Xu, D Z; Deitch, E A; Sittig, K; Qi, L; McDonald, J C
1988-01-01
Mononuclear cells isolated by density gradient centrifugation from the peripheral blood of burn patients, but not healthy volunteers, are contaminated with large numbers of nonmononuclear cells. These contaminating leukocytes could cause artifactual alterations in standard in vitro tests of lymphocyte function. Thus, we compared the in vitro blastogenic response of density gradient purified leukocytes and T-cell purified lymphocytes from 13 burn patients to mitogenic (PHA) and antigenic stimuli. The mitogenic and antigenic response of the patients' density gradient purified leukocytes were impaired compared to healthy volunteers (p less than 0.01). However, when the contaminating nonlymphocytes were removed, the patients' cells responded normally to both stimuli. Thus, density gradient purified mononuclear cells from burn patients are contaminated by leukocytes that are not phenotypically or functionally lymphocytes. Since the lymphocytes from burn patients respond normally to PHA and alloantigens after the contaminating nonlymphocyte cell population has been removed, it appears that in vitro assays of lymphocyte function using density gradient purified leukocytes may give spurious results. PMID:2973771
contamDE: differential expression analysis of RNA-seq data for contaminated tumor samples.
Shen, Qi; Hu, Jiyuan; Jiang, Ning; Hu, Xiaohua; Luo, Zewei; Zhang, Hong
2016-03-01
Accurate detection of differentially expressed genes between tumor and normal samples is a primary approach of cancer-related biomarker identification. Due to the infiltration of tumor surrounding normal cells, the expression data derived from tumor samples would always be contaminated with normal cells. Ignoring such cellular contamination would deflate the power of detecting DE genes and further confound the biological interpretation of the analysis results. For the time being, there does not exists any differential expression analysis approach for RNA-seq data in literature that can properly account for the contamination of tumor samples. Without appealing to any extra information, we develop a new method 'contamDE' based on a novel statistical model that associates RNA-seq expression levels with cell types. It is demonstrated through simulation studies that contamDE could be much more powerful than the existing methods that ignore the contamination. In the application to two cancer studies, contamDE uniquely found several potential therapy and prognostic biomarkers of prostate cancer and non-small cell lung cancer. An R package contamDE is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/ zhanghfd@fudan.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Xeroderma pigmentosum cells contain low levels of photoreactivating enzyme.
Sutherland, B M; Rice, M; Wagner, E K
1975-01-01
Fibroblasts from patients with xeroderma pigmentosum contain low levels of photoreactivating enzyme in comparison to normal cells. Levels vary from 0 (line 1199) to 50 (line 1259) percent of normal. The depressed enzyme levels are not an artifact of low growth rate, age of cell donor, cell culture conditions, assay conditions, the presence of inhibitors, or mycoplasma contamination. We show that human fibroblasts can monomerize pyrimidine dimers in vivo. PMID:1054487
Corral-Vázquez, C; Aguilar-Quesada, R; Catalina, P; Lucena-Aguilar, G; Ligero, G; Miranda, B; Carrillo-Ávila, J A
2017-06-01
Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.
2009-05-01
contaminating rat UGSE cells ; and regions of host mouse glands were either from circulating pluripotent stem cells or local epithelial cells which were...CONTRACT NUMBER Isolation and Growth of Prostate Stem Cells and Establishing Cancer Cell Lines from Human Prostate Tumors 5b. GRANT NUMBER 81WXH...NOTES 14. ABSTRACT The objective of this proposal was to isolate, grow, and characterize normal prostate stem cells and establish new prostate
Bravo, Susana B; Garcia-Rendueles, Maria E R; Garcia-Rendueles, Angela R; Rodrigues, Joana S; Perez-Romero, Sihara; Garcia-Lavandeira, Montserrat; Suarez-Fariña, Maria; Barreiro, Francisco; Czarnocka, Barbara; Senra, Ana; Lareu, Maria V; Rodriguez-Garcia, Javier; Cameselle-Teijeiro, Jose; Alvarez, Clara V
2013-06-01
Mechanisms of thyroid physiology and cancer are principally studied in follicular cell lines. However, human thyroid cancer lines were found to be heavily contaminated by other sources, and only one supposedly normal-thyroid cell line, immortalized with SV40 antigen, is available. In primary culture, human follicular cultures lose their phenotype after passage. We hypothesized that the loss of the thyroid phenotype could be related to culture conditions in which human cells are grown in medium optimized for rodent culture, including hormones with marked differences in its affinity for the relevant rodent/human receptor. The objective of the study was to define conditions that allow the proliferation of primary human follicular thyrocytes for many passages without losing phenotype. Concentrations of hormones, transferrin, iodine, oligoelements, antioxidants, metabolites, and ethanol were adjusted within normal homeostatic human serum ranges. Single cultures were identified by short tandem repeats. Human-rodent interspecies contamination was assessed. We defined an humanized 7 homeostatic additives medium enabling growth of human thyroid cultures for more than 20 passages maintaining thyrocyte phenotype. Thyrocytes proliferated and were grouped as follicle-like structures; expressed Na+/I- symporter, pendrin, cytokeratins, thyroglobulin, and thyroperoxidase showed iodine-uptake and secreted thyroglobulin and free T3. Using these conditions, we generated a bank of thyroid tumors in culture from normal thyroids, Grave's hyperplasias, benign neoplasms (goiter, adenomas), and carcinomas. Using appropriate culture conditions is essential for phenotype maintenance in human thyrocytes. The bank of thyroid tumors in culture generated under humanized humanized 7 homeostatic additives culture conditions will provide a much-needed tool to compare similarly growing cells from normal vs pathological origins and thus to elucidate the molecular basis of thyroid disease.
1994-09-01
with giant cells found in the spleen and lungs. A second experiment 3 (Brewer & Dunning, 1947) was conducted where 1,089 mice were injected...crystals, or starch. They conducted experiments where rabbits received I I.V. normal saline via the ear vein. Each rabbit received a different volume...conducted a similar experiment examining the incidence of drug contamination with particles from the external surface of glass ampules. Methylene blue
Power of tests of normality for detecting contaminated normal samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thode, H.C. Jr.; Smith, L.A.; Finch, S.J.
1981-01-01
Seventeen tests of normality or goodness of fit were evaluated for power at detecting a contaminated normal sample. This study used 1000 replications each of samples of size 12, 17, 25, 33, 50, and 100 from six different contaminated normal distributions. The kurtosis test was the most powerful over all sample sizes and contaminations. The Hogg and weighted Kolmogorov-Smirnov tests were second. The Kolmogorov-Smirnov, chi-squared, Anderson-Darling, and Cramer-von-Mises tests had very low power at detecting contaminated normal random variables. Tables of the power of the tests and the power curves of certain tests are given.
PyClone: statistical inference of clonal population structure in cancer.
Roth, Andrew; Khattra, Jaswinder; Yap, Damian; Wan, Adrian; Laks, Emma; Biele, Justina; Ha, Gavin; Aparicio, Samuel; Bouchard-Côté, Alexandre; Shah, Sohrab P
2014-04-01
We introduce PyClone, a statistical model for inference of clonal population structures in cancers. PyClone is a Bayesian clustering method for grouping sets of deeply sequenced somatic mutations into putative clonal clusters while estimating their cellular prevalences and accounting for allelic imbalances introduced by segmental copy-number changes and normal-cell contamination. Single-cell sequencing validation demonstrates PyClone's accuracy.
Dellias, Marina de Toledo Ferraz; Borges, Clóvis Daniel; Lopes, Mário Lúcio; da Cruz, Sandra Helena; de Amorim, Henrique Vianna; Tsai, Siu Mui
2018-02-24
Industrial ethanol fermentation is subject to bacterial contamination that causes significant economic losses in ethanol fuel plants. Chronic contamination has been associated with biofilms that are normally more resistant to antimicrobials and cleaning efforts than planktonic cells. In this study, contaminant species of Lactobacillus isolated from biofilms (source of sessile cells) and wine (source of planktonic cells) from industrial and pilot-scale fermentations were compared regarding their ability to form biofilms and their sensitivity to different antimicrobials. Fifty lactobacilli were isolated and the most abundant species were Lactobacillus casei, Lactobacillus fermentum and Lactobacillus plantarum. The majority of the isolates (87.8%) were able to produce biofilms in pure culture. The capability to form biofilms and sensitivity to virginiamycin, monensin and beta-acids from hops, showed inter- and intra-specific variability. In the pilot-scale fermentation, Lactobacillus brevis, L. casei and the majority of L. plantarum isolates were less sensitive to beta-acids than their counterparts from wine; L. brevis isolates from biofilms were also less sensitive to monensin when compared to the wine isolates. Biofilm formation and sensitivity to beta-acids showed a positive and negative correlation for L. casei and L. plantarum, respectively.
Sauerwein, R W; Van der Meer, W G; Aarden, L A
1987-08-01
At least two factors with the capacity to induce IgM synthesis in human B cells were found to be present in the 15-20-kDa fraction of the supernatant of mononuclear cells activated with concanavalin A (Con A) and phorbol ester. Previously, it has been shown (Sauerwein, R. W. et al., Eur. J. Immunol. 1985. 15: 611) that interleukin 2 (IL2) in this material is able to induce T cell-dependent IgM secretion in normal B cells. Evidence was obtained for the presence of another factor distinct from IL2 that could replace T cells in the induction of B cell differentiation. We have analyzed this factor with the use of a neoplastic B cell population of prolymphocytic origin that was functionally nonresponsive to IL2. T cell-replacing factor (TRF)-like activity and IL2 could be separated by ion-exchange chromatography, although a small amount of IL2 was recovered in the TRF fractions. This small amount of IL2 was found to be crucial for the observed TRF activity. Moreover, a substantial amount of monomeric Con A was detected in the TRF preparation. Our studies show that Con A in the presence of IL2 can act as a potent inducer of helper function in lower numbers of T cells for normal and neoplastic B cells. Functional assays for T cell contamination in B cell suspensions are therefore of limited value because they are determined by the efficiency of the stimulating signal. Particularly in those B cell factor preparations, obtained from mitogen-activated T cells with an obligatory or unidentified role of IL2, the possible effect of a contaminating mitogen must be considered.
Lathi, Ruth B; Gustin, Stephanie L F; Keller, Jennifer; Maisenbacher, Melissa K; Sigurjonsson, Styrmir; Tao, Rosina; Demko, Zach
2014-01-01
To examine the rate of maternal contamination in miscarriage specimens. Retrospective review of 1,222 miscarriage specimens submitted for chromosome testing with detection of maternal cell contamination (MCC). Referral centers requesting genetic testing of miscarriage specimens at a single reference laboratory. Women with pregnancy loss who desire complete chromosome analysis of the pregnancy tissue. Analysis of miscarriage specimens using single-nucleotide polymorphism (SNP) microarray technology with bioinformatics program to detect maternal cell contamination. Chromosome content of miscarriages and incidence of 46,XX results due to MCC. Of the 1,222 samples analyzed, 592 had numeric chromosomal abnormalities, and 630 were normal 46,XX or 46,XY (456 and 187, respectively). In 269 of the 46,XX specimens, MCC with no embryonic component was found. With the exclusion of maternal 46,XX results, the chromosomal abnormality rate increased from 48% to 62%, and the ratio for XX to XY results dropped from 2.6 to 1.0. Over half of the normal 46,XX results in miscarriage specimens were due to MCC. The use of SNPs in MCC testing allows for precise identification of chromosomal abnormalities in miscarriage as well as MCC, improving the accuracy of products of conception testing. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Cantalupo, Paul G.; Katz, Joshua P.
2015-01-01
ABSTRACT We searched The Cancer Genome Atlas (TCGA) database for viruses by comparing non-human reads present in transcriptome sequencing (RNA-Seq) and whole-exome sequencing (WXS) data to viral sequence databases. Human papillomavirus 18 (HPV18) is an etiologic agent of cervical cancer, and as expected, we found robust expression of HPV18 genes in cervical cancer samples. In agreement with previous studies, we also found HPV18 transcripts in non-cervical cancer samples, including those from the colon, rectum, and normal kidney. However, in each of these cases, HPV18 gene expression was low, and single-nucleotide variants and positions of genomic alignments matched the integrated portion of HPV18 present in HeLa cells. Chimeric reads that match a known virus-cell junction of HPV18 integrated in HeLa cells were also present in some samples. We hypothesize that HPV18 sequences in these non-cervical samples are due to nucleic acid contamination from HeLa cells. This finding highlights the problems that contamination presents in computational virus detection pipelines. IMPORTANCE Viruses associated with cancer can be detected by searching tumor sequence databases. Several studies involving searches of the TCGA database have reported the presence of HPV18, a known cause of cervical cancer, in a small number of additional cancers, including those of the rectum, kidney, and colon. We have determined that the sequences related to HPV18 in non-cervical samples are due to nucleic acid contamination from HeLa cells. To our knowledge, this is the first report of the misidentification of viruses in next-generation sequencing data of tumors due to contamination with a cancer cell line. These results raise awareness of the difficulty of accurately identifying viruses in human sequence databases. PMID:25631090
Rahsaz, Marjan; Geramizadeh, Bita; Kaviani, Maryam; Marzban, Saeed
2015-04-01
Human epidermal keratinocytes are currently established as a treatment for burns and wounds and have laboratory applications. Keratinocyte culture contamination by unwanted cells and inhibition of cell proliferation are barriers in primary keratinocyte culture. According to the recent literature, these cells are hard to culture. The present study was conducted to evaluate the efficacy of gelatin-coated surfaces in keratinocyte cultures. After enzymatic isolation of keratinocytes from normal epidermis by trypsin, the cells were cultured on gelatin-coated flasks in serum-free medium. Another group of cells were cultured as a control group without gelatin coating. We showed positive effects of surface coating with gelatin on the primary culture of keratinocytes. Culture of these cells on a gelatincoated surface showed better proliferation with suitable morphology. By using gelatin, adhesion of these cells to the surface was more efficient and without contamination by small round cells. Successful primary culture of keratinocytes on a gelatin-coated surface may provide better yield and optimal number of cells for research and clinical applications.
Dauchy, Robert T; Dupepe, Lynell M; Ooms, Tara G; Dauchy, Erin M; Hill, Cody R; Mao, Lulu; Belancio, Victoria P; Slakey, Lauren M; Hill, Steven M; Blask, David E
2011-05-01
Appropriate laboratory animal facility lighting and lighting protocols are essential for maintaining the health and wellbeing of laboratory animals and ensuring the credible outcome of scientific investigations. Our recent experience in relocating to a new laboratory facility illustrates the importance of these considerations. Previous studies in our laboratory demonstrated that animal room contamination with light-at-night (LAN) of as little as 0.2 lx at rodent eye level during an otherwise normal dark-phase disrupted host circadian rhythms and stimulated the metabolism and proliferation of human cancer xenografts in rats. Here we examined how simple improvements in facility design at our new location completely eliminated dark-phase LAN contamination and restored normal circadian rhythms in nontumor-bearing rats and normal tumor metabolism and growth in host rats bearing tissue-isolated MCF7(SR(-)) human breast tumor xenografts or 7288CTC rodent hepatomas. Reducing LAN contamination in the animal quarters from 24.5 ± 2.5 lx to nondetectable levels (complete darkness) restored normal circadian regulation of rodent arterial blood melatonin, glucose, total fatty and linoleic acid concentrations, tumor uptake of O(2), glucose, total fatty acid and CO(2) production and tumor levels of cAMP, triglycerides, free fatty acids, phospholipids, and cholesterol esters, as well as extracellular-signal-regulated kinase, mitogen-activated protein kinase, serine-threonine protein kinase, glycogen synthase kinase 3β, γ-histone 2AX, and proliferating cell nuclear antigen.
Dauchy, Robert T; Dupepe, Lynell M; Ooms, Tara G; Dauchy, Erin M; Hill, Cody R; Mao, Lulu; Belancio, Victoria P; Slakey, Lauren M; Hill, Steven M; Blask, David E
2011-01-01
Appropriate laboratory animal facility lighting and lighting protocols are essential for maintaining the health and wellbeing of laboratory animals and ensuring the credible outcome of scientific investigations. Our recent experience in relocating to a new laboratory facility illustrates the importance of these considerations. Previous studies in our laboratory demonstrated that animal room contamination with light-at-night (LAN) of as little as 0.2 lx at rodent eye level during an otherwise normal dark-phase disrupted host circadian rhythms and stimulated the metabolism and proliferation of human cancer xenografts in rats. Here we examined how simple improvements in facility design at our new location completely eliminated dark-phase LAN contamination and restored normal circadian rhythms in nontumor-bearing rats and normal tumor metabolism and growth in host rats bearing tissue-isolated MCF7(SR–) human breast tumor xenografts or 7288CTC rodent hepatomas. Reducing LAN contamination in the animal quarters from 24.5 ± 2.5 lx to nondetectable levels (complete darkness) restored normal circadian regulation of rodent arterial blood melatonin, glucose, total fatty and linoleic acid concentrations, tumor uptake of O2, glucose, total fatty acid and CO2 production and tumor levels of cAMP, triglycerides, free fatty acids, phospholipids, and cholesterol esters, as well as extracellular-signal-regulated kinase, mitogen-activated protein kinase, serine–threonine protein kinase, glycogen synthase kinase 3β, γ-histone 2AX, and proliferating cell nuclear antigen. PMID:21640027
Elloumi, Fathi; Hu, Zhiyuan; Li, Yan; Parker, Joel S; Gulley, Margaret L; Amos, Keith D; Troester, Melissa A
2011-06-30
Genomic tests are available to predict breast cancer recurrence and to guide clinical decision making. These predictors provide recurrence risk scores along with a measure of uncertainty, usually a confidence interval. The confidence interval conveys random error and not systematic bias. Standard tumor sampling methods make this problematic, as it is common to have a substantial proportion (typically 30-50%) of a tumor sample comprised of histologically benign tissue. This "normal" tissue could represent a source of non-random error or systematic bias in genomic classification. To assess the performance characteristics of genomic classification to systematic error from normal contamination, we collected 55 tumor samples and paired tumor-adjacent normal tissue. Using genomic signatures from the tumor and paired normal, we evaluated how increasing normal contamination altered recurrence risk scores for various genomic predictors. Simulations of normal tissue contamination caused misclassification of tumors in all predictors evaluated, but different breast cancer predictors showed different types of vulnerability to normal tissue bias. While two predictors had unpredictable direction of bias (either higher or lower risk of relapse resulted from normal contamination), one signature showed predictable direction of normal tissue effects. Due to this predictable direction of effect, this signature (the PAM50) was adjusted for normal tissue contamination and these corrections improved sensitivity and negative predictive value. For all three assays quality control standards and/or appropriate bias adjustment strategies can be used to improve assay reliability. Normal tissue sampled concurrently with tumor is an important source of bias in breast genomic predictors. All genomic predictors show some sensitivity to normal tissue contamination and ideal strategies for mitigating this bias vary depending upon the particular genes and computational methods used in the predictor.
A contaminant-free assessment of Endogenous Retroviral RNA in human plasma
Karamitros, Timokratis; Paraskevis, Dimitrios; Hatzakis, Angelos; Psichogiou, Mina; Elefsiniotis, Ioannis; Hurst, Tara; Geretti, Anna-Maria; Beloukas, Apostolos; Frater, John; Klenerman, Paul; Katzourakis, Aris; Magiorkinis, Gkikas
2016-01-01
Endogenous retroviruses (ERVs) comprise 6–8% of the human genome. HERVs are silenced in most normal tissues, up-regulated in stem cells and in placenta but also in cancer and HIV-1 infection. Crucially, there are conflicting reports on detecting HERV RNA in non-cellular clinical samples such as plasma that suggest the study of HERV RNA can be daunting. Indeed, we find that the use of real-time PCR in a quality assured clinical laboratory setting can be sensitive to low-level proviral contamination. We developed a mathematical model for low-level contamination that allowed us to design a laboratory protocol and standard operating procedures for robust measurement of HERV RNA. We focus on one family, HERV-K HML-2 (HK2) that has been most recently active even though they invaded our ancestral genomes almost 30 millions ago. We extensively validated our experimental design on a model cell culture system showing high sensitivity and specificity, totally eliminating the proviral contamination. We then tested 236 plasma samples from patients infected with HIV-1, HCV or HBV and found them to be negative. The study of HERV RNA for human translational studies should be performed with extensively validated protocols and standard operating procedures to control the widespread low-level human DNA contamination. PMID:27640347
Effect of flagella expression on adhesion of Achromobacter piechaudii to chalk surfaces.
Nejidat, A; Saadi, I; Ronen, Z
2008-12-01
To examine flagella role and cell motility in adhesion of Achromobacter piechaudii to chalk. Transmission electron microscopy revealed that stationary cells have thicker and longer flagella than logarithmic cells. SDS-PAGE analysis showed that flagellin was more abundant in stationary cells than logarithmic ones. Sonication or inhibition of flagellin synthesis caused a 30% reduction in adhesion to chalk. Preincubation of chalk with flagella extracts reduced adhesion, by 50%. Three motility mutants were isolated. Mutants 94 and 153 were nonmotile, expressed normal levels of flagellin, have regular flagella and exhibited reduced adhesion. Mutant 208 expressed low levels of flagellin, no flagella and a spherical cell shape but with normal adhesion capacity. Multiple cell surface factors affect the adhesion efficiency to chalk. Flagella per se through physical interaction and through cell motility contribute to the adhesion process. The adhesion behaviour of mutant 208 suggests that cell shape can compensate for flagellar removal and motility. Physiological status affects bacterial cell surface properties and hence adhesion efficiency to chalk. This interaction is essential to sustain biodegradation activities and thus, remediation of contaminated chalk aquifers.
Wayner, E A; Brooks, C G
1984-04-01
Co-culture of CBA/J spleen cells and certain lines of YAC-1 stimulators resulted in the appearance of NKCF-like activity in 24- to 48-hr supernatants. Numerous other in vitro cell lines were effective stimulators of this splenic cytotoxic factor (SCF). The cells participating in SCF production were absent from normal thymocytes and were present in BALB/c nu/nu spleen, were nonadherent, asialo GM1+, and bore low levels of Thy-1.2. SCF could mediate lysis of certain NK-sensitive tumor targets in an 18-hr 51Cr-release assay. However, the induction of SCF was not correlated with the ability of a particular cell line to be lysed by NK cells, but showed an absolute correlation with the presence of mycoplasma contamination in cultured tumor cell lines. Mycoplasma negative cell lines, including an uninfected but NK-sensitive subline of YAC-1, were unable to induce SCF. Decontamination of mycoplasma-infected lines with antibiotics or by passage through syngeneic mice abrogated the ability of infected tumor cells to stimulate SCF. The ability to induce SCF could be restored by reinfection with mycoplasma. Tumor cell-free supernatants from contaminated cultures were mitogenic for CBA spleen cells and could themselves induce SCF activity in spleen cell supernatants. SCF production and the agent responsible could be removed by passing such supernatants through 0.1-micron filters. The organism apparently responsible for SCF induction from CBA spleen cells was typed and found to be Mycoplasma orale, a nonfermentative, arginine-dependent, common tissue culture contaminant. About 50 to 60% of SCF activity could be removed by 0.1-micron filters, suggesting that SCF is composed of two components: mycoplasma organisms themselves and a soluble cytotoxic factor produced in response to mycoplasma.
Surface immunoglobulin on cultured foetal mouse thymocytes
Haustein, D.; Mandel, T. E.
1979-01-01
Organ cultures of 14–15 day foetal mouse thymus were used as a source of non-neoplastic differentiating T cells, free of contaminating B cells. Viable cells obtained from such cultured thymuses were radio-iodinated and immunoglobulins (Ig) were isolated by co-precipitation from the 125I-labelled cell-surface proteins released during 1 h of incubation at 37°. The precipitates, both reduced and unreduced, were then analysed by polyacrylamide gel electrophoresis. The unreduced material migrated in a 5% gel as a single peak with a mobility slightly faster than that of mouse IgG. After reduction, however, two peaks were obtained (in a 10% gel), one corresponding in migration to mouse light chain and the other which moved slightly faster than mouse μ chain. This pattern was identical with that previously seen for both surface Ig of normal mouse thymocytes and neoplastic T lymphoma cells. Uncultured, 15 day foetal thymocytes did not produce any detectable co-precipitated cell surface material. Ig detected in these experiments was therefore produced during in vitro culture by non-neoplastic T cells in a system free of contaminating B cells and mouse serum proteins. PMID:315364
A novel two-step procedure to expand Sca-1+ cells clonally
Tang, Yao Liang; Shen, Leping; Qian, Keping; Phillips, M. Ian
2007-01-01
Resident cardiac stem cells (CSCs) are characterized by their capacity to self-renew in culture, and are multi-potent for forming normal cell types in hearts. CSCs were originally isolated directly from enzymatically digested hearts using stem cell markers. However, long exposure to enzymatic digestion can affect the integrity of stem cell markers on the cell surface, and also compromise stem cell function. Alternatively resident CSCs can migrate from tissue explant and form cardiospheres in culture. However, fibroblast contamination can easily occur during CSC culture. To avoid these problems, we developed a two-step procedure by growing the cells before selecting the Sca1+ cells and culturing in cardiac fibroblast conditioned medium, they avoid fibroblast overgrowth. PMID:17577582
Chen, Weibing; Qi, Wenjin; Lu, Wei; Chaudhury, Nikhil Roy; Yuan, Jiangtan; Qin, Lidong; Lou, Jun
2018-03-01
The low toxicity of molybdenum disulfide (MoS 2 ) atomically thin film and microparticles is confirmed via cytotoxicity and patch testing in this report. The toxicity of MoS 2 thin film and microparticles is extensively studied but is still inconclusive due to potential organic contamination in the preparations of samples. Such contamination is avoided here through preparing MoS 2 atomically thin film via direct sulfurization of molybdenum thin film on quartz plate, which permits a direct assessment of its toxicity without any contamination. Six different types of cells, including normal, cancer, and immortal cells, are cultured in the media containing MoS 2 thin film on quartz plates or dispersed MoS 2 microparticles and their viability is evaluated with respect to the concentrations of samples. Detached thin films from the quartz plates are also investigated to estimate the toxicity of dispersed MoS 2 in biological media. Allergy testing on skin of guinea pigs is also conducted to understand their effect on animal skins. By avoiding possible organic contamination, the low toxicity of MoS 2 atomically thin film and microparticles to cells and animal skins paves the way for its applications in flexible biosensing/bioimaging devices and biocompatible coatings. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The effect of serum on monocyte tissue factor generation.
Edwards, R L; Perla, D
1984-09-01
Human monocytes generate the procoagulant tissue factor (MTF) following exposure to a variety of immune stimuli in vitro. The generation of MTF is modified by T cells, lymphokines, and immunoregulatory lipoproteins, and recent studies have shown that MTF can be activated in an immune-specific manner following exposure to antigen. We have examined the role of serum factors in the regulation of MTF generation. Low concentrations (less than 1%) of heat-inactivated normal human serum greatly enhanced MTF generation in cultures of normal peripheral blood mononuclear cells. The stimulatory effect was observed in cultures of both unstimulated cells and cells exposed to bacterial lipopolysaccharide. Stimulation was not observed at high serum concentrations (greater than 10%) and could not be explained by endotoxin contamination or activation of the assay system. Stimulatory activity was present in plasma and BaSO4-adsorbed plasma as well as autologous and allogeneic serum, was not abolished by removal of serum lipoproteins, and did not require the presence of T cells for its expression. Sera from 28 different normal volunteers were screened for stimulatory activity and demonstrated a wide variation in potency. These results suggest that a potent factor is present in sera that enhances the expression of MTF activity in vitro. This factor is distinct from previously described lipoprotein regulators and may play a role in the initiation of coagulation in both normal hemostasis and pathologic states.
Nohara, Chiyo; Hiyama, Atsuki; Taira, Wataru; Otaki, Joji M
2018-02-14
The pale grass blue butterfly, Zizeeria maha, has been used to evaluate biological impacts of the Fukushima nuclear accident in March 2011. Here, we examined the possibility that butterflies have adapted to be robust in the contaminated environment. Larvae (n = 2432) were obtained from adult butterflies (n = 20) collected from 7 localities with various contamination levels in May 2012, corresponding to the 7th generation after the accident. When the larvae were reared on non-contaminated host plant leaves from Okinawa, the normality rates of natural exposure without artificial irradiation (as an indication of robustness) were high not only in the least contaminated locality but also in the most contaminated localities. The normality rates were similarly obtained when the larvae were reared on non-contaminated leaves with external irradiation or on contaminated leaves from Fukushima to deliver internal irradiation. The normality rate of natural exposure and that of external or internal exposure were correlated, suggesting that radiation resistance (or susceptibility) likely reflects general state of health. The normality rate of external or internal exposure was divided by the relative normality rate of natural exposure, being defined as the resistance value. The resistance value was the highest in the populations of heavily contaminated localities and was inversely correlated with the distance from the Fukushima Dai-ichi nuclear power plant. These results suggest that the butterfly population might have adapted to the contaminated environment within approximately 1 year after the accident. The present study may partly explain the decrease in mortality and abnormality rates later observed in the contaminated areas. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Qamar, Wajhul
2015-01-01
Bronchoalveolar lavage fluid (BALF) is an important tool in experimental toxicology and pharmacology. A number of researchers have utilized BAL in studies involving rodents. However, the detailed procedure of performing BAL in rodents has rarely been reported. In the present article, in situ BAL in rats has been described with technical points that ensure the quality and validity of BALF samples. BAL was performed in rats of Wistar strain. Flow cytometry and microscopy were utilized to analyze the BAL cells. The collected volume of BALF was 84.32 ± 2.7% of instilled volume. Alveolar macrophages were found to be prevalent in normal lungs when analyzed under microscope and by flow cytometry. The main problem that one may face is the accidental contamination of BALF samples with blood of the animal itself. Presence of blood in BALF certainly adds a significant number of cells and other biochemical variables. No blood contamination was detected in BALF. Here, a simple procedure for BAL and collection of alveolar cells (macrophages in the present study) is explained with an emphasis on technical steps and precautions, which ensures the quality of the BALF samples. Data exhibit that there is no blood contamination in the BALF and provide evidence that the technical points considered in the procedure here are successful in maintaining the quality and validity of BALF samples.
Neutron Exposures in Human Cells: Bystander Effect and Relative Biological Effectiveness
Seth, Isheeta; Schwartz, Jeffrey L.; Stewart, Robert D.; Emery, Robert; Joiner, Michael C.; Tucker, James D.
2014-01-01
Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001). These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0±0.13 for micronuclei and 5.8±2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety. PMID:24896095
Neutron exposures in human cells: bystander effect and relative biological effectiveness.
Seth, Isheeta; Schwartz, Jeffrey L; Stewart, Robert D; Emery, Robert; Joiner, Michael C; Tucker, James D
2014-01-01
Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001). These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.
Histopathologic changes of the nasal mucosa in southwest Metropolitan Mexico City inhabitants.
Calderon-Garcidueñas, L.; Osorno-Velazquez, A.; Bravo-Alvarez, H.; Delgado-Chavez, R.; Barrios-Marquez, R.
1992-01-01
Metropolitan Mexico City (MMC) is one of the most polluted urban areas in the world. The authors characterized the morphologic nasal mucosal changes in short-term (less than 30 days) and long-term (more than 60 days) exposures to the polluted southwest MMC atmosphere with high levels of ozone and other contaminants versus a control group of subjects living in a nonpolluted, low-ozone Mexican port. Seventy-six inferior turbinate biopsies were examined. The control group showed normal mucociliary epithelium, whereas the short-exposure group displayed loss of normal epithelium, basal cell hyperplasia, and mild dysplasia (17.64%). In the long-term exposure group, 78.72% of dysplasias were found (59.45% mild and 40.54% moderate) together with severe loss of normal respiratory epithelium, prominent basal cell hyperplasia, squamous metaplasia, and submucosal vascular proliferation. Our findings suggest that southwest metropolitan Mexico City inhabitants develop histopathologic changes in their nasal mucosa on exposure to the polluted city atmosphere. Images Figure 5 Figure 6 Figure 7 PMID:1731527
NASA Astrophysics Data System (ADS)
Deutsch, U.; Brick, M.
1993-02-01
This ultrastructural study investigates the pathological changes in the penial, the sperm groove and the glandular cushion epithelium in male Littorina littorea (Mesogastropoda) related to TBT (tributyltin) contamination. The results are compared with those on Ocinebrina aciculata (Neogastropoda), which shows a wide range of cell changes in the penis epithelia of male and imposex affected females. The investigation of the different penis epithelia of L. littorea revealed that the cells analysed show a low sensibility towards TBT. The cells display normal metabolism. Certain atypical structures like swelling microvilli and cristae which tend to lie parallel to the long axis in the mitochondria, were detected as pathological effects.
Kim, Yu Seung [Los Alamos, NM; Choi, Jong-Ho [Los Alamos, NM; Zelenay, Piotr [Los Alamos, NM
2009-08-18
A method of removing contaminants from a fuel cell catalyst electrode. The method includes providing a getter electrode and a fuel cell catalyst electrode having at least one contaminant to a bath and applying a voltage sufficient to drive the contaminant from the fuel cell catalyst electrode to the getter electrode. Methods of removing contaminants from a membrane electrode assembly of a fuel cell and of improving performance of a fuel cell are also provided.
Kniss, Douglas A; Summerfield, Taryn L
2014-08-01
Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.
2001-06-01
The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.
Holt, P G; Robinson, B W; Reid, M; Kees, U R; Warton, A; Dawson, V H; Rose, A; Schon-Hegrad, M; Papadimitriou, J M
1986-01-01
The inflammatory and immune cell populations of the human lung parenchyma have not been characterized in detail. This report describes a novel and efficient procedure for their extraction. Histologically normal human lung tissue samples from pneumonectomy specimens were sliced to 0.5 mm, and digested in collagenase/DNAse. Viable mononuclear cell yields ranged from 15-48 X 10(6)/g, and were markedly in excess of reported methods employing mechanical tissue disruption, which normally yield populations containing almost exclusively macrophages. The lung digest population was examined by flow cytometry using monoclonal antibodies against cell surface receptors, and found to comprise up to 40% T lymphocytes, 10% B lymphocytes and 30% macrophages, contaminated by less than 1% peripheral blood cells. Based upon these figures, the recoverable lung parenchymal lymphoid cell pool appears considerably larger than previously recognized, being of the same order as the peripheral blood pool. Initial functional studies suggest that such cellular activities as antigen-specific T cell proliferation, antigen-presentation, interleukin 1 production and natural killer cell activity survive the extraction process, and controlled enzymatic digestion experiments with peripheral blood cells indicate that the degree of enzyme-mediated damage to these functions and to cell-surface structures, was minimal. The extraction method thus appears suitable for studying the types and functions of human parenchymal lung cells in health and disease. Images Fig. 2 p195-a PMID:3026698
Liu, Geng; Niu, Junjie; Zhang, Chao; Guo, Guanlin
2015-12-01
Data distribution is usually skewed severely by the presence of hot spots in contaminated sites. This causes difficulties for accurate geostatistical data transformation. Three types of typical normal distribution transformation methods termed the normal score, Johnson, and Box-Cox transformations were applied to compare the effects of spatial interpolation with normal distribution transformation data of benzo(b)fluoranthene in a large-scale coking plant-contaminated site in north China. Three normal transformation methods decreased the skewness and kurtosis of the benzo(b)fluoranthene, and all the transformed data passed the Kolmogorov-Smirnov test threshold. Cross validation showed that Johnson ordinary kriging has a minimum root-mean-square error of 1.17 and a mean error of 0.19, which was more accurate than the other two models. The area with fewer sampling points and that with high levels of contamination showed the largest prediction standard errors based on the Johnson ordinary kriging prediction map. We introduce an ideal normal transformation method prior to geostatistical estimation for severely skewed data, which enhances the reliability of risk estimation and improves the accuracy for determination of remediation boundaries.
Weng, Jun; Li, Yang; Cai, Lei; Li, Ting; Peng, Gongze; Fu, Chaoyi; Han, Xu; Li, Haiyan; Jiang, Zesheng; Zhang, Zhi; Du, Jiang; Peng, Qing; Gao, Yi
2017-01-01
Background/Aims: The use of antibiotics to eliminate Mycoplasma contamination has some serious limitations. Mycoplasma contamination can be eliminated by intraperitoneal injection of BALB/c mice with contaminated cells combined with screening monoclonal cells. However, in vivo passage in mice after injection with contaminated cells requires a long duration (20-54 days). Furthermore, it is important to monitor for cross-contamination of mouse and human cells, xenotropic murine leukemia virus-related virus (XMRV) infection, and altered cell function after the in vivo treatment. The present study aimed to validate a reliable and simplified method to eliminate mycoplasma contamination from human hepatocytes. BALB/c mice were injected with paraffin oil prior to injection with cells, in order to shorten duration of intraperitoneal passage. Cross-contamination of mouse and human cells, XMRV infection and cell function-related genes and proteins were also evaluated. Methods: PCR and DNA sequencing were used to confirm Mycoplasma hyorhinis ( M. hyorhinis ) contamination in human hepatocyte C3A cells. Five BALB/c mice were intraperitoneally injected with 0.5 ml paraffin oil 1 week before injection of the cells. The mice were then intraperitoneally injected with C3A hepatocytes (5.0 × 10 6 /ml) contaminated with M. hyorhinis (6.2 ± 2.2 × 10 8 CFU/ml). Ascites were collected for monoclonal cell screening on the 14th day after injection of contaminated cells. Elimination of mycoplasma from cells was determined by PCR and Transmission Electron Microscopy (TEM). Human-mouse cell and XMRV contamination were also detected by PCR. Quantitative reverse transcription PCR and western blotting were used to compare the expression of genes and proteins among treated cells, non-treated infected cells, and uninfected cells. Results: Fourteen days after injection with cells, 4 of the 5 mice had ascites. Hepatocyte colonies extracted from the ascites of four mice were all mycoplasma-free. There was no cell cross-contamination or XMRV infection in treated cell cultures. Elimination of Mycoplasma resulted in partial or complete recovery in the expression of ALB, TF, and CYP3A4 genes as well as proteins. Proliferation of the treated cells was not significantly affected by this management. Conclusion: The method of elimination of Mycoplasma contamination in this study was validated and reproducible. Success was achieved in four of five cases examined. Compared to the previous studies, the duration of intraperitoneal passage in this study was significantly shorter.
Magbanua, Mark Jesus M; Park, John W
2013-12-01
Circulating tumor cells (CTCs) are cells shed by the primary tumor into the blood stream capable of initiating distant metastasis. In the past decade, numerous assays have been developed to reliably detect these extremely rare cells. However, methods for purification of CTCs with little or no contamination of normal blood cells for molecular profiling are limited. We have developed a novel protocol to isolate CTCs by combining immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS). The two-part assay includes (1) immunomagnetic capture using magnetic beads conjugated to monoclonal antibody against an epithelial cell adhesion marker (EpCAM) to enrich for tumor cells; and (2) FACS analysis using EpCAM to purify tumor cells away from mononuclear cells of hematopoietic lineage. Downstream molecular analyses of single and pooled cells confirmed the isolation of highly pure CTCs with characteristics typical that of malignant cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Mix-ups and mycoplasma: the enemies within.
Drexler, Hans G; Uphoff, Cord C; Dirks, Willy G; MacLeod, Roderick A F
2002-04-01
Human leukemia-lymphoma (LL) cell lines represent important tools for experimental research. Among the various problems associated with cell lines, the two most common concern contaminations: (1) cross-contamination with unrelated cells and (2) contamination with microorganisms, in particular mycoplasma. The bad news is that about one-third of the cell lines are either cross-contaminated or mycoplasma-infected or both. The good news is that there are means to recognize and overcome these problems. In cases where, during attempts to establish new LL cell lines, primary LL cultures are cross-contaminated with continuous cell lines, intended new cell lines simply cannot be established ("early" cross-contamination). In cases of "late" cross-contamination of existing LL cell lines where the intrusive cells have a growth advantage, the original ("uncontaminated") cell lines may still be available elsewhere. DNA fingerprinting and cytogenetic analysis appear to be the most suitable approaches to detect cross-contaminations and to authenticate LL cell lines. A different but related aspect of "false" LL cell lines is the frequent misclassification of cell lines whereby the actual cell type of the cell line does not correspond to the purported model character of the cell line. Mycoplasma infection can have a multitude of effects on the eukaryotic cells which, due to the variety of infecting mycoplasma species and many other contributing parameters, cannot be predicted, rendering resulting data questionable at best. Practical procedures for the detection and elimination of mycoplasma contamination have been developed. Diagnostic and preventive strategies in order to hem the alarming increase in "false" and mycoplasma-positive LL cell lines are recommended.
Metabolomics reveals mycoplasma contamination interferes with the metabolism of PANC-1 cells.
Yu, Tao; Wang, Yongtao; Zhang, Huizhen; Johnson, Caroline H; Jiang, Yiming; Li, Xiangjun; Wu, Zeming; Liu, Tian; Krausz, Kristopher W; Yu, Aiming; Gonzalez, Frank J; Huang, Min; Bi, Huichang
2016-06-01
Mycoplasma contamination is a common problem in cell culture and can alter cellular functions. Since cell metabolism is either directly or indirectly involved in every aspect of cell function, it is important to detect changes to the cellular metabolome after mycoplasma infection. In this study, liquid chromatography mass spectrometry (LC/MS)-based metabolomics was used to investigate the effect of mycoplasma contamination on the cellular metabolism of human pancreatic carcinoma cells (PANC-1). Multivariate analysis demonstrated that mycoplasma contamination induced significant metabolic changes in PANC-1 cells. Twenty-three metabolites were identified and found to be involved in arginine and purine metabolism and energy supply. This study demonstrates that mycoplasma contamination significantly alters cellular metabolite levels, confirming the compelling need for routine checking of cell cultures for mycoplasma contamination, particularly when used for metabolomics studies. Graphical abstract Metabolomics reveals mycoplasma contamination changes the metabolome of PANC-1 cells.
Light transfer in agar immobilized microalgae cell cultures
NASA Astrophysics Data System (ADS)
Kandilian, Razmig; Jesus, Bruno; Legrand, Jack; Pilon, Laurent; Pruvost, Jérémy
2017-09-01
This paper experimentally and theoretically investigates light transfer in agar-immobilized cell cultures. Certain biotechnological applications such as production of metabolites secreted by photosynthetic microorganisms require cells to be immobilized in biopolymers to minimize contamination and to facilitate metabolite recovery. In such applications, light absorption by cells is one of the most important parameters affecting cell growth or metabolite productivity. Modeling light transfer therein can aid design and optimize immobilized-cell reactors. In this study, Parachlorella kessleri cells with areal biomass concentrations ranging from 0.36 to 16.9 g/m2 were immobilized in 2.6 mm thick agar gels. The average absorption and scattering cross-sections as well as the scattering phase function of P. kessleri cells were measured. Then, the absorption and transport scattering coefficients of the agar gel were determined using an inverse method based on the modified two-flux approximation. The forward model was used to predict the normal-hemispherical transmittance and reflectance of the immobilized-cell films accounting for absorption and scattering by both microalgae and the agar gel. Good agreement was found between the measured and predicted normal-hemispherical transmittance and reflectance provided absorption and scattering by agar were taken into account. Moreover, good agreement was found between experimentally measured and predicted mean rate of photon absorption. Finally, optimal areal biomass concentration was determined to achieve complete absorption of the incident radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Regno, Marisanta; Adesso, Simona; Popolo, Ada
Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6,more » the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. - Highlights: • Nivalenol induces oxidative stress in intestinal epithelial cells (IECs). • Nivalenol increases deoxynivalenol pro-oxidant effects in IECs. • Nivalenol and deoxynivalenol trigger antioxidant response IECs. • These results indicate the importance of mycotoxins co-contamination.« less
Korch, Christopher; Spillman, Monique A; Jackson, Twila A; Jacobsen, Britta M; Murphy, Susan K; Lessey, Bruce A; Jordan, V Craig; Bradford, Andrew P
2012-10-01
Cell lines derived from human ovarian and endometrial cancers, and their immortalized non-malignant counterparts, are critical tools to investigate and characterize molecular mechanisms underlying gynecologic tumorigenesis, and facilitate development of novel therapeutics. To determine the extent of misidentification, contamination and redundancy, with evident consequences for the validity of research based upon these models, we undertook a systematic analysis and cataloging of endometrial and ovarian cell lines. Profiling of cell lines by analysis of DNA microsatellite short tandem repeats (STR), p53 nucleotide polymorphisms and microsatellite instability was performed. Fifty-one ovarian cancer lines were profiled with ten found to be redundant and five (A2008, OV2008, C13, SK-OV-4 and SK-OV-6) identified as cervical cancer cells. Ten endometrial cell lines were analyzed, with RL-92, HEC-1A, HEC-1B, HEC-50, KLE, and AN3CA all exhibiting unique, uncontaminated STR profiles. Multiple variants of Ishikawa and ECC-1 endometrial cancer cell lines were genotyped and analyzed by sequencing of mutations in the p53 gene. The profile of ECC-1 cells did not match the EnCa-101 tumor, from which it was reportedly derived, and all ECC-1 isolates were genotyped as Ishikawa cells, MCF-7 breast cancer cells, or a combination thereof. Two normal, immortalized endometrial epithelial cell lines, HES cells and the hTERT-EEC line, were identified as HeLa cervical carcinoma and MCF-7 breast cancer cells, respectively. Results demonstrate significant misidentification, duplication, and loss of integrity of endometrial and ovarian cancer cell lines. Authentication by STR DNA profiling is a simple and economical method to verify and validate studies undertaken with these models. Copyright © 2012 Elsevier Inc. All rights reserved.
Environmental microbial contamination in a stem cell bank.
Cobo, F; Concha, A
2007-04-01
The aim of this study was to evaluate the main environmental microbial contaminants of the clean rooms in our stem cell bank. We have measured the microbial air contamination by both passive and active air sampling and the microbial monitoring of surfaces by means of Rodac plates. The environmental monitoring tests were carried out in accordance with the guidelines of European Pharmacopeia and US Pharmacopeia. The micro-organisms were identified by means of an automated system (VITEK 2). During the monitoring, the clean rooms are continually under good manufacturing practices specifications. The most frequent contaminants were Gram-positive cocci. The main contaminants in our stem cell bank were coagulase-negative staphylococci and other opportunistic human pathogens. In order to assure the levels of potential contamination in both embryonic and adult stem cell lines, a continuous sampling of air particles and testing for viable microbiological contamination is necessary. This study is the first evaluation of the environmental contaminants in stem cell banks and can serve as initial evaluation for these establishments. The introduction of environmental monitoring programmes in the processing of stem cell lines could diminish the risk of contamination in stem cell cultures.
Chen, Dayue; Nims, Raymond; Dusing, Sandra; Miller, Pamela; Luo, Wen; Quertinmont, Michelle; Parekh, Bhavin; Poorbaugh, Josh; Boose, Jeri Ann; Atkinson, E Morrey
2008-11-01
An adventitious agent contamination occurred during a routine 9 CFR bovine viral screening test at BioReliance for an Eli Lilly Chinese Hamster Ovary (CHO) cell-derived Master Cell Bank (MCB) intended for biological production. Scientists from the sponsor (Eli Lilly and Company) and the testing service company (BioReliance) jointly conducted a systematic investigation in an attempt to determine the root cause of the contamination. Our investigation resulted in the identification of the viral nature of the contaminant. Subsequent experiments indicated that the viral contaminant was a non-enveloped and non-hemadsorbing virus. Transmission electron microscopy (TEM) revealed that the viral contaminant was 25-30 nm in size and morphologically resembled viruses of the family Picornaviridae. The contaminant virus was readily inactivated when exposed to acidic pH, suggesting that the viral contaminant was a member of rhinoviruses. Although incapable of infecting CHO cells, the viral contaminant replicated efficiently in Vero cell with a life cycle of approximately 16 h. Our investigation provided compelling data demonstrating that the viral contaminant did not originate from the MCB. Instead, it was introduced into the process during cell passaging and a possible entry point was proposed. We identified the viral contaminant as an equine rhinitis A virus using molecular cloning and DNA sequencing. Finally, our investigation led us to conclude that the source of the viral contaminant was the equine serum added to the cell growth medium in the 9 CFR bovine virus test.
Constructing Failure: Leonard Hayflick, Biomedicine, and the Problems with Tissue Culture.
Park, Hyung Wook
2016-07-01
By examining the use of tissue culture in post-war American biomedicine, this paper investigates how scientists experience and manage failure. I study how Leonard Hayflick forged his new definition of failure and ways of managing it by refuting Alexis Carrel's definition of failure alongside his theory of the immortality of cultured cells. Unlike Carrel, Hayflick claimed that every vertebrate somatic cell should eventually die, unless it transformed into a tumour cell. This claim defined cell death, which had been a problem leading to a laboratory failure, as a normal phenomenon. On the other hand, permanent life, which had been considered a normal cellular characteristic, became a major factor causing scientific failure, since it implied malignant transformation that scientists hoped to control. Hayflick then asserted that his cell strains and method would partly enable scientists to manage this factor-especially that occurred through viral infection-alongside other causes of failure in routine tasks, including bacterial contamination. I argue that the growing biomedical enterprise fostered this work of Hayflick's, which had repercussions in both his career and the uses of cells in diverse investigations. His redefinition of failure in the age of biomedicine resulted in the broad dissemination of his cells, medium, and method as well as his long struggle with the National Institutes of Health (NIH), which caused his temporarily failed career.
Roy, Prasenjit; Mukherjee, Anita; Giri, Sarbani
2016-02-01
Ground water is the principal source of drinking water in Assam. Ground water contamination of arsenic in drinking water is a great concern for human health and considered as a human carcinogen. The present cytogenetic biomonitoring study was undertaken to investigate the genotoxic effects associated with people of southern Assam consuming arsenic contaminated water and chewing tobacco. Employing the buccal cytome assay, exfoliated cells were analyzed in 138 individuals of age range 22-42 years and divided into four groups. Group I (n=54) are participants residing in localities where ground water contains arsenic concentration below the permissible limit (<10μg/l) and without any tobacco chewing history. Group II (n=32) participants from the same area but they are tobacco chewers. Group III (n=24) participants from localities where significantly high arsenic contamination in ground water were observed. Whereas the Group IV (n=28) consists of participants from the arsenic contaminated area and also tobacco chewers. Body mass index (BMI) in all the groups are found to be nearly same and in normal range. Statistically significant (P<0.001) increase in genotoxic, cell death parameters and cell proliferation biomarkers were observed in the Group IV compared to other groups. In the comet assay, percent of tail DNA gradually increases among the groups and has statistical significance. Spearman correlation revealed strong positive correlation between the arsenic exposed peoples and the binucleated cells (r=0.4763; P<0.001). Amount of chewing tobacco had significant positive correlation with micronucleus frequency (r=0.268; P<0.05) and karyolitic cells (r=0.217; P<0.05) and also in the percentage of tail DNA (r=0.5532, P<0.001). A statistically significant increase in glucose content and decrease in hemoglobin content as well as acetylcholine esterase in the blood of exposed individuals was observed. Our preliminary study indicate that population exposed to arsenic through drinking water may become more susceptible towards chewing tobacco induced nuclear damage as evaluated by buccal cytome assay and comet assay. Copyright © 2015 Elsevier Inc. All rights reserved.
Isolation of biologically-active exosomes from human plasma.
Muller, Laurent; Hong, Chang-Sook; Stolz, Donna B; Watkins, Simon C; Whiteside, Theresa L
2014-09-01
Effects of exosomes present in human plasma on immune cells have not been examined in detail. Immunological studies with plasma-derived exosomes require their isolation by procedures involving ultracentrifugation. These procedures were largely developed using supernatants of cultured cells. To test biologic activities of plasma-derived exosomes, methods are necessary that ensure adequate recovery of exosome fractions free of contaminating larger vesicles, cell fragments and protein/nucleic acid aggregates. Here, an optimized method for exosome isolation from human plasma/serum specimens of normal controls (NC) or cancer patients and its advantages and pitfalls are described. To remove undesirable plasma-contaminating components, ultrafiltration of differentially-centrifuged plasma/serum followed by size-exclusion chromatography prior to ultracentrifugation facilitated the removal of contaminants. Plasma or serum was equally acceptable as a source of exosomes based on the recovered protein levels (in μg protein/mL plasma) and TEM image quality. Centrifugation on sucrose density gradients led to large exosome losses. Fresh plasma was the best source of morphologically-intact exosomes, while the use of frozen/thawed plasma decreased exosome purity but not their biologic activity. Treatments of frozen plasma with DNAse, RNAse or hyaluronidase did not improve exosome purity and are not recommended. Cancer patients' plasma consistently yielded more isolated exosomes than did NCs' plasma. Cancer patients' exosomes also mediated higher immune suppression as evidenced by decreased CD69 expression on responder CD4+ T effector cells. Thus, the described procedure yields biologically-active, morphologically-intact exosomes that have reasonably good purity without large protein losses and can be used for immunological, biomarker and other studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Morris, John H; Knudsen, Giselle M; Verschueren, Erik; Johnson, Jeffrey R; Cimermancic, Peter; Greninger, Alexander L; Pico, Alexander R
2015-01-01
By determining protein-protein interactions in normal, diseased and infected cells, we can improve our understanding of cellular systems and their reaction to various perturbations. In this protocol, we discuss how to use data obtained in affinity purification–mass spectrometry (AP-MS) experiments to generate meaningful interaction networks and effective figures. We begin with an overview of common epitope tagging, expression and AP practices, followed by liquid chromatography–MS (LC-MS) data collection. We then provide a detailed procedure covering a pipeline approach to (i) pre-processing the data by filtering against contaminant lists such as the Contaminant Repository for Affinity Purification (CRAPome) and normalization using the spectral index (SIN) or normalized spectral abundance factor (NSAF); (ii) scoring via methods such as MiST, SAInt and CompPASS; and (iii) testing the resulting scores. Data formats familiar to MS practitioners are then transformed to those most useful for network-based analyses. The protocol also explores methods available in Cytoscape to visualize and analyze these types of interaction data. The scoring pipeline can take anywhere from 1 d to 1 week, depending on one’s familiarity with the tools and data peculiarities. Similarly, the network analysis and visualization protocol in Cytoscape takes 2–4 h to complete with the provided sample data, but we recommend taking days or even weeks to explore one’s data and find the right questions. PMID:25275790
Vasiluk, Luba; Pinto, Linda J; Walji, Zahra A; Tsang, Wing Shan; Gobas, Frank A P C; Eickhoff, Curtis; Moore, Margo M
2007-03-01
A major route of exposure to hydrophobic organic contaminants (HOCs), such as benzo[a]pyrene (BaP), is ingestion. Matrix-bound HOCs may become bioavailable after mobilization by the gastrointestinal fluids followed by sorption to the intestinal epithelium. The purpose of this research was to measure the bioavailability of [14C]-BaP bound to pristine soils or field-contaminated sediment using an in vitro model of gastrointestinal digestion followed by sorption to human enterocytes (Caco-2 cells) or to a surrogate membrane, ethylene vinyl acetate (EVA) thin film. Although Caco-2 cells had a twofold higher lipid-normalized fugacity capacity than EVA, [14C]-BaP uptake by Caco-2 lipids and EVA thin film demonstrated a linear relationship within the range of BaP concentrations tested. These results suggest that EVA thin film is a good membrane surrogate for passive uptake of BaP. The in vitro system provided enough sensitivity to detect matrix effects on bioavailability; after 5 h, significantly lower concentrations of [14C]-BaP were sorbed into Caco-2 cells from soil containing a higher percentage of organic matter compared to soil with a lower percentage of organic matter. The [14C]-BaP desorption rate from Caco-2 lipids consistently was twofold higher than from EVA thin film for all matrices tested. The more rapid kinetics observed with Caco-2 cells probably were due to the greater surface area available for absorption/desorption in the cells. After 5 h, the uptake of BaP into Caco-2 lipid was similar in live and metabolically inert Caco-2 cells, suggesting that the primary route of BaP uptake is by passive diffusion. Moreover, the driving force for uptake is the fugacity gradient that exists between the gastrointestinal fluid and the membrane.
Genome-wide high-resolution aCGH analysis of gestational choriocarcinomas.
Poaty, Henriette; Coullin, Philippe; Peko, Jean Félix; Dessen, Philippe; Diatta, Ange Lucien; Valent, Alexander; Leguern, Eric; Prévot, Sophie; Gombé-Mbalawa, Charles; Candelier, Jean-Jacques; Picard, Jean-Yves; Bernheim, Alain
2012-01-01
Eleven samples of DNA from choriocarcinomas were studied by high resolution CGH-array 244 K. They were studied after histopathological confirmation of the diagnosis, of the androgenic etiology and after a microsatellite marker analysis confirming the absence of contamination of tumor DNA from maternal DNA. Three cell lines, BeWo, JAR, JEG were also studied by this high resolution pangenomic technique. According to aCGH analysis, the de novo choriocarcinomas exhibited simple chromosomal rearrangements or normal profiles. The cell lines showed various and complex chromosomal aberrations. 23 Minimal Critical Regions were defined that allowed us to list the genes that were potentially implicated. Among them, unusually high numbers of microRNA clusters and imprinted genes were observed.
NASA Technical Reports Server (NTRS)
2001-01-01
The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.
Sources and Practices Contributing to Soil Contamination
A.S. Knox; A.P. Gamerdinger; D.C. Adriano; R.K. Kolka; D.I. Kaplan
1999-01-01
The term soil contamination can have different connotations because anthropogehic sources of contaminants have affected virtually every natural ecosystem in the world; a commonly held view is that contamination occurs when the soil composition deiiates from the normal composition (Adriano et al., 1997). Other specialists have defined soil pollution as the presence of...
Stacey, Glyn N
2011-01-01
Microbial contamination is a major issue in cell culture, but there are a range of procedures which can be adopted to prevent or eliminate contamination. Contamination may arise from the operator and the laboratory environment, from other cells used in the laboratory, and from reagents. Some infections may present a risk to laboratory workers: containment and aseptic technique are the key defence against such risks. Remedial management of suspected infection may simply mean discarding a single potentially infected culture. However, if a more widespread problem is identified, then all contaminated cultures and associated unused media that have been opened during this period should be discarded, equipment should be inspected and cleaned, cell culture operations reviewed, and isolation from other laboratories instituted until the problem is solved. Attention to training of staff, laboratory layout, appropriate use of quarantine for new cultures or cell lines, cleaning and maintenance, and quality control are important factors in preventing contamination in cell culture laboratories.
Low contaminant formic acid fuel for direct liquid fuel cell
Masel, Richard I [Champaign, IL; Zhu, Yimin [Urbana, IL; Kahn, Zakia [Palatine, IL; Man, Malcolm [Vancouver, CA
2009-11-17
A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.
Grabber, John H; Hatfield, Ronald D; Lu, Fachuang; Ralph, John
2008-09-01
Incorporating ester interunit linkages into lignin could facilitate fiber delignification and utilization. In model studies with maize cell walls, we examined how partial substitution of coniferyl alcohol (a normal monolignol) with coniferyl ferulate (an ester conjugate from lignan biosynthesis) alters the formation and alkaline extractability of lignin and the enzymatic hydrolysis of structural polysaccharides. Coniferyl ferulate moderately reduced lignification and cell-wall ferulate copolymerization with monolignols. Incorporation of coniferyl ferulate increased lignin extractability by up to 2-fold in aqueous NaOH, providing an avenue for producing fiber with less noncellulosic and lignin contamination or of delignifying at lower temperatures. Cell walls lignified with coniferyl ferulate were more readily hydrolyzed with fibrolytic enzymes, both with and without alkaline pretreatment. Based on our results, bioengineering of plants to incorporate coniferyl ferulate into lignin should enhance lignocellulosic biomass saccharification and particularly pulping for paper production.
Effect of cationic contaminants on polymer electrolyte fuel cell performance
NASA Astrophysics Data System (ADS)
Qi, Jing; Wang, Xiaofeng; Ozdemir, M. Ozan; Uddin, Md. Aman; Bonville, Leonard; Pasaogullari, Ugur; Molter, Trent
2015-07-01
The effect of cationic contaminants on polymer electrolyte fuel cell (PEFC) performance is investigated via in-situ injection of dilute cationic salt solutions. Four foreign cations (K+, Ba2+, Ca2+, Al3+) are chosen as contaminants in this study due to their prevalence and chemical structure (e.g. valence), however contaminants that have already received extensive coverage in the literature like sodium and iron are excluded. It is found that the cells with Ba(ClO4)2 and Ca(ClO4)2 injection exhibit little cell performance change during the current hold test, and the cells with Al(ClO4)3 and KClO4 injection show larger cell performance changes, i.e. decreasing cell voltage and increasing cell resistance. These cells with in-situ contaminant injection have a tendency to recover a portion of the lost performance after the recovery test when switched back to supersaturated air. The degradation in cell performance with the presence of cationic contaminants is mainly due, in addition to the membrane resistance increase associated with replacing protons on the sulfonate groups, to the increase in mass transport resistance and decrease in electrochemical surface area.
Kim, Byung-Chul; Kim, So Yeon; Kwon, Yong-Dae; Choe, Sung Chul; Han, Dong-Wook; Hwang, Yu-Shik
2015-01-01
Recently, postnatal stem cells from dental papilla with neural crest origin have been considered as one of potent stem cell sources in regenerative medicine regarding their multi-differentiation capacity and relatively easy access. However, almost human oral tissues have been reported to be infected by mycoplasma which gives rise to oral cavity in teeth, and mycoplasma contamination of ex-vivo cultured stem cells from such dental tissues and its effect on stem cell culture has received little attention. In this study, mycoplama contamination was evaluated with stem cells from apical papilla which were isolated from human third molar and premolars from various aged patients undergoing orthodontic therapy. The ex-vivo expanded stem cells from apical papilla were found to express stem cell markers such as Stro-1, CD44, nestin and CD133, but mycoplama contamination was detected in almost all cell cultures of the tested 20 samples, which was confirmed by mycoplasma-specific gene expression and fluorescence staining. Such contaminated mycoplasma could be successfully eliminated using elimination kit, and proliferation test showed decreased proliferation activity in mycoplasma-contaminated cells. After elimination of contaminated mycoplasma, stem cells from apical papilla showed osteogenic and neural lineage differentiation under certain culture conditions. Our study proposes that the evaluation of mycoplasma contamination and elimination process might be required in the use of stem cells from apical papilla for their potent applications to tissue engineering and regenerative medicine.
10 CFR 835.1102 - Control of areas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radioactive Contamination Control § 835.1102 Control... transfer of removable contamination to locations outside of radiological areas under normal operating conditions. (b) Any area in which contamination levels exceed the values specified in appendix D of this part...
Dong, Shi-Jun; Lin, Xiang-Hua; Li, Hao
2015-11-01
During the industrial bioethanol fermentation, Saccharomyces cerevisiae cells are often stressed by bacterial contaminants, especially lactic acid bacteria. Generally, lactic acid bacteria contamination can inhibit S. cerevisiae cell growth through secreting lactic acid and competing with yeast cells for micronutrients and living space. However, whether are there still any other influences of lactic acid bacteria on yeast or not? In this study, Lactobacillus plantarum ATCC 8014 was co-cultivated with S. cerevisiae S288c to mimic the L. plantarum contamination in industrial bioethanol fermentation. The contaminative L. plantarum-associated expression changes of genes involved in carbohydrate and energy related metabolisms in S. cerevisiae cells were determined by quantitative real-time polymerase chain reaction to evaluate the influence of L. plantarum on carbon source utilization and energy related metabolism in yeast cells during bioethanol fermentation. Contaminative L. plantarum influenced the expression of most of genes which are responsible for encoding key enzymes involved in glucose related metabolisms in S. cerevisiae. Specific for, contaminated L. plantarum inhibited EMP pathway but promoted TCA cycle, glyoxylate cycle, HMP, glycerol synthesis pathway, and redox pathway in S. cerevisiae cells. In the presence of L. plantarum, the carbon flux in S. cerevisiae cells was redistributed from fermentation to respiratory and more reducing power was produced to deal with the excess NADH. Moreover, L. plantarum contamination might confer higher ethanol tolerance to yeast cells through promoting accumulation of glycerol. These results also highlighted our knowledge about relationship between contaminative lactic acid bacteria and S. cerevisiae during bioethanol fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Molecular Detection of Breast Cancer
1998-02-01
treatment-resistant cancer cells. Clearly new approaches are needed to treat these diseases. This project is designed to develop novel approaches to...detect breast cancer cells that contaminate peripheral blood and bone marrow, and to remove such contaminating cells. An RT-PCR assay has been developed ...to detect breast cancer cells, and a novel gene therapy vector has been developed to kill contaminating cancer cells. Blood and bone marrow samples
Valletta, Elisa; Kučera, Lukáš; Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr
2016-01-01
Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.
Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr
2016-01-01
Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general. PMID:26821236
Return to normality after a radiological emergency.
Lochard, J; Prêtre, S
1995-01-01
Some preliminary considerations from the management of post-accident situations connected to large scale and high land contamination are presented. The return to normal, or at least acceptable living conditions, as soon as reasonably achievable, and the prevention of the possible emergence of a post-accident crisis is of key importance. A scheme is proposed for understanding the dynamics of the various phases after an accident. An attempt is made to characterize some of the parameters driving the acceptability of post-accident situations. Strategies to return to normal living conditions in contaminated areas are considered.
Assi, Mohamad; Dauguet, Nicolas; Jacquemin, Patrick
2018-01-01
The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells. PMID:29535635
Assi, Mohamad; Dauguet, Nicolas; Jacquemin, Patrick
2018-01-01
The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells.
Genome-Wide High-Resolution aCGH Analysis of Gestational Choriocarcinomas
Poaty, Henriette; Coullin, Philippe; Peko, Jean Félix; Dessen, Philippe; Diatta, Ange Lucien; Valent, Alexander; Leguern, Eric; Prévot, Sophie; Gombé-Mbalawa, Charles; Candelier, Jean-Jacques; Picard, Jean-Yves; Bernheim, Alain
2012-01-01
Eleven samples of DNA from choriocarcinomas were studied by high resolution CGH-array 244 K. They were studied after histopathological confirmation of the diagnosis, of the androgenic etiology and after a microsatellite marker analysis confirming the absence of contamination of tumor DNA from maternal DNA. Three cell lines, BeWo, JAR, JEG were also studied by this high resolution pangenomic technique. According to aCGH analysis, the de novo choriocarcinomas exhibited simple chromosomal rearrangements or normal profiles. The cell lines showed various and complex chromosomal aberrations. 23 Minimal Critical Regions were defined that allowed us to list the genes that were potentially implicated. Among them, unusually high numbers of microRNA clusters and imprinted genes were observed. PMID:22253721
Prenatal diagnosis of cystic fibrosis: 10-years experience.
Hadj Fredj, S; Ouali, F; Siala, H; Bibi, A; Othmani, R; Dakhlaoui, B; Zouari, F; Messaoud, T
2015-06-01
We present in this study our 10years experience in prenatal diagnosis of cystic fibrosis performed in the Tunisian population. Based on family history, 40 Tunisian couples were selected for prenatal diagnosis. Fetal DNA was isolated from amniotic fluid collected by transabdominal amniocentesis or from chronic villi by transcervical chorionic villus sampling. The genetic analysis for cystic fibrosis mutations was performed by denaturant gradient gel electrophoresis and denaturing high-pressure liquid phase chromatography. We performed microsatellites analysis by capillary electrophoresis in order to verify the absence of maternal cell contamination. Thirteen fetuses were affected, 21 were heterozygous carriers and 15 were healthy with two normal alleles of CFTR gene. Ten couples opted for therapeutic abortion. The microsatellites genotyping showed the absence of contamination of the fetal DNA by maternal DNA in 93.75%. Our diagnostic strategy provides rapid and reliable prenatal diagnosis at risk families of cystic fibrosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Toxicity of copper on the growth of marine microalgae Pavlova sp. and its chlorophyll-a
NASA Astrophysics Data System (ADS)
Purbonegoro, T.; Suratno; Puspitasari, R.; Husna, N. A.
2018-02-01
Marine microalgae is the primary producer at the base of the marine food chain. Their sensitivity to metal contamination provides important information for predicting the environmental impact of pollution. Toxicity testing using marine microalgae Pavlova sp. was carried out to assess the toxicity of copper on the growth and chlorophyll-a content. Results of this study show that adverse effects were observed by the increase of copper concentration. Cell number began to decrease at the lowest concentration (13 μg/L) and reduced drastically at 98 μg/L. Minimum cell number was observed at the highest concentration (890 μg/L). The inhibition concentration (IC50) value of copper for Pavlova sp. was 51.46 μg/L and at concentrations >29 μgL-1 the chlorophyll-a content decreased dramatically compared to the control. A variation in cell size and morphology was also observed at the higher concentration by the increase in the cell size and loss of setae compared to normal cells.
Bagher, Zohreh; Ebrahimi-Barough, Somayeh; Azami, Mahmoud; Mirzadeh, Hamid; Soleimani, Mansooreh; Ai, Jafar; Nourani, Mohammad Reza; Joghataei, Mohammad Taghi
2015-10-01
The most important property of stem cells from different sources is the capacity to differentiate into various cells and tissue types. However, problems including contamination, normal karyotype, and ethical issues cause many limitations in obtaining and using these cells from different sources. The cells in Wharton's jelly region of umbilical cord represent a pool source of primitive cells with properties of mesenchymal stem cells (MSCs). The aim of this study was to determine the potential of human Wharton's jelly-derived mesenchymal stem cells (WJMSCs) for differentiation to motor neuron cells. WJMSCs were induced to differentiate into motor neuron-like cells by using different signaling molecules and neurotrophic factors in vitro. Differentiated neurons were then characterized for expression of motor neuron markers including nestin, PAX6, NF-H, Islet 1, HB9, and choline acetyl transferase (ChAT) by quantitative reverse transcription PCR and immunocytochemistry. Our results showed that differentiated WJMSCs could significantly express motor neuron biomarkers in RNA and protein levels 15 d post induction. These results suggested that WJMSCs can differentiate to motor neuron-like cells and might provide a potential source in cell therapy for neurodegenerative disease.
Olarerin-George, Anthony O.; Hogenesch, John B.
2015-01-01
Mycoplasmas are notorious contaminants of cell culture and can have profound effects on host cell biology by depriving cells of nutrients and inducing global changes in gene expression. Over the last two decades, sentinel testing has revealed wide-ranging contamination rates in mammalian culture. To obtain an unbiased assessment from hundreds of labs, we analyzed sequence data from 9395 rodent and primate samples from 884 series in the NCBI Sequence Read Archive. We found 11% of these series were contaminated (defined as ≥100 reads/million mapping to mycoplasma in one or more samples). Ninety percent of mycoplasma-mapped reads aligned to ribosomal RNA. This was unexpected given 37% of contaminated series used poly(A)-selection for mRNA enrichment. Lastly, we examined the relationship between mycoplasma contamination and host gene expression in a single cell RNA-seq dataset and found 61 host genes (P < 0.001) were significantly associated with mycoplasma-mapped read counts. In all, this study suggests mycoplasma contamination is still prevalent today and poses substantial risk to research quality. PMID:25712092
Henrietta Lacks, HeLa cells, and cell culture contamination.
Lucey, Brendan P; Nelson-Rees, Walter A; Hutchins, Grover M
2009-09-01
Henrietta Lacks died in 1951 of an aggressive adenocarcinoma of the cervix. A tissue biopsy obtained for diagnostic evaluation yielded additional tissue for Dr George O. Gey's tissue culture laboratory at Johns Hopkins (Baltimore, Maryland). The cancer cells, now called HeLa cells, grew rapidly in cell culture and became the first human cell line. HeLa cells were used by researchers around the world. However, 20 years after Henrietta Lacks' death, mounting evidence suggested that HeLa cells contaminated and overgrew other cell lines. Cultures, supposedly of tissues such as breast cancer or mouse, proved to be HeLa cells. We describe the history behind the development of HeLa cells, including the first published description of Ms Lacks' autopsy, and the cell culture contamination that resulted. The debate over cell culture contamination began in the 1970s and was not harmonious. Ultimately, the problem was not resolved and it continues today. Finally, we discuss the philosophical implications of the immortal HeLa cell line.
Effect of environmental contaminants on mammalian testis.
Manfo, Faustin P T; Nantia, Edouard A; Mathur, Premendu P
2014-01-01
Exposure of humans and wildlife to pollutants released in the environment is a centre of attention nowadays. Many of these chemicals (generally referred to as environmental pollutants) have been shown to interfere with normal hormonal signalling and biological functions, leading to reproductive disorders or infertility, which has been a matter of concern within the recent decades. The present paper reviews adverse effects of these toxicants on mammalian testes, with emphasis on alteration of steroidogenesis, spermatogenesis, and histopathological effects. From the publications reviewed, it appears that environmental toxicants, especially heavy metals and organic chemicals of synthetic and microbiological origins, disrupt hormone production and action in the mammalian testes. Endocrine disruption leads to disorders of testicular function and thereby compromises the normal phenotypic development of male sexual characteristics, initiation and maintenance of spermatogenesis. The toxicants also induce impairment of testicular cells function, testicular histology, and sperm cells function directly. The release of the toxicants in the environment is still ongoing, despite alarming quantities that already exist in the atmosphere. If appropriate measures are not taken, their impact on the male reproductive function and especially on testicular function will be more serious.
Groundwater contaminant plume maps and volumes, 100-K and 100-N Areas, Hanford Site, Washington
Johnson, Kenneth H.
2016-09-27
This study provides an independent estimate of the areal and volumetric extent of groundwater contaminant plumes which are affected by waste disposal in the 100-K and 100-N Areas (study area) along the Columbia River Corridor of the Hanford Site. The Hanford Natural Resource Trustee Council requested that the U.S. Geological Survey perform this interpolation to assess the accuracy of delineations previously conducted by the U.S. Department of Energy and its contractors, in order to assure that the Natural Resource Damage Assessment could rely on these analyses. This study is based on previously existing chemical (or radionuclide) sampling and analysis data downloaded from publicly available Hanford Site Internet sources, geostatistically selected and interpreted as representative of current (from 2009 through part of 2012) but average conditions for groundwater contamination in the study area. The study is limited in scope to five contaminants—hexavalent chromium, tritium, nitrate, strontium-90, and carbon-14, all detected at concentrations greater than regulatory limits in the past.All recent analytical concentrations (or activities) for each contaminant, adjusted for radioactive decay, non-detections, and co-located wells, were converted to log-normal distributions and these transformed values were averaged for each well location. The log-normally linearized well averages were spatially interpolated on a 50 × 50-meter (m) grid extending across the combined 100-N and 100-K Areas study area but limited to avoid unrepresentative extrapolation, using the minimum curvature geostatistical interpolation method provided by SURFER®data analysis software. Plume extents were interpreted by interpolating the log-normally transformed data, again using SURFER®, along lines of equal contaminant concentration at an appropriate established regulatory concentration . Total areas for each plume were calculated as an indicator of relative environmental damage. These plume extents are shown graphically and in tabular form for comparison to previous estimates. Plume data also were interpolated to a finer grid (10 × 10 m) for some processing, particularly to estimate volumes of contaminated groundwater. However, hydrogeologic transport modeling was not considered for the interpolation. The compilation of plume extents for each contaminant also allowed estimates of overlap of the plumes or areas with more than one contaminant above regulatory standards.A mapping of saturated aquifer thickness also was derived across the 100-K and 100–N study area, based on the vertical difference between the groundwater level (water table) at the top and the altitude of the top of the Ringold Upper Mud geologic unit, considered the bottom of the uppermost unconfined aquifer. Saturated thickness was calculated for each cell in the finer (10 × 10 m) grid. The summation of the cells’ saturated thickness values within each polygon of plume regulatory exceedance provided an estimate of the total volume of contaminated aquifer, and the results also were checked using a SURFER® volumetric integration procedure. The total volume of contaminated groundwater in each plume was derived by multiplying the aquifer saturated thickness volume by a locally representative value of porosity (0.3).Estimates of the uncertainty of the plume delineation also are presented. “Upper limit” plume delineations were calculated for each contaminant using the same procedure as the “average” plume extent except with values at each well that are set at a 95-percent upper confidence limit around the log-normally transformed mean concentrations, based on the standard error for the distribution of the mean value in that well; “lower limit” plumes are calculated at a 5-percent confidence limit around the geometric mean. These upper- and lower-limit estimates are considered unrealistic because the statistics were increased or decreased at each well simultaneously and were not adjusted for correlation among the well distributions (i.e., it is not realistic that all wells would be high simultaneously). Sources of the variability in the distributions used in the upper- and lower-extent maps include time varying concentrations and analytical errors.The plume delineations developed in this study are similar to the previous plume descriptions developed by U.S. Department of Energy and its contractors. The differences are primarily due to data selection and interpolation methodology. The differences in delineated plumes are not sufficient to result in the Hanford Natural Resource Trustee Council adjusting its understandings of contaminant impact or remediation.
The Effect of Airborne Contaminants on Fuel Cell Performance and Durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
St-Pierre, Jean; Pasaogullari, Ugur; Cheng, Tommy
The impact of contaminants on fuel cell performance was examined to document air filter specifications (prevention) and devise recovery procedures (maintenance) that are effective at the system level. Eight previously undocumented airborne contaminants were selected for detailed studies and characterization data was used to identify operating conditions that intensifying contamination effects. The use of many and complementary electrochemical, chemical and physical characterization methods and the derivation of several mathematical models supported the formulation of contamination mechanisms and the development of recovery procedures. The complexity of these contamination mechanisms suggests a shift to prevention and generic maintenance measures. Only two ofmore » the selected contaminants led to cell voltage losses after injection was interrupted. Proposed recovery procedures for calcium ions, a component of road de-icers, dessicants, fertilizers and soil conditioners, were either ineffective or partly effective, whereas for bromomethane, a fumigant, the cell voltage was recovered to its initial value before contamination by manipulating and sequencing operating conditions. However, implementation for a fuel cell stack and system remains to be demonstrated. Contamination mechanisms also led to the identification of membrane durability stressors. All 8 selected contaminants promote the formation of hydrogen peroxide, a known agent that can produce radicals that attack the ionomer and membrane molecular structure whereas the dehydrating effect of calcium ions on the ionomer and membrane increases their brittleness and favors the creation of pinholes under mechanical stresses. Data related to acetylene, acetonitrile and calcium ions are emphasized in the report.« less
Zuber, Sophie; Boissin‐Delaporte, Catherine; Michot, Lise; Iversen, Carol; Diep, Benjamin; Brüssow, Harald; Breeuwer, Pieter
2008-01-01
Summary Enterobacter sakazakii (Cronobacter spp.) is an opportunistic pathogen, which can cause rare, but life‐threatening infections in neonates and infants through feeding of a contaminated milk formula. We isolated 67 phages from environmental samples and tested their lytic host range on a representative collection of 40 E. sakazakii strains. A cocktail of five phages prevented the outgrowth of 35 out of 40 test strains in artificially contaminated infant formula. Two E. sakazakii phages represented prolate head Myoviridae. Molecular tests identified them as close relatives of Escherichia coli phage T4. The remaining three phages represented isometric head Myoviridae with large genome size of 140 and 200 kb, respectively, which belonged to two different DNA hybridization groups. A high dose of 108 pfu ml−1 of phage could effectively sterilize a broth contaminated with both high and low pathogen counts (106 and 102 cfu ml−1). In contrast, broth inoculated with 104 phage and 102 bacteria per ml first showed normal bacterial growth until reaching a cell titre of 105 cfu ml−1. Only when crossing this threshold, phage replication started, but it could not reduce the contamination level below 100 cfu ml−1. Phages could be produced with titres of 1010 pfu ml−1 in broth culture, but they were not stable upon freeze‐drying. Addition of trehalose or milk formula stabilized the phage preparation, which then showed excellent storage stability even at elevated temperature. PMID:21261874
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.
1995-05-01
Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) havemore » been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.« less
Khan, Jenna; Lieberman, Joshua A; Lockwood, Christina M
2017-05-01
microRNAs (miRNAs) hold promise as biomarkers for a variety of disease processes and for determining cell differentiation. These short RNA species are robust, survive harsh treatment and storage conditions and may be extracted from blood and tissue. Pre-analytical variables are critical confounders in the analysis of miRNAs: we elucidate these and identify best practices for minimizing sample variation in blood and tissue specimens. Pre-analytical variables addressed include patient-intrinsic variation, time and temperature from sample collection to storage or processing, processing methods, contamination by cells and blood components, RNA extraction method, normalization, and storage time/conditions. For circulating miRNAs, hemolysis and blood cell contamination significantly affect profiles; samples should be processed within 2 h of collection; ethylene diamine tetraacetic acid (EDTA) is preferred while heparin should be avoided; samples should be "double spun" or filtered; room temperature or 4 °C storage for up to 24 h is preferred; miRNAs are stable for at least 1 year at -20 °C or -80 °C. For tissue-based analysis, warm ischemic time should be <1 h; cold ischemic time (4 °C) <24 h; common fixative used for all specimens; formalin fix up to 72 h prior to processing; enrich for cells of interest; validate candidate biomarkers with in situ visualization. Most importantly, all specimen types should have standard and common workflows with careful documentation of relevant pre-analytical variables.
Schwarz, Harald; Schmittner, Maria; Duschl, Albert; Horejs-Hoeck, Jutta
2014-01-01
Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002–2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14. PMID:25478795
Epigenetic programming alterations in alligators from environmentally contaminated lakes
Guillette, Louis J.; Parrott, Benjamin B.; Nilsson, Eric; Haque, M.M.; Skinner, Michael K.
2016-01-01
Previous studies examining the reproductive health of alligators in Florida lakes indicate that a variety of developmental and health impacts can be attributed to a combination of environmental quality and exposures to environmental contaminants. The majority of these environmental contaminants have been shown to disrupt normal endocrine signaling. The potential that these environmental conditions and contaminants may influence epigenetic status and correlate to the health abnormalities was investigated in the current study. The red blood cell (RBC) (erythrocyte) in the alligator is nucleated so was used as an easily purified marker cell to investigate epigenetic programming. RBCs were collected from adult male alligators captured at three sites in Florida, each characterized by varying degrees of contamination. While Lake Woodruff (WO) has remained relatively pristine, Lake Apopka (AP) and Merritt Island (MI) convey exposures to different suites of contaminants. DNA was isolated and methylated DNA immuno-precipitation (MeDIP) was used to isolate methylated DNA that was then analyzed in a competitive hybridization using a genome-wide alligator tiling array for a MeDIP-Chip analysis. Pairwise comparisons of alligators from AP and MI to WO revealed alterations in the DNA methylome. The AP vs. WO comparison identified 85 differential DNA methylation regions (DMRs) with ⩾3 adjacent oligonucleotide tiling array probes and 15,451 DMRs with a single oligo probe analysis. The MI vs. WO comparison identified 75 DMRs with the ⩾3 oligo probe and 17,411 DMRs with the single oligo probe analysis. There was negligible overlap between the DMRs identified in AP vs. WO and MI vs. WO comparisons. In both comparisons DMRs were primarily associated with CpG deserts which are regions of low CpG density (1–2 CpG/100 bp). Although the alligator genome is not fully annotated, gene associations were identified and correlated to major gene class functional categories and pathways of endocrine relevance. Observations demonstrate that environmental quality may be associated with epigenetic programming and health status in the alligator. The epigenetic alterations may provide biomarkers to assess the environmental exposures and health impacts on these populations of alligators. PMID:27080547
Surgical Borescopes Remove Contaminants
NASA Technical Reports Server (NTRS)
Vallow, K.
1987-01-01
Borescope instruments put to use in extracting hard-to-reach particles. Surgical instruments in flexible borescopes used for removing contaminant particles from normally inaccessible places within equipment. Instruments readily enter small openings, turn corners, and reach far.
Risk Mitigation in Preventing Adventitious Agent Contamination of Mammalian Cell Cultures.
Shiratori, Masaru; Kiss, Robert
2017-11-14
Industrial-scale mammalian cell culture processes have been contaminated by viruses during the culturing phase. Although the historical frequency of such events has been quite low, the impact of contamination can be significant for the manufacturing company and for the supply of the product to patients. This chapter discusses sources of adventitious agent contamination risk in a cell culture process, provides a semiquantitative assessment of such risks, and describes potential process barriers that can be used to reduce contamination risk. High-temperature, short-time (HTST) heat treatment is recommended as the process barrier of choice, when compatible with the process. A case study assessing the compatibility of HTST heat treatment with a cell culture medium is presented, and lessons learned are shared from our experiences over many years of developing and implementing virus barriers in mammalian cell culture processes. Graphical Abstract.
Continuous hematopoietic cell lines as model systems for leukemia-lymphoma research.
Drexler, H G; Matsuo, A Y; MacLeod, R A
2000-11-01
Along with other improvements, the advent of continuous human leukemia-lymphoma (LL) cell lines as a rich resource of abundant, accessible and manipulable living cells has contributed significantly to a better understanding of the pathophysiology of hematopoietic tumors. The first LL cell lines, Burkitt's lymphoma-derived lines, were established in 1963. Since then, more than 1000 cell lines have been described, although not all of them in full detail. The major advantages of continuous cell lines is the unlimited supply and worldwide availability of identical cell material, and the infinite viable storability in liquid nitrogen. LL cell lines are characterized generally by monoclonal origin and differentiation arrest, sustained proliferation in vitro under preservation of most cellular features, and specific genetic alterations. The most practical classification of LL cell lines assigns them to one of the physiologically occurring cell lineages, based on their immunophenotype, genotype and functional features. Truly malignant cell lines must be discerned from Epstein-Barr virus (EBV)-immortalized normal cells, using various distinguishing parameters. However, the picture is not quite so straightforward, as some types of LL cell lines are indeed EBV+, and some EBV+ normal cell lines carry also genetic aberrations and may mimic malignancy-associated features. Apart from EBV and human T-cell leukemia virus in some lines, the majority of wild-type LL cell lines are virus-negative. The efficiency of cell line establishment is rather low and the deliberate establishment of new LL cell lines remains by and large an unpredictable random process. Difficulties in establishing continuous cell lines may be caused by the inappropriate selection of nutrients and growth factors for these cells. Clearly, a generally suitable microenvironment for hematopoietic cells, either malignant or normal, cannot yet be created in vitro. The characterization and publication of new LL cell lines should provide important and informative core data, attesting to their scientific significance. Large percentages of LL cell lines are contaminated with mycoplasma (about 30%) or are cross-contaminated with other cell lines (about 15-20%). Solutions to these problems are sensitive detection, effective elimination and rigorous prevention of mycoplasma infection, and proper, regular authentication of cell lines. The underlying cause, however, appears to be negligent cell culture practice. The willingness of investigators to make their LL cell lines available to others is all too often limited. There is a need in the scientific community for clean and authenticated high-quality LL cell lines to which every scientist has access. These are offered by various institutionalized public cell line banks. It has been argued that LL cell lines are genetically unstable (both cytogenetically and molecular genetically). For instance, cell lines are supposed to acquire numerical and structural chromosomal alterations and various types of mutations (e.g. point mutations) in vitro. We present evidence that while nearly 100% of all LL cell lines indeed carry genetic alterations, these alterations appear to be stable rather than unstable. As an example of the practical utility of LL cell lines, the recent advances in studies of classical and molecular cytogenetics, which in large part were made possible by cell lines, are highlighted. A list of the most useful, robust and publicly available reference cell lines that may be used for a variety of experimental purposes is proposed. Clearly, by opening new avenues for investigation, studies of LL cell lines have provided seminal insights into the biology of hematopoietic neoplasia. Over a period of nearly four decades, these initially rather exotic cell cultures, known only to a few specialists, have become ubiquitous powerful research tools that are available to every investigator.
NASA Astrophysics Data System (ADS)
Zhai, Yunfeng; St-Pierre, Jean
2017-12-01
Realistically, proton exchange membrane fuel cells (PEMFCs) are operated under varying operating conditions that potentially impact the acetylene contamination reactions. In this paper, the effects of the cell operating conditions on the acetylene contamination in PEMFCs are investigated under different current densities and temperatures with different acetylene concentrations in the cathode. Electrochemical impedance spectroscopy is applied during the constant-current operation to analyze the impacts of the operating conditions on the acetylene electrochemical reactions. The experimental results indicate that higher acetylene concentrations, higher current densities and lower cell temperatures decrease the cell performance more. In particular, cathode poisoning becomes more severe at medium cell current densities. The cell cathode potentials at such current densities are not sufficient to completely oxidize the intermediate or sufficiently low to completely reduce the adsorbed acetylene. Based on these investigations, the possible condition-dependent limitations of the acetylene concentration and cell operating voltage are proposed for insight into the acetylene contamination mitigation stratagem. Regarding the barrier conditions, the acetylene reactions change abruptly, and adjusting the cell operation parameters to change the acetylene adsorbate and intermediate accumulation conditions to induce complete oxidation or reduction conditions may mitigate the severe acetylene contamination effects on PEMFCs.
Revajová, Viera; Levkut, Mikuláš; Levkutová, Mária; Bořutová, Radka; Grešaková, Lubomíra; Košiková, Božena; Leng, Lubomír
2013-09-01
The objective of the study was to investigate the effects of lignin supplementation of a diet contaminated with the Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEA) on peripheral blood leukocytes and duodenal immunocompetent cells in broiler chickens. From day 1 after hatching, all chickens were fed an identical control diet for two weeks. Then chickens of Group 1 continued to be fed the control diet, whereas Group 2 was fed the same diet supplemented with lignin at 0.5% level. Simultaneously, Group 3 started to receive a diet contaminated with DON (2.95 mg kg-1) and ZEA (1.59 mg kg-1), while Group 4 received an identical contaminated diet supplemented with 0.5% lignin for further two weeks. Samples of blood and duodenal tissue were collected from 6 birds of each group at 4 weeks of age. Neither counts of white blood cells nor phagocytic function in the peripheral blood were significantly affected in the mycotoxin- and/or lignin-treated birds. As compared to the control, increased numbers of IgM-bearing cells were found in the peripheral blood in Group 3 fed the contaminated diet (P < 0.05) and in Group 4 given the contaminated diet supplemented with lignin (P < 0.01). While the contaminated diet led to reduced numbers of duodenal CD4+ cells, in Group 2 treated only with lignin the number of duodenal CD4+ cells was increased. Lignin enrichment of the contaminated diet did not eliminate the mycotoxin-induced reduction in the number of duodenal CD4+ cells. The results suggest that dietary supplementation of lignin as an indigestible compound to poultry feed may increase the density of some intestinal immunocompetent cells without exerting effects on that in the peripheral blood. However, when added to a diet contaminated with Fusarium mycotoxins, lignin did not prevent the mycotoxin-induced changes in the numbers of blood and intestinal immunocompetent cells.
Cryptic extended brood care in the facultatively eusocial sweat bee Megalopta genalis.
Quiñones, A E; Wcislo, W T
As a result of different brood cell provisioning strategies, nest-making insects may differ in the extent to which adults regularly provide extended parental care to their brood beyond nest defense. Mass-provisioning species cache the entire food supply needed for larval development prior to the oviposition and typically seal the brood cell. It is usually assumed that there is no regular contact between the adult(s) and brood. Here, we show that the bee, Megalopta genalis , expresses a form of cryptic brood care, which would not be observed during normal development. Following experimental injections of different provisioning materials into brood cells, foundresses reopened manipulated cells and the brood were aborted in some cases, implying that the foundresses assessed conditions within the cells. In aborted cells, foundresses sometimes laid a second egg after first removing dead larvae, previously stored pollen and contaminants. Our results show that hygienic brood care can be cryptic and hence may be more widespread than previously believed, lending support to the hypothesis that extended parental care is a preadaptation toward eusociality.
Cohen, A J; Bunn, P A; Franklin, W; Magill-Solc, C; Hartmann, C; Helfrich, B; Gilman, L; Folkvord, J; Helm, K; Miller, Y E
1996-02-15
Neutral endopeptidase (NEP; CALLA, CD10, EC 3.4.24.11) is a cell surface endopeptidase that hydrolyses bioactive peptides, including the bombesin-like peptides, as well as other neuropeptides. Bombesin-like peptides and other neuropeptides are autocrine growth factors for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Low expression of NEP has been reported in SCLC and NSCLC cell lines. NEP inhibition has been shown to increase proliferation in one cell line. To date, NEP expression has not been quantitatively evaluated in normal adult lung, SCLC or NSCLC tumors, paired uninvolved lung from the same patient, or in other pulmonary neoplasms such as mesotheliomas and carcinoids. We examined the expression of NEP in these tissues and human cell lines using immunohistochemistry, flow cytometry, enzyme activity, ELISA, Western blot, and reverse transcription (RT)-PCR. Uninvolved lung tissue from different individuals displayed considerable variation in NEP activity and protein. By immunohistochemistry, NEP expression was detectable in alveolar and airway epithelium, fibroblasts of normal lung, and in mesotheliomas, whereas it was undetectable in most SCLC, adenocarcinoma, squamous cell carcinoma, and carcinoid tumors of the lung. NEP activity and protein levels were lower in all SCLC and adenocarcinoma tumors when compared to adjacent uninvolved lung, often at levels consistent with expression derived from contaminating stroma. NEP expression and activity were reduced or undetectable in most SCLC and lung adenocarcinoma cell lines. NEP mRNA by RT-PCR was not expressed or was in low abundance in the majority of lung cancer cell lines. The majority of lung tumors did not express NEP by RT-PCR as compared with normal adjacent lung. In addition, recombinant NEP abolished, whereas an NEP inhibitor potentiated, the calcium flux generated by neuropeptides in some lung cancer cell lines, demonstrating potential physiological significance for low NEP expression. NEP, therefore, is a signal transduction and possibly a growth modulator for both SCLC and NSCLC, emphasizing the role of neuropeptides in the pathogenesis of the major histological forms of lung cancer.
Geng, J; Liu, C; Zhou, X C; Ma, J; Du, L; Lu, J; Zhou, W N; Hu, T T; Lyu, L J; Yin, A H
2017-02-25
Objective: To develop a new method based on droplet digital PCR (DD-PCR) for detection and quantification of maternal cell contamination in prenatal diagnosis. Methods: Invasive prenatal samples from 40 couples of β(IVS-Ⅱ-654)/β(N) thalassemia gene carriers who accepted prenatal diagnosis in Affiliated Women and Children's Hospital of Guangzhou Medical University from October 2015 to December 2016 were analyzed retrospectively. Specific primers and probes were designed. The concentration gradient were 50%, 25%, 12.5%, 6.25%, 3.125%, 1.562 5%. There were 40 groups of prenatal diagnostic samples. Comparing DD-PCR with quantitative fluorescent-PCR (QF-PCR) based on the short tandem repeats for assement of the sensitivity and accuracy of maternal cell contamination, respectively. Results: DD-PCR could quantify the maternal cell contamination as low as 1.562 5%. The result was proportional to the dilution titers. In the 40 prenatal samples, 6 cases (15%, 6/40) of maternal cell contamination were detected by DD-PCR, while the QF-PCR based on short tandem repeat showed 3 cases (7.5%, 3/40) with maternal cell contamination, DD-PCR was more accurate ( P= 0.002) . Conclusion: DD-PCR is a precise and sensitive method in the detection of maternal cell contamintation. It could be useful in clinical application.
Beckstrom, A C; Cleman, P E; Cassis-Ghavami, F L; Kamitsuka, M D
2013-12-01
To determine the bacterial contamination rate of the parent's cell phone and the effectiveness of anti-microbial gel in reducing transmission of bacteria from cell phone to hands. Cross-sectional study of cultures from the cell phone and hands before and after applying anti-microbial gel (n=50). All cell phones demonstrated bacterial contamination. Ninety percent had the same bacteria on the cell phone and their cleaned hands. Twenty two percent had no growth on their hands after applying anti-microbial gel after they had the same bacteria on the cell phone and hands. Ninety-two percent of parents were aware that cell phones carried bacteria, but only 38% cleaned their cell phones at least weekly. Bacterial contamination of cell phones may serve as vectors for nosocomial infection in the neonatal intensive care unit. Bacteria transmitted from cell phone to hands may not be eliminated using anti-microbial gel. Development of hand hygiene and cell phone cleaning guidelines are needed regarding bedside cell phone use.
Neurotoxicity of Thyroid Disrupting Contaminants
Thyroid hormones playa critical role in the normal development ofthe mammalian brain. Thyroid disrupting chemicals (TDCs) are environmental contaminants that alter the structure or function ofthe thyroid gland, alter regulatory enzymes associated with thyroid hormone (TH) homeost...
[Establishment of Assessment Method for Air Bacteria and Fungi Contamination].
Zhang, Hua-ling; Yao, Da-jun; Zhang, Yu; Fang, Zi-liang
2016-03-15
In this paper, in order to settle existing problems in the assessment of air bacteria and fungi contamination, the indoor and outdoor air bacteria and fungi filed concentrations by impact method and settlement method in existing documents were collected and analyzed, then the goodness of chi square was used to test whether these concentration data obeyed normal distribution at the significant level of α = 0.05, and combined with the 3σ principle of normal distribution and the current assessment standards, the suggested concentrations ranges of air microbial concentrations were determined. The research results could provide a reference for developing air bacteria and fungi contamination assessment standards in the future.
Minimizing electrode contamination in an electrochemical cell
Kim, Yu Seung; Zelenay, Piotr; Johnston, Christina
2014-12-09
An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.
Immunosuppression in harbour seals fed fish from the contaminated Baltic Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, P.S.; Swart, R.L. de; Timmerman, H.H.
Environmental contaminants including dioxins and polychlorinated biphenyls have been shown to be immunotoxic in laboratory animals, but little information exists as to their possible effect on mammals in the natural environment. Recent virus-induced mass mortalities among marine mammals occupying high trophic levels have led to much speculation regarding a possible contributory role of pollutants in these events. The authors undertook a two-year captive feeding experiment with harbor seals, Phoca vitulina, where one group was fed herring from the contaminated Baltic Sea and a second group was fed relatively uncontaminated herring from the Atlantic Ocean. During the course of the experiment,more » they regularly sampled blood and undertook a series of immune function tests. They observed a significant impairment of natural killer cell activity and T-lymphocyte function, in vitro, in the group of seals fed the Baltic Sea fish. In addition, seals of this group were less able to mount a specific humoral and delayed type hypersensitivity response to a protein antigen, ovalbumin, upon immunization. Increased numbers of granulocytes in this group may have reflected periodic bacterial infections as a consequence of impaired immune function. Their results suggest that pollutants accumulated through the food chain in contaminated marine waters may suppress normal immune responses in marine mammals and lead to an increased susceptibility to opportunistic infection.« less
Jean, Audrey; Tardy, Florence; Allatif, Omran; Grosjean, Isabelle; Blanquier, Bariza
2017-01-01
Mycoplasmas (a generic name for Mollicutes) are a predominant bacterial contaminant of cell culture and cell derived products including viruses. This prokaryote class is characterized by very small size and lack of a cell wall. Consequently, mycoplasmas escape ultrafiltration and visualization under routine microscopic examination, hence the ease with which cells in culture can be contaminated, with routinely more than 10% of cell lines being contaminated. Mycoplasma are a formidable threat both in fundamental research by perverting a whole range of cell properties and functions and in the pharmacological use of cells and cell derived products. Although many methods have been developed, there is still a need for a sensitive, universal assay. Here is reported the development and validation of a quantitative polymerase chain reaction (qPCR) based on the amplification of a 1.5 kb fragment covering the 16S rDNA of the Mollicute class by real-time PCR using universal U1 and U8 degenerate primers. The method includes the addition of a DNA loading probe to each sample to monitor DNA extraction and the absence of PCR inhibitors in the extracted DNA, a positive mycoplasma 16S rDNA traceable reference sample to exclude any accidental contamination of an unknown sample with this reference DNA, an analysis procedure based on the examination of the melting curve and the size of the PCR amplicon, followed by quantification of the number of 16S rDNA copies (with a lower limit of 19 copies) when relevant, and, if useful, the identification of the contaminating prokaryote by sequencing. The method was validated on a collection of mycoplasma strains and by testing over 100 samples of unknown contamination status including stocks of viruses requiring biosafety level 2, 3 or 4 containments. When compared to four established methods, the m16S_qPCR technique exhibits the highest sensitivity in detecting mycoplasma contamination. PMID:28225826
Dal, Mehmet Sinan; Tekgündüz, Emre; Çakar, Merih Kızıl; Kaya, Ali Hakan; Namdaroğu, Sinem; Batgi, Hikmetullah; Bekdemir, Filiz; Uncu Ulu, Bahar; Yiğenoğlu, Tuğçe Nur; Kılınç, Ali; İskender, Dicle; Uğur, Bilge; Koçubaba, Şerife; İskender, Gülşen; Altuntaş, Fevzi
2016-08-01
Microbial contamination can be a marker for faulty process and is assumed to play an important role in the collection of hematopoietic progenitor cell (HPC) and infusion procedure. We aimed to determine the microbial contamination rates and evaluate the success of hematopoietic cell transplantation (HCT) in patients who received contaminated products. We analyzed microbial contamination records of HPC grafts between 2012 and 2015, retrospectively. Contamination rates of autologous donors were evaluated for at three steps: at the end of mobilization, following processing with dimethyl sulfoxide, and just before stem cell infusion. Grafts of allogeneic donors were assessed only before HCT. A total of 445 mobilization procedures were carried out on 333 (167 autologous and 166 allogeneic) donors. The microbiological contamination of peripheral blood (323/333 donations) and bone marrow (10/333 donations) products were analyzed. Bacterial contamination was detected in 18 of 1552 (1.15 %) culture bottles of 333 donors. During the study period 248 patients underwent HCT and among these patients microbial contamination rate on sample basis was 1.3 % (16/1212). Microbial contamination detected in nine patients (7 autologous; 2 allogeneic). In 8 of 9 patients, a febrile neutropenic attack was observed. The median day for the neutropenic fever was 4 days (0-9). None of the patients died within the post-transplant 30 days who received contaminated products. The use of contaminated products with antibiotic prophylaxis may be safe in terms of the first day of fever, duration of fever, neutrophil, platelet engraftment and duration of hospitalization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Field-based Metabolomics for Assessing Contaminated Surface Waters
Metabolomics is becoming well-established for studying chemical contaminant-induced alterations to normal biological function. For example, the literature contains a wealth of laboratory-based studies involving analysis of samples from organisms exposed to individual chemical tox...
Boost, Maureen V; Cho, Pauline
2005-06-01
The purpose of this study is to determine if there are changes in the ocular flora of overnight orthokeratology (ortho-k) patients, and the levels of contamination of their lenses and lens accessories, and to correlate compliance with levels of contamination. Normal ocular flora of 41 subjects was determined twice before commencing ortho-k lens wear by culture of the lower conjunctiva. Further specimens were collected on six follow-up visits after beginning lens wear, as were samples from their lenses, cases, and suction holders. A questionnaire on lens care was administered after the fifth visit. Three subjects provided conjunctival samples yielding Staphylococcus aureus on one occasion before lens wear, one being positive for this organism after beginning lens wear. Of 38 subjects yielding no growth or only normal eye flora before use, 28 remained free of ocular pathogens after beginning lens wear. Only four subjects had positive cultures on more than one occasion after lens wear. There was no significant difference in isolation levels of pathogens with lens wear (p = 0.423). Lens culture of 54% of subjects yielded no growth or normal flora only; lenses of 16 subjects yielded potential pathogens, including three subjects contaminated on more than one occasion. Lens isolates did not match the organisms transiently colonizing the eye. Lens case, the most frequently contaminated item, was associated with lens contamination (p < 0.001), the same organism being isolated from both items in 11 subjects. Lens suction holder was less frequently contaminated. Neither lens case nor suction holder contamination was associated with isolates from the eye. Reported good compliance correlated with lack of contamination in all but one subject. The most frequent breaches in the lens care protocol were failure to clean, disinfect, and replace the lens case. Ocular flora was not altered by ortho-k lens wear over an extended period, and patients remained free of infection. Contaminants identified were generally of a transient nature. Most patients had significant contamination of at least one item, most frequently the lens case. Lens case isolates were significantly associated with those from the lens. The majority of patients reporting good compliance had low or no contamination of their lenses and accessories.
Barile, Michael F.; Malizia, Walter F.; Riggs, Donald B.
1962-01-01
Barile, Michael F. (National Institutes of Health, Bethesda, Md.), Walter F. Malizia, and Donald B. Riggs. Incidence and detection of pleuropneumonia-like organisms in cell cultures by fluorescent antibody and cultural procedures. J. Bacteriol. 84:130–136. 1962—A total of 102 tissue-cell cultures from 17 separate laboratories was examined for pleuropneumonia-like organisms (PPLO) by the fluorescent antibody and cultural procedures. PPLO were isolated from 48 of the 49 tissue-cell cultures found positive for PPLO by the fluorescent antibody procedure, and results of the two procedures agreed in 101 of the 102 (99%) cases. PPLO were isolated from none of 10 primary-cell cultures prepared from six animal species and from 48 of 92 (52%) continuous-cell cultures prepared from eight animal species. Cells grown in media containing antibiotics were more frequently contaminated with PPLO (72%) than cells grown in antibiotic-free media (7%). Cultures (91%) from tissue-culture-producing laboratories and cultures (76%) used for propagation of microorganisms were contaminated with PPLO, although none used for tissue-culture metabolic studies was contaminated. In addition, our findings support the view that PPLO contamination of cell cultures is probably owing to bacterial contaminants which revert to L forms in the presence of antibiotics. Images PMID:13865001
Crépet, Amélie; Albert, Isabelle; Dervin, Catherine; Carlin, Frédéric
2007-01-01
A normal distribution and a mixture model of two normal distributions in a Bayesian approach using prevalence and concentration data were used to establish the distribution of contamination of the food-borne pathogenic bacteria Listeria monocytogenes in unprocessed and minimally processed fresh vegetables. A total of 165 prevalence studies, including 15 studies with concentration data, were taken from the scientific literature and from technical reports and used for statistical analysis. The predicted mean of the normal distribution of the logarithms of viable L. monocytogenes per gram of fresh vegetables was −2.63 log viable L. monocytogenes organisms/g, and its standard deviation was 1.48 log viable L. monocytogenes organisms/g. These values were determined by considering one contaminated sample in prevalence studies in which samples are in fact negative. This deliberate overestimation is necessary to complete calculations. With the mixture model, the predicted mean of the distribution of the logarithm of viable L. monocytogenes per gram of fresh vegetables was −3.38 log viable L. monocytogenes organisms/g and its standard deviation was 1.46 log viable L. monocytogenes organisms/g. The probabilities of fresh unprocessed and minimally processed vegetables being contaminated with concentrations higher than 1, 2, and 3 log viable L. monocytogenes organisms/g were 1.44, 0.63, and 0.17%, respectively. Introducing a sensitivity rate of 80 or 95% in the mixture model had a small effect on the estimation of the contamination. In contrast, introducing a low sensitivity rate (40%) resulted in marked differences, especially for high percentiles. There was a significantly lower estimation of contamination in the papers and reports of 2000 to 2005 than in those of 1988 to 1999 and a lower estimation of contamination of leafy salads than that of sprouts and other vegetables. The interest of the mixture model for the estimation of microbial contamination is discussed. PMID:17098926
DEMONSTRATION BULLETIN: FUNGAL TREATMENT BULLETIN
Fungal treatment technology uses white rot fungi (lignin degrading fungi) to treat organic contaminated soils in situ. Organic materials inoculated with the fungi are mechanically mixed into the contaminated soil. Using enzymes normally produced for wood degradation as well as ot...
High-temperature electrolysis of synthetic seawater using solid oxide electrolyzer cells
NASA Astrophysics Data System (ADS)
Lim, Chee Kuan; Liu, Qinglin; Zhou, Juan; Sun, Qiang; Chan, Siew Hwa
2017-02-01
A Ni-YSZ/YSZ/LSCF-GDC solid oxide electrolyzer cell (SOEC) is used to investigate the effects of seawater electrolysis for hydrogen production through electrolyzing steam produced from simulated seawater bath. Steam electrolysis using an SOEC with its fuel electrode contaminated by sea salt is also investigated. Steam produced from seawater is found to be free of contaminants, which are present in the seawater. Similar electrochemical performance is observed from the polarization curves and impedance spectra when using steam produced from pure water and seawater. Their short-term degradation rates are similar, which are registered at 15% 1000 h-1 for both cases. For the case of direct sea salt contamination in an SOEC's fuel electrode, both the uncontaminated and contaminated cells exhibit rather similar performance as observed from the polarization curves and impedance spectra. The difference in ASR values from the polarization curves and impedance spectra between the uncontaminated and contaminated cell are all within a 10% range. Rather similar short-term degradation rates of 15% 1000 h-1 and 16% 1000 h-1 are recorded for the uncontaminated and contaminated cells, respectively. Post-mortem analysis shows that the sea salt impregnated into the cell has been vaporized at a typical SOEC operating temperature of 800 °C over the period of operation.
Gas phase recovery of hydrogen sulfide contaminated polymer electrolyte membrane fuel cells
NASA Astrophysics Data System (ADS)
Kakati, Biraj Kumar; Kucernak, Anthony R. J.
2014-04-01
The effect of hydrogen sulfide (H2S) on the anode of a polymer electrolyte membrane fuel cell (PEMFC) and the gas phase recovery of the contaminated PEMFC using ozone (O3) were studied. Experiments were performed on fuel cell electrodes both in an aqueous electrolyte and within an operating fuel cell. The ex-situ analyses of a fresh electrode; a H2S contaminated electrode (23 μmolH2S cm-2); and the contaminated electrode cleaned with O3 shows that all sulfide can be removed within 900 s at room temperature. Online gas analysis of the recovery process confirms the recovery time required as around 720 s. Similarly, performance studies of an H2S contaminated PEMFC shows that complete rejuvenation occurs following 600-900 s O3 treatment at room temperature. The cleaning process involves both electrochemical oxidation (facilitated by the high equilibrium potential of the O3 reduction process) and direct chemical oxidation of the contaminant. The O3 cleaning process is more efficient than the external polarization of the single cell at 1.6 V. Application of O3 at room temperature limits the amount of carbon corrosion. Room temperature O3 treatment of poisoned fuel cell stacks may offer an efficient and quick remediation method to recover otherwise inoperable systems.
Gray, Jennifer Sue; Birmingham, Janette Marie; Fenton, Jenifer Imig
2009-01-01
ARTICLE SUMMARY Cell culture model systems are utilized for their ease of use, relative inexpensiveness, and potentially limitless sample size. Reliable results cannot be obtained, however, when cultures contain contamination. This report discusses the observation and identification of mobile black specks observed in multiple cell lines. Cultures of the contamination were grown, and DNA was purified from isolated colonies. The 16S rDNA gene was PCR amplified using primers that will amplify the gene from many genera, and then sequenced. Sequencing results matched the members of the genus Achromobacter, bacteria common in the environment. Achromobacter species have been shown to be resistant to multiple antibiotics. Attempts to decontaminate the eukaryotic cell culture used multiple antibiotics at different concentrations. The contaminating Achromobacter was eventually eliminated, without permanently harming the eukaryotic cells, using a combination of the antibiotics ciprofloxacin and piperacillin. PMID:19926304
Micromonospora is a normal occupant of actinorhizal nodules.
Carro, Lorena; Pujic, Petar; Trujillo, Martha E; Normand, Philippe
2013-11-01
Actinorhizal plants have been found in eight genera belonging to three orders (Fagales, Rosales and Cucurbitales). These all bear root nodules inhabited by bacteria identified as the nitrogen-fixing actinobacterium Frankia. These nodules all have a peripheral cortex with enlarged cells filled with Frankia hyphae and vesicles. Isolation in pure culture has been notoriously difficult, due in a large part to the growth of fast-growing contaminants where, it was later found, Frankia was slow-growing. Many of these contaminants, which were later found to be Micromonospora, were obtained from Casuarina and Coriaria. Our study was aimed at determining if Micromonospora were also present in other actinorhizal plants. Nodules from Alnus glutinosa, Alnus viridis, Coriaria myrtifolia, Elaeagnus x ebbingei, Hippophae rhamnoides, Myrica gale and Morella pensylvanica were tested and were all found to contain Micromonospora isolates. These were found to belong to mainly three species: Micromonospora lupini, Micromonospora coriariae and Micromonospora saelicesensis. Micromonospora isolates were found to inhibit some Frankia strains and to be innocuous to other strains.
Molla Kazemiha, Vahid; Bonakdar, Shahin; Amanzadeh, Amir; Azari, Shahram; Memarnejadian, Arash; Shahbazi, Shirin; Shokrgozar, Mohammad Ali; Mahdian, Reza
2016-08-01
Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert(®) assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert(®) mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert(®), indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.
Transcript and protein environmental biomarkers in fish--a review.
Tom, Moshe; Auslander, Meirav
2005-04-01
The levels of contaminant-affected gene products (transcripts and proteins) are increasingly utilized as environmental biomarkers, and their appropriate implementation as diagnostic tools is discussed. The required characteristics of a gene product biomarker are accurate evaluation using properly normalized absolute units, aiming at long-term comparability of biomarker levels over a wide geographical range and among many laboratories. Quantitative RT-PCR and competitive ELISA are suggested as preferred evaluation methods for transcript and protein, respectively. Constitutively expressed RNAs or proteins which are part of the examined homogenate are suggested as normalizing agents, compensating for variable processing efficiency. Essential characterization of expression patterns is suggested, providing reference values to be compared to the monitored levels. This comparison would enable estimation of the intensity of biological effects of contaminants. Contaminant-independent reference expression patterns should include natural fluctuations of the biomarker level. Contaminant-dependent patterns should include dose response to model contaminants chronically administered in two environmentally-realistic routes, reaching extreme sub-lethal affected levels. Recent studies using fish as environmental sentinel species, applying gene products as environmental biomarkers, and implementing at least part of the depicted methodologies are reviewed.
Cell and molecular biology of simian virus 40: implications for human infections and disease
NASA Technical Reports Server (NTRS)
Butel, J. S.; Lednicky, J. A.
1999-01-01
Simian virus 40 (SV40), a polyomavirus of rhesus macaque origin, was discovered in 1960 as a contaminant of polio vaccines that were distributed to millions of people from 1955 through early 1963. SV40 is a potent DNA tumor virus that induces tumors in rodents and transforms many types of cells in culture, including those of human origin. This virus has been a favored laboratory model for mechanistic studies of molecular processes in eukaryotic cells and of cellular transformation. The viral replication protein, named large T antigen (T-ag), is also the viral oncoprotein. There is a single serotype of SV40, but multiple strains of virus exist that are distinguishable by nucleotide differences in the regulatory region of the viral genome and in the part of the T-ag gene that encodes the protein's carboxyl terminus. Natural infections in monkeys by SV40 are usually benign but may become pathogenic in immunocompromised animals, and multiple tissues can be infected. SV40 can replicate in certain types of simian and human cells. SV40-neutralizing antibodies have been detected in individuals not exposed to contaminated polio vaccines. SV40 DNA has been identified in some normal human tissues, and there are accumulating reports of detection of SV40 DNA and/or T-ag in a variety of human tumors. This review presents aspects of replication and cell transformation by SV40 and considers their implications for human infections and disease pathogenesis by the virus. Critical assessment of virologic and epidemiologic data suggests a probable causative role for SV40 in certain human cancers, but additional studies are necessary to prove etiology.
Cell and molecular biology of simian virus 40: implications for human infections and disease.
Butel, J S; Lednicky, J A
1999-01-20
Simian virus 40 (SV40), a polyomavirus of rhesus macaque origin, was discovered in 1960 as a contaminant of polio vaccines that were distributed to millions of people from 1955 through early 1963. SV40 is a potent DNA tumor virus that induces tumors in rodents and transforms many types of cells in culture, including those of human origin. This virus has been a favored laboratory model for mechanistic studies of molecular processes in eukaryotic cells and of cellular transformation. The viral replication protein, named large T antigen (T-ag), is also the viral oncoprotein. There is a single serotype of SV40, but multiple strains of virus exist that are distinguishable by nucleotide differences in the regulatory region of the viral genome and in the part of the T-ag gene that encodes the protein's carboxyl terminus. Natural infections in monkeys by SV40 are usually benign but may become pathogenic in immunocompromised animals, and multiple tissues can be infected. SV40 can replicate in certain types of simian and human cells. SV40-neutralizing antibodies have been detected in individuals not exposed to contaminated polio vaccines. SV40 DNA has been identified in some normal human tissues, and there are accumulating reports of detection of SV40 DNA and/or T-ag in a variety of human tumors. This review presents aspects of replication and cell transformation by SV40 and considers their implications for human infections and disease pathogenesis by the virus. Critical assessment of virologic and epidemiologic data suggests a probable causative role for SV40 in certain human cancers, but additional studies are necessary to prove etiology.
Singh, Mahipal; Sharma, Anil K
2011-02-01
Three different commercially available media, known to support human and porcine-specific fibroblast cultures, were tested for their growth potential on goat skin explants. Although outgrowth of fibroblasts was observed in all media tested, irrespective of breed, porcine-specific media exhibited higher rate of growth. Using this media, three fibroblast cell lines (GSF289, GSF737, and GSF2010) from ear skin explants of normal healthy dairy goats of Kiko and Saanen breed were successfully established in culture. Liquid nitrogen stocks of these frozen cells had a viability rate of 96.2% in in vitro cultures. These cells were morphologically indistinguishable from the cell stocks prior to freezing. Analysis of the growth of a fifth passage culture revealed an 'S' shaped growth curve with a population doubling time of 25 h. The cell lines were found negative for microbial, fungal, and mycoplasma contaminations. These goat skin fibroblast lines and the simple method of their isolation and freezing with high rate of viability will provide additional tools to study molecular mechanisms that regulate fibroblast function and for genetic manipulation of small ruminants.
Tian, Wenzhi; Chua, Kevin; Strober, Warren; Chu, Charles C.
2002-01-01
BACKGROUND: Identification of differentially expressed genes between normal and diseased states is an area of intense current medical research that can lead to the discovery of new therapeutic targets. However, isolation of differentially expressed genes by subtraction often suffers from unreported contamination of the resulting subtraction library with clones containing DNA sequences not from the original RNA samples. MATERIALS AND METHODS: Subtraction using cDNA representational difference analysis (RDA) was performed on human B cells from normal or common variable immunodeficiency patients. The material remaining after the subtraction was cloned and individual clones were sequenced. The sequence of one clone with similarity to integrases (ILG1, integrase-like gene-1) was used to obtain the full length cDNA sequence and as a probe for the presence of this sequence in RNA or genomic DNA samples. RESULTS: After five rounds of cDNA RDA, 23.3% of the clones from the resulting subtraction library contained Escherichia coli DNA. In addition, three clones contained the sequence of a new integrase, ILG1. The full length cDNA sequence of ILG1 exhibits prokaryotic, but not eukaryotic, features. At the DNA level, ILG1 is not similar to any known gene. At the protein level, ILG1 has 58% similarity to integrases from the cryptic P4 bacteriophage family (S clade). The catalytic domain of ILG1 contains the conserved features found in site-specific recombinases. The critical residues that form the catalytic active site pocket are conserved, including the highly conserved R-H-R-Y hallmark of these recombinases. Interestingly, ILG1 was not present in the original B cell populations. By probing genomic DNA, ILG1 could only be detected in the E. coli TOP10F' strain used in our laboratory for molecular cloning, but not in any of its precursor strains, including TOP10. Furthermore, bacteria cultured from the mouth of the laboratory worker who performed cDNA RDA were also positive for ILG1. CONCLUSIONS: In the course of our studies using cDNA RDA, we have isolated and identified ILG1, a likely active site-specific recombinase and new member of the bacteriophage P4 family of integrases. This family of integrases is implicated in the horizontal DNA transfer of pathogenic genes between bacterial species, such as those found in pathogenic strains of E. coli, Shigella, Yersinia, and Vibrio cholera. Using ILG1 as a marker of our laboratory E. coli strain TOP10F', our evidence suggests that contaminating bacterial DNA in our subtraction experiment is due to this laboratory bacterial strain, which colonized exposed surfaces of the laboratory worker. Thus, identification of differentially expressed genes between normal and diseased states could be dramatically improved by using extra precaution to prevent bacterial contamination of samples. PMID:12393938
Optimization of contaminated oxide inversion layer solar cell. [considering silicon oxide coating
NASA Technical Reports Server (NTRS)
Call, R. L.
1976-01-01
Contaminated oxide cells have been fabricated with efficiencies of 8.6% with values of I sub sc = 120 ma, V sub oc = .54 volts, and curve factor of .73. Attempts to optimize the fabrication step to yield a higher output have not been successful. The fundamental limitation is the inadequate antireflection coating afforded by the silicon dioxide coating used to hold the contaminating ions. Coatings of SiO, therefore, were used to obtain a good antireflection coating, but the thinness of the coatings prevented a large concentration of the contaminating ions, and the cells was weak. Data of the best cell were .52 volts V sub oc, 110 ma I sub sc, .66 CFF and 6.7% efficiency.
Guillette, L J; Gross, T S; Masson, G R; Matter, J M; Percival, H F; Woodward, A R
1994-01-01
The reproductive development of alligators from a contaminated and a control lake in central Florida was examined. Lake Apopka is adjacent to an EPA Superfund site, listed due to an extensive spill of dicofol and DDT or its metabolites. These compounds can act as estrogens. Contaminants in the lake also have been derived from extensive agricultural activities around the lake that continue today and a sewage treatment facility associated with the city of Winter Garden, Florida. We examined the hypothesis that an estrogenic contaminant has caused the current failure in recruitment of alligators on Lake Apopka. Supporting data include the following: At 6 months of age, female alligators from Lake Apopka had plasma estradiol-17 beta concentrations almost two times greater than normal females from the control lake, Lake Woodruff. The Apopka females exhibited abnormal ovarian morphology with large numbers of polyovular follicles and polynuclear oocytes. Male juvenile alligators had significantly depressed plasma testosterone concentrations comparable to levels observed in normal Lake Woodruff females but more than three times lower than normal Lake Woodruff males. Additionally, males from Lake Apopka had poorly organized testes and abnormally small phalli. The differences between lakes and sexes in plasma hormone concentrations of juvenile alligators remain even after stimulation with luteinizing hormone. Our data suggest that the gonads of juveniles from Lake Apopka have been permanently modified in ovo, so that normal steroidogenesis is not possible, and thus normal sexual maturation is unlikely. Images p680-a Figure 1. Figure 2. Figure 3. A Figure 3. B Figure 3. C Figure 4. A Figure 4. B Figure 4. C Figure 4. D Figure 5. A Figure 5. B Figure 5. C PMID:7895709
In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance
NASA Astrophysics Data System (ADS)
Sulek, Mark; Adams, Jim; Kaberline, Steve; Ricketts, Mark; Waldecker, James R.
Automotive fuel cell technology has made considerable progress, and hydrogen fuel cell vehicles are regarded as a possible long-term solution to reduce carbon dioxide emissions, reduce fossil fuel dependency and increase energy efficiency. Even though great strides have been made, durability is still an issue. One key challenge is controlling MEA contamination. Metal ion contamination within the membrane and the effects on fuel cell performance were investigated. Given the possible benefits of using stainless steel or aluminum for balance-of-plant components or bipolar plates, cations of Al, Fe, Ni and Cr were studied. Membranes were immersed in metal sulfide solutions of varying concentration and then assembled into fuel cell MEAs tested in situ. The ranking of the four transition metals tested in terms of the greatest reduction in fuel cell performance was: Al 3+ ≫ Fe 2+ > Ni 2+, Cr 3+. For iron-contaminated membranes, no change in cell performance was detected until the membrane conductivity loss was greater than approximately 15%.
Pre-screening method for somatic cell contamination in human sperm epigenetic studies.
Jenkins, Timothy G; Liu, Lihua; Aston, Kenneth I; Carrell, Douglas T
2018-04-01
Sperm epigenetic profiles are frequently studied and are of great interest in many fields. One major technical concern when assessing these marks is the potential for somatic cell contamination. Because somatic cells have dramatically different epigenetic signatures, even small levels of contamination can result in significant problems in analysis and interpretation of data. In this study we evaluate an assay, which we designed to offer a reliable 'pre-screen' for somatic cell contamination that directly assesses the DNA being used in the study to determine tissue purity. In brief, we designed an inexpensive and simple assay that utilizes the strong differential methylation between sperm and somatic cells at four genomic loci to assess the general purity of samples prior to performing expensive and time intensive assays. The assay is able to reliably detect contamination qualitatively by running the sample on an agarose gel, or quantitatively with the use of a bioanalyzer. With this technique we have found that we can detect potentially contaminating signals in samples of many different types, including those from patients with poor sperm phenotypes (oligozoospermia, asthenozoospermia, and teratozoospermia). We also have found that the use of multiple sites to determine potential contamination is key, as some conditions (asthenozoospermia specifically) appear at one site to reflect a somatic-like profile, while at all other sites it appears to have very typical sperm DNA methylation signatures. Taken together, the use of the assay described herein was effective at identifying contamination and could be implemented in many labs to quickly and inexpensively pre-screen samples prior to performing far more expensive and labor intensive procedures. Additionally, the principles applied to the development of this assay could be easily adapted for the development of other assays to pre-screen different tissue/cell types or model organisms.
Fuentes, María S; Briceño, Gabriela E; Saez, Juliana M; Benimeli, Claudia S; Diez, María C; Amoroso, María J
2013-01-01
Pesticides are normally used to control specific pests and to increase the productivity in crops; as a result, soils are contaminated with mixtures of pesticides. In this work, the ability of Streptomyces strains (either as pure or mixed cultures) to remove pentachlorophenol and chlorpyrifos was studied. The antagonism among the strains and their tolerance to the toxic mixture was evaluated. Results revealed that the strains did not have any antagonistic effects and showed tolerance against the pesticides mixture. In fact, the growth of mixed cultures was significantly higher than in pure cultures. Moreover, a pure culture (Streptomyces sp. A5) and a quadruple culture had the highest pentachlorophenol removal percentages (10.6% and 10.1%, resp.), while Streptomyces sp. M7 presented the best chlorpyrifos removal (99.2%). Mixed culture of all Streptomyces spp. when assayed either as free or immobilized cells showed chlorpyrifos removal percentages of 40.17% and 71.05%, respectively, and for pentachlorophenol 5.24% and 14.72%, respectively, suggesting better removal of both pesticides by using immobilized cells. These results reveal that environments contaminated with mixtures of xenobiotics could be successfully cleaned up by using either free or immobilized cultures of Streptomyces, through in situ or ex situ remediation techniques.
Fuentes, María S.; Briceño, Gabriela E.; Saez, Juliana M.; Benimeli, Claudia S.; Diez, María C.; Amoroso, María J.
2013-01-01
Pesticides are normally used to control specific pests and to increase the productivity in crops; as a result, soils are contaminated with mixtures of pesticides. In this work, the ability of Streptomyces strains (either as pure or mixed cultures) to remove pentachlorophenol and chlorpyrifos was studied. The antagonism among the strains and their tolerance to the toxic mixture was evaluated. Results revealed that the strains did not have any antagonistic effects and showed tolerance against the pesticides mixture. In fact, the growth of mixed cultures was significantly higher than in pure cultures. Moreover, a pure culture (Streptomyces sp. A5) and a quadruple culture had the highest pentachlorophenol removal percentages (10.6% and 10.1%, resp.), while Streptomyces sp. M7 presented the best chlorpyrifos removal (99.2%). Mixed culture of all Streptomyces spp. when assayed either as free or immobilized cells showed chlorpyrifos removal percentages of 40.17% and 71.05%, respectively, and for pentachlorophenol 5.24% and 14.72%, respectively, suggesting better removal of both pesticides by using immobilized cells. These results reveal that environments contaminated with mixtures of xenobiotics could be successfully cleaned up by using either free or immobilized cultures of Streptomyces, through in situ or ex situ remediation techniques. PMID:23865051
Phuchareon, Janyaporn; Ohta, Yoshihito; Woo, Jonathan M.; Eisele, David W.; Tetsu, Osamu
2009-01-01
Adenoid cystic carcinoma (ACC) is the second most common malignant neoplasm of the salivary glands. Most patients survive more than 5 years after surgery and postoperative radiation therapy. The 10 year survival rate, however, drops to 40%, due to locoregional recurrences and distant metastases. Improving long-term survival in ACC requires the development of more effective systemic therapies based on a better understanding of the biologic behavior of ACC. Much preclinical research in this field involves the use of cultured cells and, to date, several ACC cell lines have been established. Authentication of these cell lines, however, has not been reported. We performed DNA fingerprint analysis on six ACC cell lines using short tandem repeat (STR) examinations and found that all six cell lines had been contaminated with other cells. ACC2, ACC3, and ACCM were determined to be cervical cancer cells (HeLa cells), whereas the ACCS cell line was composed of T24 urinary bladder cancer cells. ACCNS and CAC2 cells were contaminated with cells derived from non-human mammalian species: the cells labeled ACCNS were mouse cells and the CAC2 cells were rat cells. These observations suggest that future studies using ACC cell lines should include cell line authentication to avoid the use of contaminated or non-human cells. PMID:19557180
Fujita, Kazutoshi; Ohta, Hiroshi; Tsujimura, Akira; Takao, Tetsuya; Miyagawa, Yasushi; Takada, Shingo; Matsumiya, Kiyomi; Wakayama, Teruhiko; Okuyama, Akihiko
2005-01-01
More than 70% of patients survive childhood leukemia, but chemotherapy and radiation therapy cause irreversible impairment of spermatogenesis. Although autotransplantation of germ cells holds promise for restoring fertility, contamination by leukemic cells may induce relapse. In this study, we isolated germ cells from leukemic mice by FACS sorting. The cell population in the high forward-scatter and low side-scatter regions of dissociated testicular cells from leukemic mice were analyzed by staining for MHC class I heavy chain (H-2Kb/H-2Db) and for CD45. Cells that did not stain positively for H-2Kb/H-2Db and CD45 were sorted as the germ cell–enriched fraction. The sorted germ cell–enriched fractions were transplanted into the testes of recipient mice exposed to alkylating agents. Transplanted germ cells colonized, and recipient mice survived. Normal progeny were produced by intracytoplasmic injection of sperm obtained from recipient testes. When unsorted germ cells from leukemic mice were transplanted into recipient testes, all recipient mice developed leukemia. The successful birth of offspring from recipient mice without transmission of leukemia to the recipients indicates the potential of autotransplantation of germ cells sorted by FACS to treat infertility secondary to anticancer treatment for childhood leukemia. PMID:15965502
Zou, Qing; Wu, Mingjun; Zhong, Liwu; Fan, Zhaoxin; Zhang, Bo; Chen, Qiang; Ma, Feng
2016-01-01
Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells. PMID:26882313
Zou, Qing; Wu, Mingjun; Zhong, Liwu; Fan, Zhaoxin; Zhang, Bo; Chen, Qiang; Ma, Feng
2016-01-01
Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells.
Applying Contamination Modelling to Spacecraft Propulsion Systems Designs and Operations
NASA Technical Reports Server (NTRS)
Chen, Philip T.; Thomson, Shaun; Woronowicz, Michael S.
2000-01-01
Molecular and particulate contaminants generated from the operations of a propulsion system may impinge on spacecraft critical surfaces. Plume depositions or clouds may hinder the spacecraft and instruments from performing normal operations. Firing thrusters will generate both molecular and particulate contaminants. How to minimize the contamination impact from the plume becomes very critical for a successful mission. The resulting effect from either molecular or particulate contamination of the thruster firing is very distinct. This paper will discuss the interconnection between the functions of spacecraft contamination modeling and propulsion system implementation. The paper will address an innovative contamination engineering approach implemented from the spacecraft concept design, manufacturing, integration and test (I&T), launch, to on- orbit operations. This paper will also summarize the implementation on several successful missions. Despite other contamination sources, only molecular contamination will be considered here.
Photodynamic inactivation of contaminated blood with Staphylococcus aureus
NASA Astrophysics Data System (ADS)
Corrêa, Thaila Q.; Inada, Natalia M.; Pratavieira, Sebastião.; Blanco, Kate C.; Kurachi, Cristina; Bagnato, Vanderlei S.
2016-03-01
The presence of bacteria in the bloodstream can trigger a serious systemic inflammation and lead to sepsis that cause septic shock and death. Studies have shown an increase in the incidence of sepsis over the years and it is mainly due to the increased resistance of microorganisms to antibiotics, since these drugs are still sold and used improperly. The bacterial contamination of blood is also a risk to blood transfusions. Thus, bacteria inactivation in blood is being studied in order to increase the security of the blood supply. The purpose of this study was to decontaminate the blood using the photodynamic inactivation (PDI). Human blood samples in the presence of Photogem® were illuminated at an intensity of 30 mW/cm2, and light doses of 10 and 15 J/cm2. Blood counts were carried out for the quantitative evaluation and blood smears were prepared for qualitative and morphological evaluation by microscopy. The results showed normal viability values for the blood cells analyzed. The light doses showed minimal morphological changes in the membrane of red blood cells, but the irradiation in the presence of the photosensitizer caused hemolysis in red blood cells at the higher concentrations of the photosensitizer. Experiments with Staphylococcus aureus, one of the responsible of sepsis, showed 7 logs10 of photodynamic inactivation with 50 μg/mL and 15 J/cm2 and 1 log10 of this microorganism in a co-culture with blood.
Loh, L C; Eg, K P; Puspanathan, P; Tang, S P; Yip, K S; Vijayasingham, P; Thayaparan, T; Kumar, S
2004-03-01
Airway inflammation can be demonstrated by the modem method of sputum induction using ultrasonic nebulizer and hypertonic saline. We studied whether compressed-air nebulizer and isotonic saline which are commonly available and cost less, are as effective in inducing sputum in normal adult subjects as the above mentioned tools. Sixteen subjects underwent weekly sputum induction in the following manner: ultrasonic nebulizer (Medix Sonix 2000, Clement Clarke, UK) using hypertonic saline, ultrasonic nebulizer using isotonic saline, compressed-air nebulizer (BestNeb, Taiwan) using hypertonic saline, and compressed-air nebulizer using isotonic saline. Overall, the use of an ultrasonic nebulizer and hypertonic saline yielded significantly higher total sputum cell counts and a higher percentage of cell viability than compressed-air nebulizers and isotonic saline. With the latter, there was a trend towards squamous cell contaminations. The proportion of various sputum cell types was not significantly different between the groups, and the reproducibility in sputum macrophages and neutrophils was high (Intraclass correlation coefficient, r [95%CI]: 0.65 [0.30-0.91] and 0.58 [0.22-0.89], p < 0.001). Overall changes in median FEV, were small and comparable between all groups. Induction using ultrasonic nebulizers together with hypertonic saline was generally less well tolerated than compressed-air nebulizers and isotonic saline. We conclude that in normal subjects, although both nebulizers and saline types can induce sputum with reproducible cellular profile, ultrasonic nebulizers and hypertonic saline are more effective but less well tolerated.
Winther, Birgit; McCue, Karen; Ashe, Kathleen; Rubino, Joseph R; Hendley, J Owen
2007-10-01
Rhinovirus infection may be acquired by inoculation of virus on fingertips to conjunctiva or nose (self-inoculation). The virus contaminating the fingertips may come from hand contact with someone with a cold or from virus in mucus on environmental surfaces. This study was designed to assess rhinovirus contamination of surfaces by adults with colds and rhinovirus transfer from surfaces to fingertips during normal daily activities. Fifteen adults with natural rhinovirus colds stayed overnight in a local hotel. Ten touched sites in each room were tested for rhinovirus RNA using RT-PCR. Transfer to fingertips of five subjects was examined by drying 10 microl of virus-containing mucus from each subject onto light switches, telephone dial buttons and telephone handsets. After an interval of 1 or 18 hr the subject flipped the light switch, pressed the button, held the handset. Fingertip rinses were tested for virus. Thirty five percent of the 150 environmental sites in the rooms were contaminated. Common virus-positive sites were door handles, pens, light switches, TV remote controls, faucets, and telephones. Rhinovirus was transferred from surfaces to fingertips in 18/30 (60%) trials 1 hr after contamination and in 10/30 (33%) of trials 18 hr (overnight) after contamination. Adults with colds commonly contaminate environmental surfaces with rhinovirus; virus on surfaces can be transferred to a fingertip during normal daily activities. (c) 2007 Wiley-Liss, Inc.
Determination of yolk contamination in liquid egg white using Raman spectroscopy.
Cluff, K; Konda Naganathan, G; Jonnalagada, D; Mortensen, I; Wehling, R; Subbiah, J
2016-07-01
Purified egg white is an important ingredient in a number of baked and confectionary foods because of its foaming properties. However, yolk contamination in amounts as low as 0.01% can impede the foaming ability of egg white. In this study, we used Raman spectroscopy to evaluate the hypothesis that yolk contamination in egg white could be detected based on its molecular optical properties. Yolk contaminated egg white samples (n = 115) with contamination levels ranging from 0% to 0.25% (on weight basis) were prepared. The samples were excited with a 785 nm laser and Raman spectra from 250 to 3,200 cm(-1) were recorded. The Raman spectra were baseline corrected using an optimized piecewise cubic interpolation on each spectrum and then normalized with a standard normal variate transformation. Samples were randomly divided into calibration (n = 77) and validation (n = 38) data sets. A partial least squares regression (PLSR) model was developed to predict yolk contamination levels, based on the Raman spectral fingerprint. Raman spectral peaks, in the spectral region of 1,080 and 1,666 cm(-1), had the largest influence on detecting yolk contamination in egg white. The PLSR model was able to correctly predict yolk contamination levels with an R(2) = 0.90 in the validation data set. These results demonstrate the capability of Raman spectroscopy for detection of yolk contamination at very low levels in egg white and present a strong case for development of an on-line system to be deployed in egg processing plants. © 2016 Poultry Science Association Inc.
NASA Astrophysics Data System (ADS)
Bender, G.; Angelo, M.; Bethune, K.; Dorn, S.; Thampan, T.; Rocheleau, R.
An understanding of the potentially serious performance degradation effects that trace level contaminants can cause in proton exchange membrane fuel cells (PEMFCs) is crucial for the successful deployment of PEMFC for commercial applications. An experimental and analytic methodology is described that employs gas chromatography (GC) to accurately determine the concentration of impurity species in the fuel and oxidant streams of a PEMFC. In this paper we further show that the accurate determination of the contaminant concentrations at the anode and cathode inlets and outlets provides a means to quantify reactions of contaminants within the cell and to identify diffusive mass transport across the membrane. High data accuracy down to sub-ppm contaminant levels is required and was achieved by addressing several challenges pertaining to experimental setup and data analysis which are both discussed in detail. The application of the methodology is demonstrated using carbon monoxide and toluene which were injected into the cell at concentrations between 1 and 10 ppm and 20 and 60 ppm, respectively. Both impurities were observed to react in the fuel cell: carbon monoxide to carbon dioxide, and toluene to methylcyclohexane. For both contaminants closure of the molar flow balances to within 3% was achieved even at the low contaminant concentrations. This allowed the extent of both reactions at the applied operating conditions to be quantified. The presented methodology is shown to be a valuable tool for investigating the effects and reactions of trace contaminants in fuel cells and for providing critical insights into the mechanisms responsible for the associated performance degradation.
Attia, Yosry A.
2000-01-01
Disclosed is a method for separating a vaporous or gaseous contaminant from an air stream contaminated therewith. This method includes the steps of: (a) passing said contaminated air into a contact zone in which is disposed an aerogel material capable of selecting adsorbing said contaminant from air and therein contacting said contaminated air with an aerogel material; and (b) withdrawing from said zone, air depleted of said contaminant. For present purposes, "contaminant" means a material not naturally occurring in ambient air and/or a material naturally occurring in air but present at a concentration above that found in ambient air. Thus, the present invention scrubs (or treats) air for the purpose of returning it to its ambient composition. Also disclosed herein is a process for the photocatalytic destruction of contaminants from an air stream wherein the contaminated air stream is passed into a control cell or contact zone in which is disposed a photocatalytic aerogel and exposing said aerogel to ultraviolet (UV) radiation for photocatalytically destroying the adsorbed contaminant, and withdrawing from said cell an exhaust air stream depleted in said contaminant.
NASA Astrophysics Data System (ADS)
Costa, Pedro M.; Caeiro, Sandra; Diniz, Mário S.; Lobo, Jorge; Martins, Marta; Ferreira, Ana M.; Caetano, Miguel; Vale, Carlos; DelValls, T. Ángel; Costa, M. Helena
2010-11-01
The effects of sediment-bound contaminants on kidney and gill chloride cells were surveyed in juvenile Solea senegalensis exposed to fresh sediments collected from three distinct sites of the Sado Estuary (Portugal) in a 28-day laboratorial assay. Sediments were analyzed for metallic contaminants, polycyclic aromatic hydrocarbons and organochlorines as well as for total organic matter, redox potential and fine fraction. The potential for causing adverse biological effects of each surveyed sediment was assessed by comparison of contaminant levels to available guidelines for coastal sediments, namely the Threshold Effects Level ( TEL) and the Probable Effects Level ( PEL). The Sediment Quality Guideline Quotient indices ( SQGQ) were calculated to compare the overall contamination levels of the three stations. A qualitative approach was employed to analyze the histo/cytopathological traits in gill chloride cells and body kidney of fish exposed to each tested sediment for 0, 14 and 28 days. The results showed that sediment contamination can be considered low to moderate and that the least contaminated sediment (from a reference site, with the lowest SQGQ) caused lesser changes in the surveyed organs. However, the most contaminated sediment (by both metallic and organic xenobiotics, with highest SQGQ) was neither responsible for the highest mortality nor for the most pronounced lesions. Exposure to the sediment presenting an intermediate SQGQ, essentially contaminated by organic compounds, caused the highest mortality (48%) and the most severe damage to kidneys, up to full renal necrosis. Chloride cell alterations were similar in fish exposed to the two most contaminated sediments and consisted of a pronounced cellular hypertrophy, likely involving fluid retention and loss of mitochondria. It can be concluded that sediment contamination considered to be low or moderate may be responsible for severe injury to cells and parenchyma involved in the maintenance of osmotic balance, contributing for the high mortality levels observed. The results suggest that sediment-bound organic contaminants such as PAHs (polycyclic aromatic hydrocarbons) and PCBs (polychlorinated biphenyls) may be very toxic to the analyzed organs, especially the kidney, even when present in low-risk concentrations.
Detecting contaminant-induced apoptosis and necrosis in lake trout thymocytes via flow cytometry.
Sweet, Leonard I.; Passino-Reader, Dora R.; Meier, Peter G.; Omann, Geneva M.; Stolen, J.S.; Fletcher, T.C.; Rowley, A.F.; Zelikoff, J.T.; Kaattari, S.L.; Smith, S.A.
1997-01-01
This chapter details the cytofluorometric techniques employed to assess levels of active (apoptosis) and passive (necrotic) cell death in untreated and contaminant-treated fish thymocytes. The thymus is believed to be a central component of hematopoiesis and immune function in teleosts (Abelli et al., 1996). Hence, chemically-elicited adverse effects to the thymus may result in immunomodulation and organ dysfunction. However, it is not well documented that environmental contaminants induce apoptosis, or programmed cell death. There is some evidence suggesting that low level exposure to waterborne contaminants can specifically induce cell death in the olfactory epithelium of rainbow trout (Julliard et al., 1996). Presently, only limited information is available in the literature regarding apoptotic death in piscine immune cells (Alford et al., 1994; Greenlee et al., 1991).
Labelle, Philippe; Hahn, Nina E; Fraser, Jenelle K; Kendall, Lonnie V; Ziman, Melanie; James, Edward; Shastri, Nilabh; Griffey, Stephen M
2009-04-01
An outbreak of mousepox in a research institution was caused by Ectromelia-contaminated mouse serum that had been used for bone marrow cell culture and the cells subsequently injected into the footpads of mice. The disease initially was diagnosed by identification of gross and microscopic lesions typical for Ectromelia infection, including foci of necrosis in the liver and spleen and eosinophilic intracytoplasmic inclusion bodies in the skin. The source of infection was determined by PCR analysis to be serum obtained from a commercial vendor. To determine whether viral growth in tissue culture was required to induce viral infection, 36 mice (BALB/cJ, C57BL/6J) were experimentally exposed intraperitoneally, intradermally (footpad), or intranasally to contaminated serum or bone marrow cell cultures using the contaminated serum in the culture medium. Mice were euthanized when clinical signs developed or after 12 wk. Necropsy, PCR of spleen, and serum ELISA were performed on all mice. Mice injected with cell cultures and their cage contacts developed mousepox, antibodies to Ectromelia, and lesions, whereas mice injected with serum without cells did not. Mouse antibody production, a tool commonly used to screen biologic materials for viral contamination, failed to detect active Ectromelia contamination in mouse serum.
Regenerable Air Purification System for Gas-Phase Contaminant Control
NASA Technical Reports Server (NTRS)
Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)
2000-01-01
Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.
Apoptosis: Focus on sea urchin development.
Agnello, Maria; Roccheri, Maria Carmela
2010-03-01
It has been proposed that the apoptosis is an essential requirement for the evolution of all animals, in fact the apoptotic program is highly conserved from nematodes to mammals. Throughout development, apoptosis is employed by multicellular organisms to eliminate damaged or unnecessary cells. Here, we will discuss both developmental programmed cell death (PCD) under normal conditions and stress induced apoptosis, in sea urchin embryos. Sea urchin represent an excellent model system for studying embryogenesis and cellular processes involved in metamorphosis. PCD plays an essential role in sculpting and remodelling the embryos and larvae undergoing metamorphosis. Moreover, this marine organism directly interacts with its environment, and is susceptible to effects of several aquatic contaminants. Apoptosis can be adopted as a defence mechanism against any environmental chemical, physical and mechanical stress, for removing irreversibly damaged cells. This review, while not comprehensive in its reporting, aims to provide an overview of current knowledge on mechanisms to regulate physiological and the induced apoptotic program in sea urchin embryos.
NASA Astrophysics Data System (ADS)
Visan, A.; Cristescu, R.; Stefan, N.; Miroiu, M.; Nita, C.; Socol, M.; Florica, C.; Rasoga, O.; Zgura, I.; Sima, L. E.; Chiritoiu, M.; Chifiriuc, M. C.; Holban, A. M.; Mihailescu, I. N.; Socol, G.
2017-09-01
In this study, coatings based on lysozyme embedded into a matrix of polyethylene glycol (PEG) and polycaprolactone (PCL) were fabricated by two different methods (Matrix Assisted Pulsed Laser Evaporation - MAPLE and Dip Coating) for obtaining antimicrobial coatings envisaged for long term medical applications. Coatings with different PEG:PCL compositions (3:1; 1:1; 1:3) were synthesized in order to evaluate the antimicrobial activity of lysozyme embedded into the polymeric matrix. The main surface features, such as roughness and wettability, with impact on the microbial adhesion as well as on the eukaryote cell function were measured. The obtained composite coatings exhibited a significant antibacterial activity against Escherichia coli, Bacillus subtilis, Enterococcus faecalis and Staphylococcus aureus strains. As well, specific blended coatings showed appropriate viability, good spreading and normal cell morphology of SaOs2 human osteoblasts and mesenchymal stem cells (MSCs). These investigations highlight the suitability of biodegradable composites as implant coatings for decreasing the risk of bacterial contamination associated with prosthetic procedures.
Malachite green interferes with postantibiotic recovery of mycobacteria.
Gelman, Ekaterina; McKinney, John D; Dhar, Neeraj
2012-07-01
The genus Mycobacterium comprises slow-growing species with generation times ranging from hours to weeks. The protracted incubation time before colonies appear on solid culture medium can result in overgrowth by faster-growing microorganisms. To prevent contamination, the solid media used in laboratories and clinics for cultivation of mycobacteria contain the arylmethane compound malachite green, which has broad-spectrum antimicrobial activity. Malachite green has no impact on the plating efficiency of mycobacteria when cells are grown under normal conditions. However, we found that malachite green interfered with colony formation when bacteria were preexposed to antibiotics targeting cell wall biogenesis (isoniazid, ethionamide, ethambutol). This inhibitory effect of malachite green was not observed when bacteria were preexposed to antibiotics targeting cellular processes other than cell wall biogenesis (rifampin, moxifloxacin, streptomycin). Sputum specimens from tuberculosis patients are routinely evaluated on solid culture medium containing high concentrations of malachite green. This practice could lead to underestimation of bacterial loads and overestimation of chemotherapeutic efficacy.
Malachite Green Interferes with Postantibiotic Recovery of Mycobacteria
Gelman, Ekaterina; McKinney, John D.
2012-01-01
The genus Mycobacterium comprises slow-growing species with generation times ranging from hours to weeks. The protracted incubation time before colonies appear on solid culture medium can result in overgrowth by faster-growing microorganisms. To prevent contamination, the solid media used in laboratories and clinics for cultivation of mycobacteria contain the arylmethane compound malachite green, which has broad-spectrum antimicrobial activity. Malachite green has no impact on the plating efficiency of mycobacteria when cells are grown under normal conditions. However, we found that malachite green interfered with colony formation when bacteria were preexposed to antibiotics targeting cell wall biogenesis (isoniazid, ethionamide, ethambutol). This inhibitory effect of malachite green was not observed when bacteria were preexposed to antibiotics targeting cellular processes other than cell wall biogenesis (rifampin, moxifloxacin, streptomycin). Sputum specimens from tuberculosis patients are routinely evaluated on solid culture medium containing high concentrations of malachite green. This practice could lead to underestimation of bacterial loads and overestimation of chemotherapeutic efficacy. PMID:22526306
Metabolomics is becoming well-established for studying chemical contaminant-induced alterations to normal biological function. For example, the literature contains a wealth of laboratory-based studies involving analysis of samples from organisms exposed to individual chemical tox...
Metabolomics has become well-established for studying chemical contaminant-induced alterations to normal biological function. For example, the literature contains a wealth of laboratory-based studies involving analysis of samples from organisms exposed to individual chemical toxi...
Grösbacher, Michael; Eckert, Dominik; Cirpka, Olaf A; Griebler, Christian
2018-06-01
Aromatic hydrocarbons belong to the most abundant contaminants in groundwater systems. They can serve as carbon and energy source for a multitude of indigenous microorganisms. Predictions of contaminant biodegradation and microbial growth in contaminated aquifers are often vague because the parameters of microbial activity in the mathematical models used for predictions are typically derived from batch experiments, which don't represent conditions in the field. In order to improve our understanding of key drivers of natural attenuation and the accuracy of predictive models, we conducted comparative experiments in batch and sediment flow-through systems with varying concentrations of contaminant in the inflow and flow velocities applying the aerobic Pseudomonas putida strain F1 and the denitrifying Aromatoleum aromaticum strain EbN1. We followed toluene degradation and bacterial growth by measuring toluene and oxygen concentrations and by direct cell counts. In the sediment columns, the total amount of toluene degraded by P. putida F1 increased with increasing source concentration and flow velocity, while toluene removal efficiency gradually decreased. Results point at mass transfer limitation being an important process controlling toluene biodegradation that cannot be assessed with batch experiments. We also observed a decrease in the maximum specific growth rate with increasing source concentration and flow velocity. At low toluene concentrations, the efficiencies in carbon assimilation within the flow-through systems exceeded those in the batch systems. In all column experiments the number of attached cells plateaued after an initial growth phase indicating a specific "carrying capacity" depending on contaminant concentration and flow velocity. Moreover, in all cases, cells attached to the sediment dominated over those in suspension, and toluene degradation was performed practically by attached cells only. The observed effects of varying contaminant inflow concentration and flow velocity on biodegradation could be captured by a reactive-transport model. By monitoring both attached and suspended cells we could quantify the release of new-grown cells from the sediments to the mobile aqueous phase. Studying flow velocity and contaminant concentrations as key drivers of contaminant transformation in sediment flow-through microcosms improves our system understanding and eventually the prediction of microbial biodegradation at contaminated sites.
Oro, Nicole E; Whittal, Randy M; Lucy, Charles A
2012-09-05
Normal phase high performance liquid chromatography (HPLC) is used to separate a gas oil petroleum sample, and the fractions are collected offline and analyzed on a high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS). The separation prior to MS analysis dilutes the sample significantly; therefore the fractions need to be prepared properly to achieve the best signal possible. The methods used to prepare the HPLC fractions for MS analysis are described, with emphasis placed on increasing the concentration of analyte species. The dilution effect also means that contamination in the MS spectra needs to be minimized. The contamination from molecular sieves, plastics, soap, etc. and interferences encountered during the offline fraction collection process are described and eliminated. A previously unreported MS contamination of iron formate clusters with a 0.8 mass defect in positive mode electrospray is also described. This interference resulted from the stainless steel tubing in the HPLC system. Contamination resulting from what has tentatively been assigned as palmitoylglycerol and stearoylglycerol was also observed; these compounds have not previously been reported as contaminant peaks. Copyright © 2012 Elsevier B.V. All rights reserved.
Contamination of infectious RD-114 virus in vaccines produced using non-feline cell lines.
Yoshikawa, Rokusuke; Sato, Eiji; Miyazawa, Takayuki
2011-01-01
All domestic cats have a replication-competent endogenous retrovirus, termed RD-114 virus, in their genome and several feline cell lines produce RD-114 viruses. Recently, we found that a portion of live attenuated feline and canine vaccines produced using feline cell lines was contaminated with infectious RD-114 viruses. In this study, we expanded our survey and examined canine vaccines produced using 'non-feline' cell lines. Consequently, we found two vaccines containing RD-114 viral RNA by reverse transcriptase (RT)-polymerase chain reaction (PCR) and real-time RT-PCR. We also confirmed the presence of infectious RD-114 virus in the vaccines by the LacZ marker rescue assay and PCR to detect proviral DNA in TE671 cells (human rhabdomyosarcoma cells) inoculated with the vaccines. It is impossible to investigate the definitive cause of contamination with RD-114 virus; however, we suspect that a seed canine parvovirus type 2 was contaminated with RD-114 virus, because many canine parvoviruses have been isolated and attenuated using feline cell lines. To exclude RD-114 virus from live attenuated vaccines, we must pay attention to the contamination of seed viruses with RD-114 virus in addition to avoiding feline cell lines producing RD-114 virus when manufacturing vaccines. Copyright © 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Interrenal dysfunction in fish from contaminated sites: In vivo and in vitro assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hontela, A.
1998-01-01
Cortisol, synthesized in the interrenal cells of teleost head kidney, has a major role in the physiologic response to physical and chemical stressors. Plasma levels of cortisol increase in physiologically competent fish acutely exposed to stressors such as cadmium or mercury. The effects of chronic low level exposures are less well understood. The author has diagnosed an endocrine impairment characterized by a reduced capacity to elevate plasma cortisol levels in response to an acute standardized capture stress in yellow perch (Perca flavescens) and in northern pike (Esox lucius) sampled at sites contaminated by mixtures of pollutants (heavy metals, polycyclic aromaticmore » hydrocarbons, and polychlorinated biphenyls), by heavy metals, or by bleached kraft mill effluent. The studies with fish, as well as with amphibians at contaminated sites, demonstrated that low level chronic exposures impair secretion of corticosteroids. The author has developed new tests for assessment of the functional integrity of teleost and amphibian interrenal tissue using an adrenocorticotropic hormone (ACTH) challenge, in vivo and in vitro. The reduced ability to respond to ACTH indicates that the normal neuroendocrine response to stressors may be disrupted and that the ability to cope with biotic and abiotic stressors in the environment may be significantly reduced in the impaired animals.« less
Induction of cell proliferation and apoptosis in HL-60 and HaCaT cells by arsenite, arsenate and arsenic-contaminated drinking water. T-C. Zhang, M. Schmitt, J. L. Mumford National Research Council, Washington DC and U.S. Environmental Protection Agency, NHEERL, Research Triangle...
Miller, Ronald L.; McPherson, Benjamin F.
2001-01-01
Trace elements and organic contaminants in bottom-sediment samples collected from 10 sites on the Barron River Canal and from one site on the Turner River in October 1998 had patterns of distribution that indicated different sources. At some sites on the Barron River Canal, lead, copper, and zinc, normalized to aluminum, exceeded limits normally considered as background and may be enriched by human activities. Polynuclear aromatic hydrocarbons and p-cresol, normalized against organic carbon, had patterns of distribution that indicated local sources of input from a road or vehicular traffic or from an old creosote wood treatment facility. Phthalate esters and the traces elements arsenic, cadmium, and zinc were more widely distributed with the highest normalized concentrations occurring at the Turner River background site, probably due to the high percentage of fine sediment (74% less than 63 micrometers) and high organic carbon concentration (42%) at that site and the binding effect of organic carbon on trace elements and trace organic compounds. Low concentrations of pesticides or pesticide degradation products were detected in bottom sediment (DDD and DDE, each less than 3.5 µg/kg) and water (9 pesticides, each less than 0.06 µ/L), primarily in the northern reach of the Barron River Canal where agriculture is a likely source. Although a few contaminants approached criteria that would indicate adverse effects on aquatic life, none exceeded the criteria, but the potential synergistic effects of mixtures of contaminants found at most sites are not included in the criteria.
The costs of using unauthenticated, over-passaged cell lines: how much more data do we need?
Hughes, Peyton; Marshall, Damian; Reid, Yvonne; Parkes, Helen; Gelber, Cohava
2007-11-01
Increasing data demonstrate that cellular cross-contamination, misidentified cell lines, and the use of cultures at high-passage levels contribute to the generation of erroneous and misleading results as well as wasted research funds. Contamination of cell lines by other lines has been recognized and documented back to the 1950s. Based on submissions to major cell repositories in the last decade, it is estimated that between 18% and 36% of cell lines may be contaminated or misidentified. More recently, problems surrounding practices of over-subculturing cells are being identified. As a result of selective pressures and genetic drift, cell lines, when kept in culture too long, exhibit reduced or altered key functions and often no longer represent reliable models of their original source material. A review of papers showing significant experimental variances between low- and high-passage cell culture numbers, as well as contaminated lines, makes a strong case for using verified, tested cell lines at low- or defined passage numbers. In the absence of cell culture guidelines, mandates from the National Institutes of Health (NIH) and other funding agencies or journal requirements, it becomes the responsibility of the scientific community to perform due diligence to ensure the integrity of cell cultures used in research.
Exposure to environmental contaminants has been shown to alter normal thyroid function in various wildlife species, including the American alligator (Alligator mississippiensis). Abnormalities in circulating levels of the thyroid hormone thyroxine (T4) have been reported in juven...
Microbial contamination in poultry chillers estimated by Monte Carlo simulations
USDA-ARS?s Scientific Manuscript database
Recent bacterial outbreaks in fresh and processed foods have increased awareness of food safety among consumers, regulatory agencies, and the food industry. The risk of contamination exists in meat processing facilities where bacteria that are normally associated with the animal are transferred to t...
The goal of this study was to determine whether hepatic biotransformation of testosterone is normally sexually dimorphic in juvenile alligators and whether living in a contaminated environment affects hepatic dimorphism. Lake Woodruff served as our reference site. Moonshine Bay, ...
Franken, Lars; Klein, Marika; Spasova, Marina; Elsukova, Anna; Wiedwald, Ulf; Welz, Meike; Knolle, Percy; Farle, Michael; Limmer, Andreas; Kurts, Christian
2015-08-11
A main function of splenic red pulp macrophages is the degradation of damaged or aged erythrocytes. Here we show that these macrophages accumulate ferrimagnetic iron oxides that render them intrinsically superparamagnetic. Consequently, these cells routinely contaminate splenic cell isolates obtained with the use of MCS, a technique that has been widely used in immunological research for decades. These contaminations can profoundly alter experimental results. In mice deficient for the transcription factor SpiC, which lack red pulp macrophages, liver Kupffer cells take over the task of erythrocyte degradation and become superparamagnetic. We describe a simple additional magnetic separation step that avoids this problem and substantially improves purity of magnetic cell isolates from the spleen.
Helium glow detector experiment, MA-088. [Apollo Soyuz test project data reduction
NASA Technical Reports Server (NTRS)
Bowyer, C. S.
1978-01-01
Of the two 584 A channels in the helium glow detector, channel #1 appeared to provide data with erratic count rates and undue susceptibility to dayglow and solar contamination possibly because of filter fatigue or failure. Channel #3 data appear normal and of high quality. For this reason only data from this last channel was analyzed and used for detailed comparison with theory. Reduction and fitting techniques are described, as well as applications of the data in the study of nighttime and daytime Hel 584 A emission. A hot model of the interstellar medium is presented. Topics covered in the appendix include: observations of interstellar helium with a gas absorption cell: implications for the structure of the local interstellar medium; EUV dayglow observations with a helium gas absorption cell; and EUV scattering from local interstellar helium at nonzero temperatures: implications for the derivations of interstellar medium parameters.
First comparative analysis concerning the plasma platelet contamination during MNC collection.
Pfeiffer, Hella; Achenbach, Susanne; Strobel, Julian; Zimmermann, Robert; Eckstein, Reinhold; Strasser, Erwin F
2017-08-01
Monocytes can be cultured into dendritic cells with addition of autologous plasma, which is highly prone to platelet contamination due to the apheresis process. Since platelets affect the maturation process of monocytes into dendritic cells and might even lead to a diminished harvest of dendritic cells, it is very important to reduce the platelet contamination. A new collection device (Spectra Optia) was analyzed, compared to two established devices (COM.TEC, Cobe Spectra) and evaluated regarding the potential generation of source plasma. Concurrent plasma collected during leukapheresis was analyzed for residual cell contamination in a prospective study with the new Spectra Optia apheresis device (n=24) and was compared with COM.TEC and Cobe Spectra data (retrospective analysis, n=72). Donor pre-donation counts of platelets were analyzed for their predictive value of contaminating PLTs in plasma harvests. The newest apheresis device showed the lowest residual platelet count of the collected concurrent plasma (median 3.50×10 9 /l) independent of pre-donation counts. The other two devices and sets had a higher platelet contamination. The contamination of the plasma with leukocytes was very low (only 2.0% were higher than 0.5×10 9 /l). This study showed a significant reduction of platelet contamination of the concurrent plasma collected with the new Spectra Optia device. This plasma product with low residual platelets and leukocytes might also be used as plasma for fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Taira, Wataru; Hiyama, Atsuki; Nohara, Chiyo; Sakauchi, Ko; Otaki, Joji M.
2015-01-01
One important public concern in Japan is the potential health effects on animals and humans that live in the Tohoku-Kanto districts associated with the ingestion of foods contaminated with artificial radionuclides from the collapsed Fukushima Dai-ichi Nuclear Power Plant. Additionally, transgenerational or heritable effects of radiation exposure are also important public concerns because these effects could cause long-term changes in animal and human populations. Here, we concisely review our findings and implications related to the ingestional and transgenerational effects of radiation exposure on the pale grass blue butterfly, Zizeeria maha, which coexists with humans. The butterfly larval ingestion of contaminated leaves found in areas of human habitation, even at low doses, resulted in morphological abnormalities and death for some individuals, whereas other individuals were not affected, at least morphologically. This variable sensitivity serves as a basis for the adaptive evolution of radiation resistance. The distribution of abnormality and mortality rates from low to high doses fits well with a Weibull function model or a power function model. The offspring generated by morphologically normal individuals that consumed contaminated leaves exhibited high mortality rates when fed contaminated leaves; importantly, low mortality rates were restored when they were fed non-contaminated leaves. Our field monitoring over 3 years (2011–2013) indicated that abnormality and mortality rates peaked primarily in the fall of 2011 and decreased afterwards to normal levels. These findings indicate high impacts of early exposure and transgenerationally accumulated radiation effects over a specific period; however, the population regained normality relatively quickly after ∼15 generations within 3 years. PMID:26661851
Code of Federal Regulations, 2014 CFR
2014-10-01
.... Consignment means a package or group of packages or load of radioactive material offered by a person for... surface during normal conditions of transport. (2) Non-fixed contamination means contamination that can be... a number (rounded up to the next tenth) which is used to provide control over the accumulation of...
The chemokine CCL2 protects against methylmercury neurotoxicity.
Godefroy, David; Gosselin, Romain-Daniel; Yasutake, Akira; Fujimura, Masatake; Combadière, Christophe; Maury-Brachet, Régine; Laclau, Muriel; Rakwal, Randeep; Melik-Parsadaniantz, Stéphane; Bourdineaud, Jean-Paul; Rostène, William
2012-01-01
Industrial pollution due to heavy metals such as mercury is a major concern for the environment and public health. Mercury, in particular methylmercury (MeHg), primarily affects brain development and neuronal activity, resulting in neurotoxic effects. Because chemokines can modulate brain functions and are involved in neuroinflammatory and neurodegenerative diseases, we tested the possibility that the neurotoxic effect of MeHg may interfere with the chemokine CCL2. We have used an original protocol in young mice using a MeHg-contaminated fish-based diet for 3 months relevant to human MeHg contamination. We observed that MeHg induced in the mice cortex a decrease in CCL2 concentrations, neuronal cell death, and microglial activation. Knock-out (KO) CCL2 mice fed with a vegetal control food already presented a decrease in cortical neuronal cell density in comparison with wild-type animals under similar diet conditions, suggesting that the presence of CCL2 is required for normal neuronal survival. Moreover, KO CCL2 mice showed a pronounced neuronal cell death in response to MeHg. Using in vitro experiments on pure rat cortical neurons in culture, we observed by blockade of the CCL2/CCR2 neurotransmission an increased neuronal cell death in response to MeHg neurotoxicity. Furthermore, we showed that sod genes are upregulated in brain of wild-type mice fed with MeHg in contrast to KO CCL2 mice and that CCL2 can blunt in vitro the decrease in glutathione levels induced by MeHg. These original findings demonstrate that CCL2 may act as a neuroprotective alarm system in brain deficits due to MeHg intoxication.
Hosen, Saeed Mohammed Imran; Das, Dipesh; Kobi, Rupkanowar; Chowdhury, Dil Umme Salma; Alam, Md Jibran; Rudra, Bashudev; Bakar, Muhammad Abu; Islam, Saiful; Rahman, Zillur; Al-Forkan, Mohammad
2016-10-14
In the present study, we investigated the arsenic accumulation in different parts of rice irrigated with arsenic contaminated water. Besides, we also evaluated the protective effects of Corchorus olitorius leaves against arsenic contaminated rice induced toxicities in animal model. A pot experiment was conducted with arsenic amended irrigation water (0.0, 25.0, 50.0 and 75.0 mg/L As) to investigate the arsenic accumulation in different parts of rice. In order to evaluate the protective effects of Corchorus olitorius leaves, twenty Wistar albino rats were divided into four different groups. The control group (Group-I) was supplied with normal laboratory pellets while groups II, III, and IV received normal laboratory pellets supplemented with arsenic contaminated rice, C. olitorius leaf powder (4 %), arsenic contaminated rice plus C. olitorius leaf powder (4 %) respectively. Different haematological parameters and serum indices were analyzed to evaluate the protective effects of Corchorus olitorius leaves against arsenic intoxication. To gather more supportive evidences of Corchorus olitorius potentiality against arsenic intoxication, histopathological analysis of liver, kidney, spleen and heart tissues was also performed. From the pot experiment, we have found a significant (p ≤ 0.05) increase of arsenic accumulation in different parts of rice with the increase of arsenic concentrations in irrigation water and the trend of accumulation was found as root > straw > husk > grain. Another part of the experiment revealed that supplementation of C. olitorius leaves with arsenic contaminated rice significantly (p < 0.05) restored the altered haematological parameters and other serum indices towards the normal values. Arsenic deposition pattern on different organs and histological studies on the ultrastructural changes of liver, kidneys, spleen and heart also supported the protective roles of Corchorus olitorius leaves against arsenic contaminated rice induced toxicities. Arsenic accumulation in different parts of rice increased dose-dependently. Hence, for irrigation purpose arsenic contaminated water cannot be used. Furthermore, arsenic contaminated rice induced several toxicities in animal model, most of which could be minimized with the food supplementation of Corchorus olitorius leaves. Therefore, Corchorus olitorius can be used as a potential food supplement to the affected people of arsenic prone zone to ensure the food security.
Susceptibility of mouse minute virus to inactivation by heat in two cell culture media types.
Schleh, Marc; Romanowski, Peter; Bhebe, Prince; Zhang, Li; Chinniah, Shivanthi; Lawrence, Bill; Bashiri, Houman; Gaduh, Asri; Rajurs, Viveka; Rasmussen, Brian; Chuck, Alice; Dehghani, Houman
2009-01-01
Viral contaminations of biopharmaceutical manufacturing cell culture facilities are a significant threat and one for which having a risk mitigation strategy is highly desirable. High temperature, short time (HTST) mammalian cell media treatment may potentially safeguard manufacturing facilities from such contaminations. HTST is thought to inactivate virions by denaturing proteins of the viral capsid, and there is evidence that HTST provides ample virucidal efficacy against nonenveloped or naked viruses such as mouse minute virus (MMV), a parvovirus. The aim of the studies presented herein was to further delineate the susceptibility of MMV, known to have contaminated mammalian cell manufacturing facilities, to heat by exposing virus-spiked cell culture media to a broad range of temperatures and for various times of exposure. The results of these studies show that HTST is capable of inactivating MMV by three orders of magnitude or more. Thus, we believe that HTST is a useful technology for the purposes of providing a barrier to adventitious contamination of mammalian cell culture processes in the biopharmaceutical industry. 2009 American Institute of Chemical Engineers
Mirabet, Vicente; Alvarez, Manuel; Solves, Pilar; Ocete, Dolores; Gimeno, Concepción
2012-04-01
Cryopreservation is widely used for banking cells and tissues intended for transplantation. Liquid nitrogen provides a very stable ultra-low temperature environment. Thus, it is used for longterm storage. Unlike the exhaustive microbiological monitoring of the environmental conditions during tissue processing, storage is not usually considered as a critical point of potential contamination risk in professional standards for cell and tissue banking. We have analysed the presence of microbial agents inside our nitrogen tanks. We have mainly detected environmental and water-borne bacteria and fungi. In addition, we have studied the effect of liquid nitrogen exposure on virus detectability. Only differences for hepatitis C virus RNA were observed. Measures for contamination risk reduction during storage must be mandatory in cell and tissue banking. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wan, Fubin; Tan, Yuanyuan; Jiang, Zhenhua; Chen, Xun; Wu, Yinong; Zhao, Peng
2017-12-01
Lifetime and reliability are the two performance parameters of premium importance for modern space Stirling-type pulse tube refrigerators (SPTRs), which are required to operate in excess of 10 years. Demonstration of these parameters provides a significant challenge. This paper proposes a lifetime prediction and reliability estimation method that utilizes accelerated degradation testing (ADT) for SPTRs related to gaseous contamination failure. The method was experimentally validated via three groups of gaseous contamination ADT. First, the performance degradation model based on mechanism of contamination failure and material outgassing characteristics of SPTRs was established. Next, a preliminary test was performed to determine whether the mechanism of contamination failure of the SPTRs during ADT is consistent with normal life testing. Subsequently, the experimental program of ADT was designed for SPTRs. Then, three groups of gaseous contamination ADT were performed at elevated ambient temperatures of 40 °C, 50 °C, and 60 °C, respectively and the estimated lifetimes of the SPTRs under normal condition were obtained through acceleration model (Arrhenius model). The results show good fitting of the degradation model with the experimental data. Finally, we obtained the reliability estimation of SPTRs through using the Weibull distribution. The proposed novel methodology enables us to take less than one year time to estimate the reliability of the SPTRs designed for more than 10 years.
Contamination Effects Due to Space Environmental Interactions
NASA Technical Reports Server (NTRS)
Chen, Philip T.; Paquin, Krista C. (Technical Monitor)
2001-01-01
Molecular and particulate contaminants are commonly generated from the orbital spacecraft operations that are under the influence of the space environment. Once generated, these contaminants may attach to the surfaces of the spacecraft or may remain in the vicinity of the spacecraft. In the event these contaminants come to rest on the surfaces of the spacecraft or situated in the line-of-sight of the observation path, they will create various degrees of contamination effect which may cause undesirable effects for normal spacecraft operations, There will be circumstances in which the spacecraft may be subjected to special space environment due to operational conditions. Interactions between contaminants and special space environment may alter or greatly increase the contamination effect due to the synergistic effect. This paper will address the various types of contamination generation on orbit, the general effects of the contamination on spacecraft systems, and the typical impacts on the spacecraft operations due to the contamination effect. In addition, this paper will explain the contamination effect induced by the space environment and will discuss the intensified contamination effect resulting from the synergistic effect with the special space environment.
Bahrami, Naghmeh; Bayat, Mohammad; Mohamadnia, Abdolreza; Khakbiz, Mehrdad; Yazdankhah, Meysam; Ai, Jafar; Ebrahimi-Barough, Somayeh
2017-09-01
There is variety of stem cell sources but problems in ethical issues, contamination, and normal karyotype cause many limitations in obtaining and using these cells. The cells in Wharton's jelly region of umbilical cord are abundant and available stem cells with low immunological incompatibility, which could be considered for cell replacement therapy. Small molecules have been presented as less expensive biologically active compounds that can regulate different developmental process. Purmorphamine (PMA) is a small molecule that, according to some studies, possesses certain differentiation effects. In this study, we investigated the effect of the PMA on Wharton's jelly mesenchymal stem cell (WJ-MSC) differentiation into motor neuronal lineages instead of sonic hedgehog (Shh) on PCL scaffold. After exposing to induction media for 15 days, the cells were characterized for expression of motor neuron markers including PAX6, NF-H, Islet1, HB9, and choline acetyl transferase (ChAT) by quantitative reverse transcription (PCR) and immunocytochemistry. Our results demonstrated that induced WJ-MSCs with PMA could significantly express motor neuron markers in RNA and protein levels 15 days post induction. These results suggested that WJ-MSCs can differentiate to motor neuron-like cells with PMA on PCL scaffold and might provide a potential source in cell therapy for nervous system.
Vogeleer, Philippe; Tremblay, Yannick D. N.; Mafu, Akier A.; Jacques, Mario; Harel, Josée
2014-01-01
Escherichia coli is a heterogeneous species that can be part of the normal flora of humans but also include strains of medical importance. Among pathogenic members, Shiga-toxin producing E. coli (STEC) are some of the more prominent pathogenic E. coli within the public sphere. STEC disease outbreaks are typically associated with contaminated beef, contaminated drinking water, and contaminated fresh produce. These water- and food-borne pathogens usually colonize cattle asymptomatically; cows will shed STEC in their feces and the subsequent fecal contamination of the environment and processing plants is a major concern for food and public safety. This is especially important because STEC can survive for prolonged periods of time outside its host in environments such as water, produce, and farm soil. Biofilms are hypothesized to be important for survival in the environment especially on produce, in rivers, and in processing plants. Several factors involved in biofilm formation such as curli, cellulose, poly-N-acetyl glucosamine, and colanic acid are involved in plant colonization and adherence to different surfaces often found in meat processing plants. In food processing plants, contamination of beef carcasses occurs at different stages of processing and this is often caused by the formation of STEC biofilms on the surface of several pieces of equipment associated with slaughtering and processing. Biofilms protect bacteria against several challenges, including biocides used in industrial processes. STEC biofilms are less sensitive than planktonic cells to several chemical sanitizers such as quaternary ammonium compounds, peroxyacetic acid, and chlorine compounds. Increased resistance to sanitizers by STEC growing in a biofilm is likely to be a source of contamination in the processing plant. This review focuses on the role of biofilm formation by STEC as a means of persistence outside their animal host and factors associated with biofilm formation. PMID:25071733
Adverse effects of members of the Enterobacteriaceae family on boar sperm quality.
Ubeda, Juan Luis; Ausejo, Raquel; Dahmani, Yahya; Falceto, Maria V; Usan, Adan; Malo, Clara; Perez-Martinez, Francisco C
2013-10-01
Semen samples collected in 2012 from 1785 boars belonging to five different breeds were recruited from the quality control laboratory of Magapor SL, Spain. These samples came from 43 boar studs and resulted from diluting the ejaculates in commercial semen extenders. Evaluation of the semen sample characteristics (color, smell, pH, osmolality, concentration, motility of sperm cells, agglutination, acrosome integrity, short hypoosmotic swelling test, and abnormal forms) revealed that they met the international standards. The samples were also tested for the presence of aerobic bacterial contamination. In the present study, 14.73% (n = 263) of the semen samples were contaminated above 3 × 10(2) colony-forming units/mL with at least one type of bacteria. The Enterobacteriaceae family was by far the major contaminant, being present in 40.68% of the contaminated samples (n = 107). Bacterial strains of the Enterobacteriaceae family isolated from boar semen samples were in order of incidence (percentage of the contaminated samples): Serratia marcescens (12.55%), Klebsiella oxytoca (11.79%), Providencia stuartii (9.12%), Morganella morganii (3.80%), Proteus mirabilis (1.90%), and Escherichia coli (1.52%). We have seen that the presence in semen samples of S. marcescens, K. oxytoca, M. morganii, or P. mirabilis, but not P. stuartii or E. coli, was negatively associated with sperm motility (P < 0.05). The mean sperm concentration (P < 0.05), the mean percentage of spermatozoa with curled tails after the short hypoosmotic swelling test (P < 0.01), and the incidence of morphologically normal acrosomes (P < 0.05) were also lower in semen samples infected with M. morganii compared with uninfected ones. Moreover, P. mirabilis was negatively associated with the presence of abnormal forms. Thus, on the basis of the pathological effects that some of these strains may have on boar sperm quality, bacterial contamination should always be examined in semen samples prepared for artificial insemination. Copyright © 2013 Elsevier Inc. All rights reserved.
An improved out-cell to in-cell rapid transfer system at the HFEF-south
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacca, J.P.; Sherman, E.K.
1990-01-01
The Argonne National Laboratory (ANL) Hot Fuel Examination Facility-South (HFEF-S), located at the ANL-West site of the Idaho National Engineering Laboratory, is currently undergoing extensive refurbishment and modifications in preparation for its use, beginning in 1991, in demonstrating remote recycling of fast reactor, metal-alloy fuel as part of the US Department of Energy liquid-metal reactor, Integral Fast Reactor (IFR) program. Included in these improvements to HFEF-S is a new, small-item, rapid transfer system (RTS). When installed, this system will enable the rapid transfer of small items from the hot-cell exterior into the argon cell (argon-gas atmosphere) of the facility withoutmore » necessitating the use of time-consuming and laborious procedures. The new RTS will also provide another important function associated with HFEF-S hot-cell operation in the IFR Fuel Recycle Program; namely, the rapid insertion of clean, radioactive contamination-measuring smear paper specimens into the hot cells for area surveys, and the expedited removal of these contaminated (including alpha as well as beta/gamma contamination) smears from the argon cell for transfer to an adjacent health physics field laboratory in the facility for nuclear contamination/radiation counting.« less
Flotation process for removal of precipitates from electrochemical chromate reduction unit
DeMonbrun, James R.; Schmitt, Charles R.; Williams, Everett H.
1976-01-01
This invention is an improved form of a conventional electrochemical process for removing hexavalent chromium or other metal-ion contaminants from cooling-tower blowdown water. In the conventional process, the contaminant is reduced and precipitated at an iron anode, thus forming a mixed precipitate of iron and chromium hydroxides, while hydrogen being evolved copiously at a cathode is vented from the electrochemical cell. In the conventional process, subsequent separation of the fine precipitate has proved to be difficult and inefficient. In accordance with this invention, the electrochemical operation is conducted in a novel manner permitting a much more efficient and less expensive precipitate-recovery operation. That is, the electrochemical operation is conducted under an evolved-hydrogen partial pressure exceeding atmospheric pressure. As a result, most of the evolved hydrogen is entrained as bubbles in the blowdown in the cell. The resulting hydrogen-rich blowdown is introduced to a vented chamber, where the entrained hydrogen combines with the precipitate to form a froth which can be separated by conventional techniques. In addition to the hydrogen, two materials present in most blowdown act as flotation promoters for the precipitate. These are (1) air, with which the blowdown water becomes saturated in the course of normal cooling-tower operation, and (2) surfactants which commonly are added to cooling-tower recirculating-water systems to inhibit the growth of certain organisms or prevent the deposition of insoluble particulates.
Is MMTV associated with human breast cancer? Maybe, but probably not.
Perzova, Raisa; Abbott, Lynn; Benz, Patricia; Landas, Steve; Khan, Seema; Glaser, Jordan; Cunningham, Coleen K; Poiesz, Bernard
2017-10-13
Conflicting results regarding the association of MMTV with human breast cancer have been reported. Published sequence data have indicated unique MMTV strains in some human samples. However, concerns regarding contamination as a cause of false positive results have persisted. We performed PCR assays for MMTV on human breast cancer cell lines and fresh frozen and formalin fixed normal and malignant human breast epithelial samples. Assays were also performed on peripheral blood mononuclear cells from volunteer blood donors and subjects at risk for human retroviral infections. In addition, assays were performed on DNA samples from wild and laboratory mice. Sequencing of MMTV positive samples from both humans and mice were performed and phylogenetically compared. Using PCR under rigorous conditions to prevent and detect "carryover" contamination, we did detect MMTV DNA in human samples, including breast cancer. However, the results were not consistent and seemed to be an artifact. Further, experiments indicated that the probable source of false positives was murine DNA, containing endogenous MMTV, present in our building. However, comparison of published and, herein, newly described MMTV sequences with published data, indicates that there are some very unique human MMTV sequences in the literature. While we could not confirm the true presence of MMTV in our human breast cancer subjects, the data indicate that further, perhaps more traditional, retroviral studies are warranted to ascertain whether MMTV might rarely be the cause of human breast cancer.
Joshi, Suresh G; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D
2011-03-01
Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria.
Joshi, Suresh G.; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K.; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D.
2011-01-01
Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria. PMID:21199923
Polyhexamethyl biguanide can eliminate contaminant yeasts from fuel-ethanol fermentation process.
Elsztein, Carolina; de Menezes, João Assis Scavuzzi; de Morais, Marcos Antonio
2008-09-01
Industrial ethanol fermentation is a non-sterile process and contaminant microorganisms can lead to a decrease in industrial productivity and significant economic loss. Nowadays, some distilleries in Northeastern Brazil deal with bacterial contamination by decreasing must pH and adding bactericides. Alternatively, contamination can be challenged by adding a pure batch of Saccharomyces cerevisiae-a time-consuming and costly process. A better strategy might involve the development of a fungicide that kills contaminant yeasts while preserving S. cerevisiae cells. Here, we show that polyhexamethyl biguanide (PHMB) inhibits and kills the most important contaminant yeasts detected in the distilleries of Northeastern Brazil without affecting the cell viability and fermentation capacity of S. cerevisiae. Moreover, some physiological data suggest that PHMB acts through interaction with the yeast membrane. These results support the development of a new strategy for controlling contaminant yeast population whilst keeping industrial yields high.
Gakhar, Gunjan; Bander, Neil H.; Nanus, David M.
2014-01-01
Metastasis is a process in which tumor cells shed from the primary tumor intravasate blood vascular and lymphatic system, thereby, gaining access to extravasate and form a secondary niche. The extravasation of tumor cells from the blood vascular system can be studied using endothelial cells (ECs) and tumor cells obtained from different cell lines. Initial studies were conducted using static conditions but it has been well documented that ECs behave differently under physiological flow conditions. Therefore, different flow chamber assemblies are currently being used to studying cancer cell interactions with ECs. Current flow chamber assemblies offer reproducible results using either different cell lines or fluid at different shear stress conditions. However, to observe and study interactions with rare cells such as circulating tumor cells (CTCs), certain changes are required to be made to the conventional flow chamber assembly. CTCs are a rare cell population among millions of blood cells. Consequently, it is difficult to obtain a pure population of CTCs. Contamination of CTCs with different types of cells normally found in the circulation is inevitable using present enrichment or depletion techniques. In the present report, we describe a unique method to fluorescently label circulating prostate cancer cells and study their interactions with ECs in a self-assembled flow chamber system. This technique can be further applied to observe interactions between prostate CTCs and any protein of interest. PMID:24894373
IMPACT OF ETHANOL ON THE NATURAL ATTENUATION OF MTBE IN A NORMALLY SULFATE-REDUCING AQUIFER
Two side-by-side experiments were conducted in an MTBE-contaminated aquifer at a former service station site to determine the effect of ethanol release on the fate of pre-existing MTBE contamination. On one side, we injected groundwater amended with 1-3 mg/L benzene, toluene, and...
Primary Total Knee Replacement: Is Suction a Portal of Infection?
Budnar, Vijaya M; Amirfeyz, Rouin; Ng, Michael; Bannister, Gordon C; Blom, Ashley W
2009-01-01
INTRODUCTION Pulsed lavage during a total knee replacement usually leaves a pool of fluid on the surgical drapes. It is common practice to suck away this fluid using the same suction device used intra-operatively. This could be a cause of direct wound contamination. We hypothesised that bacteria contaminate fluid that collects around the foot in total knee replacement surgery and that suction equipment could be a portal of contamination. We also hypothesised that bacterial count in the fluid is lower if chlorhexidine, rather than saline, is used in the pulsed lavage. PATIENTS AND METHODS Forty patients undergoing primary total knee replacement were divided into two groups. The first group had pulsed lavage with normal saline and the second with 0.05% chlorhexidine. RESULTS At the end of the operation, 20 ml of fluid, pooled on the surgical drapes was aspirated and cultured for bacterial growth. None of the fluid samples showed bacterial growth. CONCLUSIONS Suction device used peri-operatively during knee replacement is unlikely to be a cause of wound contamination. Pulsed lavage with normal saline is as effective as lavage with chlorhexidine. PMID:19335972
Caron-Beaudoin, Elyse; Viau, Rachel; Hudon-Thibeault, Andrée-Anne; Vaillancourt, Cathy; Sanderson, J Thomas
2017-10-01
Estrogen biosynthesis during pregnancy is dependent on the collaboration between the fetus producing the androgen precursors, and the placenta expressing the enzyme aromatase (CYP19). Disruption of estrogen production by contaminants may result in serious pregnancy outcomes. We used our recently developed in vitro co-culture model of fetoplacental steroidogenesis to screen the effects of three neonicotinoid insecticides on the catalytic activity of aromatase and the production of steroid hormones. A co-culture of H295R human adrenocortical carcinoma cells with fetal characteristics and BeWo human choriocarcinoma cells which display characteristics of the villous cytotrophoblast was exposed for 24h to various concentrations of three neonicotinoids: thiacloprid, thiamethoxam and imidacloprid. Aromatase catalytic activity was determined in both cell lines using the tritiated water-release assay. Hormone production was measured by ELISA. The three neonicotinoids induced aromatase activity in our fetoplacental co-culture and concordingly, estradiol and estrone production were increased. In contrast, estriol production was strongly inhibited by the neonicotinoids. All three pesticides induced the expression of CYP3A7 in H295R cells, and this induction was reversed by co-treatment of H295R cells with exogenous estriol. CYP3A7 is normally expressed in fetal liver and is a key enzyme involved in estriol synthesis. We suggest that neonicotinoids are metabolized by CYP3A7, thus impeding the 16α-hydroxylation of fetal DHEA(-sulfate), which is normally converted to estriol by placental aromatase. We successfully used the fetoplacental co-culture as a physiologically relevant tool to highlight the potential effects of neonicotinoids on estrogen production, aromatase activity and CYP3A7 expression during pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Bareiss, L. E.; Hooper, V. W.; Ress, E. B.
1976-01-01
Progress is reported on the mission support plan and those support activities envisioned to be applicable and necessary during premission and postmission phases of the Spacelab program. The purpose, role, and requirements of the contamination control operations for the first two missions of the Spacelab equipped Space Transportation System are discussed. The organization of the contamination control operation and its relationship to and interfaces with other mission support functions is also discussed. Some specific areas of contamination to be investigated are treated. They are: (1) windows and viewports, (2) experiment equipment, (3) thermal control surfaces, (4) the contaminant induced atmosphere (as differentiated from the normal ambient atmosphere at the orbit altitude), and (5) optical navigation instruments.
Contaminants | Hydrogen and Fuel Cells | NREL
-Derived Contaminants Overview Materials Methods Data Tool Partners Publications System Contaminants using several screening methods. The materials are from different manufacturers, comprise different Characterization Methods A flowchart graphic that shows the experimental methods used in the system contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arutyunyan, R.V.; Bol`shov, L.A.; Vasil`ev, S.K.
1994-06-01
The objective of this study was to clarify a number of issues related to the spatial distribution of contaminants from the Chernobyl accident. The effects of local statistics were addressed by collecting and analyzing (for Cesium 137) soil samples from a number of regions, and it was found that sample activity differed by a factor of 3-5. The effect of local non-uniformity was estimated by modeling the distribution of the average activity of a set of five samples for each of the regions, with the spread in the activities for a {+-}2 range being equal to 25%. The statistical characteristicsmore » of the distribution of contamination were then analyzed and found to be a log-normal distribution with the standard deviation being a function of test area. All data for the Bryanskaya Oblast area were analyzed statistically and were adequately described by a log-normal function.« less
USDA-ARS?s Scientific Manuscript database
The need to segregate high- and normal-oleic peanut seeds has lead to investigations into potential sources of mixing. Previous work in our lab examined the development of in two lines of virginia type seeds, Bailey (normal-oleic) and Spain (high-oleic) for changes in the oleic to linoleic ratios (...
Chobtang, Jeerasak; de Boer, Imke J. M.; Hoogenboom, Ron L. A. P.; Haasnoot, Willem; Kijlstra, Aize; Meerburg, Bastiaan G.
2011-01-01
Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain. PMID:22247688
Chobtang, Jeerasak; de Boer, Imke J M; Hoogenboom, Ron L A P; Haasnoot, Willem; Kijlstra, Aize; Meerburg, Bastiaan G
2011-01-01
Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain.
The effects of battlefield contaminants on PEMFC performance
NASA Astrophysics Data System (ADS)
Moore, Jon M.; Adcock, Paul L.; Lakeman, J. Barry; Mepsted, Gary O.
The effects of contaminants on the performance of an air breathing proton exchange membrane fuel cell (PEMFC) were investigated, by introduction into oxidant air fed to the fuel cell. The impact of the common pollutants sulphur dioxide, nitrogen dioxide, carbon monoxide, propane and benzene and the chemical warfare agents, sarin, sulphur mustard, cyanogen chloride (CNCl) and hydrogen cyanide (HCN) were assessed. At the concentrations studied, the common contaminants had either no effect on performance or caused a reversible depression. The chemical warfare agents all seriously compromised the performance of the fuel cells in an irreversible manner.
Effect of System Contaminants on the Performance of a Proton Exchange Membrane Fuel Cell
Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido; ...
2016-11-10
The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ethermore » acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. Finally, the degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.« less
A multi-laboratory profile of Mycoplasma contamination in Lawsonia intracellularis cultures
2012-01-01
Background During the routine laboratory cultivation of Lawsonia intracellularis, Mycoplasma contamination has been a frequent problem. When Mycoplasma contamination occurs in laboratories that study L. intracellularis, the cultures must be discarded for 4 reasons: 1) Mycoplasma is inevitably concentrated along with L. intracellularis during the passage of L. intracellularis; 2) Mycoplasma inhibits the growth of L. intracellularis; and 3) it is impossible to selectively eliminate Mycoplasma in L. intracellularis cultures. In this study, we observed the contamination of Mycoplasma species during L. intracellularis cultivation among multiple laboratories. Results The presence of a Mycoplasma infection in the L. intracellularis cultures was verified using polymerase chain reaction (PCR), and a sequence analysis of the partial 16S rRNA and 23S rRNA genes was performed. A PCR-based assay using genus-specific universal primers revealed that 29 (85.3%) of the 34 cultures were contaminated with Mycoplasma, including 26 with M. hyorhinis (89.2%), 2 with M. orale (6.9%), and 1 with M. fermentans (3.4%). The Mycoplasma contamination was not the result of infection with material of pig origin. McCoy cells, which are required for the cultivation of L. intracellularis, were also ruled out as the source of the Mycoplasma contamination. Conclusions In this study, M. hyorhinis was identified as the most common mollicute that contaminated L. intracellularis cultures. Whether L. intracellularis enhances the biological properties of Mycoplasma to promote infection in McCoy cells is not known. Because the McCoy cell line stocks that were used simultaneously were all negative for Mycoplasma, and the same worker handled both the McCoy cells to maintain the bacteria and the L. intracellularis cultures, it is possible that the L. intracellularis cultures are more vulnerable to Mycoplasma contamination. Taken together, these results suggest that continuous cultures of L. intracellularis must be tested for Mycoplasma contamination at regular intervals. The GenBank accession numbers for the sequences reported in this paper are JN689375 to JN689377. PMID:22284165
Tischer, Karolin; Zeder, Michael; Klug, Rebecca; Pernthaler, Jakob; Schattenhofer, Martha; Harms, Hauke; Wendeberg, Annelie
2012-12-01
Groundwater ecosystems are the most important sources of drinking water worldwide but they are threatened by contamination and overexploitation. Petroleum spills account for the most common source of contamination and the high carbon load results in anoxia and steep geochemical gradients. Microbes play a major role in the transformation of petroleum hydrocarbons into less toxic substances. To investigate microbial populations at the single cell level, fluorescence in situ hybridization (FISH) is now a well-established technique. Recently, however, catalyzed reporter deposition (CARD)-FISH has been introduced for the detection of microbes from oligotrophic environments. Nevertheless, petroleum contaminated aquifers present a worst case scenario for FISH techniques due to the combination of high background fluorescence of hydrocarbons and the presence of small microbial cells caused by the low turnover rates characteristic of groundwater ecosystems. It is therefore not surprising that studies of microorganisms from such sites are mostly based on cultivation techniques, fingerprinting, and amplicon sequencing. However, to reveal the population dynamics and interspecies relationships of the key participants of contaminant degradation, FISH is an indispensable tool. In this study, a protocol for FISH was developed in combination with cell quantification using an automated counting microscope. The protocol includes the separation and purification of microbial cells from sediment particles, cell permeabilization and, finally, CARD-FISH in a microwave oven. As a proof of principle, the distribution of Archaea and Bacteria was shown in 60 sediment samples taken across the contaminant plume of an aquifer (Leuna, Germany), which has been heavily contaminated with several ten-thousand tonnes of petroleum hydrocarbons since World War II. Copyright © 2012 Elsevier GmbH. All rights reserved.
The Effect of Substrate Contaminates on the Life of Epoxy Coatings Submerged in Sea Water
1991-03-01
contaminants: coal tar, SovaPon, Mare Island and Aquapon . Aquapon is a clear (unpigmented) polyamide epoxy coating. While Aquapon is not normally used for...pigmented coatings. It was found that the Aquapon and coal tar coatings performed similarly, and blistered to the same extent, at the contamination levels...used in the test program. The Sovapon and Mare Island coatings were slightly more resistive to blistering when compared to Aquapon or coal tar but they
Schmitt, Christopher J.; McKee, Michael J.
2016-01-01
Lead (Pb) and calcium (Ca) concentrations were measured in fillet samples of longear sunfish (Lepomis megalotis) and redhorse suckers (Moxostoma spp.) collected in 2005–2012 from the Big River, which drains a historical mining area in southeastern Missouri and where a consumption advisory is in effect due to elevated Pb concentrations in fish. Lead tends to accumulated in Ca-rich tissues such as bone and scale. Concentrations of Pb in fish muscle are typically low, but can become elevated in fillets from Pb-contaminated sites depending in part on how much bone, scale, and skin is included in the sample. We used analysis-of-covariance to normalize Pb concentration to the geometric mean Ca concentration (415 ug/g wet weight, ww), which reduced variation between taxa, sites, and years, as was the number of samples that exceeded Missouri consumption advisory threshold (300 ng/g ww). Concentrations of Pb in 2005–2012 were lower than in the past, especially after Ca-normalization, but the consumption advisory is still warranted because concentrations were >300 ng/g ww in samples of both taxa from contaminated sites. For monitoring purposes, a simple linear regression model is proposed for estimating Ca-normalized Pb concentrations in fillets from Pb:Ca molar ratios as a way of reducing the effects of differing preparation methods on fillet Pb variation.
Schmitt, Christopher J; McKee, Michael J
2016-11-01
Lead (Pb) and calcium (Ca) concentrations were measured in fillet samples of longear sunfish (Lepomis megalotis) and redhorse suckers (Moxostoma spp.) collected in 2005-2012 from the Big River, which drains a historical mining area in southeastern Missouri and where a consumption advisory is in effect due to elevated Pb concentrations in fish. Lead tends to accumulated in Ca-rich tissues such as bone and scale. Concentrations of Pb in fish muscle are typically low, but can become elevated in fillets from Pb-contaminated sites depending in part on how much bone, scale, and skin is included in the sample. We used analysis-of-covariance to normalize Pb concentration to the geometric mean Ca concentration (415 ug/g wet weight, ww), which reduced variation between taxa, sites, and years, as was the number of samples that exceeded Missouri consumption advisory threshold (300 ng/g ww). Concentrations of Pb in 2005-2012 were lower than in the past, especially after Ca-normalization, but the consumption advisory is still warranted because concentrations were >300 ng/g ww in samples of both taxa from contaminated sites. For monitoring purposes, a simple linear regression model is proposed for estimating Ca-normalized Pb concentrations in fillets from Pb:Ca molar ratios as a way of reducing the effects of differing preparation methods on fillet Pb variation.
Zhao, Mei; Sano, Daisuke; Pickering, Curtis R.; Jasser, Samar A.; Henderson, Ying C.; Clayman, Gary L.; Sturgis, Erich M.; Ow, Thomas J.; Lotan, Reuben; Carey, Thomas E.; Sacks, Peter G.; Grandis, Jennifer R.; Sidransky, David; Heldin, Nils Erik; Myers, Jeffrey N.
2011-01-01
Purpose Human cell lines are useful for studying cancer biology and pre-clinically modeling cancer therapy, but can be misidentified and cross contamination is unfortunately common. The purpose of this study was to develop a panel of validated head and neck cell lines representing the spectrum of tissue sites and histologies that could be used for studying the molecular, genetic, and phenotypic diversity of head and neck cancer. Methods A panel of 122 clinically and phenotypically diverse head and neck cell lines from head and neck squamous cell carcinoma (HNSCC), thyroid cancer, cutaneous squamous cell carcinoma, adenoid cystic carcinoma, oral leukoplakia, immortalized primary keratinocytes, and normal epithelium, was assembled from the collections of several individuals and institutions. Authenticity was verified by performing short tandem repeat (STR) analysis. Human papillomavirus (HPV) status and cell morphology were also determined. Results Eighty-five of the 122 cell lines had unique genetic profiles. HPV-16 DNA was detected in 2 cell lines. These 85 cell lines included cell lines from the major head and neck primary tumor sites, and close examination demonstrates a wide range of in vitro phenotypes. Conclusion This panel of 85 genomically validated head and neck cell lines represents a valuable resource for the head and neck cancer research community that can help advance understanding of the disease by providing a standard reference for cell lines that can be utilized for biological as well as preclinical studies. PMID:21868764
Chronic arsenic toxicity in sheep of Kurdistan province, western Iran.
Keshavarzi, Behnam; Seradj, Afsaneh; Akbari, Zahra; Moore, Farid; Shahraki, Alireza Rahmani; Pourjafar, Mehrdad
2015-07-01
After the detection of arsenic (As) toxicity in sheep from Ebrahim-abad and Babanazar villages in Kurdistan province, the concentration of this element in drinking water, cultivated soil, alfalfa hay, wool, and blood samples was evaluated. Total As concentrations ranged from 119 to 310 μg/L in drinking water, 46.70-819.20 mg/kg in soil 1.90-6.90 mg/kg in vegetation 1.56-10.79 mg/kg in sheep's wool, and 86.30-656 μg/L in blood samples. These very high As contents, in all parts of the biogeochemical cycle, exceed the recommended normal range for this element compared with a control area. Results indicate that As has moved through all compartments of the biogeochemical cycle by way of direct or indirect pathways. The present investigation illustrated decreased packed cell volume and hemoglobin in sheep from the As-contaminated zone. It was concluded that sheep from the contaminated areas suffer from anemia. Chronic As exposure of the liver was determined by liver function tests. For this purpose, blood aspartate transaminase (AST) and alanine transaminase (ALT) were measured. The results show that serum ALT and AST activities are increased significantly (p < 0.01) in the sheep population exposed to As in the contaminated zone. Moreover, chronic As exposure causes injury to hepatocytes and damages the liver.
Effects of feed-borne Fusarium mycotoxins on hematology and immunology of turkeys.
Chowdhury, S R; Smith, T K; Boermans, H J; Woodward, B
2005-11-01
Feeding grains naturally-contaminated with Fusarium mycotoxins has been shown to alter the metabolism and performance of turkeys. The objectives of the current experiment were to examine the effects of feeding turkeys with grains naturally contaminated with Fusarium mycotoxins on their hematology and immunological indices (including functions), and the possible protective effect of feeding a polymeric glucomannan mycotoxin adsorbent (GMA). Two hundred twenty-five 1-d-old male turkey poults were fed corn, wheat, and soybean meal-based starter (0 to 3 wk), grower (4 to 6 wk), developer (7 to 9 wk), and finisher (10 to 12 wk) diets formulated with uncontaminated grains, contaminated grains, or contaminated grains with 0.2% GMA. The chronic consumption of Fusarium mycotoxins caused minor and transient changes in hematocrit (0.33 L/L) and hemoglobin (10(6) g/L) concentrations as well as in blood basophil (0.13 x 10(9)/L) and monocyte counts (3.42 x 10(9)/L) compared with controls. Supplementation of the contaminated diet with GMA prevented these effects on blood cell counts. Biliary IgA concentrations were significantly increased (4.45-fold) when birds were fed contaminated grains compared with controls, but serum IgA concentrations were not affected. Contact hypersensitivity to dinitrochlorobenzene, which is a CD8+ T-cell-mediated delayed-type hypersensitivity response, was decreased (48%) by feed-borne mycotoxins compared with the control. By contrast, the primary and secondary antibody response to sheep red blood cells, a CD4+ T-cell-mediated response, was not affected. It was concluded that chronic consumption of grains naturally contaminated with Fusarium mycotoxins exerts only minor adverse effects on the hematology and some immunological indices of turkeys. Consumption of grains naturally contaminated with Fusarium mycotoxins may, however, increase the susceptibility of turkeys to infectious agents against which CD8+ T cells play a major role in defense.
Practicing safe cell culture: applied process designs for minimizing virus contamination risk.
Kiss, Robert D
2011-01-01
CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) Genentech responded to a virus contamination in its biologics manufacturing facility by developing and implementing a series of barriers specifically designed to prevent recurrence of this significant and impactful event. The barriers included steps to inactivate or remove potential virus particles from the many raw materials used in cell culture processing. Additionally, analytical testing barriers provided protection of the downstream processing areas should a culture contamination occur, and robust virus clearance capability provided further assurance of virus safety should a low level contamination go undetected. This conference proceeding will review Genentech's approach, and lessons learned, in minimizing virus contamination risk in cell culture processes through multiple layers of targeted barriers designed to deliver biologics products with high success rates.
A sensible technique to detect mollicutes impurities in human cells cultured in GMP condition.
Ugolotti, Elisabetta; Vanni, Irene
2014-01-01
In therapeutic trials the use of manipulated cell cultures for clinical applications is often required. Mollicutes microorganism contamination of tissue cultures is a major problem because it can determine various and severe alterations in cellular function. Thus methods able to detect and trace cell cultures with Mollicutes contamination are needed in the monitoring of cells grown under good manufacturing practice conditions, and cell lines in continuous culture must be tested at regular intervals. We here describe a multiplex quantitative polymerase chain reaction assay able to detect contaminant Mollicutes species in a single-tube reaction through analysis of 16S-23S rRNA intergenic spacer regions and Tuf and P1 cytoadhesin genes. The method shows a sensitivity, specificity, and robustness comparable with the culture and the indicator cell culture as required by the European Pharmacopoeia guidelines and was validated following International Conference on Harmonization guidelines and Food and Drug Administration requirements.
Effects of carbon/graphite fiber contamination on high voltage electrical insulation
NASA Technical Reports Server (NTRS)
Garrity, T.; Eichler, C.
1980-01-01
The contamination mechanics and resulting failure modes of high voltage electrical insulation due to carbon/graphite fibers were examined. The high voltage insulation vulnerability to carbon/graphite fiber induced failure was evaluated using a contamination system which consisted of a fiber chopper, dispersal chamber, a contamination chamber, and air ducts and suction blower. Tests were conducted to evaluate the effects of fiber length, weathering, and wetness on the insulator's resistance to carbon/graphite fibers. The ability of nuclear, fossil, and hydro power generating stations to maintain normal power generation when the surrounding environment is contaminated by an accidental carbon fiber release was investigated. The vulnerability assessment included only the power plant generating equipment and its associated controls, instrumentation, and auxiliary and support systems.
Use of solar cell in electrokinetic remediation of cadmium-contaminated soil.
Yuan, Songhu; Zheng, Zhonghua; Chen, Jing; Lu, Xiaohua
2009-03-15
This preliminary study used a solar cell, instead of direct current (DC) power supply, to generate electric field for electrokinetic (EK) remediation of cadmium-contaminated soil. Three EK tests were conducted and compared; one was conducted on a cloudy and rainy day with solar cell, one was conducted on a sunny day with solar cell and another was conducted periodically with DC power supply. It was found that the output potential of solar cell depended on daytime and was influenced by weather conditions; the applied potential in soil was affected by the output potential and weather conditions, and the current achieved by solar cell was comparable with that achieved by DC power supply. Solar cell could be used to drive the electromigration of cadmium in contaminated soil, and removal efficiency achieved by solar cell was comparable with that achieved by DC power supply. Compared with traditional DC power supply, using solar cell as power supply for EK remediation can greatly reduce energy expenditure. This study provided an alternative to improve the EK soil remediation and expanded the use of solar cell in environmental remediation.
acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data
Lux, Markus; Kruger, Jan; Rinke, Christian; ...
2016-12-20
A major obstacle in single-cell sequencing is sample contamination with foreign DNA. To guarantee clean genome assemblies and to prevent the introduction of contamination into public databases, considerable quality control efforts are put into post-sequencing analysis. Contamination screening generally relies on reference-based methods such as database alignment or marker gene search, which limits the set of detectable contaminants to organisms with closely related reference species. As genomic coverage in the tree of life is highly fragmented, there is an urgent need for a reference-free methodology for contaminant identification in sequence data. We present acdc, a tool specifically developed to aidmore » the quality control process of genomic sequence data. By combining supervised and unsupervised methods, it reliably detects both known and de novo contaminants. First, 16S rRNA gene prediction and the inclusion of ultrafast exact alignment techniques allow sequence classification using existing knowledge from databases. Second, reference-free inspection is enabled by the use of state-of-the-art machine learning techniques that include fast, non-linear dimensionality reduction of oligonucleotide signatures and subsequent clustering algorithms that automatically estimate the number of clusters. The latter also enables the removal of any contaminant, yielding a clean sample. Furthermore, given the data complexity and the ill-posedness of clustering, acdc employs bootstrapping techniques to provide statistically profound confidence values. Tested on a large number of samples from diverse sequencing projects, our software is able to quickly and accurately identify contamination. Results are displayed in an interactive user interface. Acdc can be run from the web as well as a dedicated command line application, which allows easy integration into large sequencing project analysis workflows. Acdc can reliably detect contamination in single-cell genome data. In addition to database-driven detection, it complements existing tools by its unsupervised techniques, which allow for the detection of de novo contaminants. Our contribution has the potential to drastically reduce the amount of resources put into these processes, particularly in the context of limited availability of reference species. As single-cell genome data continues to grow rapidly, acdc adds to the toolkit of crucial quality assurance tools.« less
acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lux, Markus; Kruger, Jan; Rinke, Christian
A major obstacle in single-cell sequencing is sample contamination with foreign DNA. To guarantee clean genome assemblies and to prevent the introduction of contamination into public databases, considerable quality control efforts are put into post-sequencing analysis. Contamination screening generally relies on reference-based methods such as database alignment or marker gene search, which limits the set of detectable contaminants to organisms with closely related reference species. As genomic coverage in the tree of life is highly fragmented, there is an urgent need for a reference-free methodology for contaminant identification in sequence data. We present acdc, a tool specifically developed to aidmore » the quality control process of genomic sequence data. By combining supervised and unsupervised methods, it reliably detects both known and de novo contaminants. First, 16S rRNA gene prediction and the inclusion of ultrafast exact alignment techniques allow sequence classification using existing knowledge from databases. Second, reference-free inspection is enabled by the use of state-of-the-art machine learning techniques that include fast, non-linear dimensionality reduction of oligonucleotide signatures and subsequent clustering algorithms that automatically estimate the number of clusters. The latter also enables the removal of any contaminant, yielding a clean sample. Furthermore, given the data complexity and the ill-posedness of clustering, acdc employs bootstrapping techniques to provide statistically profound confidence values. Tested on a large number of samples from diverse sequencing projects, our software is able to quickly and accurately identify contamination. Results are displayed in an interactive user interface. Acdc can be run from the web as well as a dedicated command line application, which allows easy integration into large sequencing project analysis workflows. Acdc can reliably detect contamination in single-cell genome data. In addition to database-driven detection, it complements existing tools by its unsupervised techniques, which allow for the detection of de novo contaminants. Our contribution has the potential to drastically reduce the amount of resources put into these processes, particularly in the context of limited availability of reference species. As single-cell genome data continues to grow rapidly, acdc adds to the toolkit of crucial quality assurance tools.« less
Frequent biphasic cellular responses of permanent fish cell cultures to deoxynivalenol (DON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietsch, Constanze, E-mail: constanze.pietsch@unibas.ch; Bucheli, Thomas D.; Wettstein, Felix E.
Contamination of animal feed with mycotoxins is a major problem for fish feed mainly due to usage of contaminated ingredients for production and inappropriate storage of feed. The use of cereals for fish food production further increases the risk of a potential contamination. Potential contaminants include the mycotoxin deoxynivalenol (DON) which is synthesized by globally distributed fungi of the genus Fusarium. The toxicity of DON is well recognized in mammals. In this study, we confirm cytotoxic effects of DON in established permanent fish cell lines. We demonstrate that DON is capable of influencing the metabolic activity and cell viability inmore » fish cells as determined by different assays to indicate possible cellular targets of this toxin. Evaluation of cell viability by measurement of membrane integrity, mitochondrial activity and lysosomal function after 24 h of exposure of fish cell lines to DON at a concentration range of 0-3000 ng ml{sup -1} shows a biphasic effect on cells although differences in sensitivity occur. The cell lines derived from rainbow trout are particularly sensitive to DON. The focus of this study lies, furthermore, on the effects of DON at different concentrations on production of reactive oxygen species (ROS) in the different fish cell lines. The results show that DON mainly reduces ROS production in all cell lines that were used. Thus, our comparative investigations reveal that the fish cell lines show distinct species-related endpoint sensitivities that also depend on the type of tissue from which the cells were derived and the severity of exposure. - Highlights: > DON uptake by cells is not extensive. > All fish cell lines are sensitive to DON. > DON is most cytotoxic to rainbow trout cells. > Biphasic cellular responses were frequently observed. > Our results are similar to studies on mammalian cell lines.« less
Silicon materials task of the low cost solar array project, phase 2
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R., Jr.; Blais, P. D.; Rohatgi, A.; Rai-Choudhury, P.; Hanes, M. H.; Mccormick, J. R.
1977-01-01
The object of phase 2 of this program is to investigate and define the effects of various processes, contaminants and process-contaminant interactions in the performance of terrestrial solar cells. The major effort this quarter was in the areas of crystal growth and thermal processing, comparison of impurity effects in low and high resistivity silicon, modeling the behavior of p-type ingots containing Mo, and C and, quantitative analysis of bulk lifetime and junction degradation effects in contaminated solar cells. The performance of solar cells fabricated on silicon web crystals grown from melts containing about 10 to the 18th power/cu cm of Cr, Mn, Fe, Ni, Ti, and V, respectively were measured. Deep level spectroscopy of metal-contaminated ingots was employed to determine the level and density of recombination centers due to Ti, V, Ni, and Cr.
The ghosts of HeLa: How cell line misidentification contaminates the scientific literature
2017-01-01
While problems with cell line misidentification have been known for decades, an unknown number of published papers remains in circulation reporting on the wrong cells without warning or correction. Here we attempt to make a conservative estimate of this ‘contaminated’ literature. We found 32,755 articles reporting on research with misidentified cells, in turn cited by an estimated half a million other papers. The contamination of the literature is not decreasing over time and is anything but restricted to countries in the periphery of global science. The decades-old and often contentious attempts to stop misidentification of cell lines have proven to be insufficient. The contamination of the literature calls for a fair and reasonable notification system, warning users and readers to interpret these papers with appropriate care. PMID:29023500
Tissue floaters and contaminants in the histology laboratory.
Platt, Eric; Sommer, Paul; McDonald, Linda; Bennett, Ana; Hunt, Jennifer
2009-06-01
Anatomic pathology diagnosis is often based on morphologic features. In recent years, an appropriate increased attention to patient safety has led to an emphasis on improving maintenance of patient identity. Decreasing or eliminating cross-contamination from one specimen to another is an example of a patient identity issue for which process improvement can be initiated. To quantify the presence of cross-contamination from histology water baths and the slide stainers. We assessed for the presence of contaminants in water baths at cutting stations and in linear stainer stain baths. We assessed the potential for tissue discohesion and carryover in tissue samples and we assessed the potential for carryover onto blank slides sent through the stainer. In the 13 water baths examined (totalling 195 L of water), only one fragment of tissue was identified. The stain baths, however, contained abundant tissue contaminants, ranging in size from 2 to 3 cells to hundreds of cells. The first sets of xylenes and alcohols were the most heavily contaminated. Cross-contamination to blank slides occurred at a rate of 8%, with the highest frequency in the late afternoon. Cross-contamination can present a significant challenge in the histology laboratory. Although the histotechnologists' water baths are not heavily contaminated, the stainer baths do contain contaminating tissue fragments. Cross-contamination does occur onto blank slides in the experimental setting.
Saini, Roli; Kumar, Pradeep; Hira, Sumit Kumar; Manna, Partha Pratim
2017-06-01
Coagulation-flocculation in water treatment has been relied upon aluminum (Al) and iron (Fe) salts for treatment of contaminants present in source waters containing dissolved organic compounds. However, water quality deteriorates day by day which makes it urgent to improve the standards of the treatment procedure. Coagulation-flocculation-sedimentation performance of ferric chloride and alum was comparatively investigated for carbofuran treatment in simulated wastewater. Coagulation trails were performed in a jar test at several pH levels and coagulant doses to determine reduction efficiencies of carbofuran degradation and chemical oxygen demand (COD). Effect of carbofuran on proliferation, viability, and direct cytotoxicity was performed using human neuroblastoma cells U-87. Direct toxicity of carbofuran on human mononuclear cells and red blood cells (RBC) was also analyzed. Carbofuran and its derivatives were found to be relatively safe at low concentration (2-5 μM). However, at slightly higher concentration (8 μM), a moderate loss in viability and proliferative potential was observed. Taken together, these results suggest that carbofuran appears to be safe at moderate or low concentration with respect to viability of normal human lymphocytes and RBC.
An optimized method for measuring fatty acids and cholesterol in stable isotope-labeled cells
Argus, Joseph P.; Yu, Amy K.; Wang, Eric S.; Williams, Kevin J.; Bensinger, Steven J.
2017-01-01
Stable isotope labeling has become an important methodology for determining lipid metabolic parameters of normal and neoplastic cells. Conventional methods for fatty acid and cholesterol analysis have one or more issues that limit their utility for in vitro stable isotope-labeling studies. To address this, we developed a method optimized for measuring both fatty acids and cholesterol from small numbers of stable isotope-labeled cultured cells. We demonstrate quantitative derivatization and extraction of fatty acids from a wide range of lipid classes using this approach. Importantly, cholesterol is also recovered, albeit at a modestly lower yield, affording the opportunity to quantitate both cholesterol and fatty acids from the same sample. Although we find that background contamination can interfere with quantitation of certain fatty acids in low amounts of starting material, our data indicate that this optimized method can be used to accurately measure mass isotopomer distributions for cholesterol and many fatty acids isolated from small numbers of cultured cells. Application of this method will facilitate acquisition of lipid parameters required for quantifying flux and provide a better understanding of how lipid metabolism influences cellular function. PMID:27974366
NASA Technical Reports Server (NTRS)
Shearer, W. T.; Lugg, D. J.; Rosenblatt, H. M.; Nickolls, P. M.; Sharp, R. M.; Reuben, J. M.; Ochs, H. D.
2001-01-01
BACKGROUND: It has been proposed that exposure to long-term spaceflight conditions (stress, isolation, sleep disruption, containment, microbial contamination, and solar radiation) or to ground-based models of spaceflight will alter human immune responses, but specific antibody responses have not been fully evaluated. OBJECTIVE: We sought to determine whether exposure to the 8-month Antarctic winter-over model of spaceflight would alter human antibody responses. METHODS: During the 1999 Australian National Antarctic Research Expeditions, 11 adult study subjects at Casey, Antarctica, and 7 control subjects at Macquarie Island, sub-Antarctica, received primary and secondary immunizations with the T cell-dependent neoantigen bacteriophage phi X-174. Periodic plasma samples were analyzed for specific antibody function. RESULTS: All of the subjects from Casey, Antarctica, cleared bacteriophage phi X-174 normally by 1 week after primary immunization, and all had normal primary and secondary antibody responses, including immunologic memory amplification and switch from IgM to IgG antibody production. One subject showed a high normal pattern, and one subject had a low normal pattern. The control subjects from Macquarie Island also had normal immune responses to bacteriophage phi X-174. CONCLUSIONS: These data do not support the hypothesis that de novo specific antibody responses of subjects become defective during the conditions of the Antarctic winter-over. Because the Antarctic winter-over model of spaceflight lacks the important factors of microgravity and solar radiation, caution must be used in interpreting these data to anticipate normal antibody responses in long-term spaceflight.
Composition of extracts of airborne grain dusts: lectins and lymphocyte mitogens.
Olenchock, S A; Lewis, D M; Mull, J C
1986-01-01
Airborne grain dusts are heterogeneous materials that can elicit acute and chronic respiratory pathophysiology in exposed workers. Previous characterizations of the dusts include the identification of viable microbial contaminants, mycotoxins, and endotoxins. We provide information on the lectin-like activity of grain dust extracts and its possible biological relationship. Hemagglutination of erythrocytes and immunochemical modulation by antibody to specific lectins showed the presence of these substances in extracts of airborne dusts from barley, corn, and rye. Proliferation of normal rat splenic lymphocytes in vitro provided evidence for direct biological effects on the cells of the immune system. These data expand the knowledge of the composition of grain dusts (extracts), and suggest possible mechanisms that may contribute to respiratory disease in grain workers. PMID:3709474
Innovative biological approaches for monitoring and improving water quality
Aracic, Sanja; Manna, Sam; Petrovski, Steve; Wiltshire, Jennifer L.; Mann, Gülay; Franks, Ashley E.
2015-01-01
Water quality is largely influenced by the abundance and diversity of indigenous microbes present within an aquatic environment. Physical, chemical and biological contaminants from anthropogenic activities can accumulate in aquatic systems causing detrimental ecological consequences. Approaches exploiting microbial processes are now being utilized for the detection, and removal or reduction of contaminants. Contaminants can be identified and quantified in situ using microbial whole-cell biosensors, negating the need for water samples to be tested off-site. Similarly, the innate biodegradative processes can be enhanced through manipulation of the composition and/or function of the indigenous microbial communities present within the contaminated environments. Biological contaminants, such as detrimental/pathogenic bacteria, can be specifically targeted and reduced in number using bacteriophages. This mini-review discusses the potential application of whole-cell microbial biosensors for the detection of contaminants, the exploitation of microbial biodegradative processes for environmental restoration and the manipulation of microbial communities using phages. PMID:26322034
USDA-ARS?s Scientific Manuscript database
Currently, American Type Culture Collection (ATCC) makes available two cell lines derived from the same lymphoblast-like suspension cell that have been confirmed by next-generation sequencing and RT-PCR to have either a single contaminate of BVDV2a (CRL-8037) or dual contaminates of both BVDV and BL...
A Comparison of Normal and Elliptical Estimation Methods in Structural Equation Models.
ERIC Educational Resources Information Center
Schumacker, Randall E.; Cheevatanarak, Suchittra
Monte Carlo simulation compared chi-square statistics, parameter estimates, and root mean square error of approximation values using normal and elliptical estimation methods. Three research conditions were imposed on the simulated data: sample size, population contamination percent, and kurtosis. A Bentler-Weeks structural model established the…
Gilgenkrantz, Simone
2010-05-01
Fifty years after Henrietta Lacks died of aggressive glandular cervical cancer, the first cell line - HeLa cell line - is the workhorse of laboratories everywhere. It helped to produce drugs for numerous diseases, including poliomyelitis, Parkinson's, leukemias. But they are so outrageously robust that they contaminated hundred of other cell lines, as far away as Russia. For decades, biologists worked with contaminated cell lines and today, the problem is not yet solved. But the story of HeLa cells is also a moving reflection of racial and ethical issues in medicine in the late half-twentieth century in the USA.
USDA-ARS?s Scientific Manuscript database
Rice (Oryza sativa L.) grown on Cd contaminated soils has been linked to health problems in subsistence rice farmers in Japan and China. For other crops, normal geogenic Zn inhibits the increased uptake of Cd on contaminated soils. A study was conducted using a multi-chelator buffered nutrient sol...
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1995-01-01
Some fraction of Zn, Cu, Se, Ga and Ge in chondritic interplanetary dust particles (IDPs) collected in the lower stratosphere between 1981 May and 1984 June has a volcanic origin. I present a method to evaluate the extent of this unavoidable type of stratospheric contamination for individual particles. The mass-normalized abundances for Cu and Ge as a function of mass-normalized stratospheric residence time show their time-integrated stratospheric aerosol abundances. The Zn, Se and Ga abundances show a subdivision into two groups that span approximately two-year periods following the eruptions of the Mount St. Helens (1980 May) and El Chichon (1982 April) volcanoes. Elemental abundances in particles collected at the end of each two-year period indicate low, but not necessarily ambient, volcanic stratospheric abundances. Using this time-integrated baseline, I calculate the straospheric contaminant fractions in nine IDPs and show that Zn, SE and Ga abundances in chondritic IDPs derive in part from stratospheric aerosol contaminants. Post-entry elemental abundances (i.e., the amount that survived atmospheric entry heating of the IDP) show enrichments relative to the CI abundances but in a smaller number of particles than previously suggested.
Harvesting Hydrogen Gas from Air Pollutants with an Unbiased Gas Phase Photoelectrochemical Cell.
Verbruggen, Sammy W; Van Hal, Myrthe; Bosserez, Tom; Rongé, Jan; Hauchecorne, Birger; Martens, Johan A; Lenaerts, Silvia
2017-04-10
The concept of an all-gas-phase photoelectrochemical (PEC) cell producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward PEC remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen-Woan, M.; Delaney, C.P.; Fournier, V.; Wakizaka, Y.; Murase, N.; Fung, J.; Starzl, T.E.; Demetris, A.J.
2010-01-01
Bone marrow (BM)-derived dendritic cells (DC) are the most potent known antigen (Ag) presenting cell in vivo and in vitro. Detailed analysis of their properties and mechanisms of action requires an ability to produce large numbers of DC. Although DC have been isolated from several rat tissues, including BM, the yield is uniformly low. We describe a simple method for the propagation of large numbers of DC from rat BM and document cell yield with the rat DC marker, OX-62. After depletion of plastic-adherent and Fc+ cells by panning on dishes coated with normal serum, residual BM cells were cultured in gelatin coated flasks using murine rGM-CSF supplemented medium. Prior to analysis, non-adherent cells were re-depleted of contaminating Fc+ cells. Propagation of DC was monitored by double staining for FACS analysis (major histocompatibility complex (MHC) class II+/OX-62+, OX-19−). Functional assay, morphological analysis and evaluation of homing patterns of cultured cells revealed typical DC characteristics. MHC class II and OX-62 antigen expression increased with time in culture and correlated with allostimulatory ability. DC yield increased until day 7, when 3.3 × 106 DC were obtained from an initial 3 × 108 unfractionated BM cells. Significant numbers of DC can be generated from rat BM using these simple methods. This should permit analysis and manipulation of rat DC functions in vivo and in vitro. PMID:7836778
Yilmaz, Ömer H.; Kiel, Mark J.; Morrison, Sean J.
2006-01-01
Recent advances have increased the purity of hematopoietic stem cells (HSCs) isolated from young mouse bone marrow. However, little attention has been paid to the purity of HSCs from other contexts. Although Thy-1lowSca-1+Lineage-c-kit+ cells from young bone marrow are highly enriched for HSCs (1 in 5 cells gives long-term multilineage reconstitution after transplantation into irradiated mice), the same population from old, reconstituted, or cytokine-mobilized mice engrafts much less efficiently (1 in 78 to 1 in 185 cells gives long-term multilineage reconstitution). To test whether we could increase the purity of HSCs isolated from these contexts, we examined the SLAM family markers CD150 and CD48. All detectable HSCs from old, reconstituted, and cyclophosphamide/G-CSF-mobilized mice were CD150+CD48-, just as in normal young bone marrow. Thy-1lowSca-1+Lineage-c-kit+ cells from old, reconstituted, or mobilized mice included mainly CD48+ and/or CD150- cells that lacked reconstituting ability. CD150+CD48-Sca-1+Lineage-c-kit+ cells from old, reconstituted, or mobilized mice were much more highly enriched for HSCs, with 1 in 3 to 1 in 7 cells giving long-term multilineage reconstitution. SLAM family receptor expression is conserved among HSCs from diverse contexts, and HSCs from old, reconstituted, and mobilized mice engraft relatively efficiently after transplantation when contaminating cells are eliminated. PMID:16219798
Yilmaz, Omer H; Kiel, Mark J; Morrison, Sean J
2006-02-01
Recent advances have increased the purity of hematopoietic stem cells (HSCs) isolated from young mouse bone marrow. However, little attention has been paid to the purity of HSCs from other contexts. Although Thy-1 low Sca-1+ Lineage- c-kit+ cells from young bone marrow are highly enriched for HSCs (1 in 5 cells gives long-term multilineage reconstitution after transplantation into irradiated mice), the same population from old, reconstituted, or cytokine-mobilized mice engrafts much less efficiently (1 in 78 to 1 in 185 cells gives long-term multilineage reconstitution). To test whether we could increase the purity of HSCs isolated from these contexts, we examined the SLAM family markers CD150 and CD48. All detectable HSCs from old, reconstituted, and cyclophosphamide/G-CSF-mobilized mice were CD150+ CD48-, just as in normal young bone marrow. Thy-1 low Sca-1+ Lineage- c-kit+ cells from old, reconstituted, or mobilized mice included mainly CD48+ and/or CD150- cells that lacked reconstituting ability. CD150+ CD48- Sca-1+ Lineage- c-kit+ cells from old, reconstituted, or mobilized mice were much more highly enriched for HSCs, with 1 in 3 to 1 in 7 cells giving long-term multilineage reconstitution. SLAM family receptor expression is conserved among HSCs from diverse contexts, and HSCs from old, reconstituted, and mobilized mice engraft relatively efficiently after transplantation when contaminating cells are eliminated.
Materials SIG quantification and characterization of surface contaminants
NASA Technical Reports Server (NTRS)
Crutcher, E. Russ
1992-01-01
When LDEF entered orbit its cleanliness was approximately a MIL-STD-1246B Level 2000C. Its burden of contaminants included particles from every part of its history including a relatively small contribution from the shuttle bay itself. Although this satellite was far from what is normally considered clean in the aerospace industry, contaminating events in orbit and from processing after recovery were easily detected. The molecular contaminants carried into orbit were dwarfed by the heavy deposition of UV polymerized films from outgassing urethane paints and silicone based materials. Impacts by relatively small objects in orbit could create particulate contaminants that easily dominated the particle counts within a centimeter of the impact site. During the recovery activities LDEF was 'sprayed' with a liquid high in organics and water soluble salts. With reentry turbulence, vibration, and gravitational loading particulate contaminants were redistributed about LDEF and the shuttle bay.
Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic
2017-02-01
Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.
Process for removing polychlorinated and polybrominated biphenyls from oils
Orlett, M.J.
The invention is a relatively simple and inexpensive process for detoxifying oils contaminated with PCBs and/or PBBs. The process is especially suitable for processing lubricating oils containing such contaminants. In one aspect of the invention, the contaminated lubricating oil is contacted with a particulate reagent comprising adsorbent particles carrying a dispersion of metallic sodium. The solid sodium reagent converts the PCB and/or PBB contaminants to environmentally acceptable products and also converts various sodium-reactive additives normally present in lubricating oil to reaction products. The adsorbent reagent retains most of the products and is easily separated from the detoxified oil. The detoxified oil may be fortified with various additives functionally equivalent to those removed during detoxification.
NASA Technical Reports Server (NTRS)
Visentine, James; Kinard, William; Brinker, David; Scheiman, David; Banks, Bruce; Albyn, Keith; Hornung, Steve; See, Thomas
2001-01-01
A solar array segment was recently removed from the Mir core module and returned for ground-based analysis. The segment, which is similar to the ones the Russians have provided for the FGB and Service Modules, was microscopically examined and disassembled by US and Russian science teams. Laboratory analyses have shown the segment to he heavily contaminated by an organic silicone coating, which was converted to an organic silicate film by reactions with atomic oxygen within the. orbital flight environment. The source of the contaminant was a silicone polymer used by the Russians as an adhesive and bonding agent during segment construction. During its life cycle, the array experienced a reduction in power performance from approx. 12%, when it was new and first deployed, to approx. 5%, when it was taken out of service. However, current-voltage measurements of three contaminated cells and three pristine, Russian standard cells have shown that very little degradation in solar array performance was due to the silicate contaminants on the solar cell surfaces. The primary sources of performance degradation is attributed to "thermal hot-spotting" or electrical arcing; orbital debris and micrometeoroid impacts; and possibly to the degradation of the solar cells and interconnects caused by radiation damage from high energy protons and electrons.
In vitro screening of organotin compounds and sediment extracts for cytotoxicity to fish cells.
Giltrap, Michelle; Macken, Ailbhe; McHugh, Brendan; McGovern, Evin; Foley, Barry; Davoren, Maria
2011-01-01
The present study reports an in vitro screening method for contaminants in sediment samples utilizing an RTG-2 cell line. This technique integrates cytotoxicity testing with analytical chemistry with the aim of achieving a toxicity evaluation of the sediment sample. The toxic effect of individual organotin (OT) compounds and their presence in the sediment sample is the focus of the present study; however, other contaminants are also discussed. The following OT compounds: tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), and a sediment solvent extract are exposed to the RTG-2 fish cell line. Both the alamar blue (AB) and neutral red (NR) assays are used to assess cytotoxicity after 24-h and 96-h exposure. Methodology for preparation of a sediment solvent extract suitable for biological testing and analytical determination is also described. With the RTG-2 cells, the AB and NR assays had comparable sensitivity for each individual OT compound exposure after 24 h, with TPT being the most toxic compound tested. The individual OT compound concentrations required to induce a 50% toxic effect on the cells (369 ng ml⁻¹ TBT, 1,905 ng ml⁻¹ DBT) did not equate to the concentrations of these contaminants present in the sediment extract that induced a 50% effect on the cells (294 ng ml⁻¹ TBT, 109 ng ml⁻¹ DBT). The solvent extract therefore exhibited a greater toxicity, and this suggests that the toxic effects observed were not due to OT compounds alone. The presence of other contaminants in the solvent extract is confirmed with chemical analysis, warranting further toxicity testing of contaminant mixtures and exposure to the cell line to further elucidate a complete toxicity evaluation. © 2010 SETAC.
Shen, Yichang; Zhang, Shirong; Li, Sen; Xu, Xiaoxun; Jia, Yongxia; Gong, Guoshu
2014-12-01
Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Florian, Maria; Yan, Jin; Ulhaq, Saad; Coughlan, Melanie; Laziyan, Mahemuti; Willmore, William; Jin, Xiaolei
2013-11-16
It has been reported that Northern populations are exposed to mixtures of various environmental contaminants unique to the Arctic (Northern contaminant mixtures - NCM) at a large range of concentrations, depending on their geological location, age, lifestyle and dietary habits. To determine if these contaminants may contribute to a cardiovascular health risk, especially when combined with a high fat and sugar diet and ethanol exposure, we treated human coronary artery endothelial cells (HCAEC) with two mixtures of 4 organic (NCM1) or 22 organic and inorganic (NCM2) chemicals detected in Northerners' blood during 2004-2005 in the presence or absence of low-density lipoprotein (1.5mg/ml), very-low-density lipoprotein (1.0mg/ml) and glucose (10mmol/L) (LVG), and in the absence or presence of 0.1% ethanol. After 24h of exposure, cell morphology and markers of cytotoxicity and endothelial function were examined. NCM1 treatment did not affect cell viability, but increased cell size, disrupted cell membrane integrity, and decreased cell density, uptake of small peptides, release of endothelin-1 (ET-1) and plasminogen activator inhibitor (PAI), while causing no changes in endothelial nitric oxide synthase (eNOS) protein expression and nitric oxide (NO) release. In contrast, NCM2 decreased cell viability, total protein yield, uptake of small peptides, eNOS protein expression, and NO release and caused membrane damage, but caused no changes in the secretion of ET-1, prostacyclin and PAI. The presence of LVG and/or alcohol did or did not influence the effects of NCM1 or NCM2 depending on the endpoint and the mixture examined. These results suggested that the effects of one or one group of contaminants may be altered by the presence of other contaminants, and that with or without the interaction of high fat and sugar diet and/or ethanol exposure, NCMs at the concentrations used caused endothelial dysfunction in vitro. It remains to be investigated if these effects of NCMs also occur in vivo. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
Romero-Lopez, Julia; Lopez-Rodas, Victoria; Costas, Eduardo
2012-11-15
There is increasing scientific interest in how phytoplankton reacts to petroleum contamination, since crude oil and its derivatives are generating extensive contamination of aquatic environments. However, toxic effects of short-term petroleum exposure are more widely known than the adaptation of phytoplankton to long-term petroleum exposure. An analysis of short-term and long-term effects of petroleum exposure was done using experimental populations of freshwater (Scenedesmus intermedius and Microcystis aeruginosa) and marine (Dunaliella tertiolecta) microalgae isolated from pristine sites without crude oil product contamination. These strains were exposed to increased levels of petroleum and diesel oil. Short-term exposure to petroleum or diesel oil revealed a rapid inhibition of photosynthetic performance and cell proliferation in freshwater and marine phytoplankton species. A broad degree of inter-specific variation in lethal contamination level was observed. When different strains were exposed to petroleum or diesel oil over the long-term, the cultures showed massive destruction of the sensitive cells. Nonetheless, after further incubation, some cultures were able to grow again due to cells that were resistant to the toxins. By means of a fluctuation analysis, discrimination between cells that had become resistant due to physiological acclimatization and resistant cells arising from rare spontaneous mutations was accomplished. In addition, an analysis was done as to the maximum capacity of adaptation to a gradual contamination process. An experimental ratchet protocol was used, which maintains a strong selection pressure in a temporal scale up to several months over very large experimental populations of microalgae. Microalgae are able to survive to petroleum contamination as a result of physiological acclimatization without genetic changes. However, when petroleum concentration exceeds the physiological limits, survival depends exclusively on the occurrence on mutations that confer resistance and subsequent selection of these mutants. Finally, it is certain that further mutations and selection will ultimately determine adaptation of microalgae to the environmental forcing. Copyright © 2012 Elsevier B.V. All rights reserved.
Bacterial reduction by cell salvage washing and leukocyte depletion filtration.
Waters, Jonathan H; Tuohy, Marion J; Hobson, Donna F; Procop, Gary
2003-09-01
Blood conservation techniques are being increasingly used because of the increased cost and lack of availability of allogeneic blood. Cell salvage offers great blood savings opportunities but is thought to be contraindicated in a number of areas (e.g., blood contaminated with bacteria). Several outcome studies have suggested the safety of this technique in trauma and colorectal surgery, but many practitioners are still hesitant to apply cell salvage in the face of frank bacterial contamination. This study was undertaken to assess the efficacy of bacterial removal when cell salvage was combined with leukocyte depletion filtration. Expired packed erythrocytes were obtained and inoculated with a fixed amount of a stock bacteria (Escherichia coli American Type Culture Collections [ATCC] 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, or Bacteroides fragilis ATCC 25285) in amounts ranging from 2,000 to 4,000 colony forming units/ml. The blood was processed via a cell salvage machine. The washed blood was then filtered using a leukocyte reduction filter. The results for blood taken during each step of processing were compared using a repeated-measures design. Fifteen units of blood were contaminated with each of the stock bacteria. From the prewash sample to the postfiltration sample, 99.0%, 99.6%, 100%, and 97.6% of E. coli, S. aureus, P. aeruginosa, and B. fragilis were removed, respectively. Significant but not complete removal of contaminating bacteria was seen. An increased level of patient safety may be added to cell salvage by including a leukocyte depletion filter when salvaging blood that might be grossly contaminated with bacteria.
Sljivic Husejnovic, Maida; Bergant, Martina; Jankovic, Sasa; Zizek, Suzana; Smajlovic, Aida; Softic, Adaleta; Music, Omer; Antonijevic, Biljana
2018-01-23
Soil contamination by heavy metals is a serious global environmental problem, especially for developing countries. A large number of industrial plants, which continually pollute the environment, characterize Tuzla Canton, Bosnia and Herzegovina. The aim of this study was to assess the level of soil pollution by heavy metals and to estimate cytotoxicity and genotoxicity of soil leachates from this area. Lead (Pb), cadmium (Cd) and mercury (Hg) were analyzed by ICP-AES and AAS. Soil contamination was assessed using contamination factor, degree of contamination, geoaccumulation index and pollution load index. To determine the connection of variables and understanding their origin in soils, principal component analysis (PCA) and cluster analysis (CA) were used. The results indicate that Cd and Hg originated from natural and anthropogenic activities, while Pb is of anthropogenic origin. For toxicity evaluation, CaCo-2 and HaCaT cells were used. PrestoBlue assay was used for cytotoxicity testing, and γH2A.X for genotoxicity evaluation. Concerning cytotoxicity, Cd and Hg had a positive correlation with cytotoxicity in HaCaT cells, but only Hg induced cytotoxicity in CaCo-2 cells. We also demonstrate that soil leachates contaminated by heavy metals can induce genotoxicity in both used cell lines. According to these results, combining bioassays with standard physicochemical analysis can be useful for evaluating environmental and health risks more accurately. These results are important for developing proper management strategies to decrease pollution. This is one of the first studies from this area and an important indication of soil quality in Southeast Europe.
NASA Technical Reports Server (NTRS)
Perry, J. L.
2017-01-01
Trace chemical contaminant generation inside crewed spacecraft cabins is a technical and medical problem that must be continuously evaluated. Although passive control through materials selection and active control by adsorption and catalytic oxidation devices is employed during normal operations of a spacecraft, contaminant buildup can still become a problem. Buildup is particularly troublesome during the stages between the final closure of a spacecraft during ground processing and the time that a crewmember enters for the first time during the mission. Typically, the elapsed time between preflight closure and first entry on orbit for spacecraft such as Spacelab modules was 30 days. During that time, the active contamination control systems are not activated and contaminants can potentially build up to levels which exceed the spacecraft maximum allowable concentrations (SMACs) specified by NASA toxicology experts. To prevent excessively high contamination levels at crew entry, the Spacelab active contamination control system was operated for 53 hours just before launch.
Li, Zhi; Gothard, Elizabeth; Coles, Mark C; Ambler, Carrie A
2018-01-01
In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time.
Li, Zhi; Gothard, Elizabeth; Coles, Mark C.; Ambler, Carrie A.
2018-01-01
In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time. PMID:29535723
Olson, Nathan D; Zook, Justin M; Morrow, Jayne B; Lin, Nancy J
2017-01-01
High sensitivity methods such as next generation sequencing and polymerase chain reaction (PCR) are adversely impacted by organismal and DNA contaminants. Current methods for detecting contaminants in microbial materials (genomic DNA and cultures) are not sensitive enough and require either a known or culturable contaminant. Whole genome sequencing (WGS) is a promising approach for detecting contaminants due to its sensitivity and lack of need for a priori assumptions about the contaminant. Prior to applying WGS, we must first understand its limitations for detecting contaminants and potential for false positives. Herein we demonstrate and characterize a WGS-based approach to detect organismal contaminants using an existing metagenomic taxonomic classification algorithm. Simulated WGS datasets from ten genera as individuals and binary mixtures of eight organisms at varying ratios were analyzed to evaluate the role of contaminant concentration and taxonomy on detection. For the individual genomes the false positive contaminants reported depended on the genus, with Staphylococcus , Escherichia , and Shigella having the highest proportion of false positives. For nearly all binary mixtures the contaminant was detected in the in-silico datasets at the equivalent of 1 in 1,000 cells, though F. tularensis was not detected in any of the simulated contaminant mixtures and Y. pestis was only detected at the equivalent of one in 10 cells. Once a WGS method for detecting contaminants is characterized, it can be applied to evaluate microbial material purity, in efforts to ensure that contaminants are characterized in microbial materials used to validate pathogen detection assays, generate genome assemblies for database submission, and benchmark sequencing methods.
Human cells and cell cultures: availability, authentication and future prospects.
Hay, R J
1996-09-01
The availability of well characterized, viable human cells, tissues and cell lines along with pertinent data on the specific patient donors is a prerequisite for much current transplantation and biomedical research. In the USA, institutional and multi-center networks have been established for provision of primary human cells and tissues to qualified clinicians and research scientists. Monetary support derives from government, university, institutional and fee sources. Problems involved include concern for the rights and privacy of tissue donors, cultural reservations relating to tissue provision, the need for safe and expeditious transport, short term survival and limited supply, adequate correlation of patient data with samples provided, presence of infectious viruses and microorganisms, as well as state or government regulations regarding national or international shipping. The use of human cell lines with continuous or even somewhat limited doubling potentials overcomes many of the above difficulties. National cell banks have been established to provide reference lines for use by multiple investigators. Use of such cell lines assures improved research comparability both geographically and with time. Authentication procedures are critically important for all of these programs. Verification of tissue types and conditions is required through histological, biochemical and immunological assays. Tests for microbial and viral contaminants must be applied. In addition to such procedures utilized for tissues, with cell lines the banking agency must also verify species and where possible identity, properties and functions. The literature is replete with descriptions documenting incorrect identifications and infections of proliferating cell strains used for research. The availability of viable tissue through local sources and distribution agencies in the USA is becoming more commonplace even including full family participation and collection of related, detailed histories. Increased support for this developmental activity is needed, coupled with provision of blood and normal cells and cell lines from family members in many disease categories. Modern techniques, new and improved culture ware, serum-free media, reagents such as growth, adherence and transfer factors will permit isolation, propagation and wide spread distribution not only of human tumor cells but also normal and functional human cells of most renewing and expanding tissue types. Hybridization and immortalization techniques are enhancing this capability such that virtually all human cell types should be available for short or longer-term propagation and study in the foreseeable future.
WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.A. Kumar
2000-06-21
The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.« less
Maruyama, Toru; Yamagishi, Keisuke; Mori, Tetsushi; Takeyama, Haruko
2015-01-01
Whole genome amplification (WGA) is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA), using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL) within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples. PMID:26389587
St-Pierre, Jean; Zhai, Yunfeng; Ge, Junjie
2016-01-05
A database summarizing the effects of 21 contaminants on the performance of proton exchange membrane fuel cells (PEMFCs) was used to examine relationships between cathode kinetic losses and contaminant physicochemical parameters. Impedance spectroscopy data were employed to obtain oxygen reduction kinetic resistances by fitting data in the 10-158 Hz range to a simplified equivalent circuit. The contaminant dipole moment and the adsorption energy of the contaminant on a Pt surface were chosen as parameters. Dipole moments did not correlate with dimensionless cathode kinetic resistances. In contrast, adsorption energies were quantitatively and linearly correlated with minimum dimensionless cathode kinetic resistances. Contaminantsmore » influence the oxygen reduction for contaminant adsorption energies smaller than -24.5 kJ mol -1, a value near the high limit of the adsorption energy of O 2 on Pt. Dimensionless cathode kinetic resistances linearly increase with decreasing O 2 adsorption energies below -24.5 kJ mol -1. Measured total cell voltage losses are mostly larger than the cathode kinetic losses calculated from kinetic resistance changes, which indicates the existence of other sources of performance degradation. Modifications to the experimental procedure are proposed to ensure that data are comparable on a similar basis and improve the correlation between contaminant adsorption energy and kinetic cell voltage losses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
St-Pierre, Jean; Zhai, Yunfeng; Ge, Junjie
A database summarizing the effects of 21 contaminants on the performance of proton exchange membrane fuel cells (PEMFCs) was used to examine relationships between cathode kinetic losses and contaminant physicochemical parameters. Impedance spectroscopy data were employed to obtain oxygen reduction kinetic resistances by fitting data in the 10-158 Hz range to a simplified equivalent circuit. The contaminant dipole moment and the adsorption energy of the contaminant on a Pt surface were chosen as parameters. Dipole moments did not correlate with dimensionless cathode kinetic resistances. In contrast, adsorption energies were quantitatively and linearly correlated with minimum dimensionless cathode kinetic resistances. Contaminantsmore » influence the oxygen reduction for contaminant adsorption energies smaller than -24.5 kJ mol -1, a value near the high limit of the adsorption energy of O 2 on Pt. Dimensionless cathode kinetic resistances linearly increase with decreasing O 2 adsorption energies below -24.5 kJ mol -1. Measured total cell voltage losses are mostly larger than the cathode kinetic losses calculated from kinetic resistance changes, which indicates the existence of other sources of performance degradation. Modifications to the experimental procedure are proposed to ensure that data are comparable on a similar basis and improve the correlation between contaminant adsorption energy and kinetic cell voltage losses.« less
Ozone contamination in aircraft cabins: Objectives and approach
NASA Technical Reports Server (NTRS)
Perkins, P. J.
1979-01-01
Three panels were developed to solve the problem of ozone contamination in aircraft cabins. The problem is defined from direct in-flight measurements of ozone concentrations inside and outside airliners in their normal operations. Solutions to the cabin ozone problem are discussed under two areas: (1) flight planning to avoid high ozone concentrations, and (2) ozone destruction techniques installed in the cabin air systems.
Portable Immune-Assessment System
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.
1995-01-01
Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.
Origin of orbital periods in the sedimentary relative paleointensity records
NASA Astrophysics Data System (ADS)
Xuan, Chuang; Channell, James E. T.
2008-08-01
Orbital cycles with 100 kyr and/or 41 kyr periods, detected in some sedimentary normalized remanence (relative paleointensity) records by power spectral analysis or wavelet analysis, have been attributed either to orbital forcing of the geodynamo, or to lithologic contamination. In this study, local wavelet power spectra (LWPS) with significance tests have been calculated for seven relative paleointensity (RPI) records from different regions of the world. The results indicate that orbital periods (100 kyr and/or 41 kyr) are significant in some RPI records during certain time intervals, and are not significant in others. Time intervals where orbital periods are significant are not consistent among the RPI records, implying that orbital periods in these RPI records may not have a common origin such as orbital forcing on the geodynamo. Cross-wavelet power spectra (|XWT|) and squared wavelet coherence (WTC) between RPI records and orbital parameters further indicate that common power exists at orbital periods but is not significantly coherent, and exhibits variable phase relationships, implying that orbital periods in RPI records are not caused directly by orbital forcing. Similar analyses for RPI records and benthic oxygen isotope records from the same sites show significant coherence and constant in-phase relationships during time intervals where orbital periods were significant in the RPI records, indicating that orbital periods in the RPI records are most likely due to climatic 'contamination'. Although common power exists at orbital periods for RPI records and their normalizers with significant coherence during certain time intervals, phase relationships imply that 'contamination' (at orbital periods) is not directly due to the normalizers. Orbital periods are also significant in the NRM intensity records, and 'contamination' in RPI records can be attributed to incomplete normalization of the NRM records. Further tests indicate that 'contamination' is apparently not directly related to physical properties such as density or carbonate content, or to the grain size proxy κARM/ κ. However, WTC between RPI records and the grain size proxy ARM/IRM implies that ARM/IRM does reflect the 'contamination' in some RPI records. It appears that orbital periods were introduced into the NRM records (and have not been normalized when calculating RPI records) through magnetite grain size variations reflected in the ARM/IRM grain size proxy. The orbital power in ARM/IRM for some North Atlantic sites is probably derived from bottom-current velocity variations that are orbitally modulated and are related to the vigor of thermohaline circulation and the production of North Atlantic Deep Water (NADW). In the case of ODP Site 983, the orbital power in RPI appears to exhibit a shift from 41-kyr to 100-kyr period at the mid-Pleistocene climate transition (˜750 ka), reinforcing the climatic origin of these orbital periods. RPI records from the Atlantic and Pacific oceans, and RPI records with orbital periods eliminated by band-pass filters, are highly comparable with each other in the time domain, and are coherent and in-phase in time-frequency space, especially at non-orbital periods, indicating that 'contamination', although present (at orbital periods) is not debilitating to these RPI records as a global signal that is primarily of geomagnetic origin.
Davis, Stephen C; Li, Jie; Gil, Joel; Valdes, Jose; Solis, Michael; Higa, Alex; Bowler, Philip
2018-06-11
Topical antimicrobials are widely used to control wound bioburden and facilitate wound healing; however, the fine balance between antimicrobial efficacy and non-toxicity must be achieved. This study evaluated whether an anti-biofilm silver-containing wound dressing interfered with the normal healing process in non-contaminated deep partial thickness wounds. In an in-vivo porcine wound model using 2 pigs, 96 wounds were randomly assigned to 1 of 3 dressing groups: anti-biofilm silver Hydrofiber dressing (test), silver Hydrofiber dressing (control), or polyurethane film dressing (control). Wounds were investigated for 8 days, and wound biopsies (n = 4) were taken from each dressing group, per animal, on days 2, 4, 6, and 8 after wounding and evaluated using light microscopy. No statistically significant differences were observed in the rate of reepithelialisation, white blood cell infiltration, angiogenesis, or granulation tissue formation following application of the anti-biofilm silver Hydrofiber dressing versus the 2 control dressings. Overall, epithelial thickness was similar between groups. Some differences in infiltration of specific cell types were observed between groups. There were no signs of tissue necrosis, fibrosis, or fatty infiltration in any group. An anti-biofilm silver Hydrofiber wound dressing did not cause any notable interference with normal healing processes. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Monitoring Ecological Impacts of Environmental Surface ...
Optimized cell-based metabolomics has been used to study the impacts of contaminants in surface waters on human and fish metabolomes. This method has proven to be resource- and time-effective, as well as sustainable for long term and large scale studies. In the current study, cell-based metabolomics is used to investigate the impacts of contaminants in surface waters on biological pathways in human and ecologically relevant cell lines. Water samples were collected from stream sites nationwide, where significant impacts have been estimated from the most potentially contaminated sources (i.e. waste water treatment plants, concentrated animal feeding operations, mining operations, and plant-based agricultural operations that use intensive chemical applications). Zebrafish liver cells (ZFL) were used to study exposure impacts on in vitro metabolomes. In addition, a small number of water samples were studied using two human cell lines (liver cells, HepG2 and brain cells, LN229). The cellular metabolites were profiled by nuclear magnetic resonance (NMR) spectroscopy and gas chromatography mass spectrometry (GC-MS). Detailed methods and results will be reported. Presented at SETAC North America 37th Annual Meeting
Chon, Jung-Whan; Kim, Hong-Seok; Kim, Hyunsook; Oh, Deog-Hwan; Seo, Kun-Ho
2014-05-01
Potassium-clavulanate-supplemented modified charcoal-cefoperazone-deoxycholate agar (C-mCCDA) that was described in our previous study was compared with original mCCDA for the enumeration of Campylobacter in pure culture and chicken carcass rinse. The quantitative detection of viable Campylobacter cells from a pure culture, plated on C-mCCDA, is statistically similar (P > 0.05) to mCCDA. In total, 120 chickens were rinsed using 400 mL buffered peptone water. The rinses were inoculated onto C-mCCDA and mCCDA followed by incubation at 42 °C for 48 h. There was no statistical difference between C-mCCDA (45 of 120 plates; mean count, 145.5 CFU/mL) and normal mCCDA (46 of 120 plates; mean count, 160.8 CFU/mL) in the isolation rate and recovery of Campylobacter (P > 0.05) from chicken carcass rinse. The Pearson correlation coefficient value for the number of Campylobacter cells recovered in the 2 media was 0.942. However, the selectivity was much better on C-mCCDA than on mCCDA plates (P < 0.05). Significantly fewer C-mCCDA plates (33 out of 120 plates; mean count, 1.9 CFU/mL) were contaminated with non-Campylobacter cells than the normal mCCDA plates (67 out of 120 plates; mean count, 27.1 CFU/mL). The C-mCCDA may provide improved results for enumeration of Campylobacter in chicken meat alternative to mCCDA with its increased selectivity the modified agar possess. © 2014 Institute of Food Technologists®
Pure cultures and characterization of yak Sertoli cells.
Zhang, Hua; Liu, Ben; Qiu, Yuan; Fan, Jiang feng; Yu, Si jiu
2013-12-01
The culture of primary Sertoli cells has become an important resource in the study of their function. However, their use is limited because of contamination of isolated cells with other testicular cells, mainly germ cells. The aim was to establish technique to obtain pure yak Sertoli cells as well as to study the growth kinetics and biological characteristics of Sertoli cells in vitro. Two-step enzyme digestion was used to separate and culture yak Sertoli cells. Cultured using starvation method and the hypotonic treatment were also invented to get pure yak Sertoli cells. Furthermore, the purification of Yak Sertoli cells were identified according to their characteristics, such as bipolar corpuscular around the nucleus and expression of Fasl, in addition to their morphology. The average viability of the Sertoli cells was 97% before freezing and 94.5% after thawing, indicating that cryopreservation in liquid nitrogen had little influence on the viability of Sertoli cells. The growth tendency of yak Sertoli cells was similar to an S-shaped growth curve. Purified yak Sertoli cells frequently exhibited bipolar corpuscula in nucleus after Feulgen staining, and did have a positive reaction of Fasl by the immunocytochemical identification. After recovery chromosomal analysis of Sertoli cells had a normal chromosomal number of 60, comprising 29 pairs of autosomes and one pair of sex chromosomes. Assays for bacteria, fungi and mycoplasmas were negative. In conclusion, yak Sertoli cells have been successfully purified and cultured in vitro, and maintain stable biological characteristics after thawing. Therefore, it will not only preserve the genetic resources of yaks at the cellular level, but also provide valuable materials for transgenic research and feeder layer and nuclear donor cells in yak somatic cell cloning technology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo
2015-03-01
Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.
Dinan, L; Bourne, P; Whiting, P; Dhadialla, T S; Hutchinson, T H
2001-09-01
The B(II) bioassay was developed as a rapid and reliable tool for detecting potential insect growth regulators acting as ecdysteroid receptor (ant)agonists. Based on an ecdysteroid-responsive cell line from Drosophila melanogaster, this microplate assay is ideally suited to the evaluation of environmental contaminants as potential endocrine disrupters. Data are presented for about 80 potential environmental contaminants, including industrial chemicals, pesticides, pharmaceuticals, phytoestrogens, and vertebrate steroids, and are compared with data for known (ant)agonists. Apart from androst-4-ene-3,17-dione (a weak antagonist), vertebrate steroids were inactive at concentrations up to 10(-3) M. The vast majority of xenobiotics also showed no (ant)agonist activity. Among the industrial chemicals, antagonistic activity was observed for bisphenol A median effective concentration (EC50) of 1.0 x 10(-4) M and diethylphthalate (EC50 of 2.0 x 10(-3) M). Some organochlorine compounds also showed weak antagonistic activity, including o,p'-dichlorodiphenyldichloroethylene (DDE), p,p'-DDE, dieldrin, and lindane (EC50 of 3.0 x 10(-5) M). For lindane, bisphenol A, and diethylphthalate, activity is not associated with impurities in the samples and, for lindane and bisphenol A at least, the compounds are able to compete with ecdysteroids for the ligand binding site on the receptor complex, albeit at concentrations very much higher than those found in the environment. The only pharmaceutical showing any detectable antagonist activity was 17alpha-ethynylestradiol. In the context of recent publications on potential endocrine disruption in marine and freshwater arthropods, these findings suggest that, for some compounds (e.g., diethylstilbestrol), ecdysteroid receptor-mediated responses are unlikely to be involved in producing chronic effects. The B(II) assay has a potentially valuable role to play in distinguishing between endocrine-mediated, which normally occur at submicromolar concentrations, and pharmacological effects in insects and crustaceans.
Differentiation of lymphoid cells: evidence for a B-cell specific serum suppressor.
Kern, M
1978-01-01
The induction of immunoglobulin production by rabbit spleen cells is markedly inhibited by the presence of normal rabbit serum during cell culture. A similar inhibition is observed when spleen cell populations in which T cells have been inactivated are temporarily incubated with normal rabbit serum before being reconstituted with T cells by adding thymocytes. In contrast, no inhibition was observed upon temporary incubation of thymocytes with normal serum prior to addition of T cell-inactivated spleen cell populations. Removal of adherent cells did not affect the induction of immunoglobulin production or its inhibition by normal serum. Lipopolysaccharide-enhanced immunoglobin production was also inhibited by normal serum, thereby providing additional confidence that bone-marrow derived (B) cells are the target of the normal serum inhibitor. PMID:308042
Single cell gene expression profiling in Alzheimer's disease.
Ginsberg, Stephen D; Che, Shaoli; Counts, Scott E; Mufson, Elliott J
2006-07-01
Development and implementation of microarray techniques to quantify expression levels of dozens to hundreds to thousands of transcripts simultaneously within select tissue samples from normal control subjects and neurodegenerative diseased brains has enabled scientists to create molecular fingerprints of vulnerable neuronal populations in Alzheimer's disease (AD) and related disorders. A goal is to sample gene expression from homogeneous cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subpopulations and nonneuronal cells. The precise resolution afforded by single cell and population cell RNA analysis in combination with microarrays and real-time quantitative polymerase chain reaction (qPCR)-based analyses allows for relative gene expression level comparisons across cell types under different experimental conditions and disease progression. The ability to analyze single cells is an important distinction from global and regional assessments of mRNA expression and can be applied to optimally prepared tissues from animal models of neurodegeneration as well as postmortem human brain tissues. Gene expression analysis in postmortem AD brain regions including the hippocampal formation and neocortex reveals selectively vulnerable cell types share putative pathogenetic alterations in common classes of transcripts, for example, markers of glutamatergic neurotransmission, synaptic-related markers, protein phosphatases and kinases, and neurotrophins/neurotrophin receptors. Expression profiles of vulnerable regions and neurons may reveal important clues toward the understanding of the molecular pathogenesis of various neurological diseases and aid in identifying rational targets toward pharmacotherapeutic interventions for progressive, late-onset neurodegenerative disorders such as mild cognitive impairment (MCI) and AD.
Groundwater contamination in Japan
NASA Astrophysics Data System (ADS)
Tase, Norio
1992-07-01
Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.
A mathematical model was developed to predict changes in contaminant concentrations with time, and to estimate contaminant fluxes due to migration, diffusion, and convection in a laboratory-scale batch electrolysis cell for the regeneration of contaminated har...
Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.
2013-01-01
Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe. PMID:23983451
Jasper, Justin T; Nguyen, Mi T; Jones, Zackary L; Ismail, Niveen S; Sedlak, David L; Sharp, Jonathan O; Luthy, Richard G; Horne, Alex J; Nelson, Kara L
2013-08-01
Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.
Amplification of trace amounts of nucleic acids
Church, George M [Brookline, MA; Zhang, Kun [Brighton, MA
2008-06-17
Methods of reducing background during amplification of small amounts of nucleic acids employ careful analysis of sources of low level contamination. Ultraviolet light can be used to reduce nucleic acid contaminants in reagents and equipment. "Primer-dimer" background can be reduced by judicious design of primers. We have shown clean signal-to-noise with as little as starting material as one single human cell (.about.6 picogram), E. coli cell (.about.5 femtogram) or Prochlorococcus cell (.about.3 femtogram).
Martín, Patricia Gálvez; González, María Bermejo; Martínez, Adolfina Ruiz; Lara, Visitación Gallardo; Naveros, Beatriz Clares
2012-09-01
Design and implementation of an environmental monitoring program is vital to assure the maintenance of acceptable quality conditions in a pharmaceutical manufacturing unit of human mesenchymal stem cells. Since sterility testing methods require 14 days and these cells are only viable for several hours, they are currently administered without the result of this test. Consequently environmental monitoring is a key element in stem cell banks for assuring low levels of potential introduction of contaminants into the cell products. The aim of this study was to qualitatively and quantitatively analyze the environmental microbiological quality in a pharmaceutical manufacturing unit of human mesenchymal stem cells production for use in advanced therapies. Two hundred and sixty one points were tested monthly during one year, 156 from air and 105 from surfaces. Among the 6264 samples tested, 231 showed contamination, 76.6% for bacteria and 23.4% for fungi. Microbial genuses isolated were Staphylococcus (89.7%), Microccocus (4.5%), Kocuria (3.2%) and Bacillus (2.6%). In the identification of fungi, three genuses were detected: Aspergillus (56%), Penicillium (26%) and Cladosporium (18%). The origin of the contamination was found to be due to personnel manipulation and air microbiota. For all sampling methods, alert limits were set and corrective measures suggested. Copyright © 2012 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Kobayashi, Jun; Hayashi, Masaki; Ohno, Takahiro; Nishi, Masanori; Arisaka, Yoshinori; Matsubara, Yoshinori; Kakidachi, Hiroshi; Akiyama, Yoshikatsu; Yamato, Masayuki; Horii, Akihiro; Okano, Teruo
2014-11-01
Antibody-immobilized thermoresponsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) [poly(IPAAm-co-CIPAAm)]-grafted cell culture surfaces were designed to enhance both the initial adhesion of weakly adhering cells and the ability of cells to detach in response to low temperature through the regulation of affinity binding between immobilized antibodies and antigens on the cellular surface. Ty-82 cells and neonatal normal human dermal fibroblasts (NHDFs), which express CD90 on the cell surface, adhered to anti-CD90 antibody-immobilized thermoresponsive surfaces at 37°C, a condition at which the grafted thermoresponsive polymer chains shrank. Adherent Ty-82 cells were detached from the surfaces by lowering the temperature to 20°C and applying external forces, such as pipetting, whereas cultured NHDF sheets spontaneously detached themselves from the surface in response to reduced temperature alone. When the temperature was decreased to 20°C, the swelling of grafted thermoresponsive polymer chains weakened the affinity binding between immobilized antibody and antigen on the cells due to the increasing steric hindrance of the polymer chains around the antigen-recognition site of the immobilized antibodies. No contamination was detected on cells harvested from covalently immobilized antibodies on the culture surfaces by low-temperature treatment, whereas a carryover of the antibody and avidin from the avidin-biotin binding surface was observed. Furthermore, the initial adhesion of adipose tissue-derived cells, which adhere weakly to PIPAAm-grafted surfaces, was enhanced on the antibody-immobilized thermoresponsive surfaces. © 2013 Wiley Periodicals, Inc.
Performance of PCR-based and Bioluminescent assays for mycoplasma detection.
Falagan-Lotsch, Priscila; Lopes, Talíria Silva; Ferreira, Nívea; Balthazar, Nathália; Monteiro, Antônio M; Borojevic, Radovan; Granjeiro, José Mauro
2015-11-01
Contaminated eukaryotic cell cultures are frequently responsible for unreliable results. Regulatory entities request that cell cultures must be mycoplasma-free. Mycoplasma contamination remains a significant problem for cell cultures and may have an impact on biological analysis since they affect many cell parameters. The gold standard microbiological assay for mycoplasma detection involves laborious and time-consuming protocols. PCR-based and Bioluminescent assays have been considered for routine cell culture screening in research laboratories since they are fast, easy and sensitive. Thus, the aim of this work is to compare the performance of two popular commercial assays, PCR-based and Bioluminescent assays, by assessing the level of mycoplasma contamination in cell cultures from Rio de Janeiro Cell Bank (RJCB) and also from customers' laboratories. The results obtained by both performed assays were confirmed by scanning electron microscopy. In addition, we evaluated the limit of detection of the PCR kit under our laboratory conditions and the storage effects on mycoplasma detection in frozen cell culture supernatants. The performance of both assays for mycoplasma detection was not significantly different and they showed very good agreement. The Bioluminescent assay for mycoplasma detection was slightly more dependable than PCR-based due to the lack of inconclusive results produced by the first technique, especially considering the ability to detect mycoplasma contamination in frozen cell culture supernatants. However, cell lines should be precultured for four days or more without antibiotics to obtain safe results. On the other hand, a false negative result was obtained by using this biochemical approach. The implementation of fast and reliable mycoplasma testing methods is an important technical and regulatory issue and PCR-based and Bioluminescent assays may be good candidates. However, validation studies are needed. Copyright © 2015 Elsevier B.V. All rights reserved.
Hydrocarbon phytoremediation in the family Fabaceae--a review.
Hall, Jessica; Soole, Kathleen; Bentham, Richard
2011-04-01
Currently, studies often focus on the use of Poaceae species (grasses) for phytoremediation of hydrocarbon-contaminated soils. Research into the use of Fabaceae species (legumes) to remediate hydrocarbons in soils has been conducted, but these plants are commonly overlooked due to slower recorded rates of degradation compared with many grass species. Evidence in the literature suggests that in some cases Fabaceae species may increase total degradation of hydrocarbons and stimulate degradative capacity of the soil microbial community, particularly for contaminants which are normally more recalcitrant to degradation. As many recalcitrant hydrocarbons have negative impacts on human and ecosystem health, development of remediation options is crucial. Reconsideration of Fabaceae species for removal of such contaminants may lead to environmentally and economically sustainable technologies for remediation of contaminated sites.
Zook, Justin M.; Morrow, Jayne B.; Lin, Nancy J.
2017-01-01
High sensitivity methods such as next generation sequencing and polymerase chain reaction (PCR) are adversely impacted by organismal and DNA contaminants. Current methods for detecting contaminants in microbial materials (genomic DNA and cultures) are not sensitive enough and require either a known or culturable contaminant. Whole genome sequencing (WGS) is a promising approach for detecting contaminants due to its sensitivity and lack of need for a priori assumptions about the contaminant. Prior to applying WGS, we must first understand its limitations for detecting contaminants and potential for false positives. Herein we demonstrate and characterize a WGS-based approach to detect organismal contaminants using an existing metagenomic taxonomic classification algorithm. Simulated WGS datasets from ten genera as individuals and binary mixtures of eight organisms at varying ratios were analyzed to evaluate the role of contaminant concentration and taxonomy on detection. For the individual genomes the false positive contaminants reported depended on the genus, with Staphylococcus, Escherichia, and Shigella having the highest proportion of false positives. For nearly all binary mixtures the contaminant was detected in the in-silico datasets at the equivalent of 1 in 1,000 cells, though F. tularensis was not detected in any of the simulated contaminant mixtures and Y. pestis was only detected at the equivalent of one in 10 cells. Once a WGS method for detecting contaminants is characterized, it can be applied to evaluate microbial material purity, in efforts to ensure that contaminants are characterized in microbial materials used to validate pathogen detection assays, generate genome assemblies for database submission, and benchmark sequencing methods. PMID:28924496
USDA-ARS?s Scientific Manuscript database
Normal oleic peanuts are often found within commercial lots of high oleic peanuts when sampling among individual kernels. Kernels not meeting high oleic threshold could be true contamination with normal oleic peanuts introduced via poor handling, or they could be immature and not fully expressing th...
USDA-ARS?s Scientific Manuscript database
Normal oleic peanuts are often found within commercial lots of high oleic peanuts when sampling among individual kernels. Kernels not meeting high oleic threshold could be true contamination with normal oleic peanuts introduced via poor handling, or they could be immature and not fully expressing th...
USDA-ARS?s Scientific Manuscript database
Normal oleic peanuts are often found within commercial lots of high oleic peanuts when sampling among individual kernels. Kernels not meeting high oleic threshold could be true contamination with normal oleic peanuts introduced via poor handling, or kernels not meeting threshold could be immature a...
Hou, Mi; Andersson, Margareta; Eksborg, Staffan; Söder, Olle; Jahnukainen, Kirsi
2007-07-01
Xeno-grafting of testicular tissue may allow viable gamete maturation. This would be beneficial for prepubertal cancer patients in that it may allow restoration of fertility without the risk of a cancer relapse. However it is unknown whether cancer cells in the testicular graft can transmit the malignancy into the host animal and also if gametes can be retrieved from testicular grafts that are contaminated with malignant cells. Rat T-cell leukemia was employed as the source of leukemic lymphoblasts and testicular tissue. This was injected i.p. (lymphoblasts) or grafted s.c. (fresh or cryopreserved testicular tissue) into the back skin of intact nude mice. To simulate clinical autografting, testicular tissue was also transplanted into healthy piebald variegated (PVG) rats. 50-70% of the mice, receiving 200 or 6000 leukemic lymphoblasts, developed terminal leukemia. All mice, grafted with either fresh or cryopreserved testicular tissue from leukemic donor, developed generalized leukemia and/or local tumors. All syngenic PVG rats, treated in the same manner, died of generalized leukemia. In all of the retrieved leukemic grafts, rat spermatogenesis was destroyed and only leukemic infiltration was detected. Grafting testicular tissue contaminated with leukemic cells led to tumor growth at the injection site without potential to differentiate germline stem cells into gametes. Xenografting could provide a novel functional strategy for simultaneous detection of malignant cell contamination and spermatogonial potential in testicular xenografts collected for fertility preservation.
Micro Corona Ionizer as an Ozone Source for Bacterial Cell Lysis
NASA Astrophysics Data System (ADS)
Lee, Eun-Hee; Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong
2015-04-01
DNA extraction is a critical process of DNA assays including polymerase chain reaction (PCR), microarrays, molecular cloning, and DNA hybridization which has been well established and can be implemented by commercial kits. DNA extraction involves cell lysis, precipitation, and purification through the combination of physical and chemical processes. Cell lysis is essential to high DNA recovery yield which can be achieved via a variety of physical, chemical, and enzymatic methods. However, these methods were originally developed for bioassays that were labor intensive, time consuming, and vulnerable to contamination and inhibition. Here, we proposed to employ a micro corona ionizer as an ozone source to lyse bacterial cells. Ozone has been well known and used as a disinfectant which allows cell lysis and DNA extraction. Previously, we have shown that a micro corona ionizer is capable of generating a significant amount of ozone. In this study, we employed the micro corona ionizer for the bacterial cell lysis which consists of a 50 μm diameter cantilever wire as the discharge cathode and a 50 μm thick copper foil as anode. Applied voltages varied from 1900 to 2200 V with corresponding corona currents from 16 to 28 μA. The resultant ozone (concentration > 0.14 ppm) generated from the micro corona ionizer was bubbled into the sample via a miniature pump. We demonstrated the cell lysis of Pseudomonas putida as the target bacterium using the micro corona ionizer. At a flow rate of 38 ml/min and applied corona voltage of 2000 V, 98.5 ± 0.2% lysis (normalized to sonication result) was achieved after 10 min. In comparison, untreated and air-treated samples showed normalized % lysis of 11.9 ± 2.4 and 36.1 ± 1.7%, respectively. We also showed that the cell lysis efficiency could be significantly increased by increasing the flow rate and the applied corona voltage. By comparing the experimental results for continuous and pulsed treatment, we verified that the percentage of lysis is primarily determined by the total ozone treatment time.
Optical sensor for rapid microbial detection
NASA Astrophysics Data System (ADS)
Al-Adhami, Mustafa; Tilahun, Dagmawi; Rao, Govind; Kostov, Yordan
2016-05-01
In biotechnology, the ability to instantly detect contaminants is key to running a reliable bioprocess. Bioprocesses are prone to be contaminated by cells that are abundant in our environment; detection and quantification of these cells would aid in the preservation of the bioprocess product. This paper discusses the design and development of a portable kinetics fluorometer which acts as a single-excitation, single-emission photometer that continuously measures fluorescence intensity of an indicator dye, and plots it. Resazurin is used as an indicator dye since the viable contaminant cells reduce Resazurin toResorufin, the latter being strongly fluorescent. A photodiode detects fluorescence change by generating current proportional to the intensity of the light that reached it, and a trans-impedance differential op-amp ensures amplification of the photodiodes' signal. A microfluidic chip was designed specifically for the device. It acts as a fully enclosed cuvette, which enhances the Resazurin reduction rate. E. coli in LB media, along with Resazurin were injected into the microfluidic chip. The optical sensor detected the presence of E. coli in the media based on the fluorescence change that occurred in the indicator dye in concentrations as low as 10 CFU/ml. A method was devised to detect and determine an approximate amount of contamination with this device. This paper discusses application of this method to detect and estimate sample contamination. This device provides fast, accurate, and inexpensive means to optically detect the presence of viable cells.
High resolution DNA melting analysis: an application for prenatal control of alpha-thalassemia.
Sirichotiyakul, Supatra; Wanapirak, Chanane; Saetung, Rattika; Sanguansermsri, Torpong
2010-04-01
To report the use of real-time gap-PCR using SYTO9 with high-resolution melting analysis (HRMA) in prenatal diagnosis of alpha-thalassemia 1. Real-time gap-PCR using SYTO9 with HRMA was performed in 33 DNA samples from chorionic villi sampling (8 normal, 16 heterozygous, and 9 homozygous) to determine the alpha-thalassemia 1 gene [normal and Southeast Asia (-SEA) allele]. The dissociation curve analysis in normal and - SEA allele gave a peak of T(m) at 91.80 +/- 0.14 degrees C and 88.67 +/- 0.08 degrees C, respectively. Normal genotype and homozygous alpha-thalassemia 1 showed a single peak of T(m) that corresponded to their alleles. The heterozygotes gave both peaks with higher normal peak and smaller - SEA peak. Thirty one samples showed consistent results with the conventional gap-PCR. Two samples with ambiguous results were confirmed to be maternal DNA contamination on real-time quantitative PCR and microsatellite assay. HRMA from both samples showed similar pattern to that of heterozygotes. However, they showed much smaller normal peak compared with the - SEA peak, which is in contrast to those of heterozygotes and can readily be distinguished. HRMA with SYTO9 is feasible for prenatal diagnosis of alpha-thalassemia. It had potential advantage of prompt detection maternal DNA contamination. Copyright (c) 2010 John Wiley & Sons, Ltd.
Schmitt, Christopher J.; Finger, Susan E.
1987-01-01
The influence of sample preparation on measured concentrations of eight elements in the edible tissues of two black basses (Centrarchidae), two catfishes (Ictaluridae), and the black redhorse,Moxostoma duquesnei (Catostomidae) from two rivers in southeastern Missouri contaminated by mining and related activities was investigated. Concentrations of Pb, Cd, Cu, Zn, Fe, Mn, Ba, and Ca were measured in two skinless, boneless samples of axial muscle from individual fish prepared in a clean room. One sample (normally-processed) was removed from each fish with a knife in a manner typically used by investigators to process fish for elemental analysis and presumedly representative of methods employed by anglers when preparing fish for home consumption. A second sample (clean-processed) was then prepared from each normally-processed sample by cutting away all surface material with acid-cleaned instruments under ultraclean conditions. The samples were analyzed as a single group by atomic absorption spectrophotometry. Of the elements studied, only Pb regularly exceeded current guidelines for elemental contaminants in foods. Concentrations were high in black redhorse from contaminated sites, regardless of preparation method; for the other fishes, whether or not Pb guidelines were exceeded depended on preparation technique. Except for Mn and Ca, concentrations of all elements measured were significantly lower in cleanthan in normally-processed tissue samples. Absolute differences in measured concentrations between clean- and normally-processed samples were most evident for Pb and Ba in bass and catfish and for Cd and Zn in redhorse. Regardless of preparation method, concentrations of Pb, Ca, Mn, and Ba in individual fish were closely correlated; samples that were high or low in one of these four elements were correspondingly high or low in the other three. In contrast, correlations between Zn, Fe, and Cd occurred only in normallyprocessed samples, suggesting that these correlations resulted from high concentrations on the surfaces of some samples. Concentrations of Pb and Ba in edible tissues of fish from contaminated sites were highly correlated with Ca content, which was probably determined largely by the amount of tissue other than muscle in the sample because fish muscle contains relatively little Ca. Accordingly, variation within a group of similar samples can be reduced by normalizing Pb and Ba concentrations to a standard Ca concentration. When sample size (N) is large, this can be accomplished statistically by analysis of covariance; whenN is small, molar ratios of [Pb]/[Ca] and [Ba]/[Ca] can be computed. Without such adjustments, unrealistically large Ns are required to yield statistically reliable estimates of Pb concentrations in edible tissues. Investigators should acknowledge that reported concentrations of certain elements are only estimates, and that regardless of the care exercised during the collection, preparation, and analysis of samples, results should be interpreted with the awareness that contamination from external sources may have occurred.
Bonnail, Estefanía; Pérez-López, Rafael; Sarmiento, Aguasanta M; Nieto, José Miguel; DelValls, T Ángel
2017-09-15
Lanthanide series have been used as a record of the water-rock interaction and work as a tool for identifying impacts of acid mine drainage (lixiviate residue derived from sulphide oxidation). The application of North-American Shale Composite-normalized rare earth elements patterns to these minority elements allows determining the origin of the contamination. In the current study, geochemical patterns were applied to rare earth elements bioaccumulated in the soft tissue of the freshwater clam Corbicula fluminea after exposure to different acid mine drainage contaminated environments. Results show significant bioaccumulation of rare earth elements in soft tissue of the clam after 14 days of exposure to acid mine drainage contaminated sediment (ΣREE=1.3-8μg/gdw). Furthermore, it was possible to biomonitor different degrees of contamination based on rare earth elements in tissue. The pattern of this type of contamination describes a particular curve characterized by an enrichment in the middle rare earth elements; a homologous pattern (E MREE =0.90) has also been observed when applied NASC normalization in clam tissues. Results of lanthanides found in clams were contrasted with the paucity of toxicity studies, determining risk caused by light rare earth elements in the Odiel River close to the Estuary. The current study purposes the use of clam as an innovative "bio-tool" for the biogeochemical monitoring of pollution inputs that determines the acid mine drainage networks affection. Copyright © 2017 Elsevier B.V. All rights reserved.
Nanocomposite copolymer thin-film sensor for detection of escherichia coli
NASA Astrophysics Data System (ADS)
Mathur, Prafull; Misra, S. C. K.; Yadav, Maneesha; Bawa, S. S.; Gupta, A. K.
2006-01-01
The majority of human diseases associated with microbial contaminated water are infectious in nature and the associated pathogen includes bacteria, fungi, viruses and protozoa. Water contaminated with bacteria can cause a number of food-borne and water-borne diseases. The waterborne transmission is highly effective means of spreading infectious agents to a large portion of population; this includes water and milk too. Waterborne infections are recognized as resulting either from ingestion of contaminated water or ice, food items, which have, came into contact with microbial contaminated water (occurring through bathing and recreational activities) etc. The detection of E. coli in food and water is normally carried out by culturing methods, which normally take 3-6 days, These methods are complicated and time-consuming in spite of their correctness, and cannot easily meet inspection demands on E. coli. Hence, an establishment of rapid detection methods for E. coli is strongly required. We have developed highly sensitive and cost effective solid sate sensors prepared from vacuum evaporated thin films of nanocomposite copolymer detection of presence of E. coli vapors in the air within 20 seconds. These sensors operate at room temperature. The preparation, optical, electrical, and structural characterization and behavioral acceptance test on the microorganism sensing properties of these sensors are reported here.
NASA Astrophysics Data System (ADS)
Ngun, C. T.; Pleshakova, Ye V.; Reshetnikov, M. V.
2018-01-01
A soil diagnosis of an urban territory Stepnoe (Saratov region) was conducted within the framework of soil research monitoring of inhabited localities with low levels of anthropogenic impact using chemical and microbiological analysis. Excess over maximum permissible concentration (MPC) of mobile forms of Cr, Zn and Cd were not observed within the researched territory. A universal excess over MPC of mobile forms of Ni, Cu and Pb was established which is most likely connected with anthropogenic contamination. It was discovered that, at the territory of the Stepnoe settlement, mobile forms of heavy metals compounds (HM) in most cases formed paragenetic associations with high correlation coefficient and despite this, an excess over MPC was not significant. This point to a common mineralogical origin of the elements inherited from the parent rock. The values of the total index of chemical contamination were not above 16, which puts the researched samples in a category with permissible contamination. The indices of the total number of heterotrophic bacteria, iron-oxidizing and hydrocarbon-oxidizing bacteria in most samples corresponded to normal indices for chestnut solonetsous and saline soils. In some samples, a deviation from the normal indices was observed justifying the impact of specific contaminants on the soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bench, T.R.
1997-05-01
This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants frommore » the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.« less
Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium.
Kao, An-Chieh; Chu, Yu-Ju; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan
2013-12-01
Arsenic (As) contamination of groundwater is a significant public health concern. In this study, the removal of arsenic from groundwater using biological processes was investigated. The efficiency of arsenite (As(III)) bacterial oxidation and subsequent arsenate (As(V)) removal from contaminated groundwater using bacterial biomass was examined. A novel As(III)-oxidizing bacterium (As7325) was isolated from the aquifer in the blackfoot disease (BFD) endemic area in Taiwan. As7325 oxidized 2300μg/l As(III) using in situ As(III)-contaminated groundwater under aerobic conditions within 1d. After the oxidation of As(III) to As(V), As(V) removal was further examined using As7325 cell pellets. The results showed that As(V) could be adsorbed efficiently by lyophilized As7325 cell pellets, the efficiency of which was related to lyophilized cell pellet concentration. Our study conducted the examination of an alternative technology for the removal of As(III) and As(V) from groundwater, indicating that the oxidation of As(III)-contaminated groundwater by native isolated bacterium, followed by As(V) removal using bacterial biomass is a potentially effective technology for the treatment of As(III)-contaminated groundwater. © 2013.
Experience of microbiological screening of human hepatocytes for clinical transplantation.
Lehec, Sharon C; Hughes, Robin D; Mitry, Ragai R; Graver, Michelle A; Verma, Anita; Wade, Jim J; Dhawan, Anil
2009-01-01
Hepatocyte transplantation is being used in patients with liver-based metabolic disorders and acute liver failure. Hepatocytes are isolated from unused donor liver tissue under GMP conditions. Cells must be free of microbiological contamination to be safe for human use. The experience of microbiological screening during 72 hepatocyte isolation procedures at one center is reported. Samples were taken at different stages of the process and tested using a blood culture bottle system and Gram stain. Bacterial contamination was detected in 37.5% of the UW organ preservative solutions used to transport the liver tissue to the Cell Isolation Unit. After tissue processing the contamination was reduced to 7% overall in the final hepatocyte product, irrespective of the presence of initial contamination of the transport solution. The most common organisms recovered were coagulase-negative staphylococci, a skin commensal. A total of 41 preparations of fresh or cryopreserved hepatocytes were used for cell transplantation in children with liver-based metabolic disorders without any evidence of sepsis due to infusion of hepatocytes. In conclusion, the incidence of bacterial contamination of the final product was low, confirming the suitability of the organs used, hepatocyte isolation procedure, and the environmental conditions of the clean room.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
...] Draft Guidelines on Biologics Quality Monitoring: Testing for the Detection of Mycoplasma Contamination... Detection of Mycoplasma Contamination.'' This draft guideline identifies stages of manufacture where... contamination. Because the guidelines apply to final product and master seed/cell testing in veterinary vaccines...
75 FR 59748 - Notice of License Amendment for the Sequoyah Fuels Corporation's Facility at Gore, OK
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... The purpose of this proposed CAP is to remediate existing groundwater contamination and to facilitate... decommissioning, disposal cell construction, and surface reclamation, the CAP addresses residual contamination in... placed in hydrologically strategic positions to intercept groundwater contamination remaining onsite. The...
Limitations of a hemolytic plaque assay for IgG-anti-IgG rheumatoid factor-producing cells.
Venn, A J; Dresser, D W
1987-09-24
An attempt has been made to develop a hemolytic plaque assay capable of detecting homophile IgG rheumatoid factor (RF)-producing cells. Anti-immunoglobulin allotype-developing reagents were used to distinguish between target and effector IgG. The hemolytic assay has been used to demonstrate an apparently high level of homophile IgM and IgG RF-producing cells in the spleens and lymph nodes of mice stimulated by LPS. However, it appears that a large proportion of the plaques obtained in these assays are due to an artefact resulting from cross-linking of target and effector molecules by the developing reagents. In the case of IgM RF the artefact depends on the presence of a small contamination of the target IgG by IgM, allowing cross-linking of target and effector IgM by the anti-mu-specific developing reagent. With the IgG RF, cross-reactivity of the rabbit anti-Ighb allotype-developing serum for the 'wrong' (Igha) allotype, normally undetectable, becomes sufficient to be biologically relevant when the developing antibody is complexed by being bound to its target (Ighb) allotype. Nevertheless anti-allotype reagents may afford an accurate means of detecting homophile IgG RF producing cells using other assay systems.
Wang, Lizhi; Gao, Xuedong; Wei, Ying; Liu, Kaerdun; Huang, Jianbin; Wang, Jide; Yan, Yun
2018-05-30
Specific imaging of cancer cells has been well-accepted in cancer diagnosis although it cannot precisely mark the boundary between the normal and cancerous cells and report their mutual influence. We report a nanorod fluorescent probe of copper perylenetetracarbonate (PTC-Cu) that can specifically light up normal cells. In combination with cancer cell imaging, the cocultured normal and cancer cells can be lit up with different colors, offering a clear contrast between the normal and cancer cells when they coexist. Because cancerous cells are only 20-30% in cancer area, this provides a possibility to visibly detect the mutual influence between the cancer and normal cells during therapy. We expect this method is beneficial to better cancer diagnosis and therapy.
Fuel Cell System Contaminants Material Screening Data: Text Version |
explore the results of fuel cell system contaminants studies. Total Anions [IC] and Total Concentration of Elements [ICP] in Leachate Solutions Material Class Manufacturer Trade Name and Use Grade ICP Total (ppm ) IC Total (ppm) Total Organic Carbon (ppm) Solution Conductivity (µS/cm) Adhesives LORD 2-part
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido
The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ethermore » acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. Finally, the degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.« less
Jin, Xueting; Xu, Qing; Champion, Keith; Kruth, Howard S.
2015-01-01
This technical report addresses the problem of endotoxin contamination of apolipoprotein reagents. Using a bromodeoxyuridine incorporation cell proliferation assay, we observed that human plasma ApoA-I as low as 1 μg/ml resulted in a >90% inhibition in macrophage proliferation. However, not all ApoA-I from different sources showed this effect. We considered the possibility that endotoxin contamination of the apolipoproteins contributed to the differential inhibition of macrophage cell proliferation. Endotoxin alone very potently inhibited macrophage proliferation (0.1 ng/ml inhibited macrophage proliferation >90%). Measurement of endotoxin levels in the apolipoprotein products, including an analysis of free versus total endotoxin, the latter which included endotoxin that was masked due to binding to protein, suggested that free endotoxin mediated inhibition of macrophage proliferation. Despite the use of an advanced endotoxin removal procedure and agents commonly used to inhibit endotoxin action, the potency of endotoxin precluded successful elimination of endotoxin effect. Our findings show that endotoxin contamination can significantly influence apparent apolipoprotein-mediated cell effects (or effects of any other biological products), especially when these products are tested on highly endotoxin-sensitive cells, such as macrophages. PMID:25778625
Jin, Xueting; Xu, Qing; Champion, Keith; Kruth, Howard S
2015-05-01
This technical report addresses the problem of endotoxin contamination of apolipoprotein reagents. Using a bromodeoxyuridine incorporation cell proliferation assay, we observed that human plasma ApoA-I as low as 1 μg/ml resulted in a >90% inhibition in macrophage proliferation. However, not all ApoA-I from different sources showed this effect. We considered the possibility that endotoxin contamination of the apolipoproteins contributed to the differential inhibition of macrophage cell proliferation. Endotoxin alone very potently inhibited macrophage proliferation (0.1 ng/ml inhibited macrophage proliferation>90%). Measurement of endotoxin levels in the apolipoprotein products, including an analysis of free versus total endotoxin, the latter which included endotoxin that was masked due to binding to protein, suggested that free endotoxin mediated inhibition of macrophage proliferation. Despite the use of an advanced endotoxin removal procedure and agents commonly used to inhibit endotoxin action, the potency of endotoxin precluded successful elimination of endotoxin effect. Our findings show that endotoxin contamination can significantly influence apparent apolipoprotein-mediated cell effects (or effects of any other biological products), especially when these products are tested on highly endotoxin-sensitive cells, such as macrophages. Published by Elsevier Ireland Ltd.
Alteration of Cell Cycle Mediated by Zinc in Human Bronchial ...
Zinc (Zn2+), a ubiquitous ambient air contaminant, presents an oxidant challenge to the human lung and is linked to adverse human health effects. To further elucidate the adaptive and apoptotic cellular responses of human airway cells to Zn2+, we performed pilot studies to examine cell cycle perturbation upon exposure using a normal human bronchial epithelial cell culture (BEAS-2B). BEAS-2B cells were treated with low (0, 1, 2 µM) and apoptotic (3 µM) doses of Zn2+ plus 1 µM pyrithione, a Zn2+-specific ionophore facilitating cellular uptake, for up to 24 h. Fixed cells were then stained with propidium iodine (PI) and cell cycle phase was determined by fluorescent image cytometry. Initial results report the percentage of cells in the S phase after 18 h exposure to 1, 2, and 3 µM Zn2+ were similar (8%, 7%, and 12%, respectively) compared with 7% in controls. Cells exposed to 3 µM Zn2+ increased cell populations in G2/M phase (76% versus 68% in controls). Interestingly, exposure to 1 µM Zn2+ resulted in decreased (59%) cells in G2/M. While preliminary, these pilot studies suggest Zn2+ alters cell cycle in BEAS-2B cells, particularly in the G2/M phase. The G2/M checkpoint maintains DNA integrity by enabling initiation of DNA repair or apoptosis. Our findings suggest that the adaptive and apoptotic responses to Zn2+ exposure may be mediated via perturbation of the cell cycle at the G2/M checkpoint. This work was a collaborative summer student project. The st
Presence of infectious RD-114 virus in a proportion of canine parvovirus isolates.
Yoshikawa, Rokusuke; Sato, Eiji; Miyazawa, Takayuki
2012-03-01
We recently found that certain canine live attenuated vaccines produced using `non-feline' cell lines were contaminated with an infectious feline endogenous retrovirus, termed RD-114 virus. We suspected that RD-114 virus may have contaminated the seed stock of canine parvovirus (CPV) during the production of the contaminated vaccines. In this study, we collected stock viruses of CPVs propagated in a feline cell line, and checked the presence of infectious RD-114 virus. Consequently, we found that RD-114 viral RNA was present in all stock viruses, and 7 out of 18 stock viruses were contaminated with infectious RD-114 virus. We also found that RD-114 virus was stable physically and is capable of retaining its infectivity for a long period at -80°C.
Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.
Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloidmore » fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.« less
Rohrer, J; Conley, M E
1999-11-15
Gene therapy for inherited disorders is more likely to succeed if gene-corrected cells have a proliferative or survival advantage compared with mutant cells. We used a competitive reconstitution model to evaluate the strength of the selective advantage that Btk normal cells have in Btk-deficient xid mice. Whereas 2,500 normal bone marrow cells when mixed with 497,500 xid cells restored serum IgM and IgG3 levels to near normal concentrations in 3 of 5 lethally irradiated mice, 25,000 normal cells mixed with 475,000 xid cells reliably restored serum IgM and IgG3 concentrations and the thymus-independent antibody response in all transplanted mice. Reconstitution was not dependent on lethal irradiation, because sublethally irradiated mice all had elevated serum IgM and IgG3 by 30 weeks postreconstitution when receiving 25,000 normal cells. Furthermore, the xid defect was corrected with as few as 10% of the splenic B cells expressing a normal Btk. When normal donor cells were sorted into B220(+)/CD19(+) committed B cells and B220(-)/CD19(-) cell populations, only the B220(-)/CD19(-) cells provided long-term B-cell reconstitution in sublethally irradiated mice. These findings suggest that even inefficient gene therapy may provide clinical benefit for patients with XLA.
NASA Astrophysics Data System (ADS)
Biesdorf, Johannes; Zamel, Nada; Kurz, Timo
2014-02-01
In this study, the effects of air contaminants on the operation of air-breathing fuel cells in an outdoor environment are investigated. For this purpose, a unique testing platform, which allows continuous operation of 30 cells at different locations, was developed. Three of these testing platforms were placed at different sites in Freiburg im Breisgau, Germany, with high variances of weather and pollution patterns. These locations range from a highly polluted place next to a busy highway to a location with virtually pure air at an altitude of 1205 m. The fuel cells were tested at all sites for over 4500 h in continuous operation. The degradation of the cells due to air pollutants was measured as a voltage decrease for three different operation loads and membranes from two different manufactures. As the temperature of the fuel cells has not been regulated, the irreversible degradation of the cell voltages could not be isolated from the dominant influence of the temperature in the raw data. With the use of the measured data, the impact of real mixtures of air contaminants was observed to be mainly reversible.
NASA Astrophysics Data System (ADS)
Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi; Ismail, B. S.
2013-11-01
Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between June and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 °C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by pH and TSS observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi
2013-11-27
Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between Junemore » and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 °C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by pH and TSS observations.« less
Rai, Hiroki; Yokoyama, Saki; Satoh-Nagasawa, Namiko; Furukawa, Jun; Nomi, Takiko; Ito, Yasuka; Fujimura, Shigeto; Takahashi, Hidekazu; Suzuki, Ryuichiro; Yousra, ELMannai; Goto, Akitoshi; Fuji, Shinichi; Nakamura, Shin-Ichi; Shinano, Takuro; Nagasawa, Nobuhiro; Wabiko, Hiroetsu; Hattori, Hiroyuki
2017-09-01
Incidents at the Fukushima and Chernobyl nuclear power stations have resulted in widespread environmental contamination by radioactive nuclides. Among them, 137cesium has a 30 year half-life, and its persistence in soil raises serious food security issues. It is therefore important to prevent plants, especially crop plants, from absorbing radiocesium. In Arabidopsis thaliana, cesium ions are transported into root cells by several different potassium transporters such as high-affinity K+ transporter 5 (AtHAK5). Therefore, the cesium uptake pathway is thought to be highly redundant, making it difficult to develop plants with low cesium uptake. Here, we isolated rice mutants with low cesium uptake and reveal that the Oryza sativa potassium transporter OsHAK1, which is expressed on the surfaces of roots, is the main route of cesium influx into rice plants, especially in low potassium conditions. During hydroponic cultivation with low to normal potassium concentrations (0-206 µM: the normal potassium level in soil), cesium influx in OsHAK1-knockout lines was no greater than one-eighth that in the wild type. In field experiments, knockout lines of O. sativa HAK1 (OsHAK1) showed dramatically reduced cesium concentrations in grains and shoots, but their potassium uptake was not greatly affected and their grain yields were similar to that of the wild type. Our results demonstrate that, in rice roots, potassium transport systems other than OsHAK1 make little or no contribution to cesium uptake. These results show that low cesium uptake rice lines can be developed for cultivation in radiocesium-contaminated areas. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Fuel Cell System Contaminants Material Screening Data | Hydrogen and Fuel
contaminants; solution conductivity; pH; total organic carbon (TOC); cyclic voltammetry (CV); membrane conductivity) and organics (measured as total organic carbon) in leachate solutions. Each plot shows the ) contaminants on voltage loss over time for each materials class. GCMS Summary: Top 4 Organic Compounds by
A sampling device with a capped body and detachable handle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jezek, Gerd-Rainer
1997-12-01
The present invention relates to a device for sampling radioactive waste and more particularly to a device for sampling radioactive waste which prevents contamination of a sampled material and the environment surrounding the sampled material. During vitrification of nuclear wastes, it is necessary to remove contamination from the surfaces of canisters filled with radioactive glass. After removal of contamination, a sampling device is used to test the surface of the canister. The one piece sampling device currently in use creates a potential for spreading contamination during vitrification operations. During operations, the one piece sampling device is transferred into and outmore » of the vitrification cell through a transfer drawer. Inside the cell, a remote control device handles the sampling device to wipe the surface of the canister. A one piece sampling device can be contaminated by the remote control device prior to use. Further, the sample device can also contaminate the transfer drawer producing false readings for radioactive material. The present invention overcomes this problem by enclosing the sampling pad in a cap. The removable handle is reused which reduces the amount of waste material.« less
Fu, Katherine Z; Li, Jinhua; Vemula, Sai; Moe, Birget; Li, Xing-Fang
2017-08-01
Human neural stem cells (hNSCs) are a useful tool to assess the developmental effects of various environmental contaminants; however, the application of hNSCs to evaluate water disinfection byproducts (DBPs) is scarce. Comprehensive toxicological results are essential to the prioritization of DBPs for further testing and regulation. Therefore, this study examines the effects of DBPs on the proliferation and differentiation of hNSCs. Prior to DBP treatment, characteristic protein markers of hNSCs from passages 3 to 6 were carefully examined and it was determined that hNSCs passaged 3 or 4 times maintained stem cell characteristics and can be used for DBP analysis. Two regulated DBPs, monobromoacetic acid (BAA) and monochloroacetic acid (CAA), and two emerging DBPs, 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ) and 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), were chosen for hNSC treatment. Both 2,6-DBBQ and 2,6-DCBQ induced cell cycle arrest at S-phase at concentrations up to 1μmol/L. Comparatively, BAA and CAA at 0.5μmol/L affected neural differentiation. These results suggest DBP-dependent effects on hNSC proliferation and differentiation. The DBP-induced cell cycle arrest and inhibition of normal hNSC differentiation demonstrate the need to assess the developmental neurotoxicity of DBPs. Copyright © 2017. Published by Elsevier B.V.
Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective
Darwiche, Walaa; Gubler, Brigitte; Marolleau, Jean-Pierre; Ghamlouch, Hussein
2018-01-01
Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells. PMID:29670635
Hingston, Patricia A; Stea, Emma C; Knøchel, Susanne; Hansen, Truelstrup
2013-10-01
This study investigated the effect of initial contamination levels, biofilm maturity and presence of salt and fatty food soils on desiccation survival of Listeria monocytogenes on stainless steel (SS) coupons. L. monocytogenes cultures grown (at 15 °C for 48 h) in Tryptic Soy Broth with 1% glucose (TSB-glu) containing either 0.5 or 5% (w/v) NaCl were re-suspended in TSB-glu containing either 0.5 or 5% NaCl and used to contaminate SS coupons at levels of 3.5, 5.5, and 7.5 log CFU/cm². Desiccation (at 15 °C for 20 days, 43% RH) commenced immediately (non-biofilm) or following biofilm formation (at 15 °C for 48 h, 100% RH). To study the impact of food lipids, non-biofilm L. monocytogenes cells were suspended in TSB-glu containing either canola oil (5-10%) or lard (20-60%) and desiccated as above on SS coupons. Following desiccation for 20 days, survivors decreased by 1.4-3.7 log CFU/cm² for non-biofilm L. monocytogenes cells. The contamination level had no significant (p > 0.05) effect on survival kinetics. SEM micrographs showed mature biofilms on coupons initially contaminated with 5.5 and 7.5 log CFU/cm². Mature biofilm cells were significantly (p < 0.05) more desiccation resistant than cells in immature biofilms formed by the lowest contamination level. Besides biofilm maturity/formation, previous osmoadaptation, exposure to lard (20-60%) or salt (5%) during desiccation significantly (p < 0.05) increased the bacterium's survival. In conclusion, L. monocytogenes desiccation survival can be greatly reduced by preventing presence of mature biofilms and salty or fatty soils on food contact surfaces. Copyright © 2013 Elsevier Ltd. All rights reserved.
Antfolk, Maria; Magnusson, Cecilia; Augustsson, Per; Lilja, Hans; Laurell, Thomas
2015-09-15
Enrichment of rare cells from peripheral blood has emerged as a means to enable noninvasive diagnostics and development of personalized drugs, commonly associated with a prerequisite to concentrate the enriched rare cell population prior to molecular analysis or culture. However, common concentration by centrifugation has important limitations when processing low cell numbers. Here, we report on an integrated acoustophoresis-based rare cell enrichment system combined with integrated concentration. Polystyrene 7 μm microparticles could be separated from 5 μm particles with a recovery of 99.3 ± 0.3% at a contamination of 0.1 ± 0.03%, with an overall 25.7 ± 1.7-fold concentration of the recovered 7 μm particles. At a flow rate of 100 μL/min, breast cancer cells (MCF7) spiked into red blood cell-lysed human blood were separated with an efficiency of 91.8 ± 1.0% with a contamination of 0.6 ± 0.1% from white blood cells with a 23.8 ± 1.3-fold concentration of cancer cells. The recovery of prostate cancer cells (DU145) spiked into whole blood was 84.1 ± 2.1% with 0.2 ± 0.04% contamination of white blood cells with a 9.6 ± 0.4-fold concentration of cancer cells. This simultaneous on-chip separation and concentration shows feasibility of future acoustofluidic systems for rapid label-free enrichment and molecular characterization of circulating tumor cells using peripheral venous blood in clinical practice.
Purging means and method for Xenon arc lamps
NASA Technical Reports Server (NTRS)
Miller, C. G. (Inventor)
1973-01-01
High pressure Xenon short-arc lamp with two reservoirs which are selectively connectable to the lamp's envelope is described. One reservoir contains an absorbent which will absorb both Xenon and contaminant gases such as CO2 and O2. The absorbent temperature is controlled to evacuate the envelope of both the Xenon and the contaminant gases. The temperature of the absorbent is then raised to desorb only clean Xenon while retaining the contaminant gases, thereby clearing the envelope of the contaminant gases. The second reservoir contains a gas whose specific purpose is, to remove the objectional metal film which deposits gradually on the interior surface of the lamp envelope during normal arc operation. The origin of the film is metal transferred from the cathode of the arc lamp by sputtering or other gas transfer processes.
ATM C and D panel/EREP cooling system contamination problem. [on Skylab
NASA Technical Reports Server (NTRS)
Williamson, J. G.
1973-01-01
This report presents the history of a preflight contamination problem that occurred in the ATM C and D panel/EREP cooling system on the Skylab, the studies that were made to determine the cause of the problem, and corrective actions that were made prior to lift-off. The results of all the observations, analyses and laboratory testing indicated that the contamination came from one or more of the EREP tape recorder coldplates and was caused by some abnormal electrolytic action, either during bench testing or in the spacecraft. Studies indicate that no such electrolytic action is likely to occur under normal operating conditions.
NASA Astrophysics Data System (ADS)
Moore, Caroline; Movia, Dania; Smith, Ronan J.; Hanlon, Damien; Lebre, Filipa; Lavelle, Ed C.; Byrne, Hugh J.; Coleman, Jonathan N.; Volkov, Yuri; McIntyre, Jennifer
2017-06-01
The recent surge in graphene research, since its liquid phase monolayer isolation and characterization in 2004, has led to advancements which are accelerating the exploration of alternative 2D materials such as molybdenum disulphide (MoS2), whose unique physico-chemical properties can be exploited in applications ranging from cutting edge electronic devices to nanomedicine. However, to assess any potential impact on human health and the environment, the need to understand the bio-interaction of MoS2 at a cellular and sub-cellular level is critical. Notably, it is important to assess such potential impacts of materials which are produced by large scale production techniques, rather than research grade materials. The aim of this study was to explore cytotoxicity, cellular uptake and inflammatory responses in established cell-lines that mimic different potential exposure routes (inhalation, A549; ingestion, AGS; monocyte, THP-1) following incubation with MoS2 flakes of varying sizes (50 nm, 117 nm and 177 nm), produced by liquid phase exfoliation. Using high content screening (HCS) and Live/Dead assays, it was established that 1 µg ml-1 (for the three different MoS2 sizes) did not induce toxic effects on any of the cell-lines. Confocal microscopy images revealed a normal cellular morphology in all cases. Transmission electron microscopy (TEM) confirmed the uptake of all MoS2 nanomaterials in all the cell-lines, the MoS2 ultimately locating in single membrane vesicles. At such sub-lethal doses, inflammatory responses are observed, however, associated, at least partially, with the presence of lipopolysaccharide endotoxin in nanomaterial suspensions and surfactant samples. Therefore, the inflammatory response of the cells to the MoS2 or endotoxin contamination was interrogated using a 10-plex ELISA which illustrates cytokine production. The experiments carried out using wild-type and endotoxin hyporesponsive bone marrow derived dendritic cells confirmed that the inflammatory responses result from a combination of endotoxin contamination, the MoS2 nanomaterials themselves, and the stabilizing surfactant.
Liu, Zhibin; Liu, Songyu; Cai, Yi; Fang, Wei
2015-06-01
As the dielectric constant and conductivity of petroleum products are different from those of the pore water in soil, the electrical resistivity characteristics of oil-contaminated soil will be changed by the corresponding oil type and content. The contaminated soil specimens were manually prepared by static compaction method in the laboratory with commercial kaolin clay and diesel oil. The water content and dry density of the first group of soil specimens were controlled at 10 % and 1.58 g/cm(3). Corresponding electrical resistivities of the contaminated specimens were measured at the curing periods of 7, 14, and 28 and 90, 120, and 210 days on a modified oedometer cell with an LCR meter. Then, the electrical resistivity characteristics of diesel oil-contaminated kaolin clay were discussed. In order to realize a resistivity-based oil detection method, the other group of oil-contaminated kaolin clay specimens was also made and tested, but the initial water content, oil content, and dry density were controlled at 0~18 %, 0~18 %, 1.30~1.95 g/cm(3), respectively. Based on the test data, a resistivity-based artificial neural network (ANN) was developed. It was found that the electrical resistivity of kaolin clay decreased with the increase of oil content. Moreover, there was a good nonlinear relationship between electrical resistivity and corresponding oil content when the water content and dry density were kept constant. The decreasing velocity of the electrical resistivity of oil-contaminated kaolin clay was higher before the oil content of 12 % than after 12 %, which indicated a transition of the soil from pore water-controlled into oil-controlled electrical resistivity characteristics. Through microstructural analysis, the decrease of electrical resistivity could be explained by the increase of saturation degree together with the collapse of the electrical double layer. Environmental scanning electron microscopy (ESEM) photos indicated that the diesel oil in kaolin clay normally had three kinds of effects including oil filling, coating, and bridging. Finally, a resistivity-based ANN model was established based on the database collected from the experiment data. The performance of the model was proved to be reasonably accepted, which puts forward a possible simple, economic, and effective tool to detect the oil content in contaminated clayey soils just with four basic parameters: wet density, dry density, measured moisture content, and electrical resistivity.
Mirkin, I R; Anderson, H A; Hanrahan, L; Hong, R; Golubjatnikov, R; Belluck, D
1990-02-01
The carbamate pesticide, aldicarb, is the most commonly found man-made groundwater contaminant in Wisconsin. A 1985 study linked ingestion of aldicarb-contaminated drinking water with altered T-cell distributions, specifically an increase in the mean number of CD8+ (T8) T cells. To further evaluate this finding, a follow-up study was done in 1987. Of the 50 Portage County, Wisconsin, women who participated in the first study, 45 participated in the follow-up: 18 formerly exposed and 27 formerly unexposed. In our follow-up study, only 5 women were found to be currently exposed to aldicarb. This group of 5 women, compared to 39 unexposed women who had peripheral blood specimens taken, had an increased percentage of lymphocytes and an increased number of CD2+ T cells, due to an increased number of total CD8+ T cells. Although the number of exposed persons was small, the increases in percentage lymphocytes and absolute numbers of CD2+ and CD8+ T cells were consistent with a dose-response relationship. No identified drinking water contaminant other than aldicarb could explain these findings. These results support earlier evidence linking aldicarb exposure and lymphocyte distribution changes. Although adverse clinical effects have not been documented, the widespread use of this chemical and consequent potential for widespread exposure indicate a clear need for further research on this issue.
Xu, Ruilian; Tang, Jun; Deng, Quantong; He, Wan; Sun, Xiujie; Xia, Ligang; Cheng, Zhiqiang; He, Lisheng; You, Shuyuan; Hu, Jintao; Fu, Yuxiang; Zhu, Jian; Chen, Yixin; Gao, Weina; He, An; Guo, Zhengyu; Lin, Lin; Li, Hua; Hu, Chaofeng; Tian, Ruijun
2018-05-01
Increasing attention has been focused on cell type proteome profiling for understanding the heterogeneous multicellular microenvironment in tissue samples. However, current cell type proteome profiling methods need large amounts of starting materials which preclude their application to clinical tumor specimens with limited access. Here, by seamlessly combining laser capture microdissection and integrated proteomics sample preparation technology SISPROT, specific cell types in tumor samples could be precisely dissected with single cell resolution and processed for high-sensitivity proteome profiling. Sample loss and contamination due to the multiple transfer steps are significantly reduced by the full integration and noncontact design. H&E staining dyes which are necessary for cell type investigation could be selectively removed by the unique two-stage design of the spintip device. This easy-to-use proteome profiling technology achieved high sensitivity with the identification of more than 500 proteins from only 0.1 mm 2 and 10 μm thickness colon cancer tissue section. The first cell type proteome profiling of four cell types from one colon tumor and surrounding normal tissue, including cancer cells, enterocytes, lymphocytes, and smooth muscle cells, was obtained. 5271, 4691, 4876, and 2140 protein groups were identified, respectively, from tissue section of only 5 mm 2 and 10 μm thickness. Furthermore, spatially resolved proteome distribution profiles of enterocytes, lymphocytes, and smooth muscle cells on the same tissue slices and across four consecutive sections with micrometer distance were successfully achieved. This fully integrated proteomics technology, termed LCM-SISPROT, is therefore promising for spatial-resolution cell type proteome profiling of tumor microenvironment with a minute amount of clinical starting materials.
Microelectroporation device for genomic screening
Perroud, Thomas D.; Renzi, Ronald F.; Negrete, Oscar; Claudnic, Mark R.
2014-09-09
We have developed an microelectroporation device that combines microarrays of oligonucleotides, microfluidic channels, and electroporation for cell transfection and high-throughput screening applications (e.g. RNA interference screens). Microarrays allow the deposition of thousands of different oligonucleotides in microscopic spots. Microfluidic channels and microwells enable efficient loading of cells into the device and prevent cross-contamination between different oligonucleotides spots. Electroporation allows optimal transfection of nucleic acids into cells (especially hard-to-transfect cells such as primary cells) by minimizing cell death while maximizing transfection efficiency. This invention has the advantage of a higher throughput and lower cost, while preventing cross-contamination compared to conventional screening technologies. Moreover, this device does not require bulky robotic liquid handling equipment and is inherently safer given that it is a closed system.
NASA Astrophysics Data System (ADS)
Duan, J.; Lu, X.; He, G.
2017-01-01
In this work, a co-culture system with liver cancer cell line HepG2 and normal cell line L02 is used to investigate the selective effect on cancer and normal cells by plasma activated medium (PAM), which is closer to the real environment where cancer cells develop. Besides, the co-culture system is a better model to study the selective effect than the widely used separate culture systems, where the cancer cell line and normal cell line are cultured independently. By using the co-culture system, it is found that there is an optimum dose of PAM to induce significant cancer cell apoptosis while keeping minimum damage to normal cells.
Canetta, Elisabetta; Riches, Andrew; Borger, Eva; Herrington, Simon; Dholakia, Kishan; Adya, Ashok K
2014-05-01
Atomic force microscopy (AFM) and modulated Raman spectroscopy (MRS) were used to discriminate between living normal human urothelial cells (SV-HUC-1) and bladder tumour cells (MGH-U1) with high specificity and sensitivity. MGH-U1 cells were 1.5-fold smaller, 1.7-fold thicker and 1.4-fold rougher than normal SV-HUC-1 cells. The adhesion energy was 2.6-fold higher in the MGH-U1 cells compared to normal SV-HUC-1 cells, which possibly indicates that bladder tumour cells are more deformable than normal cells. The elastic modulus of MGH-U1 cells was 12-fold lower than SV-HUC-1 cells, suggesting a higher elasticity of the bladder cancer cell membranes. The biochemical fingerprints of cancer cells displayed a higher DNA and lipid content, probably due to an increase in the nuclear to cytoplasm ratio. Normal cells were characterized by higher protein contents. AFM studies revealed a decrease in the lateral dimensions and an increase in thickness of cancer cells compared to normal cells; these studies authenticate the observations from MRS. Nanostructural, nanomechanical and biochemical profiles of bladder cells provide qualitative and quantitative markers to differentiate between normal and cancerous cells at the single cellular level. AFM and MRS allow discrimination between adhesion energy, elasticity and Raman spectra of SV-HUC-1 and MGH-U1 cells with high specificity (83, 98 and 95%) and sensitivity (97, 93 and 98%). Such single-cell-level studies could have a pivotal impact on the development of AFM-Raman combined methodologies for cancer profiling and screening with translational significance. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Growth determinations for unattached bacteria in a contaminated aquifer.
Harvey, R.W.; George, L.H.
1987-01-01
Growth rates of unattached bacteria in groundwater contaminated with treated sewage and collected at various distances from the source of contamination were estimated by using frequency of dividing cells and tritiated-thymidine uptake and compared with growth rates obtained with unsupplemented, closed-bottle incubations. Estimates of bacterial generation times [(In 2)/mu] along a 3-km-long transect in oxygen-depleted (0.1 to 0.7 mg of dissolved oxygen liter-1) groundwater ranged from 16 h at 0.26 km downgradient from an on-land, treated-sewage outfall to 139 h at 1.6 km and correlated with bacterial abundance (r2 = 0.88 at P less than 0.001). Partitioning of assimilated thymidine into nucleic acid generally decreased with distance from the contaminant source, and one population in heavily contaminated groundwater assimilated little thymidine during a 20-h incubation. Several assumptions commonly made when frequency of dividing cells and tritiated-thymidine uptake are used were not applicable to the groundwater samples.
Air Contamination Quantification by FTIR with Gas Cell
NASA Technical Reports Server (NTRS)
Freischlag, Jason
2017-01-01
Air quality is of utmost importance in environmental studies and has many industrial applications such as aviators grade breathing oxygen (ABO) for pilots and breathing air for fire fighters. Contamination is a major concern for these industries as identified in MIL-PRF-27210, CGA G-4.3, CGA G-7.1, and NFPA 1989. Fourier Transform Infrared Spectroscopy (FTIR) is a powerful tool that when combined with a gas cell has tremendous potential for gas contamination analysis. Current procedures focus mostly on GC-MS for contamination quantification. Introduction of this topic will be done through a comparison of the currently used deterministic methods for gas contamination with those of FTIR gas analysis. Certification of the mentioned standards through the ISOIEC 17065 certifying body A2LA will be addressed followed by an evaluation of quality information such as the determinations of linearity and the limits of detection and quantitation. Major interferences and issues arising from the use of the FTIR for accredited work with ABO and breathing air will be covered.
Detection of enterotoxigenic Clostridium perfringens in meat samples by using molecular methods.
Kaneko, Ikuko; Miyamoto, Kazuaki; Mimura, Kanako; Yumine, Natsuko; Utsunomiya, Hirotoshi; Akimoto, Shigeru; McClane, Bruce A
2011-11-01
To prevent food-borne bacterial diseases and to trace bacterial contamination events to foods, microbial source tracking (MST) methods provide important epidemiological information. To apply molecular methods to MST, it is necessary not only to amplify bacterial cells to detection limit levels but also to prepare DNA with reduced inhibitory compounds and contamination. Isolates carrying the Clostridium perfringens enterotoxin gene (cpe) on the chromosome or a plasmid rank among the most important food-borne pathogens. Previous surveys indicated that cpe-positive C. perfringens isolates are present in only ∼5% of nonoutbreak food samples and then only at low numbers, usually less than 3 cells/g. In this study, four molecular assays for the detection of cpe-positive C. perfringens isolates, i.e., ordinary PCR, nested PCR, real-time PCR, and loop-mediated isothermal amplification (LAMP), were developed and evaluated for their reliability using purified DNA. For use in the artificial contamination of meat samples, DNA templates were prepared by three different commercial DNA preparation kits. The four molecular assays always detected cpe when >10³ cells/g of cpe-positive C. perfringens were present, using any kit. Of three tested commercial DNA preparation kits, the InstaGene matrix kit appeared to be most suitable for the testing of a large number of samples. By using the InstaGene matrix kit, the four molecular assays efficiently detected cpe using DNA prepared from enrichment culture specimens of meat samples contaminated with low numbers of cpe-positive C. perfringens vegetative cells or spores. Overall, the current study developed molecular assay protocols for MST to detect the contamination of foods with low numbers of cells, and at a low frequency, of cpe-positive C. perfringens isolates.
Opu, Md.; Bender, G.; Macomber, Clay S.; ...
2015-06-29
In this study, in situ performance data were measured to assess the degree of contamination from leachates of five families of balance of plant (BOP) materials (i.e., 2-part adhesive, grease, thread lock/seal, silicone adhesive/seal and urethane adhesive/seal) broadly classified as assembly aids that may be used as adhesives and lubricants in polymer electrolyte membrane fuel cell (PEMFC) systems. Leachate solutions, derived from soaking the materials in deionized (DI) water at elevated temperature, were infused into the fuel cell to determine the effect of the leachates on fuel cell performance. During the contamination phase of the experiments, leachate solution was introducedmore » through a nebulizer into the cathode feed stream of a 50 cm 2 PEMFC operating at 0.2 A/cm 2 at 80°C and 32%RH. Voltage loss and high frequency resistance (HFR) were measured as a function of time and electrochemical surface area (ECA) before and after contamination were compared. Two procedures of recovery, one self-induced recovery with DI water and one driven recovery through cyclic voltammetry (CV) were investigated. Finally, performance results measured before and after contamination and after CV recovery are compared and discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opu, Md.; Bender, G.; Macomber, Clay S.
In this study, in situ performance data were measured to assess the degree of contamination from leachates of five families of balance of plant (BOP) materials (i.e., 2-part adhesive, grease, thread lock/seal, silicone adhesive/seal and urethane adhesive/seal) broadly classified as assembly aids that may be used as adhesives and lubricants in polymer electrolyte membrane fuel cell (PEMFC) systems. Leachate solutions, derived from soaking the materials in deionized (DI) water at elevated temperature, were infused into the fuel cell to determine the effect of the leachates on fuel cell performance. During the contamination phase of the experiments, leachate solution was introducedmore » through a nebulizer into the cathode feed stream of a 50 cm 2 PEMFC operating at 0.2 A/cm 2 at 80°C and 32%RH. Voltage loss and high frequency resistance (HFR) were measured as a function of time and electrochemical surface area (ECA) before and after contamination were compared. Two procedures of recovery, one self-induced recovery with DI water and one driven recovery through cyclic voltammetry (CV) were investigated. Finally, performance results measured before and after contamination and after CV recovery are compared and discussed.« less
Mainou-Fowler, T; Copplestone, J A; Prentice, A G
1995-01-01
AIMS--To investigate the effects of interleukin (IL) 1, 2, 4, and 5 on the proliferation and survival of peripheral blood B cells from patients with B chronic lymphocytic leukaemia (B-CLL) and compare them with the effects on normal peripheral blood B cells. METHODS--The proliferation and survival of pokeweed mitogen (PWM) activated B cells from B-CLL (n = 12) and normal peripheral blood (n = 5) were studied in vitro in response to IL-1, IL-2 IL-4, and IL-5. Survival of cells in cultures with or without added interleukins was studied by microscopic examination of cells and DNA agarose gel electrophoresis. RESULTS--Proliferation was observed in both B-CLL and normal peripheral blood cells on culture with IL-2 alone and also in some, but not all, B-CLL and normal peripheral blood cells with IL-1 and IL-4. However, there was greater variability in B-CLL cell responses than in normal peripheral blood cells. Il-5 did not affect normal peripheral blood cell proliferation but it increased proliferation in two B-CLL cases. Synergistic effects of these cytokines were not detected. IL-4 inhibited normal peripheral blood and B-CLL cell proliferation after the addition of IL-2. Inhibition of B-CLL cell responses to IL-2 was also observed with IL-5 and Il-1. Survival of B-CLL cells in cultures was enhanced with IL-4 not by an increase in proliferation but by reduced apoptosis. No such effect was seen in normal peripheral blood cells. IL-2 had a less noticeable antiapoptotic effect; IL-5 enhanced apoptosis in B-CLL cells. CONCLUSIONS--B-CLL and normal peripheral blood cells proliferated equally well in response to IL-2. IL-4 had a much lower effect on B-CLL cell proliferation, but had noticeable antiapoptotic activity. IL-5 enhanced cell death by apoptosis. Images PMID:7629299
Andoh, Yoshimichi; Okazaki, Susumu; Ueoka, Ryuichi
2013-04-01
Molecular dynamics (MD) calculations for the plasma membranes of normal murine thymocytes and thymus-derived leukemic GRSL cells in water have been performed under physiological isothermal-isobaric conditions (310.15K and 1 atm) to investigate changes in membrane properties induced by canceration. The model membranes used in our calculations for normal and leukemic thymocytes comprised 23 and 25 kinds of lipids, respectively, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. The mole fractions of the lipids adopted here were based on previously published experimental values. Our calculations clearly showed that the membrane area was increased in leukemic cells, and that the isothermal area compressibility of the leukemic plasma membranes was double that of normal cells. The calculated membranes of leukemic cells were thus considerably bulkier and softer in the lateral direction compared with those of normal cells. The tilt angle of the cholesterol and the conformation of the phospholipid fatty acid tails both showed a lower level of order in leukemic cell membranes compared with normal cell membranes. The lateral radial distribution function of the lipids also showed a more disordered structure in leukemic cell membranes than in normal cell membranes. These observations all show that, for the present thymocytes, the lateral structure of the membrane is considerably disordered by canceration. Furthermore, the calculated lateral self-diffusion coefficient of the lipid molecules in leukemic cell membranes was almost double that in normal cell membranes. The calculated rotational and wobbling autocorrelation functions also indicated that the molecular motion of the lipids was enhanced in leukemic cell membranes. Thus, here we have demonstrated that the membranes of thymocyte leukemic cells are more disordered and more fluid than normal cell membranes. Copyright © 2013 Elsevier B.V. All rights reserved.
Cell culture purity issues and DFAT cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Shengjuan; Department of Animal Sciences, Washington State University, Pullman, WA 99164; Bergen, Werner G.
2013-04-12
Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for themore » alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.« less
Buschini, Annamaria; Carboni, Pamela; Furlini, Mariangela; Poli, Paola; Rossi, Carlo
2004-03-01
Mutagenicity of drinking water is due not only to industrial, agricultural and urban pollution but also to chlorine disinfection by-products. Furthermore, residual disinfection is used to provide a partial safeguard against low level contamination and bacterial re-growth within the distribution system. The aims of this study were to further evaluate the genotoxic potential of the world wide used disinfectants sodium hypochlorite and chlorine dioxide in human leukocytes by the Comet assay and in Saccharomyces cerevisiae strain D7 (mitotic gene conversion, point mutation and mitochondrial DNA mutability, with and without endogenous metabolic activation) and to compare their effects with those of peracetic acid, proposed as an alternative disinfectant. All three disinfectants are weakly genotoxic in human leukocytes (lowest effective dose 0.2 p.p.m. for chlorine dioxide, 0.5 p.p.m. for sodium hypochlorite and peracetic acid). The results in S.cerevisiae show a genotoxic response on the end-points considered with an effect only at doses higher (5- to 10-fold) than the concentration normally used for water disinfection; sodium hypochlorite and peracetic acid are able to induce genotoxic effects without endogenous metabolic activation (in stationary phase cells) whereas chlorine dioxide is effective in growing cells. The Comet assay was more sensitive than the yeast tests, with effective doses in the range normally used for water disinfection processes. The biological effectiveness of the three disinfectants on S.cerevisiae proved to be strictly dependent on cell-specific physiological/biochemical conditions. All the compounds appear to act on the DNA and peracetic acid shows effectiveness similar to sodium hypochlorite and chlorine dioxide.
Recent progress in the biology of multiple myeloma and future directions in the treatment.
Pico, J L; Castagna, L; Bourhis, J H
1998-04-01
A great amount of scientific information, accumulated over recent years on the biology of Multiple Myeloma (MM), has fuelled speculation about the origin of malignant plasma cells, about a purported critical role played by the bone marrow stroma, and further still, on cytokine interactions and in particular that of IL-6 and its relationship with the immune system. Among the growth factors secreted by stroma cells, IL-6 is a potent stimulator of myeloma cells in vitro but does not induce a malignant phenotype in normal plasma cells. Many efforts have been produced to identify the stem cell in MM and probably memory B lymphocytes are the best candidates. The demonstration of a Graft vs Myeloma effect in the allogeneic setting strongly supports the immunotherapy in MM. Recent data also suggest that a virus (Kaposi-associated herpes virus, HHV-8) may be significantly associated with the development of MM. In parallel, progress has been achieved in the treatment of this incurable disease with well defined prognostic factors, more efficient supportive care and its corollary, improved quality of life and dose-intensified chemo-radiotherapy followed by autologous hematopoietic stem cell support. Improving the quality of grafts with the selection of CD34 positive cells is another approach aimed at reducing plasma cell contamination without impairing haematological recovery. An EBMT randomized study assessing the role of CD34 selection has been initiated by our group Increasingly efficient first-line therapy, better quality autografts and improved post-remission treatment with, for example, anti-idiopathic vaccination are the most promising future directions.
Development of a culture system for pure rat neurons: advantages of a sandwich technique.
Lucius, R; Mentlein, R
1995-07-01
Primary cell cultures were derived from the cerebral cortices of embryonic rats (E 17). Survival of the cultures under serum-free conditions was improved by creating a sandwich: a poly-D-lysine-coated coverslip with plated cells was placed upside down in plastic culture dishes. Neurite outgrowth was observed within three hours after plating, and a neuronal network was established after 24 hours. The viability of the neurons gradually decreased. However, the cells could be cultivated for up to 24 days. Under these conditions the contamination with non-neuronal cells was minimized to less than 5%, as evidenced by immunohistochemical methods using the well-established cell marker proteins: neuron-specific enolase (NSE) as neuronal marker, and vimentin and glial fibrillary acidic protein (GFAP) as astroglial markers. Returning the coverslip to a normal open face position led to cell death within 24 hours. In order to investigate the maturation and differentiation of the cultured nerve cells, we looked for synapse formation by staining the synaptic vesicle protein synaptophysin (p38). It could be immunostained after three days in vitro (DIV) only in the neuronal perikarya, in perikarya and axons after six DIV, and in varicosities and contact points between axon terminals and adjacent axons or perikarya after 10-12 DIV. It appears that this simple culture method, which (i) yields highly enriched (> 95%) neuronal cultures with more than 85% cells surviving after five days in vitro, (ii) the absence of non-neuronal cells and (iii) the good maturation/differentiation of the cells, may be useful for the study of the neurochemical, physiological or regulatory mechanisms involved in nerve cell development.
Friend, M.
1999-01-01
Candida albicans, a yeast-like fungi, is the primary cause of candidiasis or candidiosis. C. albicans is a normal inhabitant of the human alimentary canal, as well as that of many species of lower animals. Ingestion in food or in water is the usual means for its transmission. Contaminated environments, such as litter from poultry and gamebird rearing facilities, refuse disposal areas, discharge sites for poultry operations, and areas contaminated with human waste have all been suggested as sources for Candidia exposure for birds.
Ridley, A; Morris, V; Gittins, J; Cawthraw, S; Harris, J; Edge, S; Allen, V
2011-07-01
To test the efficacy of enhanced biosecurity measures on poultry farms for reducing environmental contamination with Campylobacter during partial depopulation of broiler flocks prior to normal slaughter age. The study has also evaluated the risk of infection from live-bird transport crates that are routinely cleaned at the slaughterhouse, but may remain contaminated. On-farm sampling and Campylobacter isolation was undertaken to compare the prevalence of contamination on vehicles, equipment and catching personnel during farm visits that took place under normal or enhanced biosecurity. Campylobacters were found in almost all types of sample examined and enhanced biosecurity reduced the prevalence. However, the additional measures failed to prevent colonisation of the flocks. For transport crates, challenge trials involved exposure of broilers to commercially cleaned crates and genotyping of any campylobacters isolated. The birds were rapidly colonised with the same genotypes as those isolated from the cleaned crates. The enhanced biosecurity measures were insufficient to prevent flock colonisation, and the problem was exacerbated by inadequate cleaning of transport crates at the slaughterhouse. Current commercial practices in the United Kingdom facilitate the spread of campylobacters among broiler chicken flocks. Prevention of flock infection appears to require more stringent biosecurity than that studied here. © 2011 Crown Copyright. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
Ganassin, R C; Sanders, S M; Kennedy, C J; Joyce, E M; Bols, N C
1999-01-01
A cell line, PHL, has been successfully established from newly hatched herring larvae. The cells are maintained in growth medium consisting of Leibovitz's L-15 supplemented with 15% fetal bovine serum (FBS), and have been cryopreserved and maintain viability after thawing. These cells retain a diploid karotype after 65 population doublings. PHL are susceptible to infection by the North American strain of viral hemorrhagic septicemia (VHS) virus, and are sensitive to the cytotoxic effects of naphthalene, a common environmental contaminant. Naphthalene is a component of crude and refined oil, and may be found in the marine environment following acute events such as oil spills. In addition, chronic sources of naphthalene contamination include offshore drilling and petroleum contamination from areas such as docks and marinas that have creosote-treated docks and pilings and also receive constant small inputs of petroleum products. This cell line should be useful for investigations of the toxicity of naphthalene and other petroleum components to juvenile herring. In addition, studies of the VHS virus will be facilitated by the availability of a susceptible cell line from an alternative species.
Method for distinguishing normal and transformed cells using G1 kinase inhibitors
Crissman, Harry A.; Gadbois, Donna M.; Tobey, Robert A.; Bradbury, E. Morton
1993-01-01
A G.sub.1 phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G.sub.1 phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G.sub.1 cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G.sub.1 phase, suggesting that such G.sub.1 phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.
Method for distinguishing normal and transformed cells using G1 kinase inhibitors
Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.
1993-02-09
A G[sub 1] phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G[sub 1] phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G[sub 1] cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G[sub 1] phase, suggesting that such G[sub 1] phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.
Bacterial contamination of boar semen affects the litter size.
Maroto Martín, Luis O; Muñoz, Eduardo Cruz; De Cupere, Françoise; Van Driessche, Edilbert; Echemendia-Blanco, Dannele; Rodríguez, José M Machado; Beeckmans, Sonia
2010-07-01
One hundred and fifteen semen samples were collected from 115 different boars from two farms in Cuba. The boars belonged to five different breeds. Evaluation of the semen sample characteristics (volume, pH, colour, smell, motility of sperm cells) revealed that they meet international standards. The samples were also tested for the presence of agglutinated sperm cells and for bacterial contamination. Seventy five percent of the ejaculates were contaminated with at least one type of bacteria and E. coli was by far the major contaminant, being present in 79% of the contaminated semen samples (n=68). Other contaminating bacteria belonged to the genera Proteus (n=31), Serratia (n=31), Enterobacter (n=24), Klebsiella (n=12), Staphylococcus (n=10), Streptococcus (n=8) and Pseudomonas (n=7). Only in one sample anaerobic bacteria were detected. Pearson's analysis of the data revealed that there is a positive correlation between the presence of E. coli and sperm agglutination, and a negative correlation between sperm agglutination and litter size. One-way ANOVA and post hoc Tukey analysis of 378 litters showed that the litter size is significantly reduced when semen is used that is contaminated with spermagglutinating E. coli above a threshold value of 3.5x10(3)CFU/ml. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Weidong; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda
2013-03-01
The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells.The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr00553d
... their stool. The stool can then contaminate public water supplies, community swimming pools, and water sources like lakes ... normal amounts of chlorine used to purify community water supplies, and can live for more than 2 months ...
TUMOR HAPLOTYPE ASSEMBLY ALGORITHMS FOR CANCER GENOMICS
AGUIAR, DEREK; WONG, WENDY S.W.; ISTRAIL, SORIN
2014-01-01
The growing availability of inexpensive high-throughput sequence data is enabling researchers to sequence tumor populations within a single individual at high coverage. But, cancer genome sequence evolution and mutational phenomena like driver mutations and gene fusions are difficult to investigate without first reconstructing tumor haplotype sequences. Haplotype assembly of single individual tumor populations is an exceedingly difficult task complicated by tumor haplotype heterogeneity, tumor or normal cell sequence contamination, polyploidy, and complex patterns of variation. While computational and experimental haplotype phasing of diploid genomes has seen much progress in recent years, haplotype assembly in cancer genomes remains uncharted territory. In this work, we describe HapCompass-Tumor a computational modeling and algorithmic framework for haplotype assembly of copy number variable cancer genomes containing haplotypes at different frequencies and complex variation. We extend our polyploid haplotype assembly model and present novel algorithms for (1) complex variations, including copy number changes, as varying numbers of disjoint paths in an associated graph, (2) variable haplotype frequencies and contamination, and (3) computation of tumor haplotypes using simple cycles of the compass graph which constrain the space of haplotype assembly solutions. The model and algorithm are implemented in the software package HapCompass-Tumor which is available for download from http://www.brown.edu/Research/Istrail_Lab/. PMID:24297529
NASA Astrophysics Data System (ADS)
Grudzinski, Wojciech; Piet, Mateusz; Luchowski, Rafal; Reszczynska, Emilia; Welc, Renata; Paduch, Roman; Gruszecki, Wieslaw I.
2018-01-01
Two cell lines, human normal colon epithelial cells (CCD 841 CoTr) and human colon adenocarcinoma cells (HT-29) were cultured in the presence of exogenous carotenoids, either zeaxanthin or lutein. Both carotenoids demonstrated cytotoxicity with respect to cancer cells but not to normal cells. Cells from both the cell lines were analyzed with application of fluorescence lifetime imaging microscopy and Raman scattering microscopy. Both imaging techniques show effective incorporation of carotenoid molecules into growing cells. Comparison of the Raman scattering and fluorescence lifetime characteristics reveals different molecular organization of carotenoids in the carcinoma and normal cells. The main difference consists in a carotenoid aggregation level which is substantially lower in the carcinoma cells as compared to the normal cells. Different molecular organization of carotenoids was interpreted in terms of a different metabolism of normal and carcinoma cells and has been concluded to provide a possibility of cancer diagnosis based on spectroscopic analyses.
Qian, Song S; Lyons, Regan E
2006-10-01
We present a Bayesian approach for characterizing background contaminant concentration distributions using data from sites that may have been contaminated. Our method, focused on estimation, resolves several technical problems of the existing methods sanctioned by the U.S. Environmental Protection Agency (USEPA) (a hypothesis testing based method), resulting in a simple and quick procedure for estimating background contaminant concentrations. The proposed Bayesian method is applied to two data sets from a federal facility regulated under the Resource Conservation and Restoration Act. The results are compared to background distributions identified using existing methods recommended by the USEPA. The two data sets represent low and moderate levels of censorship in the data. Although an unbiased estimator is elusive, we show that the proposed Bayesian estimation method will have a smaller bias than the EPA recommended method.
Method of remediation of contaminants in porous media through minimization of bouyancy effects
Shook, G. Michael; Pope, Gary A.
1999-01-01
A method for controlling vertical migration of contaminants in an aquifer includes introduction of a solubilizing solution having a surfactant and an alcohol or other light co-solvent. The surfactant is selected to solubilize the contaminant. The alcohol or other solvent is selected to provide the microemulsion with a substantially neutral buoyancy with respect to groundwater. The neutral buoyancy of the microemulsion prevents the normal downward movement which is typical of the solubilized dense non-aqueous phase liquid in surfactant-enhanced aquifer remediation. Thus, the risk that any significant amount of the solubilized dense non-aqueous contaminants will migrate vertically can be controlled. The relative tendency for vertical migration may also be reduced by increasing the injection rate or injected fluid viscosity (by adding polymer), or by reducing the well spacing.
Cancer cell redirection biomarker discovery using a mutual information approach.
Roche, Kimberly; Feltus, F Alex; Park, Jang Pyo; Coissieux, Marie-May; Chang, Chenyan; Chan, Vera B S; Bentires-Alj, Mohamed; Booth, Brian W
2017-01-01
Introducing tumor-derived cells into normal mammary stem cell niches at a sufficiently high ratio of normal to tumorous cells causes those tumor cells to undergo a change to normal mammary phenotype and yield normal mammary progeny. This phenomenon has been termed cancer cell redirection. We have developed an in vitro model that mimics in vivo redirection of cancer cells by the normal mammary microenvironment. Using the RNA profiling data from this cellular model, we examined high-level characteristics of the normal, redirected, and tumor transcriptomes and found the global expression profiles clearly distinguish the three expression states. To identify potential redirection biomarkers that cause the redirected state to shift toward the normal expression pattern, we used mutual information relationships between normal, redirected, and tumor cell groups. Mutual information relationship analysis reduced a dataset of over 35,000 gene expression measurements spread over 13,000 curated gene sets to a set of 20 significant molecular signatures totaling 906 unique loci. Several of these molecular signatures are hallmark drivers of the tumor state. Using differential expression as a guide, we further refined the gene set to 120 core redirection biomarker genes. The expression levels of these core biomarkers are sufficient to make the normal and redirected gene expression states indistinguishable from each other but radically different from the tumor state.
Cancer cell redirection biomarker discovery using a mutual information approach
Roche, Kimberly; Feltus, F. Alex; Park, Jang Pyo; Coissieux, Marie-May; Chang, Chenyan; Chan, Vera B. S.; Bentires-Alj, Mohamed
2017-01-01
Introducing tumor-derived cells into normal mammary stem cell niches at a sufficiently high ratio of normal to tumorous cells causes those tumor cells to undergo a change to normal mammary phenotype and yield normal mammary progeny. This phenomenon has been termed cancer cell redirection. We have developed an in vitro model that mimics in vivo redirection of cancer cells by the normal mammary microenvironment. Using the RNA profiling data from this cellular model, we examined high-level characteristics of the normal, redirected, and tumor transcriptomes and found the global expression profiles clearly distinguish the three expression states. To identify potential redirection biomarkers that cause the redirected state to shift toward the normal expression pattern, we used mutual information relationships between normal, redirected, and tumor cell groups. Mutual information relationship analysis reduced a dataset of over 35,000 gene expression measurements spread over 13,000 curated gene sets to a set of 20 significant molecular signatures totaling 906 unique loci. Several of these molecular signatures are hallmark drivers of the tumor state. Using differential expression as a guide, we further refined the gene set to 120 core redirection biomarker genes. The expression levels of these core biomarkers are sufficient to make the normal and redirected gene expression states indistinguishable from each other but radically different from the tumor state. PMID:28594912
NASA Astrophysics Data System (ADS)
Shtripling, L. O.; Kholkin, E. G.
2018-01-01
The article presents the procedure for determining the basic geometrical setting parameters for the oil-contaminated soils decontamination with reagent encapsulation method. An installation is considered for the operational elimination of the emergency consequences accompanied with oil spills, and the installation is adapted to winter conditions. In the installations exothermic process thermal energy of chemical neutralization of oil-contaminated soils released during the decontamination is used to thaw frozen subsequent portions of oil-contaminated soil. Installation for oil-contaminated soil decontamination as compared with other units has an important advantage, and it is, if necessary (e.g., in winter) in using the heat energy released at each decontamination process stage of oil-contaminated soil, in normal conditions the heat is dispersed into the environment. In addition, the short-term forced carbon dioxide delivery at the decontamination process final stage to a high concentration directly into the installation allows replacing the long process of microcapsule shells formation and hardening that occur in natural conditions in the open air.
Gomes, Helena I; Dias-Ferreira, Celia; Ottosen, Lisbeth M; Ribeiro, Alexandra B
2015-07-01
Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero valent iron particles in a two-compartment cell is tested and compared to a more conventional combination of electrokinetic remediation and nZVI in a three-compartment cell. In the new two-compartment cell, the soil is suspended and stirred simultaneously with the addition of zero valent iron nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two-compartment and the three-compartment cell, respectively. The highest removal with Soil 2 were 58% and 45%, in the two-compartment and the three-compartment cell, respectively, in the experiments without direct current. The pH of the soil suspension in the two-compartment treatment appears to be a determining factor for the PCB dechlorination, and this cell allowed a uniform distribution of the nanoparticles in the soil, while there was iron accumulation in the injection reservoir in the three-compartment cell. Copyright © 2015 Elsevier Ltd. All rights reserved.
Regnault, Antoine; Hamel, Jean-François; Patrick, Donald L
2015-02-01
Cultural differences and/or poor linguistic validation of patient-reported outcome (PRO) instruments may result in differences in the assessment of the targeted concept across languages. In the context of multinational clinical trials, these measurement differences may add noise and potentially measurement bias to treatment effect estimation. Our objective was to explore the potential effect on treatment effect estimation of the "contamination" of a cultural subgroup by a flawed PRO measurement. We ran a simulation exercise in which the distribution of the score in the overall sample was considered a mixture of two normal distributions: a standard normal distribution was assumed in a "main" subgroup and a normal distribution which differed either in mean (bias) or in variance (noise) in a "contaminated" subgroup (the subgroup with potential flaws in the PRO measurement). The observed power was compared to the expected power (i.e., the power that would have been observed if the subgroup had not been contaminated). Even if differences between the expected and observed power were small, some substantial differences were obtained (up to a 0.375 point drop in power). No situation was systematically protected against loss of power. The impact of poor PRO measurement in a cultural subgroup may induce a notable drop in the study power and consequently reduce the chance of showing an actual treatment effect. These results illustrate the importance of the efforts to optimize conceptual and linguistic equivalence of PRO measures when pooling data in international clinical trials.
Apparatus and process for water treatment
Phifer, Mark A.; Nichols, Ralph L.
2001-01-01
An apparatus is disclosed utilizing permeable treatment media for treatment of contaminated water, along with a method for enhanced passive flow of contaminated water through the treatment media. The apparatus includes a treatment cell including a permeable structure that encloses the treatment media, the treatment cell may be located inside a water collection well, exterior to a water collection well, or placed in situ within the pathway of contaminated groundwater. The passive flow of contaminated water through the treatment media is maintained by a hydraulic connection between a collecting point of greater water pressure head, and a discharge point of lower water pressure head. The apparatus and process for passive flow and groundwater treatment utilizes a permeable treatment media made up of granular metal, bimetallics, granular cast iron, activated carbon, cation exchange resins, and/or additional treatment materials. An enclosing container may have an outer permeable wall for passive flow of water into the container and through the enclosed treatment media to an effluent point. Flow of contaminated water is attained without active pumping of water through the treatment media. Remediation of chlorinated hydrocarbons and other water contaminants to acceptable regulatory concentration levels is accomplished without the costs of pumping, pump maintenance, and constant oversight by personnel.
Authentication of the R06E Fruit Bat Cell Line
Jordan, Ingo; Munster, Vincent J.; Sandig, Volker
2012-01-01
Fruit bats and insectivorous bats are believed to provide a natural reservoir for a wide variety of infectious diseases. Several lines of evidence, including the successful isolation of infectious viruses, indicate that Marburg virus and Ravn virus have found a major reservoir in colonies of the Egyptian rousette (Rousettus aegyptiacus). To facilitate molecular studies on virus-reservoir host interactions and isolation of viruses from environmental samples, we established cell lines from primary cells of this animal. The cell lines were given to several laboratories until we realized that a contamination with Vero cells in one of the cultures had occurred. Here we describe a general diagnostic procedure for identification of cross-species contamination with the focus on Vero and Rousettus cell lines, and summarize newly discovered properties of the cell lines that may pertain to pathogen discovery. PMID:22754654
Authentication of the R06E fruit bat cell line.
Jordan, Ingo; Munster, Vincent J; Sandig, Volker
2012-05-01
Fruit bats and insectivorous bats are believed to provide a natural reservoir for a wide variety of infectious diseases. Several lines of evidence, including the successful isolation of infectious viruses, indicate that Marburg virus and Ravn virus have found a major reservoir in colonies of the Egyptian rousette (Rousettus aegyptiacus). To facilitate molecular studies on virus-reservoir host interactions and isolation of viruses from environmental samples, we established cell lines from primary cells of this animal. The cell lines were given to several laboratories until we realized that a contamination with Vero cells in one of the cultures had occurred. Here we describe a general diagnostic procedure for identification of cross-species contamination with the focus on Vero and Rousettus cell lines, and summarize newly discovered properties of the cell lines that may pertain to pathogen discovery.
Statistical analysis of cyprinid ethoxyresorufin-O-deethylase data in a large French watershed.
Flammarion, P; Migeon, B; Garric, J
1998-01-01
A comparison of ethoxyresorufin-O-deethylase (EROD) data collected in 1995 in various sites in the Rhône watershed (France) was carried out to quantify the influence of factors such as contamination and biological parameters on EROD levels and within-group variabilities. Three species of cyprinids were collected and fish chemical contamination was measured. A log transformation of EROD data provided both normalization and homogeneity of variances. The influence of female sexual maturation on the variability and EROD dimorphism was quantified. A relationship with contaminant bioaccumulation was observed. A comparison with EROD data collected during previous studies by the same laboratory was made to validate the results.
Navaeipour, Farzaneh; Afsharan, Hadi; Tajalli, Habib; Mollabashi, Mahmood; Ranjbari, Farideh; Montaseri, Azadeh; Rashidi, Mohammad-Reza
2016-08-01
In this experimental study, cancer and normal cells behavior during an in vitro photodynamic therapy (PDT) under exposure of continuous wave (CW) and fractionated mode of laser with different irradiation power and time intervals was compared and investigated. At the first, human fibroblast cancer cell line (SW 872) and human dermal normal (HFFF2) cell line were incubated with different concentrations of zinc phthalocyanine (ZnPc), as a PDT drug. The cells, then, were irradiated with a 675nm diode laser and the cell viability was evaluated using MTT assay. Under optimized conditions, the viability of the cancer cells was eventually reduced to 3.23% and 13.17%, and that of normal cells was decreased to 20.83% and 36.23% using CW and fractionated diode lasers, respectively. In general, the ratio of ZnPc LD50 values for the normal cells to the cancer cells with CW laser was much higher than that of the fractionated laser. Subsequently, cancer cells in comparison with normal ones were found to be more sensitive toward the photodynamic damage induced by ZnPc. In addition, treatment with CW laser was found to be more effective against the cancer cells with a lower toxicity to the normal cells compared with the fractionated diode laser. Copyright © 2016 Elsevier B.V. All rights reserved.
Excited state proton transfer in the lysosome of live lung cells: normal and cancer cells.
Chowdhury, Rajdeep; Saha, Abhijit; Mandal, Amit Kumar; Jana, Batakrishna; Ghosh, Surajit; Bhattacharyya, Kankan
2015-02-12
Dynamics of excited state proton transfer (ESPT) in the lysosome region of live lung cells (normal and cancer) is studied by picosecond time-resolved confocal microscopy. For this, we used a fluorescent probe, pyranine (8-hydroxy-pyrene-1,3,6-trisulfonate, HPTS). From the colocalization of HPTS with a lysotracker dye (lysotracker yellow), we confirmed that HPTS resides in the lysosome for both of the cells. The diffusion coefficient (Dt) in the lysosome region was obtained from fluorescence correlation spectroscopy (FCS). From Dt, the viscosity of lysosome is estimated to be ∼40 and ∼30 cP in the cancer and normal cells, respectively. The rate constants of the elementary steps of ESPT in a normal lung cell (WI38) are compared with those in a lung cancer cell (A549). It is observed that the time constant of the initial proton transfer process in a normal cell (τ(PT) = 40 ps) is similar to that in a cancer cell. The recombination of the geminate ion pair is slightly faster (τ(rec) = 25 ps) in the normal cell than that (τ(rec) = 30 ps) in a cancer cell. The time constant of the dissociation (τ(diss)) of the geminate ion pair for the cancer cell (τ(diss) = 80 ps) is 1.5 times faster compared to that (τ(diss) = 120 ps) in a normal cell.
An, Hyun Joo; Gip, Phung; Kim, Jaehan; Wu, Shuai; Park, Kun Wook; McVaugh, Cheryl T.; Schaffer, David V.; Bertozzi, Carolyn R.; Lebrilla, Carlito B.
2012-01-01
Most cell membrane proteins are known or predicted to be glycosylated in eukaryotic organisms, where surface glycans are essential in many biological processes including cell development and differentiation. Nonetheless, the glycosylation on cell membranes remains not well characterized because of the lack of sensitive analytical methods. This study introduces a technique for the rapid profiling and quantitation of N- and O-glycans on cell membranes using membrane enrichment and nanoflow liquid chromatography/mass spectrometry of native structures. Using this new method, the glycome analysis of cell membranes isolated from human embryonic stem cells and somatic cell lines was performed. Human embryonic stem cells were found to have high levels of high mannose glycans, which contrasts with IMR-90 fibroblasts and a human normal breast cell line, where complex glycans are by far the most abundant and high mannose glycans are minor components. O-Glycosylation affects relatively minor components of cell surfaces. To verify the quantitation and localization of glycans on the human embryonic stem cell membranes, flow cytometry and immunocytochemistry were performed. Proteomics analyses were also performed and confirmed enrichment of plasma membrane proteins with some contamination from endoplasmic reticulum and other membranes. These findings suggest that high mannose glycans are the major component of cell surface glycosylation with even terminal glucoses. High mannose glycans are not commonly presented on the surfaces of mammalian cells or in serum yet may play important roles in stem cell biology. The results also mean that distinguishing stem cells from other mammalian cells may be facilitated by the major difference in the glycosylation of the cell membrane. The deep structural analysis enabled by this new method will enable future mechanistic studies on the biological significance of high mannose glycans on stem cell membranes and provide a general tool to examine cell surface glycosylation. PMID:22147732
NASA Astrophysics Data System (ADS)
Kawata, Tetsuya; George, Ms Kerry; Cucinotta, Francis A.; Shigematsu, Naoyuki; Ito, Hisao; Furusawa, Yoshiya; Uno, Takashi
We investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/micron), 500 MeV/u Iron (LET 185 keV/micron) and 200 MeV/u Iron (LET 440 keV/micron) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exchanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/micron and then decreased at 440 keV/micron. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/micron there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for normal fibroblast cells when it was compared at 185 keV/micron, but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types between normal and AT fibroblast appeared different probably due to difference in the ATM gene function.
Ridoux, Olivier; Foucault, Cédric; Drancourt, Michel
1998-01-01
Encephalitozoon species are strict intracellular microsporidia. Cocultures with eukaryotic cell lines can become accidently contaminated by mycoplasmas. We propose a decontamination protocol based on differential cell targeting after intraperitoneal inoculation in mice. Mycoplasma-free microsporidia were isolated from the brains and spleens of inoculated mice 24 h postinoculation by using the centrifugation shell vial system. Identification was confirmed by direct sequencing of PCR-amplified 16S rRNA. PMID:9666031
Zmurko, Joanna; Vasey, Douglas B; Donald, Claire L; Armstrong, Alison A; McKee, Marian L; Kohl, Alain; Clayton, Reginald F
2018-02-01
Ensuring the virological safety of biologicals is challenging due to the risk of viral contamination of raw materials and cell banks, and exposure during in-process handling to known and/or emerging viral pathogens. Viruses may contaminate raw materials and biologicals intended for human or veterinary use and remain undetected until appropriate testing measures are employed. The outbreak and expansive spread of the mosquito-borne flavivirus Zika virus (ZIKV) poses challenges to screening human- and animal -derived products used in the manufacture of biologicals. Here, we report the results of an in vitro study where detector cell lines were challenged with African and Asian lineages of ZIKV. We demonstrate that this pathogen is robustly detectable by in vitro assay, thereby providing assurance of detection of ZIKV, and in turn underpinning the robustness of in vitro virology assays in safety testing of biologicals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, John A.; Nalwa, Kanwar S.; Mahadevapuram, Rakesh
Herein, the implications of silicone contamination found in solution-processed conjugated polymer solar cells are explored. Similar to a previous work based on molecular cells, we find this contamination as a result of the use of plastic syringes during fabrication. However, in contrast to the molecular case, we find that glass-syringe fabricated devices give superior performance than plastic-syringe fabricated devices in poly(3-hexylthiophene)-based cells. We find that the unintentional silicone addition alters the solution’s wettability, which translates to a thinner, less absorbent film on spinning. With many groups studying the effects of small-volume additives, this work should be closely considered as manymore » of these additives may also directly alter the solutions’ wettability, or the amount of silicone dissolved off the plastic syringes, or both. Thereby, film thickness, which generally is not reported in detail, can vary significantly from device to device.« less
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Dan; Sun, Fu-He; Wei, Chang-Chun; Sun, Jian; Zhang, De-Kun; Geng, Xin-Hua; Xiong, Shao-Zhen; Zhao, Ying
2009-10-01
This paper studies boron contamination at the interface between the p and i layers of μc-Si:H solar cells deposited in a single-chamber PECVD system. The boron depth profile in the i layer was measured by Secondary Ion Mass Spectroscopy. It is found that the mixed-phase μc-Si:H materials with 40% crystalline volume fraction is easy to be affected by the residual boron in the reactor. The experimental results showed that a 500-nm thick μc-Si:H covering layer or a 30-seconds of hydrogen plasma treatment can effectively reduce the boron contamination at the p/i interface. However, from viewpoint of cost reduction, the hydrogen plasma treatment is desirable for solar cell manufacture because the substrate is not moved during the hydrogen plasma treatment.
Narendranath, N. V.; Thomas, K. C.; Ingledew, W. M.
2000-01-01
Urea hydrogen peroxide (UHP) at a concentration of 30 to 32 mmol/liter reduced the numbers of five Lactobacillus spp. (Lactobacillus plantarum, L. paracasei, Lactobacillus sp. strain 3, L. rhamnosus, and L. fermentum) from ∼107 to ∼102 CFU/ml in a 2-h preincubation at 30°C of normal-gravity wheat mash at ∼21 g of dissolved solids per ml containing normal levels of suspended grain particles. Fermentation was completed 36 h after inoculation of Saccharomyces cerevisiae in the presence of UHP, even when wheat mash was deliberately contaminated (infected) with L. paracasei at ∼107 CFU/ml. There were no significant differences in the maximum ethanol produced between treatments when urea hydrogen peroxide was used to kill the bacteria and controls (in which no bacteria were added). However, the presence of L. paracasei at ∼107 CFU/ml without added agent resulted in a 5.84% reduction in the maximum ethanol produced compared to the control. The bactericidal activity of UHP is greatly affected by the presence of particulate matter. In fact, only 2 mmol of urea hydrogen peroxide per liter was required for disinfection when mashes had little or no particulate matter present. No significant differences were observed in the decomposition of hydrogen peroxide in normal-gravity wheat mash at 30°C whether the bactericidal agent was added as H2O2 or as urea hydrogen peroxide. NADH peroxidase activity (involved in degrading H2O2) increased significantly (P = 0.05) in the presence of 0.75 mM hydrogen peroxide (sublethal level) in all five strains of lactobacilli tested but did not persist in cells regrown in the absence of H2O2. H2O2-resistant mutants were not expected or found when lethal levels of H2O2 or UHP were used. Contaminating lactobacilli can be effectively managed by UHP, a compound which when used at ca. 30 mmol/liter happens to provide near-optimum levels of assimilable nitrogen and oxygen that aid in vigorous fermentation performance by yeast. PMID:11010858
Philips, Patrick J.; Stinson, Beverley; Zaugg, Steven D.; Furlong, Edward T.; Kolpin, Dana W.; Esposito, Kathleen; Bodniewicz, B.; Pape, R.; Anderson, J.
2008-01-01
Across the United States, there is a rapidly growing awareness of the occurrence and the toxicological impacts of natural and synthetic trace compounds in the environment. These trace compounds, referred to as emerging contaminants (ECs), are reported to cause a range of negative impacts in the environment, such as adverse effects on biota in receiving streams and interference with the normal functions of the endocrine system, which controls growth and development in living organisms.
Ke, Jia; Zhao, Zhiju; Hong, Su-Hyung; Bai, Shoumin; He, Zhen; Malik, Fayaz; Xu, Jiahui; Zhou, Lei; Chen, Weilong; Martin-Trevino, Rachel; Wu, Xiaojian; Lan, Ping; Yi, Yongju; Ginestier, Christophe; Ibarra, Ingrid; Shang, Li; McDermott, Sean; Luther, Tahra; Clouthier, Shawn G; Wicha, Max S; Liu, Suling
2015-02-28
Increasing evidence suggests that lineage specific subpopulations and stem-like cells exist in normal and malignant breast tissues. Epigenetic mechanisms maintaining this hierarchical homeostasis remain to be investigated. In this study, we found the level of microRNA221 (miR-221) was higher in stem-like and myoepithelial cells than in luminal cells isolated from normal and malignant breast tissue. In normal breast cells, over-expression of miR-221 generated more myoepithelial cells whereas knock-down of miR-221 increased luminal cells. Over-expression of miR-221 stimulated stem-like cells in luminal type of cancer and the miR-221 level was correlated with clinical outcome in breast cancer patients. Epithelial-mesenchymal transition (EMT) was induced by overexpression of miR-221 in normal and breast cancer cells. The EMT related gene ATXN1 was found to be a miR-221 target gene regulating breast cell hierarchy. In conclusion, we propose that miR-221 contributes to lineage homeostasis of normal and malignant breast epithelium.
Dioxins and cytogenetic status of villagers after 40 years of agent Orange application in Vietnam.
Sycheva, Lyudmila P; Umnova, Nataliya V; Kovalenko, Maria A; Zhurkov, Vjacheslav S; Shelepchikov, Andrey A; Roumak, Vladimir S
2016-02-01
We have examined cytogenetic status of the rural population living on dioxin-contaminated territories (DCT, TCDD in soil 2.6 ng/kg) compared to the villagers of the control area (TCDD in soil 0.18 ng kg(-1)). The examination took place almost 40 years after the war. The consequences of some confounding factors (years of residence in the region, farming, and aging) has been examined. Karyological analysis of buccal and nasal epitheliocytes among healthy adult males living on DCT and control area (26 and 35 persons) was conducted. A wide range of cytogenetic (micronuclei, nuclear protrusions), proliferative (binucleated cells and cells with doubled nucleus) and endpoints of cell death (cells with perinuclear vacuoles, with damaged nucleus membrane, condensed chromatin, pyknosis, karyorrhexis, karyolysis) had been analyzed. The frequent amount of cells with nuclear protrusions in both epithelia was slightly decreased in the DСT group. Biomarkers of early and late stages of nuclear destruction in buccal epithelium (cells with damaged nuclear membrane, karyolysis) were elevated significantly in DCT. Higher level of the same parameters was also identified in nasal epithelium. The cytogenetic status of healthy adult males on DCT had got "normalization" by present moment in comparison with our early data. Nevertheless, in exposed group some alteration of the cytogenetic status was being registered (mostly biomarkers of apoptosis). Years of residence (and exposure to dioxins) affected the cytogenetic status of DCT inhabitants, whereas no influence of farming factors (pesticides, fertilizers, etc.) had been discovered. Some biomarkers of proliferation and cell death were affected by aging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Transformation of primary human hepatocytes in hepatocellular carcinoma.
Montalbano, Mauro; Rastellini, Cristiana; Wang, Xiaofu; Corsello, Tiziana; Eltorky, Mahmoud A; Vento, Renza; Cicalese, Luca
2016-03-01
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Currently, there is limited knowledge of neoplastic transformation of hepatocytes in HCC. In clinical practice, the high rate of HCC local recurrence suggests the presence of different hepatocyte populations within the liver and particularly in the tumor proximity. The present study investigated primary human hepatocyte cultures obtained from liver specimens of patients affected by cirrhosis and HCC, their proliferation and transformation. Liver samples were obtained from seven HCC cirrhotic patients and from three patients with normal liver (NL). Immediately after surgery, cell outgrowth and primary cultures were obtained from the HCC lesion, the cirrhotic tissue proximal (CP, 1-3 cm) and distal (CD, >5 cm) to the margin of the neoplastic lesion, or from NL. Cells were kept in culture for 16 weeks. Morphologic analyses were performed and proliferation rate of the different cell populations compared over time. Glypican-3, Heppar1, Arginase1 and CD-44 positivity were tested. The degree of invasiveness of cells acquiring neoplastic characteristics was studied with a transwell migration assay. We observed that HCC cells maintained their morphology and unmodified neoplastic characteristics when cultured. Cells isolated from CP, showed a progressive morphologic transformation in HCC-like cells accompanied by modification of markers expression with signs of invasiveness. Absence of HCC contamination in the CP isolates was confirmed. In CD samples some of these characteristics were present and at significantly lower levels. With the present study, we are the first to have identified and describe the existence of human hepatocytes near the cancerous lesion that can transform in HCC in vitro.
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts.
Lun, Aaron T L; Bach, Karsten; Marioni, John C
2016-04-27
Normalization of single-cell RNA sequencing data is necessary to eliminate cell-specific biases prior to downstream analyses. However, this is not straightforward for noisy single-cell data where many counts are zero. We present a novel approach where expression values are summed across pools of cells, and the summed values are used for normalization. Pool-based size factors are then deconvolved to yield cell-based factors. Our deconvolution approach outperforms existing methods for accurate normalization of cell-specific biases in simulated data. Similar behavior is observed in real data, where deconvolution improves the relevance of results of downstream analyses.
Non-Rayleigh Sea Clutter: Properties and Detection of Targets
1976-06-25
subject should consult Guinard and Daley [7], which provides an overview of the theory and references all the I______.... important work. 6 * .-- - - S...results for scattering from slightly rough surfaces and composite surfaces obtained by Rice [1], Wright [2,3], Valenzuela [4-6], Guinard and Daley [7], and...for vertical polarization. In 1970, Trunk and George [10] considered the log-normal and contaminated-normal descriptions of sea clutter and calculated
2009-01-01
greatest reduction was seen with castile soap, which lowered the photon count to 13% of the pretreatment level. This was followed by benzalkonium chloride ...castile soap was significantly greater than that with the normal saline solution (p = 0.0069), while the reductions with benzalkonium chloride (p...the goats were assigned to four treatment groups: normal saline solution, bacitracin solution, castile soap, and benzalkonium chloride . All wounds
Molecular Probes: A Tool for Studying Toxicity of VOCs to P.Putida F1
NASA Astrophysics Data System (ADS)
Singh, R.; Olson, M. S.
2007-12-01
Volatile Organic Compounds (VOCs) are of great concern in ground water remediation, and are generally present in the form of NAPLs in subsurface environments. Among the various treatment technologies, in situ bioremediation is one of the most effective and low-cost treatment options. Many soil bacteria are reported to degrade these organic contaminants via metabolism (using them as a source of carbon to derive energy) or co- metabolism up to certain concentrations. However, larger concentrations of these contaminants are toxic to bacteria. Thus, in order to achieve successful bioremediation, it is important to determine the optimal concentrations of various contaminants that is beneficial for the activity and survival of degrading bacteria. The purpose of this study is to develop a novel method for toxicity analyses of VOC contaminants to the soil bacteria that degrade them. The present study is based on a two-color fluorescence assay of bacterial viability which facilitates actual counting of live and dead bacteria. Pseudomonas putida F1 cells were labeled with a LIVE/DEAD® BacLightTM bacterial viability kit (Invitrogen), which consists of a mixture of two dyes, SYTO 9 and propidium iodide, each with a different ability to penetrate healthy bacterial cells. Live cells stain green whereas propidium iodide (red dye) only penetrates cells with compromised membranes that are considered dead or dying. Stained cells were exposed to different concentrations of trichloroethylene (TCE) and toluene in sealed vials. Change in the concentrations of green and red cells were monitored over the time using fluorescence microscopy. UTHSCSA ImageTool software was used to count the live and dead cells in the images. It was observed that live (green) cell concentrations decreased and dead/damaged (red) cell concentrations increased over time when cells were exposed to TCE. No significant changes were observed in control experiments. Death rate constants calculated based on live cell disappearance and dead/damaged cell appearance were found to be approximately equal for TCE. Results will be presented in terms of dose response and death rate curves. Death rate constants and minimum inhibitory concentrations for survival of P. Putida F1 exposed to TCE and toluene will be compared.
Pritzkow, Sandra; Wagenführ, Katja; Daus, Martin L.; Boerner, Susann; Lemmer, Karin; Thomzig, Achim; Mielke, Martin; Beekes, Michael
2011-01-01
Prions are pathogens with an unusually high tolerance to inactivation and constitute a complex challenge to the re-processing of surgical instruments. On the other hand, however, they provide an informative paradigm which has been exploited successfully for the development of novel broad-range disinfectants simultaneously active also against bacteria, viruses and fungi. Here we report on the development of a methodological platform that further facilitates the use of scrapie prions as model pathogens for disinfection. We used specifically adapted serial protein misfolding cyclic amplification (PMCA) for the quantitative detection, on steel wires providing model carriers for decontamination, of 263K scrapie seeding activity converting normal protease-sensitive into abnormal protease-resistant prion protein. Reference steel wires carrying defined amounts of scrapie infectivity were used for assay calibration, while scrapie-contaminated test steel wires were subjected to fifteen different procedures for disinfection that yielded scrapie titre reductions of ≤101- to ≥105.5-fold. As confirmed by titration in hamsters the residual scrapie infectivity on test wires could be reliably deduced for all examined disinfection procedures, from our quantitative seeding activity assay. Furthermore, we found that scrapie seeding activity present in 263K hamster brain homogenate or multiplied by PMCA of scrapie-contaminated steel wires both triggered accumulation of protease-resistant prion protein and was further propagated in a novel cell assay for 263K scrapie prions, i.e., cerebral glial cell cultures from hamsters. The findings from our PMCA- and glial cell culture assays revealed scrapie seeding activity as a biochemically and biologically replicative principle in vitro, with the former being quantitatively linked to prion infectivity detected on steel wires in vivo. When combined, our in vitro assays provide an alternative to titrations of biological scrapie infectivity in animals that substantially facilitates the use of prions as potentially highly indicative test agents in the search for novel broad-range disinfectants. PMID:21647368
Tanaka, Kimio; Iida, Shozo; Takeichi, Nobuo; Chaizhunusova, Nailya J; Gusev, Boris I; Apsalikov, Kazbek N; Inaba, Toshiya; Hoshi, Masaharu
2006-02-01
The Semipalatinsk nuclear test site area is considered to have been highly contaminated with radioactive fallout during 40 years of continuous nuclear testing. Individuals living near the nuclear test site are considered to have been exposed to both internal and external radiation. In order to assess the effects of prolonged radiation, a chromosome analysis was performed in lymphocytes from 123 people living in three villages, Dolon, Sarjar and Kaynar, and 46 control people in Kokpekty. A micronucleus assay was also conducted in 233 people in six different contaminated villages and one control village. Frequencies of dicentric and ring chromosomes were higher in residents of the contaminated area (1.55-2.56 per 1,000 cells) than those of the non-contaminated area (0.78 per 1,000 cells). Frequencies of dicentric chromosomes with fragments were also higher in the exposed group (0.44-0.96 per 1,000 cells). Among residents of the four villages, the incidence of multiple complex chromosome aberrations (MCA) was 0.03-0.34%. Incidences of micronucleus were also higher in the exposed group (9.36-12.3 per 1,000 lymphocytes) than the non-exposed group (7.25 per 1,000 lymphocytes). The higher incidence of unstable-type aberrations such as dicentric, ring chromosomes and micronuclei found in residents of contaminated areas seems to be mainly caused by internal exposure and other factors.
Reshetnikov, V N; Lapteva, O K; Sosnovskaia, T F; Roshchenko, M V
1996-01-01
The changes in chromatin and DNA of seedling and callus tissues of cereals grown in the Chernobyl NPP zones with contamination levels of 15, 40 and 60 Ci/km2 were studied. Test samples produced by germinating and culturing seed cells of grown in contaminated areas were notable for the content of soluble polydesoxiribonucleotides, amount of DNA damages, DNA distribution over separate compartments of cell nucleus as compared to the control. Analogy between radiation-induced changes in chromatine and processes occurring in cell nucleus senescence was observed.
UMTRA project water sampling and analysis plan, Durango, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
Surface remedial action has been completed at the Uranium Mill Tailings Remedial Action Project in Durango, Colorado. Contaminated soil and debris have been removed from the former processing site and placed in the Bodo Canyon disposal cell. Ground water at the former uranium mill/tailings site and raffinate pond area has been contaminated by the former milling operations. The ground water at the disposal site was not impacted by the former milling operations at the time of the cell`s construction. Activities for fiscal 1994 involve ground water sampling and site characterization of the disposal site.
Empson, R M; Heinemann, U
1995-05-01
1. The perforant path projection from layer III of the entorhinal cortex to CA1 of the hippocampus was studied within a hippocampal-entorhinal combined slice preparation. We prevented contamination from the other main hippocampal pathways by removal of CA3 and the dentate gyrus. 2. Initially the projection was mapped using field potential recordings that suggested an excitatory sink in stratum lacunosum moleculare with an associated source in stratum pyramidale. 3. However, recording intracellularly from CA1 cells, stimulation of the perforant path produced prominent fast GABAA and slow GABAB IPSPs often preceded by small EPSPs. In a small number of cells we observed EPSPs only. 4. CNQX blocked excitatory and inhibitory responses. This indicated the presence of an intervening excitatory synapse between the inhibitory interneurone and the pyramidal cell. 5. Focal bicuculline applications revealed that the major site of GABAA inhibitory input was to stratum radiatum of CA1. 6. The inhibition activated by the perforant path was very effective at reducing simultaneously activated Schaffer collateral mediated EPSPs and suprathreshold-stimulated action potentials. 7. Blockade of fast inhibition increased excitability and enhanced slow inhibition. Both increases relied upon the activation of NMDA receptors. 8. Perforant path inputs activated prominent and effective disynaptic inhibition of CA1 cells. This has significance for the output of hippocampal processing during normal behaviour and also under pathological conditions.
Distribution of Human papillomavirus load in clinical specimens.
Lowe, Brian; O'Neil, Dominic; Loeffert, Dirk; Nazarenko, Irina
2011-04-01
The information about the range and distribution of Human papillomavirus load in clinical specimens is important for the design of accurate clinical tests. The amount of Human papillomavirus in cervical specimens was estimated using the digene HC2 HPV DNA Test(®) (QIAGEN). This semi-quantitative assay is based on linear signal amplification with an analytical limit-of-detection of approximately 2500 virus copies per assay and 3-4 log dynamic range. The dynamic range of the assay was extended by a serial dilution strategy. Two large sets of positive specimens (n=501 and 569) were analyzed and 9-11% of specimens was estimated to contain more than 7 × 10(7) copies of virus. The viral load was also assessed for an assortment of specimens with known cytology diagnoses (n=9435) and histological diagnoses (n=2056). The percentage of specimens with more than 7 × 10(7) copies of virus was estimated to be 0.89 for normal cells, 4.2 for atypical cells (unknown significance), 14.31 for cells of low-grade lesions and 22.24 for cells of high-grade lesions. The viral load increased with disease severity, but its broad distribution may not support its use as a disease biomarker. This information is important for assay design and automation, where cross-reactivity and sample-to-sample contamination must be addressed rigorously. Copyright © 2011 Elsevier B.V. All rights reserved.
Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells.
Xin, Yurong; Kim, Jinrang; Ni, Min; Wei, Yi; Okamoto, Haruka; Lee, Joseph; Adler, Christina; Cavino, Katie; Murphy, Andrew J; Yancopoulos, George D; Lin, Hsin Chieh; Gromada, Jesper
2016-03-22
This study provides an assessment of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. The system combines microfluidic technology and nanoliter-scale reactions. We sequenced 622 cells, allowing identification of 341 islet cells with high-quality gene expression profiles. The cells clustered into populations of α-cells (5%), β-cells (92%), δ-cells (1%), and pancreatic polypeptide cells (2%). We identified cell-type-specific transcription factors and pathways primarily involved in nutrient sensing and oxidation and cell signaling. Unexpectedly, 281 cells had to be removed from the analysis due to low viability, low sequencing quality, or contamination resulting in the detection of more than one islet hormone. Collectively, we provide a resource for identification of high-quality gene expression datasets to help expand insights into genes and pathways characterizing islet cell types. We reveal limitations in the C1 Fluidigm cell capture process resulting in contaminated cells with altered gene expression patterns. This calls for caution when interpreting single-cell transcriptomics data using the C1 Fluidigm system.
Cell-based Metabolomics for Assessing Chemical Exposure and Toxicity of Environmental Surface Waters
Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals/fish to monitor/assess contaminant exposu...
Are cancer cells really softer than normal cells?
Alibert, Charlotte; Goud, Bruno; Manneville, Jean-Baptiste
2017-05-01
Solid tumours are often first diagnosed by palpation, suggesting that the tumour is more rigid than its surrounding environment. Paradoxically, individual cancer cells appear to be softer than their healthy counterparts. In this review, we first list the physiological reasons indicating that cancer cells may be more deformable than normal cells. Next, we describe the biophysical tools that have been developed in recent years to characterise and model cancer cell mechanics. By reviewing the experimental studies that compared the mechanics of individual normal and cancer cells, we argue that cancer cells can indeed be considered as softer than normal cells. We then focus on the intracellular elements that could be responsible for the softening of cancer cells. Finally, we ask whether the mechanical differences between normal and cancer cells can be used as diagnostic or prognostic markers of cancer progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.
McKenna, J; Sherlock, D; Evans, B
2001-12-01
This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable relationships that exist between P-wave velocity and fluid saturation can allow a quantitative assessment of contaminant migration.
Use of donor bladder tissues for in vitro research.
Garthwaite, Mary; Hinley, Jennifer; Cross, William; Warwick, Ruth M; Ambrose, Anita; Hardaker, Henry; Eardley, Ian; Southgate, Jennifer
2014-01-01
To evaluate deceased non-heart beating (DNHB) donors and deceased heart beating (DHB) brain-stem dead donors, as sources of viable urological tissue for use in biomedical research. To identify sources of viable human bladder tissue as an essential resource for cell biological research aimed at understanding human diseases of the bladder and for developing new tissue engineering and regenerative medicine strategies for bladder reconstruction. Typically, normal human urinary tract tissue is obtained from adult or paediatric surgical patients with benign urological conditions, but few surgical procedures yield useful quantities of healthy bladder tissue for research. Research ethics committee approval was obtained for collection of donor bladder tissue. Consent for DHB donors was undertaken by the Donor Transplant Coordinators. Tissue Donor Coordinators were responsible for consent for DNHB donors and the retrieval of bladders was coordinated through the National Blood Service Tissue Banking Service. All retrievals were performed by practicing urologists and care was taken to maintain sterility and to minimise bacterial contamination. Two bladders were retrieved from DNHB donors and four were retrieved from DHB donors. By histology, DNHB donor bladder tissue exhibited marked urothelial tissue damage and necrosis, with major loss or absence of urothelium. No cell cultures could be established from these specimens, as the urothelial cells were not viable in primary culture. Bladder urothelium from DHB donors was intact, but showed some damage, including loss of superficial cells and variable separation from the basement membrane. All four DHB bladder specimens yielded viable urothelial cells that attached in primary culture, but cell growth was slow to establish and cultures showed a limited capacity to form a functional barrier epithelium and a propensity to senesce early. We have shown that normal human bladder urothelial cell cultures can be established and serially propagated from DHB donor bladders. However, our study suggests that rapid post-mortem changes to the bladder affect the quality and viability of the urothelium, rendering tissue from DNHB donors an inadequate source for urothelial cell culture. Our experience is that whereas patients are willing to donate surgical tissue for research, there is a barrier to obtaining consent from next of kin for retrieved tissues to be used for research purposes. © 2013 The Authors. BJU International © 2013 BJU International.
Taranu, Ionelia; Marin, Daniela E; Manda, Gina; Motiu, Monica; Neagoe, Ionela; Tabuc, Cristina; Stancu, Mariana; Olteanu, Margareta
2011-08-01
Trichotecenes are mycotoxins produced by Fusarium sp., which may contaminate animal feeds and human food. A feeding trial was conducted to evaluate the effect of a fusarotoxin-contaminated diet, and to explore the counteracting potential of a calcium fructoborate (CFrB) additive on performance, typical health biochemistry parameters and immune response in weaned pigs. A naturally contaminated maize, containing low doses of deoxynivalenol, zearalenone, fumonisins and T-2/HT-2 toxins (1790, 20, 0·6 and 90 parts per billion), was included in a maize-soyabean meal diet, and given ad libitum to eight weaned piglets (two groups: four pigs/group) for a period of 24 d. CFrB was administered to one of the contaminated groups and to another four piglets as a daily supplement, following the manufacturer's recommendation. A decrease in performance was observed in contaminated animals at this concentration of feed toxins, which was ameliorated by the dietary CFrB supplementation. Fusarium toxins also altered the pig immune response by increasing (P < 0·05) the ex vivo peripheral blood mononuclear cell proliferation (111·7 % in comparison with control), the respiratory burst of porcine granulocytes (15·4 % for responsive cells v. 5·1 % for unstimulated cells and 70·95 v. 22·65 % for stimulated cells, respectively), the percentage of peripheral T, CD3(+), CD3(+)CD4(+) and CD3(+)CD8(+) subsets and the synthesis of IL-1β, TNF-α and IL-8 (123·8, 217·1 and 255·1 %, respectively). The diet containing the CFrB additive reduced these exacerbated cellular immune responses induced by Fusarium toxins. However, consumption of CFrB did not counteract the effect of mycotoxins on biochemistry parameters, and increased plasma IgM and IgG of contaminated pigs.
Tran, Tri D.; Farmer, Joseph C.; Murguia, Laura
2001-01-01
An electrically regeneratable electrochemical cell (30) for capacitive deionization and electrochemical purification and regeneration of electrodes includes two end plates (31, 32), one at each end of the cell (30). A new regeneration method is applied to the cell (30) which includes slowing or stopping the purification cycle, electrically desorbing contaminants and removing the desorbed contaminants. The cell (30) further includes a plurality of generally identical double-sided intermediate electrodes (37-43) that are equidistally separated from each other, between the two end electrodes (35, 36). As the electrolyte enters the cell, it flows through a continuous open serpentine channel (65-71) defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cell (30), ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. The cell (30) is regenerated electrically to desorb such previously removed ions.
Development of molten carbonate fuel cells for power generation
NASA Astrophysics Data System (ADS)
1980-04-01
The broad and comprehensive program included elements of system definition, cell and system modeling, cell component development, cell testing in pure and contaminated environments, and the first stages of technology scale up. Single cells, with active areas of 45 sq cm and 582 sq cm, were operated at 650 C and improved to state of the art levels through the development of cell design concepts and improved electrolyte and electrode components. Performance was shown to degrade by the presence of fuel contaminants, such as sulfur and chlorine, and due to changes in electrode structure. Using conventional hot press fabrication techniques, electrolyte structures up to 20" x 20" were fabricated. Promising approaches were developed for nonhot pressed electrolyte structure fabrication and a promising electrolyte matrix material was identified. This program formed the basis for a long range effort to realize the benefits of molten carbonate fuel cell power plants.
Rapid detection of bacterial contamination in cell or tissue cultures based on Raman spectroscopy
NASA Astrophysics Data System (ADS)
Bolwien, Carsten; Sulz, Gerd; Becker, Sebastian; Thielecke, Hagen; Mertsching, Heike; Koch, Steffen
2008-02-01
Monitoring the sterility of cell or tissue cultures is an essential task, particularly in the fields of regenerative medicine and tissue engineering when implanting cells into the human body. We present a system based on a commercially available microscope equipped with a microfluidic cell that prepares the particles found in the solution for analysis, a Raman-spectrometer attachment optimized for non-destructive, rapid recording of Raman spectra, and a data acquisition and analysis tool for identification of the particles. In contrast to conventional sterility testing in which samples are incubated over weeks, our system is able to analyze milliliters of supernatant or cell suspension within hours by filtering relevant particles and placing them on a Raman-friendly substrate in the microfluidic cell. Identification of critical particles via microscopic imaging and subsequent image analysis is carried out before micro-Raman analysis of those particles is then carried out with an excitation wavelength of 785 nm. The potential of this setup is demonstrated by results of artificial contamination of samples with a pool of bacteria, fungi, and spores: single-channel spectra of the critical particles are automatically baseline-corrected without using background data and classified via hierarchical cluster analysis, showing great promise for accurate and rapid detection and identification of contaminants.
Muller, Jocelyn Fraga; Stevens, Ann M; Craig, Johanna; Love, Nancy G
2007-07-01
Through chemical contamination of natural environments, microbial communities are exposed to many different types of chemical stressors; however, research on whole-genome responses to this contaminant stress is limited. This study examined the transcriptome response of a common soil bacterium, Pseudomonas aeruginosa, to the common environmental contaminant pentachlorophenol (PCP). Cells were grown in chemostats at a low growth rate to obtain substrate-limited, steady-state, balanced-growth conditions. The PCP stress was administered as a continuous increase in concentration, and samples taken over time were examined for physiological function changes with whole-cell acetate uptake rates (WAURs) and cell viability and for gene expression changes by Affymetrix GeneChip technology and real-time reverse transcriptase PCR. Cell viability, measured by heterotrophic plate counts, showed a moderately steady decrease after exposure to the stressor, but WAURs did not change in response to PCP. In contrast to the physiological data, the microarray data showed significant changes in the expression of several genes. In particular, genes coding for multidrug efflux pumps, including MexAB-OprM, were strongly upregulated. The upregulation of these efflux pumps protected the cells from the potentially toxic effects of PCP, allowing the physiological whole-cell function to remain constant.
Störmer, Melanie; Vollmer, Tanja; Henrich, Birgit; Kleesiek, Knut; Dreier, Jens
2009-04-01
Polymerase chain reaction assays have become widely used methods of confirming the presence of Mollicutes species in clinical samples and cell cultures. We have developed a broad-range real-time PCR assay using the locked nucleic acid technology to detect mollicute species causing human infection and cell line contamination. Primers and probes specifically for the conserved regions of the mycoplasmal tuf gene (encoding elongation factor Tu) were designed. Cell culture supernatants, clinical specimens (vaginal swabs, sputum, cryopreserved heart valve tissues), and reference strains were tested for mollicute contamination as well as to exclude cross-reaction to human nucleic acids and other bacterial species. Nucleic acids were extracted using magnetic separation technology. The coamplification of the human beta2-microglobulin DNA served as an internal control. The PCR assay was highly specific and obtained an analytical sensitivity of one copy per microl sample. The 95% detection limit was calculated to 10 copies per microl sample for Mycoplasma pneumoniae and M. orale. No false-positive results were observed due to cross-reaction of walled bacterial, fungal, and human nucleic acids. To evaluate the PCR, we compared the results to two commercialized test systems. Moreover, in combination with a previously developed broad-range RT-PCR assay for the detection of bacteria in blood products, both mollicute and walled bacterial contamination can be detected simultaneously using multiplex real-time RT-PCR.
Exogenous bacterial contamination of donor blood.
Rock, G; Westwood, J C
1977-05-07
The Canadian Red Cross blood transfusion service has followed a set protocol for phlebotomy and collection of a unit of blood. Recent requirements for automated testing have necessitated that a second tube of blood be obtained from the blood line following collection of the unit. Evaluation of the techniques used, however, has indicated the possibility of bacterial contamination from the skin of donors, from insertion of the needle through an unsterile rubber stopper, and through backflow from a nonsterile vacuum tube. To test these possibilities swabs were taken from skin and stoppers of vacuum tubes. Further, vacuum tubes were deliberately contaminated with Escherichia coli. The normal sampling procedure, which involves stripping the donor line to refill and mix the blood, was then followed. This resulted in contamination of the segments and even the blood bag. These findings led to modification of the standard bleeding technique, whereby stripping was eliminated and sterile vacuum tubes were to be used at all times.
Niu, Mingfen; Wei, Shuhe; Bai, Jiayi; Wang, Siqi; Ji, Dandan
2015-01-01
Multiple crop experiment of hyperaccumulator Solanum nigrum L. with low accumulation Chinese cabbage Fenyuanxin 3 were conducted in a cadmium (Cd) contaminated vegetable field. In the first round, the average removal rate of S. nigrum to Cd was about 10% without assisted phytoextraction reagent addition for the top soil (0-20 cm) with Cd concentration at 0.53-0.97 mg kg(-1) after its grew 90 days. As for assisted phytoextraction reagent added plots, efficiency of Cd remediation might reach at 20%. However, in the second round, Cd concentration in Chinese cabbage was edible, even in the plots with assisted phytoextraction reagent added. Thus, multiple cropping hyperaccumulator with low accumulation crop could normally remediate contaminated soil and produce crop (obtain economic benefit) in one year, which may be one practical pathway of phytoremediating heavy metal contaminated soil in the future.
Retention of contaminants in constructed and semi-natural wetland soils in urban river systems
NASA Astrophysics Data System (ADS)
Kalinski, Kira; Gröngröft, Alexander; Eschenbach, Annette
2017-04-01
The retention of floods is one of the most relevant ecosystem function of urban floodplains, which is often improved by the construction of retention ponds and other water management measures. Retention ponds are connected to the river in a direct or a parallel arrangement and can be constructed as dry or wet retention pond under normal run-off conditions. Further important ecosystem functions provided by the floodplains soils are carbon sequestration, nutrient and contaminant regulation and recreation. However, with ongoing urbanization these ecosystem functions are significantly endangered. In our study we analyze the soil-based ecosystem functions of two river catchments in the City of Hamburg. The presentation will focus on the retention of contaminants in soils and sediments of eleven retention ponds within one catchment. The amount and concentrations of contaminants will be analyzed for controlling factors like grain size distribution, land-use within the headwaters and others.
Rich, Joseph O; Bischoff, Kenneth M; Leathers, Timothy D; Anderson, Amber M; Liu, Siqing; Skory, Christopher D
2018-01-01
Fuel ethanol fermentations are not performed under aseptic conditions and microbial contamination reduces yields and can lead to costly "stuck fermentations". Antibiotics are commonly used to combat contaminants, but these may persist in the distillers grains co-product. Among contaminants, it is known that certain strains of lactic acid bacteria are capable of causing stuck fermentations, while other strains appear to be harmless. However, it was not previously known whether or how these strains interact one with another. In this study, more than 500 harmless strains of lactic acid bacteria were tested in a model system in combination with strains that cause stuck fermentations. Among these harmless strains, a group of beneficial strains was identified that restored ethanol production to near normal levels. Such beneficial strains may serve as an alternative approach to the use of antibiotics in fuel ethanol production. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Viehmann, W.; Eubanks, A. G.
1972-01-01
A technique is described for the simultaneous in situ measurement of film thickness, refractive index, total normal emissivity, visible-light scattering, and reflectance of contaminant films on a highly reflective liquid-nitrogen cooled, stainless steel substrate. Emissivities and scattering data are obtained for films of water, carbon dioxide, silicone oil, and a number of aromatic and aliphatic hydrocarbons as a function of film thickness between zero and 20 microns. Of the contaminants investigated, water has by far the greatest effect on emissivity, followed by silicone oil, aliphatic hydrocarbons, aromatic hydrocarbons, and carbon dioxide. The emissivity increases more rapidly with film thickness between zero and 2.5 microns than at thicknesses greater than 2.5 microns. Scattering of visible light changes very little below 2 microns thickness but increases rapidly with thickness beyond 2 to 3 microns. The effect of contaminant films on passive radiation coolers is discussed.
Celià-Terrassa, Toni; Liu, Daniel; Choudhury, Abrar; Hang, Xiang; Wei, Yong; Zamalloa, Jose; Alfaro-Aco, Raymundo; Chakrabarti, Rumela; Jiang, Yi-Zhou; Koh, Bong Ihn; Smith, Heath; DeCoste, Christina; Li, Jun-Jing; Shao, Zhi-Ming; Kang, Yibin
2017-01-01
Tumor-initiating cells (TICs), or cancer stem cells (CSC), possess stem cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells (MaSCs) and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ER− breast tumors, functionally promotes tumor initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signaling. PMID:28530657
NASA Astrophysics Data System (ADS)
Joseph, C. N.; Waugh, W.; Glenn, E.
2015-12-01
The U.S. Department of Energy (DOE) is responsible for long-term stewardship of disposal cells for uranium mill tailings throughout the United States. Rock-armored disposal cell covers create favorable habitat for deep-rooted plants by reducing soil evaporation, increasing soil water storage, and trapping windblown dust, thereby providing water and nutrients for plant germination and establishment. DOE is studying the tradeoffs of potential detrimental and beneficial effects of plants growing on disposal cell covers to develop a rational and consistent vegetation management policy. Plant roots often extend vertically through disposal cell covers into underlying tailings, therefore, uptake of tailings contaminants and dissemination through animals foraging on stems and leaves is a possible exposure pathway. The literature shows that plant uptake of contaminants in uranium mill tailings occurs, but levels can vary widely depending on plant species, tailings and soil chemistry, and cover soil hydrology. Our empirical field study measured concentrations of uranium, radium, thorium, molybdenum, selenium, manganese, lead, and arsenic in above ground tissues harvested from plants growing on disposal cells near Native American communities in western states that represent a range of climates, cover designs, cover soil types, and vegetation types. For risk screening, contaminant levels in above ground tissues harvested from plants on disposal cells were compared to Maximum Tolerance Levels (MTLs) set for livestock by the National Research Council, and to tissue levels in the same plant species growing in reference areas near disposal cells. Although tailings were covered with uncontaminated soils, for 14 of 46 comparisons, levels of uranium and other contaminants were higher in plants growing on disposal cells compared to reference area plants, indicating possible mobilization of these elements from the tailing into plant tissues. However, with one exception, all plant levels were well below MTLs. Selenium, the only element that exceeded its MTL, likely originated in local seleniferous soil found both at reference areas and in disposal cell covers, and not in the underlying tailings. Our screening risk assessment suggests that allowing plants to grow on disposal cells appears to be safe.
Das, Debanjan; Shiladitya, Kumar; Biswas, Karabi; Dutta, Pranab Kumar; Parekh, Aditya; Mandal, Mahitosh; Das, Soumen
2015-12-01
The paper presents a study to differentiate normal and cancerous cells using label-free bioimpedance signal measured by electric cell-substrate impedance sensing. The real-time-measured bioimpedance data of human breast cancer cells and human epithelial normal cells employs fluctuations of impedance value due to cellular micromotions resulting from dynamic structural rearrangement of membrane protrusions under nonagitated condition. Here, a wavelet-based multiscale quantitative analysis technique has been applied to analyze the fluctuations in bioimpedance. The study demonstrates a method to classify cancerous and normal cells from the signature of their impedance fluctuations. The fluctuations associated with cellular micromotion are quantified in terms of cellular energy, cellular power dissipation, and cellular moments. The cellular energy and power dissipation are found higher for cancerous cells associated with higher micromotions in cancer cells. The initial study suggests that proposed wavelet-based quantitative technique promises to be an effective method to analyze real-time bioimpedance signal for distinguishing cancer and normal cells.
The blood DNA virome in 8,000 humans.
Moustafa, Ahmed; Xie, Chao; Kirkness, Ewen; Biggs, William; Wong, Emily; Turpaz, Yaron; Bloom, Kenneth; Delwart, Eric; Nelson, Karen E; Venter, J Craig; Telenti, Amalio
2017-03-01
The characterization of the blood virome is important for the safety of blood-derived transfusion products, and for the identification of emerging pathogens. We explored non-human sequence data from whole-genome sequencing of blood from 8,240 individuals, none of whom were ascertained for any infectious disease. Viral sequences were extracted from the pool of sequence reads that did not map to the human reference genome. Analyses sifted through close to 1 Petabyte of sequence data and performed 0.5 trillion similarity searches. With a lower bound for identification of 2 viral genomes/100,000 cells, we mapped sequences to 94 different viruses, including sequences from 19 human DNA viruses, proviruses and RNA viruses (herpesviruses, anelloviruses, papillomaviruses, three polyomaviruses, adenovirus, HIV, HTLV, hepatitis B, hepatitis C, parvovirus B19, and influenza virus) in 42% of the study participants. Of possible relevance to transfusion medicine, we identified Merkel cell polyomavirus in 49 individuals, papillomavirus in blood of 13 individuals, parvovirus B19 in 6 individuals, and the presence of herpesvirus 8 in 3 individuals. The presence of DNA sequences from two RNA viruses was unexpected: Hepatitis C virus is revealing of an integration event, while the influenza virus sequence resulted from immunization with a DNA vaccine. Age, sex and ancestry contributed significantly to the prevalence of infection. The remaining 75 viruses mostly reflect extensive contamination of commercial reagents and from the environment. These technical problems represent a major challenge for the identification of novel human pathogens. Increasing availability of human whole-genome sequences will contribute substantial amounts of data on the composition of the normal and pathogenic human blood virome. Distinguishing contaminants from real human viruses is challenging.
Magnesium-Based Corrosion Nano-Cells For Reductive Transformation Of Contaminants
Magnesium, with its potential to reduce a variety of aqueous contaminants, unique self-limiting corrosion behavior affording long active life times, natural abundance, low cost, and environmentally friendly nature, promises to be an effective technology. However, nanoparticles o...
Hall Effect Thruster Plume Contamination and Erosion Study
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
2000-01-01
The objective of the Hall effect thruster plume contamination and erosion study was to evaluate the impact of a xenon ion plume on various samples placed in the vicinity of a Hall effect thruster for a continuous 100 hour exposure. NASA Glenn Research Center was responsible for the pre- and post-test evaluation of three sample types placed around the thruster: solar cell cover glass, RTV silicone, and Kapton(R). Mass and profilometer), were used to identify the degree of deposition and/or erosion on the solar cell cover glass, RTV silicone, and Kapton@ samples. Transmittance, reflectance, solar absorptance, and room temperature emittance were used to identify the degree of performance degradation of the solar cell cover glass samples alone. Auger spectroscopy was used to identify the chemical constituents found on the surface of the exposed solar cell cover glass samples. Chemical analysis indicated some boron nitride contamination on the samples, from boron nitride insulators used in the body of the thruster. However, erosion outweighted contamination. All samples exhibited some degree of erosion. with the most erosion occurring near the centerline of the plume and the least occurring at the +/- 90 deg positions. For the solar cell cover glass samples, erosion progressed through the antireflective coating and into the microsheet glass itself. Erosion occurred in the solar cell cover glass, RTV silicone and Kapton(R) at different rates. All optical properties changed with the degree of erosion, with solar absorptance and room temperature emittance increasing with erosion. The transmittance of some samples decreased while the reflectance of some samples increased and others decreased. All results are consistent with an energetic plume of xenon ions serving as a source for erosion.
Omaha Soil Mixing Study: Redistribution of Lead in ...
Urban soils within the Omaha Lead Superfund Site have been contaminated with lead (Pb) from atmospheric deposition of particulate materials from lead smelting and recycling activities. In May of 2009 the Final Record of Decision stated that any residential soil exceeding the preliminary remediation goal (PRG; 400 mgPb kg-1soil) would be excavated, backfilled and re-vegetated. The remedial action entailed excavating contaminated soil in the top 12 inches and excavation could stop when the concentration of soil Pb was less than 400 mg kg-1 in the top 12 inches, or less than 1200 mg kg-1 at depths greater than 1 ft. After removal of the contaminated soil, clean backfill was applied and a grass lawn was replanted. A depth of 12 inches was based on the assumption that Pb-contaminated soil at depth greater than 1 ft would not represent a future risk (ASTDR Health Consult, 2004). This assumption was based on the principal that mixing and other factors encountered during normal excavation practices would not result in Pb surface concentrations greater than the PRG. The goal of the current study was to investigate the redistribution of Pb in remediated residential surface soils after typical homeowner earth-disturbing activities in the OLS Site. Of specific interest to the region for protection of human health is determining whether soil mixing associated with normal homeowner excavation practices results in surface Pb concentrations greater than the preliminary r
Quadriplegia due to lead-contaminated opium--case report.
Beigmohammadi, Mohammad Taghi; Aghdashi, Moosa; Najafi, Atabak; Mojtahedzadeh, Mojtaba; Karvandian, Kassra
2008-10-01
Utilization of lead-contaminated opium may lead to severe motor neuron impairment and quadriplegia. Forty years oriented old male, opium addict, was admitted to the ICU, with headache, nausea and abdominal pain, and weakness in his lower and upper extremities without definitive diagnosis. The past medical and occupational history was negative. Laboratory investigation showed; anemia (Hb 7.7 g/dl), slightly elevated liver function tests, elevated total bilirubin, and ESR. Abdominal sonography and brain CT scan were normal. EMG and NCV results and neurologic examination were suggestive for Guillain-Barre. He underwent five sessions of plasmapheresis. Blood lead level was > 200 microg/dl. He received dimercaprol (BAL) and calcium disodium edetate (CaEDTA) for two five days session. Upon discharge from ICU all laboratory tests were normal and blood lead level was reduced, but he was quadriplegic. The delayed treatment of lead poisoning may lead to irreversible motor neuron defect.
Korean Waste Management Law, Presidential Decree Number 13480, and Prime Minister Order Number 397
1994-06-01
radioactive waste or substances that are contaminated by radioactivity and medical waste (which is regulated by Medical Law), wastewater (which is regulated...be exceeded when the domestic waste is disposed a. In case where water polutant , pursuant to Table 1 of toe Enforcement Regulaton in the Water...combustion burner and extra burner * Normal operation of safety facilities • Normal operation of preventive facilities * Density of polutant out of
McCarthy, Damien; Edwards, Grant C; Gustin, Mae S; Care, Andrew; Miller, Matthieu B; Sunna, Anwar
2017-10-01
Soils contaminated with mercury (Hg) have proved expensive and logistically difficult to remediate. Research continues into finding suitable environmentally-friendly and efficient ways of achieving this end. Bioremediation is an option, which employs the strategies microorganisms have evolved to deal with Hg. One microbial strategy involves uptake and intracellular volatilisation of mercuric ions, which passively diffuse from the cell and back into the atmosphere. In this work, Pseudomonas veronii cells grown to stationary phase were immobilised in a xanthan gum-based biopolymer via encapsulation. The P. veronii-biopolymer mix was then coated onto natural zeolite granules. Zeolite immobilised cells remained viable for at least 16 weeks stored under ambient room temperature. Furthermore, the immobilised cells were shown to retain both viability and Hg volatilisation functionality after transportation from Australia to the USA, where they were applied to Hg contaminated soil. Maximum flux rates exceeded 10 μg Hg m 2 h -1 from mine tailings (≈7 mg kg -1 Hg with 50% v/v water). This was 4 orders of magnitude above background flux levels. It is envisioned that emitted gaseous elemental mercury (GEM) can be readily captured, and transformed back into metallic Hg, which can then be stored appropriately or recycled. This breaks the Hg cycle, as GEM is no longer translocated back to the atmospheric compartment. The immobilising excipients used in this research overcome many logistical issues with delivery of suitable microbial loads to locations of mercury contamination and presents a facile and inexpensive method of augmenting contaminated sites with selected microbial consortia for bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Khosroshahi, Mohamad E; Rahmani, Mahya
2012-01-01
The aim of this research is to study the normalized fluorescence spectra (intensity variations and area under the fluorescence signal), relative quantum yield, extinction coefficient and intracellular properties of normal and malignant human bone cells. Using Laser-Induced Fluorescence Spectroscopy (LIFS) upon excitation of 405 nm, the comparison of emission spectra of bone cells revealed that fluorescence intensity and the area under the spectra of malignant bone cells was less than that of normal. In addition, the area ratio and shape factor were changed. We obtained two emission bands in spectra of normal cells centered at about 486 and 575 nm and for malignant cells about 482 and 586 nm respectively, which are most likely attributed to NADH and riboflavins. Using fluorescein sodium emission spectrum, the relative quantum yield of bone cells is numerically determined.
Sánchez-Céspedes, R; Maniscalco, L; Iussich, S; Martignani, E; Guil-Luna, S; De Maria, R; Martín de Las Mulas, J; Millán, Y
2013-08-01
Mammary gland tumours, the most common malignant neoplasm in bitches, often display myoepithelial (ME) cell proliferation. The aim of this study was to isolate, purify, culture and characterise ME cells from normal and neoplastic canine mammary glands. Monodispersed cells from three normal canine mammary glands and five canine mammary tumours were incubated with an anti-Thy1 antibody and isolated by magnetic-activated cell sorting (MACS). Cells isolated from two normal glands (cell lines CmME-N1 and CmME-N2) and four tumours (cell lines CmME-K1 from a complex carcinoma, CmME-K2 from a simple tubulopapillary carcinoma, and CmME-K3 and CmME-K4 from two carcinomas within benign tumours) were cultured in supplemented DMEM/F12 media for 40days. Cell purity was >90%. Tumour-derived ME cell lines exhibited heterogeneous morphology, growth patterns and immunocytochemical expression of cytokeratins, whereas cell lines from normal glands retained their morphology and levels of cytokeratin expression during culture. Cell lines from normal glands and carcinomas within benign tumours grew more slowly than those from simple and complex carcinomas. This methodology has the potential to be used for in vitro analysis of the role of ME cells in the growth and progression of canine mammary tumours. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method and apparatus for in-cell vacuuming of radiologically contaminated materials
Spadaro, Peter R.; Smith, Jay E.; Speer, Elmer L.; Cecconi, Arnold L.
1987-01-01
A vacuum air flow operated cyclone separator arrangement for collecting, handling and packaging loose contaminated material in accordance with acceptable radiological and criticality control requirements. The vacuum air flow system includes a specially designed fail-safe prefilter installed upstream of the vacuum air flow power supply. The fail-safe prefilter provides in-cell vacuum system flow visualization and automatically reduces or shuts off the vacuum air flow in the event of an upstream prefilter failure. The system is effective for collecting and handling highly contaminated radiological waste in the form of dust, dirt, fuel element fines, metal chips and similar loose material in accordance with radiological and criticality control requirements for disposal by means of shipment and burial.
De-icing salt contamination reduces urban tree performance in structural soil cells.
Ordóñez-Barona, Camilo; Sabetski, Vadim; Millward, Andrew A; Steenberg, James
2018-03-01
Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hu, Jing; Nakamura, Jun; Richardson, Stephen D.; Aitken, Michael D.
2012-01-01
Bioremediation is one of the commonly applied remediation strategies at sites contaminated with polycyclic aromatic hydrocarbons (PAHs). However, remediation goals are typically based on removal of the target contaminants rather than on broader measures related to health risks. We investigated changes in the toxicity and genotoxicity of PAH-contaminated soil from a former manufactured-gas plant site before and after two simulated bioremediation processes: a sequencing batch bioreactor system and a continuous-flow column system. Toxicity and genotoxicity of the residues from solvent extracts of the soil were determined by the chicken DT40 B-lymphocyte isogenic cell line and its DNA-repair-deficient mutants. Although both bioremediation processes significantly removed PAHs from the contaminated soil (bioreactor 69% removal; column 84% removal), bioreactor treatment resulted in an increase in toxicity and genotoxicity over the course of a treatment cycle, whereas long-term column treatment resulted in a decrease in toxicity and genotoxicity. However, when screening with a battery of DT40 mutants for genotoxicity profiling, we found that column treatment induced DNA damage types that were not observed in untreated soil. Toxicity and genotoxicity bioassays can supplement chemical analysis-based risk assessment for contaminated soil when evaluating the efficacy of bioremediation. PMID:22443351
Geras'kin, Stanislav; Oudalova, Alla; Dikareva, Nina; Spiridonov, Sergey; Hinton, Thomas; Chernonog, Elena; Garnier-Laplace, Jacqueline
2011-08-01
A 6 year study of Scots pine populations inhabiting sites in the Bryansk region of Russia radioactively contaminated as a result of the Chernobyl accident is presented. In six study sites, (137)Cs activity concentrations and heavy metal content in soils, as well as (137)Cs, (90)Sr and heavy metal concentrations in cones were measured. Doses absorbed in reproduction organs of pine trees were calculated using a dosimetric model. The maximum annual dose absorbed at the most contaminated site was about 130 mGy. Occurrence of aberrant cells scored in the root meristem of germinated seeds collected from pine trees growing on radioactively contaminated territories for over 20 years significantly exceeded the reference levels during all 6 years of the study. The data suggest that cytogenetic effects occur in Scots pine populations due to the radioactive contamination. However, no consistent differences in reproductive ability were detected between the impacted and reference populations as measured by the frequency of abortive seeds. Even though the Scots pine populations have occupied radioactively contaminated territories for two decades, there were no clear indications of adaptation to the radiation, when measured by the number of aberrant cells in root meristems of seeds exposed to an additional acute dose of radiation.
The inhalation of radioactive materials as related to hand contamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, J.C.; Rohr, R.C.
1953-09-15
Tests performed to determine the hazard associated with the inhalation of radioactive materials as the result of smoking with contaminated hands indicate that for dry uranium compounds adhering to the palmar surfaces of the hands, approximately 1.0% of the material may be transferred to a cigarette, and that of this approximately 0.2% may appear in the smoke which is inhaled. Most of the contamination originally placed in a cigarette was found in the ash, and only 11% of the material was not recovered following burning; approximately half of this loss may be attributed to normal losses inherent in the analyticalmore » process, the recovery efficiency for which was found by supplementary experiments to be 95%.« less
TRIBUTYLTIN ALTERS SECRETION OF INTERLEUKIN 1 BETA FROM HUMAN IMMUNE CELLS
Brown, Shyretha; Whalen, Margaret
2014-01-01
Tributyltin (TBT) has been used as a biocide in industrial applications such as wood preservation, antifouling paint, and antifungal agents. Due to its many uses, it contaminates the environment and has been found in human blood samples. Interleukin 1 beta (IL-1β) is a pro-inflammatory cytokine that promotes cell growth, tissue repair, and immune response regulation. Produced predominately by both monocytes and macrophages, IL-1β appears to increase the invasiveness of certain tumors. This study shows that TBT modifies the secretion of IL-1β from increasingly reconstituted preparations of human immune cells. IL-1β secretion was examined after 24h, 48h, or 6 day exposures to TBT in highly enriched human NK cells, monocyte-depleted (MD) peripheral blood mononuclear cells (MD-PBMCs), PBMCs, granulocytes, and a preparation combining both PBMCs and granulocytes (PBMCs+granulocytes). TBT altered IL-1β secretion from all of the cells preparations. The 200 nM concentration of TBT normally blocked the secretion of IL-1β, while lower concentrations (usually 5-50 nM) elevated secretion of IL-1β. Examination of the signaling pathway(s) responsible for the elevated secretion of IL-1β were carried out in MD-PBMCs. Pathways examined were IL-1β processing (Caspase-1), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa B (NFκB). Results indicated that MAPK pathways (p44/42 and p38) appear to be the targets of TBT that lead to increased IL-1β secretion from immune cells. These results from human immune cells show IL-1β dysregulation by TBT is occurring ex vivo. Thus, potential for in vivo effects on pro-inflammatory cytokine levels may possibly be a consequence of TBT exposures. PMID:25382723
Tributyltin alters secretion of interleukin 1 beta from human immune cells.
Brown, Shyretha; Whalen, Margaret
2015-08-01
Tributyltin (TBT) has been used as a biocide in industrial applications such as wood preservation, antifouling paint and antifungal agents. Owing to its many uses, it contaminates the environment and has been found in human blood samples. Interleukin-1 beta (IL-1β) is a pro-inflammatory cytokine that promotes cell growth, tissue repair and immune response regulation. Produced predominately by both monocytes and macrophages, IL-1β appears to increase the invasiveness of certain tumors. This study shows that TBT modifies the secretion of IL-1β from increasingly reconstituted preparations of human immune cells. IL-1β secretion was examined after 24-, 48-h or 6-day exposures to TBT in highly enriched human natural killer (NK) cells, monocyte-depleted peripheral blood mononuclear cells (MD-PBMCs), PBMCs, granulocytes and a preparation combining both PBMCs and granulocytes (PBMCs+granulocytes). TBT altered IL-1β secretion from all of the cell preparations. The 200 nM concentration of TBT normally blocked the secretion of IL-1β, whereas lower concentrations (usually 5-50 nM) elevated secretion of IL-1β. Examination of the signaling pathway(s) responsible for the elevated secretion of IL-1β was carried out in MD-PBMCs. Pathways examined were IL-1β processing (Caspase-1), mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NFκB). Results indicated that MAPK pathways (p44/42 and p38) appear to be the targets of TBT that lead to increased IL-1β secretion from immune cells. These results from human immune cells show IL-1β dysregulation by TBT is occurring ex vivo. Thus, the potential for in vivo effects on pro-inflammatory cytokine levels may possibly be a consequence of TBT exposures. Copyright © 2014 John Wiley & Sons, Ltd.
CD4+ T Cell Activation and Vascular Normalization: Two Sides of the Same Coin?
De Palma, Michele; Jain, Rakesh K
2017-05-16
Normalization of tumor blood vessels enhances the infiltration and functions of T cells. Tian et al. (2017) report that effector CD4 + T cells, in turn, support vascular normalization, highlighting intertwined roles for blood vessels and T cells in cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Guillette, L J; Gross, T S; Gross, D A; Rooney, A A; Percival, H F
1995-01-01
The ubiquitous distribution of many contaminants and the nonlethal, multigenerational effects of such contaminants on reproductive, endocrine, and immune systems have led to concerns that wildlife worldwide are affected. Although the causal agents and effects are known for some species, the underlying physiological mechanisms associated with contaminant-induced reproductive modifications are still poorly understood and require extensive research. We describe a study examining the steroidogenic activity of gonads removed from juvenile alligators (Alligator mississippiensis) obtained from contaminated or control lakes in central Florida. Synthesis of estradiol-17 beta (E2) was significantly different when ovaries from the contaminated and control lakes were compared in vitro. Additionally, testes from males obtained from the contaminated lake. Lake Apopka, synthesized significantly higher concentrations of E2 when compared to testes obtained from control males. In contrast, testosterone (T) synthesis from all testes examined in this study displayed a normal pattern and produced concentrations greater than that observed from ovaries obtained from either lake. Interestingly, the pattern of gonadal steroidogenesis differs from previously reported plasma concentrations of these hormones obtained from the same individuals. We suggest that the differences between the in vivo and in vitro patterns are due to modifications in the hepatic degradation of plasma sex steroid hormones. PMID:7556021
Detection of long duration cloud contamination in hyper-temporal NDVI imagery
NASA Astrophysics Data System (ADS)
Ali, A.; de Bie, C. A. J. M.; Skidmore, A. K.; Scarrott, R. G.
2012-04-01
NDVI time series imagery are commonly used as a reliable source for land use and land cover mapping and monitoring. However long duration cloud can significantly influence its precision in areas where persistent clouds prevails. Therefore quantifying errors related to cloud contamination are essential for accurate land cover mapping and monitoring. This study aims to detect long duration cloud contamination in hyper-temporal NDVI imagery based land cover mapping and monitoring. MODIS-Terra NDVI imagery (250 m; 16-day; Feb'03-Dec'09) were used after necessary pre-processing using quality flags and upper envelope filter (ASAVOGOL). Subsequently stacked MODIS-Terra NDVI image (161 layers) was classified for 10 to 100 clusters using ISODATA. After classifications, 97 clusters image was selected as best classified with the help of divergence statistics. To detect long duration cloud contamination, mean NDVI class profiles of 97 clusters image was analyzed for temporal artifacts. Results showed that long duration clouds affect the normal temporal progression of NDVI and caused anomalies. Out of total 97 clusters, 32 clusters were found with cloud contamination. Cloud contamination was found more prominent in areas where high rainfall occurs. This study can help to stop error propagation in regional land cover mapping and monitoring, caused by long duration cloud contamination.
Cellular Metabolomics for Exposure and Toxicity Assessment
We have developed NMR automation and cell quench methods for cell culture-based metabolomics to study chemical exposure and toxicity. Our flow automation method is robust and free of cross contamination. The direct cell quench method is rapid and effective. Cell culture-based met...
Piroth, Tobias; Pauly, Marie-Christin; Schneider, Christian; Wittmer, Annette; Möllers, Sven; Döbrössy, Máté; Winkler, Christian; Nikkhah, Guido
2014-01-01
Restorative cell therapy concepts in neurodegenerative diseases are aimed at replacing lost neurons. Despite advances in research on pluripotent stem cells, fetal tissue from routine elective abortions is still regarded as the only safe cell source. Progenitor cells isolated from distinct first-trimester fetal CNS regions have already been used in clinical trials and will be used again in a new multicenter trial funded by the European Union (TRANSEURO). Bacterial contamination of human fetal tissue poses a potential risk of causing infections in the brain of the recipient. Thus, effective methods of microbial decontamination and validation of these methods are required prior to approval of a neurorestorative cell therapy trial. We have developed a protocol consisting of subsequent washing steps at different stages of tissue processing. Efficacy of microbial decontamination was assessed on rat embryonic tissue incubated with high concentrations of defined microbe solutions including representative bacterial and fungal species. Experimental microbial contamination was reduced by several log ranks. Subsequently, we have analyzed the spectrum of microbial contamination and the effect of subsequent washing steps on aborted human fetal tissue; 47.7% of the samples taken during human fetal tissue processing were positive for a microbial contamination, but after washing, no sample exhibited bacterial growth. Our data suggest that human fetal tissue for neural repair can carry microbes of various species, highlighting the need for decontamination procedures. The decontamination protocol described in this report has been shown to be effective as no microbes could be detected at the end of the procedure.
Johnsen, Hans Erik; Bergkvist, Kim Steve; Schmitz, Alexander; Kjeldsen, Malene Krag; Hansen, Steen Møller; Gaihede, Michael; Nørgaard, Martin Agge; Bæch, John; Grønholdt, Marie-Louise; Jensen, Frank Svendsen; Johansen, Preben; Bødker, Julie Støve; Bøgsted, Martin; Dybkær, Karen
2014-06-01
Recent findings have suggested biological classification of B-cell malignancies as exemplified by the "activated B-cell-like" (ABC), the "germinal-center B-cell-like" (GCB) and primary mediastinal B-cell lymphoma (PMBL) subtypes of diffuse large B-cell lymphoma and "recurrent translocation and cyclin D" (TC) classification of multiple myeloma. Biological classification of B-cell derived cancers may be refined by a direct and systematic strategy where identification and characterization of normal B-cell differentiation subsets are used to define the cancer cell of origin phenotype. Here we propose a strategy combining multiparametric flow cytometry, global gene expression profiling and biostatistical modeling to generate B-cell subset specific gene signatures from sorted normal human immature, naive, germinal centrocytes and centroblasts, post-germinal memory B-cells, plasmablasts and plasma cells from available lymphoid tissues including lymph nodes, tonsils, thymus, peripheral blood and bone marrow. This strategy will provide an accurate image of the stage of differentiation, which prospectively can be used to classify any B-cell malignancy and eventually purify tumor cells. This report briefly describes the current models of the normal B-cell subset differentiation in multiple tissues and the pathogenesis of malignancies originating from the normal germinal B-cell hierarchy.
Miwa, S; Fujii, H; Matsumoto, N; Nakatsuji, T; Oda, S; Asano, H; Asano, S
1978-01-01
A case of red cell adenosine deaminase (ADA) overproduction associated with hereditary hemolytic anemia is reported here. This appears to be the second report. Proband is a 38-year-old Japanese male who had hemoglobin, 15.8 g/100 ml; reticulocyte count, 4.5%; serum indirect bilirubin, 4.9 mg/100 ml; 51Cr-labeled red cell half-life, 12 days; red cells showed moderate stomatocytosis. His red cell ADA activity showed 40-fold increase while that of the mother showed 4-fold increase. The mother was hematologically normal. The father had a normal enzyme activity. The proband and the mother showed slightly high serum uric acid levels. The proband's red cell showed: ATP, 628 nmoles/ml (normal, 1,010--1,550); adenine nucleotide pool, 46% of the normal mean; 2,3-diphosphoglycerate content, 3,782 nmoles/ml (normal 4,170--5,300); increased oxygen affinity of hemoglobin, P50 of intact erythrocytes being 21.8 mmHg (normal, 24.1--26.1). Red cell glycolytic intermediates in the proband were low in general, and the rate of lactate production was low. Kinetic studies using crude hemolysate revealed a normal Km for adenosine, normal electrophoretic mobility but slightly abnormal pH curve and slightly low utilization of 2-deoxyadenosine. The ADA activity of lymphocytes was nearly normal.
Kim, Yungkul; Powell, Eric N; Wade, Terry L; Presley, Bobby J
2008-03-01
The 1995-1998 database from NOAA's National Status and Trends 'Mussel Watch' Program was used to compare the distributional patterns of parasites and pathologies with contaminant body burdens. Principal components analysis (PCA) resolved five groups of contaminants in both mussels and oysters: one dominated by polycyclic aromatic hydrocarbons (PAHs), one dominated by pesticides, and three dominated by metals. Metals produced a much more complex picture of spatial trends in body burden than did either the pesticides or PAHs. Contrasted to the relative simplicity of the contaminant groupings, PCA exposed a suite of parasite/pathology groups with few similarities between the sentinel bivalve taxa. Thus, the relationship between parasites/pathologies and contaminants differs significantly between taxa despite the similarity in contaminant pattern. Moreover, the combined effects of many contaminants and parasites may be important, leading to complex biological-contaminant interactions with synergies both of biological and chemical origin. Overall, correlations between parasites/pathologies and contaminants were more frequent with metals, frequent with pesticides, and less frequent with PAHs in mussels. In oysters, correlations with pesticides and metals were about equally frequent, but correlations with PAHs were still rare. In mytilids, correlations with metals predominated. Negative and positive correlations with metals occurred with about the same frequency in both taxa. The majority of correlations with pesticides were negative in oysters; not so for mytilids. Of the many significant correlations involving parasites, few involved single-celled eukaryotes or prokaryotes. The vast majority involved multi-cellular eukaryotes and nearly all of them either cestodes, trematode sporocysts, or trematode metacercariae. The few correlations for single-celled parasites all involved proliferating protozoa or protozoa reaching high body burdens through transmission. The tendency for the larger or more numerous parasites to be involved suggests that unequal sequestration of contaminates between host and parasite tissue is a potential mediator. An alternative is that contaminants differentially affect parasites and their hosts by varying host susceptibility or parasite survival.
Girish, C K; Smith, T K; Boermans, H J; Karrow, N A
2008-03-01
An experiment was conducted to investigate the effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on performance, hematology, metabolism, and immunological parameters of turkeys. The efficacy of polymeric glucomannan mycotoxin adsorbent (GMA) in preventing these adverse effects was also evaluated. Three hundred 1-d-old male turkey poults were fed wheat-, corn-, and soybean meal-based starter (0 to 3 wk), grower (4 to 6 wk), developer (7 to 9 wk), and finisher (10 to 12 wk) diets formulated with uncontaminated grains, contaminated grains, and contaminated grains + 0.2% GMA. Feeding contaminated grains significantly decreased BW gains during the grower and developer phases, and GMA supplementation prevented these effects. There was no effect of diet, however, on feed intake or feed efficiency. The feeding of contaminated grains reduced total lymphocyte counts at wk 3 (P < 0.05). Dietary supplementation with GMA increased plasma total protein concentrations compared with controls and birds fed the contaminated diet. Plasma uric acid concentrations in birds fed contaminated grains were increased at the end of the experiment compared with controls, and the feeding of GMA prevented this effect. Feeding contaminated grains significantly increased the percentage of CD4(+) lymphocyte populations during wk 6; however, there was no change in the percentage of CD8(+) and B-lymphocyte populations. Contact hypersensitivity to dinitrochlorobenzene, which is a CD8(+) T cell-mediated delayed-type hypersensitivity response, was significantly decreased after 24 and 72 h by feedborne mycotoxins compared with controls. Supplementation of the contaminated diet with GMA prevented the decrease in response after 24 h. Secondary antibody (IgG titer) response against SRBC antigens (CD4(+) T cell-dependent) was significantly decreased after feeding contaminated grains compared with controls. It was concluded that turkey performance and some blood and immunological parameters were adversely affected by feedborne Fusarium mycotoxins, and GMA prevented many of these effects.
Auestad, N; Innis, S M
2000-01-01
Growth cones are membrane-rich structures found at the distal end of growing axons and are the predecessors of the synaptic membranes of nerve endings. This study examined whether n-3 fatty acid restriction during gestation in rats alters the composition of growth cone and neuronal cell body membrane fatty acids in newborns. Female rats were fed a standard control diet containing soy oil (8% of fatty acids as 18:3n-3 by wt) or a semisynthetic n-3 fatty acid-deficient diet with safflower oil (0.3% of fatty acids as 18:3n-3 by wt) throughout normal pregnancy. Experiments were conducted on postnatal day 2 to minimize the potential for contamination from synaptic membranes and glial cells. Dietary n-3 fatty acid restriction resulted in lower docosahexaenoic acid (DHA) concentrations and a corresponding higher docosapentaenoic acid concentration in neuronal growth cones, but had no effects on neuronal cell body fatty acid concentrations. These studies suggest that accretion of DHA in growth cones, but not neuronal cell bodies, is affected by n-3 fatty acid restriction during gestation. Differences in other fatty acids or components between the semisynthetic and the standard diet, however, could have been involved in the effects on growth-cone DHA content. The results also provide evidence to suggest that the addition of new membrane fatty acids to neurons during development occurs along the shaft of the axon or at the growth cone, rather than originating at the cell body.
Restoration of the intrinsic properties of human dermal papilla in vitro.
Ohyama, Manabu; Kobayashi, Tetsuro; Sasaki, Takashi; Shimizu, Atsushi; Amagai, Masayuki
2012-09-01
The dermal papilla (DP) plays pivotal roles in hair follicle morphogenesis and cycling. However, characterization and/or propagation of human DPs have been unsatisfactory because of the lack of efficient isolation methods and the loss of innate characteristics in vitro. We hypothesized that culture conditions sustaining the intrinsic molecular signature of the human DP could facilitate expansion of functional DP cells. To test this, we first characterized the global gene expression profile of microdissected, non-cultured human DPs. We performed a 'two-step' microarray analysis to exclude the influence of unwanted contaminants in isolated DPs and successfully identified 118 human DP signature genes, including 38 genes listed in the mouse DP signature. The bioinformatics analysis of the DP gene list revealed that WNT, BMP and FGF signaling pathways were upregulated in intact DPs and addition of 6-bromoindirubin-3'-oxime, recombinant BMP2 and basic FGF to stimulate these respective signaling pathways resulted in maintained expression of in situ DP signature genes in primarily cultured human DP cells. More importantly, the exposure to these stimulants restored normally reduced DP biomarker expression in conventionally cultured DP cells. Cell growth was moderate in the newly developed culture medium. However, rapid DP cell expansion by conventional culture followed by the restoration by defined activators provided a sufficient number of DP cells that demonstrated characteristic DP activities in functional assays. The study reported here revealed previously unreported molecular mechanisms contributing to human DP properties and describes a useful technique for the investigation of human DP biology and hair follicle bioengineering.
Understanding of ammonia transport in PEM fuel cells
NASA Astrophysics Data System (ADS)
Jung, Myunghee
This dissertation investigates ammonia (NH3) as a fuel contaminant to the anode in Proton Exchange Membrane Fuel Cells (PEMFCs). Since NH 3 is fed to the anode in a gas phase and transferred to the cathode, the effect of a contaminant is distributed through MEA and quite complicated. This study is focused on the investigation of mechanism of NH3 transport and the isolation of multiple effects to degrade the performance of fuel cell. An External Reference Electrode (ERE) was employed to decouple the effect of individual electrode and explain the mechanism of NH3 contamination. A mechanism of NH3 transport is proposed and supported by data for various inlet conditions in a N2/N2 laboratory-scale fuel cell at Open Circuit Conditions (OCC). With a commercialized GORE(TM) PRIMEA RTM 5631 MEAs at 70°C, data were obtained utilizing a material balance technique, which uses an ion selective electrode (ISE) to determine the concentration of ammonium ion in the process streams. The results indicate that ammonia is not transported across the membrane when the feeds to both electrodes are dry. However, with humidified feeds ammonia was transported from the anode to the cathode. The data also indicate the water content of in the MEA is the critical factor that causes NH3 crossover in the MEA. Diffusion coefficients of NH3 in MEA are also calculated at different relative humilities. An ERE was developed for PEM fuel cell by using a NafionRTM strip which was used to understand contamination mechanism. The voltage of anode electrode relative to ERE was measured during a polarization curve. The data showed the measurement of individual electrode potential was extremely affected by the misalignment between two electrodes. We compare the overpotential measured from the reference electrode and the calculated overpotential from subtracting the cell voltages between neat hydrogen and a 25 ppm CO in H 2 stream at same current. The studies indicated that the overpotentials obtained from two different methods were same and the location of a Nafion RTM strip on MEA did not affect the measured overpotentials. When NH3 was introduced as a contaminant to the cell at OCC, the thermodynamic potential of the anode electrode was measured for GORETM PRIMEARTM 57 series MEA at 80°C. High Frequency Resistance (HFR) and material balance were also analyzed during the change of thermodynamic potential. The results show that the injected NH3 was absorbed in the MEA until the ion exchange capacity was fully saturated and then NH 3 reaction occurred on the electrode. Finally, we studied how NH 3 contamination process occurs from transient voltage changes of the cell and an individual electrode.
Environmental surface waters often contain a variety of chemical contaminants from different sources including wastewater treatment plants, concentrated animal feeding operations, agricultural runoff and other human-related activities. Exposure to these contaminants may pose a th...
DNA DAMAGE AND EXTERNAL LESIONS IN BROWN BULLHEAD FROM CONTAMINATED HABITATS
The single cell gel electrophoresis ("Comet") assay was used to compare levels of DNA damage in brown bullheads (Ameiurus nebulosus) collected from three known contaminated locations, the Cuyahoga River, Ashtabula River, and Ashumet Pond (Cape Cod), with brown bullheads collected...
TOXICITY OF AROMATIC AEROBIC BIOTRANSFORMATION PRODUCTS OF TOLUENE TO HELA CELLS
Petroleum contamination of groundwater is widely recognized as a serious environmental problem. Toluene (methylbenzene) occurs naturally in crude oil and is commonly found as a contaminant in the subsurface as a result of waste disposal and storage activities. Biological transf...
Characteristics of the uridine uptake system in normal and polyoma transformed hamster embryo cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemkin, J.A.
1973-01-01
The lability of the uridine uptake system in the normal and polyoma transformed hamster embryo fibroblast was studied. The major areas investigated were: the kinetic parameters of uridine transport, a comparison of changes in cellular ATP content by factors which modulate uridine uptake, and a comparison of the qualitative and quantitative effects of the same modulating agent on uridine transport, cell growth, and cellular ATP content. Uridine uptake into cells in vitro was examined using tritiated uridine as a tracer to measure the amount of uridine incorporated into the acid soluble and acid-insoluble fractions of the cells studied. The ATPmore » content of the cells was determined by the firefly bioluminescence method. It was found that the K/sub t/ for uridine uptake into the normal hamster embryo cell and two polyoma transformed hamster embryo cell lines was identical. However, the V/sub max/ for uridine transport was higher in both polyoma transformed cell lines. Furthermore, the K/sub t/ in both the normal and transformed cell cultured in serum-less or serum-containing media was identical, although the V/sub max/ was higher in the serum-stimulated cell in both the normal and transformed cell. Stimulation of the normal cell with adenosine produced a different K/sub t/ for uridine transport. Preliminary investigations have demonstrated that treatment of the polyoma transformed with adenosine also induces a different K/sub t/ (not shown). The K/sub i/ for phloretin inhibition in serum-less and serum-stimulated normal and polyoma transformed cells was found to be identical in each case.« less
Microbial contamination of the Tzu-Chi Cord Blood Bank from 2005 to 2006.
Chen, Shu-Huey; Zheng, Ya-Jun; Yang, Shang-Hsien; Yang, Kuo-Liang; Shyr, Ming-Hwang; Ho, Yu-Huai
2008-01-01
In total, 4502 units of cord blood (CB) were collected during a 2-year period from 2005 to 2006 by the Buddhist Tzu-Chi Stem Cells Center. The aim of this study was to analyze the incidence of microbial contamination and type of organism present in the cord blood. The clinical impact of microbial contamination on hematopoietic progenitor cell (HPC) grafts used for HPC transplantation is also discussed. First and second specimens were obtained for microbial assessment. These were collected in laboratory after cord blood collection and after cord blood unit manipulation, respectively. The samples were cultured and the results reviewed. The overall incidence of microbiological contamination was 1.8% (82/4502). Three CB units were contaminated with two different organisms. Infectious organisms comprised 9.4% (8/85) of total isolated microbes. These infectious microorganisms were beta-Streptococci group B, Candida tropicalis and Staphylococcus aureus which were isolated in 6, 1 and 1 of CB units respectively. Escherichia coli, Bacteroides fragilis, Lactobacillus spp., Enterococcus, beta-Streptococcus Group B, Bacteroides valgatus, Corynebacterium spp., Klebsiella pneumonia and Peptococcus spp. were the most frequently encountered microorganisms. A higher contamination rate of the CB units was noted after vaginal delivery (2.16%) compared to caesarian section (0.85%) (p < 0.01). Extensive training in CB collection, good procedures and good protocols can decrease the rate of microbial contamination. The use of a closed collecting system and an ex utero method have the advantage of a lower contamination rate. In our cord blood bank, we use a closed system but an in utero method. Similar to other studies, most of microorganisms reported here as contaminants are non-pathogenic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagemaker, G.; Visser, T.P.; van Bekkum, D.W.
alpha-Thalassemic heterozygous (Hbath/+) mice were used to investigate the possible selective advantage of transplanted normal (+/+) hemopoietic cells. Without conditioning by total-body irradiation (TBI), infusion of large numbers of normal bone marrow cells failed to correct the thalassemic peripheral blood phenotype. Since the recipients' stem cells are normal with respect to number and differentiation capacity, it was thought that the transplanted stem cells were not able to lodge, or that they were not stimulated to proliferate. Therefore, a nonlethal dose of TBI was given to temporarily reduce endogenous stem cell numbers and hemopoiesis. TBI doses of 2 or 3 Gymore » followed by infusion of normal bone marrow cells proved to be effective in replacing the thalassemic red cells by normal red cells, whereas a dose of 1 Gy was ineffective. It is concluded that cure of thalassemia by bone marrow transplantation does not necessarily require eradication of thalassemic stem cells. Consequently, the objectives of conditioning regimens for bone marrow transplantation of thalassemic patients (and possibly other nonmalignant hemopoietic disorders) should be reconsidered.« less
Chromosome Aberrations in Normal and Ataxia-Telangiectasia Cells Exposed to Heavy Ions
NASA Technical Reports Server (NTRS)
Kawata, T.; Ito, H.; Liu, C.; Shigematsu, N.; George, K.; Cucinotta, F. A.
2007-01-01
Although cells derived from Ataxia Telangiectasia (AT) patients are known to exhibit abnormal responses to ionizing radiations, its underlying mechanism still remains unclear. Previously, the authors reported that at the same gamma-irradiation dose AT cells show higher frequencies of misrepair and deletions compared to normal human fibroblast cells. In this study, we investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/m), 500 MeV/u Iron (LET 185 keV/m) and 200 MeV/u Iron (LET 440 keV/m) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/m and then decreased at 440 keV/m. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/m there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for AT cells when it was compared at 185 keV/m but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types between normal and AT fibroblast appeared different probably due to difference in the ATM gene function.
Mhatre, Pravin N.; Narkhede, Hemraj R.; Pawar, P. Amol; Mhatre, P. Jyoti; Kumar, Das Dhanjit
2016-01-01
CONTEXT: Host of vaginoplasty techniques have been described. None has been successful in developing normal vagina. Laparoscopic peritoneal vaginoplasty (LPV) is performed in Mayer–Rokitansky–Küster–Hauser syndrome (MRKHS) culminating in normal vagina. AIMS: This study aims to confirm normal development of neovagina by anatomical and functional parameters of histology, cytology, and ultrasonography (USG) in LPV. To identify peritoneal progenitor cell by OCT4/SOX2 markers. To demonstrate the metaplastic conversion of peritoneum to neovagina and the progenitor cell concentration, distribution pattern. SETTINGS AND DESIGN: This is prospective experimental study, conducted at teaching hospital and private hospital. SUBJECTS AND METHODS: Fifteen women of MRKHS underwent LPV followed by histology, cytology, two-/three-dimensional USG of neovagina. Four women underwent peritoneal biopsy for identification of progenitor cells with OCT4/SOX2 markers. One patient underwent serial biopsies for 4 weeks for histology and progenitor cell immunohistochemistry. RESULTS: Normal vaginal histology and cytology were apparent. USG of neovagina showed normal appearance and blood flow. Two peritoneal samples confirmed the presence of progenitor cells. Serial biopsies demonstrated the epithelial change from single to multilayer with stromal compaction and neoangiogenesis. The progenitor cells concentration and different distribution patterns were described using SOX2/OCT4 markers. CONCLUSIONS: We have shown successful peritoneal metaplastic conversion to normal vagina in LPV. The progenitor cell was identified in normal peritoneum using SOX2/OCT4 markers. The progenitor cell concentration and pattern were demonstrated at various stages of neovaginal development. PMID:28216908
Gorsline, J.; Holmes, W.N.
1981-01-01
Unstressed mallard ducks (Anas platyrhychos), given uncontaminated food and maintained on a short photoperiod, show two daily maxima in plasma corticosterone concentration ([B]); one occurring early in the light phase and a second just before the onset of darkness. After one week of exposure to food containing 3% (v/w) South Louisiana crude oil, plasma [B] were significantly lowered throughout the day. Similar abrupt declines in plasma [B] also occurred during the first 10 days of exposure to food containing 1% and 0.5% crude oil. Although the plasma [B] in birds consuming food contaminated with 0.5% crude oil increased between 10 and 50 days of exposure, the concentration after 50 days was still lower than normal. During the same interval, normal plasma [B] were restored in birds consuming food containing 1% and 3% crude oil. Significant increases occurred in the naphthalene-metabolizing properties of hepatic microsomes prepared from birds acutely exposed to all levels of petroleum-contaminated food and elevated levels were sustained throughout the first 50 days of exposure. Birds given food containing 3% crude oil for more than 50 days, however, showed steady declines in hepatic naphthalene-metabolizing activity. After 500 days, the activity was similar to that found in contemporaneous controls. During the same interval, the plasma [B] increased until the levels were higher than normal after 500 days of exposure; at this time, an inverse relationship, similar to that seen during the first week of exposure to contaminated food, was once more established between plasma [B] and the concomitant hepatic naphthalene-metabolizing activity.
Potential sources of bacteria that are isolated from contact lenses during wear.
Willcox, M D; Power, K N; Stapleton, F; Leitch, C; Harmis, N; Sweeney, D F
1997-12-01
The aim of this paper was to determine the possible contamination sources of contact lenses during wear. Potential sources of the microbiota that colonized hydrogel contact lenses during wear were examined. The microorganisms that colonize contact lenses were grown, identified, and compared to those microorganisms that colonized the lower lid margins, upper bulbar conjunctiva, hands, and contact lens cases of contact lens wearers. In addition, the incidence of contamination of the domestic water supply in the Sydney area was obtained, and this was compared to the incidence of colonization of contact lenses by microorganisms in general and gram-negative bacteria in particular. There was a wide diversity of bacteria that were isolated from each site sampled. Coagulase-negative staphylococci and Propionibacterium spp. were the most common isolates from all ocular sites examined, and constituted the normal ocular microbiota. Other bacteria, including members of the families Enterobacteriaceae and Pseudomonadaceae, were isolated infrequently from all sites, but most frequently from contact lens cases. Statistical analysis revealed that there was a correlation between the isolation of bacteria from the contact lens and the lower lid margin (p < 0.001). Analysis of this correlation revealed that this was true for the normal microbiota. A correlation was also noted between the colonization of contact lenses by gram-negative bacteria and contamination of the domestic water supply. This study has demonstrated that the likely route for the normal ocular microbiota colonizing contact lenses is via the lid margins, whereas colonization by gram-negative bacteria, including potential agents of microbial keratitis, is likely to be from the domestic water supply.
Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Hellweger, Ferdi; Padilla, Ingrid; Alshawabkeh, Akram
2015-01-01
Karst aquifers have a high degree of heterogeneity and anisotropy in their geologic and hydrogeologic properties which makes predicting their behavior difficult. This paper evaluates the application of the Equivalent Porous Media (EPM) approach to simulate groundwater hydraulics and contaminant transport in karst aquifers using an example from the North Coast limestone aquifer system in Puerto Rico. The goal is to evaluate if the EPM approach, which approximates the karst features with a conceptualized, equivalent continuous medium, is feasible for an actual project, based on available data and the study scale and purpose. Existing National Oceanic Atmospheric Administration (NOAA) data and previous hydrogeological U. S. Geological Survey (USGS) studies were used to define the model input parameters. Hydraulic conductivity and specific yield were estimated using measured groundwater heads over the study area and further calibrated against continuous water level data of three USGS observation wells. The water-table fluctuation results indicate that the model can practically reflect the steady-state groundwater hydraulics (normalized RMSE of 12.4%) and long-term variability (normalized RMSE of 3.0%) at regional and intermediate scales and can be applied to predict future water table behavior under different hydrogeological conditions. The application of the EPM approach to simulate transport is limited because it does not directly consider possible irregular conduit flow pathways. However, the results from the present study suggest that the EPM approach is capable to reproduce the spreading of a TCE plume at intermediate scales with sufficient accuracy (normalized RMSE of 8.45%) for groundwater resources management and the planning of contamination mitigation strategies.
Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Hellweger, Ferdi; Padilla, Ingrid; Alshawabkeh, Akram
2015-01-01
Karst aquifers have a high degree of heterogeneity and anisotropy in their geologic and hydrogeologic properties which makes predicting their behavior difficult. This paper evaluates the application of the Equivalent Porous Media (EPM) approach to simulate groundwater hydraulics and contaminant transport in karst aquifers using an example from the North Coast limestone aquifer system in Puerto Rico. The goal is to evaluate if the EPM approach, which approximates the karst features with a conceptualized, equivalent continuous medium, is feasible for an actual project, based on available data and the study scale and purpose. Existing National Oceanic Atmospheric Administration (NOAA) data and previous hydrogeological U. S. Geological Survey (USGS) studies were used to define the model input parameters. Hydraulic conductivity and specific yield were estimated using measured groundwater heads over the study area and further calibrated against continuous water level data of three USGS observation wells. The water-table fluctuation results indicate that the model can practically reflect the steady-state groundwater hydraulics (normalized RMSE of 12.4%) and long-term variability (normalized RMSE of 3.0%) at regional and intermediate scales and can be applied to predict future water table behavior under different hydrogeological conditions. The application of the EPM approach to simulate transport is limited because it does not directly consider possible irregular conduit flow pathways. However, the results from the present study suggest that the EPM approach is capable to reproduce the spreading of a TCE plume at intermediate scales with sufficient accuracy (normalized RMSE of 8.45%) for groundwater resources management and the planning of contamination mitigation strategies. PMID:26422202
Status of metal levels and their potential sources of contamination in Southeast Asian rivers.
Chanpiwat, Penradee; Sthiannopkao, Suthipong
2014-01-01
To assess the concentration and status of metal contaminants in four major Southeast Asian river systems, water were collected from the Tonle Sap-Bassac Rivers (Cambodia), Citarum River (Indonesia), lower Chao Phraya River (Thailand), and Saigon River (Vietnam) in both dry and wet seasons. The target elements were Be, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Ba, Tl, and Pb and the concentrations exceeded the background metal concentrations by 1- to 88-fold. This distinctly indicates enrichment by human urban area activities. The results of a normalization technique used to distinguish natural from enriched metal concentrations confirmed contamination by Al, Cd, Co, Mn, Ni, Pb, and Zn. Cluster analysis revealed the probable source of metals contamination in most sampling sites on all rivers studied to be anthropogenic, including industrial, commercial, and residential activities. Stable lead isotopes analyses applied to track the sources and pathways of anthropogenic lead furthermore confirmed that anthropogenic sources of metal contaminated these rivers. Discharges of wastewater from both industrial and household activities were major contributors of Pb into the rivers. Non-point sources, especially road runoff and street dust, also contributed contamination from Pb and other metals.
Schmucker, Hannah S; Park, Jang Pyo; Coissieux, Marie-May; Bentires-Alj, Mohamed; Feltus, F Alex; Booth, Brian W
2017-05-01
Tumorigenic cells can be redirected to adopt a normal phenotype when transplanted into cleared mammary fat pads of juvenile female mice in specific ratios with normal epithelial cells. The redirected tumorigenic cells enter stem cell niches and provide progeny that differentiate into all mammary epithelial subtypes. We have developed an in vitro model that mimics the in vivo phenomenon. The shift in phenotype to redirection should be accomplished through a return to a normal gene expression state. To measure this shift, we interrogated the transcriptome of various in vitro model states in search for casual genes. For this study, expression of growth factors, cytokines, and their associated receptors was examined. In all, we queried 251 growth factor and cytokine-related genes. We found numerous growth factor and cytokine genes whose expression levels switched from expression levels seen in cancer cells to expression levels observed in normal cells. The comparisons of gene expression between normal mammary epithelial cells, tumor-derived cells, and redirected cancer cells have revealed insight into active and inactive growth factors and cytokines in cancer cell redirection.
Chowdhury, Rajdeep; Amin, Md Asif; Bhattacharyya, Kankan
2015-08-27
Intermittent structural oscillation in the lipid droplets of live lung cells is monitored using time-resolved confocal microscopy. Significant differences are observed between the lung cancer cell (A549) and normal (nonmalignant) lung cell (WI38). For this study, the lipid droplets are covalently labeled with a fluorescent dye, coumarin maleimide (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin, CPM). The number of lipid droplets in the cancer cell is found to be ∼20-fold higher than that in the normal (nonmalignant) cell. The fluctuation in the fluorescence intensity of the dye (CPM) is attributed to the red-ox processes and periodic formation/rupture of the S-CPM bond. The amount of reactive oxygen species (ROS) is much higher in a cancer cell. This is manifested in faster oscillations (0.9 ± 0.3 s) in cancer cells compared to that in the normal cells (2.8 ± 0.7 s). Solvation dynamics in the lipid droplets of cancer cells is slower compared to that in the normal cell.
Grineva, N I; Borovkova, T V; Sats, N V; Kurabekova, R M; Rozhitskaia, O S; Solov'ev, G Ia; Pantin, V I
1995-08-01
G11 mouse cells and SH2 rat cells transformed with simian adenovirus SA7 DNA showed inheritable oncogen-specific phenotypic normalization when treated with sense and antisense oligonucleotides complementary to long RNA sequences, plus or minus strands of the integrated adenovirus oncogenes E1A and E1B. Transitory treatment of the cells with the oligonucleotides in the absence of serum was shown to cause the appearance of normalized cell lines with fibroblastlike morphology, slower cell proliferation, and lack of ability to form colonies in soft agar. Proliferative activity and adhesion of the normalized cells that established cell lines were found to depend on the concentration of growth factors in the cultural medium. In some of the cell lines, an inhibition of transcription of the E1 oncogenes was observed. The normalization also produced cells that divided 2 - 5 times and died and cells that reverted to a transformed phenotype in 2 - 10 days. The latter appeared predominantly upon the action of the antisense oligonucleotides.
Phan, Linh; Su, Yu-Min; Weber, Rachel; Fritzen-Pedicini, Charissa; Edomwande, Osayuwamen; Jones, Rachael M
2018-04-01
Environmental service workers may be exposed to pathogens during the cleaning of pathogen-containing bodily fluids. Participants with experience cleaning hospital environments were asked to clean simulated, fluorescein-containing vomitus using normal practices in a simulated patient room. Fluorescein was visualized in the environment and on participants under black lights. Fluorescein was quantitatively measured on the floor, in the air, and on gloves and shoe covers. In all 21 trials involving 7 participants, fluorescein was found on the floor after cleaning and on participants' gloves. Lower levels of floor contamination were associated with the use of towels to remove bulk fluid (ρ = -0.56, P = .01). Glove contamination was not associated with the number or frequency of contacts with environmental surfaces, suggesting contamination occurs with specific events, such as picking up contaminated towels. Fluorescein contamination on shoe covers was measured in 19 trials. Fluorescein was not observed on participants' facial personal protective equipment, if worn, or faces. Contamination on other body parts, primarily the legs, was observed in 8 trials. Fluorescein was infrequently quantified in the air. Using towels to remove bulk fluid prior to mopping is part of the recommended cleaning protocol and should be used to minimize residual contamination. Contamination on shoes and the floor may serve as reservoirs for pathogens. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, S. K.; Kamemoto, L. E.; Misra, A. K.; Goodman, M. T.; Luk, H. W.; Killeen, J. L.
2010-04-01
We present results of in vitro micro-Raman spectroscopy of normal and cancerous cervical and ovarian tissues excited with 785 nm near-infrared (NIR) laser. Micro- Raman spectra of squamous cervical cells of both cervix and ovarian tissues show significant differences in the spectra of normal and cancerous cells. In particular, several well-defined Raman peaks in the 775-975 cm-1 region are observed in the spectra of normal cervix squamous cells but are completely missing in the spectra of invasive cervical cancer cells. In the high-frequency 2800-3100 cm-1 region it is shown that the peak area under CH stretching band is much lower than the corresponding area in the spectra of normal cells. In the case of ovarian tissues, the micro-Raman spectra show noticeable spectral differences between normal cells and ovarian serous cancer cells. In particular, we observed the accumulation of β-carotene in ovarian serous cancer cells compared to normal ovarian cells from women with no ovarian cancer. The NIR micro-Raman spectroscopy offers a potential molecular technique for detecting cervical and ovarian cancer from the respective tissues.
NASA Astrophysics Data System (ADS)
El Batanouny, Mohamed H.; Khorshid, Amira M.; Arsanyos, Sonya F.; Shaheen, Hesham M.; Abdel Wahab, Nahed; Amin, Sherif N.; El Rouby, Mahmoud N.; Morsy, Mona I.
2010-04-01
Photodynamic therapy (PDT) is a novel treatment modality of cancer and non-cancerous conditions that are generally characterized by an overgrowth of unwanted or abnormal cells. Irradiation of photosensitizer loaded cells or tissues leads via the photochemical reactions of excited photosensitizer molecules to the production of singlet oxygen and free radicals, which initiate cell death. Many types of compounds have been tested as photosensitizers, such as methylene blue (MB) and photopherin seemed to be very promising. This study involved 26 cases of acute lymphoblastic leukemia and 15 normal volunteers as a control group. The cell viability was measured by Light microscope and flowcytometer. Mode of cell death was detected by flowcytometer and electron microscope in selected cases. The viability percentage of normal peripheral blood mononuclear cells (PBMC) incubated with methylene blue (MB) alone or combined with photo irradiation with diode laser (as measured by light microscope) was significantly lower than that of untreated cases either measured after 1 hour (p<0.001) or 24 hours (p<0.001) post incubation. There was a significantly lower viability percentage of normal cells incubated with MB and photoirradiated with diode laser compared to normal cells treated with MB alone for either measured after 1 hour (p<0.001) or 24 hours (p<0.001) post incubation. The decrease in viability was more enhanced with increasing the incubation time. For normal cells incubated with photopherin either for 1/2 an hour or 1 hour, there was a weak cytotoxic effect compared to the effect on untreated cells. There was a significant decrease in viability percentage of cells incubated with photopherin either for 1/2 an hour or 1 hour and photoirradiated with He:Ne laser compared to normal untreated cells. The decrease in the cell viability percentage was significantly lower with the use of PDT (photopherin and He:Ne laser ) compared to either photopherin alone or He:Ne laser alone. The decrease in viability was more enhanced with increasing the incubation time. The same effects reported on normal cells were detected on leukemic cells on comparing different methods used. However a more pronounced decrease in cell viability was detected. The most efficient ways of decreasing viability of leukemic cells with much less effect on normal cells was the use of PDT of cell incubation with MB for 1 hour then photoirradiation with diode laser and PDT of cell incubation with photopherin for 1 hour then photoirradiation with He:Ne laser. Flowcytometer (FCM) was more sensitivite than the light microscope in detecting the decrease in cell viability, it also helped in determining the mode of cell death weather apoptosis, necrosis or combined apoptosis and necrosis. Apoptotic cell percentage was higher in PDT of MB and Diode laser or photopherin and He:Ne laser, treated ALL cells compared to untreated ALL cells after 1 hour but was significantly lower after 24 hours post irradiation. A significant increase in necrotic, combined necrotic and apoptotic cell percentages either measured 1 hour or 24 hours post PDT, compared to untreated ALL cells and PDT treated normal cells. Electron microscope helped in detecting early cellular apoptotic changes occurring in response to different therapeutic modalities used in this study. In conclusion, PDT proved to be an effective clinical modality in decreasing the number of leukemic cells when irradiated in vitro with appropriate laser and photosensitizer system. Both PDT systems used in this study were efficient in inducing cell death of leukemic cells compared to untreated leukemic cells. However, photopherin PDT system was more efficient in decreasing the cell viability. A significant decrease in viability percentage was detected when studying the effect of PDT on leukemic cells compared to that on normal cells. This suggests that PDT when applied clinically will selectively differentiate between leukemic cells and normal cells, offering a successful component in ALL therapy.
On the Stem Cell Origin of Cancer
Sell, Stewart
2010-01-01
In each major theory of the origin of cancer—field theory, chemical carcinogenesis, infection, mutation, or epigenetic change—the tissue stem cell is involved in the generation of cancer. Although the cancer type is identified by the more highly differentiated cells in the cancer cell lineage or hierarchy (transit-amplifying cells), the property of malignancy and the molecular lesion of the cancer exist in the cancer stem cell. In the case of teratocarcinomas, normal germinal stem cells have the potential to become cancers if placed in an environment that allows expression of the cancer phenotype (field theory). In cancers due to chemically induced mutations, viral infections, somatic and inherited mutations, or epigenetic changes, the molecular lesion or infection usually first occurs in the tissue stem cells. Cancer stem cells then give rise to transit-amplifying cells and terminally differentiated cells, similar to what happens in normal tissue renewal. However, the major difference between cancer growth and normal tissue renewal is that whereas normal transit amplifying cells usually differentiate and die, at various levels of differentiation, the cancer transit-amplifying cells fail to differentiate normally and instead accumulate (ie, they undergo maturation arrest), resulting in cancer growth. PMID:20431026
Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils
Garbisu, Carlos; Garaiyurrebaso, Olatz; Epelde, Lur; Grohmann, Elisabeth; Alkorta, Itziar
2017-01-01
Bioaugmentation, or the inoculation of microorganisms (e.g., bacteria harboring the required catabolic genes) into soil to enhance the rate of contaminant degradation, has great potential for the bioremediation of soils contaminated with organic compounds. Regrettably, cell bioaugmentation frequently turns into an unsuccessful initiative, owing to the rapid decrease of bacterial viability and abundance after inoculation, as well as the limited dispersal of the inoculated bacteria in the soil matrix. Genes that encode the degradation of organic compounds are often located on plasmids and, consequently, they can be spread by horizontal gene transfer into well-established, ecologically competitive, indigenous bacterial populations. Plasmid-mediated bioaugmentation aims to stimulate the spread of contaminant degradation genes among indigenous soil bacteria by the introduction of plasmids, located in donor cells, harboring such genes. But the acquisition of plasmids by recipient cells can affect the host’s fitness, a crucial aspect for the success of plasmid-mediated bioaugmentation. Besides, environmental factors (e.g., soil moisture, temperature, organic matter content) can play important roles for the transfer efficiency of catabolic plasmids, the expression of horizontally acquired genes and, finally, the contaminant degradation activity. For plasmid-mediated bioaugmentation to be reproducible, much more research is needed for a better selection of donor bacterial strains and accompanying plasmids, together with an in-depth understanding of indigenous soil bacterial populations and the environmental conditions that affect plasmid acquisition and the expression and functioning of the catabolic genes of interest. PMID:29062312
Water Treatment Systems for Long Spaceflights
NASA Technical Reports Server (NTRS)
FLynn, Michael T.
2012-01-01
Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine treatment method converts urine into a fortified sports drink, resembling Gatorade, using a first urine cell.
Inactivation of prion proteins via covalent grafting with methoxypoly(ethylene glycol).
Scott, Mark D
2006-01-01
Transmissible spongiform encephalopathies (TSE) such as bovine spongiform encephalitis (BSE), Creutzfeld-Jakob disease (CJD) as well as other proteinaceous infectious particles (prions) mediated diseases have emerged as a significant concern in transfusion medicine. This concern is derived from both the disease causing potential of prion contaminated blood products but also due to tremendous impact of the active deferral of current and potential blood donors due to their extended stays in BSE prevalent countries (e.g., the United Kingdom). To date, there are no effective means by which infectious prion proteins can be inactivated in cellular and acellular blood products. Based on current work on the covalent grafting of methoxypoly(ethylene glycol) [mPEG] to proteins, viruses, and anuclear, and nucleated cells, it is hypothesized that the conversion of the normal PrP protein to its mutant conformation can be prevented by the covalent grafting of mPEG to the mutant protein. Inactivation of infective protein particles (prions) in both cellular blood products as well as cell free solutions (e.g., clotting factors) could be of medical/commercial value. It is hypothesized that consequent to the covalent modification of donor-derived prions with mPEG the requisite nucleation of the normal and mutant PrP proteins is inhibited due to the increased solubility of the modified mutant PrP and that the conformational conversion arising from the mutant PrP is prevented due to obscuration of protein charge by the heavily hydrated and neutral mPEG polymers, as well as by direct steric hindrance of the interaction due to the highly mobile polymer graft.
Kimmel, G. L.; Péron, F. G.; Haksar, A.; Bedigian, E.; Robidoux, W. F.; Lin, M. T.
1974-01-01
Electron microscope studies were carried out with the adrenocortical carcinoma 494 and normal adrenal cortex tissue. The mitochondria of the tumor cells showed marked differences when compared with mitochondria from fasciculata cells of the normal adrenal cortex. These differences were primarily related to mitochondrial number and crista structure. Corticosterone production in isolated tumor cells was extremely low and neither ACTH nor dibutyryl cyclic AMP had any stimulatory effect. Normal adrenal cells showed at least a tenfold increase under identical conditions. In the presence of corticosteroid precursors the amount of corticosterone produced by the tumor cells was much less than that produced by normal cells. The results indicate a reduced capacity for 11β-hydroxylation in the tumor mitochondria and a possible reduced capacity for biosynthetic steps before the 11β-hydroxylation reaction. Glycolysis in isolated tumor cells was also lower than in normal cells. Isolated tumor mitochondria oxidized succinate normally with a good degree of coupling with phosphorylation. However, unlike normal adrenal mitochondria, the tumor mitochondria showed little or no oxygen uptake with other Krebs cycle substrates. These data suggest that the tumor mitochondria may be lacking in the flavoprotein dehydrogenases responsible for the oxidation of NADH and NADPH, although other components of the respiratory chain may be intact. PMID:4366105
Konopacka, M; Rogoliński, J
2010-01-01
Using X radiation commonly used in radiotherapy of cancers we investigated bystander interactions between human cells: irradiated A549 bronchial carcinoma human cells and non irradiated BEAS-2B normal bronchial epithelial cells. Non irradiated cells were incubated in medium transferred from irradiated A549 cells (ICM-irradiation conditioned medium) for 48h and next the chromosomal damage and apoptosis were estimated. Conditioned medium collected from irradiated cancer cells induced in non irradiated cells of the same line as well as in BEAS-2B normal cells genetic changes such as micronuclei, chromatid and chromosomal breaks and condensation of chromatin characteristic for processes of apoptosis. Addition of only 1% of conditioned medium to fresh medium was sufficient to induction of bystander response to normal bronchial cells. The presented results in this study could have implications for human radiation risk and in evaluating the secondary effects of radiotherapy.
Kim, Sang Hwan; Min, Kwan Sik; Kim, Nam Hyung; Yoon, Jong Taek
2012-01-01
Follicles are important in oocyte maturation. Successful estrous cycle requires remodeling of follicular cells, and proper execution of programmed cell death is crucial for normal follicular development. The objectives of the present study were to understand programmed cell death during follicle development, to analyze the differential follicle development patterns, and to assess the patterns of apoptosis and autophagy expression during follicle development in normal and miniature pigs. Through the analysis of differential patterns of programmed cell death during follicular development in porcine, MAP1LC3A, B and other autophagy-associated genes (ATG5, mTOR, Beclin-1) were found to increase in normal pigs, while it decreased in miniature pigs. However, for the apoptosis-associated genes, progression of genes during follicular development increased in miniature pigs, while it decreased in normal pigs. Thus, results show that normal and miniature pigs showed distinct patterns of follicular remodeling manifesting that programmed cell death largely depends on the types of pathway during follicular development (Type II or autophagy for normal pigs and Type I or apoptosis for miniature pigs). PMID:23056260
Swaminathan Iyer, K; Gaikwad, R M; Woodworth, C D; Volkov, D O; Sokolov, Igor
2012-06-01
A significant change of surface features of malignant cervical epithelial cells compared to normal cells has been previously reported. Here, we are studying the question at which progressive stage leading to cervical cancer the surface alteration happens. A non-traditional method to identify malignant cervical epithelial cells in vitro, which is based on physical (in contrast to specific biochemical) labelling of cells with fluorescent silica micron-size beads, is used here to examine cells at progressive stages leading to cervical cancer which include normal epithelial cells, cells infected with human papillomavirus type-16 (HPV-16), cells immortalized by HPV-16, and carcinoma cells. The study shows a statistically significant (at p < 0.01) difference between both immortal and cancer cells and a group consisting of normal and infected. There is no significant difference between normal and infected cells. Immortal cells demonstrate the signal which is closer to cancer cells than to either normal or infected cells. This implies that the cell surface, surface cellular brush changes substantially when cells become immortal. Physical labeling of the cell surface represents a substantial departure from the traditional biochemical labeling methods. The results presented show the potential significance of physical properties of the cell surface for development of clinical methods for early detection of cervical cancer, even at the stage of immortalized, premalignant cells.
Iyer, K. Swaminathan; Gaikwad, R. M.; Woodworth, C. D.; Volkov, D. O.
2013-01-01
A significant change of surface features of malignant cervical epithelial cells compared to normal cells has been previously reported. Here, we are studying the question at which progressive stage leading to cervical cancer the surface alteration happens. A non-traditional method to identify malignant cervical epithelial cells in vitro, which is based on physical (in contrast to specific biochemical) labelling of cells with fluorescent silica micron-size beads, is used here to examine cells at progressive stages leading to cervical cancer which include normal epithelial cells, cells infected with human papillomavirus type-16 (HPV-16), cells immortalized by HPV-16, and carcinoma cells. The study shows a statistically significant (at p <0.01) difference between both immortal and cancer cells and a group consisting of normal and infected. There is no significant difference between normal and infected cells. Immortal cells demonstrate the signal which is closer to cancer cells than to either normal or infected cells. This implies that the cell surface, surface cellular brush changes substantially when cells become immortal. Physical labeling of the cell surface represents a substantial departure from the traditional biochemical labeling methods. The results presented show the potential significance of physical properties of the cell surface for development of clinical methods for early detection of cervical cancer, even at the stage of immortalized, pre-malignant cells. PMID:22351422
Liu, Rui; Mao, Ziliang; Matthews, Dennis L; Li, Chin-Shang; Chan, James W; Satake, Noriko
2013-07-01
Laser tweezers Raman spectroscopy was used to characterize the oxygenation response of single normal adult, sickle, and cord blood red blood cells (RBCs) to an applied mechanical force. Individual cells were subjected to different forces by varying the laser power of a single-beam optical trap, and the intensities of several oxygenation-specific Raman spectral peaks were monitored to determine the oxygenation state of the cells. For all three cell types, an increase in laser power (or mechanical force) induced a greater deoxygenation of the cell. However, sickle RBCs deoxygenated more readily than normal RBCs when subjected to the same optical forces. Conversely, cord blood RBCs were able to maintain their oxygenation better than normal RBCs. These results suggest that differences in the chemical or mechanical properties of fetal, normal, and sickle cells affect the degree to which applied mechanical forces can deoxygenate the cell. Populations of normal, sickle, and cord RBCs were identified and discriminated based on this mechanochemical phenomenon. This study demonstrates the potential application of laser tweezers Raman spectroscopy as a single-cell, label-free analytical tool to characterize the functional (e.g., mechanical deformability, oxygen binding) properties of normal and diseased RBCs. Copyright © 2013 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Meng, Jinhong; Muntoni, Francesco; Morgan, Jennifer
2018-05-12
Cell-mediated gene therapy is a possible means to treat muscular dystrophies like Duchenne muscular dystrophy. Autologous patient stem cells can be genetically-corrected and transplanted back into the patient, without causing immunorejection problems. Regenerated muscle fibres derived from these cells will express the missing dystrophin protein, thus improving muscle function. CD133+ cells derived from normal human skeletal muscle contribute to regenerated muscle fibres and form muscle stem cells after their intra-muscular transplantation into an immunodeficient mouse model. But it is not known whether CD133+ cells derived from DMD patient muscles have compromised muscle regenerative function. To test this, we compared CD133+ cells derived from DMD and normal human muscles. DMD CD133+ cells had a reduced capacity to undergo myogenic differentiation in vitro compared with CD133+ cells derived from normal muscle. In contrast to CD133+ cells derived from normal human muscle, those derived from DMD muscle formed no satellite cells and gave rise to significantly fewer muscle fibres of donor origin, after their intra-muscular transplantation into an immunodeficient, non-dystrophic, mouse muscle. DMD CD133+ cells gave rise to more clones of smaller size and more clones that were less myogenic than did CD133+ cells derived from normal muscle. The heterogeneity of the progeny of CD133+ cells, combined with the reduced proliferation and myogenicity of DMD compared to normal CD133+ cells, may explain the reduced regenerative capacity of DMD CD133+ cells. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Guidelines for the use of cell lines in biomedical research
Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M
2014-01-01
Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise. PMID:25117809
Guidelines for the use of cell lines in biomedical research.
Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M
2014-09-09
Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise.
Resonant-frequency discharge in a multi-cell radio frequency cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovic, S; Upadhyay, J; Mammosser, J
2014-11-07
We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problemsmore » related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.« less
NASA Astrophysics Data System (ADS)
Liu, Lixian; Mandelis, Andreas; Huan, Huiting; Melnikov, Alexander
2016-10-01
A step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) using a commercial FTIR spectrometer was developed theoretically and experimentally for air contaminant monitoring. The configuration comprises two identical, small-size and low-resonance-frequency T cells satisfying the conflicting requirements of low chopping frequency and limited space in the sample compartment. Carbon dioxide (CO2) IR absorption spectra were used to demonstrate the capability of the DFTIR-PAS method to detect ambient pollutants. A linear amplitude response to CO2 concentrations from 100 to 10,000 ppmv was observed, leading to a theoretical detection limit of 2 ppmv. The differential mode was able to suppress the coherent noise, thereby imparting the DFTIR-PAS method with a better signal-to-noise ratio and lower theoretical detection limit than the single mode. The results indicate that it is possible to use step-scan DFTIR-PAS with T cells as a quantitative method for high sensitivity analysis of ambient contaminants.
Biosensor for remote monitoring of airborne toxins
NASA Astrophysics Data System (ADS)
Knopf, George K.; Bassi, Amarjeet S.; Singh, Shikha; Macleod, Roslyn
1999-12-01
The rapid detection of toxic contaminants released into the air by chemical processing facilities is a high priority for many manufacturers. This paper describes a novel biosensor for the remote monitoring of toxic sites. The proposed biosensor is a measurement system that employs immobilized luminescent Vibrio fisheri bacteria to detect airborne contaminants. The presence of toxic chemicals will lead to a detectable decrease in the intensity of light produced by the bacteria. Both cellular and environmental factors control the bioluminescence of these bacteria. Important design factors are the appropriate cell growth media, environmental toxicity, oxygen and cell concentrations. The luminescent bacteria are immobilized on polyvinyl alcohol (PVA) gels and placed inside a specially constructed, miniature flow cell which houses a transducer, power source, and transmitter to convert the light signal information into radio frequencies that are picked up by a receiver at a remote location. The biosensor prototype is designed to function either as a single unit mounted on an exploratory robot or numerous units spatially distributed throughout a contaminated environment for remote sensing applications.
Mohamed, Rayane; Guy, Philippe A
2011-01-01
During recent years, a rising interest from consumers and various governmental organizations towards the quality of food has continuously been observed. Human intervention across the different stages of the food supply chain can lead to the presence of several types of chemical contaminants in food-based products. On a normal daily consumption basis, some of these chemicals are not harmful; however, for those that present a risk to consumers, legislation rules were established to specify tolerance levels or in some cases the total forbiddance of these specific contaminants. Hence, the use of appropriate analytical tools is recommended to properly identify chemical contaminants. In that context, mass spectrometry (MS)-based techniques coupled or not to chromatography offer a vast panel of features such as sensitivity, selectivity, quantification at trace levels, and/or structural elucidation. Because of the complexity of food-based matrices, sample preparation is a crucial step before final detection. In the present manuscript, we review the contribution and the potentialities of MS-based techniques to ensure the absence of chemical contaminants in food-based products. Copyright © 2011 Wiley Periodicals, Inc.
Genetic profiling of putative breast cancer stem cells from malignant pleural effusions.
Tiran, Verena; Stanzer, Stefanie; Heitzer, Ellen; Meilinger, Michael; Rossmann, Christopher; Lax, Sigurd; Tsybrovskyy, Oleksiy; Dandachi, Nadia; Balic, Marija
2017-01-01
A common symptom during late stage breast cancer disease is pleural effusion, which is related to poor prognosis. Malignant cells can be detected in pleural effusions indicating metastatic spread from the primary tumor site. Pleural effusions have been shown to be a useful source for studying metastasis and for isolating cells with putative cancer stem cell (CSC) properties. For the present study, pleural effusion aspirates from 17 metastatic breast cancer patients were processed to propagate CSCs in vitro. Patient-derived aspirates were cultured under sphere forming conditions and isolated primary cultures were further sorted for cancer stem cell subpopulations ALDH1+ and CD44+CD24-/low. Additionally, sphere forming efficiency of CSC and non-CSC subpopulations was determined. In order to genetically characterize the different tumor subpopulations, DNA was isolated from pleural effusions before and after cell sorting, and compared with corresponding DNA copy number profiles from primary tumors or bone metastasis using low-coverage whole genome sequencing (SCNA-seq). In general, unsorted cells had a higher potential to form spheres when compared to CSC subpopulations. In most cases, cell sorting did not yield sufficient cells for copy number analysis. A total of five from nine analyzed unsorted pleura samples (55%) showed aberrant copy number profiles similar to the respective primary tumor. However, most sorted subpopulations showed a balanced profile indicating an insufficient amount of tumor cells and low sensitivity of the sequencing method. Finally, we were able to establish a long term cell culture from one pleural effusion sample, which was characterized in detail. In conclusion, we confirm that pleural effusions are a suitable source for enrichment of putative CSC. However, sequencing based molecular characterization is impeded due to insufficient sensitivity along with a high number of normal contaminating cells, which are masking genetic alterations of rare cancer (stem) cells.
Kon, Shunsuke; Ishibashi, Kojiro; Katoh, Hiroto; Kitamoto, Sho; Shirai, Takanobu; Tanaka, Shinya; Kajita, Mihoko; Ishikawa, Susumu; Yamauchi, Hajime; Yako, Yuta; Kamasaki, Tomoko; Matsumoto, Tomohiro; Watanabe, Hirotaka; Egami, Riku; Sasaki, Ayana; Nishikawa, Atsuko; Kameda, Ikumi; Maruyama, Takeshi; Narumi, Rika; Morita, Tomoko; Sasaki, Yoshiteru; Enoki, Ryosuke; Honma, Sato; Imamura, Hiromi; Oshima, Masanobu; Soga, Tomoyoshi; Miyazaki, Jun-Ichi; Duchen, Michael R; Nam, Jin-Min; Onodera, Yasuhito; Yoshioka, Shingo; Kikuta, Junichi; Ishii, Masaru; Imajo, Masamichi; Nishida, Eisuke; Fujioka, Yoichiro; Ohba, Yusuke; Sato, Toshiro; Fujita, Yasuyuki
2017-05-01
Recent studies have revealed that newly emerging transformed cells are often apically extruded from epithelial tissues. During this process, normal epithelial cells can recognize and actively eliminate transformed cells, a process called epithelial defence against cancer (EDAC). Here, we show that mitochondrial membrane potential is diminished in RasV12-transformed cells when they are surrounded by normal cells. In addition, glucose uptake is elevated, leading to higher lactate production. The mitochondrial dysfunction is driven by upregulation of pyruvate dehydrogenase kinase 4 (PDK4), which positively regulates elimination of RasV12-transformed cells. Furthermore, EDAC from the surrounding normal cells, involving filamin, drives the Warburg-effect-like metabolic alteration. Moreover, using a cell-competition mouse model, we demonstrate that PDK-mediated metabolic changes promote the elimination of RasV12-transformed cells from intestinal epithelia. These data indicate that non-cell-autonomous metabolic modulation is a crucial regulator for cell competition, shedding light on the unexplored events at the initial stage of carcinogenesis.
Liao, K H; Gustafson, D L; Fox, M H; Chubb, L S; Reardon, K F; Yang, R S
2001-01-01
We modified the two-stage Moolgavkar-Venzon-Knudson (MVK) model for use with Syrian hamster embryo (SHE) cell neoplastic progression. Five phenotypic stages are proposed in this model: Normal cells can either become senescent or mutate into immortal cells followed by anchorage-independent growth and tumorigenic stages. The growth of normal SHE cells was controlled by their division, death, and senescence rates, and all senescent cells were converted from normal cells. In this report, we tested the modeling of cell kinetics of the first two phenotypic stages against experimental data evaluating the effects of arsenic on SHE cells. We assessed cell division and death rates using flow cytometry and correlated cell division rates to the degree of confluence of cell cultures. The mean cell death rate was approximately equal to 1% of the average division rate. Arsenic did not induce immortalization or further mutations of SHE cells at concentrations of 2 microM and below, and chromium (3.6 microM) and lead (100 microM) had similar negative results. However, the growth of SHE cells was inhibited by 5.4 microM arsenic after a 2-day exposure, with cells becoming senescent after only 16 population doublings. In contrast, normal cells and cells exposed to lower arsenic concentrations grew normally for at least 30 population doublings. The biologically based model successfully predicted the growth of normal and arsenic-treated cells, as well as the senescence rates. Mechanisms responsible for inducing cellular senescence in SHE cells exposed to arsenic may help explain the apparent inability of arsenic to induce neoplasia in experimental animals. PMID:11748027
2010-01-01
Introduction Normal and neoplastic breast tissues are comprised of heterogeneous populations of epithelial cells exhibiting various degrees of maturation and differentiation. While cultured cell lines have been derived from both normal and malignant tissues, it remains unclear to what extent they retain similar levels of differentiation and heterogeneity as that found within breast tissues. Methods We used 12 reduction mammoplasty tissues, 15 primary breast cancer tissues, and 20 human breast epithelial cell lines (16 cancer lines, 4 normal lines) to perform flow cytometry for CD44, CD24, epithelial cell adhesion molecule (EpCAM), and CD49f expression, as well as immunohistochemistry, and in vivo tumor xenograft formation studies to extensively analyze the molecular and cellular characteristics of breast epithelial cell lineages. Results Human breast tissues contain four distinguishable epithelial differentiation states (two luminal phenotypes and two basal phenotypes) that differ on the basis of CD24, EpCAM and CD49f expression. Primary human breast cancer tissues also contain these four cellular states, but in altered proportions compared to normal tissues. In contrast, cultured cancer cell lines are enriched for rare basal and mesenchymal epithelial phenotypes, which are normally present in small numbers within human tissues. Similarly, cultured normal human mammary epithelial cell lines are enriched for rare basal and mesenchymal phenotypes that represent a minor fraction of cells within reduction mammoplasty tissues. Furthermore, although normal human mammary epithelial cell lines exhibit features of bi-potent progenitor cells they are unable to differentiate into mature luminal breast epithelial cells under standard culture conditions. Conclusions As a group breast cancer cell lines represent the heterogeneity of human breast tumors, but individually they exhibit increased lineage-restricted profiles that fall short of truly representing the intratumoral heterogeneity of individual breast tumors. Additionally, normal human mammary epithelial cell lines fail to retain much of the cellular diversity found in human breast tissues and are enriched for differentiation states that are a minority in breast tissues, although they do exhibit features of bi-potent basal progenitor cells. These findings suggest that collections of cell lines representing multiple cell types can be used to model the cellular heterogeneity of tissues. PMID:20964822
Wallace, Kedra; Cornelius, Denise C; Scott, Jeremy; Heath, Judith; Moseley, Janae; Chatman, Krystal; LaMarca, Babbette
2014-11-01
Preeclampsia is associated with oxidative stress, which is suspected to play a role in hypertension, placental ischemia, and fetal demise associated with the disease. Various cellular sources of oxidative stress, such as neutrophils, monocytes, and CD4(+) T cells have been suggested as culprits in the pathophysiology of preeclampsia. The objective of this study was to examine a role of circulating and placental CD4(+) T cells in oxidative stress in response to placental ischemia during pregnancy. CD4(+) T cells and oxidative stress were measured in preeclamptic and normal pregnant women, placental ischemic and normal pregnant rats, and normal pregnant recipient rats of placental ischemic CD4(+) T cells. Women with preeclampsia had significantly increased circulating (P=0.02) and placental CD4(+) T cells (P=0.0001); lymphocyte secretion of myeloperoxidase (P=0.004); and placental reactive oxygen species (P=0.0004) when compared with normal pregnant women. CD4(+) T cells from placental ischemic rats cause many facets of preeclampsia when injected into normal pregnant recipient rats on gestational day 13. On gestational day 19, blood pressure increased in normal pregnant recipients of placental ischemic CD4(+) T cells (P=0.002) compared with that in normal pregnant rats. Similar to preeclamptic patients, CD4(+) T cells from placental ischemic rats secreted significantly more myeloperoxidase (P=0.003) and induced oxidative stress in cultured vascular cells (P=0.003) than normal pregnant rat CD4(+)Tcells. Apocynin, a nicotinamide adenine dinucleotide phosphate inhibitor, attenuated hypertension and all oxidative stress markers in placental ischemic and normal pregnant recipient rats of placental ischemic CD4(+)Tcells (P=0.05). These data demonstrate an important role for CD4(+) T cells in mediating another factor, oxidative stress, to cause hypertension during preeclampsia. © 2014 American Heart Association, Inc.
Morrison, Stan J; Metzler, Donald R; Dwyer, Brian P
2002-05-01
Three treatment cells were operated at a site near Durango, CO. One treatment cell operated for more than 3 years. The treatment cells were used for passive removal of contamination from groundwater at a uranium mill tailings repository site. Zero-valent iron [Fe(0)] that had been powdered, bound with aluminosilicate and molded into plates was used as a reactive material in one treatment cell. The others used granular Fe(0) and steel wool. The treatment cells significantly reduced concentrations of As, Mn, Mo, Se, U, V and Zn in groundwater that flowed through it. Zero-valent iron [Fe(0)], magnetite (Fe3O4), calcite (CaCO3), goethite (FeOOH) and mixtures of contaminant-bearing phases were identified in the solid fraction of one treatment cell. A reaction progress approach was used to model chemical evolution of water chemistry as it reacted with the Fe(0). Precipitation of calcite, ferrous hydroxide [Fe(OH)2] and ferrous sulfide (FeS) were used to simulate observed changes in major-ion aqueous chemistry. The amount of reaction progress differed for each treatment cell. Changes in contaminant concentrations were consistent with precipitation of reduced oxides (UO2, V2O3), sulfides (As2S3, ZnS), iron minerals (FeSe2, FeMoO4) and carbonate (MnCO3). Formation of a free gas phase and precipitation of minerals contributed to loss of hydraulic conductivity in one treatment cell.
Schierbaum, Nicolas; Rheinlaender, Johannes; Schäffer, Tilman E
2017-06-01
Malignant transformation drastically alters the mechanical properties of the cell and its response to the surrounding cellular environment. We studied the influence of the physical contact between adjacent cells in an epithelial monolayer on the viscoelastic behavior of normal MCF10A, non-invasive cancerous MCF7, and invasive cancerous MDA-MB-231 human breast cells. Using an atomic force microscopy (AFM) imaging technique termed force clamp force mapping (FCFM) to record images of the viscoelastic material properties, we found that normal MCF10A cells are stiffer and have a lower fluidity at confluent than at sparse density. Contrarily, cancerous MCF7 and MDA-MB-231 cells do not stiffen and do not decrease their fluidity when progressing from sparse to confluent density. The behavior of normal MCF10A cells appears to be governed by the formation of stable cell-cell contacts, because their disruption with a calcium-chelator (EGTA) causes the stiffness and fluidity values to return to those at sparse density. In contrast, EGTA-treatment of MCF7 and MDA-MB-231 cells does not change their viscoelastic properties. Confocal fluorescence microscopy showed that the change of the viscoelastic behavior in MCF10A cells when going from sparse to confluent density is accompanied by a remodeling of the actin cytoskeleton into thick stress fiber bundles, while in MCF7 and MDA-MB-231 cells the actin cytoskeleton is only composed of thin and short fibers, regardless of cell density. While the observed behavior of normal MCF10A cells might be crucial for providing mechanical stability and thus in turn integrity of the epithelial monolayer, the dysregulation of this behavior in cancerous MCF7 and MDA-MB-231 cells is possibly a central aspect of cancer progression in the epithelium. We measured the viscoelastic properties of normal and cancerous human breast epithelial cells in different states of confluency using atomic force microscopy. We found that confluent normal cells are stiffer and have lower fluidity than sparse normal cells, which appears to be governed by the formation of cell-cell contacts. Contrarily, confluent cancer cells do not stiffen and not have a decreased fluidity compared to sparse cancer cells and their viscoelastic properties are independent of cell-cell contact formation. While the observed behavior of normal cells appears to be crucial for providing the mechanical stability and therefore the integrity of the epithelial monolayer, the dysregulation of this behavior in cancer cells might be a central aspect of early stage cancer progression and metastasis in the epithelium. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Passive microrheology of normal and cancer cells after ML7 treatment by atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyapunova, Elena, E-mail: lyapunova@icmm.ru; Ural Federal University, Kuibyishev Str. 48, Ekaterinburg, 620000; Nikituk, Alexander, E-mail: nas@icmm.ru
Mechanical properties of living cancer and normal thyroidal cells were investigated by atomic force microscopy (AFM). Cell mechanics was compared before and after treatment with ML7, which is known to reduce myosin activity and induce softening of cell structures. We recorded force curves with extended dwell time of 6 seconds in contact at maximum forces from 500 pN to 1 nN. Data were analyzed within different frameworks: Hertz fit was applied in order to evaluate differences in Young’s moduli among cell types and conditions, while the fluctuations of the cantilever in contact with cells were analyzed with both conventional algorithmsmore » (probability density function and power spectral density) and multifractal detrended fluctuation analysis (MF-DFA). We found that cancer cells were softer than normal cells and ML7 had a substantial softening effect on normal cells, but only a marginal one on cancer cells. Moreover, we observed that all recorded signals for normal and cancer cells were monofractal with small differences between their scaling parameters. Finally, the applicability of wavelet-based methods of data analysis for the discrimination of different cell types is discussed.« less
Lin, Lawrence; Pan, Yi; Hedayat, A S; Barnhart, Huiman X; Haber, Michael
2016-01-01
Total deviation index (TDI) captures a prespecified quantile of the absolute deviation of paired observations from raters, observers, methods, assays, instruments, etc. We compare the performance of TDI using nonparametric quantile regression to the TDI assuming normality (Lin, 2000). This simulation study considers three distributions: normal, Poisson, and uniform at quantile levels of 0.8 and 0.9 for cases with and without contamination. Study endpoints include the bias of TDI estimates (compared with their respective theoretical values), standard error of TDI estimates (compared with their true simulated standard errors), and test size (compared with 0.05), and power. Nonparametric TDI using quantile regression, although it slightly underestimates and delivers slightly less power for data without contamination, works satisfactorily under all simulated cases even for moderate (say, ≥40) sample sizes. The performance of the TDI based on a quantile of 0.8 is in general superior to that of 0.9. The performances of nonparametric and parametric TDI methods are compared with a real data example. Nonparametric TDI can be very useful when the underlying distribution on the difference is not normal, especially when it has a heavy tail.
The morphological classification of normal and abnormal red blood cell using Self Organizing Map
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Wulandari, F. S.; Faza, S.; Muchtar, M. A.; Siregar, I.
2018-02-01
Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used self-organizing map method to classify the normal and abnormal form of red blood cells in the digital image. The use of self-organizing map neural network method can be implemented to classify the normal and abnormal form of red blood cells in the input image with 93,78% accuracy testing.
The novel ependymin related gene UCC1 is highly expressed in colorectal tumor cells.
Nimmrich, I; Erdmann, S; Melchers, U; Chtarbova, S; Finke, U; Hentsch, S; Hoffmann, I; Oertel, M; Hoffmann, W; Müller, O
2001-04-10
Normal cells differ from malignant tumor cells in the transcription levels of many different genes. Two colorectal tumor cell lines were compared with a normal colorectal cell line by differential display reverse transcription PCR to screen for tumor cell specific differentially transcribed genes. By this strategy the upregulation of a novel gene was detected designated as 'upregulated in colorectal cancer gene-1' (UCC1). The UCC1 gene transcript level is increased in cultured tumor cells and in two out of three analyzed colorectal tumor tissue specimens compared to normal cultured cells and to corresponding normal tissue samples. Remarkably, the UCC1 protein shows significant sequence similarity to the highly divergent piscine glycoproteins termed ependymins which are synthesized by leptomeningeal fibroblasts and secreted into the cerebrospinal fluid.
Laser observations of the moon - Normal points for 1972
NASA Technical Reports Server (NTRS)
Shelus, P. J.; Mulholland, J. D.; Silverberg, E. C.
1975-01-01
The lunar laser observations taken at the McDonald Observatory during 1972 are presented in the form of compressed normal points, using the technique of an earlier paper. Refinements in the knowledge of the lunar motion have permitted corresponding increases in the ability to discriminate observations contaminated by equipment malfunctions; a list of amendments is given for the 1969-1971 data. The geometry of the telescope must be taken into account in the application of these data.
What`s normal?: Body condition in Great Lakes herring gulls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hebert, C.E.; Shutt, J.L.
1994-12-31
The Canadian Wildlife Service`s herring gull (Larus argentatus) surveillance program has demonstrated the usefulness of this species as a monitor of spatial and temporal trends in contaminant levels. However, the effects of environmental contaminants on gulls are difficult to distinguish from the effects of other anthropogenic stressors such as the introduction of exotic species, overfishing and habitat loss. To understand the relative importance of these factors in regulating the success of individual gulls and, hence, gull populations, the authors must first have a better understanding of what constitutes a ``normal`` bird. Improving the ability to differentiate between normal and abnormalmore » birds is crucial in any health assessment of Great Lakes gulls. Body condition has been shown to be an important measure of a bird`s ability to provide energy for egg production, migration etc. Numerous approaches have been used to assess condition, most of which required that the bird be sacrificed. In this study, the authors describe a nonlethal technique to quantify body condition in herring gulls. Multivariate statistics are used to quantify body size, relate body size to total mass and from that, determine relative body condition. Initially, body condition is assessed in gulls from a reference colony where reproductive success is normal and anthropogenic influences are limited. This reference population is then used as a baseline against which other gull populations are compared.« less
Guo, X; Ruiz, A; Rando, R R; Bok, D; Gudas, L J
2000-11-01
When exogenous [(3)H]retinol (vitamin A) was added to culture medium, normal human epithelial cells from the oral cavity, skin, lung and breast took up and esterified essentially all of the [(3)H]retinol within a few hours. As shown by [(3)H]retinol pulse-chase experiments, normal epithelial cells then slowly hydrolyzed the [(3)H]retinyl esters to [(3)H]retinol, some of which was then oxidized to [(3)H]retinoic acid (RA) over a period of several days. In contrast, cultured normal human fibroblasts and human umbilical vein endothelial cells (HUVEC) did not esterify significant amounts of [(3)H]retinol; this lack of [(3)H]retinol esterification was correlated with a lack of expression of lecithin:retinol acyltransferase (LRAT) transcripts in normal fibroblast and HUVEC strains. These results indicate that normal, differentiated cell types differ in their ability to esterify retinol. Human carcinoma cells (neoplastically transformed epithelial cells) of the oral cavity, skin and breast did not esterify much [(3)H]retinol and showed greatly reduced LRAT expression. Transcripts of the neutral, bile salt-independent retinyl ester hydrolase and the bile salt-dependent retinyl ester hydrolase were undetectable in all of the normal cell types, including the epithelial cells. These experiments suggest that retinoid-deficiency in the tumor cells could develop because of the lack of retinyl esters, a storage form of retinol.
Schultz, C J; Blanchette-Mackie, E J; Scow, R O
2000-02-01
Combined lipase deficiency (cld) is a recessive mutation in mice that causes a severe lack of lipoprotein lipase (LPL) and hepatic lipase (HL) activities, hyperlipemia, and death within 3 days after birth. Earlier studies showed that inactive LPL and HL were synthesized by cld/cld tissues and that LPL synthesized by cld/cld brown adipocytes was retained in their ER. We report here a study of HL in liver, adrenal, and plasma of normal newborn and cld/cld mice. Immunofluorescence studies showed HL was present in extracellular space, but not in cells, in liver and adrenal of both normal and cld/cld mice. When protein secretion was blocked with monensin, HL was retained intracellularly in liver cell cultures and in incubated adrenal tissues of both groups of mice. These findings demonstrated that HL was synthesized and secreted by liver and adrenal cells in normal newborn and cld/cld mice. HL activities in liver, adrenal, and plasma in cld/cld mice were very low, <8% of that in normal newborn mice, indicating that HL synthesized and secreted by cld/cld cells was inactive. Livers of both normal newborn and cld/cld mice synthesized LPL, but the level of LPL activity in cld/cld liver was very low, <9% of that in normal liver. Immunofluorescence studies showed that LPL was present intracellularly in liver of cld/cld mice, indicating that LPL was synthesized but not secreted by cld/cld liver cells. Immunofluorescent LPL was not found in normal newborn liver cells unless the cells were treated with monensin, thus demonstrating that normal liver cells synthesized and secreted LPL. Livers of both groups of mice contained an unidentified alkaline lipase activity which accounted for 34-54% of alkaline lipase activity in normal and 65% of that in cld/cld livers. Our findings indicate that liver and adrenal cells synthesized and secreted HL in both normal newborn and cld/cld mice, but the lipase was inactive in cld/cld mice. That cld/cld liver cells secreted inactive HL while retaining inactive LPL indicates that these closely related lipases were processed differently.
Grasman, K A; Fox, G A; Scanlon, P F; Ludwig, J P
1996-01-01
The objectives of study were to determine whether contaminant-associated immunosuppression occurs in prefledgling herring gulls and Caspian terns from the Great Lakes and to evaluate immunological biomarkers for monitoring health effects in wild birds. During 1992 to 1994, immunological responses and related variables were measured in prefledgling chicks at colonies distributed across a broad gradient of organochlorine contamination (primarily polychlorinated biphenyls), which was measured in eggs. The phytohemagglutinin skin test was used to assess T-lymphocyte function. In both species, there was a strong exposure-response relationship between organochlorines and suppressed T-cell-mediated immunity. Suppression was most severe (30-45%) in colonies in Lake Ontario (1992) and Saginaw Bay (1992-1994) for both species and in western Lake Erie (1992) for herring gulls. Both species exhibited biologically significant differences among sites in anti-sheep red blood cells antibody titers, but consistent exposure-response relationships with organochlorines were not observed. In Caspian terns and, to a lesser degree, in herring gulls, there was an exposure-response relationship between organochlorines and reduced plasma retinol (vitamin A). In 1992, altered White blood cell numbers were associated with elevated organochlorine concentrations in Caspian terns but not herring gulls. The immunological and hematological biomarkers used in this study revealed contaminant-associated health effects in wild birds. An epidemiological analysis strongly supported the hypothesis that suppression of T-cell-mediated immunity was associated with high perinatal exposure to persistent organochlorine contaminants. PMID:8880006
Zhang, Zhongyang; Hao, Ke
2015-11-01
Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity.
Zhang, Zhongyang; Hao, Ke
2015-01-01
Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity. PMID:26583378
Li, Z; Yang, Z B; Yang, W R; Wang, S J; Jiang, S Z; Wu, Y B
2012-10-01
The objectives of the present study were to investigate the toxicity of feed-borne Fusarium mycotoxins on organ weight, serum biochemistry, and immunological parameters of broiler chickens and to evaluate the efficacy of yeast cell wall adsorbent in preventing mycotoxin-induced adverse effects. In total, 300 one-day-old vaccinated (Marek's disease and infectious bronchitis) Arbor Acres broiler chickens (mixed sex) were randomly divided into 3 treatments (5 repetitions per treatment) and fed basal diet and naturally contaminated diets with or without yeast cell wall adsorbent. Treatments were control, naturally contaminated diet (NCD; aflatoxin, 102.08 mg/kg; zearalenone, 281.92 mg/kg; fumonisin, 5,874.38 mg/kg; deoxynivalenol, 2,038.96 mg/kg), and NCD + 2 g/kg of yeast cell wall adsorbent (NCDD). The test included 2 phases: d 0-21 and d 22-42. At 42 d, broilers fed contaminated diets without yeast cell wall adsorbent had higher (P < 0.05) serum albumin and higher relative weight of liver, bursa of Fabricius, and thymus, and greater splenic mRNA expression of IL-1β and IL-6 at 42 d compared with the control, but lower (P < 0.05) serum globulin at 42 d, IgA at 21 d, relative weight of spleen at 21 d, antibody titers of Newcastle disease at both 28 d and 42 d, and splenic mRNA expression of IFN-γ at 42 d were observed in the NCD treatment compared with control. Dietary addition of yeast cell wall adsorbent in the NCD treatment showed a positive protection effect on the relative weight of the liver and spleen at 21 d, relative weight of the bursa of Fabricius and thymus at 42 d, antibody titers of Newcastle disease at both 28 d and 42 d, and splenic mRNA expression of IL-1β, IL-6, and IFN-γ at 42 d. It is suggested that feeding a naturally contaminated diet for 42 d might result in a deleterious effect in broiler chickens, and addition of 2 g/kg of yeast cell wall enterosorbent can partly neutralize the detrimental effects of the naturally contaminated feed.
NASA Astrophysics Data System (ADS)
Hualong, Yu; Xiaorong, Liu
2017-04-01
Copper solvent extraction entrained and dissoluted organics (SX organics) in the raffinate during SX operation can contaminated chalcopyrite ores and influence bioleaching efficiency by raffinate recycling. The adsorption and bioleaching of A. ferrooxidans and L. ferriphilum with contaminated ores were investigated. The results showed that, A. ferrooxidans and L. ferriphilum cells could adsorb quickly on minerals, the adsorption rate on contaminated ores were 83% and 60%, respectively, larger than on uncontaminated ores. However, in the bioleaching by the two kinds of acid bacterias, contaminated ores presented a lower bioleaching efficiency.
Basso, Thiago Olitta; Gomes, Fernanda Sgarbosa; Lopes, Mario Lucio; de Amorim, Henrique Vianna; Eggleston, Gillian; Basso, Luiz Carlos
2014-01-01
Bacterial contamination during industrial yeast fermentation has serious economic consequences for fuel ethanol producers. In addition to deviating carbon away from ethanol formation, bacterial cells and their metabolites often have a detrimental effect on yeast fermentative performance. The bacterial contaminants are commonly lactic acid bacteria (LAB), comprising both homo- and heterofermentative strains. We have studied the effects of these two different types of bacteria upon yeast fermentative performance, particularly in connection with sugarcane-based fuel ethanol fermentation process. Homofermentative Lactobacillus plantarum was found to be more detrimental to an industrial yeast strain (Saccharomyces cerevisiae CAT-1), when compared with heterofermentative Lactobacillus fermentum, in terms of reduced yeast viability and ethanol formation, presumably due to the higher titres of lactic acid in the growth medium. These effects were only noticed when bacteria and yeast were inoculated in equal cell numbers. However, when simulating industrial fuel ethanol conditions, as conducted in Brazil where high yeast cell densities and short fermentation time prevail, the heterofermentative strain was more deleterious than the homofermentative type, causing lower ethanol yield and out competing yeast cells during cell recycle. Yeast overproduction of glycerol was noticed only in the presence of the heterofermentative bacterium. Since the heterofermentative bacterium was shown to be more deleterious to yeast cells than the homofermentative strain, we believe our findings could stimulate the search for more strain-specific antimicrobial agents to treat bacterial contaminations during industrial ethanol fermentation.
Meneghin, Maria Cristina; Bassi, Ana Paula Guarnieri; Codato, Carolina Brito; Reis, Vanda Renata; Ceccato-Antonini, Sandra Regina
2013-08-01
Dekkera bruxellensis is a multifaceted yeast present in the fermentative processes used for alcoholic beverage and fuel alcohol production - in the latter, normally regarded as a contaminant. We evaluated the fermentation and growth performance of a strain isolated from water in an alcohol-producing unit, in batch systems with/without cell recycling in pure and co-cultures with Saccharomyces cerevisiae. The ethanol resistance and aeration dependence for ethanol/acid production were verified. Ethanol had an effect on the growth of D. bruxellensis in that it lowered or inhibited growth depending on the concentration. Acid production was verified in agitated cultures either with glucose or sucrose, but more ethanol was produced with glucose in agitated cultures. Regardless of the batch system, low sugar consumption and alcohol production and expressive growth were found with D. bruxellensis. Despite a similar ethanol yield compared to S. cerevisiae in the batch system without cell recycling, ethanol productivity was approximately four times lower. However, with cell recycling, ethanol yield was almost half that of S. cerevisiae. At initial low cell counts of D. bruxellensis (10 and 1000 cells/ml) in co-cultures with S. cerevisiae, a decrease in fermentative efficiency and a substantial growth throughout the fermentative cycles were displayed by D. bruxellensis. Due to the peculiarity of cell repitching in Brazilian fermentation processes, D. bruxellensis is able to establish itself in the process, even when present in low numbers initially, substantially impairing bioethanol production due to the low ethanol productivity, in spite of comparable ethanol yields. Copyright © 2013 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.C.; Maher, V.M.; McCormich, J.J.
1991-09-01
Xeroderma pigmentosum (XP) variant patients show the clinical characteristics of the disease, with increased frequencies of skin cancer, but their cells have a normal, or nearly normal, rate of nucleotide excision repair of UV-induced DNA damage and are only slightly more sensitive than normal cells to the cytotoxic effect of UV radiation. However, they are significantly more sensitive to its mutagenic effect. To examine the mechanisms responsible for this hypermutability, the authors transfected an XP variant cell line with a UV-irradiated (at 254 nm) shuttle vector carrying the {sup F} gene as a target for mutations, allowed replication of themore » plasmid, determined the frequency and spectrum of mutations induced, and compared the results with those obtained previously when irradiated plasmids carrying the same target gene replicated in a normal cell line. The frequency of mutants increased linearly with dose, but with a slope 5 times steeper than that seen with normal cells. Sequence analysis of the {sup F} gene showed that 52 of 53 independent mutants generated in the XP variant cells contained base substitutions, with 62 of 64 of the substitutions involving a dipyrimidine.« less
DREDGED MATERIAL RECLAMATION AT THE JONES ISLAND CONFINED DISPOSAL FACILITY SITE CAPSULE
In this SITE demonstration, phytoremediation technology was applied to contaminated dredged materials from the Jones Island Confined Disposal Facility (CDF) located in Milwaukee Harbor, Wisconsin. The Jones Island CDF receives dredged materials from normal maintenance of Milwauke...
DREDGED MATERIAL RECLAMATION AT THE JONES ISLAND CONFINED DISPOSAL FACILITY - ITER
In this SITE demonstration, phytoremediation technology was applied to contaminated dredged materials from the Jones Island Confined Disposal Facility (CDF) located in Milwaukee Harbor, Wisconsin. The Jones Island CDF receives dredged materials from normal maintenance of Milwauke...
THE INFECTIVITY OF CRYPTOSPORIDIUM PARVUM IN HEALTHY VOLUNTEERS
Background. Small numbers of Cryptosporidium parvum oocysts can contaminate even treated drinking water, and ingestion of oocysts can cause diarrheal disease in normal as well as immunocompromised hosts. Since the number of organisms necessary to cause infection in humans is unkn...
Impact of Sodium Contamination in Tin Sulfide Thin-Film Solar Cells
Steinmann, Vera; Brandt, Riley E.; Chakraborty, Rupak; ...
2016-02-12
Empirical observations show that sodium(Na) is a benign contaminant in some thin-filmsolar cells. Here, we intentionally contaminate thermally evaporated tin sulfide (SnS)thin-films with sodium and measure the SnS absorber properties and solar cellcharacteristics. The carrier concentration increases from 2 × 10 16 cm -3 to 4.3 × 10 17 cm -3 in Na-doped SnSthin-films, when using a 13 nm NaCl seed layer, which is detrimental for SnS photovoltaic applications but could make Na-doped SnS an attractive candidate in thermoelectrics. We observed trends in carrier concentration and found that it is in good agreement with density functional theory calculations, which predictmore » an acceptor-type NaSn defect with low formation energy.« less
Liebson, H J; Marrack, P; Kappler, J
1982-10-01
The concanavalin A- (Con A) stimulated supernatant of normal spleen cells (normal Con A SN) was shown to contain a set of helper factors sufficient to allow T cell- and macrophage- (M phi) depleted murine splenic B cells to produce a plaque-forming cell response to the antigen sheep red blood cells (SRBC). The activity of normal Con A SN could be reconstituted by a mixture of three helper factor preparations. The first was the interleukin 2- (IL 2) containing Con A SN of the T cell hybridoma, FS6-14.13. The second was a normal Con A SN depleted of IL 2 by extended culture with T cell blasts from which the 30,000 to 50,000 m.w. factors were isolated (interleukin X, IL X). The third was a SN either from the M phi tumor cell line P388D1 or from normal M phi taken from Corynebacterium parvum-immune mice. The combination of all three helper factor preparations was required to equal the activity of normal Con A SN; however, the M phi SN had the least overall effect. The M phi SN and IL 2 had to be added at the initiation of the culture period for a maximal effect, but the IL X preparation was most effective when added 24 hr after the initiation of culture. These results indicate that at least three nonspecific helper factors contribute to the helper activity in normal Con A SN.
Tasho, R P; Shin, W T; Cho, J Y
2018-09-01
Plant-veterinary antibiotic interaction has been widely studied, however, to the best of our knowledge acclimatization studies with regard to changes in plant root metabolites has not been reported so far. The purpose of this study was to examine the changes in the metabolome of pea roots under antibiotic stress and their role in acclimatization. Pisum sativum L. was grown in soil contaminated with three commonly used veterinary antibiotics - kanamycin (KA), sulfamethazine (SA), and tetracycline (TC). In response to antibiotic stress, plants accumulated different types of low molecular weight compounds that provided protection from stress by contributing to ROS detoxification, protection of membrane integrity, efficient signaling, cell wall function, and cellular osmotic adjustment (glucose, galactose, myo-inositol, stigmasterol, octadecadienoic acid, l-proline). The concentration of amino acid, sugar, and triglyceride metabolites in KA and TC samples showed a dose-dependent biphasic (hormesis) fluctuation. This was mirrored in the metabolite abundance as well as the physiological attributes (mycorrhizal colonization, GST function, nutrient assimilation), which helped in the acclimatization without the loss of normal plant function. SA, on the other hand, had progressive toxic effects with increasing concentration. PCA revealed the differences to be due to SA treatments and in sterol and terpenoid metabolites. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Juan-Ying; Tang, Janet Yat Man; Jin, Ling; Escher, Beate I
2013-12-01
Bioavailable and bioaccessible fractions of sediment-associated contaminants are considered as better dose metrics for sediment-quality assessment than total concentrations. The authors applied exhaustive solvent extraction and nondepletive equilibrium sampling techniques to sediment samples collected along the Brisbane River in South East Queensland, Australia, which range from pristine environments to urban and industry-impacted areas. The wide range of chemicals expected prevents comprehensive chemical analysis, but a battery of cell-based bioassays sheds light on mixture effects of chemicals in relation to various modes of toxic action. Toxic effects were expressed as bioanalytical equivalent concentrations (BEQs) normalized to the organic carbon content of each sediment sample. Bioanalytical equivalent concentrations from exhaustive extraction agreed fairly well with values estimated from polydimethylsiloxane passive sampling extracts via the constant organic carbon to polydimethylsiloxane partition coefficient. Agreement was best for bioassays indicative of photosynthesis inhibition and oxidative stress response and discrepancy within a factor of 3 for the induction of the aryl hydrocarbon receptor. For nonspecific cytotoxicity, BEQ from exhaustive extraction were 1 order of magnitude higher than values from equilibrium sampling, possibly because of coextraction of bioactive natural organic matter that led to an overestimation of toxicity in the exhaustive extracts, which suggests that passive sampling is better suited in combination with bioanalytical assessment than exhaustive extraction. © 2013 SETAC.
Microfabricated alkali vapor cell with anti-relaxation wall coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straessle, R.; Pétremand, Y.; Briand, D.
2014-07-28
We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantlymore » lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.« less
Kono, Ken; Takada, Nozomi; Yasuda, Satoshi; Sawada, Rumi; Niimi, Shingo; Matsuyama, Akifumi; Sato, Yoji
2015-03-01
The analysis of in vitro cell senescence/growth after serial passaging can be one of ways to show the absence of immortalized cells, which are frequently tumorigenic, in human cell-processed therapeutic products (hCTPs). However, the performance of the cell growth analysis for detection of the immortalized cellular impurities has never been evaluated. In the present study, we examined the growth rates of human mesenchymal stem cells (hMSCs, passage 5 (P = 5)) contaminated with various doses of HeLa cells, and compared with that of hMSCs alone. The growth rates of the contaminated hMSCs were comparable to that of hMSCs alone at P = 5, but significantly increased at P = 6 (0.1% and 0.01% HeLa) or P = 7 (0.001% HeLa) within 30 days. These findings suggest that the cell growth analysis is a simple and sensitive method to detect immortalized cellular impurities in hCTPs derived from human somatic cells. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Smith, R.L.; Harvey, R.W.; LeBlanc, D.R.
1991-01-01
Vertical gradients of selected chemical constituents, bacterial populations, bacterial activity and electron acceptors were investigated for an unconfined aquifer contaminated with nitrate and organic compounds on Cape Cod, Massachusetts, U.S.A. Fifteen-port multilevel sampling devices (MLS's) were installed within the contaminant plume at the source of the contamination, and at 250 and 2100 m downgradient from the source. Depth profiles of specific conductance and dissolved oxygen at the downgradient sites exhibited vertical gradients that were both steep and inversely related. Narrow zones (2-4 m thick) of high N2O and NH4+ concentrations were also detected within the contaminant plume. A 27-fold change in bacterial abundance; a 35-fold change in frequency of dividing cells (FDC), an indicator of bacterial growth; a 23-fold change in 3H-glucose uptake, a measure of heterotrophic activity; and substantial changes in overall cell morphology were evident within a 9-m vertical interval at 250 m downgradient. The existence of these gradients argues for the need for closely spaced vertical sampling in groundwater studies because small differences in the vertical placement of a well screen can lead to incorrect conclusions about the chemical and microbiological processes within an aquifer.Vertical gradients of selected chemical constituents, bacterial populations, bacterial activity and electron acceptors were investigated for an unconfined aquifer contaminated with nitrate and organic compounds on Cape Cod, Massachusetts, USA. Fifteen-port multilevel sampling devices (MLS's) were installed within the contaminant plume at the source of the contamination, and at 250 and 2100 m downgradient from the source. Depth profiles of specific conductance and dissolved oxygen at the downgradient sites exhibited vertical gradients that were both steep and inversely related. Narrow zones (2-4 m thick) of high N2O and NH4+ concentrations were also detected within the contaminant plume. A 27-fold change in bacterial abundance; a 35-fold change in frequency of dividing cells (FDC), an indicator of bacterial growth; a 23-fold change in 3H-glucose uptake, a measure of heterotrophic activity; and substantial changes in overall cell morphology were evident within a 9-m vertical interval at 250 m downgradient. The existence of these gradients argues for the need for closely spaced vertical sampling in ground-water studies because small differences in the vertical placement of a well screen can lead to incorrect conclusions about the chemical and microbiological processes within an aquifer.
NASA Astrophysics Data System (ADS)
Zhao, Xueqin; Zhong, Yunxin; Ye, Ting; Wang, Dajing; Mao, Bingwei
2015-12-01
The mechanical properties of cells are considered promising biomarkers for the early diagnosis of cancer. Recently, atomic force microscopy (AFM)-based nanoindentation technology has been utilized for the examination of cell cortex mechanics in order to distinguish malignant cells from normal cells. However, few attempts to evaluate the biomechanical properties of cells have focused on the quantification of the non-homogeneous longitudinal elasticity of cellular structures. In the present study, we applied a variation of the method of Carl and Schillers to investigate the differences between longitudinal elasticity of human cervical squamous carcinoma cells (CaSki) and normal cervical epithelial cells (CRL2614) using AFM. The results reveal a three-layer heterogeneous structure in the probing volume of both cell types studied. CaSki cells exhibited a lower whole-cell stiffness and a softer nuclei zone compared to the normal counterpart cells. Moreover, a better differentiated cytoskeleton was found in the inner cytoplasm/nuclei zone of the normal CRL2614 cells, whereas a deeper cytoskeletal distribution was observed in the probing volume of the cancerous counterparts. The sensitive cortical panel of CaSki cells, with a modulus of 0.35~0.47 kPa, was located at 237~225 nm; in normal cells, the elasticity was 1.20~1.32 kPa at 113~128 nm. The present improved method may be validated using the conventional Hertz-Sneddon method, which is widely reported in the literature. In conclusion, our results enable the quantification of the heterogeneous longitudinal elasticity of cancer cells, in particular the correlation with the corresponding depth. Preliminary results indicate that our method may potentially be applied to improve the detection of cancerous cells and provide insights into the pathophysiology of the disease.
On the metal tolerance and resilience capacity of Helichrysum italicum G. Don growing on mine soils
NASA Astrophysics Data System (ADS)
Maleci, Laura; Tani, Corrado; Bini, Claudio; Wahsha, Mohammad
2016-04-01
Heavy metal accumulation produces significant physiological and biochemical responses in vascular plants. Plants growing on abandoned mine sites are of particular interest, since they are genetically tolerant to high metal concentrations. In this work we examined the effects of heavy metals (HM) on the morphology of Helichrysum italicum growing on mine soils, with the following objectives: to determine the fate of HM within the soil-plant system; to highlight morphological modifications at anatomical and cytological level; to ascertain the plant tolerance to heavy metals, and their resilience capacity. Wild specimens of Helichrysum italicum, with their soil clod, were gathered from sites with different contamination levels by heavy metals (Cd, Cu, Fe, Pb, Zn) in the abandoned Niccioleta mine (Tuscany, Italy). Plants were brought to the botanical laboratory of the University of Florence, and appeared macroscopically not affected by toxic signals (e.g. reduced growth, leaf necrosis) induced by soil HM concentration. Leaves and roots taken at the same growing season were observed by light microscopy (LM) and transmission electron microscopy (TEM). Light microscopy observations show a clear difference in the cell organization of not-contaminated and contaminated samples. In particular, the secreting trichomes, which are responsible for the characteristic flavour of the plant, present a different morphology in the polluted specimens with respect to the not-polluted ones. Indeed, the latter present the typical trichomes of the Asteraceae family, with two lines of cells bearing the secretion accumulated on the apical cuticular space. Trichomes of the polluted plants, instead, present a completely different morphology, with a stalk of 3-4 cells and a large secreting apical cell (i.e. they are capitate hairs). Samples from contaminated sites, moreover, present a palisade parenchyma less organized, and a reduction of leaf thickness proportional to HM concentration. The poor structural organisations, and the reduced foliar thickness of the contaminated plants, are related to soil contamination. A gradual restoration of cell organization suggests that somewhat resilience occurred in plants. Moreover, the presence of stress-tolerant mycorrhizal fungi could contribute to reduce metal toxicity. The resilience capacity suggests that Helichrysum italicum could be a useful species in remediation projects. Keywords: Heavy metals Mine soils Plant morphology Helichrysum italicum Ultrastructure
NASA Technical Reports Server (NTRS)
Goepfert, T. M.; McCarthy, M.; Kittrell, F. S.; Stephens, C.; Ullrich, R. L.; Brinkley, B. R.; Medina, D.
2000-01-01
Mammary epithelial cells from p53 null mice have been shown recently to exhibit an increased risk for tumor development. Hormonal stimulation markedly increased tumor development in p53 null mammary cells. Here we demonstrate that mammary tumors arising in p53 null mammary cells are highly aneuploid, with greater than 70% of the tumor cells containing altered chromosome number and a mean chromosome number of 56. Normal mammary cells of p53 null genotype and aged less than 14 wk do not exhibit aneuploidy in primary cell culture. Significantly, the hormone progesterone, but not estrogen, increases the incidence of aneuploidy in morphologically normal p53 null mammary epithelial cells. Such cells exhibited 40% aneuploidy and a mean chromosome number of 54. The increase in aneuploidy measured in p53 null tumor cells or hormonally stimulated normal p53 null cells was not accompanied by centrosome amplification. These results suggest that normal levels of progesterone can facilitate chromosomal instability in the absence of the tumor suppressor gene, p53. The results support the emerging hypothesis based both on human epidemiological and animal model studies that progesterone markedly enhances mammary tumorigenesis.
Hayflick, L
1979-07-01
Cultured normal human and animal cells are predestinued to undergo irreversible functional decrements that mimick age changes in the whole organism. When normal human embryonic fibroblasts are cultured in vitro, 50 +/- 10 population doublings occur. This maximum potential is diminished in cells derived from older donors and appears to be inversely proportional to their age. The 50 population doubling limit can account for all cells produced during a lifetime. The limitation on doubling potential of cultured normal cells is also expressed in vivo when serial transplants are made. There may be a direct correlation between the mean maximum life spans of several species and the population doubling potential of their cultured cells. A plethora of functional decrements occur in cultured normal cells as they approach their maximum division capability. Many of these decrements are similar to those occurring in intact animals as they age. We have concluded that these functional decrements expressed in vitro, rather than cessation of cell division, are the essential contributors to age changes in intact animals. Thus, the study of events leading to functional losses in cultured normal cells may provide useful insights into the biology of aging.
Anaerobic U(IV) Bio-oxidation and the Resultant Remobilization of Uranium in Contaminated Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, John D.
2005-06-01
A proposed strategy for the remediation of uranium (U) contaminated sites is based on immobilizing U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Due to the use of nitric acid in the processing of nuclear fuels, nitrate is often a co-contaminant found in many of the environments contaminated with uranium. Recent studies indicate that nitrate inhibits U(VI) reduction in sediment slurries. However, the mechanism responsible for the apparent inhibition of U(VI) reduction is unknown, i.e. preferential utilization of nitrate as an electron acceptor, direct biological oxidation of U(IV) coupled to nitrate reduction,more » and/or abiotic oxidation by intermediates of nitrate reduction. Recent studies indicates that direct biological oxidation of U(IV) coupled to nitrate reduction may exist in situ, however, to date no organisms have been identified that can grow by this metabolism. In an effort to evaluate the potential for nitrate-dependent bio-oxidation of U(IV) in anaerobic sedimentary environments, we have initiated the enumeration of nitrate-dependent U(IV) oxidizing bacteria. Sediments, soils, and groundwater from uranium (U) contaminated sites, including subsurface sediments from the NABIR Field Research Center (FRC), as well as uncontaminated sites, including subsurface sediments from the NABIR FRC and Longhorn Army Ammunition Plant, Texas, lake sediments, and agricultural field soil, sites served as the inoculum source. Enumeration of the nitrate-dependent U(IV) oxidizing microbial population in sedimentary environments by most probable number technique have revealed sedimentary microbial populations ranging from 9.3 x 101 - 2.4 x 103 cells (g sediment)-1 in both contaminated and uncontaminated sites. Interestingly uncontaminated subsurface sediments (NABIR FRC Background core FB618 and Longhorn Texas Core BH2-18) both harbored the most numerous nitrate-dependent U(IV) oxidizing population 2.4 x 103 cells (g sediment)-1. The nitrate-dependent U(IV) oxidizing microbial population in groundwaters is less numerous ranging from 0 cells mL-1 (Well FW300, Uncontaminated Background NABIR FRC) to 4.3 x 102 cells mL-1 (Well TPB16, Contaminated Area 2 NABIR FRC). The presence of nitrate-dependent U(IV) oxidizing bacteria supports our hypothesis that bacteria capable of anaerobic U(IV) oxidation are ubiquitous and indigenous to sedimentary and groundwater environments.« less
Groundwater microbiological quality in Canadian drinking water municipal wells.
Locas, Annie; Barthe, Christine; Margolin, Aaron B; Payment, Pierre
2008-06-01
To verify previous conclusions on the use of bacterial indicators suggested in regulations and to investigate virological quality of groundwater, a 1-year study was undertaken on groundwater used as a source of drinking water in 3 provinces in Canada. Raw water from 25 municipal wells was sampled during a 1-year period for a total of 167 samples. Twenty-three sites were selected on the basis of their excellent historical bacteriological water quality data, and 2 sites with known bacteriological contamination were selected as positive controls. Water samples were analyzed for general water quality indicators (aerobic endospores, total coliforms), fecal indicators (Escherichia coli, enterococci, somatic and male-specific coliphages), total culturable human enteric viruses (determined by cell culture and immunoperoxidase), noroviruses (analyzed by reverse-transcriptase -- polymerase chain reaction (RT-PCR)), adenovirus types 40 and 41 (analyzed by integrated cell culture (ICC) - PCR), and enteroviruses and reoviruses types 1, 2, and 3 (analyzed by ICC-RT-PCR). General water quality indicators were found very occasionally at the clean sites but were frequently present at the 2 contaminated sites. Only one of 129 samples from the 23 clean sites was positive for enterococci. These results confirm the value of raw water quality historical data to detect source water contamination affecting wells that are vulnerable. Samples from the 2 contaminated sites confirmed the frequent presence of fecal indicators: E. coli was found in 20/38 samples and enterococci in 12/38 samples. Human enteric viruses were not detected by cell culture on MA-104 cells nor by immunoperoxidase detection in any sample from the clean sites but were found at one contaminated site. By ICC-RT-PCR and ICC-PCR, viruses were found by cytopathic effect in one sample from a clean site and they were found in 3 samples from contaminated sites. The viruses were not detected by the molecular methods but were confirmed as picornaviruses by electron microscopy. Noroviruses were not detected in any samples. The results obtained reinforce the value of frequent sampling of raw water using simple parameters: sampling for total coliforms and E. coli remains the best approach to detect contamination of source water by fecal pollutants and accompanying pathogens. The absence of total coliforms at a site appears to be a good indication of the absence of human enteric viruses.
Kalathil, Shafeer; Khan, Mohammad Mansoob; Lee, Jintae; Cho, Moo Hwan
2013-11-01
Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial electrolysis cells, where they act as living bioanode or biocathode catalysts. Recently, it was reported that EABs can be used to synthesize metal nanoparticles and metal nanocomposites. The EAB-mediated synthesis of metal and metal-semiconductor nanocomposites is expected to provide a new avenue for the greener synthesis of nanomaterials with high efficiency and speed than other synthetic methods. This review covers the general introduction of EABs, as well as the applications of EABs in BESs, and the production of bio-hydrogen, high value chemicals and bio-inspired nanomaterials. Copyright © 2013 Elsevier Inc. All rights reserved.
Fanta, Edith; Rios, Flávia Sant'Anna; Romão, Silvia; Vianna, Ana Cristina Casagrande; Freiberger, Sandra
2003-02-01
The effects of contamination, through water or food, of a sublethal dose of the organophosphate methyl parathion were analyzed in tissues that are responsible for absorption (gills, intestine) and metabolism (liver), in the freshwater fish Corydoras paleatus. In gill respiratory lamellae, epithelial hyperplasia, edema, and detachment occurred, diminishing sooner after contamination by food than after contamination through water. In the intestine, lipoid vacuolization of enterocytes, apical cytoplasm, and an increase in goblet cell activity occurred mainly after ingestion of contaminated food. The liver exhibited cloudy swelling, bile stagnation, focal necrosis, atrophy, and vacuolization after contamination through both absorption routes, the highest degeneration being between T(8) and T(24). Metabolic processes that depend on liver function were equally impaired by the two routes of contamination, but secondary effects vary with gill and intestine pathologies as a consequence of water and food contamination, respectively. Therefore, a "safe" sublethal dose of methyl parathion causes serious health problems in C. paleatus.
NASA Astrophysics Data System (ADS)
Palmieri, Benoit; Bresler, Yony; Wirtz, Denis; Grant, Martin
2015-07-01
We propose a multiscale model for monolayer of motile cells that comprise normal and cancer cells. In the model, the two types of cells have identical properties except for their elasticity; cancer cells are softer and normal cells are stiffer. The goal is to isolate the role of elasticity mismatch on the migration potential of cancer cells in the absence of other contributions that are present in real cells. The methodology is based on a phase-field description where each cell is modeled as a highly-deformable self-propelled droplet. We simulated two types of nearly confluent monolayers. One contains a single cancer cell in a layer of normal cells and the other contains normal cells only. The simulation results demonstrate that elasticity mismatch alone is sufficient to increase the motility of the cancer cell significantly. Further, the trajectory of the cancer cell is decorated by several speed “bursts” where the cancer cell quickly relaxes from a largely deformed shape and consequently increases its translational motion. The increased motility and the amplitude and frequency of the bursts are in qualitative agreement with recent experiments.
Characterization and Separation of Cancer Cells with a Wicking Fiber Device.
Tabbaa, Suzanne M; Sharp, Julia L; Burg, Karen J L
2017-12-01
Current cancer diagnostic methods lack the ability to quickly, simply, efficiently, and inexpensively screen cancer cells from a mixed population of cancer and normal cells. Methods based on biomarkers are unreliable due to complexity of cancer cells, plasticity of markers, and lack of common tumorigenic markers. Diagnostics are time intensive, require multiple tests, and provide limited information. In this study, we developed a novel wicking fiber device that separates cancer and normal cell types. To the best of our knowledge, no previous work has used vertical wicking of cells through fibers to identify and isolate cancer cells. The device separated mouse mammary tumor cells from a cellular mixture containing normal mouse mammary cells. Further investigation showed the device separated and isolated human cancer cells from a heterogeneous mixture of normal and cancerous human cells. We report a simple, inexpensive, and rapid technique that has potential to identify and isolate cancer cells from large volumes of liquid samples that can be translated to on-site clinic diagnosis.
21 CFR 864.2360 - Mycoplasma detection media and components.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products... microbial contaminant in cell cultures. (b) Classification. Class I (general controls). These devices are...
Sardesai, Varda S.; Shafiee, Abbas; Fisk, Nicholas M.
2017-01-01
Abstract Human placenta is rich in mesenchymal stem/stromal cells (MSC), with their origin widely presumed fetal. Cultured placental MSCs are confounded by a high frequency of maternal cell contamination. Our recent systematic review concluded that only a small minority of placental MSC publications report fetal/maternal origin, and failed to discern a specific methodology for isolation of fetal MSC from term villi. We determined isolation conditions to yield fetal and separately maternal MSC during ex vivo expansion from human term placenta. MSCs were isolated via a range of methods in combination; selection from various chorionic regions, different commercial media, mononuclear cell digest and/or explant culture. Fetal and maternal cell identities were quantitated in gender‐discordant pregnancies by XY chromosome fluorescence in situ hybridization. We first demonstrated reproducible maternal cell contamination in MSC cultures from all chorionic anatomical locations tested. Cultures in standard media rapidly became composed entirely of maternal cells despite isolation from fetal villi. To isolate pure fetal cells, we validated a novel isolation procedure comprising focal dissection from the cotyledonary core, collagenase/dispase digestion and explant culture in endothelial growth media that selected, and provided a proliferative environment, for fetal MSC. Comparison of MSC populations within the same placenta confirmed fetal to be smaller, more osteogenic and proliferative than maternal MSC. We conclude that in standard media, fetal chorionic villi‐derived MSC (CV‐MSC) do not grow readily, whereas maternal MSC proliferate to result in maternal overgrowth during culture. Instead, fetal CV‐MSCs require isolation under specific conditions, which has implications for clinical trials using placental MSC. Stem Cells Translational Medicine 2017;6:1070–1084 PMID:28205414
Detection of microbial contamination in platelets
NASA Astrophysics Data System (ADS)
Berg, Tracy L.; Leparc, German; Huffman, Debra E.; Gennaccaro, Angela L.; Garcia-Lopez, Alicia; Klungness, Greta; Stephans, Christie; Garcia-Rubio, Luis H.
2005-03-01
In the United States, approximately 100 patients develop fatal sepsis associated with platelet transfusions every year. Current culture methods take 24-48 hours to acquire results, which in turn decrease the shelf life of platelets. Many of the microorganisms that contaminate platelets can replicate easily at room temperature, which is the necessary storage temperature to keep platelets functional. Therefore, there is a need for in-situ quality control assessment of the platelet quality. For this purpose, a real time spectrophotometric technique has been developed. The Spectral Acquisition Processing Detection (SAPD) method, comprised of a UV-vis spectrophotometer and modeling algorithms, is a rapid method that can be performed prior to platelet transfusion to decrease the risk of bacterial infection to patients. The SAPD method has been used to determine changes in cell suspensions, based on size, shape, chemical composition and internal structure. Changes in these cell characteristics can in turn be used to determine microbial contamination, platelet aging and other physiologic changes. Detection limits of this method for platelet suspensions seeded with bacterial contaminants were identified to be less than 100 cfu/ml of sample. Bacterial counts below 1000 cfu/ml are not considered clinically significant. The SAPD method can provide real-time identification of bacterial contamination of platelets affording patients an increased level of safety without causing undue strain on laboratory budgets or personnel while increasing the time frame that platelets can be used by dramatically shortening contaminant detection time.
Assessment of the contamination potentials of some foodborne bacteria in biofilms for food products.
Adetunji, Victoria O; Adedeji, Adeyemi O; Kwaga, Jacob
2014-09-01
To assess biofilms formed by different bacterial strains on glass slides, and changes in biofilm mass and biofilm-associated cell populations after brief contacts between biofilms and either media agar or food products. Two Listeria monocytogenes and Escherichia coli (E. coli) strains and a single Staphylococcus aureus (S. aureus) strain were inoculated separately in tryptic soy broth containing glass coupons incubated for 24, 48 or 72 h at 37 °C. The biofilms formed by individual bacterial strains and biofilm-associated cell populations were determined. Biofilms were subsequently allowed to have brief contacts (1-3 times), through gentle touching, with either agar, meat or soft white cheese (2 cm(3)). Changes in biofilm mass on glass slides and cell populations embedded in biofilms were quantified. A nonpathogenic E. coli formed more biofilms than an E. coli O157:H7 strain. Biofilms formed by S. aureus and Listeria monocytogenes were essentially similar. The biofilm mass increased as incubation time increased within 48 h of incubation and was not positively correlated with cellulose production. Biofilm mass at 48 and 72 h of incubation was not significantly different. More frequent contacts with agar or foods did not remove more biofilms or biofilm-associated cells from glass slides. More S. aureus biofilms were removed followed by Listeria and E. coli biofilms. Mean contamination of agar or food models was 0.00 to 7.65 log CFU/cm(2). Greater contaminations in cell populations were observed with S. aureus and Listeria biofilms. The results provide a clearer assessment of contaminating potential of foods that comes in contact with them. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Hydrogen Generation Via Fuel Reforming
NASA Astrophysics Data System (ADS)
Krebs, John F.
2003-07-01
Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.
Zhang, Liyuan; Ma, Qiugang; Ma, Shanshan; Zhang, Jianyun; Jia, Ru; Ji, Cheng; Zhao, Lihong
2016-12-22
Bacillus subtilis ANSB060 isolated from fish gut is very effective in detoxifying aflatoxins in feed and feed ingredients. The purpose of this research was to investigate the effects of B. subtilis ANSB060 on growth performance, body antioxidant functions, and aflatoxin residues in ducks fed moldy maize naturally contaminated with aflatoxins. A total of 1500 18-d-old male Cherry Valley ducks with similar body weight were randomly assigned to five treatments with six replicates of 50 ducks per repeat. The experiment design consisted of five dietary treatments labeled as C0 (basal diet containing 60% normal maize), M0 (basal diet containing 60% moldy maize contaminated with aflatoxins substituted for normal maize), M500, M1000, and M2000 (M0 +500, 1000 or 2000 g/t aflatoxin biodegradation preparation mainly consisted of B. subtilis ANSB060). The results showed that ducks fed 22.44 ± 2.46 μg/kg of AFB₁ (M0) exhibited a decreasing tendency in average daily gain (ADG) and total superoxide dismutase (T-SOD) activity in serum, and T-SOD and glutathione peroxidase (GSH-Px) activities in the liver significantly decreased along with the appearance of AFB₁ and AFM₁ compared with those in Group C0. The supplementation of B. subtilis ANSB060 into aflatoxin-contaminated diets increased the ADG of ducks ( p > 0.05), significantly improved antioxidant enzyme activities, and reduced aflatoxin accumulation in duck liver. In conclusion, Bacillus subtilis ANSB060 in diets showed an ameliorating effect to duck aflatoxicosis and may be a promising feed additive.
Stem cells are dispensable for lung homeostasis but restore airways after injury.
Giangreco, Adam; Arwert, Esther N; Rosewell, Ian R; Snyder, Joshua; Watt, Fiona M; Stripp, Barry R
2009-06-09
Local tissue stem cells have been described in airways of the lung but their contribution to normal epithelial maintenance is currently unknown. We therefore developed aggregation chimera mice and a whole-lung imaging method to determine the relative contributions of progenitor (Clara) and bronchiolar stem cells to epithelial maintenance and repair. In normal and moderately injured airways chimeric patches were small in size and not associated with previously described stem cell niches. This finding suggested that single, randomly distributed progenitor cells maintain normal epithelial homeostasis. In contrast we found that repair following severe lung injury resulted in the generation of rare, large clonal cell patches that were associated with stem cell niches. This study provides evidence that epithelial stem cells are dispensable for normal airway homeostasis. We also demonstrate that stem cell activation and robust clonal cellular expansion occur only during repair from severe lung injury.
Hope, Kristin J; Jin, Liqing; Dick, John E
2004-07-01
Emerging evidence suggests cancer stem cells sustain neoplasms; however, little is understood of the normal cell initially targeted and the resultant cancer stem cells. We show here, by tracking individual human leukemia stem cells (LSCs) in nonobese diabetic-severe combined immunodeficiency mice serially transplanted with acute myeloid leukemia cells, that LSCs are not functionally homogeneous but, like the normal hematopoietic stem cell (HSC) compartment, comprise distinct hierarchically arranged LSC classes. Distinct LSC fates derived from heterogeneous self-renewal potential. Some LSCs emerged only in recipients of serial transplantation, indicating they divided rarely and underwent self-renewal rather than commitment after cell division within primary recipients. Heterogeneity in LSC self-renewal potential supports the hypothesis that they derive from normal HSCs. Furthermore, normal developmental processes are not completely abolished during leukemogenesis. The existence of multiple stem cell classes shows the need for LSC-targeted therapies.
Atomic force microscopy studies on cellular elastic and viscoelastic properties.
Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao
2018-01-01
In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young's modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young's modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.
Knight, B L; Patel, D D; Soutar, A K
1983-01-01
Human blood monocytes cultured in medium containing 20% whole serum showed the greatest activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and [14C]acetate incorporation into non-saponifiable lipids around the 7th day after seeding, the period of greatest growth. Although there was enough low-density lipoprotein (LDL) in the medium to saturate the LDL receptors that were expressed by normal cells at that time, HMG-CoA reductase activity and acetate incorporation were as high in normal cells as in cells from familial-hypercholesterolaemic (FH) patients. Both the addition of extra LDL, which interacted with the cells by non-saturable processes, and receptor-mediated uptake of acetylated LDL significantly reduced reductase activity and increased incorporation of [14C]oleate into cholesteryl esters in normal cells and cells from FH patients ('FH cells'), and reduced the expression of LDL receptors in normal cells. Pre-incubation for 20h in lipoprotein-deficient medium apparently increased the number of LDL receptors expressed by normal cells but reduced the activity of HMG-CoA reductase in both normal and FH cells. During subsequent incubations the same rate of degradation of acetylated LDL and of non-saturable degradation of LDL by FH cells was associated with the same reduction in HMG-CoA reductase activity, although LDL produced a much smaller stimulation of oleate incorporation into cholesteryl esters. In normal cells pre-incubated without lipoproteins, receptor-mediated uptake of LDL could abolish reductase activity and the expression of LDL receptors. The results suggested that in these cells, receptor-mediated uptake of LDL might have a greater effect on reductase activity and LDL receptors than the equivalent uptake of acetylated LDL. It is proposed that endogenous synthesis is an important source of cholesterol for growth of normal cells, and that the site at which cholesterol is deposited in the cells may determine the nature and extent of the metabolic events that follow. PMID:6305342
Hosokawa, Masahito; Nishikawa, Yohei; Kogawa, Masato; Takeyama, Haruko
2017-07-12
Massively parallel single-cell genome sequencing is required to further understand genetic diversities in complex biological systems. Whole genome amplification (WGA) is the first step for single-cell sequencing, but its throughput and accuracy are insufficient in conventional reaction platforms. Here, we introduce single droplet multiple displacement amplification (sd-MDA), a method that enables massively parallel amplification of single cell genomes while maintaining sequence accuracy and specificity. Tens of thousands of single cells are compartmentalized in millions of picoliter droplets and then subjected to lysis and WGA by passive droplet fusion in microfluidic channels. Because single cells are isolated in compartments, their genomes are amplified to saturation without contamination. This enables the high-throughput acquisition of contamination-free and cell specific sequence reads from single cells (21,000 single-cells/h), resulting in enhancement of the sequence data quality compared to conventional methods. This method allowed WGA of both single bacterial cells and human cancer cells. The obtained sequencing coverage rivals those of conventional techniques with superior sequence quality. In addition, we also demonstrate de novo assembly of uncultured soil bacteria and obtain draft genomes from single cell sequencing. This sd-MDA is promising for flexible and scalable use in single-cell sequencing.
Zhao, Fu-Jun; Han, Bang-Min; Yu, Sheng-Qiang; Xia, Shu-Jie
2009-01-01
This study was designed to investigate the different involvements of prostatic stromal cells from the normal transitional zone (TZ) or peripheral zone (PZ) in the carcinogenesis of prostate cancer (PCa) epithelial cells (PC-3) in vitro and in vivo co-culture models. Ultra-structures and gene expression profiles of primary cultures of human prostatic stromal cells from the normal TZ or PZ were analyzed by electron microscopy and microarray analysis. In vitro and in vivo co-culture models composed of normal TZ or PZ stromal cells and human PCa PC-3 cells were established. We assessed tumor growth and weight in the in vivo nude mice model. There are morphological and ultra-structural differences in stromal cells from TZ and PZ of the normal prostate. In all, 514 differentially expressed genes were selected by microarray analysis; 483 genes were more highly expressed in stromal cells from TZ and 31 were more highly expressed in those from PZ. Co-culture with PZ stromal cells and transforming growth factor-β1 (TGF-β1) increased the tumor growth of PC-3 cells in vitro and in vivo, as well as Bcl-2 expression. On the other hand, stromal cells of TZ suppressed PC-3 cell tumor growth in the mouse model. We conclude that ultra-structures and gene expression differ between the stromal cells from TZ or PZ of the normal prostate, and stroma–epithelium interactions from TZ or PZ might be responsible for the distinct zonal localization of prostate tumor formation. PMID:19122679
Garg, Swati; Madkaikar, Manisha
2013-01-01
Hematopoietic stem cells are of therapeutic interest to the clinicians and researchers due to their promising assistance in management of malignant and inherited hematological conditions. Evaluation of cell surface markers using multiparametric flow cytometry is a well adapted qualitative measure of cells in question for many years. An artillery of these markers has been studied in hematological malignancies and related disorders. However, their role and differential expression on normal hematopoietic stem cells from clinically available sources is not always described carefully. In the present study, we attempted to evaluate expression of CD44, CD90, CD96 and CD123 in three clinically available sources of normal HSCs (Hematopoietic stem cells). Sources of HSCs in the present study involved umbilical cord blood (UCB), normal bone marrow (NBM) and bone marrow from idiopathic thrombocytopenic purpura (ITP) patients (IBM). CD44 is an important homing receptor while CD90 is involved in maintaining stem cell quiescent. CD96 is known to be leukemia specific marker and CD123 is involved in stem cell differentiation and survival. We observed a significant difference in expression CD44, CD90 and CD123 on normal HSCs derived from umbilical cord and ITP marrow. CD96 was highly expressed on HSCs obtained from ITP marrow. Investigating expression of these markers on normal HSCs in different niches will be helpful in correlating their function with niche condition and delineating their ‘abnormal’ expression from the normal. PMID:24386557
Garg, Swati; Madkaikar, Manisha; Ghosh, Kanjaksha
2013-11-01
Hematopoietic stem cells are of therapeutic interest to the clinicians and researchers due to their promising assistance in management of malignant and inherited hematological conditions. Evaluation of cell surface markers using multiparametric flow cytometry is a well adapted qualitative measure of cells in question for many years. An artillery of these markers has been studied in hematological malignancies and related disorders. However, their role and differential expression on normal hematopoietic stem cells from clinically available sources is not always described carefully. In the present study, we attempted to evaluate expression of CD44, CD90, CD96 and CD123 in three clinically available sources of normal HSCs (Hematopoietic stem cells). Sources of HSCs in the present study involved umbilical cord blood (UCB), normal bone marrow (NBM) and bone marrow from idiopathic thrombocytopenic purpura (ITP) patients (IBM). CD44 is an important homing receptor while CD90 is involved in maintaining stem cell quiescent. CD96 is known to be leukemia specific marker and CD123 is involved in stem cell differentiation and survival. We observed a significant difference in expression CD44, CD90 and CD123 on normal HSCs derived from umbilical cord and ITP marrow. CD96 was highly expressed on HSCs obtained from ITP marrow. Investigating expression of these markers on normal HSCs in different niches will be helpful in correlating their function with niche condition and delineating their 'abnormal' expression from the normal.
Electrolysis cell for reprocessing plutonium reactor fuel
Miller, William E.; Steindler, Martin J.; Burris, Leslie
1986-01-01
An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals, the cell including a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket and the anode basket being extendable into the lower pool to dissolve at least some metallic contaminants, the anode basket containing the spent fuel acting as a second anode when in the electrolyte.
Electrolysis cell for reprocessing plutonium reactor fuel
Miller, W.E.; Steindler, M.J.; Burris, L.
1985-01-04
An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals is claimed. The cell includes a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket. The anode basket is extendable into the lower pool to dissolve at least some metallic contaminants; the anode basket contains the spent fuel acting as a second anode when in the electrolyte.
Laboratory Experiment on Electrokinetic Remediation of Soil
ERIC Educational Resources Information Center
Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.
2011-01-01
Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…
Wildlife and human populations are affected by contaminants in natural settings. This problem has been a growing concern over the last decade with the realization that various environmental chemicals can alter the development and functioning of endocrine organs, cells and target ...
A detailed histologic and ultrastructural description of two cases of hepatoblastoma, a primitive liver cell neoplasm, is provided from mummichog, Fundulus heteroclitus(L.), inhabiting a creosote-contaminated site in the Elizabeth River, Virginia, USA. Both neoplasms were multifo...
Evaluation of Salmonella biofilm cell transfer from contact surfaces to beef products
USDA-ARS?s Scientific Manuscript database
Introduction: Meat contamination by Salmonella enterica is a serious food safety concern. One common transmission route that leads to cross contamination in meat plants is bacteria transfer from biofilms on contact surfaces to meat products via direct contact. Many factors could affect biofilm tra...
Detecting contaminating microorganism in human food and water from Raman mapping through biofilms
USDA-ARS?s Scientific Manuscript database
Detecting microbial growth can help experts determine how to prevent the outbreaks especially if human food or water has been contaminated. Biofilms are a group of microbial cells that can either grow on living surfaces or surrounding themselves as they progress. Biofilms are not necessarily uniform...
Recurrent Aspergillus contamination in a biomedical research facility: a case study.
Cornelison, Christopher T; Stubblefield, Bryan; Gilbert, Eric; Crow, Sidney A
2012-02-01
Fungal contamination of biomedical processes and facilities can result in major revenue loss and product delay. A biomedical research facility (BRF) culturing human cell lines experienced recurring fungal contamination of clean room incubators over a 3-year period. In 2010, as part of the plan to mitigate contamination, 20 fungal specimens were isolated by air and swab samples at various locations within the BRF. Aspergillus niger and Aspergillus fumigatus were isolated from several clean-room incubators. A. niger and A. fumigatus were identified using sequence comparison of the 18S rRNA gene. To determine whether the contaminant strains isolated in 2010 were the same as or different from strains isolated between 2007 and 2009, a novel forensic approach to random amplified polymorphic DNA (RAPD) PCR was used. The phylogenetic relationship among isolates showed two main genotypic clusters, and indicated the continual presence of the same A. fumigatus strain in the clean room since 2007. Biofilms can serve as chronic sources of contamination; visual inspection of plugs within the incubators revealed fungal biofilms. Moreover, confocal microscopy imaging of flow cell-grown biofilms demonstrated that the strains isolated from the incubators formed dense biofilms relative to other environmental isolates from the BRF. Lastly, the efficacies of various disinfectants employed at the BRF were examined for their ability to prevent spore germination. Overall, the investigation found that the use of rubber plugs around thermometers in the tissue culture incubators provided a microenvironment where A. fumigatus could survive regular surface disinfection. A general lesson from this case study is that the presence of microenvironments harboring contaminants can undermine decontamination procedures and serve as a source of recurrent contamination.
Effects of feed-borne Fusarium mycotoxins on hematology and immunology of laying hens.
Chowdhury, S R; Smith, T K; Boermans, H J; Woodward, B
2005-12-01
Feeding grains naturally contaminated with Fusarium mycotoxins has been shown to alter metabolism and performance of laying hens. The objectives of the current experiment were to examine the effects of feeding grains naturally contaminated with Fusarium mycotoxins on hematology and immunological indices and functions of laying hens and the possible protective effect of feeding a polymeric glucomannan mycotoxin adsorbent (GMA). One hundred forty-four laying hens were fed for 12 wk with diets formulated with (1) uncontaminated grains, (2) contaminated grains, or (3) contaminated grains + 0.2% GMA. Fusarium mycotoxins such as deoxynivalenol (DON, 12 mg/kg), 15-acetyl-DON (0.5 mg/kg), and zearalenone (0.6 mg/kg) were identified in the contaminated diets arising from contaminated grains grown in Ontario, Canada. The concentrations of DON arising from naturally contaminated grains in this study were similar to purified mycotoxin fed to experimental mice. The chronic feeding of Fusarium mycotoxins induced small decreases in hematocrit values, total numbers of white blood cells, lymphocytes including both CD4+ and CD8+ T lymphocytes and B lymphocytes, and biliary IgA concentration. Supplementation of diets containing feedborne mycotoxins with GMA prevented the reduction in total number of B lymphocytes in the peripheral blood and the reduction in biliary IgA concentration. In addition, the delayed-type hypersensitivity response to dinitrochlorobenzene was increased by feed-borne mycotoxins, whereas IgG and IgM antibody titers to sheep red blood cells were not affected by diet. We concluded that chronic consumption of grains naturally contaminated with Fusarium mycotoxins at levels likely to be encountered in practice were not systemically immunosuppressive or hematotoxic; however, mucosal immunocompetence needs to be explored further.
Classification of lymphoid neoplasms: the microscope as a tool for disease discovery
Harris, Nancy Lee; Stein, Harald; Isaacson, Peter G.
2008-01-01
In the past 50 years, we have witnessed explosive growth in the understanding of normal and neoplastic lymphoid cells. B-cell, T-cell, and natural killer (NK)–cell neoplasms in many respects recapitulate normal stages of lymphoid cell differentiation and function, so that they can be to some extent classified according to the corresponding normal stage. Likewise, the molecular mechanisms involved the pathogenesis of lymphomas and lymphoid leukemias are often based on the physiology of the lymphoid cells, capitalizing on deregulated normal physiology by harnessing the promoters of genes essential for lymphocyte function. The clinical manifestations of lymphomas likewise reflect the normal function of lymphoid cells in vivo. The multiparameter approach to classification adopted by the World Health Organization (WHO) classification has been validated in international studies as being highly reproducible, and enhancing the interpretation of clinical and translational studies. In addition, accurate and precise classification of disease entities facilitates the discovery of the molecular basis of lymphoid neoplasms in the basic science laboratory. PMID:19029456