages, over an extended period of culture.

  4. Morphological features of the neonatal brain support development of subsequent cognitive, language, and motor abilities.

    PubMed

    Spann, Marisa N; Bansal, Ravi; Rosen, Tove S; Peterson, Bradley S

    2014-09-01

    Knowledge of the role of brain maturation in the development of cognitive abilities derives primarily from studies of school-age children to adults. Little is known about the morphological features of the neonatal brain that support the subsequent development of abilities in early childhood, when maturation of the brain and these abilities are the most dynamic. The goal of our study was to determine whether brain morphology during the neonatal period supports early cognitive development through 2 years of age. We correlated morphological features of the cerebral surface assessed using deformation-based measures (surface distances) of high-resolution MRI scans for 33 healthy neonates, scanned between the first to sixth week of postmenstrual life, with subsequent measures of their motor, language, and cognitive abilities at ages 6, 12, 18, and 24 months. We found that morphological features of the cerebral surface of the frontal, mesial prefrontal, temporal, and occipital regions correlated with subsequent motor scores, posterior parietal regions correlated with subsequent language scores, and temporal and occipital regions correlated with subsequent cognitive scores. Measures of the anterior and middle portions of the cingulate gyrus correlated with scores across all three domains of ability. Most of the significant findings were inverse correlations located bilaterally in the brain. The inverse correlations may suggest either that a more protracted morphological maturation or smaller local volumes of neonatal brain tissue supports better performance on measures of subsequent motor, language, and cognitive abilities throughout the first 2 years of postnatal life. The correlations of morphological measures of the cingulate with measures of performance across all domains of ability suggest that the cingulate supports a broad range of skills in infancy and early childhood, similar to its functions in older children and adults. Copyright © 2014 Wiley Periodicals, Inc.

  5. Concepts on the pathogenesis of adolescent idiopathic scoliosis. Bone growth and mass, vertebral column, spinal cord, brain, skull, extra-spinal left-right skeletal length asymmetries, disproportions and molecular pathogenesis.

    PubMed

    Burwell, R Geoffrey; Dangerfield, Peter H; Freeman, Brian J C

    2008-01-01

    There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). Encouraging advances thought to be related to AIS pathogenesis have recently been made in several fields including anthropometry of bone growth, bone mass, spinal growth modulation, extra-spinal left-right skeletal length asymmetries and disproportions, magnetic resonance imaging of vertebral column, spinal cord, brain, skull, and molecular pathogenesis. These advances are leading to the evaluation of new treatments including attempts at minimally invasive surgery on the spine and peri-apical ribs. Several concepts of AIS are outlined indicating their clinical applications but not their research potential. The concepts, by derivation morphological, molecular and mathematical, are addressed in 15 sections: 1) initiating and progressive factors; 2) relative anterior spinal overgrowth; 3) dorsal shear forces that create axial rotational instability; 4) rotational preconstraint; 5) uncoupled, or asynchronous, spinal neuro-osseous growth; 6) brain, nervous system and skull; 7) a novel neuro-osseous escalator concept based on a putative abnormality of two normal polarized processes namely, a) increasing skeletal dimensions, and b) the CNS body schema - both contained within a neuro-osseous timing of maturation (NOTOM) concept; 8) transverse plane pelvic rotation, skeletal asymmetries and developmental theory; 9) thoraco-spinal concept; 10) origin in contracture at the hips; 11) osteopenia; 12) melatonin deficiency; 13) systemic melatonin-signaling pathway dysfunction; 14) platelet calmodulin dysfunction; and 15) biomechanical spinal growth modulation. From these concepts, a collective model for AIS pathogenesis is formulated. The central concept of this model includes the body schema of the neural systems, widely-studied in adults, that control normal posture and coordinated movements with frames of reference in the posterior parietal cortex. The escalator concept has implications for the normal development of upright posture, and the evolution in humans of neural control, the trunk and unique bipedal gait.

  6. MicroRNA-7: A miRNA with expanding roles in development and disease.

    PubMed

    Horsham, Jessica L; Ganda, Clarissa; Kalinowski, Felicity C; Brown, Rikki A M; Epis, Michael R; Leedman, Peter J

    2015-12-01

    MicroRNAs (miRNAs) are a family of short, non-coding RNA molecules (∼22nt) involved in post-transcriptional control of gene expression. They act via base-pairing with mRNA transcripts that harbour target sequences, resulting in accelerated mRNA decay and/or translational attenuation. Given miRNAs mediate the expression of molecules involved in many aspects of normal cell development and functioning, it is not surprising that aberrant miRNA expression is closely associated with many human diseases. Their pivotal role in driving a range of normal cellular physiology as well as pathological processes has established miRNAs as potential therapeutics, as well as potential diagnostic and prognostic tools in human health. MicroRNA-7 (miR-7) is a highly conserved miRNA which displays restricted spatiotemporal expression during development and in maturity. In humans and mice, mature miR-7 is generated from three different genes, illustrating unexpected redundancy and also the importance of this miRNA in regulating key cellular processes. In this review we examine the expanding role of miR-7 in the context of health, with emphasis on organ differentiation and development, as well as in various mammalian diseases, particularly of the brain, heart, endocrine pancreas and skin, as well as in cancer. The more we learn about miR-7, the more we realise the complexity of its regulation and potential functional application both from a biomarker and therapeutic perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Towards solving the hard problem of consciousness: The varieties of brain resonances and the conscious experiences that they support.

    PubMed

    Grossberg, Stephen

    2017-03-01

    The hard problem of consciousness is the problem of explaining how we experience qualia or phenomenal experiences, such as seeing, hearing, and feeling, and knowing what they are. To solve this problem, a theory of consciousness needs to link brain to mind by modeling how emergent properties of several brain mechanisms interacting together embody detailed properties of individual conscious psychological experiences. This article summarizes evidence that Adaptive Resonance Theory, or ART, accomplishes this goal. ART is a cognitive and neural theory of how advanced brains autonomously learn to attend, recognize, and predict objects and events in a changing world. ART has predicted that "all conscious states are resonant states" as part of its specification of mechanistic links between processes of consciousness, learning, expectation, attention, resonance, and synchrony. It hereby provides functional and mechanistic explanations of data ranging from individual spikes and their synchronization to the dynamics of conscious perceptual, cognitive, and cognitive-emotional experiences. ART has reached sufficient maturity to begin classifying the brain resonances that support conscious experiences of seeing, hearing, feeling, and knowing. Psychological and neurobiological data in both normal individuals and clinical patients are clarified by this classification. This analysis also explains why not all resonances become conscious, and why not all brain dynamics are resonant. The global organization of the brain into computationally complementary cortical processing streams (complementary computing), and the organization of the cerebral cortex into characteristic layers of cells (laminar computing), figure prominently in these explanations of conscious and unconscious processes. Alternative models of consciousness are also discussed. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  8. A preliminary investigation of moral reasoning and empathy after traumatic brain injury in adolescents.

    PubMed

    Beauchamp, M H; Dooley, J J; Anderson, V

    2013-01-01

    Traumatic brain injury (TBI) sustained during childhood can affect a number of socio-cognitive skills; however, little attention has focused on the integrity of moral reasoning in the assessment of post-TBI social sequelae and the role of empathy and intelligence on moral maturity. In a quasi-experimental, cross-sectional research design, moral reasoning maturity and empathy in adolescents with mild-to-severe TBI (n = 25) were compared to typically-developing peers (n = 66). Participants were administered the So-Moral and So-Mature, tasks of socio-moral reasoning and maturity, the Index of Empathy for Children and Adolescents, the Wechsler Abbreviated Scale of Intelligence and a demographic questionnaire. Participants with TBI had significantly lower levels of moral reasoning maturity. Further, adolescents with moderate-to-severe TBI had lower levels of empathy. Empathy correlated positively with moral reasoning abilities and, together with intellectual function, predicted a small, but significant proportion of moral reasoning outcome. Youth who sustained TBI during childhood have poorer moral reasoning abilities than their non-injured peers, potentially placing them at risk for poor social decision-making and socially maladaptive behaviour. This can have a significant impact on long-term social functioning.

  9. Longitudinal Growth Curves of Brain Function Underlying Inhibitory Control through Adolescence

    PubMed Central

    Foran, William; Velanova, Katerina; Luna, Beatriz

    2013-01-01

    Neuroimaging studies suggest that developmental improvements in inhibitory control are primarily supported by changes in prefrontal executive function. However, studies are contradictory with respect to how activation in prefrontal regions changes with age, and they have yet to analyze longitudinal data using growth curve modeling, which allows characterization of dynamic processes of developmental change, individual differences in growth trajectories, and variables that predict any interindividual variability in trajectories. In this study, we present growth curves modeled from longitudinal fMRI data collected over 302 visits (across ages 9 to 26 years) from 123 human participants. Brain regions within circuits known to support motor response control, executive control, and error processing (i.e., aspects of inhibitory control) were investigated. Findings revealed distinct developmental trajectories for regions within each circuit and indicated that a hierarchical pattern of maturation of brain activation supports the gradual emergence of adult-like inhibitory control. Mean growth curves of activation in motor response control regions revealed no changes with age, although interindividual variability decreased with development, indicating equifinality with maturity. Activation in certain executive control regions decreased with age until adolescence, and variability was stable across development. Error-processing activation in the dorsal anterior cingulate cortex showed continued increases into adulthood and no significant interindividual variability across development, and was uniquely associated with task performance. These findings provide evidence that continued maturation of error-processing abilities supports the protracted development of inhibitory control over adolescence, while motor response control regions provide early-maturing foundational capacities and suggest that some executive control regions may buttress immature networks as error processing continues to mature. PMID:24227721

  10. The convergence of maturational change and structural covariance in human cortical networks.

    PubMed

    Alexander-Bloch, Aaron; Raznahan, Armin; Bullmore, Ed; Giedd, Jay

    2013-02-13

    Large-scale covariance of cortical thickness or volume in distributed brain regions has been consistently reported by human neuroimaging studies. The mechanism of this population covariance of regional cortical anatomy has been hypothetically related to synchronized maturational changes in anatomically connected neuronal populations. Brain regions that grow together, i.e., increase or decrease in volume at the same rate over the course of years in the same individual, are thus expected to demonstrate strong structural covariance or anatomical connectivity across individuals. To test this prediction, we used a structural MRI dataset on healthy young people (N = 108; aged 9-22 years at enrollment), comprising 3-6 longitudinal scans on each participant over 6-12 years of follow-up. At each of 360 regional nodes, and for each participant, we estimated the following: (1) the cortical thickness in the median scan and (2) the linear rate of change in cortical thickness over years of serial scanning. We constructed structural and maturational association matrices and networks from these measurements. Both structural and maturational networks shared similar global and nodal topological properties, as well as mesoscopic features including a modular community structure, a relatively small number of highly connected hub regions, and a bias toward short distance connections. Using resting-state functional magnetic resonance imaging data on a subset of the sample (N = 32), we also demonstrated that functional connectivity and network organization was somewhat predictable by structural/maturational networks but demonstrated a stronger bias toward short distance connections and greater topological segregation. Brain structural covariance networks are likely to reflect synchronized developmental change in distributed cortical regions.

  11. Some aspects of clinical relevance in the maturation of respiratory control in infants.

    PubMed

    Thach, Bradley T

    2008-06-01

    Two reflex mechanisms important for survival are discussed. Brain stem and cardiovascular mechanisms that are responsible for recovery from severe hypoxia (autoresuscitation) are important for survival in acutely hypoxic infants and adults. Failure of this mechanism may be important in sudden infant death syndrome (SIDS), because brain stem-mediated hypoxic gasping is essential for successful autoresuscitation and because SIDS infants appear to attempt to autoresuscitate just before death. A major function of another mechanism is to protect the airway from fluid aspiration. The various components of the laryngeal chemoreflex (LCR) change during maturation. The LCR is an important cause of prolonged apneic spells in infants. Consequently, it also may have a role in causing SIDS. Maturational changes and/or inadequacy of this reflex may be responsible for pulmonary aspiration and infectious pneumonia in both children and adults.

  12. Cortical metabolism in pyruvate dehydrogenase deficiency revealed by ex vivo multiplet 13C-NMR of the adult mouse brain

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Malloy, Craig R.; Patel, Mulchand S.; Pascual, Juan M.

    2013-01-01

    The pyruvate dehydrogenase complex (PDC), required for complete glucose oxidation, is essential for brain development. Although PDC deficiency is associated with a severe clinical syndrome, little is known about its effects on either substrate oxidation or synthesis of key metabolites such as glutamate and glutamine. Computational simulations of brain metabolism indicated that a 25% reduction in flux through PDC and a corresponding increase in flux from an alternative source of acetyl-CoA would substantially alter the 13C NMR spectrum obtained from brain tissue. Therefore, we evaluated metabolism of [1,6-13C2]glucose (oxidized by both neurons and glia) and [1,2-13C2]acetate (an energy source that bypasses PDC) in the cerebral cortex of adult mice mildly and selectively deficient in brain PDC activity, a viable model that recapitulates the human disorder. Intravenous infusions were performed in conscious mice and extracts of brain tissue were studied by 13C NMR. We hypothesized that mice deficient in PDC must increase the proportion of energy derived from acetate metabolism in the brain. Unexpectedly, the distribution of 13C in glutamate and glutamine, a measure of the relative flux of acetate and glucose into the citric acid cycle, was not altered. The 13C labeling pattern in glutamate differed significantly from glutamine, indicating preferential oxidation of [1,2-13C]acetate relative to [1,6-13C]glucose by a readily discernible metabolic domain of the brain of both normal and mutant mice, presumably glia. These findings illustrate that metabolic compartmentation is preserved in the PDC-deficient cerebral cortex, probably reflecting intact neuron-glia metabolic interactions, and that a reduction in brain PDC activity sufficient to induce cerebral dysgenesis during development does not appreciably disrupt energy metabolism in the mature brain. PMID:22884585

  13. The distribution of neuropeptide Y and dynorphin immunoreactivity in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, from birth to sexual maturity

    NASA Technical Reports Server (NTRS)

    Cepriano, L. M.; Schreibman, M. P.

    1993-01-01

    Immunoreactive neuropeptide Y and dynorphin have been localized in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, at different ages and stages of development from birth to sexual maturity. Immunoreactive neuropeptide Y was found in perikarya and tracts of the nucleus olfactoretinalis, telencephalon, ventral tegmentum and in the neurohypophysis and in the three regions of the adenohypophysis. Immunoreactive dynorphin was found in nerve tracts in the olfactory bulb and in cells of the pars intermedia and the rostral pars distalis of the pituitary gland.

  14. Vasopressin excites interneurons to suppress hippocampal network activity across a broad span of brain maturity at birth

    PubMed Central

    Spoljaric, Albert; Seja, Patricia; Spoljaric, Inkeri; Virtanen, Mari A.; Lindfors, Jenna; Uvarov, Pavel; Summanen, Milla; Crow, Ailey K.; Hsueh, Brian; Puskarjov, Martin; Ruusuvuori, Eva; Voipio, Juha; Deisseroth, Karl; Kaila, Kai

    2017-01-01

    During birth in mammals, a pronounced surge of fetal peripheral stress hormones takes place to promote survival in the transition to the extrauterine environment. However, it is not known whether the hormonal signaling involves central pathways with direct protective effects on the perinatal brain. Here, we show that arginine vasopressin specifically activates interneurons to suppress spontaneous network events in the perinatal hippocampus. Experiments done on the altricial rat and precocial guinea pig neonate demonstrated that the effect of vasopressin is not dependent on the level of maturation (depolarizing vs. hyperpolarizing) of postsynaptic GABAA receptor actions. Thus, the fetal mammalian brain is equipped with an evolutionarily conserved mechanism well-suited to suppress energetically expensive correlated network events under conditions of reduced oxygen supply at birth. PMID:29183979

  15. Serum human chorionic gonadotropin levels on the day before oocyte retrieval do not correlate with oocyte maturity

    PubMed Central

    Levy, Gary; Hill, Micah J.; Ramirez, Christina; Plowden, Torrie; Pilgrim, Justin; Howard, Robin S.; Segars, James H.; Csokmay, John

    2014-01-01

    Objective To evaluate the correlation of preretrieval quantitative serum hCG level with oocyte maturity. Design Retrospective cohort study. Setting Military assisted reproductive technology (ART) program. Patient(s) Fresh autologous ART cycles. Intervention(s) Serum hCG level the day before oocyte retrieval. Main Outcome Measure(s) Linear regression was used to correlate serum hCG levels and oocyte maturity rates. Normal oocyte maturity was defined as ≥ 75% and the Wilcoxon rank sum test was used to compare serum hCG levels in patients with normal and low oocyte maturity. Threshold analysis was performed to determine hCG levels that could predict oocyte maturity. Result(s) A total of 468 ART cycles were analyzed. Serum hCG level was not correlated with hCG dose; however, it was negatively correlated with body mass index (BMI). Serum hCG levels did not differ between patients with oocyte maturity of <75% and ≥ 75%. Serum hCG levels did not correlate with oocyte maturity rates. Receiver operator characteristic and less than efficiency curves failed to demonstrate thresholds at which hCG could predict oocyte maturity. Conclusion(s) Serum hCG levels were not correlated with oocyte maturity. Although a positive hCG was reassuring that mature oocytes would be retrieved for most patients, the specific value was not helpful. PMID:23375205

  16. Bone age maturity assessment using hand-held device

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Gilsanz, Vicente; Liu, Xiaodong; Boechat, M. I.

    2004-04-01

    Purpose: Assessment of bone maturity is traditionally performed through visual comparison of hand and wrist radiograph with existing reference images in textbooks. Our goal was to develop a digital index based on idealized hand Xray images that can be incorporated in a hand held computer and used for visual assessment of bone age for patients. Material and methods: Due to the large variability in bone maturation in normals, we generated a set of "ideal" images obtained by computer combinations of images from our normal reference data sets. Software for hand-held PDA devices was developed for easy navigation through the set of images and visual selection of matching images. A formula based on our statistical analysis provides the standard deviation from normal based on the chronological age of the patient. The accuracy of the program was compared to traditional interpretation by two radiologists in a double blind reading of 200 normal Caucasian children (100 boys, 100 girls). Results: Strong correlations were present between chronological age and bone age (r > 0.9) with no statistical difference between the digital and traditional assessment methods. Determinations of carpal bone maturity in adolescents was slightly more accurate using the digital system. The users did praise the convenience and effectiveness of the digital Palm Index in clinical practice. Conclusion: An idealized digital Palm Bone Age Index provides a convenient and effective alternative to conventional atlases for the assessment of skeletal maturity.

  17. Effect of Artocarpus heterophyllus and Asteracanthus longifolia on glucose tolerance in normal human subjects and in maturity-onset diabetic patients.

    PubMed

    Fernando, M R; Wickramasinghe, N; Thabrew, M I; Ariyananda, P L; Karunanayake, E H

    1991-03-01

    Investigations were carried out to evaluate the effects of hot-water extracts of Artocarpus heterophyllus leaves and Asteracanthus longifolia whole plant material on the glucose tolerance of normal human subjects and maturity-onset diabetic patients. The extracts of both Artocarpus heterophyllus and Asteracanthus longifolia significantly improved glucose tolerance in the normal subjects and the diabetic patients when investigated at oral doses equivalent to 20 g/kg of starting material.

  18. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model

    PubMed Central

    Kobari, Ladan; Yates, Frank; Oudrhiri, Noufissa; Francina, Alain; Kiger, Laurent; Mazurier, Christelle; Rouzbeh, Shaghayegh; El-Nemer, Wassim; Hebert, Nicolas; Giarratana, Marie-Catherine; François, Sabine; Chapel, Alain; Lapillonne, Hélène; Luton, Dominique; Bennaceur-Griscelli, Annelise; Douay, Luc

    2012-01-01

    Background Human induced pluripotent stem cells offer perspectives for cell therapy and research models for diseases. We applied this approach to the normal and pathological erythroid differentiation model by establishing induced pluripotent stem cells from normal and homozygous sickle cell disease donors. Design and Methods We addressed the question as to whether these cells can reach complete erythroid terminal maturation notably with a complete switch from fetal to adult hemoglobin. Sickle cell disease induced pluripotent stem cells were differentiated in vitro into red blood cells and characterized for their terminal maturation in terms of hemoglobin content, oxygen transport capacity, deformability, sickling and adherence. Nucleated erythroblast populations generated from normal and pathological induced pluripotent stem cells were then injected into non-obese diabetic severe combined immunodeficiency mice to follow the in vivo hemoglobin maturation. Results We observed that in vitro erythroid differentiation results in predominance of fetal hemoglobin which rescues the functionality of red blood cells in the pathological model of sickle cell disease. We observed, in vivo, the switch from fetal to adult hemoglobin after infusion of nucleated erythroid precursors derived from either normal or pathological induced pluripotent stem cells into mice. Conclusions These results demonstrate that human induced pluripotent stem cells: i) can achieve complete terminal erythroid maturation, in vitro in terms of nucleus expulsion and in vivo in terms of hemoglobin maturation; and ii) open the way to generation of functionally corrected red blood cells from sickle cell disease induced pluripotent stem cells, without any genetic modification or drug treatment. PMID:22733021

  19. 4D ultrasound study of fetal facial expressions in the third trimester of pregnancy.

    PubMed

    AboEllail, Mohamed Ahmed Mostafa; Kanenishi, Kenji; Mori, Nobuhiro; Mohamed, Osman Abdel Kareem; Hata, Toshiyuki

    2018-07-01

    To evaluate the frequencies of fetal facial expressions in the third trimester of pregnancy, when fetal brain maturation and development are progressing in normal healthy fetuses. Four-dimensional (4 D) ultrasound was used to examine the facial expressions of 111 healthy fetuses between 30 and 40 weeks of gestation. The frequencies of seven facial expressions (mouthing, yawning, smiling, tongue expulsion, scowling, sucking, and blinking) during 15-minute recordings were assessed. The fetuses were further divided into three gestational age groups (25 fetuses at 30-31 weeks, 43 at 32-35 weeks, and 43 at ≥36 weeks). Comparison of facial expressions among the three gestational age groups was performed to determine their changes with advancing gestation. Mouthing was the most frequent facial expression at 30-40 weeks of gestation, followed by blinking. Both facial expressions were significantly more frequent than the other expressions (p < .05). The frequency of yawning decreased with the gestational age after 30 weeks of gestation (p = .031). Other facial expressions did not change between 30 and 40 weeks. The frequency of yawning at 30-31 weeks was significantly higher than that at 36-40 weeks (p < .05). There were no significant differences in the other facial expressions among the three gestational age groups. Our results suggest that 4D ultrasound assessment of fetal facial expressions may be a useful modality for evaluating fetal brain maturation and development. The decreasing frequency of fetal yawning after 30 weeks of gestation may explain the emergence of distinct states of arousal.

  20. Growth axis maturation is linked to nutrition, growth and developmental rate.

    PubMed

    Hetz, Jennifer A; Menzies, Brandon R; Shaw, Geoffrey; Rao, Alexandra; Clarke, Iain J; Renfree, Marilyn B

    2015-08-15

    Maturation of the mammalian growth axis is thought to be linked to the transition from fetal to post-natal life at birth. However, in an altricial marsupial, the tammar wallaby (Macropus eugenii), this process occurs many months after birth but at a time when the young is at a similar developmental stage to that of neonatal eutherian mammals. Here we manipulate growth rates and demonstrate in slow, normal and fast growing tammar young that nutrition and growth rate affect the time of maturation of the growth axis. Maturation of GH/IGF-I axis components occurred earlier in fast growing young, which had significantly increased hepatic GHR, IGF1 and IGFALS expression, plasma IGF-I concentrations, and significantly decreased plasma GH concentrations compared to age-matched normal young. These data support the hypothesis that the time of maturation of the growth axis depends on the growth rate and maturity of the young, which can be accelerated by changing their nutritional status. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Biological Maturation in Adolescence and the Development of Drinking Habits and Alcohol Abuse among Young Males: A Prospective Longitudinal Study.

    ERIC Educational Resources Information Center

    Andersson, Tommy; Magnusson, David

    1990-01-01

    The relationship between biological maturation, as evidenced by skeletal growth, during adolescence and the development of drinking habits and alcohol abuse was studied for a representative group of Swedish males (N=88). Early and late maturers had more advanced drinking habits at age 14 years than did normally maturing subjects. (TJH)

  2. Brain Barrier Disruption and Region-Specific Neuronal Degeneration during Necrotizing Enterocolitis in Preterm Pigs.

    PubMed

    Brunse, Anders; Abbaspour, Afrouz; Sangild, Per Torp

    2018-06-06

    Necrotizing enterocolitis (NEC) increases the risk of brain injury and impaired neurodevelopment. Rapid brain maturation prior to birth may explain why preterm brains are particularly vulnerable to serious infections. Using pigs as models, we hypothesized that preterm birth was associated with altered blood-cerebrospinal fluid (CSF) barrier (BCSFB) function and cerebral structural deficits, and that NEC was associated with systemic inflammation, BCSFB disruption, and neuroinflammation. First, cesarean-delivered preterm and term pigs (n = 43-44) were euthanized at birth to investigate BCSFB function and markers of brain structural maturation, or on day 5 to measure markers of blood-brain barrier maturation in the hippocampus and striatum (experiment 1). Next, preterm pigs (n = 162) were fed increasing volumes of infant formula to assess NEC lesions, systemic inflammation, BCSFB permeability, cerebral histopathology, hippocampal micro-glial density, and cytokine levels on day 5 (experiments 2 and 3). In experiment 1, preterm newborns had increased CSF-plasma ratios of albumin and raffinose, reduced CSF glucose levels, as well as increased cerebral hydration and reduced white matter myelination compared with term animals. We observed lower hippocampal (but not striatal) perivascular astrocyte coverage for the first 5 days after preterm birth, accompanied by altered cell junction protein levels. In experiments 2 and- 3, piglets with severe NEC lesions showed reduced blood thrombocytes and increased plasma C-reactive protein and interleukin-6 levels. NEC was associated with increased CSF-plasma albumin and raffinose ratios, reduced CSF leukocyte numbers, and increased cerebral hydration. In the hippocampus, NEC was associated with pyramidal neuron loss and increased interleukin-6 levels. In the short term, NEC did not affect cerebral myelination or microglia density. In conclusion, altered BCSFB properties and brain structural deficits were observed in pigs after preterm birth. Acute gastrointestinal NEC lesions were associated with systemic inflammation, increased BCSFB permeability and region-specific neuronal damage. The results demonstrate the importance of early interventions against NEC to prevent brain injury in preterm infants. © 2018 S. Karger AG, Basel.

  3. MeCP2 overexpression inhibits proliferation, migration and invasion of C6 glioma by modulating ERK signaling and gene expression.

    PubMed

    Sharma, Kedarlal; Singh, Juhi; Frost, Emma E; Pillai, Prakash P

    2018-05-01

    MethylCpG binding protein-2 (MeCP2) is an epigenetic regulator and essential for brain development. MeCP2 mutations are associated with a spectrum of neuro-developmental disorders that vary depending on the patient gender, most notably Rett Syndrome. MeCP2 is essential for normal neuronal maturation, and glial cell function in the brain. Besides, its role in neurodevelopmental disorders, MeCP2 is involved in many cancers such as breast, colorectal, lung, liver, and prostate cancer. Glioma is the most lethal form of brain cancer. Studies have shown that dysfunctional epigenetic regulation plays a crucial role in glioma progression. Further, previous studies have suggested a role for MeCP2 in glioma pathogenesis. In this study, we show that MeCP2 may play a critical role in the suppression of glioma progression. Stable overexpression of MeCP2in C6 glioma cells inhibits proliferation, migration, invasion, and adhesion. Moreover, MeCP2 overexpression inhibits pERKand BDNF expression while inducing GFAP expression in C6 glioma. These findings suggest that MeCP2 may play a crucial role in suppression of glioma progression. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Characterization of oily mature skin by biophysical and skin imaging techniques.

    PubMed

    de Melo, M O; Maia Campos, P M B G

    2018-02-13

    The skin is a complex biological system and may suffer change according to the environmental factors, as higher temperatures can increase sebum excretion, presenting oiliness and acne. These alterations can persist during the aging and provoke more changes in aged skin. In this study we evaluated the mature oily skin characteristics using biophysical and skin imaging techniques. Sixty healthy female subjects, aged between 39 and 55 years old were recruited and separated into 2 groups according to their skin type: normal/dry and oily skin. The skin was evaluated in terms of stratum corneum water content, transepidermal water loss (TEWL) sebum content, dermis thickness and echogenicity, skin microrelief, and pores content. The mature oily skin presented no significant differences when compared to the normal/dry skin on the stratum corneum water content and TEWL parameters. The sebum content was significantly higher on the oily skin group. The microrelief analysis showed an increase of skin roughness values in the oily skin and increase of scaliness in the normal/dry skin. The oily skin showed lower dermis echogenicity mainly in the frontal region and higher dermis thickness when compared to normal/dry skin. The mature oily skin showed different characteristics from normal/dry skin in terms of sebum content, microrelief parameters, and dermis thickness. This way, the characterization of mature oily skin in an objective way is very important to development of dermocosmetic products for more effective treatments focused specially on this type of skin. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Data-driven identification of intensity normalization region based on longitudinal coherency of 18F-FDG metabolism in the healthy brain.

    PubMed

    Zhang, Huiwei; Wu, Ping; Ziegler, Sibylle I; Guan, Yihui; Wang, Yuetao; Ge, Jingjie; Schwaiger, Markus; Huang, Sung-Cheng; Zuo, Chuantao; Förster, Stefan; Shi, Kuangyu

    2017-02-01

    In brain 18 F-FDG PET data intensity normalization is usually applied to control for unwanted factors confounding brain metabolism. However, it can be difficult to determine a proper intensity normalization region as a reference for the identification of abnormal metabolism in diseased brains. In neurodegenerative disorders, differentiating disease-related changes in brain metabolism from age-associated natural changes remains challenging. This study proposes a new data-driven method to identify proper intensity normalization regions in order to improve separation of age-associated natural changes from disease related changes in brain metabolism. 127 female and 128 male healthy subjects (age: 20 to 79) with brain 18 F-FDG PET/CT in the course of a whole body cancer screening were included. Brain PET images were processed using SPM8 and were parcellated into 116 anatomical regions according to the AAL template. It is assumed that normal brain 18 F-FDG metabolism has longitudinal coherency and this coherency leads to better model fitting. The coefficient of determination R 2 was proposed as the coherence coefficient, and the total coherence coefficient (overall fitting quality) was employed as an index to assess proper intensity normalization strategies on single subjects and age-cohort averaged data. Age-associated longitudinal changes of normal subjects were derived using the identified intensity normalization method correspondingly. In addition, 15 subjects with clinically diagnosed Parkinson's disease were assessed to evaluate the clinical potential of the proposed new method. Intensity normalizations by paracentral lobule and cerebellar tonsil, both regions derived from the new data-driven coherency method, showed significantly better coherence coefficients than other intensity normalization regions, and especially better than the most widely used global mean normalization. Intensity normalization by paracentral lobule was the most consistent method within both analysis strategies (subject-based and age-cohort averaging). In addition, the proposed new intensity normalization method using the paracentral lobule generates significantly higher differentiation from the age-associated changes than other intensity normalization methods. Proper intensity normalization can enhance the longitudinal coherency of normal brain glucose metabolism. The paracentral lobule followed by the cerebellar tonsil are shown to be the two most stable intensity normalization regions concerning age-dependent brain metabolism. This may provide the potential to better differentiate disease-related changes from age-related changes in brain metabolism, which is of relevance in the diagnosis of neurodegenerative disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Neurotrophic Factors and Maternal Nutrition During Pregnancy.

    PubMed

    Dhobale, M

    2017-01-01

    Maternal nutrition is one of the major determinants of pregnancy outcome. It has been suggested that reduced intakes or lack of specific nutrients during pregnancy influences the length of gestation, proper placental and fetal growth during pregnancy. Maternal nutrition, particularly micronutrients such as folate and vitamin B 12 , and long-chain polyunsaturated fatty acids (LCPUFA) are the major determinants of the one carbon cycle and are suggested to be at the heart of intrauterine programming of diseases in adult life. LCPUFA play a key role in the normal feto-placental development, as well as in the development and functional maturation of the brain and central nervous system and also regulate the levels of neurotrophic factors. These neurotrophic factors are known to regulate the development of the placenta at the materno-fetal interface and act in a paracrine and endocrine manner. Neurotrophic factors like brain-derived neurotrophic factor and nerve growth factor are proteins involved in angiogenesis and potentiate the placental development. This chapter mainly focuses on micronutrients since they play a main physiological role during pregnancy. © 2017 Elsevier Inc. All rights reserved.

  7. Modeling Pediatric Brain Trauma: Piglet Model of Controlled Cortical Impact.

    PubMed

    Pareja, Jennifer C Munoz; Keeley, Kristen; Duhaime, Ann-Christine; Dodge, Carter P

    2016-01-01

    The brain has different responses to traumatic injury as a function of its developmental stage. As a model of injury to the immature brain, the piglet shares numerous similarities in regards to morphology and neurodevelopmental sequence compared to humans. This chapter describes a piglet scaled focal contusion model of traumatic brain injury that accounts for the changes in mass and morphology of the brain as it matures, facilitating the study of age-dependent differences in response to a comparable mechanical trauma.

  8. In vitro fertilization of in vitro-matured equine oocytes: effect of maturation medium, duration of maturation, and sperm calcium ionophore treatment, and comparison with rates of fertilization in vivo after oviductal transfer.

    PubMed

    Hinrichs, K; Love, C C; Brinsko, S P; Choi, Y H; Varner, D D

    2002-07-01

    Three experiments were conducted to evaluate the effect of oocyte and sperm treatments on rates of in vitro fertilization (IVF) in the horse and to determine the capacity of in vitro-matured horse oocytes to be fertilized in vivo. There was no effect of duration of oocyte maturation (24 vs. 42 h) or calcium ionophore concentration during sperm capacitation (3 microM vs. 7.14 microM) on in vitro fertilization rates. Oocytes matured in 100% follicular fluid had significantly higher fertilization (13% to 24%) than did oocytes matured in maturation medium or in 20% follicular fluid (0% to 12%; P < 0.05). There was no significant difference in fertilization rate among 3 sperm treatments utilizing 7.14 microM calcium ionophore (12% to 21%). Of in vitro-matured oocytes recovered 40-44 h after transfer to the oviducts of inseminated mares, 77% showed normal fertilization (2 pronuclei to normal cleavage). Cleavage to 2 or more cells was seen in 22% of oocytes matured in follicular fluid and 63% of oocytes matured in maturation medium; this difference was significant (P < 0.05). We conclude that in vitro-matured horse oocytes are capable of being fertilized at high rates in the appropriate environment and that in vitro maturation of oocytes in follicular fluid increases fertilization rate in vitro but reduces embryo development after fertilization in vivo. Further work is needed to determine the optimum environment for sperm capacitation and IVF in the horse.

  9. Loss of Brain Aerobic Glycolysis in Normal Human Aging.

    PubMed

    Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E

    2017-08-01

    The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Brain Maturation, Cognition and Voice Pattern in a Gender Dysphoria Case under Pubertal Suppression.

    PubMed

    Schneider, Maiko A; Spritzer, Poli M; Soll, Bianca Machado Borba; Fontanari, Anna M V; Carneiro, Marina; Tovar-Moll, Fernanda; Costa, Angelo B; da Silva, Dhiordan C; Schwarz, Karine; Anes, Maurício; Tramontina, Silza; Lobato, Maria I R

    2017-01-01

    Introduction: Gender dysphoria (GD) (DMS-5) is a condition marked by increasing psychological suffering that accompanies the incongruence between one's experienced or expressed gender and one's assigned gender. Manifestation of GD can be seen early on during childhood and adolescence. During this period, the development of undesirable sexual characteristics marks an acute suffering of being opposite to the sex of birth. Pubertal suppression with gonadotropin releasing hormone analogs (GnRHa) has been proposed for these individuals as a reversible treatment for postponing the pubertal development and attenuating psychological suffering. Recently, increased interest has been observed on the impact of this treatment on brain maturation, cognition and psychological performance. Objectives: The aim of this clinical report is to review the effects of puberty suppression on the brain white matter (WM) during adolescence. WM Fractional anisotropy, voice and cognitive functions were assessed before and during the treatment. MRI scans were acquired before, and after 22 and 28 months of hormonal suppression. Methods: We performed a longitudinal evaluation of a pubertal transgender girl undergoing hormonal treatment with GnRH analog. Three longitudinal magnetic resonance imaging (MRI) scans were performed for diffusion tensor imaging (DTI), regarding Fractional Anisotropy (FA) for regions of interest analysis. In parallel, voice samples for acoustic analysis as well as executive functioning with the Wechsler Intelligence Scale (WISC-IV) were performed. Results: During the follow-up, white matter fractional anisotropy did not increase, compared to normal male puberty effects on the brain. After 22 months of pubertal suppression, operational memory dropped 9 points and remained stable after 28 months of follow-up. The fundamental frequency of voice varied during the first year; however, it remained in the female range. Conclusion: Brain white matter fractional anisotropy remained unchanged in the GD girl during pubertal suppression with GnRHa for 28 months, which may be related to the reduced serum testosterone levels and/or to the patient's baseline low average cognitive performance.Global performance on the Weschler scale was slightly lower during pubertal suppression compared to baseline, predominantly due to a reduction in operational memory. Either a baseline of low average cognition or the hormonal status could play a role in cognitive performance during pubertal suppression. The voice pattern during the follow-up seemed to reflect testosterone levels under suppression by GnRHa treatment.

  11. Brain Maturation, Cognition and Voice Pattern in a Gender Dysphoria Case under Pubertal Suppression

    PubMed Central

    Schneider, Maiko A.; Spritzer, Poli M.; Soll, Bianca Machado Borba; Fontanari, Anna M. V.; Carneiro, Marina; Tovar-Moll, Fernanda; Costa, Angelo B.; da Silva, Dhiordan C.; Schwarz, Karine; Anes, Maurício; Tramontina, Silza; Lobato, Maria I. R.

    2017-01-01

    Introduction: Gender dysphoria (GD) (DMS-5) is a condition marked by increasing psychological suffering that accompanies the incongruence between one's experienced or expressed gender and one's assigned gender. Manifestation of GD can be seen early on during childhood and adolescence. During this period, the development of undesirable sexual characteristics marks an acute suffering of being opposite to the sex of birth. Pubertal suppression with gonadotropin releasing hormone analogs (GnRHa) has been proposed for these individuals as a reversible treatment for postponing the pubertal development and attenuating psychological suffering. Recently, increased interest has been observed on the impact of this treatment on brain maturation, cognition and psychological performance. Objectives: The aim of this clinical report is to review the effects of puberty suppression on the brain white matter (WM) during adolescence. WM Fractional anisotropy, voice and cognitive functions were assessed before and during the treatment. MRI scans were acquired before, and after 22 and 28 months of hormonal suppression. Methods: We performed a longitudinal evaluation of a pubertal transgender girl undergoing hormonal treatment with GnRH analog. Three longitudinal magnetic resonance imaging (MRI) scans were performed for diffusion tensor imaging (DTI), regarding Fractional Anisotropy (FA) for regions of interest analysis. In parallel, voice samples for acoustic analysis as well as executive functioning with the Wechsler Intelligence Scale (WISC-IV) were performed. Results: During the follow-up, white matter fractional anisotropy did not increase, compared to normal male puberty effects on the brain. After 22 months of pubertal suppression, operational memory dropped 9 points and remained stable after 28 months of follow-up. The fundamental frequency of voice varied during the first year; however, it remained in the female range. Conclusion: Brain white matter fractional anisotropy remained unchanged in the GD girl during pubertal suppression with GnRHa for 28 months, which may be related to the reduced serum testosterone levels and/or to the patient's baseline low average cognitive performance.Global performance on the Weschler scale was slightly lower during pubertal suppression compared to baseline, predominantly due to a reduction in operational memory. Either a baseline of low average cognition or the hormonal status could play a role in cognitive performance during pubertal suppression. The voice pattern during the follow-up seemed to reflect testosterone levels under suppression by GnRHa treatment. PMID:29184488

  12. Adolescent Brain Development and Underage Drinking in the United States: Identifying Risks of Alcohol Use in College Populations

    PubMed Central

    Silveri, Marisa M.

    2015-01-01

    Alcohol use typically is initiated during adolescence, an age period that overlaps with critical structural and functional maturation of the brain. Brain maturation and associated improvements in decision-making continue into the second decade of life, reaching plateaus within the period referred to as “emerging adulthood” (18–24 years). Emerging adulthood is the typical age span of the traditionally aged college student, which includes the age (21 years) when alcohol consumption becomes legal in the United States. This review highlights neurobiological evidence indicating the vulnerabilities of the emerging adult brain to alcohol effects. This review also identifies that reduced sensitivity to alcohol sedation and increased sensitivity to alcohol-related disruptions in memory, positive family history of alcoholism effects on brain structure and function, and emerging co-morbid psychiatric conditions serve as unique vulnerabilities that increase the risks associated with underage alcohol use. These vulnerabilities likely contribute to excessive and unsupervised drinking in college students. Discouraging alcohol consumption until neurobiological adulthood is reached is important for minimizing alcohol-related disruptions in brain development and decision-making capacity, and reducing the negative behavioral consequences associated with underage alcohol use. PMID:22894728

  13. Mechanisms of interactive specialization and emergence of functional brain circuits supporting cognitive development in children

    NASA Astrophysics Data System (ADS)

    Battista, Christian; Evans, Tanya M.; Ngoon, Tricia J.; Chen, Tianwen; Chen, Lang; Kochalka, John; Menon, Vinod

    2018-01-01

    Cognitive development is thought to depend on the refinement and specialization of functional circuits over time, yet little is known about how this process unfolds over the course of childhood. Here we investigated growth trajectories of functional brain circuits and tested an interactive specialization model of neurocognitive development which posits that the refinement of task-related functional networks is driven by a shared history of co-activation between cortical regions. We tested this model in a longitudinal cohort of 30 children with behavioral and task-related functional brain imaging data at multiple time points spanning childhood and adolescence, focusing on the maturation of parietal circuits associated with numerical problem solving and learning. Hierarchical linear modeling revealed selective strengthening as well as weakening of functional brain circuits. Connectivity between parietal and prefrontal cortex decreased over time, while connectivity within posterior brain regions, including intra-hemispheric and inter-hemispheric parietal connectivity, as well as parietal connectivity with ventral temporal occipital cortex regions implicated in quantity manipulation and numerical symbol recognition, increased over time. Our study provides insights into the longitudinal maturation of functional circuits in the human brain and the mechanisms by which interactive specialization shapes children's cognitive development and learning.

  14. Quantitative ultrasonography of the periventricular white and grey matter of the developing brain.

    PubMed

    Mullaart, R A; Thijssen, J M; Rotteveel, J J; Valckx, F M; van Geemen, A J

    1999-05-01

    This study addresses the value of operator-independent computer processing of ultrasonograms of the developing brain. With this aim, routine cranial ultrasonograms obtained from 39 term and preterm infants without clinical or sonographic evidence of brain damage were analyzed by five observers. The procedure, respectively, included: 1. the definition of four regions of interest (ROI), one white matter and one grey matter area on each side of the brain; 2. digitization of the sonogram data within these ROIs; 3. correction for the equipment settings, using data from a tissue-mimicking phantom as a reference; and 4. calculation of four sonogram characteristics (i.e., mean echo level, MEAN, signal-to-noise ratio, SNR, and axial and lateral correlation, CORAX and CORLAT, of the echo level co-occurrence matrix). Significant differences between both sides of the brain or a significant influence of ROI size were not found. The interobserver spread was considerable, but less than the intersubject spread. Two sonogram characteristics seemed strongly correlated in white and grey matter (CORAX and CORLAT) and another only in white matter (SNR with CORAX and CORLAT). MEAN seemed not to be correlated with any other characteristic. Furthermore, it was found that maturation equally decreases white and grey matter MEAN and, thus, hardly affects the ratio between the two. An effect on the other sonogram characteristics was only found in the white matter (i.e., an increase of SNR and a decrease of CORAX and CORLAT). Except for MEAN, the grey matter sonogram characteristics seem hardly affected by maturation. In view of these findings, we conclude that quantitative ultrasonography reveals white and grey matter maturation and, furthermore, provides a conceptional-age-independent reference (MEAN white:grey matter ratio) that might be found to facilitate the detection of pathologic brain alterations.

  15. Glutathione peroxidase overexpression does not rescue impaired neurogenesis in the injured immature brain.

    PubMed

    Potts, Matthew B; Rola, Radoslaw; Claus, Catherine P; Ferriero, Donna M; Fike, John R; Noble-Haeusslein, Linda J

    2009-06-01

    Traumatic brain injury (TBI) is a leading cause of disability among young children and is associated with long-term cognitive deficits. These clinical findings have prompted an investigation of the hippocampus in an experimental model of trauma to the developing brain at postnatal day (p21). Previous studies using this model have revealed a progressive loss of neurons in the hippocampus as brain-injured animals mature to young adulthood. Here we determined whether this hippocampal vulnerability is likewise reflected in altered neurogenesis and whether the antioxidant glutathione peroxidase (GPx) modulates neurogenesis during maturation of the injured immature brain. Male transgenic mice that overexpress GPx and wild-type littermates were subjected to controlled cortical impact or sham surgery on p21. At 2 weeks postinjury, the numbers of proliferating cells and immature neurons within the subgranular zone were measured by using Ki-67 and doublecortin, respectively. Bromodeoxyuridine (BrdU) was used to label dividing cells beginning 2 weeks postinjury. Survival (BrdU(+)) and neuronal differentiation (BrdU(+)/NeuN(+)) were then measured 4 weeks later via confocal microscopy. Two-way ANOVA revealed no significant interaction between genotype and injury. Subsequent analysis of the individual effects of injury and genotype, however, showed a significant reduction in subgranular zone proliferation (Ki-67) at 2 weeks postinjury (P = 0.0003) and precursor cell survival (BrdU(+)) at 6 weeks postinjury (P = 0.016) and a trend toward reduced neuronal differentiation (BrdU(+)/NeuN(+)) at 6 weeks postinjury (P = 0.087). Overall, these data demonstrate that traumatic injury to the injured immature brain impairs neurogenesis during maturation and suggest that GPx cannot rescue this reduced neurogenesis. (c) 2009 Wiley-Liss, Inc.

  16. Developmental effects of aggressive behavior in male adolescents assessed with structural and functional brain imaging

    PubMed Central

    Strenziok, Maren; Krueger, Frank; Heinecke, Armin; Lenroot, Rhoshel K.; Knutson, Kristine M.; van der Meer, Elke

    2011-01-01

    Aggressive behavior is common during adolescence. Although aggression-related functional changes in the ventromedial prefrontal cortex (vmPFC) and frontopolar cortex (FPC) have been reported in adults, the neural correlates of aggressive behavior in adolescents, particularly in the context of structural neurodevelopment, are obscure. We used functional and structural magnetic resonance imaging (MRI) to measure the blood oxygenation level-depended signal and cortical thickness. In a block-designed experiment, 14–17-year old adolescents imagined aggressive and non-aggressive interactions with a peer. We show reduced vmPFC activation associated with imagined aggressive behavior as well as enhanced aggression-related activation and cortical thinning in the FPC with increasing age. Changes in FPC activation were also associated with judgments of the severity of aggressive acts. Reduced vmPFC activation was associated with greater aggression indicating its normal function is to exert inhibitory control over aggressive impulses. Concurrent FPC activation likely reflects foresight of harmful consequences that result from aggressive acts. The correlation of age-dependent activation changes and cortical thinning demonstrates ongoing maturation of the FPC during adolescence towards a refinement of social and cognitive information processing that can potentially facilitate mature social behavior in aggressive contexts. PMID:19770220

  17. Characterising the proximal patellar tendon attachment and its relationship to skeletal maturity in adolescent ballet dancers

    PubMed Central

    Rudavsky, Aliza; Cook, Jillianne; Magnusson, Stig Peter; Kjaer, Michael; Docking, Sean

    2017-01-01

    Summary Background It is unknown how and when the proximal attachment of the patellar tendon matures; puberty may be key in ensuring normal tendon formation. The aim of this study was to investigate the features of the proximal patellar tendon attachment at different stages of skeletal maturity, to help gain an understanding of how and when the tendon attachment matures. Methods Sixty adolescent elite ballet students (ages 11–18) and eight mature adults participated. Peak height velocity (PHV) estimated skeletal maturity. Ultrasound tissue characterisation (UTC) scan was taken of the left knee and analysed for stability of echopattern. An image-based grading scale for greyscale ultrasound was developed to describe the tendon appearance. Anterior-posterior thickness was measured at the inferior pole of the patella, 1 and 2 centimetres distally. Outcomes were compared with skeletal maturity. Results Mid-portion patellar tendon thickness increased with skeletal maturity (p=0.001 at 1 cm and p=0.007 at 2 cm). There was more variance in structural appearance (greyscale classification and UTC echopattern) in pre and peri-PHV participants. Tendon attachment one-year post PHV appeared similar to mature tendons. Conclusions Early adolescence was associated with highly variable tendon appearance, whereas the tendon appeared mature after PHV. Adolescence may be a critical time for the formation of normal tendon attachment. Level of evidence IIb individual cohort study. PMID:29264342

  18. The developing oligodendrocyte: key cellular target in brain injury in the premature infant

    PubMed Central

    Volpe, Joseph J.; Kinney, Hannah C.; Jensen, Frances, E.; Rosenberg, Paul A.

    2011-01-01

    Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon. PMID:21382469

  19. Prenatal and Neonatal Brain Structure and White Matter Maturation in Children at High Risk for Schizophrenia

    PubMed Central

    Gilmore, John H.; Kang, Chaeryon; Evans, Dianne D.; Wolfe, Honor M.; Smith, J. Keith; Lieberman, Jeffrey A.; Lin, Weili; Hamer, Robert M.; Styner, Martin; Gerig, Guido

    2011-01-01

    Objective Schizophrenia is a neurodevelopmental disorder associated with abnormalities of brain structure and white matter, although little is known about when these abnormalities arise. This study was conducted to identify structural brain abnormalities in the prenatal and neonatal periods associated with genetic risk for schizophrenia. Method Prenatal ultrasound scans and neonatal structural magnetic resonance imaging (MRI) and diffusion tensor imaging were prospectively obtained in the offspring of mothers with schizophrenia or schizoaffective disorder (N=26) and matched comparison mothers without psychiatric illness (N=26). Comparisons were made for prenatal lateral ventricle width and head circumference, for neonatal intracranial, CSF, gray matter, white matter, and lateral ventricle volumes, and for neonatal diffusion properties of the genu and splenium of the corpus callosum and corticospinal tracts. Results Relative to the matched comparison subjects, the offspring of mothers with schizophrenia did not differ in prenatal lateral ventricle width or head circumference. Overall, the high-risk neonates had nonsignificantly larger intracranial, CSF, and lateral ventricle volumes. Subgroup analysis revealed that male high-risk infants had significantly larger intracranial, CSF, total gray matter, and lateral ventricle volumes; the female high-risk neonates were similar to the female comparison subjects. There were no group differences in white matter diffusion tensor properties. Conclusions Male neonates at genetic risk for schizophrenia had several larger than normal brain volumes, while females did not. To the authors' knowledge, this study provides the first evidence, in the context of its limitations, that early neonatal brain development may be abnormal in males at genetic risk for schizophrenia. PMID:20516153

  20. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey.

    PubMed

    Bauman, M D; Iosif, A-M; Ashwood, P; Braunschweig, D; Lee, A; Schumann, C M; Van de Water, J; Amaral, D G

    2013-07-09

    Antibodies directed against fetal brain proteins of 37 and 73 kDa molecular weight are found in approximately 12% of mothers who have children with autism spectrum disorder (ASD), but not in mothers of typically developing children. This finding has raised the possibility that these immunoglobulin G (IgG) class antibodies cross the placenta during pregnancy and impact brain development, leading to one form of ASD. We evaluated the pathogenic potential of these antibodies by using a nonhuman primate model. IgG was isolated from mothers of children with ASD (IgG-ASD) and of typically developing children (IgG-CON). The purified IgG was administered to two groups of female rhesus monkeys (IgG-ASD; n=8 and IgG-CON; n=8) during the first and second trimesters of pregnancy. Another control group of pregnant monkeys (n=8) was untreated. Brain and behavioral development of the offspring were assessed for 2 years. Behavioral differences were first detected when the macaque mothers responded to their IgG-ASD offspring with heightened protectiveness during early development. As they matured, IgG-ASD offspring consistently deviated from species-typical social norms by more frequently approaching familiar peers. The increased approach was not reciprocated and did not lead to sustained social interactions. Even more striking, IgG-ASD offspring displayed inappropriate approach behavior to unfamiliar peers, clearly deviating from normal macaque social behavior. Longitudinal magnetic resonance imaging analyses revealed that male IgG-ASD offspring had enlarged brain volume compared with controls. White matter volume increases appeared to be driving the brain differences in the IgG-ASD offspring and these differences were most pronounced in the frontal lobes.

  1. T2 Relaxometry MRI Predicts Cerebral Palsy in Preterm Infants.

    PubMed

    Chen, L-W; Wang, S-T; Huang, C-C; Tu, Y-F; Tsai, Y-S

    2018-01-18

    T2-relaxometry brain MR imaging enables objective measurement of brain maturation based on the water-macromolecule ratio in white matter, but the outcome correlation is not established in preterm infants. Our study aimed to predict neurodevelopment with T2-relaxation values of brain MR imaging among preterm infants. From January 1, 2012, to May 31, 2015, preterm infants who underwent both T2-relaxometry brain MR imaging and neurodevelopmental follow-up were retrospectively reviewed. T2-relaxation values were measured over the periventricular white matter, including sections through the frontal horns, midbody of the lateral ventricles, and centrum semiovale. Periventricular T2 relaxometry in relation to corrected age was analyzed with restricted cubic spline regression. Prediction of cerebral palsy was examined with the receiver operating characteristic curve. Thirty-eight preterm infants were enrolled for analysis. Twenty patients (52.6%) had neurodevelopmental abnormalities, including 8 (21%) with developmental delay without cerebral palsy and 12 (31.6%) with cerebral palsy. The periventricular T2-relaxation values in relation to age were curvilinear in preterm infants with normal development, linear in those with developmental delay without cerebral palsy, and flat in those with cerebral palsy. When MR imaging was performed at >1 month corrected age, cerebral palsy could be predicted with T2 relaxometry of the periventricular white matter on sections through the midbody of the lateral ventricles (area under the receiver operating characteristic curve = 0.738; cutoff value of >217.4 with 63.6% sensitivity and 100.0% specificity). T2-relaxometry brain MR imaging could provide prognostic prediction of neurodevelopmental outcomes in premature infants. Age-dependent and area-selective interpretation in preterm brains should be emphasized. © 2018 by American Journal of Neuroradiology.

  2. Patterns of linear growth and skeletal maturation from birth to 18 years of age in overweight young adults.

    PubMed

    Johnson, W; Stovitz, S D; Choh, A C; Czerwinski, S A; Towne, B; Demerath, E W

    2012-04-01

    To estimate differences in skeletal maturity and stature from birth to age 18 years between individuals who are overweight vs normal weight in young adulthood. Weight, length and height, and relative skeletal age (skeletal-chronological age) were assessed annually from birth to age 18 years in 521 subjects (255 women) in the Fels Longitudinal Study who were overweight or obese (body mass index (BMI) >25 kg m(-2), n=131) or normal weight (n=390) in young adulthood (18-30 years). Generalized estimating equations were used to test for skeletal maturity and stature differences by young adult BMI status. Differences in height increased during puberty, being significant for girls at ages 10 to 12 years, and for boys at ages 11 to 13 years (P-values<0.001), with overweight or obese adults being ∼3 cm taller at those ages than normal weight adults. These differences then diminished so that by age 18 years, overweight or obese adults were not significantly different in stature to their normal weight peers. Differences in skeletal maturity were similar, but more pervasive; overweight or obese adults were more skeletally advanced throughout childhood. Skeletal maturity differences peaked at chronological age 12 in boys and 14 in girls (P-values<0.001), with overweight or obese adults being ∼1 year more advanced than normal weight adults. This descriptive study is the first to track advanced skeletal maturity and linear growth acceleration throughout infancy, childhood and adolescence in individuals who become overweight, showing that differences occur primarily around the time of the pubertal growth spurt. Increased BMI in children on a path to becoming overweight adults precedes an advancement in skeletal development and subsequently tall stature during puberty. Further work is required to assess the predictive value of accelerated pubertal height growth for assessing obesity risk in a variety of populations.

  3. Normal Skeletal Maturation and Imaging Pitfalls in the Pediatric Shoulder.

    PubMed

    Zember, Jonathan S; Rosenberg, Zehava S; Kwong, Steven; Kothary, Shefali P; Bedoya, Maria A

    2015-01-01

    A growing number of magnetic resonance (MR) imaging studies of the shoulder are being performed as a result of greater and earlier participation of children and adolescents in competitive sports such as softball and baseball. However, scant information is available regarding the MR imaging features of the normal sequential development of the shoulder. The authors discuss the radiographic and MR imaging appearances of the normal musculoskeletal maturation patterns of the shoulder, with emphasis on (a) development of secondary ossification centers of the glenoid (including the subcoracoid and peripheral glenoid ossification centers); (b) development of preossification and secondary ossification centers of the humeral head and the variable appearance and number of the secondary ossification centers of the distal acromion, with emphasis on the formation of the os acromiale; (c) development of the growth plates, glenoid bone plates, glenoid bare area, and proximal humeral metaphyseal stripe; and (d) marrow signal alterations in the distal humerus, acromion, and clavicle. In addition, the authors discuss various imaging interpretation pitfalls inherent to the normal skeletal maturation of the shoulder, examining clues that may help distinguish normal development from true disease (eg, osteochondral lesions, labral tears, abscesses, fractures, infection, tendon disease, acromioclavicular widening, and os acromiale). Familiarity with the timing, location, and appearance of maturation patterns in the pediatric shoulder is crucial for correct image interpretation. ©RSNA, 2015.

  4. Early IGF-1 primes visual cortex maturation and accelerates developmental switch between NKCC1 and KCC2 chloride transporters in enriched animals.

    PubMed

    Baroncelli, Laura; Cenni, Maria Cristina; Melani, Riccardo; Deidda, Gabriele; Landi, Silvia; Narducci, Roberta; Cancedda, Laura; Maffei, Lamberto; Berardi, Nicoletta

    2017-02-01

    Environmental enrichment (EE) has a remarkable impact on brain development. Continuous exposure to EE from birth determines a significant acceleration of visual system maturation both at retinal and cortical levels. A pre-weaning enriched experience is sufficient to trigger the accelerated maturation of the visual system, suggesting that factors affected by EE during the first days of life might prime visual circuits towards a faster development. The search for such factors is crucial not only to gain a better understanding of the molecular hierarchy of brain development but also to identify molecular pathways amenable to be targeted to correct atypical brain developmental trajectories. Here, we showed that IGF-1 levels are increased in the visual cortex of EE rats as early as P6 and this is a crucial event for setting in motion the developmental program induced by EE. Early intracerebroventricular (i.c.v.) infusion of IGF-1 in standard rats was sufficient to mimic the action of EE on visual acuity development, whereas blocking IGF-1 signaling by i.c.v. injections of the IGF-1 receptor antagonist JB1 prevented the deployment of EE effects. Early IGF-1 decreased the ratio between the expression of NKCC1 and KCC2 cation/chloride transporters, and the reversal potential for GABA A R-driven Cl - currents (E Cl ) was shifted toward more negative potentials, indicating that IGF-1 is a crucial factor in accelerating the maturation of GABAergic neurotransmission and promoting the developmental switch of GABA polarity from excitation to inhibition. In addition, early IGF-1 promoted a later occurring increase in its own expression, suggesting a priming effect of early IGF-1 in driving post-weaning cortical maturation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. ‘Teeth in the brain’ – a case of giant intracranial mature cystic teratoma

    PubMed Central

    O’Grady, John; Kobayter, Lina; Kaliaperumal, Chandrasekaran; O’Sullivan, Michael

    2012-01-01

    The authors describe a case of a giant intracranial mature cystic teratoma in a 16-year-old girl presenting acutely with a severe headache, vomiting and a complex generalised seizure with a background history of intermittent headaches for 3 years. CT and MRI brain demonstrated a ruptured large cystic teratoma encapsulating two large teeth within the diffusely dense fatty heterogeneous lesion. Surgical debulking of the cyst was performed and the calcific remnants were left behind owing to dense adhesion to the brain. The procedure was complicated by postoperative hydrocephalus and needed a ventricloperitoneal shunt. She is currently asymptomatic and undergoing rehabilitation. PMID:22707688

  6. Biological, developmental, and neurobehavioral factors relevant to adolescent driving risks.

    PubMed

    Dahl, Ronald E

    2008-09-01

    This article reviews emerging knowledge about key aspects of neurobehavioral development, with an emphasis on the development of self-regulation over behavior and emotions and its relevance to driving risks among youth. It begins with a brief overview of recent advances in understanding adolescent brain maturation and presents a heuristic model focusing on brain-behavior-social-context interactions during adolescent development. The article considers the relatively slow neurobehavioral maturation of cognitive control and emphasizes the importance of affective influences on decision making. It points to several questions about programs and policies that may help to protect high-risk youth during this important maturational period. The heuristic model is then used to examine a specific neuroregulatory system during adolescence--the regulation of sleep and arousal. This focus on sleep illustrates key points about brain-behavior-social-context interactions by looking at both biological and social influences on sleep in teens. Moreover, sleep has direct relevance to understanding a specific dimension of driving risk in youth. Sleep deprivation is rampant among adolescents, and the consequences of insufficient sleep (sleepiness, lapses in attention, susceptibility to aggression, and negative synergy with alcohol) appear to contribute significantly to driving risks in teens.

  7. Sensory system plasticity in a visually specialized, nocturnal spider.

    PubMed

    Stafstrom, Jay A; Michalik, Peter; Hebets, Eileen A

    2017-04-21

    The interplay between an animal's environmental niche and its behavior can influence the evolutionary form and function of its sensory systems. While intraspecific variation in sensory systems has been documented across distant taxa, fewer studies have investigated how changes in behavior might relate to plasticity in sensory systems across developmental time. To investigate the relationships among behavior, peripheral sensory structures, and central processing regions in the brain, we take advantage of a dramatic within-species shift of behavior in a nocturnal, net-casting spider (Deinopis spinosa), where males cease visually-mediated foraging upon maturation. We compared eye diameters and brain region volumes across sex and life stage, the latter through micro-computed X-ray tomography. We show that mature males possess altered peripheral visual morphology when compared to their juvenile counterparts, as well as juvenile and mature females. Matching peripheral sensory structure modifications, we uncovered differences in relative investment in both lower-order and higher-order processing regions in the brain responsible for visual processing. Our study provides evidence for sensory system plasticity when individuals dramatically change behavior across life stages, uncovering new avenues of inquiry focusing on altered reliance of specific sensory information when entering a new behavioral niche.

  8. Developmental profiles of the intrinsic properties and synaptic function of auditory neurons in preterm and term baboon neonates.

    PubMed

    Kim, Sei Eun; Lee, Seul Yi; Blanco, Cynthia L; Kim, Jun Hee

    2014-08-20

    The human fetus starts to hear and undergoes major developmental changes in the auditory system during the third trimester of pregnancy. Although there are significant data regarding development of the auditory system in rodents, changes in intrinsic properties and synaptic function of auditory neurons in developing primate brain at hearing onset are poorly understood. We performed whole-cell patch-clamp recordings of principal neurons in the medial nucleus of trapezoid body (MNTB) in preterm and term baboon brainstem slices to study the structural and functional maturation of auditory synapses. Each MNTB principal neuron received an excitatory input from a single calyx of Held terminal, and this one-to-one pattern of innervation was already formed in preterm baboons delivered at 67% of normal gestation. There was no difference in frequency or amplitude of spontaneous excitatory postsynaptic synaptic currents between preterm and term MNTB neurons. In contrast, the frequency of spontaneous GABA(A)/glycine receptor-mediated inhibitory postsynaptic synaptic currents, which were prevalent in preterm MNTB neurons, was significantly reduced in term MNTB neurons. Preterm MNTB neurons had a higher input resistance than term neurons and fired in bursts, whereas term MNTB neurons fired a single action potential in response to suprathreshold current injection. The maturation of intrinsic properties and dominance of excitatory inputs in the primate MNTB allow it to take on its mature role as a fast and reliable relay synapse. Copyright © 2014 the authors 0270-6474/14/3411399-06$15.00/0.

  9. Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation.

    PubMed

    Garelli, Andres; Gontijo, Alisson M; Miguela, Veronica; Caparros, Esther; Dominguez, Maria

    2012-05-04

    Developing animals frequently adjust their growth programs and/or their maturation or metamorphosis to compensate for growth disturbances (such as injury or tumor) and ensure normal adult size. Such plasticity entails tissue and organ communication to preserve their proportions and symmetry. Here, we show that imaginal discs autonomously activate DILP8, a Drosophila insulin-like peptide, to communicate abnormal growth and postpone maturation. DILP8 delays metamorphosis by inhibiting ecdysone biosynthesis, slowing growth in the imaginal discs, and generating normal-sized animals. Loss of dilp8 yields asymmetric individuals with an unusually large variation in size and a more varied time of maturation. Thus, DILP8 is a fundamental element of the hitherto ill-defined machinery governing the plasticity that ensures developmental stability and robustness.

  10. Supplementary dim light differentially influences sexual maturity, oviposition time, and melatonin rhythms in pullets.

    PubMed

    Lewis, P D; Perry, G C; Morris, T R; English, J

    2001-12-01

    The addition of two 3-h periods of very dim light, one before and one after a normal 8-h photoperiod, advances sexual maturity in pullets by about a week. This trial tested the hypothesis that dim light given before a short day of normal intensity is linked to form a more stimulatory day length and that dim light given after it is photosexually ignored. Pullets were reared from 2 d of age on 8-h photoperiods. From 10 wk, they were continued on 8-h photoperiods, transferred to 16 h, or given an 8-h period of dim light (0.09 lx) immediately before or after the main 8-h photoperiod. The bright/dim and dim/ bright groups matured at the same age, thus disproving the hypothesis tested. Both groups matured 1 wk earlier than the 8-h controls but 5 wk later than birds transferred to 16-h photoperiod. Oviposition time was similar for 8-h controls and bright/dim hens and delayed by 3 h for 16-h birds, but phase advanced by 2.4 h for dim/bright hens. Plasma melatonin rhythm was phase-advanced by about 5 h in the dim/bright hens and retarded by about 5 h in the bright/dim hens, suggesting a 13-h subjective day. However, these treatments were not regarded as fully stimulatory, as a transfer to a normal 13-h photoperiod at this age advances maturity by 5 to 6 wk. These findings show that the addition of a period of dim light to a normal nonstimulatory photoperiod differentially affects the clocks that control sexual maturation, plasma melatonin concentration, and oviposition time.

  11. Absence of age-related prefrontal NAA change in adults with autism spectrum disorders.

    PubMed

    Aoki, Y; Abe, O; Yahata, N; Kuwabara, H; Natsubori, T; Iwashiro, N; Takano, Y; Inoue, H; Kawakubo, Y; Gonoi, W; Sasaki, H; Murakami, M; Katsura, M; Nippashi, Y; Takao, H; Kunimatsu, A; Matsuzaki, H; Tsuchiya, K J; Kato, N; Kasai, K; Yamasue, H

    2012-10-23

    Atypical trajectory of brain growth in autism spectrum disorders (ASDs) has been recognized as a potential etiology of an atypical course of behavioral development. Numerous neuroimaging studies have focused on childhood to investigate atypical age-related change of brain structure and function, because it is a period of neuron and synapse maturation. Recent studies, however, have shown that the atypical age-related structural change of autistic brain expands beyond childhood and constitutes neural underpinnings for lifelong difficulty to behavioral adaptation. Thus, we examined effects of aging on neurochemical aspects of brain maturation using 3-T proton magnetic resonance spectroscopy ((1)H-MRS) with single voxel in the medial prefrontal cortex (PFC) in 24 adult men with non-medicated high-functioning ASDs and 25 age-, IQ- and parental-socioeconomic-background-matched men with typical development (TD). Multivariate analyses of covariance demonstrated significantly high N-acetylaspartate (NAA) level in the ASD subjects compared with the TD subjects (F=4.83, P=0.033). The low NAA level showed a significant positive correlation with advanced age in the TD group (r=-0.618, P=0.001), but was not evident among the ASD individuals (r=0.258, P=0.223). Fisher's r-to-z transformation showed a significant difference in the correlations between the ASD and TD groups (Z=-3.23, P=0.001), which indicated that the age-NAA relationship was significantly specific to people with TD. The current (1)H-MRS study provided new evidence that atypical age-related change of neurochemical aspects of brain maturation in ASD individuals expands beyond childhood and persists during adulthood.

  12. Learning-based prediction of gestational age from ultrasound images of the fetal brain.

    PubMed

    Namburete, Ana I L; Stebbing, Richard V; Kemp, Bryn; Yaqub, Mohammad; Papageorghiou, Aris T; Alison Noble, J

    2015-04-01

    We propose an automated framework for predicting gestational age (GA) and neurodevelopmental maturation of a fetus based on 3D ultrasound (US) brain image appearance. Our method capitalizes on age-related sonographic image patterns in conjunction with clinical measurements to develop, for the first time, a predictive age model which improves on the GA-prediction potential of US images. The framework benefits from a manifold surface representation of the fetal head which delineates the inner skull boundary and serves as a common coordinate system based on cranial position. This allows for fast and efficient sampling of anatomically-corresponding brain regions to achieve like-for-like structural comparison of different developmental stages. We develop bespoke features which capture neurosonographic patterns in 3D images, and using a regression forest classifier, we characterize structural brain development both spatially and temporally to capture the natural variation existing in a healthy population (N=447) over an age range of active brain maturation (18-34weeks). On a routine clinical dataset (N=187) our age prediction results strongly correlate with true GA (r=0.98,accurate within±6.10days), confirming the link between maturational progression and neurosonographic activity observable across gestation. Our model also outperforms current clinical methods by ±4.57 days in the third trimester-a period complicated by biological variations in the fetal population. Through feature selection, the model successfully identified the most age-discriminating anatomies over this age range as being the Sylvian fissure, cingulate, and callosal sulci. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. CD146 coordinates brain endothelial cell–pericyte communication for blood–brain barrier development

    PubMed Central

    Chen, Jianan; Luo, Yongting; Hui, Hui; Cai, Tanxi; Huang, Hongxin; Yang, Fuquan; Feng, Jing; Zhang, Jingjing; Yan, Xiyun

    2017-01-01

    The blood–brain barrier (BBB) establishes a protective interface between the central neuronal system and peripheral blood circulation and is crucial for homeostasis of the CNS. BBB formation starts when the endothelial cells (ECs) invade the CNS and pericytes are recruited to the nascent vessels during embryogenesis. Despite the essential function of pericyte–EC interaction during BBB development, the molecular mechanisms coordinating the pericyte–EC behavior and communication remain incompletely understood. Here, we report a single cell receptor, CD146, that presents dynamic expression patterns in the cerebrovasculature at the stages of BBB induction and maturation, coordinates the interplay of ECs and pericytes, and orchestrates BBB development spatiotemporally. In mouse brain, CD146 is first expressed in the cerebrovascular ECs of immature capillaries without pericyte coverage; with increased coverage of pericytes, CD146 could only be detected in pericytes, but not in cerebrovascular ECs. Specific deletion of Cd146 in mice ECs resulted in reduced brain endothelial claudin-5 expression and BBB breakdown. By analyzing mice with specific deletion of Cd146 in pericytes, which have defects in pericyte coverage and BBB integrity, we demonstrate that CD146 functions as a coreceptor of PDGF receptor-β to mediate pericyte recruitment to cerebrovascular ECs. Moreover, we found that the attached pericytes in turn down-regulate endothelial CD146 by secreting TGF-β1 to promote further BBB maturation. These results reveal that the dynamic expression of CD146 controls the behavior of ECs and pericytes, thereby coordinating the formation of a mature and stable BBB. PMID:28827364

  14. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants.

    PubMed

    Dubois, J; Dehaene-Lambertz, G; Kulikova, S; Poupon, C; Hüppi, P S; Hertz-Pannier, L

    2014-09-12

    Studying how the healthy human brain develops is important to understand early pathological mechanisms and to assess the influence of fetal or perinatal events on later life. Brain development relies on complex and intermingled mechanisms especially during gestation and first post-natal months, with intense interactions between genetic, epigenetic and environmental factors. Although the baby's brain is organized early on, it is not a miniature adult brain: regional brain changes are asynchronous and protracted, i.e. sensory-motor regions develop early and quickly, whereas associative regions develop later and slowly over decades. Concurrently, the infant/child gradually achieves new performances, but how brain maturation relates to changes in behavior is poorly understood, requiring non-invasive in vivo imaging studies such as magnetic resonance imaging (MRI). Two main processes of early white matter development are reviewed: (1) establishment of connections between brain regions within functional networks, leading to adult-like organization during the last trimester of gestation, (2) maturation (myelination) of these connections during infancy to provide efficient transfers of information. Current knowledge from post-mortem descriptions and in vivo MRI studies is summed up, focusing on T1- and T2-weighted imaging, diffusion tensor imaging, and quantitative mapping of T1/T2 relaxation times, myelin water fraction and magnetization transfer ratio. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Age- and gender-related regional variations of human brain cortical thickness, complexity, and gradient in the third decade.

    PubMed

    Creze, Maud; Versheure, Leslie; Besson, Pierre; Sauvage, Chloe; Leclerc, Xavier; Jissendi-Tchofo, Patrice

    2014-06-01

    Brain functional and cytoarchitectural maturation continue until adulthood, but little is known about the evolution of the regional pattern of cortical thickness (CT), complexity (CC), and intensity or gradient (CG) in young adults. We attempted to detect global and regional age- and gender-related variations of brain CT, CC, and CG, in 28 healthy young adults (19-33 years) using a three-dimensional T1 -weighted magnetic resonance imaging sequence and surface-based methods. Whole brain interindividual variations of CT and CG were similar to that in the literature. As a new finding, age- and gender-related variations significantly affected brain complexity (P < 0.01) on posterior cingulate and middle temporal cortices (age), and the fronto-orbital cortex (gender), all in the right hemisphere. Regions of interest analyses showed age and gender significant interaction (P < 0.05) on the temporopolar, inferior, and middle temporal-entorrhinal cortices bilaterally, as well as left inferior parietal. In addition, we found significant inverse correlations between CT and CC and between CT and CG over the whole brain and markedly in precentral and occipital areas. Our findings differ in details from previous reports and may correlate with late brain maturation and learning plasticity in young adults' brain in the third decade. Copyright © 2013 Wiley Periodicals, Inc.

  16. Brain Development, Structuring of Learning and Science Education: Where Are We Now? A Review of Some Recent Research.

    ERIC Educational Resources Information Center

    Hansen, Linda; Monk, Martin

    2002-01-01

    Reviews evidence of the way the maturation of the brain may structure the plasticity that is available for the construction of the mind. Presents evidence taken from non-invasive imaging techniques that makes use of electrode potentials, magnetic resonance, or positron emission. Discusses the development of the brain in terms of grey and white…

  17. Lipid Binding Defects and Perturbed Synaptogenic Activity of a Collybistin R290H Mutant That Causes Epilepsy and Intellectual Disability*

    PubMed Central

    Papadopoulos, Theofilos; Schemm, Rudolf; Grubmüller, Helmut; Brose, Nils

    2015-01-01

    Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects—or synaptopathies—are at the basis of many neurological and psychiatric disorders. In key areas of the mammalian brain, such as the hippocampus or the basolateral amygdala, the clustering of the scaffolding protein Gephyrin and of γ-aminobutyric acid type A receptors at inhibitory neuronal synapses is critically dependent upon the brain-specific guanine nucleotide exchange factor Collybistin (Cb). Accordingly, it was discovered recently that an R290H missense mutation in the diffuse B-cell lymphoma homology domain of Cb, which carries the guanine nucleotide exchange factor activity, leads to epilepsy and intellectual disability in human patients. In the present study, we determined the mechanism by which the CbR290H mutation perturbs inhibitory synapse formation and causes brain dysfunction. Based on a combination of biochemical, cell biological, and molecular dynamics simulation approaches, we demonstrate that the R290H mutation alters the strength of intramolecular interactions between the diffuse B-cell lymphoma homology domain and the pleckstrin homology domain of Cb. This defect reduces the phosphatidylinositol 3-phosphate binding affinity of Cb, which limits its normal synaptogenic activity. Our data indicate that impairment of the membrane lipid binding activity of Cb and a consequent defect in inhibitory synapse maturation represent a likely molecular pathomechanism of epilepsy and mental retardation in humans. PMID:25678704

  18. Lipid binding defects and perturbed synaptogenic activity of a Collybistin R290H mutant that causes epilepsy and intellectual disability.

    PubMed

    Papadopoulos, Theofilos; Schemm, Rudolf; Grubmüller, Helmut; Brose, Nils

    2015-03-27

    Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects--or synaptopathies--are at the basis of many neurological and psychiatric disorders. In key areas of the mammalian brain, such as the hippocampus or the basolateral amygdala, the clustering of the scaffolding protein Gephyrin and of γ-aminobutyric acid type A receptors at inhibitory neuronal synapses is critically dependent upon the brain-specific guanine nucleotide exchange factor Collybistin (Cb). Accordingly, it was discovered recently that an R290H missense mutation in the diffuse B-cell lymphoma homology domain of Cb, which carries the guanine nucleotide exchange factor activity, leads to epilepsy and intellectual disability in human patients. In the present study, we determined the mechanism by which the Cb(R290H) mutation perturbs inhibitory synapse formation and causes brain dysfunction. Based on a combination of biochemical, cell biological, and molecular dynamics simulation approaches, we demonstrate that the R290H mutation alters the strength of intramolecular interactions between the diffuse B-cell lymphoma homology domain and the pleckstrin homology domain of Cb. This defect reduces the phosphatidylinositol 3-phosphate binding affinity of Cb, which limits its normal synaptogenic activity. Our data indicate that impairment of the membrane lipid binding activity of Cb and a consequent defect in inhibitory synapse maturation represent a likely molecular pathomechanism of epilepsy and mental retardation in humans. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The Physiology of Moral Maturity.

    ERIC Educational Resources Information Center

    Hemming, James

    1991-01-01

    Discusses an evolutionary approach to human morality. Emphasizes the rapid development of brain weight, neural circuits, and synaptic systems during early childhood. Concludes that the human brain has resources for generating responsible, caring behavior but must be nurtured and educated. Urges that moral training in a proper social climate be…

  20. Enuresis as a Premorbid Developmental Marker of Schizophrenia

    ERIC Educational Resources Information Center

    Hyde, Thomas M.; Deep-Soboslay, Amy; Iglesias, Bianca; Callicott, Joseph H.; Gold, James M.; Meyer-Lindenberg, Andreas; Honea, Robyn A.; Bigelow, Llewellyn B.; Egan, Michael F.; Emsellem, Esther M.; Weinberger, Daniel R.

    2008-01-01

    There is comparatively little information about premorbid maturational brain abnormalities in schizophrenia (SCZ). We investigated whether a history of childhood enuresis, a well-established marker of neurodevelopmental delay, is associated with SCZ and with measures of brain abnormalities also associated with SCZ. A Diagnostic and Statistical…

  1. Mature-age entrants to medical school: a controlled study of sociodemographic characteristics, career choice and job satisfaction.

    PubMed

    Harth, S C; Biggs, J S; Thong, Y H

    1990-11-01

    A comparison of 121 mature-age and 270 normal-age entrants who graduated from the University of Queensland Medical School between 1972 and 1987 shows that mature-age entrants are some 7 years older, are more likely to come from public (state) schools and less likely to have parents in professional/technical occupations. Otherwise, the two groups were similar in terms of gender, marital status, number of children, ethnic background and current practice location. The educational background of mature-age entrants prior to admission includes 44.6% with degrees in health-science areas and 31.4% with degrees in non-health areas. Reasons for delayed entry of mature-age entrants include late consideration of medicine as a career (34.7%), financial problems (31.4%), dissatisfaction with previous career (30.6%), poor academic results (19.8%), or a combination of the above factors. Motivations to study medicine include family influences (more so in normal-age entrants), altruistic reasons (more so in mature-age entrants) and a variety of personal/social factors such as intellectual satisfaction, prestige and financial security (similar for both groups) and parental expectations (more so in normal-age entrants). Mature-age entrants experienced greater stress throughout the medical course, especially with regard to financial difficulties, loneliness/isolation from the students and family problems (a greater proportion were married with children). While whole-course grades were similar in both groups, normal-age entrants tended to win more undergraduate honours/prizes and postgraduate diplomas/degrees, including specialist qualifications. Practice settings were similar in terms of group private practice, hospital/clinic practice or medical administration, but there was a greater proportion of mature-age entrants in solo private practice, and a smaller proportion in teaching/research. If given the time over, some two-thirds of both groups would choose medicine as a career. Reasons for job satisfaction include helping patients, intellectual stimulation and financial rewards. Reasons for dissatisfaction include pressure of work, red-tape/paperwork, 'doctor-bashing', long working hours, emotional strain, financial pressure, unfulfilled career expectations and irritation with trivial medical complaints.

  2. Neonatal neuroimaging: going beyond the pictures.

    PubMed

    Ramenghi, Luca A; Rutherford, Mary; Fumagalli, Monica; Bassi, Laura; Messner, Hubert; Counsell, Serena; Mosca, Fabio

    2009-10-01

    The cerebral ultrasound has been used many years for the diagnosis of brain lesions in term and preterm newborns. Major improvements were obtained by the combination of different imaging modalities such as Magnetic Resonance Imaging with the Diffusion Weighted Imaging (DWI) and the new quantitative Diffusion Tensor Imaging (DTI). The clinical use of MRI has been validated over some years especially to depict the perinatal asphyxia lesions in term newborns, but its use in order to diagnose the typical diseases of preterm babies is very recent and useful in identifying a marker able to predict neurological outcome. The imaging correlates for motor impairment are well recognized (periventricular white matter cavitations), but no any imaging correlate for cognitive impairment and neurobehavioral disorders. While DWI has been used in term newborns to identify the ischemic areas with restricted diffusion, it may be also used to characterize brain development in preterm infants with the Apparent Diffusion Coefficient (ADC) and may allow us to detect abnormalities responsible for the non-motor impairments. Recent datas showed that in infants without focal lesions higher ADC values in WM were associated with poorer neurodevelopmental assessment at 2 years. The DTI also allows to detect the Fractional Anisotropy (FA) that measures the microstructure. DTI can also be used to map the WM tracts in the immature brain and may be applied to understand the normal development or the response of the brain to injury. Some WM regions in the preterm brain have a lower FA suggesting that widespread WM abnormalities are present in preterms even in the absence of focal lesions. The complexity of the developing brain can be explained by the new tractography that can assess the connectivity of different WM regions and the association between structure and function, such as optic radiations microstructure and visual assessment score. Technological advances in neonatal brain imaging have made a major contribution to understand the neurobehavioral disorders of the developing brain that have the origin in the early structural cerebral organization and maturation.

  3. Suppression of brain cholesterol synthesis in male Mecp2-deficient mice is age dependent and not accompanied by a concurrent change in the rate of fatty acid synthesis.

    PubMed

    Lopez, Adam M; Chuang, Jen-Chieh; Posey, Kenneth S; Turley, Stephen D

    2017-01-01

    Mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2) are the principal cause of Rett syndrome, a progressive neurodevelopmental disorder afflicting 1 in 10,000 to 15,000 females. Studies using hemizygous Mecp2 mouse models have revealed disruptions to some aspects of their lipid metabolism including a partial suppression of cholesterol synthesis in the brains of mature Mecp2 mutants. The present studies investigated whether this suppression is evident from early neonatal life, or becomes manifest at a later stage of development. We measured the rate of cholesterol synthesis, in vivo, in the brains of male Mecp2 - /y and their Mecp2 +/y littermates at 7, 14, 21, 28, 42 and 56 days of age. Brain weight was consistently lower in the Mecp2 -/y mice than in their Mecp2 +/y controls except at 7 days of age. In the 7- and 14-day-old mice there was no genotypic difference in the rate of brain cholesterol synthesis but, from 21 days and later, it was always marginally lower in the Mecp2 -/y mice than in age-matched Mecp2 +/y littermates. At no age was a genotypic difference detected in either the rate of fatty acid synthesis or cholesterol concentration in the brain. Cholesterol synthesis rates in the liver and lungs of 56-day-old Mecp2 -/y mice were normal. The onset of lower rates of brain cholesterol synthesis at about the time closure of the blood brain barrier purportedly occurs might signify a disruption to mechanism(s) that dictate intracellular levels of cholesterol metabolites including oxysterols known to exert a regulatory influence on the cholesterol biosynthetic pathway. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Caring for teens with chronic illness: risky business?

    PubMed

    Louis-Jacques, Jennifer; Samples, Cathryn

    2011-08-01

    With advances in medicine, more children with chronic illness are reaching adolescence and young adulthood. Research has shown that this group is not immune to the behavioral risks endorsed by healthy adolescents. Recent literature exploring the etiology of risk behaviors and their impact on chronic illness is presented. Risk taking may be the result of differential maturation of two distinct parts of the adolescent brain. Risk taking can be considered normal in adolescents with chronic illness, but there is some evidence that chronic illness affects normal psychosocial development. Moreover, evidence supports that chronic illness can lead to disparities in risk education and assessment because of disease focused management rather than a more comprehensive approach. Youth living with chronic illnesses face unique challenges in accomplishing the developmental tasks of adolescence. These challenges include risk behaviors, which jeopardize current and future health. The reasons for risk taking are multifactorial and require providers to make the adolescent and not the illness the center of management. More research is needed on how to improve developmentally appropriate and relevant interventions to aid in safe passage into adulthood.

  5. Multimodal Brain Imaging in Autism Spectrum Disorder and the Promise of Twin Research

    ERIC Educational Resources Information Center

    Mevel, Katell; Fransson, Peter; Bölte, Sven

    2015-01-01

    Current evidence suggests the phenotype of autism spectrum disorder to be driven by a complex interaction of genetic and environmental factors impacting onto brain maturation, synaptic function, and cortical networks. However, findings are heterogeneous, and the exact neurobiological pathways of autism spectrum disorder still remain poorly…

  6. Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor.

    PubMed

    Miyamoto, Nobukazu; Maki, Takakuni; Shindo, Akihiro; Liang, Anna C; Maeda, Mitsuyo; Egawa, Naohiro; Itoh, Kanako; Lo, Evan K; Lok, Josephine; Ihara, Masafumi; Arai, Ken

    2015-10-14

    Oligodendrocyte precursor cells (OPCs) in the adult brain contribute to white matter homeostasis. After white matter damage, OPCs compensate for oligodendrocyte loss by differentiating into mature oligodendrocytes. However, the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that, during endogenous recovery from white matter ischemic injury, astrocytes support the maturation of OPCs by secreting brain-derived neurotrophic factor (BDNF). For in vitro experiments, cultured primary OPCs and astrocytes were prepared from postnatal day 2 rat cortex. When OPCs were subjected to chemical hypoxic stress by exposing them to sublethal CoCl2 for 7 d, in vitro OPC differentiation into oligodendrocytes was significantly suppressed. Conditioned medium from astrocytes (astro-medium) restored the process of OPC maturation even under the stressed conditions. When astro-medium was filtered with TrkB-Fc to remove BDNF, the BDNF-deficient astro-medium no longer supported OPC maturation. For in vivo experiments, we analyzed a transgenic mouse line (GFAP(cre)/BDNF(wt/fl)) in which BDNF expression is downregulated specifically in GFAP(+) astrocytes. Both wild-type (GFAP(wt)/BDNF(wt/fl) mice) and transgenic mice were subjected to prolonged cerebral hypoperfusion by bilateral common carotid artery stenosis. As expected, compared with wild-type mice, the transgenic mice exhibited a lower number of newly generated oligodendrocytes and larger white matter damage. Together, these findings demonstrate that, during endogenous recovery from white matter damage, astrocytes may promote oligodendrogenesis by secreting BDNF. The repair of white matter after brain injury and neurodegeneration remains a tremendous hurdle for a wide spectrum of CNS disorders. One potentially important opportunity may reside in the response of residual oligodendrocyte precursor cells (OPCs). OPCs may serve as a back-up for generating mature oligodendrocytes in damaged white matter. However, the underlying mechanisms are still mostly unknown. Here, we use a combination of cell biology and an animal model to report a new pathway in which astrocyte-derived BDNF supports oligodendrogenesis and regeneration after white matter damage. These findings provide new mechanistic insight into white matter physiology and pathophysiology, which would be broadly and clinically applicable to CNS disease. Copyright © 2015 the authors 0270-6474/15/3514002-07$15.00/0.

  7. Role of intensive training in the growth and maturation of artistic gymnasts.

    PubMed

    Malina, Robert M; Baxter-Jones, Adam D G; Armstrong, Neil; Beunen, Gaston P; Caine, Dennis; Daly, Robin M; Lewis, Richard D; Rogol, Alan D; Russell, Keith

    2013-09-01

    Short stature and later maturation of youth artistic gymnasts are often attributed to the effects of intensive training from a young age. Given limitations of available data, inadequate specification of training, failure to consider other factors affecting growth and maturation, and failure to address epidemiological criteria for causality, it has not been possible thus far to establish cause-effect relationships between training and the growth and maturation of young artistic gymnasts. In response to this ongoing debate, the Scientific Commission of the International Gymnastics Federation (FIG) convened a committee to review the current literature and address four questions: (1) Is there a negative effect of training on attained adult stature? (2) Is there a negative effect of training on growth of body segments? (3) Does training attenuate pubertal growth and maturation, specifically, the rate of growth and/or the timing and tempo of maturation? (4) Does training negatively influence the endocrine system, specifically hormones related to growth and pubertal maturation? The basic information for the review was derived from the active involvement of committee members in research on normal variation and clinical aspects of growth and maturation, and on the growth and maturation of artistic gymnasts and other youth athletes. The committee was thus thoroughly familiar with the literature on growth and maturation in general and of gymnasts and young athletes. Relevant data were more available for females than males. Youth who persisted in the sport were a highly select sample, who tended to be shorter for chronological age but who had appropriate weight-for-height. Data for secondary sex characteristics, skeletal age and age at peak height velocity indicated later maturation, but the maturity status of gymnasts overlapped the normal range of variability observed in the general population. Gymnasts as a group demonstrated a pattern of growth and maturation similar to that observed among short-, normal-, late-maturing individuals who were not athletes. Evidence for endocrine changes in gymnasts was inadequate for inferences relative to potential training effects. Allowing for noted limitations, the following conclusions were deemed acceptable: (1) Adult height or near adult height of female and male artistic gymnasts is not compromised by intensive gymnastics training. (2) Gymnastics training does not appear to attenuate growth of upper (sitting height) or lower (legs) body segment lengths. (3) Gymnastics training does not appear to attenuate pubertal growth and maturation, neither rate of growth nor the timing and tempo of the growth spurt. (4) Available data are inadequate to address the issue of intensive gymnastics training and alterations within the endocrine system.

  8. Comprehensive transcriptional map of primate brain development

    PubMed Central

    Bakken, Trygve E.; Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A.; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A.; Royall, Joshua J.; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L.; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A.; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L.; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R.; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L.; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J.; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B.; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L.; Wohnoutka, Paul; Gibbs, Richard A.; Rogers, Jeffrey; Hohmann, John G.; Hawrylycz, Michael J.; Hevner, Robert F.; Molnár, Zoltán; Phillips, John W.; Dang, Chinh; Jones, Allan R.; Amaral, David G.; Bernard, Amy; Lein, Ed S.

    2017-01-01

    The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny. PMID:27409810

  9. Puberty and structural brain development in humans.

    PubMed

    Herting, Megan M; Sowell, Elizabeth R

    2017-01-01

    Adolescence is a transitional period of physical and behavioral development between childhood and adulthood. Puberty is a distinct period of sexual maturation that occurs during adolescence. Since the advent of magnetic resonance imaging (MRI), human studies have largely examined neurodevelopment in the context of age. A breadth of animal findings suggest that sex hormones continue to influence the brain beyond the prenatal period, with both organizational and activational effects occurring during puberty. Given the animal evidence, human MRI research has also set out to determine how puberty may influence otherwise known patterns of age-related neurodevelopment. Here we review structural-based MRI studies and show that pubertal maturation is a key variable to consider in elucidating sex- and individual- based differences in patterns of human brain development. We also highlight the continuing challenges faced, as well as future considerations, for this vital avenue of research. Copyright © 2016. Published by Elsevier Inc.

  10. Puberty and structural brain development in humans

    PubMed Central

    Herting, Megan M.; Sowell, Elizabeth R.

    2017-01-01

    Adolescence is a transitional period of physical and behavioral development between childhood and adulthood. Puberty is a distinct period of sexual maturation that occurs during adolescence. Since the advent of magnetic resonance imaging (MRI), human studies have largely examined neurodevelopment in the context of age. A breadth of animal findings suggest that sex hormones continue to influence the brain beyond the prenatal period, with both organizational and activational effects occurring during puberty. Given the animal evidence, human MRI research has also set out to determine how puberty may influence otherwise known patterns of age-related neurodevelopment. Here we review structural-based MRI studies and show that pubertal maturation is a key variable to consider in elucidating sex- and individual-based differences in patterns of human brain development. We also highlight the continuing challenges faced, as well as future considerations, for this vital avenue of research. PMID:28007528

  11. Automated image analysis of placental villi and syncytial knots in histological sections.

    PubMed

    Kidron, Debora; Vainer, Ifat; Fisher, Yael; Sharony, Reuven

    2017-05-01

    Delayed villous maturation and accelerated villous maturation diagnosed in histologic sections are morphologic manifestations of pathophysiological conditions. The inter-observer agreement among pathologists in assessing these conditions is moderate at best. We investigated whether automated image analysis of placental villi and syncytial knots could improve standardization in diagnosing these conditions. Placentas of antepartum fetal death at or near term were diagnosed as normal, delayed or accelerated villous maturation. Histologic sections of 5 cases per group were photographed at ×10 magnification. Automated image analysis of villi and syncytial knots was performed, using ImageJ public domain software. Analysis of hundreds of histologic images was carried out within minutes on a personal computer, using macro commands. Compared to normal placentas, villi from delayed maturation were larger and fewer, with fewer and smaller syncytial knots. Villi from accelerated maturation were smaller. The data were further analyzed according to horizontal placental zones and groups of villous size. Normal placentas can be discriminated from placentas of delayed or accelerated villous maturation using automated image analysis. Automated image analysis of villi and syncytial knots is not equivalent to interpretation by the human eye. Each method has advantages and disadvantages in assessing the 2-dimensional histologic sections representing the complex, 3-dimensional villous tree. Image analysis of placentas provides quantitative data that might help in standardizing and grading of placentas for diagnostic and research purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    PubMed

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. Copyright © 2017 the authors 0270-6474/17/370660-13$15.00/0.

  13. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract

    PubMed Central

    Sun, Chengsan; Hummler, Edith

    2017-01-01

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent “pruning” of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. PMID:28100747

  14. Abnormality in serum levels of mature brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in mood-stabilized patients with bipolar disorder: a study of two independent cohorts.

    PubMed

    Södersten, Kristoffer; Pålsson, Erik; Ishima, Tamaki; Funa, Keiko; Landén, Mikael; Hashimoto, Kenji; Ågren, Hans

    2014-05-01

    Early detection and diagnosis of bipolar disorder can be difficult. Tools are needed to help clinicians detect bipolar disorder earlier, which would ameliorate the prognosis. ELISA kits that distinguish between mature brain derived neurotrophic factor (BDNF) and proBDNF, we compared serum levels of mature BDNF, proBDNF, and matrix metalloproteinase-9 (MMP-9) in two independent cohorts (Sahlgrenska cohort and Karolinska cohort) of mood-stabilized bipolar patients and healthy controls. The total sample size in both cohorts consisted of 263 (48+215) bipolar patients and 155 (43+112) healthy controls. Levels of mature BDNF and the ratio mature BDNF/proBDNF were significantly higher in patients than in controls. Serum levels of proBDNF were significantly lower in patients compared to controls. Serum levels of MMP-9 did not differ between the groups but MMP-9 correlated positively and significantly with mature BDNF. Mature BDNF, proBDNF, the ratio of mature BDNF/proBDNF and interactions with MMP-9 explained the diagnostic dichotomy in both cohorts with high significance, using multivariate logistic ANCOVA (gender, age, and BMI were covaried out). The model explained 41% of the diagnostic variance in the Sahlgrenska cohort (p<0.0001) and 15% in the Karolinska cohort (p<0.0001). In both cohorts, the equations provided good power for diagnostic classification. The diagnostic sensitivity was 89% in the Sahlgrenska and 74% in the Karolinska cohort, and specificity 77% and 64%, respectively. The study is cross-sectional with no longitudinal follow up. The cohorts are relatively small with no medication-free patients. There are no "ill patient controls". Abnormalities in the conversion of proBDNF to mature BDNF may be associated with pathogenesis of bipolar disorder. Clinical use of these biomarkers may provide opportunities for earlier detection and correct treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The maturing architecture of the brain's default network

    PubMed Central

    Fair, Damien A.; Cohen, Alexander L.; Dosenbach, Nico U. F.; Church, Jessica A.; Miezin, Francis M.; Barch, Deanna M.; Raichle, Marcus E.; Petersen, Steven E.; Schlaggar, Bradley L.

    2008-01-01

    In recent years, the brain's “default network,” a set of regions characterized by decreased neural activity during goal-oriented tasks, has generated a significant amount of interest, as well as controversy. Much of the discussion has focused on the relationship of these regions to a “default mode” of brain function. In early studies, investigators suggested that, the brain's default mode supports “self-referential” or “introspective” mental activity. Subsequently, regions of the default network have been more specifically related to the “internal narrative,” the “autobiographical self,” “stimulus independent thought,” “mentalizing,” and most recently “self-projection.” However, the extant literature on the function of the default network is limited to adults, i.e., after the system has reached maturity. We hypothesized that further insight into the network's functioning could be achieved by characterizing its development. In the current study, we used resting-state functional connectivity MRI (rs-fcMRI) to characterize the development of the brain's default network. We found that the default regions are only sparsely functionally connected at early school age (7–9 years old); over development, these regions integrate into a cohesive, interconnected network. PMID:18322013

  16. Maintenance of Mouse Gustatory Terminal Field Organization Is Disrupted following Selective Removal of Peripheral Sodium Salt Taste Activity at Adulthood

    PubMed Central

    Sun, Chengsan

    2017-01-01

    Neural activity plays a critical role in the development of central circuits in sensory systems. However, the maintenance of these circuits at adulthood is usually not dependent on sensory-elicited neural activity. Recent work in the mouse gustatory system showed that selectively deleting the primary transduction channel for sodium taste, the epithelial sodium channel (ENaC), throughout development dramatically impacted the organization of the central terminal fields of three nerves that carry taste information to the nucleus of the solitary tract. More specifically, deleting ENaCs during development prevented the normal maturation of the fields. The present study was designed to extend these findings by testing the hypothesis that the loss of sodium taste activity impacts the maintenance of the normal adult terminal field organization in male and female mice. To do this, we used an inducible Cre-dependent genetic recombination strategy to delete ENaC function after terminal field maturation occurred. We found that removal of sodium taste neural activity at adulthood resulted in significant reorganization of mature gustatory afferent terminal fields in the nucleus of the solitary tract. Specifically, the chorda tympani and greater superficial petrosal nerve terminal fields were 1.4× and 1.6× larger than age-matched controls, respectively. By contrast, the glossopharyngeal nerve, which is not highly sensitive to sodium taste stimulation, did not undergo terminal field reorganization. These surprising results suggest that gustatory nerve terminal fields remain plastic well into adulthood, which likely impacts central coding of taste information and taste-related behaviors with altered taste experience. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. However, the importance of sensory-driven activity in maintaining these circuits at adulthood, especially in subcortical structures, appears to be much less. Here, we tested whether the loss of sodium taste activity in adult mice impacts the maintenance of how taste nerves project to the first central relay. We found that specific loss of sodium-elicited taste activity at adulthood produced dramatic and selective reorganization of terminal fields in the brainstem. This demonstrates, for the first time, that taste-elicited activity is necessary for the normal maintenance of central gustatory circuits at adulthood and highlights a level of plasticity not seen in other sensory system subcortical circuits. PMID:28676575

  17. Effect of iron-deficiency anemia on cognitive skills and neuromaturation in infancy and childhood.

    PubMed

    Walter, Tomas

    2003-12-01

    Iron-deficiency anemia in infancy has been consistently shown to negatively influence performance in tests of psychomotor development. In most studies of short-term follow-up, lower scores did not improve with iron therapy, despite complete hematologic replenishment. The negative impact on psychomotor development of iron-deficiency anemia (IDA) in infancy has been well documented in more than a dozen studies during the last two decades. Two studies will be presented here to further support this assertion. Additionally, we will present some data referring to longer follow-up at 5 and 10 years as well as data concerning recent descriptions of the neurologic derangements that may underlie these behavioral effects. To evaluate whether these deficits may revert after long-term observation, a cohort of infants was re-evaluated at 5 and 10 years of age. Two studies have examined children aged 5 years who had anemia as infants using comparable tools of cognitive development showing persisting and consistent important disadvantages in those who were formerly anemic. These tests were better predictors of future achievement than psychomotor scores. These children were again examined at 10 years and showed lower school achievement and poorer fine-hand movements. Studies of neurologic maturation in a new cohort of infants aged 6 months included auditory brain stem responses and naptime 18-lead sleep studies. The central conduction time of the auditory brain stem responses was slower at 6, 12, and 18 months and at 4 years, despite iron therapy beginning at 6 months. During the sleep-wakefulness cycle, heart-rate variability--a developmental expression of the autonomic nervous system--was less mature in anemic infants. The proposed mechanisms are altered auditory-nerve and vagal-nerve myelination, respectively, as iron is required for normal myelin synthesis.

  18. Transcriptional maturation of the mouse auditory forebrain.

    PubMed

    Hackett, Troy A; Guo, Yan; Clause, Amanda; Hackett, Nicholas J; Garbett, Krassimira; Zhang, Pan; Polley, Daniel B; Mirnics, Karoly

    2015-08-14

    The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well. The main findings were: (1) Global gene expression patterns were tightly clustered by postnatal age and brain region; (2) comparing A1 and MG, the total numbers of differentially expressed genes were comparable from P7 to P21, then dropped to nearly half by adulthood; (3) comparing successive age groups, the greatest numbers of differentially expressed genes were found between P7 and P14 in both regions, followed by a steady decline in numbers with age; (4) maturational trajectories in expression levels varied at the single gene level (increasing, decreasing, static, other); (5) between regions, the profiles of single genes were often asymmetric; (6) GSEA revealed that genesets related to neural activity and plasticity were typically upregulated from P7 to adult, while those related to structure tended to be downregulated; (7) GSEA and pathways analysis of selected functional networks were not predictive of expression patterns in the auditory forebrain for all genes, reflecting regional specificity at the single gene level. Gene expression in the auditory forebrain during postnatal development is in constant flux and becomes increasingly stable with age. Maturational changes are evident at the global through single gene levels. Transcriptome profiles in A1 and MG are distinct at all ages, and differ from other brain regions. The database generated by this study provides a rich foundation for the identification of novel developmental biomarkers, functional gene pathways, and targeted studies of postnatal maturation in the auditory forebrain.

  19. Neural activity during natural viewing of Sesame Street statistically predicts test scores in early childhood.

    PubMed

    Cantlon, Jessica F; Li, Rosa

    2013-01-01

    It is not currently possible to measure the real-world thought process that a child has while observing an actual school lesson. However, if it could be done, children's neural processes would presumably be predictive of what they know. Such neural measures would shed new light on children's real-world thought. Toward that goal, this study examines neural processes that are evoked naturalistically, during educational television viewing. Children and adults all watched the same Sesame Street video during functional magnetic resonance imaging (fMRI). Whole-brain intersubject correlations between the neural timeseries from each child and a group of adults were used to derive maps of "neural maturity" for children. Neural maturity in the intraparietal sulcus (IPS), a region with a known role in basic numerical cognition, predicted children's formal mathematics abilities. In contrast, neural maturity in Broca's area correlated with children's verbal abilities, consistent with prior language research. Our data show that children's neural responses while watching complex real-world stimuli predict their cognitive abilities in a content-specific manner. This more ecologically natural paradigm, combined with the novel measure of "neural maturity," provides a new method for studying real-world mathematics development in the brain.

  20. The development of brain network architecture.

    PubMed

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P < 0.0001), increase in node strength (P < 0.0001) as well as network clustering (P = 0.001), which may reflect fine-tuning of topological organization. These results suggest a sequential maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. Absence of age-related prefrontal NAA change in adults with autism spectrum disorders

    PubMed Central

    Aoki, Y; Abe, O; Yahata, N; Kuwabara, H; Natsubori, T; Iwashiro, N; Takano, Y; Inoue, H; Kawakubo, Y; Gonoi, W; Sasaki, H; Murakami, M; Katsura, M; Nippashi, Y; Takao, H; Kunimatsu, A; Matsuzaki, H; Tsuchiya, K J; Kato, N; Kasai, K; Yamasue, H

    2012-01-01

    Atypical trajectory of brain growth in autism spectrum disorders (ASDs) has been recognized as a potential etiology of an atypical course of behavioral development. Numerous neuroimaging studies have focused on childhood to investigate atypical age-related change of brain structure and function, because it is a period of neuron and synapse maturation. Recent studies, however, have shown that the atypical age-related structural change of autistic brain expands beyond childhood and constitutes neural underpinnings for lifelong difficulty to behavioral adaptation. Thus, we examined effects of aging on neurochemical aspects of brain maturation using 3-T proton magnetic resonance spectroscopy (1H-MRS) with single voxel in the medial prefrontal cortex (PFC) in 24 adult men with non-medicated high-functioning ASDs and 25 age-, IQ- and parental-socioeconomic-background-matched men with typical development (TD). Multivariate analyses of covariance demonstrated significantly high N-acetylaspartate (NAA) level in the ASD subjects compared with the TD subjects (F=4.83, P=0.033). The low NAA level showed a significant positive correlation with advanced age in the TD group (r=−0.618, P=0.001), but was not evident among the ASD individuals (r=0.258, P=0.223). Fisher's r-to-z transformation showed a significant difference in the correlations between the ASD and TD groups (Z=−3.23, P=0.001), which indicated that the age–NAA relationship was significantly specific to people with TD. The current 1H-MRS study provided new evidence that atypical age-related change of neurochemical aspects of brain maturation in ASD individuals expands beyond childhood and persists during adulthood. PMID:23092982

  2. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.

    PubMed

    Kosi, Nina; Alić, Ivan; Kolačević, Matea; Vrsaljko, Nina; Jovanov Milošević, Nataša; Sobol, Margarita; Philimonenko, Anatoly; Hozák, Pavel; Gajović, Srećko; Pochet, Roland; Mitrečić, Dinko

    2015-02-09

    The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Assessing the impact of adjusting for maturity in weight status classification in a cross-sectional sample of UK children.

    PubMed

    Gillison, Fiona; Cumming, Sean; Standage, Martyn; Barnaby, Catherine; Katzmarzyk, Peter

    2017-06-26

    To compare the weight categorisation of a cohort of UK children using standard procedures (ie, comparing body mass index (BMI) centiles to age-matched UK reference data) versus an approach adjusted for maturation status (ie, matching relative to biological age). Analysis of data collected from an observational study of UK primary school children. Schools in South West England. Four hundred and seven 9-11 year-old children (98% white British). Weight status was classified using BMI centiles using (1) sex and chronological age-matched referents and (2) sex and biological age-matched referents (based on % of predicted adult stature) relative to UK 1990 reference growth charts. For both approaches, children were classified as a normal weight if >2nd centile and <85thcentile, overweight if 85th and <95thcentiles, and obese if ≥95thcentile. Fifty-one children (12.5%) were overweight, and a further 51 obese (12.5%) according to standard chronological age-matched classifications. Adjustment for maturity resulted in 32% of overweight girls, and 15% of overweight boys being reclassified as a normal weight, and 11% and 8% of obese girls and boys, respectively, being reclassified as overweight. Early maturing children were 4.9 times more likely to be reclassified from overweight to normal weight than 'on-time' maturers (OR 95% CI 1.3 to 19). Incorporating assessments of maturational status into weight classification resulted in significant changes to the classification of early-maturing adolescents. Further research exploring the implications for objective health risk and well-being is needed. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Nicotinamide alone accelerates the conversion of mouse embryonic stem cells into mature neuronal populations

    PubMed Central

    Griffin, Síle M.; Pickard, Mark R.; Orme, Rowan P.; Hawkins, Clive P.; Williams, Adrian C.

    2017-01-01

    Introduction Vitamin B3 has been shown to play an important role during embryogenesis. Specifically, there is growing evidence that nicotinamide, the biologically active form of vitamin B3, plays a critical role as a morphogen in the differentiation of stem cells to mature cell phenotypes, including those of the central nervous system (CNS). Detailed knowledge of the action of small molecules during neuronal differentiation is not only critical for uncovering mechanisms underlying lineage-specification, but also to establish more effective differentiation protocols to obtain clinically relevant cells for regenerative therapies for neurodegenerative conditions such as Huntington’s disease (HD). Thus, this study aimed to investigate the potential of nicotinamide to promote the conversion of stem cells to mature CNS neurons. Methods Nicotinamide was applied to differentiating mouse embryonic stem cells (mESC; Sox1GFP knock-in 46C cell line) during their conversion towards a neural fate. Cells were assessed for changes in their proliferation, differentiation and maturation; using immunocytochemistry and morphometric analysis methods. Results Results presented indicate that 10 mM nicotinamide, when added at the initial stages of differentiation, promoted accelerated progression of ESCs to a neural lineage in adherent monolayer cultures. By 14 days in vitro (DIV), early exposure to nicotinamide was shown to increase the numbers of differentiated βIII-tubulin-positive neurons. Nicotinamide decreased the proportion of pluripotent stem cells, concomitantly increasing numbers of neural progenitors at 4 DIV. These progenitors then underwent rapid conversion to neurons, observed by a reduction in Sox 1 expression and decreased numbers of neural progenitors in the cultures at 14 DIV. Furthermore, GABAergic neurons generated in the presence of nicotinamide showed increased maturity and complexity of neurites at 14 DIV. Therefore, addition of nicotinamide alone caused an accelerated passage of pluripotent cells through lineage specification and further to non-dividing mature neurons. Conclusions Our results show that, within an optimal dose range, nicotinamide is able to singly and selectively direct the conversion of embryonic stem cells to mature neurons, and therefore may be a critical factor for normal brain development, thus supporting previous evidence of the fundamental role of vitamins and their metabolites during early CNS development. In addition, nicotinamide may offer a simple effective supplement to enhance the conversion of stem cells to clinically relevant neurons. PMID:28817722

  5. Abnormal Injury Response in Spontaneous Mild Ventriculomegaly Wistar Rat Brains: A Pathological Correlation Study of Diffusion Tensor and Magnetization Transfer Imaging in Mild Traumatic Brain Injury.

    PubMed

    Tu, Tsang-Wei; Lescher, Jacob D; Williams, Rashida A; Jikaria, Neekita; Turtzo, L Christine; Frank, Joseph A

    2017-01-01

    Spontaneous mild ventriculomegaly (MVM) was previously reported in ∼43% of Wistar rats in association with vascular anomalies without phenotypic manifestation. This mild traumatic brain injury (TBI) weight drop model study investigates whether MVM rats (n = 15) have different injury responses that could inadvertently complicate the interpretation of imaging studies compared with normal rats (n = 15). Quantitative MRI, including diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI), and immunohistochemistry (IHC) analysis were used to examine the injury pattern up to 8 days post-injury in MVM and normal rats. Prior to injury, the MVM brain showed significant higher mean diffusivity, axial diffusivity, and radial diffusivity, and lower fractional anisotropy (FA) and magnetization transfer ratio (MTR) in the corpus callosum than normal brain (p < 0.05). Following TBI, normal brains exhibited significant decreases of FA in the corpus callosum, whereas MVM brains demonstrated insignificant changes in FA, suggesting less axonal injury. At day 8 after mild TBI, MTR of the normal brains significantly decreased whereas the MTR of the MVM brains significantly increased. IHC staining substantiated the MRI findings, demonstrating limited axonal injury with significant increase of microgliosis and astrogliosis in MVM brain compared with normal animals. The radiological-pathological correlation data showed that both DTI and MTI were sensitive in detecting mild diffuse brain injury, although DTI metrics were more specific in correlating with histologically identified pathologies. Compared with the higher correlation levels reflecting axonal injury pathology in the normal rat mild TBI, the DTI and MTR metrics were more affected by the increased inflammation in the MVM rat mild TBI. Because MVM Wistar rats appear normal, there was a need to screen rats prior to TBI research to rule out the presence of ventriculomegaly, which may complicate the interpretation of imaging and IHC observations.

  6. Abnormal Injury Response in Spontaneous Mild Ventriculomegaly Wistar Rat Brains: A Pathological Correlation Study of Diffusion Tensor and Magnetization Transfer Imaging in Mild Traumatic Brain Injury

    PubMed Central

    Lescher, Jacob D.; Williams, Rashida A.; Jikaria, Neekita; Turtzo, L. Christine; Frank, Joseph A.

    2017-01-01

    Abstract Spontaneous mild ventriculomegaly (MVM) was previously reported in ∼43% of Wistar rats in association with vascular anomalies without phenotypic manifestation. This mild traumatic brain injury (TBI) weight drop model study investigates whether MVM rats (n = 15) have different injury responses that could inadvertently complicate the interpretation of imaging studies compared with normal rats (n = 15). Quantitative MRI, including diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI), and immunohistochemistry (IHC) analysis were used to examine the injury pattern up to 8 days post-injury in MVM and normal rats. Prior to injury, the MVM brain showed significant higher mean diffusivity, axial diffusivity, and radial diffusivity, and lower fractional anisotropy (FA) and magnetization transfer ratio (MTR) in the corpus callosum than normal brain (p < 0.05). Following TBI, normal brains exhibited significant decreases of FA in the corpus callosum, whereas MVM brains demonstrated insignificant changes in FA, suggesting less axonal injury. At day 8 after mild TBI, MTR of the normal brains significantly decreased whereas the MTR of the MVM brains significantly increased. IHC staining substantiated the MRI findings, demonstrating limited axonal injury with significant increase of microgliosis and astrogliosis in MVM brain compared with normal animals. The radiological-pathological correlation data showed that both DTI and MTI were sensitive in detecting mild diffuse brain injury, although DTI metrics were more specific in correlating with histologically identified pathologies. Compared with the higher correlation levels reflecting axonal injury pathology in the normal rat mild TBI, the DTI and MTR metrics were more affected by the increased inflammation in the MVM rat mild TBI. Because MVM Wistar rats appear normal, there was a need to screen rats prior to TBI research to rule out the presence of ventriculomegaly, which may complicate the interpretation of imaging and IHC observations. PMID:26905805

  7. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits.

    PubMed

    Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A

    2011-01-01

    Autophagy, a major degradative pathway for proteins and organelles, is essential for survival of mature neurons. Extensive autophagic-lysosomal pathology in Alzheimer's disease brain contributes to Alzheimer's disease pathogenesis, although the underlying mechanisms are not well understood. Here, we identified and characterized marked intraneuronal amyloid-β peptide/amyloid and lysosomal system pathology in the Alzheimer's disease mouse model TgCRND8 similar to that previously described in Alzheimer's disease brains. We further establish that the basis for these pathologies involves defective proteolytic clearance of neuronal autophagic substrates including amyloid-β peptide. To establish the pathogenic significance of these abnormalities, we enhanced lysosomal cathepsin activities and rates of autophagic protein turnover in TgCRND8 mice by genetically deleting cystatin B, an endogenous inhibitor of lysosomal cysteine proteases. Cystatin B deletion rescued autophagic-lysosomal pathology, reduced abnormal accumulations of amyloid-β peptide, ubiquitinated proteins and other autophagic substrates within autolysosomes/lysosomes and reduced intraneuronal amyloid-β peptide. The amelioration of lysosomal function in TgCRND8 markedly decreased extracellular amyloid deposition and total brain amyloid-β peptide 40 and 42 levels, and prevented the development of deficits of learning and memory in fear conditioning and olfactory habituation tests. Our findings support the pathogenic significance of autophagic-lysosomal dysfunction in Alzheimer's disease and indicate the potential value of restoring normal autophagy as an innovative therapeutic strategy for Alzheimer's disease.

  8. Quantitative skeletal evaluation based on cervical vertebral maturation: a longitudinal study of adolescents with normal occlusion.

    PubMed

    Chen, L; Liu, J; Xu, T; Long, X; Lin, J

    2010-07-01

    The study aims were to investigate the correlation between vertebral shape and hand-wrist maturation and to select characteristic parameters of C2-C5 (the second to fifth cervical vertebrae) for cervical vertebral maturation determination by mixed longitudinal data. 87 adolescents (32 males, 55 females) aged 8-18 years with normal occlusion were studied. Sequential lateral cephalograms and hand-wrist radiographs were taken annually for 6 consecutive years. Lateral cephalograms were divided into 11 maturation groups according to Fishman Skeletal Maturity Indicators (SMI). 62 morphological measurements of C2-C5 at 11 different developmental stages (SMI1-11) were measured and analysed. Locally weighted scatterplot smoothing, correlation coefficient analysis and variable cluster analysis were used for statistical analysis. Of the 62 cervical vertebral parameters, 44 were positively correlated with SMI, 6 were negatively correlated and 12 were not correlated. The correlation coefficients between cervical vertebral parameters and SMI were relatively high. Characteristic parameters for quantitative analysis of cervical vertebral maturation were selected. In summary, cervical vertebral maturation could be used reliably to evaluate the skeletal stage instead of the hand-wrist radiographic method. Selected characteristic parameters offered a simple and objective reference for the assessment of skeletal maturity and timing of orthognathic surgery. Copyright 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. PERINATAL EXPOSURE TO POLYCHLORINATED BIPHENYLS AROCLOR 1016 OR 1254 DID NOT ALTER BRAIN CATECHOLAMINES NOR DELAYED ALTERNATION PERFORMANCE IN LONG EVANS RATS

    EPA Science Inventory

    Several reports have indicated that polychlorinated biphenyls (PCB) altered development of biogenic amine systems in the brain, impaired behavioral performances and disrupted maturation of the thyroid axis. The current study examines whether these developmental effects of PCB ar...

  10. Cannabis Use and Memory Brain Function in Adolescent Boys: A Cross-Sectional Multicenter Functional Magnetic Resonance Imaging Study

    ERIC Educational Resources Information Center

    Jager, Gerry; Block, Robert I.; Luijten, Maartje; Ramsey, Nick F.

    2010-01-01

    Objective: Early-onset cannabis use has been associated with later use/abuse, mental health problems (psychosis, depression), and abnormal development of cognition and brain function. During adolescence, ongoing neurodevelopmental maturation and experience shape the neural circuitry underlying complex cognitive functions such as memory and…

  11. Who's Minding the Teenage Brain?

    ERIC Educational Resources Information Center

    Monastersky, Richard

    2007-01-01

    In this article, the author describes how researchers study the adolescent brain--a subject of inquiry that did not exist a generation ago. Any parent of a teenager knows that adolescents often have difficulty navigating through their world. Now scientists are starting to find out why. Peering into the minds of maturing youngsters, researchers are…

  12. Neurodevelopmental Abnormalities and Congenital Heart Disease: Insights into Altered Brain Maturation

    PubMed Central

    Morton, Paul D.; Ishibashi, Nobuyuki; Jonas, Richard A.

    2017-01-01

    In the past two decades it has become evident that individuals born with congenital heart disease (CHD) are at risk of developing life-long neurological deficits. Multifactorial risk factors contributing to neurodevelopmental abnormalities associated with CHD have been identified; however the underlying etiologies remain largely unknown and efforts to address this issue have only recently begun. There has been a dramatic shift in focus from newly acquired brain injuries associated with corrective and palliative heart surgery to antenatal and preoperative factors governing altered brain maturation in CHD. In this review, we describe key time windows of development during which the immature brain is vulnerable to injury. Special emphasis is placed on the dynamic nature of cellular events and how CHD may adversely impact the cellular units and networks necessary for proper cognitive and motor function. In addition, we describe current gaps in knowledge and offer perspectives about what can be done to improve our understanding of neurological deficits in CHD. Ultimately, a multidisciplinary approach will be essential in order to prevent or improve adverse neurodevelopmental outcomes in individuals surviving CHD. PMID:28302742

  13. Neurodevelopmental Abnormalities and Congenital Heart Disease: Insights Into Altered Brain Maturation.

    PubMed

    Morton, Paul D; Ishibashi, Nobuyuki; Jonas, Richard A

    2017-03-17

    In the past 2 decades, it has become evident that individuals born with congenital heart disease (CHD) are at risk of developing life-long neurological deficits. Multifactorial risk factors contributing to neurodevelopmental abnormalities associated with CHD have been identified; however, the underlying causes remain largely unknown, and efforts to address this issue have only recently begun. There has been a dramatic shift in focus from newly acquired brain injuries associated with corrective and palliative heart surgery to antenatal and preoperative factors governing altered brain maturation in CHD. In this review, we describe key time windows of development during which the immature brain is vulnerable to injury. Special emphasis is placed on the dynamic nature of cellular events and how CHD may adversely impact the cellular units and networks necessary for proper cognitive and motor function. In addition, we describe current gaps in knowledge and offer perspectives about what can be done to improve our understanding of neurological deficits in CHD. Ultimately, a multidisciplinary approach will be essential to prevent or improve adverse neurodevelopmental outcomes in individuals surviving CHD. © 2017 American Heart Association, Inc.

  14. Association between growth stunting with dental development and skeletal maturation stage.

    PubMed

    Flores-Mir, Carlos; Mauricio, Franco Raul; Orellana, Maria Fernanda; Major, Paul William

    2005-11-01

    The aim of this study was to determine the influence of growth stunting on the maturation stage of the medium phalanx of the third finger (MP3) and the dental development of the left mandibular canine in 280 high school children (140 stunted and 140 normal controls; equally distributed by sex) between 9.5 and 16.5 years of age, from a representative Peruvian school. Periapical radiographs of the MP3 from the left hand were used to determine the skeletal maturity stage, according to an adaptation of the Hägg and Taranger method. Panoramic radiographs were used to determine the dental maturity stage of the lower left canine, according to Demirjian method. Stunting was determined by relating height and age, according to the World Health Organization recommendations. There was no statistically significant difference in the skeletal maturation stage (P = .134) and the dental development stage (P = .497) according to nutritional status, even when considering different age groups (P > .183). A high correlation (r = 0.85) was found between both maturity indicators regardless of the nutritional status (growth stunted, r = 0.855 and normal controls, r = 0.863) or sex (boys, r = 0.809 and girls, r = 0.892). When skeletal level was considered, correlations values were similar between advanced (r = 0.903) and average (r = 0.895) maturers but lower (r = 0.751) for delayed maturers. Growth stunting was not associated with dental development and skeletal maturity stages in Peruvian school children.

  15. Conflating Capacity & Authority: Why We're Asking the Wrong Question in the Adolescent Decision-Making Debate.

    PubMed

    Salter, Erica K

    2017-01-01

    Whether adolescents should be allowed to make their own medical decisions has been a topic of discussion in bioethics for at least two decades now. Are adolescents sufficiently capacitated to make their own medical decisions? Is the mature-minor doctrine, an uncommon legal exception to the rule of parental decision-making authority, something we should expand or eliminate? Bioethicists have dealt with the curious liminality of adolescents-their being neither children nor adults-in a variety of ways. However, recently there has been a trend to rely heavily, and often exclusively, on emerging neuroscientific and psychological data to answer these questions. Using data from magnetic resonance imaging and functional MRI studies on the adolescent brain, authors have argued both that the adolescent brain isn't sufficiently mature to broadly confer capacity on this population and that the adolescent brain is sufficiently mature to assume adolescent capacity. Scholars then accept these data as sufficient for concluding that adolescents should or should not have decision-making authority. Two critical mistakes are being made here. The first is the expectation that neuroscience or psychology is or will be able to answer all our questions about capacity. The second, and more concerning, mistake is the conflation of decision-making capacity with decision-making authority. © 2017 The Hastings Center.

  16. Alternative life histories shape brain gene expression profiles in males of the same population

    USGS Publications Warehouse

    Aubin-Horth, N.; Landry, C.R.; Letcher, B.H.; Hofmann, H.A.

    2005-01-01

    Atlantic salmon (Salmo salar) undergo spectacular marine migrations before homing to spawn in natal rivers. However, males that grow fastest early in life can adopt an alternative 'sneaker' tactic by maturing earlier at greatly reduced size without leaving freshwater. While the ultimate evolutionary causes have been well studied, virtually nothing is known about the molecular bases of this developmental plasticity. We investigate the nature and extent of coordinated molecular changes that accompany such a fundamental transformation by comparing the brain transcription profiles of wild mature sneaker males to age-matched immature males (future large anadromous males) and immature females. Of the ca. 3000 genes surveyed, 15% are differentially expressed in the brains of the two male types. These genes are involved in a wide range of processes, including growth, reproduction and neural plasticity. Interestingly, despite the potential for wide variation in gene expression profiles among individuals sampled in nature, consistent patterns of gene expression were found for individuals of the same reproductive tactic. Notably, gene expression patterns in immature males were different both from immature females and sneakers, indicating that delayed maturation and sea migration by immature males, the 'default' life cycle, may actually result from an active inhibition of development into a sneaker. ?? 2005 The Royal Society.

  17. Alternative life histories shape brain gene expression profiles in males of the same population

    PubMed Central

    Aubin-Horth, Nadia; Landry, Christian R; Letcher, Benjamin H; Hofmann, Hans A

    2005-01-01

    Atlantic salmon (Salmo salar) undergo spectacular marine migrations before homing to spawn in natal rivers. However, males that grow fastest early in life can adopt an alternative ‘sneaker’ tactic by maturing earlier at greatly reduced size without leaving freshwater. While the ultimate evolutionary causes have been well studied, virtually nothing is known about the molecular bases of this developmental plasticity. We investigate the nature and extent of coordinated molecular changes that accompany such a fundamental transformation by comparing the brain transcription profiles of wild mature sneaker males to age-matched immature males (future large anadromous males) and immature females. Of the ca. 3000 genes surveyed, 15% are differentially expressed in the brains of the two male types. These genes are involved in a wide range of processes, including growth, reproduction and neural plasticity. Interestingly, despite the potential for wide variation in gene expression profiles among individuals sampled in nature, consistent patterns of gene expression were found for individuals of the same reproductive tactic. Notably, gene expression patterns in immature males were different both from immature females and sneakers, indicating that delayed maturation and sea migration by immature males, the ‘default’ life cycle, may actually result from an active inhibition of development into a sneaker. PMID:16087419

  18. Alternative life histories shape brain gene expression profiles in males of the same population.

    PubMed

    Aubin-Horth, Nadia; Landry, Christian R; Letcher, Benjamin H; Hofmann, Hans A

    2005-08-22

    Atlantic salmon (Salmo salar) undergo spectacular marine migrations before homing to spawn in natal rivers. However, males that grow fastest early in life can adopt an alternative 'sneaker' tactic by maturing earlier at greatly reduced size without leaving freshwater. While the ultimate evolutionary causes have been well studied, virtually nothing is known about the molecular bases of this developmental plasticity. We investigate the nature and extent of coordinated molecular changes that accompany such a fundamental transformation by comparing the brain transcription profiles of wild mature sneaker males to age-matched immature males (future large anadromous males) and immature females. Of the ca. 3000 genes surveyed, 15% are differentially expressed in the brains of the two male types. These genes are involved in a wide range of processes, including growth, reproduction and neural plasticity. Interestingly, despite the potential for wide variation in gene expression profiles among individuals sampled in nature, consistent patterns of gene expression were found for individuals of the same reproductive tactic. Notably, gene expression patterns in immature males were different both from immature females and sneakers, indicating that delayed maturation and sea migration by immature males, the 'default' life cycle, may actually result from an active inhibition of development into a sneaker.

  19. Use of Brain MRI Atlases to Determine Boundaries of Age-Related Pathology: The Importance of Statistical Method

    PubMed Central

    Dickie, David Alexander; Job, Dominic E.; Gonzalez, David Rodriguez; Shenkin, Susan D.; Wardlaw, Joanna M.

    2015-01-01

    Introduction Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient’s brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ±standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer’s disease (AD) patients. Methods Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55–90 years), we created: a mean ±SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients. Results The parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25–45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes. Discussion To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we conclude that the statistical method used for construction of brain MRI atlases should be selected taking into account the population and aim under study. Parametric methods are generally robust for defining central tendencies, e.g., means, of brain structure. Nonparametric methods are advisable when studying the limits of brain structure in ageing and neurodegenerative disease. PMID:26023913

  20. Why do many psychiatric disorders emerge during adolescence?

    PubMed Central

    Giedd, Jay N.; Keshavan, Matcheri; Paus, Tomáš

    2008-01-01

    What do we know about the maturation of the human brain during adolescence? Do structural changes in cerebral cortex reflect synaptic pruning? Are increases in white-matter volume driven by myelination? Is the adolescent brain more or less sensitive to reward? These are but a few questions we ask in this review while attempting to indicate how findings obtained in the healthy brain help in furthering our understanding of mental health during adolescence. PMID:19002191

  1. Reactive astrocyte COX2-PGE2 production inhibits oligodendrocyte maturation in neonatal white matter injury.

    PubMed

    Shiow, Lawrence R; Favrais, Geraldine; Schirmer, Lucas; Schang, Anne-Laure; Cipriani, Sara; Andres, Christian; Wright, Jaclyn N; Nobuta, Hiroko; Fleiss, Bobbi; Gressens, Pierre; Rowitch, David H

    2017-12-01

    Inflammation is a major risk factor for neonatal white matter injury (NWMI), which is associated with later development of cerebral palsy. Although recent studies have demonstrated maturation arrest of oligodendrocyte progenitor cells (OPCs) in NWMI, the identity of inflammatory mediators with direct effects on OPCs has been unclear. Here, we investigated downstream effects of pro-inflammatory IL-1β to induce cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) production in white matter. First, we assessed COX2 expression in human fetal brain and term neonatal brain affected by hypoxic-ischemic encephalopathy (HIE). In the developing human brain, COX2 was expressed in radial glia, microglia, and endothelial cells. In human term neonatal HIE cases with subcortical WMI, COX2 was strongly induced in reactive astrocytes with "A2" reactivity. Next, we show that OPCs express the EP1 receptor for PGE2, and PGE2 acts directly on OPCs to block maturation in vitro. Pharmacologic blockade with EP1-specific inhibitors (ONO-8711, SC-51089), or genetic deficiency of EP1 attenuated effects of PGE2. In an IL-1β-induced model of NWMI, astrocytes also exhibit "A2" reactivity and induce COX2. Furthermore, in vivo inhibition of COX2 with Nimesulide rescues hypomyelination and behavioral impairment. These findings suggest that neonatal white matter astrocytes can develop "A2" reactivity that contributes to OPC maturation arrest in NWMI through induction of COX2-PGE2 signaling, a pathway that can be targeted for neonatal neuroprotection. © 2017 Wiley Periodicals, Inc.

  2. Development of the selection and manipulation of self-generated thoughts in adolescence.

    PubMed

    Dumontheil, Iroise; Hassan, Bano; Gilbert, Sam J; Blakemore, Sarah-Jayne

    2010-06-02

    The ability to select and manipulate self-generated (stimulus-independent, SI), as opposed to stimulus-oriented (SO), information, in a controlled and flexible way has previously only been studied in adults. This ability is thought to rely in part on the rostrolateral prefrontal cortex (RLPFC), which continues to mature anatomically during adolescence. We investigated (1) the development of this ability behaviorally, (2) the associated functional brain development, and (3) the link between functional and structural maturation. Participants classified according to their shape letters either presented visually (SO phases) or that they generated in their head by continuing the alphabet sequence (SI phases). SI phases were performed in the presence or absence of distracting letters. A total of 179 participants (7-27 years old) took part in a behavioral study. Resistance to visual distractors exhibited small improvements with age. SI thoughts manipulation and switching between SI and SO thoughts showed steeper performance improvements extending into late adolescence. Thirty-seven participants (11-30 years old) took part in a functional MRI (fMRI) study. SI thought manipulation and switching between SO and SI thought were each associated with brain regions consistently recruited across age. A single frontal brain region in each contrast exhibited decreased activity with age: left inferior frontal gyrus/anterior insula for SI thought manipulation, and right superior RLPFC for switching between SO and SI thoughts. By integrating structural and functional data, we demonstrated that the observed functional changes with age were not purely consequences of structural maturation and thus may reflect the maturation of neurocognitive strategies.

  3. Developmental effects of androgens in the human brain.

    PubMed

    Nguyen, T-V

    2018-02-01

    Neuroendocrine theories of brain development posit that androgens play a crucial role in sex-specific cortical growth, although little is known about the differential effects of testosterone and dehydroepiandrosterone (DHEA) on cortico-limbic development and cognition during adolescence. In this context, the National Institutes of Health Study of Normal Brain Development, a longitudinal study of typically developing children and adolescents aged 4-24 years (n=433), offers a unique opportunity to examine the developmental effects of androgens on cortico-limbic maturation and cognition. Using data from this sample, our group found that higher testosterone levels were associated with left-sided decreases in cortical thickness (CTh) in post-pubertal boys, particularly in the prefrontal cortex, compared to right-sided increases in CTh in somatosensory areas in pre-pubertal girls. Prefrontal-amygdala and prefrontal-hippocampal structural covariance (considered to reflect structural connectivity) also varied according to testosterone levels, with the testosterone-related brain phenotype predicting higher aggression levels and lower executive function, particularly in boys. By contrast, DHEA was associated with a pre-pubertal increase in CTh of several regions involved in cognitive control in both boys and girls. Covariance within several cortico-amygdalar structural networks also varied as a function of DHEA levels, with the DHEA-related brain phenotype predicting improvements in visual attention in both boys and girls. DHEA-related cortico-hippocampal structural covariance, on the other hand, predicted higher scores on a test of working memory. Interestingly, there were significant interactions between testosterone and DHEA, such that DHEA tended to mitigate the anti-proliferative effects of testosterone on brain structure. In sum, testosterone-related effects on the developing brain may lead to detrimental effects on cortical functions (ie, higher aggression and lower executive function), whereas DHEA-related effects may optimise cortical functions (ie, better attention and working memory), perhaps by decreasing the influence of amygdalar and hippocampal afferents on cortical functions. © 2017 British Society for Neuroendocrinology.

  4. How the brain attunes to sentence processing: Relating behavior, structure, and function

    PubMed Central

    Fengler, Anja; Meyer, Lars; Friederici, Angela D.

    2016-01-01

    Unlike other aspects of language comprehension, the ability to process complex sentences develops rather late in life. Brain maturation as well as verbal working memory (vWM) expansion have been discussed as possible reasons. To determine the factors contributing to this functional development, we assessed three aspects in different age-groups (5–6 years, 7–8 years, and adults): first, functional brain activity during the processing of increasingly complex sentences; second, brain structure in language-related ROIs; and third, the behavioral comprehension performance on complex sentences and the performance on an independent vWM test. At the whole-brain level, brain functional data revealed a qualitatively similar neural network in children and adults including the left pars opercularis (PO), the left inferior parietal lobe together with the posterior superior temporal gyrus (IPL/pSTG), the supplementary motor area, and the cerebellum. While functional activation of the language-related ROIs PO and IPL/pSTG predicted sentence comprehension performance for all age-groups, only adults showed a functional selectivity in these brain regions with increased activation for more complex sentences. The attunement of both the PO and IPL/pSTG toward a functional selectivity for complex sentences is predicted by region-specific gray matter reduction while that of the IPL/pSTG is additionally predicted by vWM span. Thus, both structural brain maturation and vWM expansion provide the basis for the emergence of functional selectivity in language-related brain regions leading to more efficient sentence processing during development. PMID:26777477

  5. Consumption of Alcopops During Brain Maturation Period: Higher Impact of Fructose Than Ethanol on Brain Metabolism.

    PubMed

    El Hamrani, Dounia; Gin, Henri; Gallis, Jean-Louis; Bouzier-Sore, Anne-Karine; Beauvieux, Marie-Christine

    2018-01-01

    Alcopops are flavored alcoholic beverages sweetened by sodas, known to contain fructose. These drinks have the goal of democratizing alcohol among young consumers (12-17 years old) and in the past few years have been considered as fashionable amongst teenagers. Adolescence, however, is a key period for brain maturation, occurring in the prefrontal cortex and limbic system until 21 years old. Therefore, this drinking behavior has become a public health concern. Despite the extensive literature concerning the respective impacts of either fructose or ethanol on brain, the effects following joint consumption of these substrates remains unknown. Our objective was to study the early brain modifications induced by a combined diet of high fructose (20%) and moderate amount of alcohol in young rats by 13 C Nuclear Magnetic Resonance (NMR) spectroscopy. Wistar rats had isocaloric pair-fed diets containing fructose (HF, 20%), ethanol (Et, 0.5 g/day/kg) or both substrates at the same time (HFEt). After 6 weeks of diet, the rats were infused with 13 C-glucose and brain perchloric acid extracts were analyzed by NMR spectroscopy ( 1 H and 13 C). Surprisingly, the most important modifications of brain metabolism were observed under fructose diet. Alterations, observed after only 6 weeks of diet, show that the brain is vulnerable at the metabolic level to fructose consumption during late-adolescence throughout adulthood in rats. The main result was an increase in oxidative metabolism compared to glycolysis, which may impact lactate levels in the brain and may, at least partially, explain memory impairment in teenagers consuming alcopops.

  6. SU-E-T-568: Improving Normal Brain Sparing with Increasing Number of Arc Beams for Volume Modulated Arc Beam Radiosurgery of Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, S; Hildebrand, K; Ahmad, S

    Purpose: Intensity modulated arc beams have been newly reported for treating multiple brain metastases. The purpose of this study was to determine the variations in the normal brain doses with increasing number of arc beams for multiple brain metastases treatments via the TrueBeam Rapidarc system (Varian Oncology, Palo Alto, CA). Methods: A patient case with 12 metastatic brain lesions previously treated on the Leksell Gamma Knife Perfexion (GK) was used for the study. All lesions and organs at risk were contoured by a senior radiation oncologist and treatment plans for a subset of 3, 6, 9 and all 12 targetsmore » were developed for the TrueBeam Rapidarc system via 3 to 7 intensity modulated arc-beams with each target covered by at least 99% of the prescribed dose of 20 Gy. The peripheral normal brain isodose volumes as well as the total beam-on time were analyzed with increasing number of arc beams for these targets. Results: All intensisty modulated arc-beam plans produced efficient treatment delivery with the beam-on time averaging 0.6–1.5 min per lesion at an output of 1200 MU/min. With increasing number of arc beams, the peripheral normal brain isodose volumes such as the 12-Gy isodose line enclosed normal brain tissue volumes were on average decreased by 6%, 11%, 18%, and 28% for the 3-, 6-, 9-, 12-target treatment plans respectively. The lowest normal brain isodose volumes were consistently found for the 7-arc treatment plans for all the cases. Conclusion: With nearly identical beam-on times, the peripheral normal brain dose was notably decreased when the total number of intensity modulated arc beams was increased when treating multiple brain metastases. Dr Sahgal and Dr Ma are currently serving on the board of international society of stereotactic radiosurgery.« less

  7. Dependence of normal brain integral dose and normal tissue complication probability on the prescription isodose values for γ-knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Ma, Lijun

    2001-11-01

    A recent multi-institutional clinical study suggested possible benefits of lowering the prescription isodose lines for stereotactic radiosurgery procedures. In this study, we investigate the dependence of the normal brain integral dose and the normal tissue complication probability (NTCP) on the prescription isodose values for γ-knife radiosurgery. An analytical dose model was developed for γ-knife treatment planning. The dose model was commissioned by fitting the measured dose profiles for each helmet size. The dose model was validated by comparing its results with the Leksell gamma plan (LGP, version 5.30) calculations. The normal brain integral dose and the NTCP were computed and analysed for an ensemble of treatment cases. The functional dependence of the normal brain integral dose and the NCTP versus the prescribing isodose values was studied for these cases. We found that the normal brain integral dose and the NTCP increase significantly when lowering the prescription isodose lines from 50% to 35% of the maximum tumour dose. Alternatively, the normal brain integral dose and the NTCP decrease significantly when raising the prescribing isodose lines from 50% to 65% of the maximum tumour dose. The results may be used as a guideline for designing future dose escalation studies for γ-knife applications.

  8. Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I.

    PubMed

    Harting, Inga; Neumaier-Probst, Eva; Seitz, Angelika; Maier, Esther M; Assmann, Birgit; Baric, Ivo; Troncoso, Monica; Mühlhausen, Chris; Zschocke, Johannes; Boy, Nikolas P S; Hoffmann, Georg F; Garbade, Sven F; Kölker, Stefan

    2009-07-01

    In glutaric aciduria type I, an autosomal recessive disease of mitochondrial lysine, hydroxylysine and tryptophan catabolism, striatal lesions are characteristically induced by acute encephalopathic crises during a finite period of brain development (age 3-36 months). The frequency of striatal injury is significantly less in patients diagnosed as asymptomatic newborns by newborn screening. Most previous studies have focused on the onset and mechanism of striatal injury, whereas little is known about neuroradiological abnormalities in pre-symptomatically diagnosed patients and about dynamic changes of extrastriatal abnormalities. Thus, the major aim of the present retrospective study was to improve our understanding of striatal and extrastriatal abnormalities in affected individuals including those diagnosed by newborn screening. To this end, we systematically analysed magnetic resonance imagings (MRIs) in 38 patients with glutaric aciduria type I diagnosed before or after the manifestation of neurological symptoms. To identify brain regions that are susceptible to cerebral injury during acute encephalopathic crises, we compared the frequency of magnetic resonance abnormalities in patients with and without such crises. Major specific changes after encephalopathic crises were found in the putamen (P < 0.001), nucleus caudatus (P < 0.001), globus pallidus (P = 0.012) and ventricles (P = 0.001). Analysis of empirical cumulative distribution frequencies, however, demonstrated that isolated pallidal abnormalities did not significantly differ over time in both groups (P = 0.544) suggesting that isolated pallidal abnormalities are not induced by acute crises--in contrast to striatal abnormalities. The manifestation of motor disability was associated with signal abnormalities in putamen, caudate, pallidum and ventricles. In addition, we found a large number of extrastriatal abnormalities in patients with and without preceding encephalophatic crises. These abnormalities include widening of anterior temporal and sylvian CSF spaces, pseudocysts, signal changes of substantia nigra, nucleus dentatus, thalamus, tractus tegmentalis centralis and supratentorial white matter as well as signs of delayed maturation (myelination and gyral pattern). In contrast to the striatum, extrastriatal abnormalities were variable and could regress or even normalize with time. This includes widening of sylvian fissures, delayed maturation, pallidal signal changes and pseudocysts. Based on these results, we hypothesize that neuroradiological abnormalities and neurological symptoms in glutaric aciduria type I can be explained by overlaying episodes of cerebral alterations including maturational delay of the brain in utero, acute striatal injury during a vulnerable period in infancy and chronic progressive changes that may continue lifelong. This may have widespread consequences for the pathophysiological understanding of this disease, long-term outcomes and therapeutic considerations.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Various

    This report covers the following titles: (1) Fertility and litter size of normally ovulated and artificially ovulated mice; (2) Further studies on sterility produced in male mice by deuterium oxide; (3) Planarian disaggregation; (4) Uptake of organic compounds by planarians. II; (5) Effects of environmental complexity and training on acetylcholinesterase and cholinesterase activity in rat brain; (6) Effects of environmental complexity and training on brain chemistry and anatomy among mature rats; (7) Improvements in paper chromatographic techniques for labeled cell extracts; (8) measurement and adjustment of pH in small volumes of solutions; (9) Carbon-14 and Nitrogen-15 tracer studies of aminomore » acid synthesis during photosynthesis by Chlorella Pyrenoidosa; (10) Photosynthesis of {sup 14}C-labeled protein from {sup 14}CO{sub 2} by Chlorella; (11) Further studies on carboxydismutase; (12) Electron microscopy of chlorophyll a crystals; (13) The possible role of chromanyl phosphates in oxidative and photosynthetic phosphorylation; (14) Oxidation-reductions of some coenzymes; (15) Preparation of some [{sup 14}C] labeled substances: glucose-6-phosphate, fructose-6-phosphate, 6-phosphogluconic acid, pyruvic acid, and succinic acid; (16) attempt to synthesize high molecular weight polynucleotides using Schramm's purely chemical method; and (17) Optical properties of some dye-polyanion complexes.« less

  10. Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood

    PubMed Central

    Levy, Aaron D.; Omar, Mitchell H.; Koleske, Anthony J.

    2014-01-01

    Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer’s disease. The extracellular matrix (ECM), composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults. PMID:25368556

  11. Malformation syndromes caused by disorders of cholesterol synthesis

    PubMed Central

    Porter, Forbes D.; Herman, Gail E.

    2011-01-01

    Cholesterol homeostasis is critical for normal growth and development. In addition to being a major membrane lipid, cholesterol has multiple biological functions. These roles include being a precursor molecule for the synthesis of steroid hormones, neuroactive steroids, oxysterols, and bile acids. Cholesterol is also essential for the proper maturation and signaling of hedgehog proteins, and thus cholesterol is critical for embryonic development. After birth, most tissues can obtain cholesterol from either endogenous synthesis or exogenous dietary sources, but prior to birth, the human fetal tissues are dependent on endogenous synthesis. Due to the blood-brain barrier, brain tissue cannot utilize dietary or peripherally produced cholesterol. Generally, inborn errors of cholesterol synthesis lead to both a deficiency of cholesterol and increased levels of potentially bioactive or toxic precursor sterols. Over the past couple of decades, a number of human malformation syndromes have been shown to be due to inborn errors of cholesterol synthesis. Herein, we will review clinical and basic science aspects of Smith-Lemli-Opitz syndrome, desmosterolosis, lathosterolosis, HEM dysplasia, X-linked dominant chondrodysplasia punctata, Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects Syndrome, sterol-C-4 methyloxidase-like deficiency, and Antley-Bixler syndrome. PMID:20929975

  12. Expression of hypoxia-inducible carbonic anhydrases in brain tumors

    PubMed Central

    Proescholdt, Martin A.; Mayer, Christina; Kubitza, Marion; Schubert, Thomas; Liao, Shu-Yuan; Stanbridge, Eric J.; Ivanov, Sergey; Oldfield, Edward H.; Brawanski, Alexander; Merrill, Marsha J.

    2005-01-01

    Malignant brain tumors exhibit distinct metabolic characteristics. Despite high levels of lactate, the intracellular pH of brain tumors is more alkaline than normal brain. Additionally, with increasing malignancy, brain tumors display intratumoral hypoxia. Carbonic anhydrase (CA) IX and XII are transmembrane isoenzymes that are induced by tissue hypoxia. They participate in regulation of pH homeostasis by catalyzing the reversible hydration of carbon dioxide. The aim of our study was to investigate whether brain tumors of different histology and grade of malignancy express elevated levels of CA IX and XII as compared to normal brain. We analyzed 120 tissue specimens from brain tumors (primary and metastatic) and normal brain for CA IX and XII expression by immunohistochemistry, Western blot, and in situ hybridization. Whereas normal brain tissue showed minimal levels of CA IX and XII expression, expression in tumors was found to be upregulated with increased level of malignancy. Hemangioblastomas, from patients with von Hippel–Lindau disease, also displayed high levels of CA IX and XII expression. Comparison of CA IX and XII staining with HIF-1α staining revealed a similar microanatomical distribution, indicating hypoxia as a major, but not the only, induction factor. The extent of CA IX and XII staining correlated with cell proliferation, as indicated by Ki67 labeling. The results demonstrate that CA IX and XII are upregulated in intrinsic and metastatic brain tumors as compared to normal brain tissue. This may contribute to the management of tumor-specific acid load and provide a therapeutic target. PMID:16212811

  13. Proteolytic Cleavage of ProBDNF into Mature BDNF in the Basolateral Amygdala Is Necessary for Defeat-Induced Social Avoidance

    ERIC Educational Resources Information Center

    Dulka, Brooke N.; Ford, Ellen C.; Lee, Melissa A.; Donnell, Nathaniel J.; Goode, Travis D.; Prosser, Rebecca; Cooper, Matthew A.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is essential for memory processes. The present study tested whether proteolytic cleavage of proBDNF into mature BDNF (mBDNF) within the basolateral amygdala (BLA) regulates the consolidation of defeat-related memories. We found that acute social defeat increases the expression of mBDNF, but not proBDNF, in…

  14. Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons.

    PubMed

    Tong, Ling; Strong, Melissa K; Kaur, Tejbeer; Juiz, Jose M; Oesterle, Elizabeth C; Hume, Clifford; Warchol, Mark E; Palmiter, Richard D; Rubel, Edwin W

    2015-05-20

    During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival. Copyright © 2015 the authors 0270-6474/15/357878-14$15.00/0.

  15. Ablation of the presynaptic organizer Bassoon in excitatory neurons retards dentate gyrus maturation and enhances learning performance.

    PubMed

    Annamneedi, Anil; Caliskan, Gürsel; Müller, Sabrina; Montag, Dirk; Budinger, Eike; Angenstein, Frank; Fejtova, Anna; Tischmeyer, Wolfgang; Gundelfinger, Eckart D; Stork, Oliver

    2018-06-18

    Bassoon is a large scaffolding protein of the presynaptic active zone involved in the development of presynaptic terminals and in the regulation of neurotransmitter release at both excitatory and inhibitory brain synapses. Mice with constitutive ablation of the Bassoon (Bsn) gene display impaired presynaptic function, show sensory deficits and develop severe seizures. To specifically study the role of Bassoon at excitatory forebrain synapses and its relevance for control of behavior, we generated conditional knockout (Bsn cKO) mice by gene ablation through an Emx1 promoter-driven Cre recombinase. In these animals, we confirm selective loss of Bassoon from glutamatergic neurons of the forebrain. Behavioral assessment revealed that, in comparison to wild-type littermates, Bsn cKO mice display selectively enhanced contextual fear memory and increased novelty preference in a spatial discrimination/pattern separation task. These changes are accompanied by an augmentation of baseline synaptic transmission at medial perforant path to dentate gyrus (DG) synapses, as indicated by increased ratios of field excitatory postsynaptic potential slope to fiber volley amplitude. At the structural level, an increased complexity of apical dendrites of DG granule cells can be detected in Bsn cKO mice. In addition, alterations in the expression of cellular maturation markers and a lack of age-dependent decrease in excitability between juvenile and adult Bsn cKO mice are observed. Our data suggest that expression of Bassoon in excitatory forebrain neurons is required for the normal maturation of the DG and important for spatial and contextual memory.

  16. Mature Teratoma Associated with Bilateral Ovarian Carcinosarcoma - Accidental Association or Etiopathogenetic Determinism? - Case Report.

    PubMed

    Birla, Rodica; Catanescu, Elena-Roxana; Caragui, Andrei; Constantinoiu, Silviu

    2016-01-01

    Carcinosarcoma is a rare form of ovarian cancer with mixed origin, and its association with mature teratoma is extremely rare. We present the case of patient T. M. aged 67, admitted into our clinic on the 15/05/2016, F.O. 4877 for the increase of the abdominal volume. On admission, the patient was afebrile, conscious, cooperative, cardio-respiratory balanced, having the abdomen distended in volume, sharp dullness in the flanks, positive wave sign bioumoral within normal limits except: uric acid = 6.64 mg / dL, serum glucose = 113.7 mg / dl, serum total proteins = 8.65 g / dl, the albumin / globulin subunit, CRP 33.63 mg / l, sideremia 51 ug / dl, CA 125 = 588.4 IU. Abdominal ultrasound: high volume fluid and multiple perihepatic formations and multiple formations with cystic transformation in the abdomen and pelvis. CT exam describes multiple tissular masses localized intraperitoneal in the abdominal-pelvic region, sheath fluid effusion, infiltrative, with mass effect on the digestive lumens, without visible CT obstruction. Surgical treatment consisted in evacuation of the ascites fluid, excision of the tumoral lumps situated in the great omentum, omentectomy, excision of the lumps of the gastrocolic ligament, bilateral ovariectomy and hysterectomy. Postoperative simple evolution. Histopathology confirmed the diagnosis of bilateral ovarian carcinosarcoma associated with tridermic mature teratoma (presence of brain tissue areas associated with cartilage, transitional type epithelium, tubal type epithelium, endometrial stroma type and fatty tissue). IHC confirms the compatibility with the diagnosis of ovarian carcinosarcoma (mixed malignant Mullerian tumor). The patient followed adjuvant polichemotherapy. The association of teratoma with carcinosarcomatoase elements confers a poor prognosis case. Celsius.

  17. Developmental thyroid hormone insufficiency and brain development: A role for brain-derived neurotrophic factor (BDNF)?*

    EPA Science Inventory

    Thyroid hormones (TH) are essential for normal brain development. Even subclinical hypothyroidism experienced in utero can result in neuropsychological deficits in children despite normal thyroid status at birth. Neurotrophins have been implicated in a host of brain cellular func...

  18. Neuroimaging Studies of Normal Brain Development and Their Relevance for Understanding Childhood Neuropsychiatric Disorders

    ERIC Educational Resources Information Center

    Marsh, Rachel; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    Neuroimaging findings which identify normal brain development trajectories are presented. Results show that early brain development begins with the neural tube formation and ends with myelintation. How disturbances in brain development patterns are related to childhood psychiatric disorders is examined.

  19. Selective reconstitution of liver cholesterol biosynthesis promotes lung maturation but does not prevent neonatal lethality in Dhcr7 null mice.

    PubMed

    Yu, Hongwei; Li, Man; Tint, G Stephen; Chen, Jianliang; Xu, Guorong; Patel, Shailendra B

    2007-04-04

    Targeted disruption of the murine 3beta-hydroxysterol-Delta7-reductase gene (Dhcr7), an animal model of Smith-Lemli-Opitz syndrome, leads to loss of cholesterol synthesis and neonatal death that can be partially rescued by transgenic replacement of DHCR7 expression in brain during embryogenesis. To gain further insight into the role of non-brain tissue cholesterol deficiency in the pathophysiology, we tested whether the lethal phenotype could be abrogated by selective transgenic complementation with DHCR7 expression in the liver. We generated mice that carried a liver-specific human DHCR7 transgene whose expression was driven by the human apolipoprotein E (ApoE) promoter and its associated liver-specific enhancer. These mice were then crossed with Dhcr7+/- mutants to generate Dhcr7-/- mice bearing a human DHCR7 transgene. Robust hepatic transgene expression resulted in significant improvement of cholesterol homeostasis with cholesterol concentrations increasing to 80~90 % of normal levels in liver and lung. Significantly, cholesterol deficiency in brain was not altered. Although late gestational lung sacculation defect reported previously was significantly improved, there was no parallel increase in postnatal survival in the transgenic mutant mice. The reconstitution of DHCR7 function selectively in liver induced a significant improvement of cholesterol homeostasis in non-brain tissues, but failed to rescue the neonatal lethality of Dhcr7 null mice. These results provided further evidence that CNS defects caused by Dhcr7 null likely play a major role in the lethal pathogenesis of Dhcr7-/- mice, with the peripheral organs contributing the morbidity.

  20. Movement-related neuromagnetic fields in preschool age children.

    PubMed

    Cheyne, Douglas; Jobst, Cecilia; Tesan, Graciela; Crain, Stephen; Johnson, Blake

    2014-09-01

    We examined sensorimotor brain activity associated with voluntary movements in preschool children using a customized pediatric magnetoencephalographic system. A videogame-like task was used to generate self-initiated right or left index finger movements in 17 healthy right-handed subjects (8 females, ages 3.2-4.8 years). We successfully identified spatiotemporal patterns of movement-related brain activity in 15/17 children using beamformer source analysis and surrogate MRI spatial normalization. Readiness fields in the contralateral sensorimotor cortex began ∼0.5 s prior to movement onset (motor field, MF), followed by transient movement-evoked fields (MEFs), similar to that observed during self-paced movements in adults, but slightly delayed and with inverted source polarities. We also observed modulation of mu (8-12 Hz) and beta (15-30 Hz) oscillations in sensorimotor cortex with movement, but with different timing and a stronger frequency band coupling compared to that observed in adults. Adult-like high-frequency (70-80 Hz) gamma bursts were detected at movement onset. All children showed activation of the right superior temporal gyrus that was independent of the side of movement, a response that has not been reported in adults. These results provide new insights into the development of movement-related brain function, for an age group in which no previous data exist. The results show that children under 5 years of age have markedly different patterns of movement-related brain activity in comparison to older children and adults, and indicate that significant maturational changes occur in the sensorimotor system between the preschool years and later childhood. Copyright © 2014 Wiley Periodicals, Inc.

  1. A brain imaging repository of normal structural MRI across the life course: Brain Images of Normal Subjects (BRAINS).

    PubMed

    Job, Dominic E; Dickie, David Alexander; Rodriguez, David; Robson, Andrew; Danso, Sammy; Pernet, Cyril; Bastin, Mark E; Boardman, James P; Murray, Alison D; Ahearn, Trevor; Waiter, Gordon D; Staff, Roger T; Deary, Ian J; Shenkin, Susan D; Wardlaw, Joanna M

    2017-01-01

    The Brain Images of Normal Subjects (BRAINS) Imagebank (http://www.brainsimagebank.ac.uk) is an integrated repository project hosted by the University of Edinburgh and sponsored by the Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) collaborators. BRAINS provide sharing and archiving of detailed normal human brain imaging and relevant phenotypic data already collected in studies of healthy volunteers across the life-course. It particularly focusses on the extremes of age (currently older age, and in future perinatal) where variability is largest, and which are under-represented in existing databanks. BRAINS is a living imagebank where new data will be added when available. Currently BRAINS contains data from 808 healthy volunteers, from 15 to 81years of age, from 7 projects in 3 centres. Additional completed and ongoing studies of normal individuals from 1st to 10th decades are in preparation and will be included as they become available. BRAINS holds several MRI structural sequences, including T1, T2, T2* and fluid attenuated inversion recovery (FLAIR), available in DICOM (http://dicom.nema.org/); in future Diffusion Tensor Imaging (DTI) will be added where available. Images are linked to a wide range of 'textual data', such as age, medical history, physiological measures (e.g. blood pressure), medication use, cognitive ability, and perinatal information for pre/post-natal subjects. The imagebank can be searched to include or exclude ranges of these variables to create better estimates of 'what is normal' at different ages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury.

    PubMed

    Madsen, Karine; Hesby, Sara; Poulsen, Ingrid; Fuglsang, Stefan; Graff, Jesper; Larsen, Karen B; Kammersgaard, Lars P; Law, Ian; Siebner, Hartwig R

    2017-11-01

    Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [ 18 F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [ 18 F]FDG-PET scan and venous blood sampling. Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI patients compared to HC. In accordance these measurements correlated to level of consciousness. Our study demonstrates that the analysis method of the [ 18 F]FDG PET data has a substantial impact on the estimated whole brain cerebral glucose metabolism in patients with severe TBI. Importantly, the SUVR method which is often used in a clinical setting was not able to distinguish patients with severe TBI from HC at the whole-brain level. We recommend supplementing a static [ 18 F]FDG scan with a single venous blood sample in future studies of patients with severe TBI or reduced level of consciousness. This can be used for simple semi-quantitative uptake values by normalizing brain activity uptake to plasma tracer concentration, or quantitative estimates of CMRglc. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Developmental implications of children's brain networks and learning.

    PubMed

    Chan, John S Y; Wang, Yifeng; Yan, Jin H; Chen, Huafu

    2016-10-01

    The human brain works as a synergistic system where information exchanges between functional neuronal networks. Rudimentary networks are observed in the brain during infancy. In recent years, the question of how functional networks develop and mature in children has been a hotly discussed topic. In this review, we examined the developmental characteristics of functional networks and the impacts of skill training on children's brains. We first focused on the general rules of brain network development and on the typical and atypical development of children's brain networks. After that, we highlighted the essentials of neural plasticity and the effects of learning on brain network development. We also discussed two important theoretical and practical concerns in brain network training. Finally, we concluded by presenting the significance of network training in typically and atypically developed brains.

  4. Comparative study of nonlinear properties of EEG signals of normal persons and epileptic patients

    PubMed Central

    2009-01-01

    Background Investigation of the functioning of the brain in living systems has been a major effort amongst scientists and medical practitioners. Amongst the various disorder of the brain, epilepsy has drawn the most attention because this disorder can affect the quality of life of a person. In this paper we have reinvestigated the EEGs for normal and epileptic patients using surrogate analysis, probability distribution function and Hurst exponent. Results Using random shuffled surrogate analysis, we have obtained some of the nonlinear features that was obtained by Andrzejak et al. [Phys Rev E 2001, 64:061907], for the epileptic patients during seizure. Probability distribution function shows that the activity of an epileptic brain is nongaussian in nature. Hurst exponent has been shown to be useful to characterize a normal and an epileptic brain and it shows that the epileptic brain is long term anticorrelated whereas, the normal brain is more or less stochastic. Among all the techniques, used here, Hurst exponent is found very useful for characterization different cases. Conclusion In this article, differences in characteristics for normal subjects with eyes open and closed, epileptic subjects during seizure and seizure free intervals have been shown mainly using Hurst exponent. The H shows that the brain activity of a normal man is uncorrelated in nature whereas, epileptic brain activity shows long range anticorrelation. PMID:19619290

  5. Effect of intravenous gadolinium-DTPA on diffusion-weighted imaging of brain tumors: a short temporal interval assessment.

    PubMed

    Li, Xiang; Qu, Jin-Rong; Luo, Jun-Peng; Li, Jing; Zhang, Hong-Kai; Shao, Nan-Nan; Kwok, Keith; Zhang, Shou-Ning; Li, Yan-le; Liu, Cui-Cui; Zee, Chi-Shing; Li, Hai-Liang

    2014-09-01

    To determine the effect of intravenous administration of gadolinium (Gd) contrast medium (Gd-DTPA) on diffusion-weighted imaging (DWI) for the evaluation of normal brain parenchyma vs. brain tumor following a short temporal interval. Forty-four DWI studies using b values of 0 and 1000 s/mm(2) were performed before, immediately after, 1 min after, 3 min after, and 5 min after the administration of Gd-DTPA on 62 separate lesions including 15 meningioma, 17 glioma and 30 metastatic lesions. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) values of the brain tumor lesions and normal brain tissues were measured on pre- and postcontrast images. Statistical analysis using paired t-test between precontrast and postcontrast data were obtained on three brain tumors and normal brain tissue. The SNR and CNR of brain tumors and the SNR of normal brain tissue showed no statistical differences between pre- and postcontrast (P > 0.05). The ADC values on the three cases of brain tumors demonstrated significant initial increase on the immediate time point (P < 0.01) and decrease on following the 1 min time point (P < 0.01) after contrast. Significant decrease of ADC value was still found at 3min and 5min time point in the meningioma group (P < 0.01) with gradual normalization over time. The ADC values of normal brain tissues demonstrated significant initial elevation on the immediately postcontrast DWI sequence (P < 0.01). Contrast medium can cause a slight but statistically significant change on the ADC value within a short temporal interval after the contrast administration. The effect is both time and lesion-type dependent. © 2013 Wiley Periodicals, Inc.

  6. Minimal Brain Dysfunction in Childhood: 1. Outcome in Late Adolescence and Early Adult Years. Final Version.

    ERIC Educational Resources Information Center

    Milman, Doris H.

    Seventy-three patients, diagnosed in childhood as having either maturational lag or organic brain syndrome, were followed for an average of 12 years into late adolescence and early adult life for the purpose of discovering the outcome with respect to ultimate psychiatric status, educational attainment, social adjustment, and global adjustment. At…

  7. Growth of White Matter in the Adolescent Brain: Myelin or Axon?

    ERIC Educational Resources Information Center

    Paus, Tomas

    2010-01-01

    White matter occupies almost half of the human brain. It contains axons connecting spatially segregated modules and, as such, it is essential for the smooth flow of information in functional networks. Structural maturation of white matter continues during adolescence, as reflected in age-related changes in its volume, as well as in its…

  8. Nicotine and the adolescent brain

    PubMed Central

    Yuan, Menglu; Cross, Sarah J; Loughlin, Sandra E; Leslie, Frances M

    2015-01-01

    Adolescence encompasses a sensitive developmental period of enhanced clinical vulnerability to nicotine, tobacco, and e-cigarettes. While there are sociocultural influences, data at preclinical and clinical levels indicate that this adolescent sensitivity has strong neurobiological underpinnings. Although definitions of adolescence vary, the hallmark of this period is a profound reorganization of brain regions necessary for mature cognitive and executive function, working memory, reward processing, emotional regulation, and motivated behavior. Regulating critical facets of brain maturation are nicotinic acetylcholine receptors (nAChRs). However, perturbations of cholinergic systems during this time with nicotine, via tobacco or e-cigarettes, have unique consequences on adolescent development. In this review, we highlight recent clinical and preclinical data examining the adolescent brain's distinct neurobiology and unique sensitivity to nicotine. First, we discuss what defines adolescence before reviewing normative structural and neurochemical alterations that persist until early adulthood, with an emphasis on dopaminergic systems. We review how acute exposure to nicotine impacts brain development and how drug responses differ from those seen in adults. Finally, we discuss the persistent alterations in neuronal signaling and cognitive function that result from chronic nicotine exposure, while highlighting a low dose, semi-chronic exposure paradigm that may better model adolescent tobacco use. We argue that nicotine exposure, increasingly occurring as a result of e-cigarette use, may induce epigenetic changes that sensitize the brain to other drugs and prime it for future substance abuse. PMID:26018031

  9. Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain.

    PubMed

    Sinclair, Duncan; Purves-Tyson, Tertia D; Allen, Katherine M; Weickert, Cynthia Shannon

    2014-04-01

    Adolescence is a developmental period of complex neurobiological change and heightened vulnerability to psychiatric illness. As a result, understanding factors such as sex and stress hormones which drive brain changes in adolescence, and how these factors may influence key neurotransmitter systems implicated in psychiatric illness, is paramount. In this review, we outline the impact of sex and stress hormones at adolescence on dopamine neurotransmission, a signaling pathway which is critical to healthy brain function and has been implicated in psychiatric illness. We review normative developmental changes in dopamine, sex hormone, and stress hormone signaling during adolescence and throughout postnatal life, then highlight the interaction of sex and stress hormones and review their impacts on dopamine neurotransmission in the adolescent brain. Adolescence is a time of increased responsiveness to sex and stress hormones, during which the maturing dopaminergic neural circuitry is profoundly influenced by these factors. Testosterone, estrogen, and glucocorticoids interact with each other and have distinct, brain region-specific impacts on dopamine neurotransmission in the adolescent brain, shaping brain maturation and cognitive function in adolescence and adulthood. Some effects of stress/sex hormones on cortical and subcortical dopamine parameters bear similarities with dopaminergic abnormalities seen in schizophrenia, suggesting a possible role for sex/stress hormones at adolescence in influencing risk for psychiatric illness via modulation of dopamine neurotransmission. Stress and sex hormones may prove useful targets in future strategies for modifying risk for psychiatric illness.

  10. Accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue.

    PubMed

    Zhang, Jing; Fan, Yimeng; He, Min; Ma, Xuelei; Song, Yanlin; Liu, Ming; Xu, Jianguo

    2017-05-30

    Raman spectroscopy could be applied to distinguish tumor from normal tissues. This meta-analysis was conducted to assess the accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue. PubMed and Embase were searched to identify suitable studies prior to Jan 1st, 2016. We estimated the pooled sensitivity, specificity, positive and negative likelihood ratios (LR), diagnostic odds ratio (DOR), and constructed summary receiver operating characteristics (SROC) curves to identity the accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue. A total of six studies with 1951 spectra were included. For glioma, the pooled sensitivity and specificity of Raman spectroscopy were 0.96 (95% CI 0.94-0.97) and 0.99 (95% CI 0.98-0.99), respectively. The area under the curve (AUC) was 0.9831. For meningioma, the pooled sensitivity and specificity were 0.98 (95% CI 0.94-1.00) and 1.00 (95% CI 0.98-1.00), respectively. The AUC was 0.9955. This meta-analysis suggested that Raman spectroscopy could be an effective and accurate tool for differentiating glioma and meningioma from normal brain tissue, which would help us both avoid removal of normal tissue and minimize the volume of residual tumor.

  11. Nerve growth factor metabolic dysfunction in Down’s syndrome brains

    PubMed Central

    Iulita, M. Florencia; Do Carmo, Sonia; Ower, Alison K.; Fortress, Ashley M.; Aguilar, Lisi Flores; Hanna, Michael; Wisniewski, Thomas; Granholm, Ann-Charlotte; Buhusi, Mona; Busciglio, Jorge

    2014-01-01

    Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer’s disease and Down’s syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer’s disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF’s extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down’s syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down’s syndrome and age-matched controls (age range 31–68 years). We further examined primary cultures of human foetal Down’s syndrome cortex (17–21 gestational age weeks) and brains from Ts65Dn mice (12–22 months), a widely used animal model of Down’s syndrome. We report a significant increase in proNGF levels in human and mouse Down’s syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down’s syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down’s syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic neurons. The alterations in proNGF and MMP9 were also present in cultures of Down’s syndrome foetal cortex; suggesting that this trophic compromise may be amenable to rescue, before frank dementia onset. Our study thus provides a novel paradigm for cholinergic neuroprotection in Alzheimer’s disease and Down’s syndrome. PMID:24519975

  12. More insights into early brain development through statistical analyses of eigen-structural elements of diffusion tensor imaging using multivariate adaptive regression splines

    PubMed Central

    Chen, Yasheng; Zhu, Hongtu; An, Hongyu; Armao, Diane; Shen, Dinggang; Gilmore, John H.; Lin, Weili

    2013-01-01

    The aim of this study was to characterize the maturational changes of the three eigenvalues (λ1 ≥ λ2 ≥ λ3) of diffusion tensor imaging (DTI) during early postnatal life for more insights into early brain development. In order to overcome the limitations of using presumed growth trajectories for regression analysis, we employed Multivariate Adaptive Regression Splines (MARS) to derive data-driven growth trajectories for the three eigenvalues. We further employed Generalized Estimating Equations (GEE) to carry out statistical inferences on the growth trajectories obtained with MARS. With a total of 71 longitudinal datasets acquired from 29 healthy, full-term pediatric subjects, we found that the growth velocities of the three eigenvalues were highly correlated, but significantly different from each other. This paradox suggested the existence of mechanisms coordinating the maturations of the three eigenvalues even though different physiological origins may be responsible for their temporal evolutions. Furthermore, our results revealed the limitations of using the average of λ2 and λ3 as the radial diffusivity in interpreting DTI findings during early brain development because these two eigenvalues had significantly different growth velocities even in central white matter. In addition, based upon the three eigenvalues, we have documented the growth trajectory differences between central and peripheral white matter, between anterior and posterior limbs of internal capsule, and between inferior and superior longitudinal fasciculus. Taken together, we have demonstrated that more insights into early brain maturation can be gained through analyzing eigen-structural elements of DTI. PMID:23455648

  13. Altered processing of the neurotensin/neuromedin N precursor in PC2 knock down mice: a biochemical and immunohistochemical study.

    PubMed

    Villeneuve, Pierre; Feliciangeli, Sylvain; Croissandeau, Gilles; Seidah, Nabil G; Mbikay, Majambu; Kitabgi, Patrick; Beaudet, Alain

    2002-08-01

    Neurotensin (NT) and neuromedin N (NN) are generated by endoproteolytic cleavage of a common precursor molecule, pro-NT/NN. To gain insight into the role of prohormone convertases PC1, PC2, and PC7 in this process, we investigated the maturation of pro-NT/NN in the brain of PC7 (PC7-/-), PC2 (PC2-/-), and/or PC1 (PC1+/- and PC2-/-; PC1+/-) knock down mice. Inactivation of the PC7 gene was without effect, suggesting that this convertase is not involved in the processing of pro-NT/NN. By contrast, there was a 15% decrease in NT and a 50% decrease in NN levels, as measured by radioimmunoassay, in whole brain extracts from PC2 null as compared with wild type mice. Using immunohistochemistry, we found that this decrease in pro-NT/NN maturation products was uneven and that it was most pronounced in the medial preoptic area, lateral hypothalamus, and paraventricular hypothalamic nuclei. These results suggest that PC2 plays a critical role in the processing of pro-NT/NN in mouse brain and that its deficiency may be compensated to a regionally variable extent by other convertases. Previous data have suggested that PC1 might be subserving this role. However, there was no change in the maturation of pro-NT/NN in the brain of mice in which the PC1 gene had been partially inactivated, implying that complete PC1 knock down may be required for loss of function.

  14. SU-E-T-331: Dosimetric Impact of Multileaf Collimator Leaf Width On Stereotactic Radiosurgery (SRS) RapidArc Treatment Plans for Single and Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, S; Keeling, V; Ahmad, S

    Purpose: To determine the effects of multileaf collimator (MLC) leaf width on normal-brain-tissue doses and dose conformity of SRS RapidArc treatment plans for brain tumors. Methods: Ten patients with 24 intracranial tumors (seven with 1–2 and three with 4–6 lesions) were planned using RapidArc for both Varian Millennium 120 MLC (5 mm leaf width) and high definition (HD) MLC (2.5 mm leaf width). Between 2 and 8 arcs were used with two full coplanar arcs and the rest non-coplanar half arcs. 6 MV beams were used and plans were optimized with a high priority to the Normal Tissue Objective (tomore » achieve dose conformity and sharp dose fall-off) and normal brain tissue. Calculation was done using AAA on a 1 mm grid size. The prescription dose ranged from 14–22 Gy. Plans were normalized such that 99% of the target received the prescription dose. Identical beam geometries, optimizations, calculations, and normalizations were used for both plans. Paddick Conformity Index (PCI), V4, V8 and V12 Gy for normal brain tissue and Integral Dose were used for analysis. Results: In all cases, HD MLC plans performed better in sparing normal brain tissue, achieving a higher PCI with a lower Integral Dose. The average PCI for all 24 targets was 0.75±0.23 and 0.70±0.23 (p ≤0.0015) for HD MLC and Millennium MLC plans, respectively. The average ratio of normal brain doses for Millennium MLC to HD MLC plans was 1.30±0.16, 1.27±0.15, and 1.31±0.18 for the V4, V8, and V12, respectively. The differences in normal brain dose for all criteria were statistically significant with p-value < 0.02. On average Millennium MLC plans had a 16% higher integral dose than HD MLC plans. Conclusion: Significantly better dose conformity with reduced volume of normal brain tissue and integral dose was achieved with HD MLC plans compared to Millennium MLC plans.« less

  15. Rescue of Synaptic Phenotypes and Spatial Memory in Young Fragile X Mice.

    PubMed

    Sun, Miao-Kun; Hongpaisan, Jarin; Alkon, Daniel L

    2016-05-01

    Fragile X syndrome (FXS) is characterized by synaptic immaturity, cognitive impairment, and behavioral changes. The disorder is caused by transcriptional shutdown in neurons of thefragile X mental retardation 1gene product, fragile X mental retardation protein. Fragile X mental retardation protein is a repressor of dendritic mRNA translation and its silencing leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, and FXS is a disorder that currently has no effective therapeutics. Here, young fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase Cεactivator, which induces synaptogenesis and synaptic maturation/repair. Chronic treatment with bryostatin-1 rescues young fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in 1) hippocampal brain-derived neurotrophic factor expression, 2) postsynaptic density-95 levels, 3) transformation of immature dendritic spines to mature synapses, 4) densities of the presynaptic and postsynaptic membranes, and 5) spatial learning and memory. The therapeutic effects were achieved without downregulation of metabotropic glutamate receptor (mGluR) 5 in the hippocampus and are more dramatic than those of a late-onset treatment in adult fragile X mice. mGluR5 expression was in fact lower in fragile X mice and its expression was restored with the bryostatin-1 treatment. Our results show that synaptic and cognitive function of young FXS mice can be normalized through pharmacological treatment without downregulation of mGluR5 and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation at a young age and in adults. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Developmental basis for telencephalon expansion in waterfowl: enlargement prior to neurogenesis

    PubMed Central

    Charvet, Christine J.; Striedter, Georg F.

    2009-01-01

    Some altricial and some precocial species of birds have evolved enlarged telencephalons compared with other birds. Previous work has shown that finches and parakeets, two species that hatch in an immature (i.e. altricial) state, enlarged their telencephalon by delaying telencephalic neurogenesis. To determine whether species that hatch in a relatively mature (i.e. precocial) state also enlarged their telencephalon by delaying telencephalic neurogenesis, we examined brain development in geese, ducks, turkeys and chickens, which are all precocial. Whereas the telencephalon occupies less than 55 per cent of the brain in chickens and turkeys, it occupies more than 65 per cent in ducks and geese. To determine how these species differences in adult brain region proportions arise during development, we examined brain maturation (i.e. neurogenesis timing) and estimated telencephalon, tectum and medulla volumes from serial Nissl-stained sections in the four species. We found that incubation time predicts the timing of neurogenesis in all major brain regions and that the telencephalon is proportionally larger in ducks and geese before telencephalic neurogenesis begins. These findings demonstrate that the expansion of the telencephalon in ducks and geese is achieved by altering development prior to neurogenesis onset. Thus, precocial and altricial species evolved different developmental strategies to expand their telencephalon. PMID:19605398

  17. Developmental basis for telencephalon expansion in waterfowl: enlargement prior to neurogenesis.

    PubMed

    Charvet, Christine J; Striedter, Georg F

    2009-10-07

    Some altricial and some precocial species of birds have evolved enlarged telencephalons compared with other birds. Previous work has shown that finches and parakeets, two species that hatch in an immature (i.e. altricial) state, enlarged their telencephalon by delaying telencephalic neurogenesis. To determine whether species that hatch in a relatively mature (i.e. precocial) state also enlarged their telencephalon by delaying telencephalic neurogenesis, we examined brain development in geese, ducks, turkeys and chickens, which are all precocial. Whereas the telencephalon occupies less than 55 per cent of the brain in chickens and turkeys, it occupies more than 65 per cent in ducks and geese. To determine how these species differences in adult brain region proportions arise during development, we examined brain maturation (i.e. neurogenesis timing) and estimated telencephalon, tectum and medulla volumes from serial Nissl-stained sections in the four species. We found that incubation time predicts the timing of neurogenesis in all major brain regions and that the telencephalon is proportionally larger in ducks and geese before telencephalic neurogenesis begins. These findings demonstrate that the expansion of the telencephalon in ducks and geese is achieved by altering development prior to neurogenesis onset. Thus, precocial and altricial species evolved different developmental strategies to expand their telencephalon.

  18. Early development of structural networks and the impact of prematurity on brain connectivity.

    PubMed

    Batalle, Dafnis; Hughes, Emer J; Zhang, Hui; Tournier, J-Donald; Tusor, Nora; Aljabar, Paul; Wali, Luqman; Alexander, Daniel C; Hajnal, Joseph V; Nosarti, Chiara; Edwards, A David; Counsell, Serena J

    2017-04-01

    Preterm infants are at high risk of neurodevelopmental impairment, which may be due to altered development of brain connectivity. We aimed to (i) assess structural brain development from 25 to 45 weeks gestational age (GA) using graph theoretical approaches and (ii) test the hypothesis that preterm birth results in altered white matter network topology. Sixty-five infants underwent MRI between 25 +3 and 45 +6 weeks GA. Structural networks were constructed using constrained spherical deconvolution tractography and were weighted by measures of white matter microstructure (fractional anisotropy, neurite density and orientation dispersion index). We observed regional differences in brain maturation, with connections to and from deep grey matter showing most rapid developmental changes during this period. Intra-frontal, frontal to cingulate, frontal to caudate and inter-hemispheric connections matured more slowly. We demonstrated a core of key connections that was not affected by GA at birth. However, local connectivity involving thalamus, cerebellum, superior frontal lobe, cingulate gyrus and short range cortico-cortical connections was related to the degree of prematurity and contributed to altered global topology of the structural brain network. The relative preservation of core connections at the expense of local connections may support more effective use of impaired white matter reserve following preterm birth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Metabolic Maturation of the Human Brain From Birth Through Adolescence: Insights From In Vivo Magnetic Resonance Spectroscopy

    PubMed Central

    Blüml, Stefan; Wisnowski, Jessica L.; Nelson, Marvin D.; Paquette, Lisa; Gilles, Floyd H.; Kinney, Hannah C.; Panigrahy, Ashok

    2013-01-01

    Between birth and late adolescence, the human brain undergoes exponential maturational changes. Using in vivo magnetic resonance spectroscopy, we determined the developmental profile for 6 metabolites in 5 distinct brain regions based on spectra from 309 children from 0 to 18 years of age. The concentrations of N-acetyl-aspartate (an indicator for adult-type neurons and axons), creatine (energy metabolite), and glutamate (excitatory neurotransmitter) increased rapidly between birth and 3 months, a period of rapid axonal growth and synapse formation. Myo-inositol, implicated in cell signaling and a precursor of membrane phospholipid, as well as an osmolyte and astrocyte marker, declined rapidly during this period. Choline, a membrane metabolite and indicator for de novo myelin and cell membrane synthesis, peaked from birth until approximately 3 months, and then declined gradually, reaching a plateau at early childhood. Similarly, taurine, involved in neuronal excitability, synaptic potentiation, and osmoregulation, was high until approximately 3 months and thereafter declined. These data indicate that the first 3 months of postnatal life are a critical period of rapid metabolic changes in the development of the human brain. This study of the developmental profiles of the major brain metabolites provides essential baseline information for future analyses of the pediatric health and disease. PMID:22952278

  20. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    NASA Astrophysics Data System (ADS)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  1. Purification and Properties of Cytidine Deaminase from Normal and Leukemic Granulocytes

    PubMed Central

    Chabner, Bruce A.; Johns, David G.; Coleman, C. Norman; Drake, James C.; Evans, Warren H.

    1974-01-01

    Cytidine deaminase, an enzyme that catalyses the deamination of both cytidine and its nucleoside analogues including the antineoplastic agents cytosine arabinoside (ara-C) and 5-azacytidine (5-azaC), has been partially purified from normal and leukemic human granulocytes. The purification procedure included heat precipitation at 70°C, ammonium sulfate precipitation, calcium phosphate gel ion exchange, and Sephadex G-150 gel filtration. The enzyme has mol wt 51,000, isoelectric pH of 4.8, and maximum activity over a broad pH range of 5-9.5. The enzyme is stabilized by the presence of the sulfhydryl reagent, dithiothreitol. Cytidine deaminase from normal human granulocytes has a greater affinity for its physiologic substrate cytidine (Km = 1.1 × 10−5 M) than for ara-C (8.8 × 10−5 M) or 5-azaC (4.3 × 10−4 M). Halogenated analogues such as 5-fluorocytidine and 5-bromo-2′-deoxycytidine also exhibited substrate activity, with maximum velocities greater than that of the physiologic substrates cytidine and deoxycytidine. No activity was observed with nucleotides or deoxynucleotides. The relative maximum velocity of the enzyme for cytidine and its nucleoside analogues remained constant during purification, indicating that a single enzyme was responsible for deamination of these substrates. Tetrahydrouridine (THU) was found to be a strong competitive inhibitor of partially purified deaminase with a Ki of 5.4 × 10−8 M. The biochemical properties of partially purified preparations of cytidine deaminase from normal and leukemic cells were compared with respect to isoelectric pH, molecular weight, and substrate and inhibitor kinetic parameters, and no differences were observed. However, normal circulating granulocytes contained a significantly greater concentration of cytidine deaminase (3.52±1.86 × 103/mg protein) than chronic myelocytic leukemia (CML) cells (1.40±0.70 × 103 U/mg protein) or acute myelocytic leukemia (AML) cells (0.19±0.17 × 103 U/mg protein). To explain these differences in enzyme levels in leukemic versus normal cells, the changes in cytidine deaminase levels associated with maturation of normal granulocytes were studied in normal human bone marrow. Myeloid precursors obtained from bone marrow aspirates were separated into mature and immature fractions by Ficoll density centrifugation. Deaminase activity in lysates of mature granulocytes was 3.55-14.2 times greater than the activity found in the lysates of immature cells. Decreased enzyme activity was also found in immature myeloid cells from a patient with CML as compared to mature granulocytes from the same patient. These observations support the conclusion that the greater specific activity of cytidine deaminase in normal mature granulocytes as compared to leukemic cells is related to the process of granulocyte maturation rather than a specific enzymatic defect in leukemic cells. PMID:4521417

  2. Adolescent brain development, substance use, and psychotherapeutic change.

    PubMed

    Wetherill, Reagan; Tapert, Susan F

    2013-06-01

    Adolescence is a unique developmental period characterized by major physiological, psychological, social, and brain changes, as well as an increased incidence of maladaptive, addictive behaviors. With the use of MRI techniques, researchers have been able to provide a better understanding of adolescent brain maturation and how neurodevelopment affects cognition and behavior. This review discusses adolescent brain development and its potential influence on psychotherapeutic change. We focus on cognitive-behavioral and mindfulness-based approaches for treating substance use and highlight potential brain mechanisms underlying response to psychotherapy. Finally, we discuss integrative neuroimaging and treatment studies and potential opportunities for advancing the treatment of adolescent addictive behaviors. 2013 APA, all rights reserved

  3. Effects of age and gender on neural networks of motor response inhibition: from adolescence to mid-adulthood.

    PubMed

    Rubia, Katya; Lim, Lena; Ecker, Christine; Halari, Rozmin; Giampietro, Vincent; Simmons, Andrew; Brammer, Michael; Smith, Anna

    2013-12-01

    Functional inhibitory neural networks mature progressively with age. However, nothing is known about the impact of gender on their development. This study employed functional magnetic resonance imaging (fMRI) to investigate the effects of age, sex, and sex by age interactions on the brain activation of 63 healthy males and females, between 13 and 38 years, performing a Stop task. Increasing age was associated with progressively increased activation in typical response inhibition areas of right inferior and dorsolateral prefrontal and temporo-parietal regions. Females showed significantly enhanced activation in left inferior and superior frontal and striatal regions relative to males, while males showed increased activation relative to females in right inferior and superior parietal areas. Importantly, left frontal and striatal areas that showed increased activation in females, also showed significantly increased functional maturation in females relative to males, while the right inferior parietal activation that was increased in males showed significantly increased functional maturation relative to females. The findings demonstrate for the first time that sex-dimorphic activation patterns of enhanced left fronto-striatal activation in females and enhanced right parietal activation in males during motor inhibition appear to be the result of underlying gender differences in the functional maturation of these brain regions. © 2013. Published by Elsevier Inc. All rights reserved.

  4. White Matter Maturation Supports the Development of Reasoning Ability Through its Influence on Processing Speed

    PubMed Central

    Ferrer, E.; Whitaker, K.J.; Steele, J.; Green, C.T.; Wendelken, C.; Bunge, S.A.

    2013-01-01

    The structure of the human brain changes in several ways throughout childhood and adolescence. Perhaps the most salient of these changes is the strengthening of white matter tracts that enable distal brain regions to communicate with one another more quickly and efficiently. Here, we sought to understand whether and how white matter changes contribute to improved reasoning ability over development. In particular, we sought to understand whether previously reported relationships between white matter microstructure and reasoning are mediated by processing speed. To this end, we analyzed diffusion tensor imaging data as well as data from standard psychometric tests of cognitive abilities from 103 individuals between the ages of 6 and 18. We used structural equation modeling to investigate the network of relationships between brain and behavior variables. Our analyses provide support for the hypothesis that white matter maturation (as indexed either by microstructural organization or volume) supports improved processing speed, which, in turn, supports improved reasoning ability. PMID:24118718

  5. Maturation of the auditory t-complex brain response across adolescence.

    PubMed

    Mahajan, Yatin; McArthur, Genevieve

    2013-02-01

    Adolescence is a time of great change in the brain in terms of structure and function. It is possible to track the development of neural function across adolescence using auditory event-related potentials (ERPs). This study tested if the brain's functional processing of sound changed across adolescence. We measured passive auditory t-complex peaks to pure tones and consonant-vowel (CV) syllables in 90 children and adolescents aged 10-18 years, as well as 10 adults. Across adolescence, Na amplitude increased to tones and speech at the right, but not left, temporal site. Ta amplitude decreased at the right temporal site for tones, and at both sites for speech. The Tb remained constant at both sites. The Na and Ta appeared to mature later in the right than left hemisphere. The t-complex peaks Na and Tb exhibited left lateralization and Ta showed right lateralization. Thus, the functional processing of sound continued to develop across adolescence and into adulthood. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  6. The dark side of high-frequency oscillations in the developing brain.

    PubMed

    Le Van Quyen, Michel; Khalilov, Ilgam; Ben-Ari, Yehezkel

    2006-07-01

    Adult brain networks generate a wide range of oscillations. Some of these are behaviourally relevant, whereas others occur during seizures and other pathological conditions. This raises the question of how physiological oscillations differ from pathogenic ones. In this review, this issue is discussed from a developmental standpoint. Indeed, both epileptic and physiological high-frequency oscillations (HFOs) appear progressively during maturation, and it is therefore possible to determine how this program corresponds to maturation of the neuronal populations that generate these oscillations. We review here important differences in the development of neuronal populations that might contribute to their different oscillatory properties. In particular, at an early stage, the density of glutamatergic synapses is too low for physiological HFOs but an additional drive can be provided by excitatory GABA, triggering epileptic HFOs and the cascades involved in long-lasting epileptogenic transformations. This review is part of the INMED/TINS special issue "Nature and nurture in brain development and neurological disorders", based on presentations at the annual INMED/TINS symposium (http://inmednet.com/).

  7. Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization.

    PubMed

    Redies, Christoph; Neudert, Franziska; Lin, Juntang

    2011-09-01

    Cadherins are cell adhesion molecules with multiple morphogenic functions in brain development, for example, in neuroblast migration and aggregation, axon navigation, neural circuit formation, and synaptogenesis. More than 100 members of the cadherin superfamily are expressed in the developing and mature brain. Most of the cadherins investigated, in particular classic cadherins and δ-protocadherins, are expressed in the cerebellum. For several cadherin subtypes, expression begins at early embryonic stages and persists until mature stages of cerebellar development. At intermediate stages, distinct Purkinje cell clusters exhibit unique rostrocaudal and mediolateral expression profiles for each cadherin. In the chicken, mouse, and other species, the Purkinje cell clusters are separated by intervening raphes of migrating granule cells. This pattern of Purkinje cell clusters/raphes is, at least in part, continuous with the parasagittal striping pattern that is apparent in the mature cerebellar cortex, for example, for zebrin II/aldolase C. Moreover, subregions of the deep cerebellar nuclei, vestibular nuclei and the olivary complex also express cadherins differentially. Neuroanatomical evidence suggests that the nuclear subregions and cortical domains that express the same cadherin subtype are connected to each other, to form neural subcircuits of the cerebellar system. Cadherins thus provide a molecular code that specifies not only embryonic structures but also functional cerebellar compartmentalization. By following the implementation of this code, it can be revealed how mature functional architecture emerges from embryonic patterning during cerebellar development. Dysfunction of some cadherins is associated with psychiatric diseases and developmental impairments and may also affect cerebellar function.

  8. Imbalance between GABAergic and Glutamatergic Transmission Impairs Adult Neurogenesis in an Animal Model of Alzheimer’s Disease

    PubMed Central

    Sun, Binggui; Halabisky, Brian; Zhou, Yungui; Palop, Jorge J.; Yu, Guiqiu; Mucke, Lennart; Gan, Li

    2009-01-01

    SUMMARY Adult neurogenesis regulates plasticity and function in the hippocampus, which is critical for memory and vulnerable to Alzheimer’s disease (AD). Promoting neurogenesis may improve hippocampal function in AD brains. However, how amyloid β (Aβ), the key AD pathogen, affects the development and function of adult-born neurons remains unknown. Adult-born granule cells (GCs) in human amyloid precursor protein (hAPP) transgenic mice, an AD model, showed greater dendritic length, spine density, and functional responses than controls early in development, but were impaired morphologically and functionally during later maturation. Early inhibition of GABAA receptors to suppress GABAergic signaling or late inhibition of calcineurin to enhance glutamatergic signaling normalized the development of adult-born GCs in hAPP mice with high Aβ levels. Aβ-induced increases in GABAergic neurotransmission or an imbalance between GABAergic and glutamatergic neurotransmission may contribute to impaired neurogenesis in AD. PMID:19951690

  9. Cholesterol in myelin biogenesis and hypomyelinating disorders.

    PubMed

    Saher, Gesine; Stumpf, Sina Kristin

    2015-08-01

    The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Androgen-induced pseudo-hermaphroditic phenotypes in female Brevimyrus niger Günther 1866 (Teleostei, Mormyridae).

    PubMed

    Stell, Sonja K; Moller, Peter

    2017-12-01

    This paper explores the plasticity of sexually dimorphic characters in subadult female Brevimyrus niger, an African weakly electric mormyrid species. Thirty-five fish were exposed in a staggered fashion (five fish a week) to aromatizable 17α-methyltestosterone over a period of 7 weeks; 18 fish served as untreated controls. 17α-MT induced precocious vitellogenesis that mirrored the natural maturational process during seasonal ovarian recrudescence. At the same time, 17α-MT exposure resulted in complete masculinization of the females' anal fin support structure normally observed during rainy season in adult males. We discuss possible hormonal mechanisms acting along the brain-pituitary-gonad axis that would explain the occurrence of precocious vitellogenesis and the male-typical transformation of the female's anal fin ray bases. Our findings are relevant to commercial aquaculture as the use of 17α-MT in fish hatcheries can pose serious environmental issues.

  11. Dendrin expression in glomerulogenesis and in human minimal change nephrotic syndrome.

    PubMed

    Dunér, Fredrik; Patrakka, Jaakko; Xiao, Zhijie; Larsson, Jenny; Vlamis-Gardikas, Alexios; Pettersson, Erna; Tryggvason, Karl; Hultenby, Kjell; Wernerson, Annika

    2008-08-01

    Dendrin is an 81-kD cytosolic protein hitherto described in the brain, where it is associated with the actin cytoskeleton. Recently, we found dendrin in foot processes of mouse glomerular podocytes. Here we describe its expression both during mouse glomerulogenesis and in the normal and diseased human kidney for the first time. Dendrin expression was characterized using RT-PCR and immunohistochemistry and semi-quantified using immunoelectron microscopy. In glomerulogenesis, dendrin mRNA and protein appeared first at the early capillary loop stage. It was concentrated to the pre-podocytes on the basal side of podocalyxin, an apical cell membrane marker. In human tissue, dendrin transcripts were detected in the brain and kidney. In the mature kidney dendrin localized solely in the podocytes, close to the filtration slit diaphragms. A comparison with the slit-associated protein zonula occludens-1 (ZO-1) was done in minimal change nephrotic syndrome (MCNS). Dendrin and ZO-1 were re-distributed from slit regions to the podocyte cytoplasm in areas with foot process effacement (FPE). In areas without FPE, dendrin and ZO-1 distributions were unchanged compared to controls. The total amounts of dendrin or ZO-1 markers were unchanged. This differs from nephrin that, according to our previous results, is also decreased in non-effaced areas. The expression of dendrin during glomerulogenesis and in the normal human kidney is similar to that previously shown for nephrin, which suggests that dendrin associates with the slit diaphragm complex. In MCNS patients, dendrin and ZO-1 are re-distributed within the podocytes. Whether this is a cause or a consequence of FPE remains unclear.

  12. Temporal Requirements of the Fragile X Mental Retardation Protein in Modulating Circadian Clock Circuit Synaptic Architecture

    PubMed Central

    Gatto, Cheryl L.; Broadie, Kendal

    2009-01-01

    Loss of fragile X mental retardation 1 (FMR1) gene function is the most common cause of inherited mental retardation and autism spectrum disorders, characterized by attention disorder, hyperactivity and disruption of circadian activity cycles. Pursuit of effective intervention strategies requires determining when the FMR1 product (FMRP) is required in the regulation of neuronal circuitry controlling these behaviors. In the well-characterized Drosophila disease model, loss of the highly conserved dFMRP causes circadian arrhythmicity and conspicuous abnormalities in the circadian clock circuitry. Here, a novel Sholl Analysis was used to quantify over-elaborated synaptic architecture in dfmr1-null small ventrolateral neurons (sLNvs), a key subset of clock neurons. The transgenic Gene-Switch system was employed to drive conditional neuronal dFMRP expression in the dfmr1-null mutant background in order to dissect temporal requirements within the clock circuit. Introduction of dFMRP during early brain development, including the stages of neurogenesis, neuronal fate specification and early pathfinding, provided no rescue of dfmr1 mutant phenotypes. Similarly, restoring normal dFMRP expression in the adult failed to restore circadian circuit architecture. In sharp contrast, supplying dFMRP during a transient window of very late brain development, wherein synaptogenesis and substantial subsequent synaptic reorganization (e.g. use-dependent pruning) occur, provided strong morphological rescue to reestablish normal sLNvs synaptic arbors. We conclude that dFMRP plays a developmentally restricted role in sculpting synaptic architecture in these neurons that cannot be compensated for by later reintroduction of the protein at maturity. PMID:19738924

  13. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner.

    PubMed

    Clarke, G; Grenham, S; Scully, P; Fitzgerald, P; Moloney, R D; Shanahan, F; Dinan, T G; Cryan, J F

    2013-06-01

    Bacterial colonisation of the intestine has a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS) signalling. Regulation of the microbiome-gut-brain axis is essential for maintaining homeostasis, including that of the CNS. However, there is a paucity of data pertaining to the influence of microbiome on the serotonergic system. Germ-free (GF) animals represent an effective preclinical tool to investigate such phenomena. Here we show that male GF animals have a significant elevation in the hippocampal concentration of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid, its main metabolite, compared with conventionally colonised control animals. Moreover, this alteration is sex specific in contrast with the immunological and neuroendocrine effects which are evident in both sexes. Concentrations of tryptophan, the precursor of serotonin, are increased in the plasma of male GF animals, suggesting a humoral route through which the microbiota can influence CNS serotonergic neurotransmission. Interestingly, colonisation of the GF animals post weaning is insufficient to reverse the CNS neurochemical consequences in adulthood of an absent microbiota in early life despite the peripheral availability of tryptophan being restored to baseline values. In addition, reduced anxiety in GF animals is also normalised following restoration of the intestinal microbiota. These results demonstrate that CNS neurotransmission can be profoundly disturbed by the absence of a normal gut microbiota and that this aberrant neurochemical, but not behavioural, profile is resistant to restoration of a normal gut flora in later life.

  14. Perinatal choline effects on neonatal pathophysiology related to later schizophrenia risk

    PubMed Central

    Ross, Randal G.; Hunter, Sharon K.; McCarthy, Lizbeth; Beuler, Julie; Hutchison, Amanda K.; Wagner, Brandie D.; Leonard, Sherry; Stevens, Karen E.; Freedman, Robert

    2013-01-01

    Background Deficient cerebral inhibition is a pathophysiological brain deficit related to poor sensory gating and attention in schizophrenia and other disorders. Cerebral inhibition develops perinatally, influenced by genetic and in utero factors. Amniotic choline activates fetal α7-nicotinic acetylcholine receptors and facilitates development of cerebral inhibition. Increasing this activation may protect infants from future illness by promoting normal brain development. Methods A randomized placebo-controlled clinical trial of dietary phosphatidylcholine supplementation was conducted with 100 healthy pregnant women, who consented to the study at second trimester. Supplementation to twice normal dietary levels for mother or newborn continued through the third postnatal month. All women received dietary advice regardless of treatment. Infants’ electroencephalographic recordings of inhibition of the P50 component of the cerebral evoked response to paired sounds were analyzed. Criterion for inhibition was suppression of the amplitude of the second P50 response by at least half, compared to the first response. Results No adverse effects of choline were observed in maternal health and delivery, birth, or infant development. More choline-treated infants (76%) suppressed the P50 response, compared to placebo-treated infants (43%) at the fifth postnatal week (effect size 0.7). There was no difference at the 13th week. A CHRNA7 genotype associated with schizophrenia diminished P50 inhibition in the placebo-treated infants, but not in the choline-treated infants. Conclusion Neonatal developmental delay in inhibition is associated with attentional problems as the child matures. Perinatal choline activates timely development of cerebral inhibition, even in the presence of gene mutations that otherwise delay it. PMID:23318559

  15. Differentiation of cancerous and normal brain tissue using label free fluorescence and Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.

    2016-03-01

    In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.

  16. Hypogonadotropic hypogonadism

    MedlinePlus

    ... lack of sex hormones. This prevents normal sexual maturity in children and normal function of the testicles ... self-esteem due to late start of puberty (emotional support may be helpful) Sexual problems, such as ...

  17. Digital atlas of fetal brain MRI.

    PubMed

    Chapman, Teresa; Matesan, Manuela; Weinberger, Ed; Bulas, Dorothy I

    2010-02-01

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C#, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download from http://radiology.seattlechildrens.org/teaching/fetal_brain . Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development.

  18. Brain extraction from normal and pathological images: A joint PCA/Image-Reconstruction approach.

    PubMed

    Han, Xu; Kwitt, Roland; Aylward, Stephen; Bakas, Spyridon; Menze, Bjoern; Asturias, Alexander; Vespa, Paul; Van Horn, John; Niethammer, Marc

    2018-08-01

    Brain extraction from 3D medical images is a common pre-processing step. A variety of approaches exist, but they are frequently only designed to perform brain extraction from images without strong pathologies. Extracting the brain from images exhibiting strong pathologies, for example, the presence of a brain tumor or of a traumatic brain injury (TBI), is challenging. In such cases, tissue appearance may substantially deviate from normal tissue appearance and hence violates algorithmic assumptions for standard approaches to brain extraction; consequently, the brain may not be correctly extracted. This paper proposes a brain extraction approach which can explicitly account for pathologies by jointly modeling normal tissue appearance and pathologies. Specifically, our model uses a three-part image decomposition: (1) normal tissue appearance is captured by principal component analysis (PCA), (2) pathologies are captured via a total variation term, and (3) the skull and surrounding tissue is captured by a sparsity term. Due to its convexity, the resulting decomposition model allows for efficient optimization. Decomposition and image registration steps are alternated to allow statistical modeling of normal tissue appearance in a fixed atlas coordinate system. As a beneficial side effect, the decomposition model allows for the identification of potentially pathological areas and the reconstruction of a quasi-normal image in atlas space. We demonstrate the effectiveness of our approach on four datasets: the publicly available IBSR and LPBA40 datasets which show normal image appearance, the BRATS dataset containing images with brain tumors, and a dataset containing clinical TBI images. We compare the performance with other popular brain extraction models: ROBEX, BEaST, MASS, BET, BSE and a recently proposed deep learning approach. Our model performs better than these competing approaches on all four datasets. Specifically, our model achieves the best median (97.11) and mean (96.88) Dice scores over all datasets. The two best performing competitors, ROBEX and MASS, achieve scores of 96.23/95.62 and 96.67/94.25 respectively. Hence, our approach is an effective method for high quality brain extraction for a wide variety of images. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Metabolic brain networks in aging and preclinical Alzheimer's disease.

    PubMed

    Arnemann, Katelyn L; Stöber, Franziska; Narayan, Sharada; Rabinovici, Gil D; Jagust, William J

    2018-01-01

    Metabolic brain networks can provide insight into the network processes underlying progression from healthy aging to Alzheimer's disease. We explore the effect of two Alzheimer's disease risk factors, amyloid-β and ApoE ε4 genotype, on metabolic brain networks in cognitively normal older adults (N = 64, ages 69-89) compared to young adults (N = 17, ages 20-30) and patients with Alzheimer's disease (N = 22, ages 69-89). Subjects underwent MRI and PET imaging of metabolism (FDG) and amyloid-β (PIB). Normal older adults were divided into four subgroups based on amyloid-β and ApoE genotype. Metabolic brain networks were constructed cross-sectionally by computing pairwise correlations of metabolism across subjects within each group for 80 regions of interest. We found widespread elevated metabolic correlations and desegregation of metabolic brain networks in normal aging compared to youth and Alzheimer's disease, suggesting that normal aging leads to widespread loss of independent metabolic function across the brain. Amyloid-β and the combination of ApoE ε4 led to less extensive elevated metabolic correlations compared to other normal older adults, as well as a metabolic brain network more similar to youth and Alzheimer's disease. This could reflect early progression towards Alzheimer's disease in these individuals. Altered metabolic brain networks of older adults and those at the highest risk for progression to Alzheimer's disease open up novel lines of inquiry into the metabolic and network processes that underlie normal aging and Alzheimer's disease.

  20. Sigma-1 receptor chaperone and brain-derived neurotrophic factor: emerging links between cardiovascular disease and depression.

    PubMed

    Hashimoto, Kenji

    2013-01-01

    Epidemiological studies have demonstrated a close relationship between depression and cardiovascular disease (CVD). Although it is known that the central nervous system (CNS) contributes to this relationship, the detailed mechanisms involved in this process remain unclear. Recent studies suggest that the endoplasmic reticulum (ER) molecular chaperone sigma-1 receptor and brain-derived neurotrophic factor (BDNF) play a role in the pathophysiology of CVD and depression. Several meta-analysis studies have showed that levels of BDNF in the blood of patients with major depressive disorder (MDD) are lower than normal controls, indicating that blood BDNF might be a biomarker for depression. Furthermore, blood levels of BDNF in patients with CVD are also lower than normal controls. A recent study using conditional BDNF knock-out mice in animal models of myocardial infarction highlighted the role of CNS-mediated mechanisms in the cardioprotective effects of BDNF. In addition, a recent study shows that decreased levels of sigma-1 receptor in the mouse brain contribute to the association between heart failure and depression. Moreover, sigma-1 receptor agonists, including the endogenous neurosteroid dehydroepiandosterone (DHEA) and the selective serotonin reuptake inhibitor (SSRI) fluvoxamine, show potent cardioprotective and antidepressive effects in rodents, via sigma-1 receptor stimulation. Interestingly, agonist activation of sigma-1 receptors increased the secretion of mature BDNF from its precursor proBDNF via chaperone activity in the ER. Given the role of ER stress in the pathophysiology of CVD and MDD, the author will discuss the potential link between sigma-1 receptors and BDNF-TrkB pathway in the pathophysiology of these two diseases. Finally, the author will make a case for potent sigma-1 receptor agonists and TrkB agonists as new potential therapeutic drugs for depressive patients with CVD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy

    PubMed Central

    Yoshida, Kyoko; Jiang, Hongfeng; Kim, MiJung; Vink, Joy; Cremers, Serge; Paik, David; Wapner, Ronald; Mahendroo, Mala; Myers, Kristin

    2014-01-01

    The changes in the mechanical integrity of the cervix during pregnancy have implications for a successful delivery. Cervical collagens are known to remodel extensively in mice with progressing gestation leading to a soft cervix at term. During this process, mature crosslinked collagens are hypothesized to be replaced with immature less crosslinked collagens to facilitate cervical softening and ripening. To determine the mechanical role of collagen crosslinks during normal mouse cervical remodeling, tensile load-to-break tests were conducted for the following time points: nonpregnant (NP), gestation day (d) 6, 12, 15, 18 and 24 hr postpartum (PP) of the 19-day gestation period. Immature crosslinks (HLNL and DHLNL) and mature crosslinks (DPD and PYD) were measured using ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS). There were no significant changes in the total immature crosslink density (HLNL+DHLNL mol per collagen mol) throughout normal mouse gestation (range: 0.31–0.49). Total mature crosslink density (PYD+DPD mol per collagen mol) decreased significantly in early softening from d6 to d15 (d6: 0.17, d12: 0.097, d15: 0.026) and did not decrease with further gestation. The maturity ratio (total mature to total immature crosslinks) significantly decreased in early softening from d6 to d15 (d6: 0.2, d15: 0.074). All of the measured crosslinks correlated significantly with a measure of tissue stiffness and strength, with the exception of the immature crosslink HLNL. This data provides quantitative evidence to support the hypothesis that as mature crosslinked collagens decline, they are replaced by immature collagens to facilitate increased tissue compliance in the early softening period from d6 to d15. PMID:25397407

  2. Maturation Stress Generation in Poplar Tension Wood Studied by Synchrotron Radiation Microdiffraction[C][W][OA

    PubMed Central

    Clair, Bruno; Alméras, Tancrède; Pilate, Gilles; Jullien, Delphine; Sugiyama, Junji; Riekel, Christian

    2011-01-01

    Tension wood is widespread in the organs of woody plants. During its formation, it generates a large tensile mechanical stress called maturation stress. Maturation stress performs essential biomechanical functions such as optimizing the mechanical resistance of the stem, performing adaptive movements, and ensuring the long-term stability of growing plants. Although various hypotheses have recently been proposed, the mechanism generating maturation stress is not yet fully understood. In order to discriminate between these hypotheses, we investigated structural changes in cellulose microfibrils along sequences of xylem cell differentiation in tension and normal wood of poplar (Populus deltoides × Populus trichocarpa ‘I45-51’). Synchrotron radiation microdiffraction was used to measure the evolution of the angle and lattice spacing of crystalline cellulose associated with the deposition of successive cell wall layers. Profiles of normal and tension wood were very similar in early development stages corresponding to the formation of the S1 layer and the outer part of the S2 layer. Subsequent layers were found with a lower microfibril angle (MFA), corresponding to the inner part of the S2 layer of normal wood (MFA approximately 10°) and the G layer of tension wood (MFA approximately 0°). In tension wood only, this steep decrease in MFA occurred together with an increase in cellulose lattice spacing. The relative increase in lattice spacing was found close to the usual value of maturation strains. Analysis showed that this increase in lattice spacing is at least partly due to mechanical stress induced in cellulose microfibrils soon after their deposition, suggesting that the G layer directly generates and supports the tensile maturation stress in poplar tension wood. PMID:21068364

  3. Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems.

    PubMed

    Dos Santos, Patricia C; Johnson, Deborah C; Ragle, Brook E; Unciuleac, Mihaela-Carmen; Dean, Dennis R

    2007-04-01

    The nitrogen-fixing organism Azotobacter vinelandii contains at least two systems that catalyze formation of [Fe-S] clusters. One of these systems is encoded by nif genes, whose products supply [Fe-S] clusters required for maturation of nitrogenase. The other system is encoded by isc genes, whose products are required for maturation of [Fe-S] proteins that participate in general metabolic processes. The two systems are similar in that they include an enzyme for the mobilization of sulfur (NifS or IscS) and an assembly scaffold (NifU or IscU) upon which [Fe-S] clusters are formed. Normal cellular levels of the Nif system, which supplies [Fe-S] clusters for the maturation of nitrogenase, cannot also supply [Fe-S] clusters for the maturation of other cellular [Fe-S] proteins. Conversely, when produced at the normal physiological levels, the Isc system cannot supply [Fe-S] clusters for the maturation of nitrogenase. In the present work we found that such target specificity for IscU can be overcome by elevated production of NifU. We also found that NifU, when expressed at normal levels, is able to partially replace the function of IscU if cells are cultured under low-oxygen-availability conditions. In contrast to the situation with IscU, we could not establish conditions in which the function of IscS could be replaced by NifS. We also found that elevated expression of the Isc components, as a result of deletion of the regulatory iscR gene, improved the capacity for nitrogen-fixing growth of strains deficient in either NifU or NifS.

  4. Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder.

    PubMed

    Fuchs, Claudia; Rimondini, Roberto; Viggiano, Rocchina; Trazzi, Stefania; De Franceschi, Marianna; Bartesaghi, Renata; Ciani, Elisabetta

    2015-10-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in a rare neurodevelopmental disorder characterized by early-onset seizures, severe developmental delay, intellectual disability and Rett syndrome-like features. CDKL5 is highly expressed in the brain during early postnatal stages, suggesting its importance for brain maturation. Using a newly-generated Cdkl5 knockout (Cdkl5 -/Y) mouse, we recently found that loss of Cdkl5 impairs postnatal hippocampal development with a reduction in neuronal precursor survival and maturation. These defects were accompanied by increased activity of the glycogen synthase kinase 3β (GSK3β) a crucial inhibitory regulator of many neurodevelopmental processes. The goal of the current study was to establish whether inhibition of GSK3β corrects hippocampal developmental defects due to Cdkl5 loss. We found that treatment with the GSK3β inhibitor SB216763 restored neuronal precursor survival, dendritic maturation, connectivity and hippocampus-dependent learning and memory in the Cdkl5 -/Y mouse. Importantly, these effects were retained one month after treatment cessation. At present, there are no therapeutic strategies to improve the neurological defects of subjects with CDKL5 disorder. Current results point at GSK3β inhibitors as potential therapeutic tools for the improvement of abnormal brain development in CDKL5 disorder. Copyright © 2015. Published by Elsevier Inc.

  5. RNA-Sequencing Analysis Reveals a Regulatory Role for Transcription Factor Fezf2 in the Mature Motor Cortex

    PubMed Central

    Clare, Alison J.; Wicky, Hollie E.; Empson, Ruth M.; Hughes, Stephanie M.

    2017-01-01

    Forebrain embryonic zinc finger (Fezf2) encodes a transcription factor essential for the specification of layer 5 projection neurons (PNs) in the developing cerebral cortex. As with many developmental transcription factors, Fezf2 continues to be expressed into adulthood, suggesting it remains crucial to the maintenance of neuronal phenotypes. Despite the continued expression, a function has yet to be explored for Fezf2 in the PNs of the developed cortex. Here, we investigated the role of Fezf2 in mature neurons, using lentiviral-mediated delivery of a shRNA to conditionally knockdown the expression of Fezf2 in the mouse primary motor cortex (M1). RNA-sequencing analysis of Fezf2-reduced M1 revealed significant changes to the transcriptome, identifying a regulatory role for Fezf2 in the mature M1. Kyoto Encyclopedia Genes and Genomes (KEGG) pathway analyses of Fezf2-regulated genes indicated a role in neuronal signaling and plasticity, with significant enrichment of neuroactive ligand-receptor interaction, cell adhesion molecules and calcium signaling pathways. Gene Ontology analysis supported a functional role for Fezf2-regulated genes in neuronal transmission and additionally indicated an importance in the regulation of behavior. Using the mammalian phenotype ontology database, we identified a significant overrepresentation of Fezf2-regulated genes associated with specific behavior phenotypes, including associative learning, social interaction, locomotor activation and hyperactivity. These roles were distinct from that of Fezf2-regulated genes identified in development, indicating a dynamic transition in Fezf2 function. Together our findings demonstrate a regulatory role for Fezf2 in the mature brain, with Fezf2-regulated genes having functional roles in sustaining normal neuronal and behavioral phenotypes. These results support the hypothesis that developmental transcription factors are important for maintaining neuron transcriptomes and that disruption of their expression could contribute to the progression of disease phenotypes. PMID:28936162

  6. Mutations of the Thyroid Hormone Transporter MCT8 Cause Prenatal Brain Damage and Persistent Hypomyelination

    PubMed Central

    López-Espíndola, Daniela; Morales-Bastos, Carmen; Grijota-Martínez, Carmen; Liao, Xiao-Hui; Lev, Dorit; Sugo, Ella; Verge, Charles F.; Refetoff, Samuel

    2014-01-01

    Context: Mutations in the MCT8 (SLC16A2) gene, encoding a specific thyroid hormone transporter, cause an X-linked disease with profound psychomotor retardation, neurological impairment, and abnormal serum thyroid hormone levels. The nature of the central nervous system damage is unknown. Objective: The objective of the study was to define the neuropathology of the syndrome by analyzing brain tissue sections from MCT8-deficient subjects. Design: We analyzed brain sections from a 30th gestational week male fetus and an 11-year-old boy and as controls, brain tissue from a 30th and 28th gestational week male and female fetuses, respectively, and a 10-year-old girl and a 12-year-old boy. Methods: Staining with hematoxylin-eosin and immunostaining for myelin basic protein, 70-kDa neurofilament, parvalbumin, calbindin-D28k, and synaptophysin were performed. Thyroid hormone determinations and quantitative PCR for deiodinases were also performed. Results: The MCT8-deficient fetus showed a delay in cortical and cerebellar development and myelination, loss of parvalbumin expression, abnormal calbindin-D28k content, impaired axonal maturation, and diminished biochemical differentiation of Purkinje cells. The 11-year-old boy showed altered cerebellar structure, deficient myelination, deficient synaptophysin and parvalbumin expression, and abnormal calbindin-D28k expression. The MCT8-deficient fetal cerebral cortex showed 50% reduction of thyroid hormones and increased type 2 deiodinase and decreased type 3 deiodinase mRNAs. Conclusions: The following conclusions were reached: 1) brain damage in MCT8 deficiency is diffuse, without evidence of focal lesions, and present from fetal stages despite apparent normality at birth; 2) deficient hypomyelination persists up to 11 years of age; and 3) the findings are compatible with the deficient action of thyroid hormones in the developing brain caused by impaired transport to the target neural cells. PMID:25222753

  7. An in vivo model of functional and vascularized human brain organoids.

    PubMed

    Mansour, Abed AlFatah; Gonçalves, J Tiago; Bloyd, Cooper W; Li, Hao; Fernandes, Sarah; Quang, Daphne; Johnston, Stephen; Parylak, Sarah L; Jin, Xin; Gage, Fred H

    2018-06-01

    Differentiation of human pluripotent stem cells to small brain-like structures known as brain organoids offers an unprecedented opportunity to model human brain development and disease. To provide a vascularized and functional in vivo model of brain organoids, we established a method for transplanting human brain organoids into the adult mouse brain. Organoid grafts showed progressive neuronal differentiation and maturation, gliogenesis, integration of microglia, and growth of axons to multiple regions of the host brain. In vivo two-photon imaging demonstrated functional neuronal networks and blood vessels in the grafts. Finally, in vivo extracellular recording combined with optogenetics revealed intragraft neuronal activity and suggested graft-to-host functional synaptic connectivity. This combination of human neural organoids and an in vivo physiological environment in the animal brain may facilitate disease modeling under physiological conditions.

  8. White Matter Maturation Supports the Development of Reasoning Ability through Its Influence on Processing Speed

    ERIC Educational Resources Information Center

    Ferrer, Emilio; Whitaker, Kirstie J.; Steele, Joel S.; Green, Chloe T.; Wendelken, Carter; Bunge, Silvia A.

    2013-01-01

    The structure of the human brain changes in several ways throughout childhood and adolescence. Perhaps the most salient of these changes is the strengthening of white matter tracts that enable distal brain regions to communicate with one another more quickly and efficiently. Here, we sought to understand whether and how white matter changes…

  9. Chronic inflammation and impaired development of the preterm brain.

    PubMed

    Bennet, Laura; Dhillon, Simerdeep; Lear, Chris A; van den Heuij, Lotte; King, Victoria; Dean, Justin M; Wassink, Guido; Davidson, Joanne O; Gunn, Alistair Jan

    2018-02-01

    The preterm newborn is at significant risk of neural injury and impaired neurodevelopment. Infants with mild or no evidence of injury may also be at risk of altered brain development, with evidence impaired cell maturation. The underlying causes are multifactorial and include exposure of both the fetus and newborn to hypoxia-ischemia, inflammation (chorioamnionitis) and infection, adverse maternal lifestyle choices (smoking, drug and alcohol use, diet) and obesity, as well as the significant demand that adaptation to post-natal life places on immature organs. Further, many fetuses and infants may have combinations of these events, and repeated (multi-hit) events that may induce tolerance to injury or sensitize to greater injury. Currently there are no treatments to prevent preterm injury or impaired neurodevelopment. However, inflammation is a common pathway for many of these insults, and clinical and experimental evidence demonstrates that acute and chronic inflammation is associated with impaired brain development. This review examines our current knowledge about the relationship between inflammation and preterm brain development, and the potential for stem cell therapy to provide neuroprotection and neurorepair through reducing inflammation and release of trophic factors, which promote cell maturation and repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Solvent inhalation (toluene and n-hexane) during the brain growth spurt impairs the maturation of frontal, parietal and occipital cerebrocortical neurons in rats.

    PubMed

    Pascual, Rodrigo; Aedo, Luz; Meneses, Juan Carlos; Vergara, Daniela; Reyes, Alvaro; Bustamante, Carlos

    2010-10-01

    Solvent abuse during pregnancy may cause "fetal solvent syndrome", which is characterized by mild brain atrophy and associated with behavioral, cognitive, and emotional abnormalities. The present study investigated whether solvent inhalation during the preweaning period (P2-P21) alters the morphological maturation of frontal, parietal, and occipital cortical neurons. Twelve hours after delivery (postnatal day 0, P0), litters were cross-fostered, culled to 8 pups/dam and housed together with a dam in standard laboratory cages. Litters were randomly assigned to the "air-only" group (n=64, 8 litters) and to the "solvent-sniffer" group (n=72, 9 litters). During P2-P21, each animal was exposed daily to either organic solvent vapors (75% toluene and 18% n-hexane, a solvent mixture commonly found in glues and adhesives) or clean air. To determine the impact of early solvent inhalation on cortical neuronal differentiation, brains were stained using the Golgi-Cox-Sholl procedure to quantitatively assess neocortical pyramidal cell dendrogenesis. Preweaning, solvent-exposed animals displayed dramatic impairments in dendritic growth as well as significant reductions in brain weight and size. Copyright 2010 ISDN. Published by Elsevier Ltd. All rights reserved.

  11. Formation of fibroblastic reticular network in the brain after infection with neurovirulent murine coronavirus.

    PubMed

    Watanabe, Rihito; Kakizaki, Masatoshi; Ikehara, Yuzuru; Togayachi, Akira

    2016-12-01

    cl-2 virus is an extremely neurovirulent murine coronavirus. However, during the initial phase of infection between 12 and 24 h post-inoculation (hpi), the viral antigens are detected only in the meninges, followed by viral spread into the ventricular wall before invasion into the brain parenchyma, indicating that the viruses employ a passage between the meninges and ventricular wall as an entry route into the brain parenchyma. At 48 hpi, the passage was found to be constructed by ER-TR7 antigen (ERag)-positive fibers (ERfibs) associated with laminin and collagen III between the fourth ventricle and meninges at the cerebellopontine angle. The construct of the fibers mimics the reticular fibers of the fibroblastic reticular network, which comprises a conduit system in the lymphoid organs. In the meninges, ERfibs together with collagen fibers, lining in a striped pattern, made up a pile of thin sheets. In the brain parenchyma, mature ERfibs associated with laminin were found around blood vessels. Besides mature ERfibs, immature Erfibs without associations with other extracellular matrix components like laminin and collagen appeared after infection, suggesting that the CNS creates a unique conduit system for immune communication triggered by viral invasion. © 2016 Japanese Society of Neuropathology.

  12. Coordinated maturational regulation of PHEX and renal phosphate transport inhibitory activity: evidence for the pathophysiological role of PHEX in X-linked hypophosphatemia.

    PubMed

    Nesbitt, T; Fujiwara, I; Thomas, R; Xiao, Z S; Quarles, L D; Drezner, M K

    1999-12-01

    The mechanism by which inactivating mutations of PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) cause X-linked hypophosphatemia remains unknown. However, recent reports suggest errant PHEX activity in osteoblasts may fail to inactivate a phosphaturic factor produced by these cells. To test this possibility, we examined coordinated maturational expression of PHEX and production of phosphate transport inhibitory activity in osteoblasts from normal and hyp-mice. We assessed the inhibitory activity in conditioned medium by examining the effects on opossum kidney cell phosphate transport and osteoblast PHEX expression by reverse transcriptase-polymerase chain reaction during a 17-day maturational period. Inhibitory activity increased as a function of osteoblast maturational stage, with no activity after 3 days and persistent activity by 6 days of culture. More significantly, equal phosphate transport inhibitory activity in conditioned medium from normal and hyp-mouse osteoblasts (control 1.90 +/- 0.12, normal 1.48 +/- 0.10, hyp 1.45 +/- 0.04 nmol/mg of protein/minute) was observed at 6 days. However, by 10 days hyp-mouse osteoblasts exhibited greater inhibitory activity than controls, and by 17 days the difference in phosphate transport inhibition maximized (control 2.08 +/- 0.09, normal 1.88 +/- 0.06, hyp 1.58 +/- 0.06 nmol/mg of protein/minute). Concurrently, we observed absent PHEX expression in normal osteoblasts after 3 days, limited production at 6 days, and significant production by day 10 of culture, while hyp-mouse osteoblasts exhibited limited PHEX activity secondary to an inactivating mutation. The data suggest that the presence of inactivating PHEX mutations results in the enhanced renal phosphate transport inhibitory activity exhibited by hyp-mouse osteoblasts.

  13. The regulation and deregulation of Wnt signaling by PARK genes in health and disease.

    PubMed

    Berwick, Daniel C; Harvey, Kirsten

    2014-02-01

    Wingless/Int (Wnt) signaling pathways are signal transduction mechanisms that have been widely studied in the field of embryogenesis. Recent work has established a critical role for these pathways in brain development, especially of midbrain dopaminergic neurones. However, the fundamental importance of Wnt signaling for the normal function of mature neurones in the adult central nervous system has also lately been demonstrated by an increasing number of studies. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and is currently incurable. This debilitating disease is characterized by the progressive loss of a subset of midbrain dopaminergic neurones in the substantia nigra leading to typical extrapyramidal motor symptoms. The aetiology of PD is poorly understood but work performed over the last two decades has identified a growing number of genetic defects that underlie this condition. Here we review a growing body of data connecting genes implicated in PD--most notably the PARK genes--with Wnt signaling. These observations provide clues to the normal function of these proteins in healthy neurones and suggest that deregulated Wnt signaling might be a frequent pathomechanism leading to PD. These observations have implications for the pathogenesis and treatment of neurodegenerative diseases in general.

  14. The Formylpeptide Receptor 2 (Fpr2) and Its Endogenous Ligand Cathelin-related Antimicrobial Peptide (CRAMP) Promote Dendritic Cell Maturation*

    PubMed Central

    Chen, Keqiang; Xiang, Yi; Huang, Jiaqiang; Gong, Wanghua; Yoshimura, Teizo; Jiang, Qun; Tessarollo, Lino; Le, Yingying; Wang, Ji Ming

    2014-01-01

    Mouse formylpeptide receptor 2 (Fpr2) is a homologue of the human G-protein coupled chemoattractant receptor FPR2, which interacts with pathogen and host-derived chemotactic agonists. Our previous studies revealed reduced allergic airway inflammation and immune responses in Fpr2-deficient (Fpr2−/−) mice in association with diminished dendritic cell (DC) recruitment into the airway and draining lymph nodes. These defects prompted us to investigate the potential changes in the differentiation and maturation of DCs caused by Fpr2 deficiency. Bone marrow monocytes from Fpr2−/− mouse mice incubated with GM-CSF and IL-4 in vitro showed normal expression of markers of immature DCs. However, upon stimulation with the TLR4 agonist LPS, Fpr2−/− mouse DCs failed to express normal levels of maturation markers with reduced production of IL-12 and diminished chemotaxis in response to the DC homing chemokine CCL21. Fpr2−/− DCs also failed to induce allogeneic T-cell proliferation in vitro, and their recruitment into the T-cell zones of the spleen was reduced after antigen immunization. The capacity of Fpr2 to sustain normal DC maturation was dependent on its interaction with an endogenous ligand CRAMP expressed by DCs, because neutralization of either Fpr2 or CRAMP inhibited DC maturation in response to LPS. We additionally observed that the presence of exogenous CRAMP in culture increased the sensitivity of WT mouse DCs to LPS stimulation. The importance of CRAMP for DC maturation was further demonstrated by the observations that DCs from CRAMP−/− mice expressed lower levels of costimulatory molecules and MHC II and exhibited poor chemotaxis in response to CCL21 after LPS stimulation. Our observations indicate a nonredundant role for Fpr2 and its agonist CRAMP in DC maturation in immune responses. PMID:24808174

  15. Semiautomated volumetry of the cerebrum, cerebellum-brain stem, and temporal lobe on brain magnetic resonance images.

    PubMed

    Hayashi, Norio; Sanada, Shigeru; Suzuki, Masayuki; Matsuura, Yukihiro; Kawahara, Kazuhiro; Tsujii, Hideo; Yamamoto, Tomoyuki; Matsui, Osamu

    2008-02-01

    The aim of this study was to develop an automated method of segmenting the cerebrum, cerebellum-brain stem, and temporal lobe simultaneously on magnetic resonance (MR) images. We obtained T1-weighted MR images from 10 normal subjects and 19 patients with brain atrophy. To perform automated volumetry from MR images, we performed the following three steps: (1) segmentation of the brain region; (2) separation between the cerebrum and the cerebellum-brain stem; and (3) segmentation of the temporal lobe. Evaluation was based on the correctly recognized region (CRR) (i.e., the region recognized by both the automated and manual methods). The mean CRRs of the normal and atrophic brains were 98.2% and 97.9% for the cerebrum, 87.9% and 88.5% for the cerebellum-brain stem, and 76.9% and 85.8% for the temporal lobe, respectively. We introduce an automated volumetric method for the cerebrum, cerebellum-brain stem, and temporal lobe on brain MR images. Our method can be applied to not only the normal brain but also the atrophic brain.

  16. EEG mapping and low-resolution brain electromagnetic tomography (LORETA) in diagnosis and therapy of psychiatric disorders: evidence for a key-lock principle.

    PubMed

    Saletu, Bernd; Anderer, Peter; Saletu-Zyhlarz, Gerda M; Pascual-Marqui, Roberto D

    2005-04-01

    Different psychiatric disorders, such as schizophrenia with predominantly positive and negative symptomatology, major depression, generalized anxiety disorder, agoraphobia, obsessive-compulsive disorder, multi-infarct dementia, senile dementia of the Alzheimer type and alcohol dependence, show EEG maps that differ statistically both from each other and from normal controls. Representative drugs of the main psychopharmacological classes, such as sedative and non-sedative neuroleptics and antidepressants, tranquilizers, hypnotics, psychostimulants and cognition-enhancing drugs, induce significant and typical changes to normal human brain function, which in many variables are opposite to the above-mentioned differences between psychiatric patients and normal controls. Thus, by considering these differences between psychotropic drugs and placebo in normal subjects, as well as between mental disorder patients and normal controls, it may be possible to choose the optimum drug for a specific patient according to a key-lock principle, since the drug should normalize the deviant brain function. This is supported by 3-dimensional low-resolution brain electromagnetic tomography (LORETA), which identifies regions within the brain that are affected by psychiatric disorders and psychopharmacological substances.

  17. Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Ning; Freitas, Beatriz C.; Qian, Hao; Lux, Jacques; Acab, Allan; Trujillo, Cleber A.; Herai, Roberto H.; Nguyen Huu, Viet Anh; Wen, Jessica H.; Joshi-Barr, Shivanjali; Karpiak, Jerome V.; Engler, Adam J.; Fu, Xiang-Dong; Muotri, Alysson R.; Almutairi, Adah

    2016-03-01

    Probing a wide range of cellular phenotypes in neurodevelopmental disorders using patient-derived neural progenitor cells (NPCs) can be facilitated by 3D assays, as 2D systems cannot entirely recapitulate the arrangement of cells in the brain. Here, we developed a previously unidentified 3D migration and differentiation assay in layered hydrogels to examine how these processes are affected in neurodevelopmental disorders, such as Rett syndrome. Our soft 3D system mimics the brain environment and accelerates maturation of neurons from human induced pluripotent stem cell (iPSC)-derived NPCs, yielding electrophysiologically active neurons within just 3 wk. Using this platform, we revealed a genotype-specific effect of methyl-CpG-binding protein-2 (MeCP2) dysfunction on iPSC-derived neuronal migration and maturation (reduced neurite outgrowth and fewer synapses) in 3D layered hydrogels. Thus, this 3D system expands the range of neural phenotypes that can be studied in vitro to include those influenced by physical and mechanical stimuli or requiring specific arrangements of multiple cell types.

  18. Inter-subject FDG PET Brain Networks Exhibit Multi-scale Community Structure with Different Normalization Techniques.

    PubMed

    Sperry, Megan M; Kartha, Sonia; Granquist, Eric J; Winkelstein, Beth A

    2018-07-01

    Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p < 0.00001); however, community structure is similar at network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.

  19. Trajectories of Infants' Biobehavioral Development: Timing and Rate of A-Not-B Performance Gains and EEG Maturation

    ERIC Educational Resources Information Center

    MacNeill, Leigha A.; Ram, Nilam; Bell, Martha Ann; Fox, Nathan A.; Pérez-Edgar, Koraly

    2018-01-01

    This study examined how timing (i.e., relative maturity) and rate (i.e., how quickly infants attain proficiency) of A-not-B performance were related to changes in brain activity from age 6 to 12 months. A-not-B performance and resting EEG (electroencephalography) were measured monthly from age 6 to 12 months in 28 infants and were modeled using…

  20. Visual and vestibular induced eye movements in verbal children and adults with autism

    PubMed Central

    Furman, Joseph M.; Osorio, Maria Joana; Minshew, Nancy J.

    2016-01-01

    This study investigated several types of eye movements that rely on the function of brainstem-cerebellar pathways specifically (vestibular-ocular reflexes) or on widely distributed pathways of the brain (horizontal pursuit and saccade eye movements). Although eye movements that rely on higher brain regions have been studies fairly extensively in autism, eye movements dependent on brainstem and cerebellum have not. This study involved 79 individuals with autism and 62 typical controls aged 5 to 52 years with IQ scores above 70. No differences between the autism and control groups were present on the measures of vestibular ocular reflexes, or on saccade velocity or accuracy. The autism group was significantly slower to initiate saccades, which was most prominent in the 8-18 year old age range. These findings provide the most substantial evidence to date of the functional integrity of brainstem and cerebellar pathways in autism, suggesting that the histopathological abnormalities described in these structures may not be associated with intrinsic dysfunction but rather reflect developmental alterations related to forebrain cortical systems formation. The increase in saccade latency adds to the substantial evidence of altered function and maturation of cortical systems in autism. Objective This study assessed the functionality of vestibular, pursuit and saccade circuitry in autism across a wide age range. Methods Subjects were 79 individuals with autism (AUT) and 62 controls (CON) aged 5 to 52 years with IQ scores > 70. For vestibular testing, earth-vertical axis rotation was performed in darkness and in a lighted visual surround with a fixation target. Ocular motor testing included assessment of horizontal saccades and horizontal smooth pursuit. Results No between-group differences were found in vestibular reflexes or in mean saccade velocity or accuracy. Saccade latency was increased in the AUT group with significant age-related effects in the 8-18 year old subgroups. There was a trend toward decreased pursuit gain without age effects. Conclusions Normal vestibular-induced eye movements and normal saccade accuracy and velocity provide the most substantial evidence to date of the functional integrity of brainstem and cerebellar pathways in autism, suggesting that the histopathological abnormalities described in these structures may not be associated with intrinsic dysfunction but rather reflect developmental alterations related to forebrain cortical systems formation. Increased saccade latency with age effects adds to the extensive existing evidence of altered function and maturation of cortical systems in autism. PMID:25846907

  1. AAV2-mediated gene transfer of GDNF to the striatum of MPTP monkeys enhances the survival and outgrowth of co-implanted fetal dopamine neurons

    PubMed Central

    Elsworth, JD; Redmond, DE; Leranth, C; Bjugstad, KB; Sladek, JR; Collier, TJ; Foti, SB; Samulski, RJ; Vives, KP; Roth, RH

    2009-01-01

    Neural transplantation offers the potential of treating Parkinson’s disease by grafting fetal dopamine neurons to depleted regions of the brain. However, clinical studies of neural grafting in Parkinson’s disease have produced only modest improvements. One of the main reasons for this is the low survival rate of transplanted neurons. The inadequate supply of critical neurotrophic factors in the adult brain is likely to be a major cause of early cell death and restricted outgrowth of fetal grafts placed into the mature striatum. Glial derived neurotrophic factor (GDNF) is a potent neurotrophic factor that is crucial to the survival, outgrowth and maintenance of dopamine neurons, and so is a candidate for protecting grafted fetal dopamine neurons in the adult brain. We found that implantation of adeno-associated virus type 2 encoding GDNF (AAV2-GDNF) in the normal monkey caudate nucleus induced over-expression of GDNF that persisted for at least 6 months after injection. In a 6-month within-animal controlled study, AAV2-GDNF enhanced the survival of fetal dopamine neurons by 4-fold, and increased the outgrowth of grafted fetal dopamine neurons by almost 3-fold in the caudate nucleus of MPTP-treated monkeys, compared with control grafts in the other caudate nucleus. Thus, the addition of GDNF gene therapy to neural transplantation may be a useful strategy to improve treatment for Parkinson’s disease. PMID:18346734

  2. Oxygen-sensitive regulation and neuroprotective effects of growth hormone-dependent growth factors during early postnatal development.

    PubMed

    Jung, Susan; Boie, Gudrun; Doerr, Helmuth-Guenther; Trollmann, Regina

    2017-04-01

    Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O 2 , 6 h; postnatal day 7 , P7) at P14. Exposure to hypoxia led to reduced body weight ( P < 0.001) and length ( P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH ( P < 0.01) and IGF-1 ( P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain. Copyright © 2017 the American Physiological Society.

  3. Cerebrovascular defects in Foxc1 mutants correlate with aberrant WNT and VEGF-A pathways downstream of retinoic acid from the meninges

    PubMed Central

    Mishra, Swati; Choe, Youngshik; Pleasure, Samuel J.; Siegenthaler, Julie A.

    2016-01-01

    Growth and maturation of the cerebrovasculature is a vital event in neocortical development however mechanisms that control cerebrovascular development remain poorly understood. Mutations in or deletions that include the FOXC1 gene are associated with congenital cerebrovascular anomalies and increased stroke risk in patients. Foxc1 mutant mice display severe cerebrovascular hemorrhage at late gestational ages. While these data demonstrate Foxc1 is required for cerebrovascular development, its broad expression in the brain vasculature combined with Foxc1 mutant’s complex developmental defects have made it difficult to pinpoint its function(s). Using global and conditional Foxc1 mutants, we find 1) significant cerebrovascular growth defects precede cerebral hemorrhage and 2) expression of Foxc1 in neural crest-derived meninges and brain pericytes, though not endothelial cells, is required for normal cerebrovascular development. We provide evidence that reduced levels of meninges-derived retinoic acid (RA), caused by defects in meninges formation in Foxc1 mutants, is a major contributing factor to the cerebrovascular growth defects in Foxc1 mutants. We provide data that suggests that meninges-derived RA ensures adequate growth of the neocortical vasculature via regulating expression of WNT pathway proteins and neural progenitor derived-VEGF-A. Our findings offer the first evidence for a role of the meninges in brain vascular development and provide new insight into potential causes of cerebrovascular defects in patients with FOXC1 mutations. PMID:27671872

  4. Cerebrovascular defects in Foxc1 mutants correlate with aberrant WNT and VEGF-A pathways downstream of retinoic acid from the meninges.

    PubMed

    Mishra, Swati; Choe, Youngshik; Pleasure, Samuel J; Siegenthaler, Julie A

    2016-12-01

    Growth and maturation of the cerebrovasculature is a vital event in neocortical development however mechanisms that control cerebrovascular development remain poorly understood. Mutations in or deletions that include the FOXC1 gene are associated with congenital cerebrovascular anomalies and increased stroke risk in patients. Foxc1 mutant mice display severe cerebrovascular hemorrhage at late gestational ages. While these data demonstrate Foxc1 is required for cerebrovascular development, its broad expression in the brain vasculature combined with Foxc1 mutant's complex developmental defects have made it difficult to pinpoint its function(s). Using global and conditional Foxc1 mutants, we find 1) significant cerebrovascular growth defects precede cerebral hemorrhage and 2) expression of Foxc1 in neural crest-derived meninges and brain pericytes, though not endothelial cells, is required for normal cerebrovascular development. We provide evidence that reduced levels of meninges-derived retinoic acid (RA), caused by defects in meninges formation in Foxc1 mutants, is a major contributing factor to the cerebrovascular growth defects in Foxc1 mutants. We provide data that suggests that meninges-derived RA ensures adequate growth of the neocortical vasculature via regulating expression of WNT pathway proteins and neural progenitor derived-VEGF-A. Our findings offer the first evidence for a role of the meninges in brain vascular development and provide new insight into potential causes of cerebrovascular defects in patients with FOXC1 mutations. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Altered blood-brain barrier permeability in rats with prehepatic portal hypertension turns to normal when portal pressure is lowered

    PubMed Central

    Eizayaga, Francisco; Scorticati, Camila; Prestifilippo, Juan P; Romay, Salvador; Fernandez, Maria A; Castro, José L; Lemberg, Abraham; Perazzo, Juan C

    2006-01-01

    AIM: To study the blood-brain barrier integrity in prehepatic portal hypertensive rats induced by partial portal vein ligation, at 14 and 40 d after ligation when portal pressure is spontaneously normalized. METHODS: Adult male Wistar rats were divided into four groups: Group I: Sham14d , sham operated; Group II: PH14d , portal vein stenosis; (both groups were used 14 days after surgery); Group III: Sham40d, Sham operated and Group IV: PH40d Portal vein stenosis (Groups II and IV used 40 d after surgery). Plasma ammonia, plasma and cerebrospinal fluid protein and liver enzymes concentrations were determined. Trypan and Evans blue dyes, systemically injected, were investigated in hippocampus to study blood-brain barrier integrity. Portal pressure was periodically recorded. RESULTS: Forty days after stricture, portal pressure was normalized, plasma ammonia was moderately high, and both dyes were absent in central nervous system parenchyma. All other parameters were reestablished. When portal pressure was normalized and ammonia level was lowered, but not normal, the altered integrity of blood-brain barrier becomes reestablished. CONCLUSION: The impairment of blood-brain barrier and subsequent normalization could be a mechanism involved in hepatic encephalopathy reversibility. Hemodynamic changes and ammonia could trigger blood-brain barrier alterations and its reestablishment. PMID:16552803

  6. Effect of experimental diabetes on the levels of aromatic and branched-chain amino acids in rat blood and brain.

    PubMed

    Crandall, E A; Fernstrom, J D

    1983-03-01

    Male rats treated 3 wk earlier with streptozotocin showed abnormally high blood levels of leucine, isoleucine, and valine throughout the 24-h period. Serum phenylalanine levels were slightly increased, while those of tryptophan and tyrosine were occasionally reduced. In brain, the level of each branched-chain amino acid was significantly increased above normal at all times. The brain concentration of each aromatic amino acid was always below normal. These changes were restored almost to normal by exogenous insulin therapy. Since the ingestion of protein is normally a major factor influencing blood amino acid levels, the effect of ingesting single, protein-containing meals on the blood and brain levels of these amino acids was also studied. After an overnight fast, the ingestion of a protein-containing meal by diabetic rats increased substantially both blood and brain levels of each branched-chain amino acid. No such increases occurred in normal rats. Ingestion of this meal produced only small changes in the brain and blood levels of the aromatic amino acids in both diabetic and normal rats. The changes in the brain level of each large neutral amino acid in some cases paralleled those in its blood level. More often, they paralleled the changes in the blood ratio of each amino acid to the sum of the other aromatic and branched-chain amino acids. This ratio is often a good predictor of the competitive transport of these amino acids into brain (Fernstrom and Faller, 1978). The observed changes in the brain levels of these amino acids in diabetes may influence the rates at which they are consumed in metabolic pathways within this organ.

  7. Estimation of gestational age from study of amniotic fluid and clinical assessment.

    PubMed Central

    Deshpande, T. V.; Harding, P. G.; Jaco, N. T.

    1977-01-01

    Study of 108 samples of amniotic fluid obtained between 28 and 42 weeks' gestation from 101 patients revealed that in normal pregnancies the creatinine concentration, lecithin/sphingomyelin (L/S) ratio and percentage of fat cells correlated better with the gestational age of the newborn--assessed by clinical criteria--than did the bilirubin and sodium concentrations. A creatinine concentration of 1.75 mg/dL or more, an L/S ratio of 4 or more and a fat cell percentage of 10 or more correlated significantly with a gestational age of 37 weeks or more. In abnormal pregnancies (those with obstetric or medical complications, or both) the mean creatinine concentration in the amniotic fluid was significantly less than expected for gestational age in fetal dysmaturity and greater than expected when the mother had diabetes. The mean L/S ratio in the amniotic fluid was elevated when the mother had hypertension or smoked and in cases of fetal dysmaturity or long interval between rupture of the membranes and delivery, whereas it was significantly lower than normal when the mother had diabetes. The mean bilirubin concentration in the amniotic fluid was significantly lower than normal when the mother had hypertension. When the mother had diabetes, maturity of the fetal lung, liver, skin and brain appeared to be delayed, according to the values for the amniotic fluid constituents. PMID:912615

  8. The effect of early visual deprivation on the neural bases of multisensory processing.

    PubMed

    Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte

    2015-06-01

    Developmental vision is deemed to be necessary for the maturation of multisensory cortical circuits. Thus far, this has only been investigated in animal studies, which have shown that congenital visual deprivation markedly reduces the capability of neurons to integrate cross-modal inputs. The present study investigated the effect of transient congenital visual deprivation on the neural mechanisms of multisensory processing in humans. We used functional magnetic resonance imaging to compare responses of visual and auditory cortical areas to visual, auditory and audio-visual stimulation in cataract-reversal patients and normally sighted controls. The results showed that cataract-reversal patients, unlike normally sighted controls, did not exhibit multisensory integration in auditory areas. Furthermore, cataract-reversal patients, but not normally sighted controls, exhibited lower visual cortical processing within visual cortex during audio-visual stimulation than during visual stimulation. These results indicate that congenital visual deprivation affects the capability of cortical areas to integrate cross-modal inputs in humans, possibly because visual processing is suppressed during cross-modal stimulation. Arguably, the lack of vision in the first months after birth may result in a reorganization of visual cortex, including the suppression of noisy visual input from the deprived retina in order to reduce interference during auditory processing. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Vulnerability Imposed by Diet and Brain Trauma for Anxiety-Like Phenotype: Implications for Post-Traumatic Stress Disorders

    PubMed Central

    Tyagi, Ethika; Agrawal, Rahul; Zhuang, Yumei; Abad, Catalina; Waschek, James A.; Gomez-Pinilla, Fernando

    2013-01-01

    Mild traumatic brain injury (mTBI, cerebral concussion) is a risk factor for the development of psychiatric illness such as posttraumatic stress disorder (PTSD). We sought to evaluate how omega-3 fatty acids during brain maturation can influence challenges incurred during adulthood (transitioning to unhealthy diet and mTBI) and predispose the brain to a PTSD-like pathobiology. Rats exposed to diets enriched or deficient in omega-3 fatty acids (n-3) during their brain maturation period, were transitioned to a western diet (WD) when becoming adult and then subjected to mTBI. TBI resulted in an increase in anxiety-like behavior and its molecular counterpart NPY1R, a hallmark of PTSD, but these effects were more pronounced in the animals exposed to n-3 deficient diet and switched to WD. The n-3 deficiency followed by WD disrupted BDNF signaling and the activation of elements of BDNF signaling pathway (TrkB, CaMKII, Akt and CREB) in frontal cortex. TBI worsened these effects and more prominently in combination with the n-3 deficiency condition. Moreover, the n-3 deficiency primed the immune system to the challenges imposed by the WD and brain trauma as evidenced by results showing that the WD or mTBI affected brain IL1β levels and peripheral Th17 and Treg subsets only in animals previously conditioned to the n-3 deficient diet. These results provide novel evidence for the capacity of maladaptive dietary habits to lower the threshold for neurological disorders in response to challenges. PMID:23483949

  10. Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders.

    PubMed

    Tyagi, Ethika; Agrawal, Rahul; Zhuang, Yumei; Abad, Catalina; Waschek, James A; Gomez-Pinilla, Fernando

    2013-01-01

    Mild traumatic brain injury (mTBI, cerebral concussion) is a risk factor for the development of psychiatric illness such as posttraumatic stress disorder (PTSD). We sought to evaluate how omega-3 fatty acids during brain maturation can influence challenges incurred during adulthood (transitioning to unhealthy diet and mTBI) and predispose the brain to a PTSD-like pathobiology. Rats exposed to diets enriched or deficient in omega-3 fatty acids (n-3) during their brain maturation period, were transitioned to a western diet (WD) when becoming adult and then subjected to mTBI. TBI resulted in an increase in anxiety-like behavior and its molecular counterpart NPY1R, a hallmark of PTSD, but these effects were more pronounced in the animals exposed to n-3 deficient diet and switched to WD. The n-3 deficiency followed by WD disrupted BDNF signaling and the activation of elements of BDNF signaling pathway (TrkB, CaMKII, Akt and CREB) in frontal cortex. TBI worsened these effects and more prominently in combination with the n-3 deficiency condition. Moreover, the n-3 deficiency primed the immune system to the challenges imposed by the WD and brain trauma as evidenced by results showing that the WD or mTBI affected brain IL1β levels and peripheral Th17 and Treg subsets only in animals previously conditioned to the n-3 deficient diet. These results provide novel evidence for the capacity of maladaptive dietary habits to lower the threshold for neurological disorders in response to challenges.

  11. Use of EPO as an adjuvant in PDT of brain tumors to reduce damage to normal brain

    NASA Astrophysics Data System (ADS)

    Rendon, Cesar A.; Lilge, Lothar

    2004-10-01

    In order to reduce damage to surrounding normal brain in the treatment of brain tumors with photodynamic therapy (PDT), we have investigated the use of the cytokine erythropoietin (EPO) to exploit its well-established role as a neuroprotective agent. In vitro experiments demonstrated that EPO does not confer protection from PDT to rat glioma cells. In vivo testing of the possibility of EPO protecting normal brain tissue was carried out. The normal brains of Lewis rats were treated with Photofrin mediated PDT (6.25 mg/Kg B.W. 22 hours pre irradiation) and the outcome of the treatment compared between animals that received EPO (5000 U/Kg B.W. 22 hours pre irradiation) and controls. This comparison was made based on the volume of necrosis, as measured with the viability stain 2,3,5- Triphenyl tetrazoium chloride (TTC), and incidence of apoptosis, as measured with in situ end labeling assay (ISEL). Western blotting showed that EPO reaches the normal brain and activates the anti-apoptotic protein PKB/AKT1 within the brain cortex. The comparison based on volume of necrosis showed no statistical significance between the two groups. No clear difference was observed in the ISEL staining between the groups. A possible lack of responsivity in the assays that give rise to these results is discussed and future corrections are described.

  12. Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte development and maturation

    PubMed Central

    Phee, Hyewon; Au-Yeung, Byron B; Pryshchep, Olga; O'Hagan, Kyle Leonard; Fairbairn, Stephanie Grace; Radu, Maria; Kosoff, Rachelle; Mollenauer, Marianne; Cheng, Debra; Chernoff, Jonathan; Weiss, Arthur

    2014-01-01

    The molecular mechanisms that govern thymocyte development and maturation are incompletely understood. The P21-activated kinase 2 (Pak2) is an effector for the Rho family GTPases Rac and Cdc42 that regulate actin cytoskeletal remodeling, but its role in the immune system remains poorly understood. In this study, we show that T-cell specific deletion of Pak2 gene in mice resulted in severe T cell lymphopenia accompanied by marked defects in development, maturation, and egress of thymocytes. Pak2 was required for pre-TCR β-selection and positive selection. Surprisingly, Pak2 deficiency in CD4 single positive thymocytes prevented functional maturation and reduced expression of S1P1 and KLF2. Mechanistically, Pak2 is required for actin cytoskeletal remodeling triggered by TCR. Failure to induce proper actin cytoskeletal remodeling impaired PLCγ1 and Erk1/2 signaling in the absence of Pak2, uncovering the critical function of Pak2 as an essential regulator that governs the actin cytoskeleton-dependent signaling to ensure normal thymocyte development and maturation. DOI: http://dx.doi.org/10.7554/eLife.02270.001 PMID:24843022

  13. Immunohistochemical expression and colocalization of somatostatin, carboxypeptidase-E and prohormone convertases 1 and 2 in rat brain.

    PubMed

    Billova, S; Galanopoulou, A S; Seidah, N G; Qiu, X; Kumar, U

    2007-06-29

    The processing of many peptides for their maturation in target tissue depends upon the presence of sorting receptor. Several previous studies have predicted that carboxypeptidase-E (CPE), prohormone convertase 1 (PC1) and prohormone convertase 2 (PC2) may function as sorting elements for somatostatin (SST) for its maturation and processing to appropriate targets. However, nothing is currently known about whether brain, neuronal culture or even endocrine cells express SST, CPE, PC1 and PC2 and exhibit colocalization. Accordingly, in the present study using peroxidase immunohistochemistry, double-labeled indirect immunofluorescence immunohistochemistry and Western blot analysis, we mapped the distributional pattern of SST, CPE, PC1 and PC2 in different rat brain regions. Additionally, we also determined the colocalization of SST with CPE, PC1 and PC2 as well as colocalization of CPE with PC1 and PC2. The localization of SST, CPE, PC1 and PC2 reveals a distinct and region specific distribution pattern in the rat brain. Using an indirect double-label immunofluorescence method we observed selective neuron specific colocalization in a region specific manner in cortex, striatum and hippocampus. These studies provide the first evidence for colocalization between SST, CPE, PC1 and PC2 as well as CPE with PC1 and PC2. SST in cerebral cortex colocalized in pyramidal and non-pyramidal neurons with CPE, PC1 and PC2. Most importantly, in striatum and hippocampus colocalization was mostly observed selectively and preferentially in interneurons. CPE is also colocalized with PC1 and PC2 in a region specific manner. The data presented here provide a new insight into the distribution and colocalization of SST, CPE, PC1 and PC2 in rat brain. Taken together, our data anticipate the possibility that CPE, PC1 and PC2 might be potential target for the maturation of SST.

  14. Nicotine and the adolescent brain.

    PubMed

    Yuan, Menglu; Cross, Sarah J; Loughlin, Sandra E; Leslie, Frances M

    2015-08-15

    Adolescence encompasses a sensitive developmental period of enhanced clinical vulnerability to nicotine, tobacco, and e-cigarettes. While there are sociocultural influences, data at preclinical and clinical levels indicate that this adolescent sensitivity has strong neurobiological underpinnings. Although definitions of adolescence vary, the hallmark of this period is a profound reorganization of brain regions necessary for mature cognitive and executive function, working memory, reward processing, emotional regulation, and motivated behavior. Regulating critical facets of brain maturation are nicotinic acetylcholine receptors (nAChRs). However, perturbations of cholinergic systems during this time with nicotine, via tobacco or e-cigarettes, have unique consequences on adolescent development. In this review, we highlight recent clinical and preclinical data examining the adolescent brain's distinct neurobiology and unique sensitivity to nicotine. First, we discuss what defines adolescence before reviewing normative structural and neurochemical alterations that persist until early adulthood, with an emphasis on dopaminergic systems. We review how acute exposure to nicotine impacts brain development and how drug responses differ from those seen in adults. Finally, we discuss the persistent alterations in neuronal signaling and cognitive function that result from chronic nicotine exposure, while highlighting a low dose, semi-chronic exposure paradigm that may better model adolescent tobacco use. We argue that nicotine exposure, increasingly occurring as a result of e-cigarette use, may induce epigenetic changes that sensitize the brain to other drugs and prime it for future substance abuse. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  15. Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses with Brain Abnormalities.

    PubMed

    Im, K; Guimaraes, A; Kim, Y; Cottrill, E; Gagoski, B; Rollins, C; Ortinau, C; Yang, E; Grant, P E

    2017-07-01

    Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P < .001; right: 0.810, 0.753; P < .01). Altered location and depth patterns of sulcal basins were the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns. © 2017 by American Journal of Neuroradiology.

  16. Brain Entropy Mapping Using fMRI

    PubMed Central

    Wang, Ze; Li, Yin; Childress, Anna Rose; Detre, John A.

    2014-01-01

    Entropy is an important trait for life as well as the human brain. Characterizing brain entropy (BEN) may provide an informative tool to assess brain states and brain functions. Yet little is known about the distribution and regional organization of BEN in normal brain. The purpose of this study was to examine the whole brain entropy patterns using a large cohort of normal subjects. A series of experiments were first performed to validate an approximate entropy measure regarding its sensitivity, specificity, and reliability using synthetic data and fMRI data. Resting state fMRI data from a large cohort of normal subjects (n = 1049) from multi-sites were then used to derive a 3-dimensional BEN map, showing a sharp low-high entropy contrast between the neocortex and the rest of brain. The spatial heterogeneity of resting BEN was further studied using a data-driven clustering method, and the entire brain was found to be organized into 7 hierarchical regional BEN networks that are consistent with known structural and functional brain parcellations. These findings suggest BEN mapping as a physiologically and functionally meaningful measure for studying brain functions. PMID:24657999

  17. The impact of stress on the structure of the adolescent brain: Implications for adolescent mental health.

    PubMed

    Romeo, Russell D

    2017-01-01

    Adolescent development is associated with major changes in emotional and cognitive functions, as well as a rise in stress-related psychological disorders such as anxiety and depression. It is also a time of significant maturation of the brain, marked by structural alterations in many limbic and cortical regions. Though many elegant human neuroimaging studies have described the adolescent-related changes in these regions, relatively little is known about these changes in non-human animals. Moreover, both human and non-human data are lacking on how exposure to chronic stress may disrupt this structural maturation. Given the fundamental structure-function relationship in the nervous system, it will be important to understand how these normative and stress-induced structural alterations during adolescence influence psychological function, which in turn can modify future neural development. The purpose of this brief review is to describe the impact of stress on the structure of brain regions that continue to show structural maturation during adolescence and are highly sensitive to the effects of chronic stress exposure. Specifically, this review will focus on the amygdala, hippocampal formation, and prefrontal cortex, particularly from a morphological perspective. As many unanswered questions remain in this area of investigation, potential future lines of research are also discussed. A deeper appreciation of how stress affects adolescent brain development will be needed if we are to gain a better understanding of the mechanisms that mediate the increase in stress-related psychological dysfunctions often observed during this stage of development. This article is part of a Special Issue entitled SI: Adolescent plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Adolescent Maturational Transitions in the Prefrontal Cortex and Dopamine Signaling as a Risk Factor for the Development of Obesity and High Fat/High Sugar Diet Induced Cognitive Deficits

    PubMed Central

    Reichelt, Amy C.

    2016-01-01

    Adolescence poses as both a transitional period in neurodevelopment and lifestyle practices. In particular, the developmental trajectory of the prefrontal cortex (PFC), a critical region for behavioral control and self-regulation, is enduring, not reaching functional maturity until the early 20 s in humans. Furthermore, the neurotransmitter dopamine is particularly abundant during adolescence, tuning the brain to rapidly learn about rewards and regulating aspects of neuroplasticity. Thus, adolescence is proposed to represent a period of vulnerability towards reward-driven behaviors such as the consumption of palatable high fat and high sugar diets. This is reflected in the increasing prevalence of obesity in children and adolescents as they are the greatest consumers of “junk foods”. Excessive consumption of diets laden in saturated fat and refined sugars not only leads to weight gain and the development of obesity, but experimental studies with rodents indicate they evoke cognitive deficits in learning and memory process by disrupting neuroplasticity and altering reward processing neurocircuitry. Consumption of these high fat and high sugar diets have been reported to have a particularly pronounced impact on cognition when consumed during adolescence, demonstrating a susceptibility of the adolescent brain to enduring cognitive deficits. The adolescent brain, with heightened reward sensitivity and diminished behavioral control compared to the mature adult brain, appears to be a risk for aberrant eating behaviors that may underpin the development of obesity. This review explores the neurodevelopmental changes in the PFC and mesocortical dopamine signaling that occur during adolescence, and how these potentially underpin the overconsumption of palatable food and development of obesogenic diet-induced cognitive deficits. PMID:27790098

  19. Sex-dependent age modulation of frontostriatal and temporo-parietal activation during cognitive control.

    PubMed

    Christakou, Anastasia; Halari, Rozmin; Smith, Anna B; Ifkovits, Eve; Brammer, Mick; Rubia, Katya

    2009-10-15

    Developmental functional imaging studies of cognitive control show progressive age-related increase in task-relevant fronto-striatal activation in male development from childhood to adulthood. Little is known, however, about how gender affects this functional development. In this study, we used event related functional magnetic resonance imaging to examine effects of sex, age, and their interaction on brain activation during attentional switching and interference inhibition, in 63 male and female adolescents and adults, aged 13 to 38. Linear age correlations were observed across all subjects in task-specific frontal, striatal and temporo-parietal activation. Gender analysis revealed increased activation in females relative to males in fronto-striatal areas during the Switch task, and laterality effects in the Simon task, with females showing increased left inferior prefrontal and temporal activation, and males showing increased right inferior prefrontal and parietal activation. Increased prefrontal activation clusters in females and increased parietal activation clusters in males furthermore overlapped with clusters that were age-correlated across the whole group, potentially reflecting more mature prefrontal brain activation patterns for females, and more mature parietal activation patterns for males. Gender by age interactions further supported this dissociation, revealing exclusive female-specific age correlations in inferior and medial prefrontal brain regions during both tasks, and exclusive male-specific age correlations in superior parietal (Switch task) and temporal regions (Simon task). These findings show increased recruitment of age-correlated prefrontal activation in females, and of age-correlated parietal activation in males, during tasks of cognitive control. Gender differences in frontal and parietal recruitment may thus be related to gender differences in the neurofunctional maturation of these brain regions.

  20. Drugs, Biogenic Amine Targets and the Developing Brain

    PubMed Central

    Frederick, Aliya L.; Stanwood, Gregg D.

    2009-01-01

    Defects in the development of the brain have profound impacts on mature brain functions and underlie psychopathology. Classical neurotransmitters and neuromodulators, such as dopamine, serotonin, norepinephrine, acetycholine, glutamate and GABA, have pleiotropic effects during brain development. In other words, these molecules produce multiple, diverse effects to serve as regulators of distinct cellular functions at different times in neurodevelopment. These systems are impacted upon by a variety of illicit drugs of abuse, neurotherapeutics, and environmental contaminants. In this review, we describe the impact of drugs and chemicals on brain formation and function in animal models and in human populations, highlighting sensitive periods and effects that may not emerge until later in life. PMID:19372683

  1. Glycolysis-mediated control of blood-brain barrier development and function.

    PubMed

    Salmina, Alla B; Kuvacheva, Natalia V; Morgun, Andrey V; Komleva, Yulia K; Pozhilenkova, Elena A; Lopatina, Olga L; Gorina, Yana V; Taranushenko, Tatyana E; Petrova, Lyudmila L

    2015-07-01

    The blood-brain barrier (BBB) consists of differentiated cells integrating in one ensemble to control transport processes between the central nervous system (CNS) and peripheral blood. Molecular organization of BBB affects the extracellular content and cell metabolism in the CNS. Developmental aspects of BBB attract much attention in recent years, and barriergenesis is currently recognized as a very important and complex mechanism of CNS development and maturation. Metabolic control of angiogenesis/barriergenesis may be provided by glucose utilization within the neurovascular unit (NVU). The role of glycolysis in the brain has been reconsidered recently, and it is recognized now not only as a process active in hypoxic conditions, but also as a mechanism affecting signal transduction, synaptic activity, and brain development. There is growing evidence that glycolysis-derived metabolites, particularly, lactate, affect barriergenesis and functioning of BBB. In the brain, lactate produced in astrocytes or endothelial cells can be transported to the extracellular space via monocarboxylate transporters (MCTs), and may act on the adjoining cells via specific lactate receptors. Astrocytes are one of the major sources of lactate production in the brain and significantly contribute to the regulation of BBB development and functioning. Active glycolysis in astrocytes is required for effective support of neuronal activity and angiogenesis, while endothelial cells regulate bioavailability of lactate for brain cells adjusting its bidirectional transport through the BBB. In this article, we review the current knowledge with regard to energy production in endothelial and astroglial cells within the NVU. In addition, we describe lactate-driven mechanisms and action of alternative products of glucose metabolism affecting BBB structural and functional integrity in developing and mature brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Mapping the Regional Influence of Genetics on Brain Structure Variability - A Tensor-Based Morphometry Study

    PubMed Central

    Brun, Caroline; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D.; Barysheva, Marina; Madsen, Sarah K.; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I.; McMahon, Katie; Wright, Margaret; Toga, Arthur W.; Thompson, Paul M.

    2010-01-01

    Genetic and environmental factors influence brain structure and function profoundly The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins’ 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject’s anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions which have a more protracted maturational time-course. PMID:19446645

  3. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, P; Park, P; Li, H

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated withmore » PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.« less

  4. Evaluation and diagnosis of brain death by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Pan, Boan; Zhong, Fulin; Huang, Xiaobo; Pan, Lingai; Lu, Sen; Li, Ting

    2017-02-01

    Brain death, the irreversible and permanent loss of the brain and brainstem functions, is hard to be judged precisely for some clinical reasons. The traditional diagnostic methods are time consuming, expensive and some are even dangerous. Functional near infrared spectroscopy (FNIRS), using the good scattering properties of major component of blood to NIR, is capable of noninvasive monitoring cerebral hemodynamic responses. Here, we attempt to use portable FNIRS under patients' natural state for brain death diagnosis. Ten brain death patients and seven normal subjects participated in FNIRS measurements. All of them were provided different fractional concentration of inspired oxygen (FIO2) in different time periods. We found that the concentration variation of deoxyhemoglobin concentration (Δ[Hb]) presents the trend of decrease in the both brain death patients and normal subjects with the raise of the FIO2, however, the data in the normal subjects is more significant. And the concentration variation of oxyhemoglobins concentration (Δ[HbO2]) emerges the opposite trends. Thus Δ[HbO2]/Δ[Hb] in brain death patients is significantly higher than normal subjects, and emerges the rising trend as time went on. The findings indicated the potential of FNIRS-measured hemodynamic index in diagnosing brain death.

  5. Identification of the boundary between normal brain tissue and ischemia region using two-photon excitation fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Du, Huiping; Wang, Shu; Wang, Xingfu; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2016-10-01

    Ischemic stroke is one of the common neurological diseases, and it is becoming the leading causes of death and permanent disability around the world. Early and accurate identification of the potentially salvageable boundary region of ischemia brain tissues may enable selection of the most appropriate candidates for early stroke therapies. In this work, TPEF microscopy was used to image the microstructures of normal brain tissues, ischemia regions and the boundary region between normal and ischemia brain tissues. The ischemia brain tissues from Sprague-Dawley (SD) rats were subjected to 6 hours of middle cerebral artery occlusion (MCAO). Our study demonstrates that TPEF microscopy has the ability to not only reveal the morphological changes of the neurons but also identify the boundary between normal brain tissue and ischemia region, which correspond well to the hematoxylin and eosin (H and E) stained images. With the development of miniaturized TPEF microscope imaging devices, TPEF microscopy can be developed into an effectively diagnostic and monitoring tool for cerebral ischemia.

  6. Brain cancer probed by native fluorescence and stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; He, Yong; Pu, Yang; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2012-12-01

    Optical biopsy spectroscopy was applied to diagnosis human brain cancer in vitro. The spectra of native fluorescence, Stokes shift and excitation spectra were obtained from malignant meningioma, benign, normal meningeal tissues and acoustic neuroma benign tissues. The wide excitation wavelength ranges were used to establish the criterion for distinguishing brain diseases. The alteration of fluorescence spectra between normal and abnormal brain tissues were identified by the characteristic fluorophores under the excitation with UV to visible wavelength range. It was found that the ratios of the peak intensities and peak position in both spectra of fluorescence and Stokes shift may be used to diagnose human brain meninges diseases. The preliminary analysis of fluorescence spectral data from cancer and normal meningeal tissues by basic biochemical component analysis model (BBCA) and Bayes classification model based on statistical methods revealed the changes of components, and classified the difference between cancer and normal human brain meningeal tissues in a predictions accuracy rate is 0.93 in comparison with histopathology and immunohistochemistry reports (gold standard).

  7. Glycolysis and the pentose phosphate pathway after human traumatic brain injury: microdialysis studies using 1,2-13C2 glucose

    PubMed Central

    Jalloh, Ibrahim; Carpenter, Keri L H; Grice, Peter; Howe, Duncan J; Mason, Andrew; Gallagher, Clare N; Helmy, Adel; Murphy, Michael P; Menon, David K; Carpenter, T Adrian; Pickard, John D; Hutchinson, Peter J

    2015-01-01

    Increased ‘anaerobic' glucose metabolism is observed after traumatic brain injury (TBI) attributed to increased glycolysis. An alternative route is the pentose phosphate pathway (PPP), which generates putatively protective and reparative molecules. To compare pathways we employed microdialysis to perfuse 1,2-13C2 glucose into the brains of 15 TBI patients and macroscopically normal brain in six patients undergoing surgery for benign tumors, and to simultaneously collect products for nuclear magnetic resonance (NMR) analysis. 13C enrichment for glycolytic 2,3-13C2 lactate was the median 5.4% (interquartile range (IQR) 4.6–7.5%) in TBI brain and 4.2% (2.4–4.4%) in ‘normal' brain (P<0.01). The ratio of PPP-derived 3-13C lactate to glycolytic 2,3-13C2 lactate was median 4.9% (3.6–8.2%) in TBI brain and 6.7% (6.3–8.9%) in ‘normal' brain. An inverse relationship was seen for PPP-glycolytic lactate ratio versus PbtO2 (r=−0.5, P=0.04) in TBI brain. Thus, glycolytic lactate production was significantly greater in TBI than ‘normal' brain. Several TBI patients exhibited PPP–lactate elevation above the ‘normal' range. There was proportionally greater PPP-derived lactate production with decreasing PbtO2. The study raises questions about the roles of the PPP and glycolysis after TBI, and whether they can be manipulated to achieve a better outcome. This study is the first direct comparison of glycolysis and PPP in human brain. PMID:25335801

  8. Do acute phase markers explain body temperature and brain temperature after ischemic stroke?

    PubMed Central

    Whiteley, William N.; Thomas, Ralph; Lowe, Gordon; Rumley, Ann; Karaszewski, Bartosz; Armitage, Paul; Marshall, Ian; Lymer, Katherine; Dennis, Martin

    2012-01-01

    Objective: Both brain and body temperature rise after stroke but the cause of each is uncertain. We investigated the relationship between circulating markers of inflammation with brain and body temperature after stroke. Methods: We recruited patients with acute ischemic stroke and measured brain temperature at hospital admission and 5 days after stroke with multivoxel magnetic resonance spectroscopic imaging in normal brain and the acute ischemic lesion (defined by diffusion-weighted imaging [DWI]). We measured body temperature with digital aural thermometers 4-hourly and drew blood daily to measure interleukin-6, C-reactive protein, and fibrinogen, for 5 days after stroke. Results: In 44 stroke patients, the mean temperature in DWI-ischemic brain soon after admission was 38.4°C (95% confidence interval [CI] 38.2–38.6), in DWI-normal brain was 37.7°C (95% CI 37.6–37.7), and mean body temperature was 36.6°C (95% CI 36.3–37.0). Higher mean levels of interleukin-6, C-reactive protein, and fibrinogen were associated with higher temperature in DWI-normal brain at admission and 5 days, and higher overall mean body temperature, but only with higher temperature in DWI-ischemic brain on admission. Conclusions: Systemic inflammation after stroke is associated with elevated temperature in normal brain and the body but not with later ischemic brain temperature. Elevated brain temperature is a potential mechanism for the poorer outcome observed in stroke patients with higher levels of circulating inflammatory markers. PMID:22744672

  9. CXCL12 Gene Therapy Ameliorates Ischemia-Induced White Matter Injury in Mouse Brain.

    PubMed

    Li, Yaning; Tang, Guanghui; Liu, Yanqun; He, Xiaosong; Huang, Jun; Lin, Xiaojie; Zhang, Zhijun; Yang, Guo-Yuan; Wang, Yongting

    2015-10-01

    Remyelination is an important repair process after ischemic stroke-induced white matter injury. It often fails because of the insufficient recruitment of oligodendrocyte progenitor cells (OPCs) to the demyelinated site or the inefficient differentiation of OPCs to oligodendrocytes. We investigated whether CXCL12 gene therapy promoted remyelination after middle cerebral artery occlusion in adult mice. The results showed that CXCL12 gene therapy at 1 week after ischemia could protect myelin sheath integrity in the perifocal region, increase the number of platelet-derived growth factor receptor-α (PDGFRα)-positive and PDGFRα/bromodeoxyuridine-double positive OPCs in the subventricular zone, and further enhance their migration to the ischemic lesion area. Coadministration of AMD3100, the antagonist for CXCL12 receptor CXCR4, eliminated the beneficial effect of CXCL12 on myelin sheath integrity and negatively influenced OPC proliferation and migration. At 5 weeks after ischemia, CXCR4 was found on the PDGFRα- and/or neuron/glia type 2 (NG2)-positive OPCs but not on the myelin basic protein-positive mature myelin sheaths, and CXCR7 was only expressed on the mature myelin sheath in the ischemic mouse brain. Our data indicated that CXCL12 gene therapy effectively protected white matter and promoted its repair after ischemic injury. The treatment at 1 week after ischemia is effective, suggesting that this strategy has a longer therapeutic time window than the treatments currently available. This study has demonstrated for the first time that CXCL12 gene therapy significantly ameliorates brain ischemia-induced white matter injury and promotes oligodendrocyte progenitor cell proliferation in the subventricular zone and migration to the perifocal area in the ischemic mouse brain. Additional data showed that CXCR4 receptor plays an important role during the proliferation and migration of oligodendrocyte progenitor cells, and CXCR7 might play a role during maturation. In contrast to many experimental studies that provide treatment before ischemic insult, CXCL12 gene therapy was performed 1 week after brain ischemia, which significantly prolonged the therapeutic time window of brain ischemia. ©AlphaMed Press.

  10. Imaging brain development: the adolescent brain.

    PubMed

    Blakemore, Sarah-Jayne

    2012-06-01

    The past 15 years have seen a rapid expansion in the number of studies using neuroimaging techniques to investigate maturational changes in the human brain. In this paper, I review MRI studies on structural changes in the developing brain, and fMRI studies on functional changes in the social brain during adolescence. Both MRI and fMRI studies point to adolescence as a period of continued neural development. In the final section, I discuss a number of areas of research that are just beginning and may be the subject of developmental neuroimaging in the next twenty years. Future studies might focus on complex questions including the development of functional connectivity; how gender and puberty influence adolescent brain development; the effects of genes, environment and culture on the adolescent brain; development of the atypical adolescent brain; and implications for policy of the study of the adolescent brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Maintenance of Mouse Gustatory Terminal Field Organization Is Disrupted following Selective Removal of Peripheral Sodium Salt Taste Activity at Adulthood.

    PubMed

    Skyberg, Rolf; Sun, Chengsan; Hill, David L

    2017-08-09

    Neural activity plays a critical role in the development of central circuits in sensory systems. However, the maintenance of these circuits at adulthood is usually not dependent on sensory-elicited neural activity. Recent work in the mouse gustatory system showed that selectively deleting the primary transduction channel for sodium taste, the epithelial sodium channel (ENaC), throughout development dramatically impacted the organization of the central terminal fields of three nerves that carry taste information to the nucleus of the solitary tract. More specifically, deleting ENaCs during development prevented the normal maturation of the fields. The present study was designed to extend these findings by testing the hypothesis that the loss of sodium taste activity impacts the maintenance of the normal adult terminal field organization in male and female mice. To do this, we used an inducible Cre-dependent genetic recombination strategy to delete ENaC function after terminal field maturation occurred. We found that removal of sodium taste neural activity at adulthood resulted in significant reorganization of mature gustatory afferent terminal fields in the nucleus of the solitary tract. Specifically, the chorda tympani and greater superficial petrosal nerve terminal fields were 1.4× and 1.6× larger than age-matched controls, respectively. By contrast, the glossopharyngeal nerve, which is not highly sensitive to sodium taste stimulation, did not undergo terminal field reorganization. These surprising results suggest that gustatory nerve terminal fields remain plastic well into adulthood, which likely impacts central coding of taste information and taste-related behaviors with altered taste experience. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. However, the importance of sensory-driven activity in maintaining these circuits at adulthood, especially in subcortical structures, appears to be much less. Here, we tested whether the loss of sodium taste activity in adult mice impacts the maintenance of how taste nerves project to the first central relay. We found that specific loss of sodium-elicited taste activity at adulthood produced dramatic and selective reorganization of terminal fields in the brainstem. This demonstrates, for the first time, that taste-elicited activity is necessary for the normal maintenance of central gustatory circuits at adulthood and highlights a level of plasticity not seen in other sensory system subcortical circuits. Copyright © 2017 the authors 0270-6474/17/377619-12$15.00/0.

  12. Ciona intestinalis as an emerging model organism: its regeneration under controlled conditions and methodology for egg dechorionation.

    PubMed

    Liu, Li-ping; Xiang, Jian-hai; Dong, Bo; Natarajan, Pavanasam; Yu, Kui-jie; Cai, Nan-er

    2006-06-01

    The ascidian Ciona intestinalis is a model organism of developmental and evolutionary biology and may provide crucial clues concerning two fundamental matters, namely, how chordates originated from the putative deuterostome ancestor and how advanced chordates originated from the simplest chordates. In this paper, a whole-life-span culture of C. intestinalis was conducted. Fed with the diet combination of dry Spirulina, egg yolk, Dicrateria sp., edible yeast and weaning diet for shrimp, C. intestinalis grew up to average 59 mm and matured after 60 d cultivation. This culture process could be repeated using the artificially cultured mature ascidians as material. When the fertilized eggs were maintained under 10, 15, 20, 25 degrees C, they hatched within 30 h, 22 h, 16 h and 12 h 50 min respectively experiencing cleavage, blastulation, gastrulation, neurulation, tailbud stage and tadpole stage. The tadpole larvae were characterized as typical but simplified chordates because of their dorsal nerve cord, notochord and primordial brain. After 8 - 24 h freely swimming, the tadpole larvae settled on the substrates and metamorphosized within 1- 2 d into filter feeding sessile juvenile ascidians. In addition, unfertilized eggs were successfully dechorionated in filtered seawater containing 1% Tripsin, 0.25% EDTA at pH of 10.5 within 40 min. After fertilization, the dechorionated eggs developed well and hatched at normal hatching rate. In conclusion, this paper presented feasible methodology for rearing the tadpole larvae of C. intestinalis into sexual maturity under controlled conditions and detailed observations on the embryogenesis of the laboratory cultured ascidians, which will facilitate developmental and genetic research using this model system.

  13. Mechanisms affecting neuroendocrine and epigenetic regulation of body weight and onset of puberty: potential implications in the child born small for gestational age (SGA).

    PubMed

    Roth, Christian L; Sathyanarayana, Sheela

    2012-06-01

    Signaling peptides produced in peripheral tissues such as gut, adipose tissue, and pancreas communicate with brain centers, such as hypothalamus and hindbrain to manage energy homeostasis. These regulatory mechanisms of energy intake and storage have evolved during long periods of hunger in the evolution of man to protect the species from extinction. It is now clear that these circuitries are influenced by prenatal and postnatal environmental factors including endocrine disruptive chemicals. Hypothalamic appetite regulatory systems develop and mature in utero and early infancy, and involve signaling pathways that are important also for the regulation of puberty onset. Recent studies in humans and animals have shown that metabolic pathways involved in regulation of growth, body weight gain and sexual maturation are largely affected by epigenetic programming that can impact both current and future generations. In particular, intrauterine and early infantile developmental phases of high plasticity are susceptible to factors that affect metabolic programming that therefore, affect metabolic function throughout life. In children born small for gestational age, poor nutritional conditions during gestation can modify metabolic systems to adapt to expectations of chronic undernutrition. These children are potentially poorly equipped to cope with energy-dense diets and are possibly programmed to store as much energy as possible, leading to later obesity, metabolic syndrome, disturbed regulation of normal puberty and early onset of cardiovascular disease. Most cases of disturbed energy balance are likely a result of a combination of genetics, epigenetics and environment. This review will discuss potential mechanisms linking intrauterine growth retardation with changes in growth, energy homeostasis and sexual maturation.

  14. The autistic brain in the context of normal neurodevelopment.

    PubMed

    Ziats, Mark N; Edmonson, Catherine; Rennert, Owen M

    2015-01-01

    The etiology of autism spectrum disorders (ASDs) is complex and largely unclear. Among various lines of inquiry, many have suggested convergence onto disruptions in both neural circuitry and immune regulation/glial cell function pathways. However, the interpretation of the relationship between these two putative mechanisms has largely focused on the role of exogenous factors and insults, such as maternal infection, in activating immune pathways that in turn result in neural network abnormalities. Yet, given recent insights into our understanding of human neurodevelopment, and in particular the critical role of glia and the immune system in normal brain development, it is important to consider these putative pathological processes in their appropriate normal neurodevelopmental context. In this review, we explore the hypothesis that the autistic brain cellular phenotype likely represents intrinsic abnormalities of glial/immune processes constitutively operant in normal brain development that result in the observed neural network dysfunction. We review recent studies demonstrating the intercalated role of neural circuit development, the immune system, and glial cells in the normal developing brain, and integrate them with studies demonstrating pathological alterations in these processes in autism. By discussing known abnormalities in the autistic brain in the context of normal brain development, we explore the hypothesis that the glial/immune component of ASD may instead be related to intrinsic exaggerated/abnormal constitutive neurodevelopmental processes such as network pruning. Moreover, this hypothesis may be relevant to other neurodevelopmental disorders that share genetic, pathologic, and clinical features with autism.

  15. [Alpha competitive structure in children with attention deficit hyperactivity disorder with/without learning disabilities].

    PubMed

    Sun, Li; Wang, Yu-feng; He, Hua; Chen, Jin

    2007-10-18

    To explore the alpha competitive structure in children with attention deficit hyperactivity disorder (ADHD) with/without learning disabilities (LD). According to DSM-IV diagnostic criteria, the study involved ADHD children with LD, pure ADHD children and normal controls. Each group consisted of 68 subjects. All subjects were between the ages of 7 and 14 years, and the groups were matched by sex, age and ADHD subtypes. EEG data were recorded during an eye-closed resting period and then were analyzed with EEG-encephaloflutuographic technology (EEG-ET). (1) The pure ADHD children showed significantly more 8 Hz activity (25.84%+/-14.81%) than that of the normal control group (16.50%+/-11.42%, P=0.000); The main frequency of alpha band was 10 Hz in the pure ADHD children, while the energy distribution among alpha components was diffuse. (2) ADHD children with LD showed significantly more 8 Hz and 13 Hz activity (25.11%+/-11.88%, 1.14%+/-1.14%, separately) than that of the normal control (16.50%+/-11.42%, 0.74%+/-0.97%, P=0.000, P=0.009, separately); The dominant probability of 10 Hz (27.80%+/-13.28%) in this group was significantly lower than that of the control group (36.06%+/-17.21%, P=0.011); The energy distribution among alpha components was diffuse in ADHD children with LD, whose main frequency of alpha band was 9 Hz; The entropy value of the ADHD children with LD was significantly higher than that of the control group in the right brain and the left parietal region, temporal region, occipital region (P<0.01). In the right temporal region and right occipital region, the entropy value of the ADHD children with LD was significantly higher than that of the pure ADHD children (P<0.05). The pathogenic mechanisms are different between ADHD children with or without LD. The pure ADHD children show more maturational lag pattern in the central nervous system, while ADHD children with LD have a developmental deviation from normal children, whose brain function is in a lower efficient state.

  16. Erythropoietin Ameliorates Neonatal Hypoxia-Ischemia-Induced Neurobehavioral Deficits, Neuroinflammation, and Hippocampal Injury in the Juvenile Rat

    PubMed Central

    Lan, Kuo-Mao; Tien, Lu-Tai; Cai, Zhengwei; Lin, Shuying; Pang, Yi; Tanaka, Sachiko; Rhodes, Philip G.; Bhatt, Abhay J.; Savich, Renate D.; Fan, Lir-Wan

    2016-01-01

    The hematopoietic growth factor erythropoietin (EPO) has been shown to be neuroprotective against hypoxia-ischemia (HI) in Postnatal Day 7 (P7)–P10 or adult animal models. The current study was aimed to determine whether EPO also provides long-lasting neuroprotection against HI in P5 rats, which is relevant to immature human infants. Sprague-Dawley rats at P5 were subjected to right common carotid artery ligation followed by an exposure to 6% oxygen with balanced nitrogen for 1.5 h. Human recombinant EPO (rEPO, at a dose of 5 units/g) was administered intraperitoneally one hour before or immediately after insult, followed by additional injections at 24 and 48 h post-insult. The control rats were injected with normal saline following HI. Neurobehavioral tests were performed on P8 and P20, and brain injury was examined on P21. HI insult significantly impaired neurobehavioral performance including sensorimotor, locomotor activity and cognitive ability on the P8 and P20 rats. HI insult also resulted in brain inflammation (as indicated by microglia activation) and neuronal death (as indicated by Jade B positive staining) in the white matter, striatum, cortex, and hippocampal areas of the P21 rat. Both pre- and post-treatment with rEPO significantly improved neurobehavioral performance and protected against the HI-induced neuronal death, microglia activation (OX42+) as well as loss of mature oligodendrocytes (APC-CC1+) and hippocampal neurons (Nissl+). The long-lasting protective effects of rEPO in the neonatal rat HI model suggest that to exert neurotrophic activity in the brain might be an effective approach for therapeutic treatment of neonatal brain injury induced by hypoxia-ischemia. PMID:26927081

  17. Pronounced Structural and Functional Damage in Early Adult Pediatric-Onset Multiple Sclerosis with No or Minimal Clinical Disability.

    PubMed

    Giorgio, Antonio; Zhang, Jian; Stromillo, Maria Laura; Rossi, Francesca; Battaglini, Marco; Nichelli, Lucia; Mortilla, Marzia; Portaccio, Emilio; Hakiki, Bahia; Amato, Maria Pia; De Stefano, Nicola

    2017-01-01

    Pediatric-onset multiple sclerosis (POMS) may represent a model of vulnerability to damage occurring during a period of active maturation of the human brain. Whereas adaptive mechanisms seem to take place in the POMS brain in the short-medium term, natural history studies have shown that these patients reach irreversible disability, despite slower progression, at a significantly younger age than adult-onset MS (AOMS) patients. We tested for the first time whether significant brain alterations already occurred in POMS patients in their early adulthood and with no or minimal disability ( n  = 15) in comparison with age- and disability-matched AOMS patients ( n  = 14) and to normal controls (NC, n  = 20). We used a multimodal MRI approach by modeling, using FSL, voxelwise measures of microstructural integrity of white matter tracts and gray matter volumes with those of intra- and internetwork functional connectivity (FC) (analysis of variance, p  ≤ 0.01, corrected for multiple comparisons across space). POMS patients showed, when compared with both NC and AOMS patients, altered measures of diffusion tensor imaging (reduced fractional anisotropy and/or increased diffusivities) and higher probability of lesion occurrence in a clinically eloquent region for physical disability such as the posterior corona radiata. In addition, POMS patients showed, compared with the other two groups, reduced long-range FC, assessed from resting functional MRI, between default mode network and secondary visual network, whose interaction subserves important cognitive functions such as spatial attention and visual learning. Overall, this pattern of structural damage and brain connectivity disruption in early adult POMS patients with no or minimal clinical disability might explain their unfavorable clinical outcome in the long term.

  18. Mosaic analysis of gene function in postnatal mouse brain development by using virus-based Cre recombination.

    PubMed

    Gibson, Daniel A; Ma, Le

    2011-08-01

    Normal brain function relies not only on embryonic development when major neuronal pathways are established, but also on postnatal development when neural circuits are matured and refined. Misregulation at this stage may lead to neurological and psychiatric disorders such as autism and schizophrenia. Many genes have been studied in the prenatal brain and found crucial to many developmental processes. However, their function in the postnatal brain is largely unknown, partly because their deletion in mice often leads to lethality during neonatal development, and partly because their requirement in early development hampers the postnatal analysis. To overcome these obstacles, floxed alleles of these genes are currently being generated in mice. When combined with transgenic alleles that express Cre recombinase in specific cell types, conditional deletion can be achieved to study gene function in the postnatal brain. However, this method requires additional alleles and extra time (3-6 months) to generate the mice with appropriate genotypes, thereby limiting the expansion of the genetic analysis to a large scale in the mouse brain. Here we demonstrate a complementary approach that uses virally-expressed Cre to study these floxed alleles rapidly and systematically in postnatal brain development. By injecting recombinant adeno-associated viruses (rAAVs) encoding Cre into the neonatal brain, we are able to delete the gene of interest in different regions of the brain. By controlling the viral titer and coexpressing a fluorescent protein marker, we can simultaneously achieve mosaic gene inactivation and sparse neuronal labeling. This method bypasses the requirement of many genes in early development, and allows us to study their cell autonomous function in many critical processes in postnatal brain development, including axonal and dendritic growth, branching, and tiling, as well as synapse formation and refinement. This method has been used successfully in our own lab (unpublished results) and others, and can be extended to other viruses, such as lentivirus, as well as to the expression of shRNA or dominant active proteins. Furthermore, by combining this technique with electrophysiology as well as recently-developed optical imaging tools, this method provides a new strategy to study how genetic pathways influence neural circuit development and function in mice and rats.

  19. Effect of Kallikrein 4 Loss on Enamel Mineralization

    PubMed Central

    Smith, Charles E.; Richardson, Amelia S.; Hu, Yuanyuan; Bartlett, John D.; Hu, Jan C-C.; Simmer, James P.

    2011-01-01

    Enamel formation depends on a triad of tissue-specific matrix proteins (amelogenin, ameloblastin, and enamelin) to help initiate and stabilize progressively elongating, thin mineral ribbons of hydroxyapatite formed during an appositional growth phase. Subsequently, these proteins are eradicated to facilitate lateral expansion of the hydroxyapatite crystallites. The purpose of this study was to investigate changes in enamel mineralization occurring in mice unable to produce kallikrein 4 (Klk4), a proteinase associated with terminal extracellular degradation of matrix proteins during the maturation stage. Mice lacking functional matrix metalloproteinase 20 (Mmp20), a proteinase associated with early cleavage of matrix proteins during the secretory stage, were also analyzed as a frame of reference. The results indicated that mice lacking Klk4 produce enamel that is normal in thickness and overall organization in terms of layers and rod/inter-rod structure, but there is a developmental defect in enamel rods where they first form near the dentinoenamel junction. Mineralization is normal up to early maturation after which the enamel both retains and gains additional proteins and is unable to mature beyond 85% mineral by weight. The outmost enamel is hard, but inner regions are soft and contain much more protein than normal. The rate of mineral acquisition overall is lower by 25%. Mice lacking functional Mmp20 produce enamel that is thin and structurally abnormal. Relatively high amounts of protein remain throughout maturation, but the enamel is able to change from 67 to 75% mineral by weight during maturation. These findings reaffirm the importance of secreted proteinases to enamel mineral acquisition. PMID:21454549

  20. Development of Structural Covariance From Childhood to Adolescence: A Longitudinal Study in 22q11.2DS.

    PubMed

    Sandini, Corrado; Zöller, Daniela; Scariati, Elisa; Padula, Maria C; Schneider, Maude; Schaer, Marie; Van De Ville, Dimitri; Eliez, Stephan

    2018-01-01

    Background: Schizophrenia is currently considered a neurodevelopmental disorder of connectivity. Still few studies have investigated how brain networks develop in children and adolescents who are at risk for developing psychosis. 22q11.2 Deletion Syndrome (22q11DS) offers a unique opportunity to investigate the pathogenesis of schizophrenia from a neurodevelopmental perspective. Structural covariance (SC) is a powerful approach to explore morphometric relations between brain regions that can furthermore detect biomarkers of psychosis, both in 22q11DS and in the general population. Methods: Here we implement a state-of-the-art sliding-window approach to characterize maturation of SC network architecture in a large longitudinal cohort of patients with 22q11DS (110 with 221 visits) and healthy controls (117 with 211 visits). We furthermore propose a new clustering-based approach to group regions according to trajectories of structural connectivity maturation. We correlate measures of SC with development of working memory, a core executive function that is highly affected in both idiopathic psychosis and 22q11DS. Finally, in 22q11DS we explore correlations between SC dysconnectivity and severity of internalizing psychopathology. Results: In HCs network architecture underwent a quadratic developmental trajectory maturing up to mid-adolescence. Late-childhood maturation was particularly evident for fronto-parietal cortices, while Default-Mode-Network-related regions showed a more protracted linear development. Working memory performance was positively correlated with network segregation and fronto-parietal connectivity. In 22q11DS, we demonstrate aberrant maturation of SC with disturbed architecture selectively emerging during adolescence and correlating more severe internalizing psychopathology. Patients also presented a lack of typical network development during late-childhood, that was particularly prominent for frontal connectivity. Conclusions: Our results suggest that SC maturation may underlie critical cognitive development occurring during late-childhood in healthy controls. Aberrant trajectories of SC maturation may reflect core developmental features of 22q11DS, including disturbed cognitive maturation during childhood and predisposition to internalizing psychopathology and psychosis during adolescence.

  1. Comparison of dual trigger with combination GnRH agonist and hCG versus hCG alone trigger of oocyte maturation for normal ovarian responders.

    PubMed

    Zhou, Xingyu; Guo, Pingping; Chen, Xin; Ye, Desheng; Liu, Yudong; Chen, Shiling

    2018-06-01

    To investigate whether dual triggering of oocyte maturation with a gonadotropin-releasing hormone (GnRH) agonist and standard dose of human chorionic gonadotropin (hCG) can improve clinical outcomes for normal ovarian responders in GnRH antagonist cycles. The present retrospective cohort study included women aged up to 40 years with normal ovarian response who underwent in vitro fertilization and/or intracytoplasmic sperm injection under the GnRH antagonist protocol at Nanfang Hospital, China, between January 1 and December 31, 2015. Patients were grouped by whether oocyte maturation was triggered with GnRH agonist plus 5000-10 000 IU of hCG (dual trigger) or hCG alone. The primary outcome was live delivery rate. There were 325 women included; 224 in the dual trigger group and 101 in the hCG alone group. The live delivery rate did not differ significantly between the groups (P=0.083). The mean number of retrieved oocytes was similar in the two groups (P=0.719), but the mean number of two-pronuclear embryos (P=0.004), the mean number of embryos available (P=0.001), and the mean number of high-quality embryos (P=0.011) was higher in the dual trigger group. Dual trigger of oocyte maturation was not associated with any change in the live delivery rate but was associated with improvements in the quantity and quality of embryos; it could optimize pregnancy outcomes for normal ovarian responders. © 2018 International Federation of Gynecology and Obstetrics.

  2. Time-resolved fluorescence spectroscopy of human brain tumors

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.

    2002-05-01

    Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.

  3. Neural network topology in ADHD; evidence for maturational delay and default-mode network alterations.

    PubMed

    Janssen, T W P; Hillebrand, A; Gouw, A; Geladé, K; Van Mourik, R; Maras, A; Oosterlaan, J

    2017-11-01

    Attention-deficit/hyperactivity disorder (ADHD) has been associated with widespread brain abnormalities in white and grey matter, affecting not only local, but global functional networks as well. In this study, we explored these functional networks using source-reconstructed electroencephalography in ADHD and typically developing (TD) children. We expected evidence for maturational delay, with underlying abnormalities in the default mode network. Electroencephalograms were recorded in ADHD (n=42) and TD (n=43) during rest, and functional connectivity (phase lag index) and graph (minimum spanning tree) parameters were derived. Dependent variables were global and local network metrics in theta, alpha and beta bands. We found evidence for a more centralized functional network in ADHD compared to TD children, with decreased diameter in the alpha band (η p 2 =0.06) and increased leaf fraction (η p 2 =0.11 and 0.08) in the alpha and beta bands, with underlying abnormalities in hub regions of the brain, including default mode network. The finding of a more centralized network is in line with maturational delay models of ADHD and should be replicated in longitudinal designs. This study contributes to the literature by combining high temporal and spatial resolution to construct EEG network topology, and associates maturational-delay and default-mode interference hypotheses of ADHD. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  4. In situ monitoring of cytoplasmic precursor and mature microRNA using gold nanoparticle and graphene oxide composite probes.

    PubMed

    Hong, Min; Sun, Hongxiao; Xu, Lidan; Yue, Qiaoli; Shen, Guodong; Li, Meifang; Tang, Bo; Li, Chen-Zhong

    2018-08-27

    This study strategically fabricates a nucleic acid functionalized gold nanoparticle and graphene oxide composite probe (AuNP/GO probe) to achieve both the recognition and in situ monitoring of cytoplasmic target precursor microRNAs (pre-miRNAs) and mature microRNAs (miRNAs) in living cells. The pre-miRNA-21 detection with AuNP probes has a good linear range of 0-300 nM and a limit of detection (LOD) of 4.5 nM, whereas the GO probe has a linear relationship with mature miRNA-21 from 0.1 to 10 nM with a LOD of 1.74 nM. This assay was utilized to directly visualize the relative expression levels of pre- and mature forms of miRNA-21 and let-7a. The results suggested that the expression levels of precursor miRNAs remain constant in cancer cells and normal cells. However, the expression levels of mature miRNAs vary widely, demonstrating the "up-regulation" of miRNA-21 and "down-regulation" of let-7a in cancer cells in contrast to that in normal cells. The practicality of this strategy was verified by in situ monitoring changes in cytoplasmic pre-miRNA-21 and mature miRNA-21 in response to small-molecule inhibitors of miRNA-21. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Linking brain imaging and genomics in the study of Alzheimer's disease and aging.

    PubMed

    Reiman, Eric M

    2007-02-01

    My colleagues and I have been using positron emission tomography (PET) and magnetic resonance imaging (MRI) to detect and track the brain changes associated with Alzheimer's disease (AD) and normal brain aging in cognitively normal persons with two copies, one copy, and no copies of the apolipoprotein E (APOE) epsilon4 allele, a common AD susceptibility gene. In this review article, I consider how brain imaging techniques could be used to evaluate putative AD prevention therapies in cognitively normal APOE epsilon4 carriers and putative age-modifying therapies in cognitively normal APOE epsilon4 noncarriers, how they could help investigate the individual and aggregate effects of putative AD risk modifiers, and how they could help guide the investigation of a molecular mechanism associated with AD vulnerability and normal neurological aging. I suggest how high-resolution genome-wide genetic and transcriptomic studies could further help in the scientific understanding of AD, aging, and other common and genetically complex phenotypes, such as variation in normal human memory performance, and in the discovery and evaluation of promising treatments for these phenotypes. Finally, I illustrate the push-pull relationship between brain imaging, genomics research, and other neuroscientific research in the study of AD and aging.

  6. Tunicamycin-induced unfolded protein response in the developing mouse brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haiping; Wang, Xin; Ke, Zun-Ji

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident bymore » the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.« less

  7. Speech and language outcomes of very preterm infants.

    PubMed

    Vohr, Betty

    2014-04-01

    Speech and language impairments of both simple and complex language functions are common among former preterm infants. Risk factors include lower gestational age and increasing illness severity including severe brain injury. Even in the absence of brain injury, however, altered brain maturation and vulnerability imposed by premature entrance to the extrauterine environment is associated with brain structural and microstructural changes. These alterations are associated with language impairments with lasting effects in childhood and adolescence and increased needs for speech therapy and education supports. Studies are needed to investigate language interventions which begin in the neonatal intensive care unit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics.

    PubMed

    Wada, Akihiko; Yokoo, Hiroki; Yanagita, Toshihiko; Kobayashi, Hideyuki

    2005-10-01

    Long after the pioneering studies documenting the existence of insulin (year 1967) and insulin receptor (year 1978) in brain, the last decade has witnessed extraordinary progress in the understanding of brain region-specific multiple roles of insulin receptor signalings in health and disease. In the hypothalamus, insulin regulates food intake, body weight, peripheral fat deposition, hepatic gluconeogenesis, reproductive endocrine axis, and compensatory secretion of counter-regulatory hormones to hypoglycemia. In the hippocampus, insulin promotes learning and memory, independent of the glucoregulatory effect of insulin. Defective insulin receptor signalings are associated with the dementia in normal aging and patients with age-related neurodegenerative diseases (e.g., Alzheimer's disease); the cognitive impairment can be reversed with systemic administration of insulin in the euglycemic condition. Intranasal administration of insulin enhances memory and mood and decreases body weight in healthy humans, without causing hypoglycemia. In the hypothalamus, insulin-induced activation of the phosphoinositide 3-kinase pathway followed by opening of ATP-sensitive K+ channel has been shown to be related to multiple effects of insulin. However, the precise molecular mechanisms of insulin's pleiotropic effects still remain obscure. More importantly, much remains unknown about the quality control mechanisms ensuring correct conformational maturation of the insulin receptor, and the cellular mechanisms regulating density of cell surface functional insulin receptors.

  9. Ventricular Zone Disruption in Human Neonates With Intraventricular Hemorrhage.

    PubMed

    McAllister, James P; Guerra, Maria Montserrat; Ruiz, Leandro Castaneyra; Jimenez, Antonio J; Dominguez-Pinos, Dolores; Sival, Deborah; den Dunnen, Wilfred; Morales, Diego M; Schmidt, Robert E; Rodriguez, Esteban M; Limbrick, David D

    2017-05-01

    To determine if ventricular zone (VZ) and subventricular zone (SVZ) alterations are associated with intraventricular hemorrhage (IVH) and posthemorrhagic hydrocephalus, we compared postmortem frontal and subcortical brain samples from 12 infants with IVH and 3 nonneurological disease controls without hemorrhages or ventriculomegaly. Birth and expiration estimated gestational ages were 23.0-39.1 and 23.7-44.1 weeks, respectively; survival ranges were 0-42 days (median, 2.0 days). Routine histology and immunohistochemistry for neural stem cells (NSCs), neural progenitors (NPs), multiciliated ependymal cells (ECs), astrocytes (AS), and cell adhesion molecules were performed. Controls exhibited monociliated NSCs and multiciliated ECs lining the ventricles, abundant NPs in the SVZ, and medial vs. lateral wall differences with a complex mosaic organization in the latter. In IVH cases, normal VZ/SVZ areas were mixed with foci of NSC and EC loss, eruption of cells into the ventricle, cytoplasmic transposition of N-cadherin, subependymal rosettes, and periventricular heterotopia. Mature AS populated areas believed to be sites of VZ disruption. The cytopathology and extension of the VZ disruption correlated with developmental age but not with brain hemorrhage grade or location. These results corroborate similar findings in congenital hydrocephalus in animals and humans and indicate that VZ disruption occurs consistently in premature neonates with IVH. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  10. Delayed ALK5 inhibition improves functional recovery in neonatal brain injury

    PubMed Central

    Guardia Clausi, Mariano

    2016-01-01

    Neuroinflammation subsequent to developmental brain injury contributes to a wave of secondary neurodegeneration and to reactive astrogliosis that can inhibit oligodendrocyte progenitor differentiation and subsequent myelination. Here we evaluated the therapeutic efficacy of a small molecule antagonist for a TGFß receptor in a model of moderate perinatal hypoxia-ischemia (H-I). Osmotic pumps containing SB505124, an antagonist of the type 1 TGFß1 receptor ALK5, or vehicle, were implanted three days after H-I induced at postnatal day 6. Perinatal H-I induced selective neuronal death, ventriculomegaly, elevated CNS levels of IL-6 and IL-1α, astrogliosis, and fewer proliferating oligodendrocyte progenitors. Myelination was reduced by ∼50%. Anterograde tracing revealed extensive axonal loss in the corticospinal tract. These alterations correlated with functional impairments across a battery of behavioral tests. All of these parameters were brought back towards normal levels with SB505124 treatment. Notably, SB505124 preserved neurons in the hippocampus and thalamus. Our results indicate that inhibiting ALK5 signaling, even as late as three days after injury, creates an environment that is more permissive for oligodendrocyte maturation and myelination producing significant improvements in neurological outcome. This new therapeutic would be especially appropriate for moderately preterm asphyxiated infants, for whom there is presently no FDA approved neuroprotective therapeutic. PMID:26984936

  11. Attitudes, perceptions, and use of marijuana in youth with multiple sclerosis.

    PubMed

    Brenton, J Nicholas; Schreiner, Teri; Karoscik, Krystle; Richter, Meg; Ferrante, Samantha; Waldman, Amy; Banwell, Brenda

    2018-02-01

    Studies have shown a negative impact on cognition and brain volume in marijuana-using adult multiple sclerosis (MS) patients and healthy adolescents. Given that onset of MS during childhood and adolescence negatively impacts brain growth and the normal maturation of neuronal networks, the addition of marijuana exposure in these youth may be even more harmful. Determine attitudes toward and prevalence of recreational marijuana use in MS youth. We surveyed 52 consecutive pediatric-onset MS patients from three pediatric MS centers in the United States. Participants answered a structured questionnaire to capture attitudes toward marijuana and personal use habits, if present. Nearly half reported use of marijuana, with the majority beginning to use in mid-to-late adolescence. The most popular reasons for using marijuana were relaxation (72%), improvement of medical problems (64%), and stress reduction (52%). Over half (64%) of marijuana users perceived it to have negative effects on memory and focus. Cost and access were not barriers to use, despite all respondents being less than age 21. Youth with MS endorse recreational marijuana as safe, and many use marijuana frequently despite appreciating a negative impact on memory. More detailed understanding of the long-term impact of marijuana use in youth with MS is needed.

  12. Plasticity of the human visual system after retinal gene therapy in patients with Leber’s congenital amaurosis

    PubMed Central

    Ashtari, Manzar; Zhang, Hui; Cook, Philip A.; Cyckowski, Laura L.; Shindler, Kenneth S.; Marshall, Kathleen A.; Aravand, Puya; Vossough, Arastoo; Gee, James C.; Maguire, Albert M.; Baker, Chris I.; Bennett, Jean

    2015-01-01

    Much of our knowledge of the mechanisms underlying plasticity in the visual cortex in response to visual impairment, vision restoration, and environmental interactions comes from animal studies. We evaluated human brain plasticity in a group of patients with Leber’s congenital amaurosis (LCA), who regained vision through gene therapy. Using non-invasive multimodal neuroimaging methods, we demonstrated that reversing blindness with gene therapy promoted long-term structural plasticity in the visual pathways emanating from the treated retina of LCA patients. The data revealed improvements and normalization along the visual fibers corresponding to the site of retinal injection of the gene therapy vector carrying the therapeutic gene in the treated eye compared to the visual pathway for the untreated eye of LCA patients. After gene therapy, the primary visual pathways (for example, geniculostriate fibers) in the treated retina were similar to those of sighted control subjects, whereas the primary visual pathways of the untreated retina continued to deteriorate. Our results suggest that visual experience, enhanced by gene therapy, may be responsible for the reorganization and maturation of synaptic connectivity in the visual pathways of the treated eye in LCA patients. The interactions between the eye and the brain enabled improved and sustained long-term visual function in patients with LCA after gene therapy. PMID:26180100

  13. Astaxanthin Normalizes Epigenetic Modifications of Bovine Somatic Cell Cloned Embryos and Decreases the Generation of Lipid Peroxidation.

    PubMed

    Li, R; Wu, H; Zhuo, W W; Mao, Q F; Lan, H; Zhang, Y; Hua, S

    2015-10-01

    Astaxanthin is an extremely common antioxidant scavenging reactive oxygen species (ROS) and blocking lipid peroxidation. This study was conducted to investigate the effects of astaxanthin supplementation on oocyte maturation, and development of bovine somatic cell nuclear transfer (SCNT) embryos. Cumulus-oocyte complexes were cultured in maturation medium with astaxanthin (0, 0.5, 1.0, or 1.5 mg/l), respectively. We found that 0.5 mg/l astaxanthin supplementation significantly increased the proportion of oocyte maturation. Oocytes cultured in 0.5 mg/l astaxanthin supplementation were used to construct SCNT embryos and further cultured with 0, 0.5, 1.0 or 1.5 mg/l astaxanthin. The results showed that the supplementation of 0.5 mg/l astaxanthin significantly improved the proportions of cleavage and blastulation, as well as the total cell number in blastocysts compared with the control group, yet this influence was not concentration dependent. Chromosomal analyses revealed that more blastomeres showed a normal chromosomal complement in 0.5 mg/l astaxanthin treatment group, which was similar to that in IVF embryos. The methylation levels located on the exon 1 of the imprinted gene H19 and IGF2, pluripotent gene OCT4 were normalized, and global DNA methylation, H3K9 and H4K12 acetylation were also improved significantly, which was comparable to that in vitro fertilization (IVF) embryos. Moreover, we also found that astaxanthin supplementation significantly decreased the level of lipid peroxidation. Our findings showed that the supplementation of 0.5 mg/l astaxanthin to oocyte maturation medium and embryo culture medium improved oocyte maturation, SCNT embryo development, increased chromosomal stability and normalized the epigenetic modifications, as well as inhibited overproduction of lipid peroxidation. © 2015 Blackwell Verlag GmbH.

  14. Role of juvenile hormone and allatotropin on nutrient allocation, ovarian development and survivorship in mosquitoes

    PubMed Central

    Hernández-Martínez, Salvador; Mayoral, Jaime G.; Li, Yiping; Noriega, Fernando G.

    2009-01-01

    Teneral reserves are utilized to initiate previtellogenic ovarian development in mosquitoes. Females having emerged with low teneral reserves have reduced juvenile hormone (JH) synthesis and previtellogenic development. We investigated what role JH, allatotropin (AT) and other head-factors play in the regulation of previtellogenic ovarian development and adult survivorship. Factors from the head are essential for corpora allata (CA) activation and reproductive maturation. We have shown that decapitation of females within 9–12 h after adult ecdysis prevented normal development of the previtellogenic follicles; however maximum previtellogenic ovarian development could be induced in decapitated females by topically applying a JH analog. When females were decapitated 12 or more hours after emergence nutritional resources had been committed to ovarian development and survivorship was significantly reduced. To study if allatotropin levels correlated with teneral reserves, we measured AT titers in the heads of two adult phenotypes (large and small females) generated by raising larvae under different nutritional diets. In large mosquitoes AT levels increased to a maximum of 45 fmol in day 4; in contrast, the levels of allatotropin in the heads of small mosquitoes remained below 9 fmol during the 7 days evaluated. These results suggest that only when nutrients are appropriate, factors released from the brain induce the CA to synthesize enough JH to activate reproductive maturation. PMID:17070832

  15. Natural variability in bovine milk oligosaccharides from Danish Jersey and Holstein-Friesian breeds

    PubMed Central

    Sundekilde, Ulrik K; Barile, Daniela; Meyrand, Mickael; Poulsen, Nina A; Larsen, Lotte B; Lebrilla, Carlito B.; Bruce, German J.; Bertram, Hanne C

    2012-01-01

    Free oligosaccharides are key components of human milk and play multiple roles in the health of the neonate, by stimulating growth of selected beneficial bacteria in the gut, participating in development of the brain and exerting anti-pathogenic activity. However, the concentration of oligosaccharides is low in mature bovine milk, normally used for infant formula, compared with both human colostrum and mature human milk. Characterization of bovine milk oligosaccharides in different breeds is crucial for the identification of viable sources for oligosaccharide purification. An improved source of oligosaccharides can lead to infant formula with improved oligosaccharide functionality. In the present study we have analyzed milk oligosaccharides by high-performance liquid chromatography chip quadrupole time-of-flight mass spectrometry and performed a detailed data analysis using both univariate and multivariate methods. Both statistical tools revealed several differences in oligosaccharide profiles between milk samples from the two Danish breeds; Jersey and Holstein-Friesians. Jersey milk contained higher relative amounts of both sialylated and the more complex neutral fucosylated oligosaccharides, while the Holstein-Friesian milk had higher abundance of smaller and simpler neutral oligosaccharides. The statistical analyses revealed that Jersey milk contain significantly higher levels of fucosylated oligosaccharides than Holstein-Friesian milk. Jersey milk also possesses oligosaccharides with a higher degree of complexity and functional residues (fucose and sialic acid) suggesting it may therefore offer advantages in term of a wider array of bioactivities. PMID:22632419

  16. Association of sexual maturation with excess body weight and height in children and adolescents

    PubMed Central

    2014-01-01

    Background Studies addressing the influence of early sexual maturation on the excess of body weight and height of children and adolescents are scarce. The aim of the study was to analyze the association of sexual maturation with excess body weight and height in children and adolescents. Methods This was a cross-sectional study performed in Florianópolis city, Brazil, in 2007, with 2339 school children, aged 8–14 years (1107 males). Selection was based on a probabilistic, cluster-stratified sampling technique. School children were classified according to the presence of excess body weight, using sex- and age-specific body mass index (BMI) cutoff points. Z-scores were calculated from height and BMI data. Sexual maturation was self-assessed according to Tanner stages of development. Subjects were ranked based on tertiles of sexual maturation (early, normal and late) for each stage of development. Poisson and linear regression models were used. Results Compared to the reference group (normal sexual maturation), early maturing females had higher prevalence of excess weight (adjusted prevalence ratio: 1.70; 95% CI: 1.24 to 2.33) and increased height-for-age (adjusted β: 0.37; 95% CI: 0.14 to 0.59), while late maturing females had lower prevalence of excess weight (adjusted prevalence ratio: 0.57; 95% CI: 0.37 to 0.87) and decreased height-for-age (adjusted β: −0.38; 95% CI: −0.56 to −0.20). In males, early and late sexual maturation were associated with increased (adjusted β: 0.37; 95% CI: 0.14 to 0.59) and decreased (adjusted β: −0.38; 95% CI: −0.56 to −0.20) height-for-age, respectively. Conclusion Early sexual maturation is associated with excess body weight in females and with greater height-for-age in both sexes. PMID:24625111

  17. Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees.

    PubMed

    Sen Sarma, Moushumi; Whitfield, Charles W; Robinson, Gene E

    2007-06-29

    Honey bees are known for several striking social behaviors, including a complex pattern of behavioral maturation that gives rise to an age-related colony division of labor and a symbolic dance language, by which successful foragers communicate the location of attractive food sources to their nestmates. Our understanding of honey bees is mostly based on studies of the Western honey bee, Apis mellifera, even though there are 9-10 other members of genus Apis, showing interesting variations in social behavior relative to A. mellifera. To facilitate future in-depth genomic and molecular level comparisons of behavior across the genus, we performed a microarray analysis of brain gene expression for A. mellifera and three key species found in Asia, A. cerana, A. florea and A. dorsata. For each species we compared brain gene expression patterns between foragers and adult one-day-old bees on an A. mellifera cDNA microarray and calculated within-species gene expression ratios to facilitate cross-species analysis. The number of cDNA spots showing hybridization fluorescence intensities above the experimental threshold was reduced by an average of 16% in the Asian species compared to A. mellifera, but an average of 71% of genes on the microarray were available for analysis. Brain gene expression profiles between foragers and one-day-olds showed differences that are consistent with a previous study on A. mellifera and were comparable across species. Although 1772 genes showed significant differences in expression between foragers and one-day-olds, only 218 genes showed differences in forager/one-day-old expression between species (p < 0.001). Principal Components Analysis revealed dominant patterns of expression that clearly distinguished between the four species but did not reflect known differences in behavior and ecology. There were species differences in brain expression profiles for functionally related groups of genes. We conclude that the A. mellifera cDNA microarray can be used effectively for cross-species comparisons within the genus. Our results indicate that there is a widespread conservation of the molecular processes in the honey bee brain underlying behavioral maturation. Species differences in brain expression profiles for functionally related groups of genes provide possible clues to the basis of behavioral variation in the genus.

  18. Absolute Power Spectral Density Changes in the Magnetoencephalographic Activity During the Transition from Childhood to Adulthood.

    PubMed

    Gómez, Carlos M; Rodríguez-Martínez, Elena I; Fernández, Alberto; Maestú, Fernando; Poza, Jesús; Gómez, Carlos

    2017-01-01

    The aim of this study was to define the pattern of reduction in absolute power spectral density (PSD) of magnetoencephalography (MEG) signals throughout development. Specifically, we wanted to explore whether the human skull's high permeability for electromagnetic fields would allow us to question whether the pattern of absolute PSD reduction observed in the human electroencephalogram is due to an increase in the skull's resistive properties with age. Furthermore, the topography of the MEG signals during maturation was explored, providing additional insights about the areas and brain rhythms related to late maturation in the human brain. To attain these goals, spontaneous MEG activity was recorded from 148 sensors in a sample of 59 subjects divided into three age groups: children/adolescents (7-14 years), young adults (17-20 years) and adults (21-26 years). Statistical testing was carried out by means of an analysis of variance (ANOVA), with "age group" as between-subject factor and "sensor group" as within-subject factor. Additionally, correlations of absolute PSD with age were computed to assess the influence of age on the spectral content of MEG signals. Results showed a broadband PSD decrease in frontal areas, which suggests the late maturation of this region, but also a mild increase in high frequency PSD with age in posterior areas. These findings suggest that the intensity of the neural sources during spontaneous brain activity decreases with age, which may be related to synaptic pruning.

  19. Effects of biological and technical factors on brain and muscle cholinesterases in Nile tilapia, Oreochromis niloticus: implications for biomonitoring neurotoxic contaminations.

    PubMed

    Pathiratne, A; Chandrasekera, L W H U; De Seram, P K C

    2008-02-01

    Influence of body length, body weight, gender, sexual maturity, and tissue storage on brain and muscle cholinesterases (ChE) in Nile tilapia was evaluated considering its potential use in biomonitoring neurotoxic contaminations in tropical environments. Results show that ChE activities in both tissues decreased significantly with increased total length (4-24.5 cm) or body weight (1-186 g) of the fish and the relationships were curvilinear. Comparisons of the slopes and elevations of the regression lines of the logarithmic ChE and body size relationships of males with those of females indicated that gender had no significant effect on the body size-specific ChE activities. Response of the ChE of sexually mature males to chlorpyrifos exposure was similar to that of females. Gonadal maturity stage of this fish does not seem to influence ChE activities. Storage of tissues at -80 degrees C for 28 days had no significant effect on ChE activities in the control fish and the fish exposed to carbofuran. However, a partial reactivation of brain ChE activities was observed in the fish exposed to carbosulfan after 28 days of storage. The results emphasize the importance of consideration of body size of the fish and storage time of the tissues in order to formulate accurate conclusions about the neurotoxic chemical exposure when ChE of the fish is used in biomonitoring programs.

  20. Developmental gender differences in children in a virtual spatial memory task.

    PubMed

    León, Irene; Cimadevilla, José Manuel; Tascón, Laura

    2014-07-01

    Behavioral achievements are the product of brain maturation. During postnatal development, the medial temporal lobe completes its maturation, and children acquire new memory abilities. In recent years, virtual reality-based tasks have been introduced in the neuropsychology field to assess different cognitive functions. In this work, desktop virtual reality tasks are combined with classic psychometric tests to assess spatial abilities in 4- to 10-year-old children. Fifty boys and 50 girls 4-10-years of age participated in this study. Spatial reference memory and spatial working memory were assessed using a desktop virtual reality-based task. Other classic psychometric tests were also included in this work (e.g., the Corsi Block Tapping Test, digit tests, 10/36 Spatial Recall Test). In general terms, 4- and 5-year-old groups showed poorer performance than the older groups. However, 5-year-old children showed basic spatial navigation abilities with little difficulty. In addition, boys outperformed girls from the 6-8-year-old groups. Gender differences only emerged in the reference-memory version of the spatial task, whereas both sexes displayed similar performances in the working-memory version. There was general improvement in the performance of different tasks in children older than 5 years. However, results also suggest that brain regions involved in allocentric memory are functional even at the age of 5. In addition, the brain structures underlying reference memory mature later in girls than those required for the working memory.

Top