Mainou-Fowler, T; Copplestone, J A; Prentice, A G
1995-01-01
AIMS--To investigate the effects of interleukin (IL) 1, 2, 4, and 5 on the proliferation and survival of peripheral blood B cells from patients with B chronic lymphocytic leukaemia (B-CLL) and compare them with the effects on normal peripheral blood B cells. METHODS--The proliferation and survival of pokeweed mitogen (PWM) activated B cells from B-CLL (n = 12) and normal peripheral blood (n = 5) were studied in vitro in response to IL-1, IL-2 IL-4, and IL-5. Survival of cells in cultures with or without added interleukins was studied by microscopic examination of cells and DNA agarose gel electrophoresis. RESULTS--Proliferation was observed in both B-CLL and normal peripheral blood cells on culture with IL-2 alone and also in some, but not all, B-CLL and normal peripheral blood cells with IL-1 and IL-4. However, there was greater variability in B-CLL cell responses than in normal peripheral blood cells. Il-5 did not affect normal peripheral blood cell proliferation but it increased proliferation in two B-CLL cases. Synergistic effects of these cytokines were not detected. IL-4 inhibited normal peripheral blood and B-CLL cell proliferation after the addition of IL-2. Inhibition of B-CLL cell responses to IL-2 was also observed with IL-5 and Il-1. Survival of B-CLL cells in cultures was enhanced with IL-4 not by an increase in proliferation but by reduced apoptosis. No such effect was seen in normal peripheral blood cells. IL-2 had a less noticeable antiapoptotic effect; IL-5 enhanced apoptosis in B-CLL cells. CONCLUSIONS--B-CLL and normal peripheral blood cells proliferated equally well in response to IL-2. IL-4 had a much lower effect on B-CLL cell proliferation, but had noticeable antiapoptotic activity. IL-5 enhanced cell death by apoptosis. Images PMID:7629299
Kennedy, M F; Tutton, P J; Barkla, D H
1985-09-15
Circadian variations in cell proliferation in normal tissues have been recognised for many years but comparable phenomena in neoplastic tissues appear not to have been reported. Adenomas and carcinomas were induced in mouse colon by injection of dimethylhydrazine (DMH) and cell proliferation in these tumors was measured stathmokinetically. In normal intestine cell proliferation is fastest at night whereas in both adenomas and carcinomas it was found to be slower at night than in the middle of the day. Chemical sympathectomy was found to abolish the circadian variation in tumor cell proliferation.
Engström, Wilhelm; Darbre, Philippa; Eriksson, Staffan; Gulliver, Linda; Hultman, Tove; Karamouzis, Michalis V.; Klaunig, James E.; Mehta, Rekha; Moorwood, Kim; Sanderson, Thomas; Sone, Hideko; Vadgama, Pankaj; Wagemaker, Gerard; Ward, Andrew; Singh, Neetu; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A. Ivana; Raju, Jayadev; Hamid, Roslida A.; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K.; Ryan, Elizabeth; Brown, Dustin G.; Bisson, William H.
2015-01-01
The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span. PMID:26106143
Chronic myeloid leukemia progenitor cells require autophagy when leaving hypoxia-induced quiescence
Ianniciello, Angela; Dumas, Pierre-Yves; Drullion, Claire; Guitart, Amélie; Villacreces, Arnaud; Peytour, Yan; Chevaleyre, Jean; Brunet de la Grange, Philippe; Vigon, Isabelle; Desplat, Vanessa; Priault, Muriel; Sbarba, Persio Dello; Ivanovic, Zoran; Mahon, François-Xavier; Pasquet, Jean-Max
2017-01-01
Albeit tyrosine kinase inhibitors anti-Abl used in Chronic Myeloid Leukemia (CML) block the deregulated activity of the Bcr-Abl tyrosine kinase and induce remission in 90% of patients, they do not eradicate immature hematopoietic compartments of leukemic stem cells. To elucidate if autophagy is important for stem cell survival and/or proliferation, we used culture in low oxygen concentration (0.1% O2 for 7 days) followed back by non-restricted O2 supply (normoxic culture) to mimic stem cell proliferation and commitment. Knockdown of Atg7 expression, a key player in autophagy, in K562 cell line inhibited autophagy compared to control cells. Upon 7 days at 0.1% O2 both K562 and K562 shATG7 cells stopped to proliferate and a similar amount of viable cells remained. Back to non-restricted O2 supply K562 cells proliferate whereas K562 shATG7 cells exhibited strong apoptosis. Using immunomagnetic sorted normal and CML CD34+ cells, we inhibited the autophagic process by lentiviral infection expressing shATG7 or using a Vps34 inhibitor. Both, normal and CML CD34+ cells either competent or deficient for autophagy stopped to proliferate in hypoxia. Surprisingly, while normal CD34+ cells proliferate back to non restricted O2 supply, the CML CD34+ cells deficient for autophagy failed to proliferate. All together, these results suggest that autophagy is required for CML CD34+ commitment while it is dispensable for normal CD34 cells. PMID:29228587
Bachmayr-Heyda, Anna; Reiner, Agnes T; Auer, Katharina; Sukhbaatar, Nyamdelger; Aust, Stefanie; Bachleitner-Hofmann, Thomas; Mesteri, Ildiko; Grunt, Thomas W; Zeillinger, Robert; Pils, Dietmar
2015-01-27
Circular RNAs are a recently (re-)discovered abundant RNA species with presumed function as miRNA sponges, thus part of the competing endogenous RNA network. We analysed the expression of circular and linear RNAs and proliferation in matched normal colon mucosa and tumour tissues. We predicted >1,800 circular RNAs and proved the existence of five randomly chosen examples using RT-qPCR. Interestingly, the ratio of circular to linear RNA isoforms was always lower in tumour compared to normal colon samples and even lower in colorectal cancer cell lines. Furthermore, this ratio correlated negatively with the proliferation index. The correlation of global circular RNA abundance (the circRNA index) and proliferation was validated in a non-cancerous proliferative disease, idiopathic pulmonary fibrosis, ovarian cancer cells compared to cultured normal ovarian epithelial cells, and 13 normal human tissues. We are the first to report a global reduction of circular RNA abundance in colorectal cancer cell lines and cancer compared to normal tissues and discovered a negative correlation of global circular RNA abundance and proliferation. This negative correlation seems to be a general principle in human tissues as validated with three different settings. Finally, we present a simple model how circular RNAs could accumulate in non-proliferating cells.
Bachmayr-Heyda, Anna; Reiner, Agnes T.; Auer, Katharina; Sukhbaatar, Nyamdelger; Aust, Stefanie; Bachleitner-Hofmann, Thomas; Mesteri, Ildiko; Grunt, Thomas W.; Zeillinger, Robert; Pils, Dietmar
2015-01-01
Circular RNAs are a recently (re-)discovered abundant RNA species with presumed function as miRNA sponges, thus part of the competing endogenous RNA network. We analysed the expression of circular and linear RNAs and proliferation in matched normal colon mucosa and tumour tissues. We predicted >1,800 circular RNAs and proved the existence of five randomly chosen examples using RT-qPCR. Interestingly, the ratio of circular to linear RNA isoforms was always lower in tumour compared to normal colon samples and even lower in colorectal cancer cell lines. Furthermore, this ratio correlated negatively with the proliferation index. The correlation of global circular RNA abundance (the circRNA index) and proliferation was validated in a non-cancerous proliferative disease, idiopathic pulmonary fibrosis, ovarian cancer cells compared to cultured normal ovarian epithelial cells, and 13 normal human tissues. We are the first to report a global reduction of circular RNA abundance in colorectal cancer cell lines and cancer compared to normal tissues and discovered a negative correlation of global circular RNA abundance and proliferation. This negative correlation seems to be a general principle in human tissues as validated with three different settings. Finally, we present a simple model how circular RNAs could accumulate in non-proliferating cells. PMID:25624062
Engström, Wilhelm; Darbre, Philippa; Eriksson, Staffan; Gulliver, Linda; Hultman, Tove; Karamouzis, Michalis V; Klaunig, James E; Mehta, Rekha; Moorwood, Kim; Sanderson, Thomas; Sone, Hideko; Vadgama, Pankaj; Wagemaker, Gerard; Ward, Andrew; Singh, Neetu; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A Ivana; Raju, Jayadev; Hamid, Roslida A; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K; Ryan, Elizabeth P; Brown, Dustin G; Bisson, William H
2015-06-01
The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Streitová, Denisa; Vacek, Antonín
2008-07-01
Two adenosine receptor agonists, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and N6-cyclopentyladenosine (CPA), which selectively activate adenosine A3 and A1 receptors, respectively, were tested for their ability to influence proliferation of granulocytic and erythroid cells in femoral bone marrow of mice using morphological criteria. Agonists were given intraperitoneally to mice in repeated isomolar doses of 200 nmol/kg. Three variants of experiments were performed to investigate the action of the agonists under normal resting state of mice and in phases of cell depletion and subsequent regeneration after treatment with the cytotoxic drug 5-fluorouracil. In the case of granulopoiesis, IB-MECA 1) increased by a moderate but significant level proliferation of cells under normal resting state; 2) strongly increased proliferation of cells in the cell depletion phase; but 3) did not influence cell proliferation in the regeneration phase. CPA did not influence cell proliferation under normal resting state and in the cell depletion phase, but strongly suppressed the overshooting cell proliferation in the regeneration phase. The stimulatory effect of IB-MECA on cell proliferation of erythroid cells was observed only when this agonist was administered during the cell depletion phase. CPA did not modulate erythroid proliferation in any of the functional states investigated, probably due to the lower demand for cell production as compared with granulopoiesis. The results indicate opposite effects of the two adenosine receptor agonists on proliferation of hematopoietic cells and suggest the plasticity and homeostatic role of the adenosine receptor expression.
Innamaa, A; Jackson, L; Asher, V; van Schalkwyk, G; Warren, A; Keightley, A; Hay, D; Bali, A; Sowter, H; Khan, R
2013-11-01
Aberrant expression of potassium (K(+)) channels contributes to cancer cell proliferation and apoptosis, and K(+) channel blockers can inhibit cell proliferation. TREK-1 and -2 belong to the two-pore domain (K2P) superfamily. We report TREK-1 and -2 expression in ovarian cancer and normal ovaries, and the effects of TREK-1 modulators on cell proliferation and apoptosis. The cellular localisation of TREK-1 and -2 was investigated by immunofluorescence in SKOV-3 and OVCAR-3 cell lines and in cultured ovarian surface epithelium and cancer. Channel expression in normal ovaries and cancer was quantified by western blotting. Immunohistochemical analysis demonstrated the association between channel expression and disease prognosis, stage, and grade. TREK-1 modulation of cell proliferation in the cell lines was investigated with the MTS-assay and the effect on apoptosis determined using flow cytometry. Expression was identified in both cell lines, ovarian cancer (n = 22) and normal ovaries (n = 6). IHC demonstrated positive staining for TREK-1 and -2 in 95.7 % of tumours (n = 69) and 100 % of normal ovaries (n = 9). A reduction in cell proliferation (P < 0.05) was demonstrated at 96 h in SKOV-3 and OVCAR-3 cells incubated TREK-1 modulating agents. Curcumin caused a significant reduction in early apoptosis in SKOV-3 (P < 0.001) and OVCAR-3 (P < 0.0001) cells and a significant increase in late apoptosis in SKOV-3 (P < 0.01) and OVCAR-3 cells (P < 0.0001). TREK-1 and -2 are expressed in normal ovaries and ovarian cancer. TREK-1 modulators have a significant effect on cell proliferation and apoptosis. We propose investigation of the therapeutic potential of TREK-1 blockers is warranted.
Tutton, P J; Barkla, D H
1976-08-11
Epithelial cell proliferation was studied in the jejunum and in the colon of normal rats, in the colon of dimethylhydrazine-treated rats and in dimethylhydrazine-induced adenocarcinoma of the colon using a stathmokinetic technique. Estimates of cell proliferation rates in these four tissues were then repeated in animals which had been depleted of biogenic animes by treatment with reserpine and in animals whose monoamine oxidase was inhibited by treatment with nialamide. In amine-depleted animals cell proliferation essentially ceased in all four tissues examined. Inhibition of monoamine oxidase did not significantly influence cell proliferation in nonmalignant tissues but accelerated cell division in colonic tumours.
Kennedy, M. F.; Tutton, P. J.; Barkla, D. H.
1985-01-01
Evidence exists implicating adrenergic factors in the control of intestinal epithelial cell proliferation in both normal and diseased states. In this report, attention is focussed on changes in the amine requirements of proliferating cells during the chemical induction of tumours in the colon of mouse. Cell proliferation rates were measured stathmokinetically. Tumours were induced by s.c. injection of dimethylhydrazine (DMH). Results with a series of adrenoceptor agonists and antagonists suggest that there is an alpha 2-adrenoceptor mediated excitatory effect in normal colon but an alpha 2 adrenoceptor mediated inhibitory effect in adenoma and carcinoma. Alpha 1 adrenoceptors, on the other hand, have an inhibitory effect in normal crypts and in adenomas, and an excitatory effect in carcinomas. Beta adrenoceptors have an inhibitory effect in the normal and DMH-treated crypt, and in adenomas, but not in carcinomas. In the crypt epithelium of DMH-treated mice, two regions on cell proliferation, with differing regulatory factors, could be identified. In the upper region of the carcinogen-exposed crypt is a zone where cell proliferation is stimulated by an alpha 2 adrenergic mechanism, thus resembling the basal region of the normal crypt. By contrast, in the basal region of these crypts, cell proliferation is stimulated by an alpha 1 mechanism, thus resembling a malignant tumour. PMID:4041364
Kennedy, M F; Tutton, P J; Barkla, D H
1985-09-01
Evidence exists implicating adrenergic factors in the control of intestinal epithelial cell proliferation in both normal and diseased states. In this report, attention is focussed on changes in the amine requirements of proliferating cells during the chemical induction of tumours in the colon of mouse. Cell proliferation rates were measured stathmokinetically. Tumours were induced by s.c. injection of dimethylhydrazine (DMH). Results with a series of adrenoceptor agonists and antagonists suggest that there is an alpha 2-adrenoceptor mediated excitatory effect in normal colon but an alpha 2 adrenoceptor mediated inhibitory effect in adenoma and carcinoma. Alpha 1 adrenoceptors, on the other hand, have an inhibitory effect in normal crypts and in adenomas, and an excitatory effect in carcinomas. Beta adrenoceptors have an inhibitory effect in the normal and DMH-treated crypt, and in adenomas, but not in carcinomas. In the crypt epithelium of DMH-treated mice, two regions on cell proliferation, with differing regulatory factors, could be identified. In the upper region of the carcinogen-exposed crypt is a zone where cell proliferation is stimulated by an alpha 2 adrenergic mechanism, thus resembling the basal region of the normal crypt. By contrast, in the basal region of these crypts, cell proliferation is stimulated by an alpha 1 mechanism, thus resembling a malignant tumour.
Scaling, Allison L.
2014-01-01
17β-estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized non-tumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant human tissue, revealing a role for GPER in estrogen-induced breast physiology and pathology. PMID:24718936
Cell proliferation and differentiation in chemical leukemogenesis
NASA Technical Reports Server (NTRS)
Irons, R. D.; Stillman, W. S.; Clarkson, T. W. (Principal Investigator)
1993-01-01
In tissues such as bone marrow with normally high rates of cell division, proliferation is tightly coordinated with cell differentiation. Survival, proliferation and differentiation of early hematopoietic progenitor cells depend on the growth factors, interleukin 3 (IL-3) and/or granulocyte-macrophage colony stimulating factor (GM-CSF) and their synergism with other cytokines. We provide evidence that a characteristic shared by a diverse group of compounds with demonstrated leukemogenic potential is the ability to act synergistically with GM-CSF. This results in an increase in recruitment of a resting population of hematopoietic progenitor cells normally unresponsive to the cytokine and a twofold increase in the size of the proliferating cell population normally regarded to be at risk of transformation in leukemogenesis. These findings support the possibility that transient alterations in hematopoietic progenitor cell differentiation may be an important factor in the early stages of development of leukemia secondary to chemical or drug exposure.
Fujimichi, Yuki; Hamada, Nobuyuki
2014-01-01
Over the past century, ionizing radiation has been known to induce cataracts in the crystalline lens of the eye, but its mechanistic underpinnings remain incompletely understood. This study is the first to report the clonogenic survival of irradiated primary normal human lens epithelial cells and stimulation of its proliferation. Here we used two primary normal human cell strains: HLEC1 lens epithelial cells and WI-38 lung fibroblasts. Both strains were diploid, and a replicative lifespan was shorter in HLEC1 cells. The colony formation assay demonstrated that the clonogenic survival of both strains decreases similarly with increasing doses of X-rays. A difference in the survival between two strains was actually insignificant, although HLEC1 cells had the lower plating efficiency. This indicates that the same dose inactivates the same fraction of clonogenic cells in both strains. Intriguingly, irradiation enlarged the size of clonogenic colonies arising from HLEC1 cells in marked contrast to those from WI-38 cells. Such enhanced proliferation of clonogenic HLEC1 cells was significant at ≥2 Gy, and manifested as increments of ≤2.6 population doublings besides sham-irradiated controls. These results suggest that irradiation of HLEC1 cells not only inactivates clonogenic potential but also stimulates proliferation of surviving uniactivated clonogenic cells. Given that the lens is a closed system, the stimulated proliferation of lens epithelial cells may not be a homeostatic mechanism to compensate for their cell loss, but rather should be regarded as abnormal. This is because these findings are consistent with the early in vivo evidence documenting that irradiation induces excessive proliferation of rabbit lens epithelial cells and that suppression of lens epithelial cell divisions inhibits radiation cataractogenesis in frogs and rats. Thus, our in vitro model will be useful to evaluate the excessive proliferation of primary normal human lens epithelial cells that may underlie radiation cataractogenesis, warranting further investigations.
Urick, M E; Giles, J R; Johnson, P A
2008-09-01
We aimed to determine the expression of vascular endothelial growth factor (VEGF) and the effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on the proliferation of cells isolated from ascites in the hen model of ovarian cancer. Ovarian tumor and normal ovary were collected from hens and ascites cells were isolated from hens with ovarian cancer. Quantitative real-time PCR was used to quantify mRNA expression. Immunohistochemical and/or Western blot analyses were used to localize protein expression in ovarian tumors, normal ovaries, and ascites cells. Cells were treated with a nonspecific, COX-1-specific, or COX-2-specific NSAID and proliferation was determined. VEGF mRNA was increased in ascites cells and there was a trend for a correlation between VEGF mRNA in ascites cells and ascites volume. VEGF protein was localized to theca cells of normal ovaries, in glandular areas of tumors, and to the cytoplasm of ascites cells. Aspirin and a COX-1-specific inhibitor decreased the proliferation of ascites cells, whereas a COX-2-specific inhibitor did not. VEGF may play a role in ovarian cancer progression in the hen and the proliferation of ascites cells can be decreased by targeting the COX-1 but not COX-2 pathway.
Schroeder, M; Zouboulis, C C
2007-02-01
Despite its known biological effect on epithelial cells, 13- CIS-retinoic acid shows low binding affinity to either cellular retinoic acid-binding proteins or nuclear retinoid receptors compared to its isomer all- TRANS-retinoic acid. We have postulated a prodrug-drug relation with 13- CIS-retinoic acid which isomerizes to all- TRANS-retinoic acid. On the other hand, the biological effects of these two compounds can differ in the widely used cell culture models of HaCaT and normal primary keratinocytes. In this study, we seeded HaCaT and normal keratinocytes at high densities leading to early confluence in order to imitate high keratinocyte proliferation, such as in acne and psoriasis, while to model decreased keratinocyte proliferation, as in aged and steroid-damaged skin, cells were seeded at a low density. High performance liquid chromatography was administered to examine retinoid uptake and metabolism in monolayer HaCaT and normal keratinocyte cultures and the 4-methylumbelliferyl heptanoate assay to estimate cell growth at different cell densities. Major qualitative and quantitative differences were detected in the two cell types regarding intracellular 13- CIS-retinoic acid isomerization to all- TRANS-retinoic acid. On the other hand, the two retinoic acid isomers showed similar effects on cell growth of both cell types tested with increasing proliferation at low cell densities, but being rather inactive at high ones in normal keratinocytes and exhibiting an antiproliferative effect in HaCaT keratinocytes. The missing effect of retinoids on cell proliferation in high seeding densities of normal keratinocytes may indicate that the normalizing activity of retinoids on hyperkeratotic diseases, such as acne or psoriasis, is likely to be carried out by modulation of cell differentiation than cell growth. On the other hand, induced keratinocyte proliferation in low seeding densities may provide an explanation for the acanthosis induced by topical retinoids in aged and steroid-damaged skin.
Discoidin domain receptor 2 (DDR2) regulates proliferation of endochondral cells in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawai, Ikuma; Hisaki, Tomoka; Sugiura, Koji
2012-10-26
Highlights: Black-Right-Pointing-Pointer Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase. Black-Right-Pointing-Pointer DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. Black-Right-Pointing-Pointer We produced in vitro and in vivo model to better understand the role of DDR2. Black-Right-Pointing-Pointer DDR2 might play an inhibitory role in the proliferation of chondrocyte. -- Abstract: Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase that is activated by fibrillar collagens. DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. The decrement of endogenous DDR2 represses osteoblastic marker gene expression and osteogenic differentiation in murine preosteoblastic cells, but themore » functions of DDR2 in chondrogenic cellular proliferation remain unclear. To better understand the role of DDR2 signaling in cellular proliferation in endochondral ossification, we inhibited Ddr2 expression via the inhibitory effect of miRNA on Ddr2 mRNA (miDdr2) and analyzed the cellular proliferation and differentiation in the prechondrocyte ATDC5 cell lines. To investigate DDR2's molecular role in endochondral cellular proliferation in vivo, we also produced transgenic mice in which the expression of truncated, kinase dead (KD) DDR2 protein is induced, and evaluated the DDR2 function in cellular proliferation in chondrocytes. Although the miDdr2-transfected ATDC5 cell lines retained normal differentiation ability, DDR2 reduction finally promoted cellular proliferation in proportion to the decreasing ratio of Ddr2 expression, and it also promoted earlier differentiation to cartilage cells by insulin induction. The layer of hypertrophic chondrocytes in KD Ddr2 transgenic mice was not significantly thicker than that of normal littermates, but the layer of proliferative chondrocytes in KD-Ddr2 transgenic mice was significantly thicker than that of normal littermates. Taken together, our data demonstrated that DDR2 might play a local and essential role in the proliferation of chondrocytes.« less
Immunohistochemical study of calretinin in normal skin and cutaneous adnexal proliferations.
González-Guerra, Elena; Kutzner, Heinz; Rutten, Arno; Requena, Luis
2012-07-01
Calretinin is a calcium-binding protein member of the EF-hand family. The presence of calretinin has been demonstrated in certain stages of the cellular cycle in a wide variety of normal and neoplastic tissues. The main aims of our study were (1) to investigate what structures of the normal skin and cutaneous adnexal proliferations express immunoreactivity for calretinin and (2) to determine the value of immunohistochemical expression for calretinin as a marker for follicular, sebaceous, apocrine, and eccrine differentiation in cutaneous adnexal proliferations. We studied 139 biopsy specimens, including 10 cases of normal skin of different locations and 129 benign and malignant cutaneous adnexal proliferations. In normal skin, we found that calretinin is expressed in the innermost cell layer of the outer root sheath in anagen hair follicle, in both the duct and sebolemma of the sebaceous gland, in the secretory portion of eccrine glands, and in mast cells of the stroma. In cutaneous adnexal proliferations, we found strong immunoreactivity for calretinin in tricholemmal cysts, tricholemmomas/inverted follicular keratoses, tumors of follicular infundibulum, and in some basal cell carcinomas. Focal positivity was also seen in trichoadenomas, trichoblastomas/trichoepitheliomas, pilomatricomas, proliferating tricholemmal tumors, pilar sheath acanthomas, trichofolliculomas, follicular hybrid cysts, cutaneous mixed tumors, steatocystomas, sebaceous hyperplasias, and sebaceomas. These results demonstrate that immunohistochemical study for calretinin may be helpful to identify the innermost cell layer of the outer root sheath in anagen hair follicle and the cutaneous adnexal proliferations showing differentiation toward this structure. Calretinin immunoreactivity supports eccrine differentiation in some sweat gland neoplasms, and it is also useful in identifying neoplasms with ductal sebaceous differentiation.
Abduvaliev, A A; Gil'dieva, M S; Khidirov, B N; Saĭdalieva, M; Khasanov, A A; Musaeva, Sh N; Saatov, T S
2012-04-01
The article deals with the results of computational experiments in research of dynamics of proliferation of cells of thyroid gland follicle in normal condition and in the case of malignant neoplasm. The model studies demonstrated that the chronic increase of parameter of proliferation of cells of thyroid gland follicle results in abnormal behavior of numbers of cell cenosis of thyroid gland follicle. The stationary state interrupts, the auto-oscillations occur with transition to irregular oscillations with unpredictable cell proliferation and further to the "black hole" effect. It is demonstrated that the present medical biologic experimental data and theory propositions concerning the structural functional organization of thyroid gland on cell level permit to develop mathematical models for quantitative analysis of numbers of cell cenosis of thyroid gland follicle in normal conditions. The technique of modeling of regulative mechanisms of living systems and equations of cell cenosis regulations was used
[Polyamines and their role in tumor growth].
Godlewska, Joanna; Peczyńska-Czoch, Wanda
2002-01-01
The polyamines-putrescine, spermidine and spermine--are normal constituents of prokariotic and eukariotic cells. These small polycationic, aliphatic compounds are essential for normal cell proliferation. Cells cease to proliferate, when they are depleted of their polyamines, but resume a normal growth rate after supplementation with these compounds. Because of the sustained increase in polyamine biosynthesis in preneoplastic and neoplastic tissues, a great deal of interest has been given to the polyamine biosynthesis, network, and uptake systems as a target in antineoplastic strategies.
Curcumin and docosahexaenoic acid block insulin-induced colon carcinoma cell proliferation.
Fenton, Jenifer I; McCaskey, Sarah J
2013-03-01
Diets high in fish and curcumin are associated with a decreased risk of CRC. Insulin resistance and obesity are associated with increased CRC risk and higher reoccurrence rates. We utilized cell culture to determine if dietary compounds could reduce insulin-induced cell proliferation comparing the response in normal and metastatic colon epithelial cells. We treated model normal murine colon epithelial cells (YAMC) and adenocarcinoma cells (MC38) with docosahexaenoic acid (DHA) or curcumin alone and then co-treatments of the diet-derived compound and insulin were combined. Cell proliferation was stimulated with insulin (1 ug/mL) to model insulin resistance in obesity. Despite the presence of insulin, proliferation was reduced in the MC38 cells treated with 10 μM curcumin (p<0.001) and 50 μM DHA (p<0.001). Insulin stimulated MAPK and MEK phosphorylation was inhibited by DHA and curcumin in MC38 cancer cells. Here we show that curcumin and DHA can block insulin-induced colon cancer cell proliferation in vitro via a MEK mediated mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nakamura, Taichi; Ito, Tetsuhide; Uchida, Masahiko; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Jensen, Robert T.; Takayanagi, Ryoichi
2013-01-01
Background and Aims There is increasing concern about the development of pancreatitis in patients with diabetes mellitus who received long-term GLP-1 analog treatment. Its pathogenesis is unknown. The effects of GLP-1 agonists on pancreatic endocrine cells is well studied, however there is little information on effects on other pancreatic tissues that might be involved in inflammatory processes. Pancreatic stellate cells (PSCs) can play an important role in pancreatitis, secreting various inflammatory cytokines/chemokines, as well as collagen. In this study, we investigated GLP-1R occurrence in normal pancreas, acute/chronic pancreatitis, and the effects of GLP-1 analog on normal PSCs, their ability to stimulate inflammatory mediator secretion or proliferation. Methods GLP-1R expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues were evaluated with histological/immunohistochemical analysis. PSCs were isolated from male Wistar rats. GLP1R expression and effects of GLP-1 analog on activated PSCs was examined with realtime PCR, MTS assays and Western Blotting. Results In normal pancreas, pancreatic β cells expressed GLP-1R, with only low expression in acinar cells, whereas in acute or chronic pancreatitis, acinar cells, ductal cells and activated PSCs expressed GLP-1R. With activation of normal PSCs, GLP-1R is markedly increased, as is multiple other incretin-related receptors. The GLP-1 analog, liraglutide, did not induce inflammatory genes expression in activated PSCs, but induced proliferation. Liraglutide activated multiple signaling cascades in PSCs, and the ERK pathway mediated the PSCs proliferation. Conclusions GLP-1Rs are expressed in normal pancreas and there is marked enhanced expression in acute/chronic pancreatitis. GLP-1-agonist induced cell proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest chronic treatment with GLP-1R agonists could lead to proliferation/chronic activation of PSCs, which may lead to important effects in the pancreas. PMID:24217090
Gebarowski, Tomasz; Gebczak, Katarzyna; Wiatrak, Benita; Kulma, Anna; Pelc, Katarzyna; Czuj, Tadeusz; Szopa, Jan; Gasiorowski, Kazimierz
2017-03-01
Emulsions made of oils from transgenic flaxseeds significantly decreased in vitro proliferation of six tested human cancer cell lines in 48-h cultures, as assessed with the standard sulforhodamine assay. However, the emulsions also increased proliferation rate of normal human dermal fibroblasts and, to a lower extend, of keratinocytes. Both inhibition of in vitro proliferation of human cancer cell lines and stimulation of proliferation of normal dermal fibroblasts and keratinocytes were especially strong with the emulsion type B and with emulsion type M. Oils from seeds of transgenic flax type B and M should be considered as valuable adjunct to standard cytostatic therapy of human cancers and also could be applied to improve the treatment of skin lesions in wound healing.
Batman, Philip A; Kapembwa, Moses S; Belmonte, Liliana; Tudor, Gregory; Kotler, Donald P; Potten, Christopher S; Booth, Catherine; Cahn, Pedro; Griffin, George E
2014-01-01
To analyse the structural and kinetic response of small intestinal crypt epithelial cells including stem cells to highly active antiretroviral therapy (HAART). Crypt size and proliferative activity of transit and stem cells in jejunal mucosa were quantified using morphometric techniques. Crypt length was measured by counting the number of enterocytes along one side of a number of crypts in each biopsy specimen and the mean crypt length was calculated. Proliferating crypt cells were identified with MIB-1 monoclonal antibody, and the percentage of crypt cells in proliferation was calculated at each cell position along the length of the crypt (proliferation index). Data were obtained from 9 HIV-positive test patients co-infected with microsporidia, 34 HIV-positive patients receiving HAART and 13 control cases. Crypt length was significantly greater in test patients than in controls, but crypt length in patients receiving HAART was normal. The proliferation index was greater in test subjects than in controls in stem and transit cell compartments, and was decreased in patients treated with HAART only in the stem cell region of the crypt. Villous atrophy in HIV enteropathy is attributed to crypt hypertrophy and encroachment of crypt cells onto villi. HAART restores normal crypt structure by inhibition of HIV-driven stem cell hyperproliferation at the crypt bases.
Monahan, Pamela; Himes, Ashley D.; Parfieniuk, Agata; Raetzman, Lori T.
2011-01-01
A delicate balance between proliferation and differentiation must be maintained in the developing pituitary to ensure the formation of the appropriate number of hormone producing cells. In the adult, proliferation is actively restrained to prevent tumor formation. The cyclin dependent kinase inhibitors (CDKIs) of the CIP/KIP family, p21, p27 and p57, mediate cell cycle inhibition. Although p21 is induced in the pituitary upon loss of Notch signaling or initiation of tumor formation to halt cell cycle progression, its role in normal pituitary organogenesis has not been explored. In wildtype pituitaries, expression of p21 is limited to a subset of cells embryonically as well as during the postnatal proliferative phase. Mice lacking p21 do not have altered cell proliferation during early embryogenesis, but do show a slight delay in separation of proliferating progenitors from the oral ectoderm. By embryonic day 16.5, p21 mutants have an alteration in the spatial distribution of proliferating pituitary progenitors, however there is no overall change in proliferation. At postnatal day 21, there appears to be no change in proliferation, as assessed by cells expressing Ki67 protein. However, p21 mutant pituitaries have significantly less mRNA of Myc and the cyclins Ccnb1, Ccnd1, Ccnd2 and Ccne1 than wildtype pituitaries. Interestingly, unlike the redundant role in cell cycle inhibition uncovered in p27/p57 double mutants, the pituitary of p21/p27 double mutants has a similar proliferation profile to p27 single mutants at the time points examined. Taken together, these studies demonstrate that unlike p27 or p57, p21 does not play a major role in control of progenitor proliferation in the developing pituitary. However, p21 may be required to maintain normal levels of cell cycle components. PMID:22154697
TORC1 is required to balance cell proliferation and cell death in planarians
Tu, Kimberly C.; Pearson, Bret J.; Alvarado, Alejandro Sánchez
2012-01-01
Multicellular organisms are equipped with cellular mechanisms that enable them to replace differentiated cells lost to normal physiological turnover, injury, and for some such as planarians, even amputation. This process of tissue homeostasis is generally mediated by adult stem cells (ASCs), tissue-specific stem cells responsible for maintaining anatomical form and function. To do so, ASCs must modulate the balance between cell proliferation, i.e. in response to nutrients, and that of cell death, i.e. in response to starvation or injury. But how these two antagonistic processes are coordinated remains unclear. Here, we explore the role of the core components of the TOR pathway during planarian tissue homeostasis and regeneration and identified an essential function for TORC1 in these two processes. RNAi-mediated silencing of TOR in intact animals resulted in a significant increase in cell death, whereas stem cell proliferation and stem cell maintenance were unaffected. Amputated animals failed to increase stem cell proliferation after wounding and displayed defects in tissue remodeling. Together, our findings suggest two distinct roles for TORC1 in planarians. TORC1 is required to modulate the balance between cell proliferation and cell death during normal cell turnover and in response to nutrients. In addition, it is required to initiate appropriate stem cell proliferation during regeneration and for proper tissue remodeling to occur to maintain scale and proportion. PMID:22445864
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi Ning; Ledbetter, D.H.; Smith, J.R.
1991-07-01
Earlier studies had demonstrated that fusion of normal with immortal human cells yielded hybrids having limited division potential. This indicated that the phenotype of limited proliferation (cellular senescence) is dominant and that immortal cells result from recessive changes in normal growth-regulatory genes. In additional studies, the authors exploited the fact that the immortal phenotype is recessive and, by fusing various immortal human cell lines with each other, identified four complementation groups for indefinite division. Assignment of cell lines to specific groups allowed us to take a focused approach to identify the chromosomes and genes involved in growth regulation that havemore » been modified in immortal cells. They report here that introduction of a normal human chromosome 4 into three immortal cell lines (HeLa, J82, T98G) assigned to complementation group B resulted in loss of proliferation and reversal of the immortal phenotype. No effect on the proliferation potential of cell lines representative of the other complementation groups was observed. This result suggests that a gene(s) involved in cellular senescence and normal growth regulation resides on chromosome 4.« less
Role of HLA-G1 in trophoblast cell proliferation, adhesion and invasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Feng, E-mail: jiangfeng1161@163.com; Zhao, Hongxi; Wang, Li
Trophoblast cells are important in embryo implantation and fetomaternal tolerance. HLA-G is specifically expressed at the maternal–fetal interface and is a regulator in pregnancy. The aim of the present study was to detect the effect of HLA-G1 on trophoblast cell proliferation, adhesion, and invasion. Human trophoblast cell lines (JAR and HTR-8/SVneo cells) were infected with HLA-G1-expressing lentivirus. After infection, HLA-G1 expression of the cells was detected by western blotting. Cell proliferation was detected by the BrdU assay. The cell cycle and apoptosis of JAR and HTR-8/SVneo cells was measured by flow cytometry (FCM). The invasion of the cells under different conditionsmore » was detected by the transwell invasion chamber assay. HLA-G1 didn't show any significant influence on the proliferation, apoptosis, adhesion, and invasion of trophocytes in normal culture conditions. However, HLA-G1 inhibited JAR and HTR-8/SVneo cells invasion induced by hepatocyte growth factor (HGF) under normal oxygen conditions. In conditions of hypoxia, HLA-G1 couldn't inhibit the induction of cell invasion by HGF. HLA-G1 is not an independent factor for regulating the trophocytes. It may play an indirect role in embryo implantation and formation of the placenta. - Highlights: • HLA-G1 could not influence trophocytes under normal conditions. • HLA-G1 inhibited cell invasion induced by HGF under normal oxygen condition. • HLA-G1 could not influence cell invasion under hypoxia conditions.« less
Liu, D-Z; Chang, B; Li, X-D; Zhang, Q-H; Zou, Y-H
2017-09-01
The objective of the study was to investigate the role of microRNA-9 (miR-9) targeting forkhead box O1 (FOXO1) in the proliferation, migration, and invasion of breast cancer cells. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to determine the expressions of miR-9 and FOXO1 mRNA in breast cancer tissues, normal breast tissues, breast cancer cell lines, and normal breast epithelial cells. After the up-regulation of miR-9 expression, qRT-PCR and Western blotting were used to determine the expression of FOXO1. The luciferase reporter gene assay was used to validate the target gene. The CCK-8 assay, scratch-wound healing assay, and Transwell invasion assay were used to investigate the changes in the proliferation, migration, and invasion of breast cancer cells, respectively. MicroRNA-9 expression was significantly up-regulated in breast cancer tissues and breast cancer cell lines when compared with normal breast tissues and normal breast epithelial cells (both P < 0.05). FOXO1 mRNA and protein expressions were substantially down-regulated in breast cancer tissues and breast cancer cell lines when compared with normal breast tissues and normal breast epithelial cells (both P < 0.05). There can be a negative correlation between miR-9 and FOXO1 mRNA in breast cancer. Luciferase reporter gene assay indicated that miR-9 can down-regulate FOXO1 expression at a post-transcriptional level through binding specifically to FOXO1 3'UTR. The results of CCK-8 assay, scratch-wound healing assay, and Transwell invasion assay revealed that the inhibition of miR-9 can suppress MCF7 cell proliferation, migration, and invasion. Additionally, the expression of miR-9 increased significantly whilst that of FOXO1 decreased substantially as the disease progressed (P < 0.05). Our study provides evidence that miR-9 can promote the proliferation, migration, and invasion of breast cancer cells via down-regulating FOXO1.
NASA Technical Reports Server (NTRS)
Kostenuik, P. J.; Harris, J.; Halloran, B. P.; Turner, R. T.; Morey-Holton, E. R.; Bikle, D. D.
1999-01-01
Skeletal unloading decreases bone formation and osteoblast number in vivo and decreases the number and proliferation of bone marrow osteoprogenitor (BMOp) cells in vitro. We tested the ability of parathyroid hormone (PTH) to stimulate BMOp cells in vivo by treating Sprague Dawley rats (n = 32) with intermittent PTH(1-34) (1 h/day at 8 microg/100 g of body weight), or with vehicle via osmotic minipumps during 7 days of normal weight bearing or hind limb unloading. Marrow cells were flushed from the femur and cultured at the same initial density for up to 21 days. PTH treatment of normally loaded rats caused a 2.5-fold increase in the number of BMOp cells, with similar increases in alkaline phosphatase (ALP) activity and mineralization, compared with cultures from vehicle-treated rats. PTH treatment of hind limb unloaded rats failed to stimulate BMOp cell number, ALP activity, or mineralization. Hind limb unloading had no significant effect on PTH receptor mRNA or protein levels in the tibia. Direct in vitro PTH challenge of BMOp cells isolated from normally loaded bone failed to stimulate their proliferation and inhibited their differentiation, suggesting that the in vivo anabolic effect of intermittent PTH on BMOp cells was mediated indirectly by a PTH-induced factor. We hypothesize that this factor is insulin-like growth factor-I (IGF-I), which stimulated the in vitro proliferation and differentiation of BMOp cells isolated from normally loaded bone, but not from unloaded bone. These results suggest that IGF-I mediates the ability of PTH to stimulate BMOp cell proliferation in normally loaded bone, and that BMOp cells in unloaded bone are resistant to the anabolic effect of intermittent PTH therapy due to their resistance to IGF-I.
Decker, T; Schneller, F; Kronschnabl, M; Dechow, T; Lipford, G B; Wagner, H; Peschel, C
2000-05-01
CpG-oligodeoxynucleotides (CpG-ODN) have been shown to induce proliferation, cytokine production, and surface molecule regulation in normal and malignant human B cells. In the present study, we investigated the potential of CpG-ODN to induce functional high-affinity receptors in leukemic and normal B cells and the effects of costimulation with IL-2 on proliferation, cytokine secretion, and surface molecule regulation. Highly purified B cells from B-CLL patients and normal controls were stimulated with CpG-ODN with or without IL-2. Expression of CD25 was determined using FACS, and the presence of high-affinity IL-2 receptors was determined by scatchard analysis. Costimulatory effects of IL-2 and CpG-ODN were investigated using proliferation assays, ELISA (IL-6, TNF-alpha), and FACS analysis (CD80, CD86 expression). Reactivity of autologous and allogeneic T cells toward activated B-CLL cells was determined in mixed lymphocyte reactions and Interferon-gamma Elispot assays. The CpG-ODN DSP30 caused a significantly stronger induction of the IL-2 receptor alpha chain in malignant as compared with normal B cells (p = 0.03). This resulted in the expression of functional high-affinity IL-2 receptors in B-CLL cells, but fewer numbers of receptors with less affinity were expressed in normal B cells. Although addition of IL-2 to CpG-ODN-stimulated cells augmented proliferation in both normal B cells and B-CLL cells, no costimulatory effect on cytokine production or surface molecule expression could be observed in normal B cells. In contrast, TNF-alpha and IL-6 production was increased in B-CLL cells, and the expression of CD80 and CD86 was further enhanced when IL-2 was used as a costimulus. Autologous and allogeneic immune recognition of B-CLL cells stimulated with CpG-ODN and IL-2 was increased compared with B-CLL cells stimulated with CpG-ODN alone. Stimulation of B-CLL cells with CpG-ODN and IL-2 might be an attractive strategy for potential immunotherapies for B-CLL patients.
Role of Dicer1 in thyroid cell proliferation and differentiation.
Penha, Ricardo Cortez Cardoso; Sepe, Romina; De Martino, Marco; Esposito, Francesco; Pellecchia, Simona; Raia, Maddalena; Del Vecchio, Luigi; Decaussin-Petrucci, Myriam; De Vita, Gabriella; Pinto, Luis Felipe Ribeiro; Fusco, Alfredo
2017-01-01
DICER1 plays a central role in the biogenesis of microRNAs and it is important for normal development. Altered microRNA expression and DICER1 dysregulation have been described in several types of tumors, including thyroid carcinomas. Recently, our group identified a new somatic mutation (c.5438A>G; E1813G) within DICER1 gene of an unknown function. Herein, we show that DICER1 is overexpressed, at mRNA level, in a significant-relative number of papillary (70%) and anaplastic (42%) thyroid carcinoma samples, whereas is drastically downregulated in all the analyzed human thyroid carcinoma cell lines (TPC-1, BCPAP, FRO and 8505c) in comparison with normal thyroid tissue samples. Conversely, DICER1 is downregulated, at protein level, in PTC in comparison with normal thyroid tissues. Our data also reveals that DICER1 overexpression positively regulates thyroid cell proliferation, whereas its silencing impairs thyroid cell differentiation. The expression of DICER1 gene mutation (c.5438A>G; E1813G) negatively affects the microRNA machinery and cell proliferation as well as upregulates DICER1 protein levels of thyroid cells but has no impact on thyroid differentiation. In conclusion, DICER1 protein is downregulated in papillary thyroid carcinomas and affects thyroid proliferation and differentiation, while DICER1 gene mutation (c.5438A>G; E1813G) compromises the DICER1 wild-type-mediated microRNA processing and cell proliferation.
Zeng, Qingyu; Qin, Shanshan; Zhang, Hai; Liu, Beibei; Qin, Jiamin; Wang, Xiaoxue; Zhang, Ruijie; Liu, Chunxiao; Dong, Xiaoqing; Zhang, Shuangquan; Huang, Shile; Chen, Long
2018-01-01
B cell activating factor from the TNF family (BAFF) stimulates B-cell proliferation and survival, but excessive BAFF promotes the development of aggressive B cells leading to malignant and autoimmune diseases. Recently, we have reported that rapamycin, a macrocyclic lactone, attenuates human soluble BAFF (hsBAFF)-stimulated B-cell proliferation/survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway. Here, we show that the inhibitory effect of rapamycin on hsBAFF-promoted B cell proliferation/survival is also related to blocking hsBAFF-stimulated phosphorylation of Akt, S6K1, and 4E-BP1, as well as expression of survivin in normal and B-lymphoid (Raji and Daudi) cells. It appeared that both mTORC1 and mTORC2 were involved in the inhibitory activity of rapamycin, as silencing raptor or rictor enhanced rapamycin's suppression of hsBAFF-induced survivin expression and proliferation/viability in B cells. Also, PP242, an mTORC1/2 kinase inhibitor, repressed survivin expression, and cell proliferation/viability more potently than rapamycin (mTORC1 inhibitor) in B cells in response to hsBAFF. Of interest, ectopic expression of constitutively active Akt (myr-Akt) or constitutively active S6K1 (S6K1-ca), or downregulation of 4E-BP1 conferred resistance to rapamycin's attenuation of hsBAFF-induced survivin expression and B-cell proliferation/viability, whereas overexpression of dominant negative Akt (dn-Akt) or constitutively hypophosphorylated 4E-BP1 (4EBP1-5A), or downregulation of S6K1, or co-treatment with Akt inhibitor potentiated the inhibitory effects of rapamycin. The findings indicate that rapamycin attenuates excessive hsBAFF-induced cell proliferation/survival via blocking mTORC1/2 signaling in normal and neoplastic B-lymphoid cells. Our data underscore that rapamycin may be a potential agent for preventing excessive BAFF-evoked aggressive B-cell malignancies and autoimmune diseases. © 2017 Wiley Periodicals, Inc.
Morley, Karen L; Ferguson, Peter J; Koropatnick, James
2007-06-18
Tangeretin and nobiletin are citrus flavonoids that are among the most effective at inhibiting cancer cell growth in vitro and in vivo. The antiproliferative activity of tangeretin and nobiletin was investigated in human breast cancer cell lines MDA-MB-435 and MCF-7 and human colon cancer line HT-29. Both flavonoids inhibited proliferation in a dose- and time-dependent manner, and blocked cell cycle progression at G1 in all three cell lines. At concentrations that resulted in significant inhibition of proliferation and cell cycle arrest, neither flavonoid induced apoptosis or cell death in any of the tumor cell lines. To test the ability of arrested cells to recover, cells that were incubated with tangeretin and nobiletin for 4 days were then cultured in flavonoid-free medium for an additional 4 days. Cells resumed proliferation similar to untreated control within a day of flavonoid removal. Cell cycle distribution was similar to that of control within 4 days of flavonoid removal. These data indicate that, in these cell lines at concentrations that inhibit proliferation up to 80% over 4 days, tangeretin and nobiletin are cytostatic and significantly suppress proliferation by cell cycle arrest without apoptosis. Such an agent could be expected to spare normal tissues from toxic side effects. Thus, tangeretin and nobiletin could be effective cytostatic anticancer agents. Inhibition of proliferation of human cancers without inducing cell death may be advantageous in treating tumors as it would restrict proliferation in a manner less likely to induce cytotoxicity and death in normal, non-tumor tissues.
Barkla, D H; Tutton, P J
1987-04-01
Colostomies were formed in the midcolon of normal and DMH-treated rats. Changes in cell proliferation in the mucosa adjacent to the colostomy and in the defunctioned distal segment were measured at seven, 14, 30, and 72 days using a stathmokinetic technique. Animals were given intraperitoneal injections of vinblastine and sacrificed three hours later; counts of mitotic and nonmitotic cells were made in tissue sections, and three-hour accumulated mitotic indexes were estimated. The results show that, except at seven days in DMH-treated rats, cell proliferation was unchanged in the colon proximal to the colostomy. Morphologic evidence of hyperplasia was seen in some animals at seven and 14 days. The defunctioned segment showed rapid atrophy of both mucosa and muscularis and a gradual but progressive decrease in cell proliferation. The morphology of the mucosa adjacent to the suture line in both functioning and defunctioned segments in normal and DMH-treated rats was abnormal in many animals. Abnormalities that were seen included collections of dysplastic epithelial cells in the submucosa, focal adenomatous changes, and intramural carcinoma formation. Aggregates of lymphoid tissue often were associated with carcinomas.
Malliaras, Konstantinos; Zhang, Yiqiang; Seinfeld, Jeffrey; Galang, Giselle; Tseliou, Eleni; Cheng, Ke; Sun, Baiming; Aminzadeh, Mohammad; Marbán, Eduardo
2013-01-01
Cardiosphere-derived cells (CDCs) have been shown to regenerate infarcted myocardium in patients after myocardial infarction (MI). However, whether the cells of the newly formed myocardium originate from the proliferation of adult cardiomyocytes or from the differentiation of endogenous stem cells remains unknown. Using genetic fate mapping to mark resident myocytes in combination with long-term BrdU pulsing, we investigated the origins of postnatal cardiomyogenesis in the normal, infarcted and cell-treated adult mammalian heart. In the normal mouse heart, cardiomyocyte turnover occurs predominantly through proliferation of resident cardiomyocytes at a rate of ∼1.3–4%/year. After MI, new cardiomyocytes arise from both progenitors as well as pre-existing cardiomyocytes. Transplantation of CDCs upregulates host cardiomyocyte cycling and recruitment of endogenous progenitors, while boosting heart function and increasing viable myocardium. The observed phenomena cannot be explained by cardiomyocyte polyploidization, bi/multinucleation, cell fusion or DNA repair. Thus, CDCs induce myocardial regeneration by differentially upregulating two mechanisms of endogenous cell proliferation. PMID:23255322
Tutton, P J; Barkla, D H
1982-01-01
Androgenic hormones have previously been shown to promote cell proliferation in the small intestine of rat and androgen receptors have been demonstrated in carcinomata of the large intestine of rat. In this study the influence of testosterone and of castration on epithelial cell proliferation in the small intestine, the large intestine and in dimethylhydrazine-induced colonic tumours is compared. Cell proliferation in the small intestine and in colonic tumours was accelerated by testosterone treatment, and cell proliferation in colonic tumours, but not in the small intestine, was retarded following castration. Cell proliferation in colonic tumours was also inhibited by the anti-androgenic drug, Flutamide. Testosterone and castration each failed to influence cell proliferation in the colonic crypt epithelium of both normal and carcinogen-treated animals.
2013-01-01
Introduction The Epithelial Cell Adhesion Molecule (EpCAM) has been shown to be strongly expressed in human breast cancer and cancer stem cells and its overexpression has been supposed to support tumor progression and metastasis. However, effects of EpCAM overexpression on normal breast epithelial cells have never been studied before. Therefore, we analyzed effects of transient adenoviral overexpression of EpCAM on proliferation, migration and differentiation of primary human mammary epithelial cells (HMECs). Methods HMECs were transfected by an adenoviral system for transient overexpression of EpCAM. Thereafter, changes in cell proliferation and migration were studied using a real time measurement system. Target gene expression was evaluated by transcriptome analysis in proliferating and polarized HMEC cultures. A Chicken Chorioallantoic Membrane (CAM) xenograft model was used to study effects on in vivo growth of HMECs. Results EpCAM overexpression in HMECs did not significantly alter gene expression profile of proliferating or growth arrested cells. Proliferating HMECs displayed predominantly glycosylated EpCAM isoforms and were inhibited in cell proliferation and migration by upregulation of p27KIP1 and p53. HMECs with overexpression of EpCAM showed a down regulation of E-cadherin. Moreover, cells were more resistant to TGF-β1 induced growth arrest and maintained longer capacities to proliferate in vitro. EpCAM overexpressing HMECs xenografts in chicken embryos showed hyperplastic growth, lack of lumen formation and increased infiltrates of the chicken leukocytes. Conclusions EpCAM revealed oncogenic features in normal human breast cells by inducing resistance to TGF-β1-mediated growth arrest and supporting a cell phenotype with longer proliferative capacities in vitro. EpCAM overexpression resulted in hyperplastic growth in vivo. Thus, we suggest that EpCAM acts as a prosurvival factor counteracting terminal differentiation processes in normal mammary glands. PMID:23758908
Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation
Lunt, Sophia Y.; Muralidhar, Vinayak; Hosios, Aaron M.; Israelsen, William J.; Gui, Dan Y.; Newhouse, Lauren; Ogrodzinski, Martin; Hecht, Vivian; Xu, Kali; Acevedo, Paula N. Marín; Hollern, Daniel P.; Bellinger, Gary; Dayton, Talya L.; Christen, Stefan; Elia, Ilaria; Dinh, Anh T.; Stephanopoulos, Gregory; Manalis, Scott R.; Yaffe, Michael B.; Andrechek, Eran R.; Fendt, Sarah-Maria; Heiden, Matthew G. Vander
2014-01-01
SUMMARY Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell proliferation is unknown. We examine how PKM2-deletion affects proliferation and metabolism in non-transformed, non-immortalized PKM2-expressing primary cells. We find that deletion of PKM2 in primary cells results in PKM1 expression and proliferation arrest. PKM1 expression, rather than PKM2 loss, is responsible for this effect, and proliferation arrest cannot be explained by cell differentiation, senescence, death, changes in gene expression, or prevention of cell growth. Instead, PKM1 expression impairs nucleotide production and the ability to synthesize DNA and progress through the cell cycle. Nucleotide biosynthesis is limiting, as proliferation arrest is characterized by severe thymidine depletion, and supplying exogenous thymine rescues both nucleotide levels and cell proliferation. Thus, PKM1 expression promotes a metabolic state that is unable to support DNA synthesis. PMID:25482511
Liang, Xinyue; Gu, Junlian; Yu, Dehai; Wang, Guanjun; Zhou, Lei; Zhang, Xiaoying; Zhao, Yuguang; Chen, Xiao; Zheng, Shirong; Liu, Qiang; Cai, Lu; Cui, Jiuwei; Li, Wei
2016-01-01
Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR). In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3' -kinase(PI3K)-Akt (PI3K/AKT) phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy). In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy.
Liang, Xinyue; Gu, Junlian; Yu, Dehai; Wang, Guanjun; Zhou, Lei; Zhang, Xiaoying; Zhao, Yuguang; Chen, Xiao; Zheng, Shirong; Liu, Qiang; Cai, Lu
2016-01-01
Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR). In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3′ -kinase(PI3K)-Akt (PI3K/AKT) phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy). In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy. PMID:26788032
Tutton, P J; Barkla, D H
1978-03-01
Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.
Conditional Deletion of Pten Causes Bronchiolar Hyperplasia
Davé, Vrushank; Wert, Susan E.; Tanner, Tiffany; Thitoff, Angela R.; Loudy, Dave E.; Whitsett, Jeffrey A.
2008-01-01
Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (PtenΔ/Δ) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as indicated by β-tubulin and FOXJ1 expression in ciliated cells and by CCSP expression in nonciliated cells, cell proliferation (detected by expression of Ki-67, phospho-histone-H3, and cyclin D1) was increased and associated with activation of the AKT/mTOR survival pathway. Deletion of Pten caused papillary epithelial hyperplasia characterized by a hypercellular epithelium lining papillae with fibrovascular cores that protruded into the airway lumens. Cell polarity, as assessed by subcellular localization of cadherin, β-catenin, and zonula occludens-1, was unaltered. PTEN is required for regulation of epithelial cell proliferation in the lung and for the maintenance of the normal simple columnar epithelium characteristics of bronchi and bronchioles. PMID:17921358
Conditional deletion of Pten causes bronchiolar hyperplasia.
Davé, Vrushank; Wert, Susan E; Tanner, Tiffany; Thitoff, Angela R; Loudy, Dave E; Whitsett, Jeffrey A
2008-03-01
Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (Pten(Delta/Delta)) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as indicated by beta-tubulin and FOXJ1 expression in ciliated cells and by CCSP expression in nonciliated cells, cell proliferation (detected by expression of Ki-67, phospho-histone-H3, and cyclin D1) was increased and associated with activation of the AKT/mTOR survival pathway. Deletion of Pten caused papillary epithelial hyperplasia characterized by a hypercellular epithelium lining papillae with fibrovascular cores that protruded into the airway lumens. Cell polarity, as assessed by subcellular localization of cadherin, beta-catenin, and zonula occludens-1, was unaltered. PTEN is required for regulation of epithelial cell proliferation in the lung and for the maintenance of the normal simple columnar epithelium characteristics of bronchi and bronchioles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yingting, E-mail: yitizhu@yahoo.com; Tissue Tech Inc, Miami, FL 33173; Zhu, Min
2012-11-15
COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1{beta} in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts withmore » or without stimulation of IL-1{beta}, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1{beta}. Further analysis indicated that the major COX-2 product, prostaglandin E{sub 2}, directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1{beta}. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1{beta} in the fibroblasts.« less
Gregori, Josep; Méndez, Olga; Katsila, Theodora; Pujals, Mireia; Salvans, Cándida; Villarreal, Laura; Arribas, Joaquin; Tabernero, Josep; Sánchez, Alex; Villanueva, Josep
2014-07-15
Secretome profiling has become a methodology of choice for the identification of tumor biomarkers. We hypothesized that due to the dynamic nature of secretomes cellular perturbations could affect their composition but also change the global amount of protein secreted per cell. We confirmed our hypothesis by measuring the levels of secreted proteins taking into account the amount of proteome produced per cell. Then, we established a correlation between cell proliferation and protein secretion that explained the observed changes in global protein secretion. Next, we implemented a normalization correcting the statistical results of secretome studies by the global protein secretion of cells into a generalized linear model (GLM). The application of the normalization to two biological perturbations on tumor cells resulted in drastic changes in the list of statistically significant proteins. Furthermore, we found that known epithelial-to-mesenchymal transition (EMT) effectors were only statistically significant when the normalization was applied. Therefore, the normalization proposed here increases the sensitivity of statistical tests by increasing the number of true-positives. From an oncology perspective, the correlation between protein secretion and cellular proliferation suggests that slow-growing tumors could have high-protein secretion rates and consequently contribute strongly to tumor paracrine signaling.
Fenton, Jenifer I; Birmingham, Janette M
2010-01-01
Obesity results in increased circulating levels of specific adipokines which are associated with colon cancer risk. The disease state is associated with increased leptin, insulin, IGF-1, and IL-6. Conversely, adiponectin levels are decreased in obese individuals. Previously, we demonstrated adipokine-enhanced cell proliferation in preneoplastic, but not normal, colon epithelial cells, demonstrating a differential effect of adipokines on colon cancer progression in vitro. Using a model of late stage carcinoma cancer cell, namely murine MC-38 colon carcinoma cells, we compared the effect of obesity-associated adipokines (leptin, insulin and IGF-1 and IL-6) on MC-38 cell proliferation and determined whether adiponectin (full length or globular) could modulate adipokine-induced cell proliferation. We show that insulin and IL-6, but not leptin and IGF-1, induce proliferation in MC-38 cells. Adiponectin treatment of MC-38 cells did not inhibit insulin-induced cell proliferation but did inhibit IL-6-induced cell proliferation by decreasing STAT-3 phosphorylation and activation. Nitric oxide (NO) production was increased in MC-38 cells treated with IL-6; co-treatment with adiponectin blocked IL-6 induced iNOS and subsequent NO production. These data are compared to previously reported findings from our laboratory using the YAMC (model normal colon epithelial cells) and IMCE (model preneoplastic) cells. The cell lines are utilized to construct a model summarizing the hormonal consequences of obesity and the impact on the differential regulation of colon epithelial cells along the continuum to carcinoma. These data, taken together, highlight mechanisms involved in obesity-associated cancers and may lead to potential targeted therapies. PMID:20564347
Wu, Bao-Qiang; Jiang, Yong; Zhu, Feng; Sun, Dong-Lin
2017-01-01
Background and Aim: Long noncoding RNA-plasmacytoma variant translocation 1 is identified to be highly expressed and exhibits oncogenic activity in a variety of human malignancies, including pancreatic cancer. However, little is known about the overall biological role and mechanism of plasmacytoma variant translocation 1 in pancreatic cancer so far. In this study, we investigated the effect of plasmacytoma variant translocation 1 on pancreatic cancer cell proliferation and migration as well as epithelial–mesenchymal transition. Methods: Pancreatic cancer tissue specimens and cell line were used in this study, with normal tissue and cell line acting as control. Results: It showed that plasmacytoma variant translocation 1 expression was significantly upregulated in pancreatic cancer tissues or cell line compared to normal groups. Plasmacytoma variant translocation 1 downregulation significantly inhibited zinc finger E-box-binding protein 1/Snail expression but promoted p21 expression, and it also inhibited the cell proliferation and migration. Additionally, p21 downregulation enhanced, and p21 overexpression repressed, zinc finger E-box-binding protein 1/Snail expression and cells proliferation in PANC-1 cells. However, p21 downregulation reversed the effect of plasmacytoma variant translocation 1 downregulation on zinc finger E-box-binding protein 1/Snail expression and cell proliferation and migration. Conclusion: Plasmacytoma variant translocation 1 promoted epithelial–mesenchymal transition and cell proliferation and migration through downregulating p21 in pancreatic cancer cells. PMID:28355965
Popnikolov, N; Yang, J; Liu, A; Guzman, R; Nandi, S
2001-03-01
The proliferation of normal human breast epithelial cells in women is highest during the first trimester of pregnancy. In an attempt to analyze this hormonal environment in a model system, the effect of host mouse pregnancy and the administration of human chorionic gonadotropin (hCG) were assessed in normal human breast epithelial cells transplanted into athymic nude mice. Human breast epithelial cells, dissociated from reduction mammoplasty specimens and embedded inside the extracellular matrices comprised of collagen gel and Matrigel, were transplanted into nude mice. Proliferation was measured in vivo by BrdU labeling followed by immunostaining of sections from recovered gels in response to an altered hormonal environment of the host animal. The host animal was mated to undergo pregnancy and the complex hormonal environment of the host animal pregnancy stimulated growth of transplanted human cells. This effect increased with progression of pregnancy and reached the maximum during late pregnancy prior to parturition. In order to determine whether additional stimulation could be achieved, the transplanted human cells were exposed to a second cycle of host mouse pregnancy by immediately mating the animal after parturition. This additional exposure of host mouse pregnancy did not result in further increase of proliferation. The effect of hCG administration on transplanted human cells was also tested, since hCG level is highest during the first trimester of human pregnancy and coincides with the maximal breast cell proliferation. Administration of hCG alone stimulated proliferation of human cells in a dose-dependent manner, and could further enhance stimulation achieved with estrogen. The host mouse mammary gland also responded to hCG treatment resulting in increased branching and lobulo-alveolar development. However, the hCG effect on both human and mouse cells was dependent on intact ovary since the stimulation did not occur in ovariectomized animals. Although hCG receptor transcripts were detected in human breast epithelial cells, raising the possibility of a direct mitogenic action, the hCG effect observed in this study may have been mediated via the ovary by increased secretion of ovarian steroids. In summary, using our in vivo nude mice system, the proliferation of normal human breast epithelial cells could be stimulated by host mouse pregnancy and by administration of hCG.
Cold thyroid nodules show a marked increase in proliferation markers.
Krohn, Knut; Stricker, Ingo; Emmrich, Peter; Paschke, Ralf
2003-06-01
Thyroid follicular adenomas and adenomatous thyroid nodules are a frequent finding in geographical areas with iodine deficiency. They occur as hypofunctioning (scintigraphically cold) or hyperfunctioning (scintigraphically hot) nodules. Their predominant clonal origin suggests that they result from clonal expansion of a single cell, which is very likely the result of a prolonged increase in proliferation compared with non-affected surrounding cells. To test whether increased cell proliferation is detectable in cold thyroid nodules, we studied paraffin-embedded tissue from 40 cold thyroid nodules and their surrounding normal thyroid tissue for the occurrence of the proliferating cell nuclear antigen (PCNA) and Ki-67 (MIB-1 antibody) epitopes as markers for cell proliferation. All 40 thyroid nodules were histologically well characterized and have been studied for molecular characteristics before. The labeling index (number of labeled cells versus total cell number) for nodular and surrounding tissue was calculated. In 33 cold thyroid nodules a significant (p < or = 0.05) increase in the labeling index for PCNA was detectable. In 19 cold thyroid nodules a significant (p < or = 0.05) increase in the labeling index for Ki-67 was detectable. Moreover, surrounding tissues with lymphocyte infiltration showed a significantly higher labeling index for both PCNA and Ki-67 compared with normal surrounding tissue. These findings are first evidence that an increased thyroid epithelial cell proliferation is a uniform feature common to most cold nodules. However, the increase of proliferation markers shows a heterogeneity that is not correlated with histopathologic, molecular, or clinical characteristics.
Pivotal advance: CTLA-4+ T cells exhibit normal antiviral functions during acute viral infection.
Raué, Hans-Peter; Slifka, Mark K
2007-05-01
Previous studies have shown that T cells, which are genetically deficient in CTLA-4/CD152 expression, will proliferate uncontrollably, resulting in lethal autoimmune disease. This and other evidence indicate that CTLA-4 plays a critical role in the negative regulation of effector T cell function. In contrast to expectations, BrdU incorporation experiments demonstrated that CTLA-4 expression was associated with normal or even enhanced in vivo proliferation of virus-specific CD4+ and CD8+ T cells following acute lymphocytic choriomeningitis virus or vaccinia virus infection. When compared with CTLA-4- T cells directly ex vivo, CTLA-4+ T cells also exhibited normal antiviral effector functions following stimulation with peptide-coated cells, virus-infected cells, plate-bound anti-CD3/anti-CTLA-4, or the cytokines IL-12 and IL-18. Together, this indicates that CTLA-4 does not directly inhibit antiviral T cell expansion or T cell effector functions, at least not under the normal physiological conditions associated with either of these two acute viral infections.
Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R
2016-01-19
The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells. Copyright © 2016 Elsevier Inc. All rights reserved.
The Lcn2-engineered HEK-293 cells show senescence under stressful condition
Bahmani, Bahareh; Amiri, Fatemeh; Mohammadi Roushandeh, Amaneh; Bahadori, Marzie; Harati, Mozhgan Dehghan; Habibi Roudkenar, Mehryar
2015-01-01
Objective(s): Lipocalin2 (Lcn2) gene is highly expressed in response to various types of cellular stresses. The precise role of Lcn2 has not been fully understood yet. However, it plays a key role in controlling vital cellular processes such as proliferation, apoptosis and metabolism. Recently it was shown that Lcn2 decreases senescence and increases proliferation of mesenchymal stem cells (MSC) with finite life span under either normal or oxidative stress conditions. However, Lcn2 effects on immortal cell line with infinite proliferation are not defined completely. Materials and Materials and Methods: HEK-293 cells were transfected with recombinant pcDNA3.1 containing Lcn2 fragment (pcDNA3.1-Lcn2). Expression of lipocalin2 in transfected cells was evaluated by RT-PCR, real time RT-PCR, and ELISA. Different cell groups were treated with H2O2 and WST-1 assay was performed to determine their proliferation rate. Senescence was studied by β-galactosidase and gimsa staining methods as well as evaluation of the expression of senescence-related genes by real time RT-PCR. Results: Lcn2 increased cell proliferation under normal culture condition, while the proliferation slightly decreased under oxidative stress. This decrease was further found to be attributed to senescence. Conclusion: Our findings indicated that under harmful conditions, Lcn2 gene is responsible for the regulation of cell survival through senescence. PMID:26124931
tRNA modification profiles of the fast-proliferating cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Chao; Niu, Leilei; Song, Wei
Despite the recent progress in RNA modification study, a comprehensive modification profile is still lacking for mammalian cells. Using a quantitative HPLC/MS/MS assay, we present here a study where RNA modifications are examined in term of the major RNA species. With paired slow- and fast-proliferating cell lines, distinct RNA modification profiles are first revealed for diverse RNA species. Compared to mRNAs, increased ribose and nucleobase modifications are shown for the highly-structured tRNAs and rRNAs, lending support to their contribution to the formation of high-order structures. This study also reveals a dynamic tRNA modification profile in the fast-proliferating cells. In additionmore » to cultured cells, this unique tRNA profile has been further confirmed with endometrial cancers and their adjacent normal tissues. Taken together, the results indicate that tRNA is a actively regulated RNA species in the fast-proliferating cancer cells, and suggest that they may play a more active role in biological process than expected. -- Highlights: •RNA modifications were first examined in term of the major RNA species. •A dynamic tRNA modifications was characterized for the fast-proliferating cells. •The unique tRNA profile was confirmed with endometrial cancers and their adjacent normal tissues. •tRNA was predicted as an actively regulated RNA species in the fast-proliferating cancer cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinozuka, Eriko; Miyashita, Masao; Mizuguchi, Yoshiaki, E-mail: yoshi1224@gmail.com
2013-01-04
Highlights: Black-Right-Pointing-Pointer SnoN modulated miR-720, miR-1274A, and miR-1274B expression levels in TE-1 cells. Black-Right-Pointing-Pointer miR-720 and miR-1274A suppressed the expression of target proteins p63 and ADAM9. Black-Right-Pointing-Pointer Silencing of SnoN significantly upregulated cell proliferation in TE-1 cells. Black-Right-Pointing-Pointer Esophageal cancer tissues have lower SnoN expression levels than normal tissues. Black-Right-Pointing-Pointer Esophageal cancer tissues have higher miR-720 expression levels than normal tissues. -- Abstract: It is now evident that changes in microRNA are involved in cancer progression, but the mechanisms of transcriptional regulation of miRNAs remain unknown. Ski-related novel gene (SnoN/SKIL), a transcription co-factor, acts as a potential key regulator withinmore » a complex network of p53 transcriptional repressors. SnoN has pro- and anti-oncogenic functions in the regulation of cell proliferation, senescence, apoptosis, and differentiation. We characterized the roles of SnoN in miRNA transcriptional regulation and its effects on cell proliferation using esophageal squamous cell carcinoma (ESCC) cells. Silencing of SnoN altered a set of miRNA expression profiles in TE-1cells, and the expression levels of miR-720, miR-1274A, and miR-1274B were modulated by SnoN. The expression of these miRNAs resulted in changes to the target protein p63 and a disintegrin and metalloproteinase domain 9 (ADAM9). Furthermore, silencing of SnoN significantly upregulated cell proliferation in TE-1 cells, indicating a potential anti-oncogenic function. These results support our observation that cancer tissues have lower expression levels of SnoN, miR-720, and miR-1274A compared to adjacent normal tissues from ESCC patients. These data demonstrate a novel mechanism of miRNA regulation, leading to changes in cell proliferation.« less
Seder, Christopher W; Hartojo, Wibisono; Lin, Lin; Silvers, Amy L; Wang, Zhuwen; Thomas, Dafydd G; Giordano, Thomas J; Chen, Guoan; Chang, Andrew C; Orringer, Mark B; Beer, David G
2009-01-01
Introduction The expression, mechanisms of regulation, and functional impact of INHBA (activin A) in lung adenocarcinoma (AD) have not been fully elucidated. Methods INHBA expression was examined in 96 lung samples (86 ADs, 10 normal lung) using oligonucleotide microarrays and 187 lung samples (164 ADs, 6 bronchioalveolar carcinomas, and 17 normal lung) using immunohistochemistry. The proliferation of AD cell lines H460 and SKLU1 was examined with WST-1 assays after treatment with recombinant activin A, follistatin, and INHBA-targeting small-interfering RNA. Cells were also treated with 5-aza-2′ deoxycytidine and trichostatin A to investigate the role of epigenetic regulation in INHBA expression. Results Primary ADs expressed 3.1 times more INHBA mRNA than normal lung. In stage I AD patients, high levels of primary tumor INHBA transcripts were associated with worse prognosis. Immunohistochemistry confirmed higher inhibin βA protein expression in ADs (78.7%) and bronchioalveolar carcinomas (66.7%) compared with normal lung (11.8%). H460 and SKLU1 demonstrated increased proliferation when treated with exogenous activin A and reduced proliferation when treated with follistatin or INHBA-targeting small-interfering RNA. INHBA mRNA expression in H460 cells was upregulated after treatment with trichostatin A and 5-aza-2′ deoxycytidine. Conclusions INHBA is overexpressed in AD relative to controls. Inhibin βA may promote cell proliferation, and its overexpression is associated with worse survival in stage I AD patients. In addition, overexpression of INHBA may be affected by promoter methylation and histone acetylation in a subset of lung ADs. PMID:19308293
Cell proliferation in normal epidermis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinstein, G.D.; McCullough, J.L.; Ross, P.
1984-06-01
A detailed examination of cell proliferation kinetics in normal human epidermis is presented. Using tritiated thymidine with autoradiographic techniques, proliferative and differentiated cell kinetics are defined and interrelated. The proliferative compartment of normal epidermis has a cell cycle duration (Tc) of 311 h derived from 3 components: the germinative labeling index (LI), the duration of DNA synthesis (ts), and the growth fraction (GF). The germinative LI is 2.7% +/- 1.2 and ts is 14 h, the latter obtained from a composite fraction of labeled mitoses curve obtained from 11 normal subjects. The GF obtained from the literature and from humanmore » skin xenografts to nude mice is estimated to be 60%. Normal-appearing epidermis from patients with psoriasis appears to have a higher proliferation rate. The mean LI is 4.2% +/- 0.9, approximately 50% greater than in normal epidermis. Absolute cell kinetic values for this tissue, however, cannot yet be calculated for lack of other information on ts and GF. A kinetic model for epidermal cell renewal in normal epidermis is described that interrelates the rate of birth/entry, transit, and/or loss of keratinocytes in the 3 epidermal compartments: proliferative, viable differentiated (stratum malpighii), and stratum corneum. Expected kinetic homeostasis in the epidermis is confirmed by the very similar ''turnover'' rates in each of the compartments that are, respectively, 1246, 1417, and 1490 cells/day/mm2 surface area. The mean epidermal turnover time of the entire tissue is 39 days. The Tc of 311 h in normal cells in 8-fold longer than the psoriatic Tc of 36 h and is necessary for understanding the hyperproliferative pathophysiologic process in psoriasis.« less
Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collart, F.R.; Chubb, C.B.; Mirkin, B.L.
1992-07-10
IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results aremore » consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.« less
The up-regulation of miR-300 in gastric cancer and its effects on cells malignancy
Shen, Zhen; Li, Chunsheng; Zhang, Kai; Yu, Wei; Xiao, Huijie; Li, Bo; Liu, Tongjun
2015-01-01
Objective: In this study, we investigated the role of miR-300 in regulating cell proliferation and invasion of gastric cancer cells. Methods: MicroRNA and protein expression patterns were compared between gastric cancer tissue and normal tissue and between two different prognostic groups. The up-regulation of miR-300 was confirmed by real-time reverse transcription polymerase chain reaction and its expression was analyzed in AGS gastric cancer cells. Results: We observed that miR-300 expression was frequently and dramatically up-regulated in human gastric cancer tissues and cell lines compared with the matched adjacent normal tissues and cells. We further showed that transient and stable over-expression of miR-300 could promote cell proliferation and cell cycle progression. Moreover, p53, a key inhibitor of cell cycle, was verified as a direct target of miR-300, suggesting that miR-300 might promote gastric cancer cell proliferation and invasion by increasing p53 expression. Conclusion: Our findings indicated that miR-300 up-regulation might exert some sort of antagonistic function by targeting p53 in gastric cancer cell proliferation during gastric tumorigenesis. PMID:26221215
The up-regulation of miR-300 in gastric cancer and its effects on cells malignancy.
Shen, Zhen; Li, Chunsheng; Zhang, Kai; Yu, Wei; Xiao, Huijie; Li, Bo; Liu, Tongjun
2015-01-01
In this study, we investigated the role of miR-300 in regulating cell proliferation and invasion of gastric cancer cells. MicroRNA and protein expression patterns were compared between gastric cancer tissue and normal tissue and between two different prognostic groups. The up-regulation of miR-300 was confirmed by real-time reverse transcription polymerase chain reaction and its expression was analyzed in AGS gastric cancer cells. We observed that miR-300 expression was frequently and dramatically up-regulated in human gastric cancer tissues and cell lines compared with the matched adjacent normal tissues and cells. We further showed that transient and stable over-expression of miR-300 could promote cell proliferation and cell cycle progression. Moreover, p53, a key inhibitor of cell cycle, was verified as a direct target of miR-300, suggesting that miR-300 might promote gastric cancer cell proliferation and invasion by increasing p53 expression. Our findings indicated that miR-300 up-regulation might exert some sort of antagonistic function by targeting p53 in gastric cancer cell proliferation during gastric tumorigenesis.
Schaffer, Ashleigh E.; Yang, Almira J.; Thorel, Fabrizio; Herrera, Pedro L.
2011-01-01
The loss or dysfunction of the pancreatic endocrine β-cell results in diabetes. Recent innovative therapeutic approaches for diabetes aim to induce β-cell proliferation in vivo by pharmacological intervention. Based on the finding that overexpression of the transcription factor Nkx6.1 in islets in vitro increases β-cell proliferation while maintaining β-cell function, Nkx6.1 has been proposed as a potential target for diabetes therapy. However, it is unknown whether elevated Nkx6.1 levels in β-cells in vivo have similar effects as observed in isolated islets. To this end, we sought to investigate whether overexpression of Nkx6.1 in β-cells in vivo could increase β-cell mass and/or improve β-cell function in normal or β-cell-depleted mice. Using a bigenic inducible Cre-recombinase-based transgenic model, we analyzed the effects of Nkx6.1 overexpression on β-cell proliferation, β-cell mass, and glucose metabolism. We found that mice overexpressing Nkx6.1 in β-cells displayed similar β-cell proliferation rates and β-cell mass as control mice. Furthermore, after partial β-cell ablation, Nkx6.1 overexpression was not sufficient to induce β-cell regeneration under either nondiabetic or diabetic conditions. Together these results demonstrate that sustained Nkx6.1 overexpression in vivo does not stimulate β-cell proliferation, expand β-cell mass, or improve glucose metabolism in either normal or β-cell-depleted pancreata. Thus, raising cellular Nkx6.1 levels in β-cells in vivo is unlikely to have a positive impact on type 2 diabetes. PMID:21964593
Ramos-Jerz, Maria del R.; Villanueva, Socorro; Jerz, Gerold; Winterhalter, Peter; Deters, Alexandra M.
2013-01-01
Methanolic avocado (Persea americana Mill., Lauraceae) seed extracts were separated by preparative HSCCC. Partition and HSCCC fractions were principally characterized by LC-ESI-MS/MS analysis. Their in vitro influence was investigated on proliferation, differentiation, cell viability, and gene expression on HaCaT and normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF). The methanol-water partition (M) from avocado seeds and HSCCC fraction 3 (M.3) were mostly composed of chlorogenic acid and its isomers. Both reduced NHDF but enhanced HaCaT keratinocytes proliferation. HSCCC fraction M.2 composed of quinic acid among chlorogenic acid and its isomers inhibited proliferation and directly induced differentiation of keratinocytes as observed on gene and protein level. Furthermore, M.2 increased NHDF proliferation via upregulation of growth factor receptors. Salidrosides and ABA derivatives present in HSCCC fraction M.6 increased NHDF and keratinocyte proliferation that resulted in differentiation. The residual solvent fraction M.7 contained among low concentrations of ABA derivatives high amounts of proanthocyanidins B1 and B2 as well as an A-type trimer and stimulated proliferation of normal cells and inhibited the proliferation of immortalized HaCaT keratinocytes. PMID:24371457
Tutton, P J; Barkla, D H
1987-01-01
The role of extracellular amines such as noradrenaline and serotonin and their interaction with cyclic nucleotides and intracellular polyamines in the regulation of intestinal epithelial cell proliferation is reviewed with particular reference to the differences between normal and neoplastic cells. In respect to the normal epithelium of the small intestine there is a strong case to support the notion that cell proliferation is controlled by, amongst other things, sympathetic nerves. In colonic carcinomas, antagonists for certain serotonin receptors, for histamine H2 receptors and for dopamine D2 receptors inhibit both cell division and tumour growth. Because of the reproducible variations between tumour lines in the response to these antagonists, this inhibition appears to be due to a direct effect on the tumour cells rather than an indirect effect via the tumour host or stroma. This conclusion is supported by the cytocidal effects of toxic congeners of serotonin on the tumour cells. The most salient difference between the amine responses of normal and neoplastic cells relates to the issue of amine uptake. Proliferation of crypt cells is promoted by amine uptake inhibitors, presumably because they block amine re-uptake by the amine secreting cells--sympathetic neurones and enteroendocrine cells. However, tumour cell proliferation is strongly inhibited by amine uptake inhibitors, suggesting that neoplastic cells can, and need to take up the amine before being stimulated by it. Recent revelations in the field of oncogenes also support an important association between amines, cyclic nucleotides and cell division. The ras oncogenes code for a protein that is a member of a family of molecules which relay information from extracellular regulators, such as biogenic amines, to the intracellular regulators, including cyclic nucleotides. Evidence is presented suggesting that enteroendocrine cells, enterocytes, carcinoid tumour cells and adenocarcinoma cells all have the same embryonic origin and that cells exhibiting an admixture of endocrine and proliferative properties exist in colonic tumours, but not in the normal intestinal epithelium. Thus, it appears that in the normal intestine a clear structural and functional distinction exists between the regulating cells (i.e. the sympathetic neurones and enteroendocrine cells) and the regulated cells (i.e. the undifferentiated crypt cells): cells that have acquired a regulating role are no longer able to divide and cells which are able to divide do not take up or store amines.(ABSTRACT TRUNCATED AT 400 WORDS)
Stimulation of Mucosal Mast Cell Growth in Normal and Nude Rat Bone Marrow Cultures
NASA Astrophysics Data System (ADS)
Haig, David M.; McMenamin, Christine; Gunneberg, Christian; Woodbury, Richard; Jarrett, Ellen E. E.
1983-07-01
Mast cells with the morphological and biochemical properties of mucosal mast cells (MMC) appear and proliferate to form the predominant cell type in rat bone marrow cultures stimulated with factors from antigen- or mitogen-activated lymphocytes. Conditioned media causing a selective proliferation of MMC were derived from mesenteric lymph node cells of Nippostrongylus brasiliensis-infected rats restimulated in vitro with specific antigen or from normal or infected rat mesenteric lymph node cells stimulated with concanavalin A. MMC growth factor is not produced by T-cell-depleted mesenteric lymph node cells or by the mesenteric lymph node cells of athymic rats. By contrast, MMC precursors are present in the bone marrow of athymic rats and are normally receptive to the growth factor produced by the lymphocytes of thymus-intact rats. The thymus dependence of MMC hyperplasia is thus based on the requirement of a thymus-independent precursor for a T-cell-derived growth promoter.
MiR-300 regulate the malignancy of breast cancer by targeting p53.
Xu, Xiao-Heng; Li, Da-Wei; Feng, Hui; Chen, Hong-Mei; Song, Yan-Qiu
2015-01-01
In this study, we investigated the role of miR-300 in regulating cell proliferation and invasion of breast cancer (BC) cells. MicroRNA and protein expression patterns were compared between breast cancer tissue and normal tissue and between two different prognostic groups. The up-regulation of miR-300 was confirmed by real-time reverse transcription polymerase chain reaction and its expression was analyzed in MCF-7 breast cancer cells. We observed that miR-300 expression was frequently and dramatically up-regulated in human breast cancer tissues and cell lines compared with the matched adjacent normal tissues and cells. We further showed that transient and stable over-expression of miR-300 could promote cell proliferation and cell cycle progression. Moreover, p53, a key inhibitor of cell cycle, was verified as a direct target of miR-300, suggesting that miR-300 might promote breast cancer cell proliferation and invasion by regulating p53 expression. Our findings indicated that miR-300 up-regulation might exert some sort of antagonistic function by targeting p53 in breast cancer cell proliferation during breast tumorigenesis.
MiR-300 regulate the malignancy of breast cancer by targeting p53
Xu, Xiao-Heng; Li, Da-Wei; Feng, Hui; Chen, Hong-Mei; Song, Yan-Qiu
2015-01-01
Objective: In this study, we investigated the role of miR-300 in regulating cell proliferation and invasion of breast cancer (BC) cells. Methods: MicroRNA and protein expression patterns were compared between breast cancer tissue and normal tissue and between two different prognostic groups. The up-regulation of miR-300 was confirmed by real-time reverse transcription polymerase chain reaction and its expression was analyzed in MCF-7 breast cancer cells. Results: We observed that miR-300 expression was frequently and dramatically up-regulated in human breast cancer tissues and cell lines compared with the matched adjacent normal tissues and cells. We further showed that transient and stable over-expression of miR-300 could promote cell proliferation and cell cycle progression. Moreover, p53, a key inhibitor of cell cycle, was verified as a direct target of miR-300, suggesting that miR-300 might promote breast cancer cell proliferation and invasion by regulating p53 expression. Conclusion: Our findings indicated that miR-300 up-regulation might exert some sort of antagonistic function by targeting p53 in breast cancer cell proliferation during breast tumorigenesis. PMID:26221232
Splino, M; Mĕrka, V; Kyntera, F
1976-08-01
The study deals with the phagocytosis of Nocardia asteroides (strain Weipheld) and the subsequent intracellular proliferation in peritoneal macrophage cells. Normal, two-stage-immunized and long-term cortison-treated guinea-pig (28 mg cortison / kg weight / day during 30 days) macrophages were used. Further, the cytotoxic effect of Nocardia upon the cells in the peritoneal washing liquid in vitro and the influence of the normal, immune and antimacrophage serum upon the phagocytosis and the intracellular proliferation were studied. Among the cells obtained from the peritoneal washing liquid macrophages were most frequently subject to phagocytosis, leukocytes to a lesser degree. The normal macrophages phagocytized in 14.56% (Fig. 1), macrophages of two-stage-immunized guinea-pigs in 18.21% (Fig. 2) and macrophages from cortison treated guinea-pigs in 12.48% of cases. Intracellular observation showed phagocytized germs after 3 min. of exposure. The course of the intracellular proliferation of Nocardia can be seen in Fig. 3. The phagocytosis index increases slowly in all three groups of macrophages; least so in the immunized macrophages (1.30-after 8 hours). The highest values were obtained in the macrophages of cortison treated guinea-pigs (2.02-after 8 hours). Within 8 hours of exposure the filaments of Nocardia grew through the cell membrane of phagocytizing cells (Figs. 4 A, 4 B). Fig. 5 shows the course of the cytopathogenic effect of Nocardia upon the cells. After 1 hr. the number of dead cells increased from 0.30% to 1.9-3.8%; after 4 hrs. it reached 8.15-9.80%; after 8 hrs. 10.1-14.80%. The highest values were observed in cells from cortison treated guinea-pigs (14.80%). After addition of normal serum (time of phagocytosis 60 min.) normal peritoneal macrophages phagocytized in 13.30% of cases; immune serum stimulated phagocytosis (16.21%); antimacrophage serum significantly reduced phagocytosis (4.10%). The phagocytosis index in peritoneal macrophages with normal and immune serum increased, reaching values of 1.20-1.58 with in 8 hours; the differences were statistically not significant (Fig. 6). A significant increase of proliferation was observed in peritoneal macrophages with antimacrophage serum (2.07 in 8 hours). Neither normal nor immune guine-pig serum influenced the cytopathogenic effect of Nocardia on the cells of peritoneal washing liquid (Fig. 7). The antimacrophage serum had a rapid and expressive effect upon the macrophages (78.23% of cells died after 2 hours, 100% after 3 hours of exposure).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levina, Vera; Marrangoni, Adele M.; DeMarco, Richard
TRAIL is a death ligand that induces apoptosis in malignant but not normal cells. Recently the ability of TRAIL to induce proliferation in apoptosis-resistant normal and malignant cells was reported. In this study, we analyzed TRAIL effects in apoptosis sensitive MCF7, OVCAR3 and H460 human tumor cell lines. TRAIL at low concentrations preferentially induced cell proliferation. At 100 ng/ml, apoptotic death was readily observed, however surviving cells acquired higher proliferative capacity. TRAIL-stimulated production of several cytokines, IL-8, RANTES, MCP-1 and bFGF, and activation of caspases 1 and 8 was essential for this effect. Antibodies to IL-8, RANTES, and bFGF blockedmore » TRAIL-induced cell proliferation and further stimulated apoptosis. For the first time, we report that high TRAIL concentrations induced cell senescence as determined by the altered morphology and expression of several senescence markers: SA-{beta}-gal, p21{sup Waf1/Cip1}, p16{sup INK4a}, and HMGA. Caspase 9 inhibition protected TRAIL-treated cells from senescence, whereas inhibition of caspases 1 and 8 increased the yield of SLP cells. In conclusion, in cultured human carcinoma cells, TRAIL therapy results in three functional outcomes, apoptosis, proliferation and senescence. TRAIL-induced proapoptotic and prosurvival responses correlate with the strength of signaling. TRAIL-induced cytokine production is responsible for its proliferative and prosurvival effects.« less
GPER and ERα expression in abnormal endometrial proliferations.
Tica, Andrei Adrian; Tica, Oana Sorina; Georgescu, Claudia Valentina; Pirici, Daniel; Bogdan, Maria; Ciurea, Tudorel; Mogoantă, Stelian ŞtefăniŢă; Georgescu, Corneliu Cristian; Comănescu, Alexandru Cristian; Bălşeanu, Tudor Adrian; Ciurea, Raluca Niculina; Osiac, Eugen; Buga, Ana Maria; Ciurea, Marius Eugen
2016-01-01
G-protein coupled estrogen receptor 1 (GPER), a particular extranuclear estrogen receptor (ER), seems not to be significantly involved in normal female phenotype development but especially associated with severe genital malignancies. This study investigated the GPER expression in different types of normal and abnormal proliferative endometrium, and the correlation with the presence of ERα. GPER was much highly expressed in cytoplasm (than onto cell membrane), contrary to ERα, which was almost exclusively located in the nucleus. Both ERs' densities were higher in columnar epithelial then in stromal cells, according with higher estrogen-sensitivity of epithelial cells. GPER and ERα density decreased as follows: complex endometrial hyperplasia (CEH) > simple endometrial hyperplasia (SHE) > normal proliferative endometrium (NPE) > atypical endometrial hyperplasia (AEH), ERα' density being constantly higher. In endometrial adenocarcinomas, both ERs were significant lower expressed, and widely varied, but GPER÷ERα ratio was significantly increased in high-grade lesions. The nuclear ERα is responsible for the genomic (the most important) mechanism of action of estrogens, involved in cell growth and multiplication. In normal and benign proliferations, ERα expression is increased as an evidence of its effects on cells with conserved architecture, in atypical and especially in malignant cells ERα's (and GPER's) density being much lower. Cytoplasmic GPER probably interfere with different tyrosine÷protein kinases signaling pathways, also involved in cell growth and proliferation. In benign endometrial lesions, GPER's presence is, at least partially, the result of an inductor effect of ERα on GPER gene transcription. In high-grade lesions, GPER÷ERα ratio was increased, demonstrating that GPER is involved per se in malignant endometrial proliferations.
Ando, Satoshi; Matsuoka, Taeko; Kawai, Koji; Sugita, Shintaro; Joraku, Akira; Kojima, Takahiro; Suetomi, Takahiro; Miyazaki, Jun; Fujita, Jun; Nishiyama, Hiroyuki
2014-10-01
The oncoprotein, gankyrin, is known to facilitate cell proliferation through phosphorylation and degradation of retinoblastoma protein. In the present study, we evaluated the expression of gankyrin and phosphorylated retinoblastoma protein in human testis and testicular germ cell tumors. The effects of suppression of gankyrin by locked nucleic acid on phosphorylation status of retinoblastoma and cell proliferation were analyzed using western blot analysis and testicular tumor cell line NEC8. The expressions of gankyrin, retinoblastoma and retinoblastoma protein were analyzed in 93 testicular germ cell tumor samples and five normal human testis by immunohistochemistry. The retinoblastoma protein expression was determined using an antibody to retinoblastoma protein, Ser795. Gankyrin was expressed in NEC8 cells as well as a normal human testis and testicular tumors. Suppression of gankyrin by locked nucleic acid led to suppression of retinoblastoma protein and cell proliferation in NEC8 cells. Immunohistochemistry of normal testis showed that gankyrin is expressed dominantly in spermatocytes. In testicular germ cell tumors, high expressions of gankyrin and phosphorylated-retinoblastoma protein were observed in seminoma and embryonal carcinoma, whereas the expressions of both proteins were weak in histological subtypes of non-seminoma. Growing teratoma and testicular malignant transformation tissues expressed phosphorylated-retinoblastoma protein strongly, but gankyrin faintly. Gankyrin is dominantly expressed in normal spermatocytes and seminoma/embryonal carcinoma, and its expression correlates well with retinoblastoma protein expression except in the growing teratoma and testicular malignant transformation cases. These data provide new insights into the molecular mechanisms of normal spermatogenesis and pathogenesis of testicular germ cell tumors. © 2014 The Japanese Urological Association.
Gronowicz, Gloria; Richardson, Yvonne L; Flynn, John; Kveton, John; Eisen, Marc; Leonard, Gerald; Aronow, Michael; Rodner, Craig; Parham, Kourosh
2014-10-01
Identify and compare phenotypic properties of osteoblasts from patients with otosclerosis (OSO), normal bones (HOB), and normal stapes (NSO) to determine a possible cause for OSO hypermineralization and assess any effects of the bisphosphonate, alendronate. OSO (n = 11), NSO (n = 4), and HOB (n = 13) cultures were assayed for proliferation, adhesion, mineralization, and gene expression with and without 10(-10)M-10(-8)M alendronate. Academic hospital. Cultures were matched for age, sex, and passage number. Cell attachment and proliferation + alendronate were determined by Coulter counting cells and assaying tritiated thymidine uptake, respectively. At 7, 14, and 21 days of culture + alendronate, calcium content and gene expression by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were determined. OSO had significantly more cells adhere but less proliferation than NSO or HOB. Calcification was significantly increased in OSO compared to HOB and NSO. NSO and HOB had similar cell adhesion and proliferation rates. A dose-dependent effect of alendronate on OSO adhesion, proliferation, and mineralization was found, resulting in levels equal to NSO and HOB. All cultures expressed osteoblast-specific genes such as RUNX2, alkaline phosphatase, type I collagen, and osteocalcin. However, osteopontin was dramatically reduced, 9.4-fold at 14 days, in OSO compared to NSO. Receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG), important in bone resorption, was elevated in OSO with decreased levels of OPG levels. Alendronate had little effect on gene expression in HOB but in OSO increased osteopontin levels and decreased RANKL/OPG. OSO cultures displayed properties of hypermineralization due to decreased osteopontin (OPN) and also had increased RANKL/OPG, which were normalized by alendronate. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
Developmental changes in cell proliferation and apoptosis in the normal duck bursa of Fabricius.
Fang, Jing; Peng, Xi
2014-12-01
The aim of this work was to investigate developmental changes in cell proliferation and apoptosis in normal duck bursa of Fabricius using flow cytometry and immunohistochemistry. Studies were carried out on Tianfu ducks on days 24 and 27 of embryogenesis (E24 and E27) along with days 20, 70, and 200 of postnatal development (P20, P70, and P200). Results showed that the percentage of G0/G1 bursa cells significantly increased between E24 and P200 while the percentage of cells in the S phase or G2 + M phase as well as the proliferating index obviously decreased during the same period. Proliferation cell nuclear antigen was detected in lymphocyte and interfollicular epithelium. The proliferative lymphocyte density tended to decrease from E24 to P200. Apoptotic bodies in macrophages, free apoptotic bodies, or nuclei with condensed chromatin in lymphocytes in follicles were identified by transferase-mediated dUTP nick-end labeling. Both flow cytometry and microscopic analysis reveal that the proportion of apoptotic cells and apoptotic lymphocyte density increased from E24 to P20, fell on P70, then rose again on P200. Our foundings demonstrate that cell proliferation decreases and apoptosis increases with age. These changes may account for duck bursa development and involution.
Detection of p53 mutations in proliferating vascular cells in glioblastoma multiforme.
Kawasoe, Takuma; Takeshima, Hideo; Yamashita, Shinji; Mizuguchi, Sohei; Fukushima, Tsuyoshi; Yokogami, Kiyotaka; Yamasaki, Kouji
2015-02-01
Glioblastoma multiforme (GBM), one of the most aggressive tumors in humans, is highly angiogenic. However, treatment with the angiogenesis inhibitor bevacizumab has not significantly prolonged overall patient survival times. GBM resistance to angiogenesis inhibitors is attributed to multiple interacting mechanisms. Although mesenchymal transition via glioma stem-like cells has attracted attention, it is considered a poor biomarker. There is no simple method for differentiating tumor-derived and reactive vascular cells from normal cells. The authors attempted to detect the mesenchymal transition of tumor cells by means of p53 and isocitrate dehydrogenase 1 (IDH1) immunohistochemistry. Using antibody against p53 and IDH1 R132H, the authors immunohistochemically analyzed GBM tissue from patients who had undergone surgery at the University of Miyazaki Hospital during August 2005-December 2011. They focused on microvascular proliferation with a p53-positive ratio exceeding 50%. They compared TP53 mutations in original tumor tissues and in p53-positive and p53-negative microvascular proliferation cells collected by laser microdissection. Among 61 enrolled GBM patients, the first screening step (immunostaining) identified 46 GBMs as p53 positive, 3 of which manifested areas of prominent p53-positive microvascular proliferation (>50%). Histologically, areas of p53-positive microvascular proliferation tended to be clustered, and they coexisted with areas of p53-negative microvascular proliferation. Both types of microvascular proliferation cells were clearly separated from original tumor cells by glial fibrillary acidic protein, epidermal growth factor receptor, and low-/high-molecular-weight cytokeratin. DNA sequencing analysis disclosed that p53-positive microvascular proliferation cells exhibited TP53 mutations identical to those observed in the original tumor; p53-negative microvascular proliferation cells contained a normal allele. Although immunostaining indicated that 3 (2 primary and 1 secondary) of the 61 GBMs were positive for IDH1, no tumors contained microvascular proliferation cells positive for IDH1 R132H. Some microvascular proliferation clusters in GBM result from mesenchymal transition. The identification of useful markers might reveal this phenomenon as an infrequent event in GBMs.
Fujikura, Ushio; Horiguchi, Gorou; Tsukaya, Hirokazu
2007-02-01
Leaf development relies on cell proliferation, post-mitotic cell expansion and the coordination of these processes. In several Arabidopsis thaliana mutants impaired in cell proliferation, such as angustifolia3 (an3), leaf cells are larger than normal at their maturity. This phenomenon, which we call compensated cell enlargement, suggests the presence of such coordination in leaf development. To dissect genetically the cell expansion system(s) underlying this compensation seen in the an3 mutant, we isolated and utilized 10 extra-small sisters (xs) mutant lines that show decreased cell size but normal cell numbers in leaves. In the xs single mutants, the palisade cell sizes in mature leaves are about 20-50% smaller than those of wild-type cells. Phenotypes of the palisade cell sizes in all combinations of xs an3 double mutants fall into three classes. In the first class, the compensated cell enlargement was significantly suppressed. Conversely, in the second class, the defective cell expansion conferred by the xs mutations was significantly suppressed by the an3 mutation. The residual xs mutations had effects additive to those of the an3 mutation on cell expansion. The endopolyploidy levels in the first class of mutants were decreased, unaffected or increased, as compared with those in wild-type, suggesting that the abnormally enhanced cell expansion observed in an3 could be mediated, at least in part, by ploidy-independent mechanisms. Altogether, these results clearly showed that a defect in cell proliferation in leaf primordia enhances a part of the network that regulates cell expansion, which is required for normal leaf expansion.
Parker, Aimee; Maclaren, Oliver J.; Fletcher, Alexander G.; Muraro, Daniele; Kreuzaler, Peter A.; Byrne, Helen M.; Maini, Philip K.; Watson, Alastair J. M.; Pin, Carmen
2017-01-01
The functional integrity of the intestinal epithelial barrier relies on tight coordination of cell proliferation and migration, with failure to regulate these processes resulting in disease. It is not known whether cell proliferation is sufficient to drive epithelial cell migration during homoeostatic turnover of the epithelium. Nor is it known precisely how villus cell migration is affected when proliferation is perturbed. Some reports suggest that proliferation and migration may not be related while other studies support a direct relationship. We used established cell-tracking methods based on thymine analog cell labeling and developed tailored mathematical models to quantify cell proliferation and migration under normal conditions and when proliferation is reduced and when it is temporarily halted. We found that epithelial cell migration velocities along the villi are coupled to cell proliferation rates within the crypts in all conditions. Furthermore, halting and resuming proliferation results in the synchronized response of cell migration on the villi. We conclude that cell proliferation within the crypt is the primary force that drives cell migration along the villus. This methodology can be applied to interrogate intestinal epithelial dynamics and characterize situations in which processes involved in cell turnover become uncoupled, including pharmacological treatments and disease models.—Parker, A., Maclaren, O. J., Fletcher, A. G., Muraro, D., Kreuzaler, P. A., Byrne, H. M., Maini, P. K., Watson, A. J. M., Pin, C. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi. PMID:27811059
Effects of real or simulated microgravity on plant cell growth and proliferation
NASA Astrophysics Data System (ADS)
Medina, Francisco Javier; Manzano, Ana Isabel; Herranz, Raul; Dijkstra, Camelia; Larkin, Oliver; Hill, Richard; Carnero-Díaz, Eugénie; van Loon, Jack J. W. A.; Anthony, Paul; Davey, Michael R.; Eaves, Laurence
Experiments on seed germination and seedling growth performed in real microgravity on the International Space Station and in different facilities for simulating microgravity in Earth-based laboratories (Random Positioning Machine and Magnetic Levitation), have provided evidence that the absence of gravity (or the artificial compensation of the gravity vector) results in the uncoupling of cell growth and proliferation in root meristematic cells. These are two essential cellular functions that support plant growth and development, which are strictly coordinated under normal ground gravity conditions. Under conditions of altered gravity, we observe that cell proliferation is enhanced, whereas cell growth is reduced, according to different morphometric, cytological and immunocytochemical parameters. Since coordination of cell growth and proliferation are major features of meristematic cells, this observed uncoupling represents a major stress condition for these cells, inducing major alterations in the pattern of plant development. Moreover, the expression of the cyclin B1 gene, a regulator of the entry into mitosis and normally used as an indicator of cell proliferation, appears reduced in the smaller and more actively proliferating cells of samples grown under the conditions of our experiments. These results are compatible with an alteration of the regulation of the cell cycle, producing a shorter G2 period. Interestingly, while cyclin B1 expression is depleted in these conditions in root meristematic cells, it is enhanced in cotyledons of the same seedlings, as shown by qPCR and by the expression of the gus reporter gene. It is known that regulation of root growth (including regulation of root meristematic activity) is driven mainly by auxin, whereas cytokinin is the key hormone regulating cotyledon growth. Therefore, our results indicate a major role of auxin in the sensitivity to altered gravity of root meristematic cells. Auxin is crucial in maintaining the coupling of cell growth and proliferation under normal conditions and it should have a decisive influence in the uncoupling of these processes under altered gravity. Experiments to detect auxin distribution in roots under altered gravity produced by diamagnetic levitation have shown that the lateral balanced distribution of the growth regulator in the root cap is altered slightly and that the total concentration of the auxin detected in root tips is somewhat reduced. These effects are independent of the orientation of statoliths in columella cells.
Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com; Dezfoulian, Omid; Alirezaei, Masoud
Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivomore » quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact, ghrelin balanced Bax/Bcl-2 ratio toward at increase of Bax level in the spermatocytes and therefore may stimulate apoptosis in these germ cells. In contrast, ghrelin administration significantly suppressed proliferation-associated peptide PCNA in the spermatocytes as well as spermatogonia (P < 0.05). Whereas, caspase-3 activity did not show any marked alteration during the experiment in both groups (P > 0.05). Upstream of Bax substance parallel to down-regulation of PCNA demonstrate that ghrelin may prevent massive accumulation of germ cells during normal spermatogenesis. These observations also indicate that ghrelin may be considered as a modulator of spermatogenesis in normal adult rats and could be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors.« less
Liu, Rui; Zhang, Haiyang; Zhang, Yan; Li, Shuang; Wang, Xinyi; Wang, Xia; Wang, Cheng; Liu, Bin; Zen, Ke; Zhang, Chen-Yu; Zhang, Chunni; Ba, Yi
2017-04-01
Peroxisome proliferator-activated receptor gamma coactivator-1 alpha plays a crucial role in regulating the biosynthesis of mitochondria, which is closely linked to the energy metabolism in various tumors. This study investigated the regulatory role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha in the pathogenesis of hepatocellular carcinoma. In this study, the changes of peroxisome proliferator-activated receptor gamma coactivator-1 alpha messenger RNA levels between normal human liver and hepatocellular carcinoma tissue were examined by quantitative reverse transcription polymerase chain reaction. Knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by RNA interference in the human liver cell line L02, while overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha complementary DNA in the human hepatocarcinoma cell line HepG2. Cellular morphological changes were observed via optical and electron microscopy. Cellular apoptosis was determined by Hoechst 33258 staining. In addition, the expression levels of 21,400 genes in tissues and cells were detected by microarray. It was shown that peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression was significantly downregulated in hepatocellular carcinoma compared with normal liver tissues. After knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression in L02 cells, cells reverted to immature and dedifferentiated morphology exhibiting cancerous tendency. Apoptosis occurred in the HepG2 cells after transfection by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha. Microarray analysis showed consistent results. The results suggest that peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor suppressor in the formation and development of hepatocellular carcinoma and that peroxisome proliferator-activated receptor gamma coactivator-1 alpha may be a potential therapeutic target for hepatocellular carcinoma.
[Roles of Y box-binding protein 1 in SK-BR-3 breast cancer proliferation].
Shi, Jianhong; Lü, Xinrui; Wang, Bing; Daudan, Lin; Yanan, Wang; Yuhui, Bu; Zhenfeng, Ma
2014-09-30
To explore the roles of Y box-binding protein 1 (YB-1) in breast cancer cell proliferation. Twenty cases of surgical removal of breast cancer tissue (diagnosed with invasive ductal carcinoma, stage II, by postoperative paraffin pathology) and normal breast tissues adjacent to carcinoma were collected during June 2013 to August 2013.Quantitative real-time PCR (qRT-PCR) was performed to detect the YB1 mRNA levels. Cultured mammary epithelial cells (HBL-100) and breast cancer cells (MCF7, MDA-MB-231 & SK-BR-3 cells) were harvested and qRT-PCR was performed to detect the YB1 mRNA levels.SK-BR-3 cells were stimulated with various concentrations of PDGF-BB and YB1 expression levels were detected by qRT-PCR. Down-regulation or over-expression of YB1 by si-YB1 or Ad-GFP-YB1 was detected in SK-BR-3 cells. And MTS cell proliferation assay kit was used to detect cell proliferation. YB1 mRNA levels were significantly higher in breast cancer tissues and MDA-MB-231 and SK-BR-3 breast cancer cell lines than that in adjacent normal breast tissues and HBL-100 mammary epithelial cells respectively (P < 0.05).YB1 expression levels increased in PDGF-BB stimulated SK-BR-3 cells in a dose-dependent manner. A down-regulation of endogenous YB1 decreases and an over-expression of exogenous YB1 promotes the proliferation activity in SK-BR-3 cells.
Rangelova, Svetla; Kirschnek, Susanne; Strasser, Andreas; Häcker, Georg
2008-01-01
Fas-associated protein with death domain/mediator of receptor induced toxicity (FADD/MORT1) was first described as a transducer of death receptor signalling but was later recognized also to be important for proliferation of T cells. B-cell lymphoma 3 (Bcl-3) is a relatively little understood member of the nuclear factor (NF)-κB family of transcription factors. We recently found that Bcl-3 is up-regulated in T cells from mice where FADD function is blocked by a dominant negative transgene (FADD-DN). To understand the importance of this, we generated FADD-DN/bcl-3−/− mice. Here, we report that T cells from these mice show massive cell death and severely reduced proliferation in response to T-cell receptor (TCR) stimulation in vitro. Transgenic co-expression of Bcl-2 (FADD-DN/bcl-3−/−/vav-bcl-2 mice) rescued the survival but not the proliferation of T cells. FADD-DN/bcl-3−/− mice had normal thymocyte numbers but reduced numbers of peripheral T cells despite an increase in cycling T cells in vivo. However, activation of the classical NF-κB and extracellular regulated kinase (ERK) pathways and expression of interleukin (IL)-2 mRNA upon stimulation were normal in T cells from FADD-DN/bcl-3−/− mice. These data suggest that FADD and Bcl-3 regulate separate pathways that both contribute to survival and proliferation in mouse T cells. PMID:18557791
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woo Ho; Lee, Sun Hee; Jung, Myung Hwan
2009-08-01
The structure and characteristics of the tumor vasculature are known to be different from those of normal vessels. Neuropilin2 (Nrp2), which is expressed in non-endothelial cell types, such as neuronal or cancer cells, functions as a receptor for both semaphorin and vascular endothelial growth factor (VEGF). After isolating tumor and normal endothelial cells from advanced gastric cancer tissue and normal gastric mucosa tissues, respectively, we identified genes that were differentially expressed in gastric tumor endothelial (TEC) and normal endothelial cells (NEC) using DNA oligomer chips. Using reverse transcriptase-PCR, we confirmed the chip results by showing that Nrp2 gene expression ismore » significantly up-regulated in TEC. Genes that were found to be up-regulated in TEC were also observed to be up-regulated in human umbilical vein endothelial cells (HUVECs) that were co-cultured with gastric cancer cells. In addition, HUVECs co-cultured with gastric cancer cells showed an increased reactivity to VEGF-induced proliferation and migration. Moreover, overexpression of Nrp2 in HUVECs significantly enhanced the proliferation and migration induced by VEGF. Observation of an immunohistochemical analysis of various human tumor tissue arrays revealed that Nrp2 is highly expressed in the tumor vessel lining and to a lesser extent in normal tissue microvessels. From these results, we suggest that Nrp2 may function to increase the response to VEGF, which is more significant in TEC than in NEC given the differential expression, leading to gastric TEC with aggressive angiogenesis phenotypes.« less
Importance of inverse correlation between ALDH3A1 and PPARγ in tumor cells and tissue regeneration.
Oraldi, M; Saracino, S; Maggiora, M; Chiaravalloti, A; Buemi, C; Martinasso, G; Paiuzzi, E; Thompson, D; Vasiliou, V; Canuto, R A
2011-05-30
Aldehyde dehydrogenase (ALDH) enzymes are involved in maintaining cellular homeostasis by metabolizing both endogenous and exogenous reactive aldehydes. They modulate several cell functions including proliferation, differentiation, survival as well as cellular response to oxidative stress. We previously reported that ALDH3A1 expression is inversely correlated with the activation of PPARs (Peroxisome Proliferators-Activated Receptors), a category of orphan nuclear hormone receptors, in both rat and human cells. PPARγ is involved in cell proliferation. In this study, we have used PPARγ transfection and inhibition to examine the relationship between ALDH3A1 and PPARγ and their role as regulators of cell proliferation. Induction of PPARγ in A549 and NCTC 2544 cells by transfection caused a decrease in ALDH3A1 and inhibition of cell proliferation, a result we obtained previously using ligands that induce PPARγ. A reduction of PPARγ expression using siRNA increased ALDH3A1 expression and cell proliferation. In cells induced to proliferate in a model of tissue regeneration, ALDH3A1 expression increased during the period of proliferation, whereas PPARγ expression decreased. In conclusion, through modulation of PPARγ or ALDH3A1, it may be possible to reduce cell proliferation in tumor cells or stimulate cell proliferation in normal cells during tissue regeneration. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Martano, Manuela; Restucci, Brunella; Ceccarelli, Dora Maria; Lo Muzio, Lorenzo; Maiolino, Paola
2016-01-01
Angiogenesis is crucial for the growth and metastasis of malignant tumours, and various proangiogenic factors promote this process. One of these factors is vascular endothelial growth factor (VEGF), which appears to play a key role in tumour angiogenesis. The aim of the present study was to assess whether VEGF expression is associated with angiogenesis, disease progression and neoplastic proliferation in canine oral squamous cell carcinoma (OSCC) tissue. VEGF immunoreactivity was quantified by immunohistochemistry in 30 specimens, including normal oral mucosa and OSCC tissues graded as well, moderately or poorly differentiated. VEGF expression was correlated with tumour cell proliferation, as assessed using the proliferating cell nuclear antigen (PCNA) marker and microvessel density (data already published). The present results revealed that VEGF and PCNA expression increased significantly between normal oral tissue and neoplastic tissue, and between well and moderately/poorly differentiated tumours. In addition, VEGF expression was strongly correlated with PCNA expression and microvessel density. It was concluded that VEGF may promote angiogenesis through a paracrine pathway, stimulating endothelial cell proliferation and, similarly, may induce tumour cell proliferation through an autocrine pathway. The present results suggest that the evaluation of VEGF may be a useful additional criterion for estimating malignancy and growth potential in canine OSCCs.
Birsoy, Kıvanç; Wang, Tim; Chen, Walter; Freinkman, Elizaveta; Abu-Remaileh, Monther; Sabatini, David M.
2015-01-01
Summary The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation. PMID:26232224
Birsoy, Kıvanç; Wang, Tim; Chen, Walter W; Freinkman, Elizaveta; Abu-Remaileh, Monther; Sabatini, David M
2015-07-30
The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.
CXCR6 promotes tumor cell proliferation and metastasis in osteosarcoma through the Akt pathway.
Ma, Yunsheng; Xu, Xin; Luo, Mei
2017-01-01
Chemokine (C-X-C motif) receptor 6 (CXCR6) is up-regulated in many malignancies, indicating that CXCR6 plays an important role in tumor progression. However, the expression and function of CXCR6 in osteosarcoma (OS) remains unclear. This study aimed to explore the expression levels and function of CXCR6 in OS tissues and osteosarcoma cell lines MG-63, HOS and U2OS. The protein expression levels of CXCR6 in OS patient tissues and three osteosarcoma cell lines MG-63, HOS and U2OS were assessed. CXCR6-overexpression MG-63 cell lines were established and then the proliferation, invasion and the epithelial-mesenchymal transition (EMT) in those cells were assessed. CXCR6 mRNA levels in OS tissues were significantly higher than those in normal bone tissues. Consistently, both of the mRNA and protein levels of CXCR6 in OS cell lines MG-63, HOS and U2OS were higher than those in normal bone cells hFOB1.19. CXCR6 overexpression not only promoted cell proliferation, invasion and EMT, but also enhanced the phosphorylation of Akt in MG-63 cells. After inhibition of Akt-phosphorylation by Akt inhibitor, LY2940023, CXCR6-induced cell proliferation and invasion were dramatically attenuated. In conclusion, the present study demonstrated that CXCR6 enhances OS cell proliferation and invasion through the Akt pathway. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of infrasound on cell proliferation in the dentate gyrus of adult rats.
Liu, Juanfang; Lin, Tian; Yan, Xiaodong; Jiang, Wen; Shi, Ming; Ye, Ruidong; Rao, Zhiren; Zhao, Gang
2010-06-02
Adult rats were used to identify the effects of infrasound on neurogenesis in the hippocampal dentate gyrus. After 7 consecutive days' exposure to infrasound of 16 Hz at 130 dB, immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and doublecortin (DCX) was preformed. Compared with those in normal groups, the numbers of BrdU+ and DCX+/BrdU+ cells in the subgranular zone in infrasound groups were significantly decreased at 3, 6, 10 and 14 days and returned to normal at 18 days. The percentage of BrdU+ cells that were co-labeled with DCX showed no significant differences between the infrasound and normal groups. These data suggest that infrasound inhibits the cell proliferation in adult rat dentate gyrus but has no effects on early migration and differentiation of these newborn cells.
A Novel In Vitro Model for Studying Quiescence and Activation of Primary Isolated Human Myoblasts
Sellathurai, Jeeva; Cheedipudi, Sirisha; Dhawan, Jyotsna; Schrøder, Henrik Daa
2013-01-01
Skeletal muscle stem cells, satellite cells, are normally quiescent but become activated upon muscle injury. Recruitment of resident satellite cells may be a useful strategy for treatment of muscle disorders, but little is known about gene expression in quiescent human satellite cells or the mechanisms involved in their early activation. We have developed a method to induce quiescence in purified primary human myoblasts isolated from healthy individuals. Analysis of the resting state showed absence of BrdU incorporation and lack of KI67 expression, as well as the extended kinetics during synchronous reactivation into the cell cycle, confirming arrest in the G0 phase. Reactivation studies showed that the majority (>95%) of the G0 arrested cells were able to re-enter the cell cycle, confirming reversibility of arrest. Furthermore, a panel of important myogenic factors showed expression patterns similar to those reported for mouse satellite cells in G0, reactivated and differentiated cultures, supporting the applicability of the human model. In addition, gene expression profiling showed that a large number of genes (4598) were differentially expressed in cells activated from G0 compared to long term exponentially proliferating cultures normally used for in vitro studies. Human myoblasts cultured through many passages inevitably consist of a mixture of proliferating and non-proliferating cells, while cells activated from G0 are in a synchronously proliferating phase, and therefore may be a better model for in vivo proliferating satellite cells. Furthermore, the temporal propagation of proliferation in these synchronized cultures resembles the pattern seen in vivo during regeneration. We therefore present this culture model as a useful and novel condition for molecular analysis of quiescence and reactivation of human myoblasts. PMID:23717533
Creydt, Virginia Pistone; Sacca, Paula Alejandra; Tesone, Amelia Julieta; Vidal, Luciano; Calvo, Juan Carlos
2010-01-01
Stromal tissue regulates the development and differentiation of breast epithelial cells, with adipocytes being the main stromal cell type. The aim of the present study was to evaluate the effect of adipocyte differentiation on proliferation and migration, as well as to assess the activity of heparanase and metalloproteinase-9 (MMP-9), in normal (NMuMG) and tumoral (LM3) murine breast epithelial cells. NMuMG and LM3 cells were grown on irradiated 3T3-L1 cells (stromal support, SS) at various degrees of differentiation [preadipocytes (preA), poorly differentiated adipocytes (pDA) and mature adipocytes (MA)] and/or were incubated in the presence of conditioned medium (CM) derived from each of these three types of differentiated cells. Cells grown on a plastic support or in fresh medium served as the controls. Cell proliferation was measured with a commercial colorimetric kit, and the motility of the epithelial cells was evaluated by means of a wound-healing assay. Heparanase activity was assessed by quantifying heparin degradation, and the expression of MMP-9 was determined using Western blotting. The results indicate that cell proliferation was increased after 24 and 48 h in the NMuMG and LM3 cells grown on preA, pDA and MA SS. In the NMuMG cells cultured on SS in the presence of all three types of CM, proliferation was enhanced. LM3 cell migration was increased in the presence of all three types of CM and in cells grown on preA SS. Heparanase activity was increased in the NMuMG cells incubated with all three types of CM, and in the LM3 cells incubated with the CM from pDA and MA. Both the NMuMG and LM3 cell lines presented basal expression of MMP-9; however, a significant increase in MMP-9 expression was observed in the LM3 cells incubated with each of the three types of CM. In conclusion, adipocyte differentiation influences normal and tumoral breast epithelial cell proliferation and migration. Heparanase and MMP-9 appear to be involved in this regulation. The experimental model presented in this study is in keeping with the characteristics of the physiological environment of breast epithelial cells, in terms of both the soluble and insoluble factors present and the stromal structure per se.
Uchida, Masahiko; Ito, Tetsuhide; Nakamura, Taichi; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Takayanagi, Ryoichi; Jensen, Robert T
2014-07-01
Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1), in acute/chronic pancreatitis; however, the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues and the effects of CX3CL1 on activated PSCs. CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues was evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated PSCs were examined with real-time polymerase chain reaction, BrdU (5-bromo-2-deoxyuridine) assays, and Western blotting. In normal pancreas, acinar cells expressed CX3CR1 within granule-like formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal, and activated PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1 did not induce inflammatory genes expression in activated PSCs, but induced proliferation. CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis, and the CX3CR1s are activated. CX3CL1 induces proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSC proliferation in pancreatitis where CX3CL1 levels are elevated.
Uchida, Masahiko; Ito, Tetsuhide; Nakamura, Taichi; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Takayanagi, Ryoichi; Jensen, Robert T.
2014-01-01
Objectives Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1) in acute/chronic pancreatitis, however the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues, and the effects of CX3CL1 on activated-PSCs. Methods CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues were evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated-PSCs were examined with realtime-PCR, BrdU assays and Western Blotting. Results In normal pancreas, acinar cells expressed CX3CR1 within granule-like-formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal and activated-PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1, did not induce inflammatory-genes expression in activated-PSCs, but induced proliferation. Conclusions CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis and the CX3CR1s are activated. CX3CL1 induces proliferation of activated-PSCs without increasing release of inflammatory-mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSCs proliferation in pancreatitis where CX3CL1 levels are elevated. PMID:24681877
Kim, Sylvia Jeewon; Hellerstein, Marc K
2007-10-01
Although curcumin has preventive actions in animal models of colon cancer, whether the mechanism of action is through anti-proliferation in normal environment is not clearly understood. Here, we studied the effects of chemopreventive doses of curcumin on the proliferation rate of colon epithelial cells (CEC), using a recently developed stable isotope-mass spectrometric method for measuring DNA synthesis rate. Adult male F344 rats were given diets containing 0, 2 and 4% curcumin for 5 weeks. 4% (2)H(2)O was given in drinking water to label DNA, after a priming bolus, for 4 days prior to sacrifice. The isotopic enrichment of the deoxyribose moiety of deoxyadenosine from DNA was measured by gas chromatography - mass spectrometry. Cell cycle analysis was performed after propidium iodide staining of CECs. Curcumin administration did not reduce but instead resulted in dose-dependent increases in CEC proliferation rate (p < 0.05) for 2% and 4% curcumin vs 0%). The length of the colon crypts and the fraction of cells in S-phase were also increased in the 2% and 4% curcumin groups (p < 0.05). Thus, pharmacological doses of curcumin increase CEC proliferation rate and pool size in normal rats. Reduction of CEC proliferation therefore cannot explain the proposed chemopreventive actions of curcumin in colon cancer.
Song, Yong; Fu, Jing; Zhou, Min; Xiao, Li; Feng, Xue; Chen, Hengxi; Huang, Wei
2016-04-01
The imbalance in cell proliferation and apoptosis is considered an important role in the pathogenesis of endometriosis, but the exact mechanisms remains unclear. A newly established signaling pathway–Hippo/Yes-associated protein (YAP) pathway plays a critical role in the proliferation and apoptosis processes. However, studies focusing on Hippo/YAP pathway and endometriosis are lacking. The objective was to explore the function of the Hippo/YAP pathway in endometriosis. The expression of YAP was first investigated in endometrium of women with or without endometriosis. The role of YAP in cell proliferation and apoptosis is identified by transfection of endometrial stromal cells (ESCs) in vitro, subsequent Verteporfin treatments in eutopic ESCs in vitro, and endometriosis animal model of nude mice in vivo. Our results revealed that increased expression of YAP and decreased expression of p-YAP in ectopic and eutopic endometrium compared with normal endometrium. YAP knockdown in eutopic ESCs decreased cell proliferation and enhanced cell apoptosis companied with decreased expression of TEAD1, CTGF, and B-cell lymphoma/leukemia (BCL)-2; whereas overexpression of YAP resulted in increased proliferation and decreased apoptosis of normal ESCs with increased expression of TEAD1, CTGF, and BCL-2. By chromatin immunoprecipitation qPCR CTGF and BCL-2 were identified as directly downstream target genes of YAP-TEAD1 active complex. Eutopic ESCs treated with Verteporfin revealed decreased proliferation and enhanced apoptosis whereas in endometriosis animal models of nude mice treated with Verteporfin, the size of endometriotic lesions was significantly reduced. Our study suggests that the Hippo/YAP-signaling pathway plays a critical role in the pathogenesis of endometriosis and should present a novel therapeutic method against endometriosis.
Shepard, Michelle T.; Bonney, Elizabeth A.
2014-01-01
The regulation of T cell homeostasis during pregnancy has important implications for maternal tolerance and immunity. Evidence suggests that Programmed Death-1 (PD-1) participates in regulation of T cell homeostasis and peripheral tolerance. To examine the contribution of PD-1 signaling on T cell homeostasis during normal mouse pregnancy, we examined T cell number or proportion, PD-1 expression, proliferation, and apoptosis by flow cytometry, BrdU incorporation, and TUNEL assay in pregnant mice given anti-PD-1 blocking antibody or control on days 10, 12, and 14 of gestation. We observed tissue, treatment, and T cell-specific differences in PD-1 expression. Both pregnancy and PD-1 blockade increased T cell proliferation in the spleen while this effect was limited to CD4 T cells in the uterine- draining nodes. In the uterus, PD-1 blockade markedly altered the composition of the T cell pool. These studies support the idea that pregnancy is a state of dynamic T cell homeostasis and suggest that this state is partially supported by PD-1 signaling. PMID:23782245
Osteopontin expression in reactive lesions of gingiva
ELANAGAI, Rathinam; VEERAVARMAL, Veeran; NIRMAL, Ramdas Madhavan
2015-01-01
Reactive proliferations of the gingiva comprise lesions such as pyogenic granuloma (PG), inflammatory fibroepithelial hyperplasia (IFH), peripheral ossifying fibroma (POF), and peripheral giant cell lesion. Osteopontin (OPN) has a dual role, it promotes mineralization when it is bound to solid substrate, and on the other hand, it inhibits mineralization when it is seen in association with solution. Objectives The study aimed to evaluate the expression of osteopontin in normal gingival tissue and different types of focal reactive proliferations of gingival tissue, and its role in the development of calcification within it. Material and Methods The presence and distribution of osteopontin was assessed using immunohistochemistry in five cases of normal gingival tissue and 30 cases of focal reactive proliferations of gingiva. Results There was no expression of osteopontin in normal subjects. Few cases of pyogenic granuloma, inflammatory fibroepithelial hyperplasia, and all the cases of peripheral ossifying fibroma showed positivity for osteopontin in the inflammatory cells, stromal cells, extracellular matrix, and in the calcifications. Conclusion The expression of osteopontin in all the cases of peripheral ossifying fibroma speculates that the majority of the cases of peripheral ossifying fibroma originate from the periodontal ligament cells. The treatment modalities for peripheral ossifying fibroma should differ from other focal reactive proliferations of gingiva. PMID:25760265
PRL-3 promotes breast cancer progression by downregulating p14ARF-mediated p53 expression.
Xie, Hua; Wang, Hao
2018-03-01
Prior studies have demonstrated that phosphatase of regenerating liver-3 (PRL-3) serves avital function in cell proliferation and metastasis in breast cancer. However, the molecular mechanisms underlying the function of PRL-3 in breast cancer remain unknown. PRL-3 expression was analyzed in 24 pairs of breast cancer and normal tissues using the reverse transcription-quantitative polymerase chain reaction assay. The results of the present study identified that the expression of PLR-3 in breast cancer tissues was increased 4.2-fold, compared with normal tissues. Notably, overexpression of PRL-3 significantly promoted the proliferation of cancer cells and inhibited endogenous p53 expression by downregulating the expression level of p14 alternate reading frame (p14 ARF ). In addition, decreased expression levels of PRL-3 resulted in decreased breast cancer cell proliferation and increased expression level of p14 ARF . These results suggested that PRL-3 enhances cell proliferation by downregulating p14 ARF expression, which results in decreased levels ofp53. The results of the present study demonstrated that PRL-3 promotes tumor proliferation by affecting the p14 ARF -p53 axis, and that it may serve as a prognostic marker for patients with breast cancer.
Micropapillary Structures in Colorectal Cancer: An Anoikis-resistant Subpopulation.
Patankar, Madhura; Väyrynen, Sara; Tuomisto, Anne; Mäkinen, Markus; Eskelinen, Sinikka; Karttunen, Tuomo J
2018-05-01
Micropapillary structures (MIPs) are focal piles of columnar cells without extracellular matrix contact, and common in serrated colorectal carcinoma (CRC). In order to characterize biology of MIPs in colorectal cancer (CRC), the proliferation and apoptosis rates, and survivin expression were compared between MIPs and other cancer epithelial cells of CRC (non-MIPs). We assessed 46 samples of normal colorectal mucosa, 62 carcinomas and 54 polyps for proliferation (Ki67), apoptosis (M30), and survivin expression by immunohistochemistry. MIPs in carcinoma showed lower rates of proliferation and apoptosis than non-MIPs. A low rate of apotosis in MIPs was associated with poor prognosis in local carcinoma. In normal crypts, nuclear-to-cytoplasmic transition of survivin indicated epithelial cell maturation. Cancer cases showed increased cytoplasmic expression of survivin than normal mucosa and polyps. However, MIPs showed lower nuclear and cytoplasmic survivin expression than non-MIPs. Our findings suggest that MIPs represent a biologically distinct subpopulation of carcinoma cells with features of anoikis resistance and possibly quiescence. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Pessina, P; Castillo, V; Sartore, I; Borrego, J; Meikle, A
2016-09-01
Immunoreactive proteins in follicular cells, fibroblasts and endothelial cells were assessed in canine thyroid carcinomas and healthy thyroid glands. No differences were detected in thyrotropin receptor and thyroglobulin staining between cancer and normal tissues, but expression was higher in follicular cells than in fibroblasts. Fibroblast growth factor-2 staining was more intense in healthy follicular cells than in those of carcinomas. Follicular cells in carcinomas presented two- to three-fold greater staining intensity of thyroid transcription factor-1 and proliferating cell nuclear antigen, respectively, than healthy cells, and a similar trend was found for the latter antigen in fibroblasts. Vascular endothelial growth factor staining was more intense in the endothelial cells of tumours than in those of normal tissues. In conclusion, greater expression of factors related to proliferation and angiogenesis was demonstrated in several cell types within thyroid carcinomas compared to healthy tissues, which may represent mechanisms of tumour progression in this disease. © 2014 John Wiley & Sons Ltd.
Quiescence does not affect p53 and stress response by irradiation in human lung fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Jiawen; Itahana, Koji, E-mail: koji.itahana@duke-nus.edu.sg; Baskar, Rajamanickam, E-mail: r.baskar@nccs.com.sg
Cells in many organs exist in both proliferating and quiescent states. Proliferating cells are more radio-sensitive, DNA damage pathways including p53 pathway are activated to undergo either G{sub 1}/S or G{sub 2}/M arrest to avoid entering S and M phase with DNA damage. On the other hand, quiescent cells are already arrested in G{sub 0}, therefore there may be fundamental difference of irradiation response between proliferating and quiescent cells, and this difference may affect their radiosensitivity. To understand these differences, proliferating and quiescent human normal lung fibroblasts were exposed to 0.10–1 Gy of γ-radiation. The response of key proteins involvedmore » in the cell cycle, cell death, and metabolism as well as histone H2AX phosphorylation were examined. Interestingly, p53 and p53 phosphorylation (Ser-15), as well as the cyclin-dependent kinase inhibitors p21 and p27, were induced similarly in both proliferating and quiescent cells after irradiation. Furthermore, the p53 protein half-life, and expression of cyclin A, cyclin E, proliferating cell nuclear antigen (PCNA), Bax, or cytochrome c expression as well as histone H2AX phosphorylation were comparable after irradiation in both phases of cells. The effect of radioprotection by a glycogen synthase kinase 3β inhibitor on p53 pathway was also similar between proliferating and quiescent cells. Our results showed that quiescence does not affect irradiation response of key proteins involved in stress and DNA damage at least in normal fibroblasts, providing a better understanding of the radiation response in quiescent cells, which is crucial for tissue repair and regeneration. - Highlights: • p53 response by irradiation was similar between proliferating and quiescent cells. • Quiescent cells showed similar profiles of cell cycle proteins after irradiation. • Radioprotection of GSK-3β inhibitor caused similar effects between these cells. • Quiescence did not affect p53 response despite its known role in radio-resistance.« less
Bagley, Jessamyn; Singh, Gyanesh; Iacomini, John
2007-04-15
Mutations in the gene encoding ataxia-telangiectasia (A-T) mutated (Atm) cause the disease A-T, characterized by immunodeficiency, the molecular basis of which is not known. Following stimulation through the TCR, Atm-deficient T cells and normal T cells in which Atm is inhibited undergo apoptosis rather than proliferation. Apoptosis is prevented by scavenging reactive oxygen species (ROS) during activation. Atm therefore plays a critical role in T cell proliferation by regulating responses to ROS generated following T cell activation. The inability of Atm-deficient T cells to control responses to ROS is therefore the molecular basis of immunodeficiency associated with A-T.
Zhang, Wen; Li, Shaojun; Zhao, Yunlong; Guo, Nannan; Li, Yingjie
2016-12-01
Objective To observe the expression of the neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) in esophageal cancer, to investigate the impact of decreased expression of NEDD9 on invasion and migration, and to explicit the function of NEDD9 in EC109 human esophageal cancer cell line. Methods Immunohistochemical staining was used to detect the expression of NEDD9 in human esophageal cancer tissues and paracancerous normal tissues. RNA interfering (RNAi) was used to knockdown NEDD9 in EC109 cells. The interference efficiency was detected by reverse transcription PCR (RT-PCR) and Western blot analysis. Cell proliferation was determined by MTT assay and the invasion and migration abilities of EC109 cells were monitored by Transwell TM assay. The protein levels of proliferating cell nuclear antigen (PCNA), Bax and Bcl-2 were tested by Western blotting. Results The positive expression rate of NEDD9 in esophageal carcinoma tissues was significantly higher compared with that in the paracancerous tissues. After NEDD9 expression was successfully downregulated in EC109 cells by siRNA, the proliferation, invasion and migration rates in transfection group were significantly lower than those in control group; meanwhile, the expression of Bcl-2 was reduced and Bax expression was enhanced. Conclusion The protein expression level of NEDD9 is higher in esophageal carcinoma tissues than that in adjacent normal tissues. Knockdown of NEDD9 expression can restrain the proliferation, invasion and migration of EC109 cells.
The effects of CD147 on the cell proliferation, apoptosis, invasion, and angiogenesis in glioma.
Yin, Haoyuan; Shao, Ying; Chen, Xuan
2017-01-01
To analyze the effects of extracellular matrix metalloproteinase inducer (CD147) on glioma proliferation, apoptosis, invasion, and angiogenesis. Tissue samples were obtained from 101 glioma cases while normal brain tissues were obtained from 30 brain injury cases. Immunohistochemical assay was performed to detect the expressions of CD147, CD34, and VEGF in tissue samples. QRT-PCR was performed to detect the relative expression of CD147 mRNA in human glioma cell lines. CD147 siRNA was transfected into glioma cell line U251. Cell proliferation, apoptosis, invasion, and angiogenesis were tested by MTT, flow cytometry, Transwell assay, and vasculogenic mimicry assay, respectively. Expressions of relative proteins were analyzed with western blot. CD147 was positively expressed with the percentage of 0, 37.5, 44.8, 67.9, and 85.7 % in normal tissues and glioma tissues with WHO grades I-IV, respectively, and the scores of MVDand VEGF were associated with the expression of CD147. CD147 was significantly upregulated in the human glioma cell lines (P < 0.05). Downregulated the expression of CD147 suppressed cell proliferation, blocked cell cycle, induced apoptosis, inhibited cell invasion and angiogenesis in glioma cells in vitro. The expression of CD147 was significantly associated with WHO tumor grade and angiogenesis; silencing of CD147 contributed to inhibition of glioma proliferation, invasion, and angiogenesis. Our study provided firm evidence that CD 147 is a potential glioma target for anti-angiogenic therapies.
Wanner, R A; Edwards, M J; Wright, R G
1976-04-01
Hyperthermia was induced in guinea-pigs on day 21 of gestation by placing them in an incubator set at 42-5 degrees-43-0 degrees C for 1 hr. At intervals thereafter foetuses were removed from the uterus and sections of the telencephalon were prepared for light and electron microscopy. The histologic and ultrastructural appearance of the telencephalon of the normal 21-day guinea-pig foetus was described for comparative purposes. Damage to cells in mitosis characterised by clumping of chromosomes, and dispersal of polysomes in interphase cells were observed immediately after hyperthermia. Breakdown of the network of junctional complexes was apparent at 4 hr and cellular proliferation was inhibited for 6-8 hr. Degenerative changes and cell deaths were observed deep in the venticular zone after 8 hr; the extent of cell death was related to the post-stressing temperature. Proliferation was resumed at 8 hr and damaged and dead cells moved outward toward the intermediate zone. Phagocytosis of debris by large mononuclear cells was a common finding. Cytoplasmic inclusions, some of which were Feulgen-positive, were present in otherwise normal ventricular cells. Occasional dead cells and empty spaces were present in the ventricular zone at 24 hr and by 48 hr the ventricular zone was normal in appearance. It was concluded that previously observed micrencephaly in the offspring of guine-pig mothers which were heat stressed on day 21 of gestation resulted from a temporary cessation of proliferation and partial depopulation of the proliferating neuroepithelium.
Nicotine Promotes Cholangiocarcinoma Growth in Xenograft Mice.
Martínez, Allyson K; Jensen, Kendal; Hall, Chad; O'Brien, April; Ehrlich, Laurent; White, Tori; Meng, Fanyin; Zhou, Tianhao; Greene, John; Bernuzzi, Francesca; Invernizzi, Pietro; Dostal, David E; Lairmore, Terry; Alpini, Gianfranco; Glaser, Shannon S
2017-05-01
Nicotine, the main addictive substance in tobacco, is known to play a role in the development and/or progression of a number of malignant tumors. However, nicotine's involvement in the pathogenesis of cholangiocarcinoma is controversial. Therefore, we studied the effects of nicotine on the growth of cholangiocarcinoma cells in vitro and the progression of cholangiocarcinoma in a mouse xenograft model. The predominant subunit responsible for nicotine-mediated proliferation in normal and cancer cells, the α7 nicotinic acetylcholine receptor (α7-nAChR), was more highly expressed in human cholangiocarcinoma cell lines compared with normal human cholangiocytes. Nicotine also stimulated the proliferation of cholangiocarcinoma cell lines and promoted α7-nAChR-dependent activation of proliferation and phosphorylation of extracellular-regulated kinase in Mz-ChA-1 cells. In addition, nicotine and PNU282987 (α7-nAChR agonist) accelerated the growth of the cholangiocarcinoma tumors in our xenograft mouse model and increased fibrosis, proliferation of the tumor cells, and phosphorylation of extracellular-regulated kinase activation. Finally, α7-nAChR was expressed at significantly higher levels in human cholangiocarcinoma compared with normal human control liver samples. Taken together, results of this study suggest that nicotine acts through α7-nAChR and plays a novel role in the pathogenesis of cholangiocarcinoma. Furthermore, nicotine may act as a mitogen in cholestatic liver disease processes, thereby facilitating malignant transformation. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
MiR-137 and its target TGFA modulate cell growth and tumorigenesis of non-small cell lung cancer.
Liu, X; Chen, L; Tian, X-D; Zhang, T
2017-02-01
MiR-137 has been reported to serve as a tumor suppressor in non-small cell lung cancer (NSCLC). However, the potential mechanism remains largely unclear. The present study aimed to explore the potential molecular mechanisms by which miR-137 regulated NSCLC. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to quantify the expression levels of miR-137 in NSCLC tissues and cell lines. Dual-luciferase reporter assay was employed to confirm the specificity of miR-137 target genes. An MTT assay and flow cytometry were used to determine the rates of cell proliferation and cell cycle distribution. Furthermore, the effect of miR-137 up-regulation on TGFA expression was examined by western blot. miR-137 expression levels in NSCLC cell lines or tissue were significantly lower than in a normal human lung cell line or adjacent normal tissues. We further found that upregulation of miR-137 inhibited the proliferation of NSCLC cells, whereas silencing of miR-137 promoted the proliferation of NSCLC. Moreover, we identified TGFA as a direct target gene of miR-137 in NSCLC cell. Finally, Similarly, knockdown of TGFA led to the suppression of NSCLC cell proliferation. Overall, our findings indicated that miR-137 served as a tumor suppressor in NSCLC and its suppressive effect is mediated by repressing TGFA expression.
Harris, Shelley E; De Blasio, Miles J; Davis, Melissa A; Kelly, Amy C; Davenport, Hailey M; Wooding, F B Peter; Blache, Dominique; Meredith, David; Anderson, Miranda; Fowden, Abigail L; Limesand, Sean W; Forhead, Alison J
2017-06-01
Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose-dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas. Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T 3 ), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro was reduced by T 3 in a dose-dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T 3 , insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
The physiology and pathophysiology of rapamycin resistance
Boylan, Joan M; Sanders, Jennifer A
2011-01-01
Rapamycin is an inhibitor of the mammalian Target of Rapamycin, mTOR, a nutrient-sensing signaling kinase and a key regulator of cell growth and proliferation. While rapamycin and related compounds have anti-tumor activity, a prevalent characteristic of cancer cells is resistance to their anti-proliferative effects. Our studies on nutrient regulation of fetal development showed that hepatocyte proliferation in the late gestation fetal rat is resistant to rapamycin. Extension of these studies to other tissues in the fetal and neonatal rat indicated that rapamycin resistance is a characteristic of normal cell proliferation in the growing organism. In hepatic cells, ribosomal biogenesis and cap-dependent protein translation were found to be relatively insensitive to the drug even though mTOR signaling was highly sensitive. Cell cycle progression was also resistant at the level of cyclin E-dependent kinase activity. Studies on the effect of rapamycin on gene expression in vitro and in vivo demonstrated that mTOR-mediated regulation of gene expression is independent of effects on cell proliferation and cannot be accounted for by functional regulation of identifiable transcription factors. Genes involved in cell metabolism were overrepresented among rapamycin-sensitive genes. We conclude that normal cellular proliferation in the context of a developing organism can be independent of mTOR signaling, that cyclin E-containing complexes are a critical locus for rapamycin sensitivity, and that mTOR functions as a modulator of metabolic gene expression in cells that are resistant to the anti-proliferative effects of the drug. PMID:21389767
De Souza Setubal Destro, Maria Fernanda; Bitu, Carolina Cavalcanti; Zecchin, Karina G; Graner, Edgard; Lopes, Marcio A; Kowalski, Luis Paulo; Coletta, Ricardo D
2010-01-01
A growing body of evidence has confirmed the involvement of dysregulated expression of HOX genes in cancer. HOX genes are a family of 39 transcription factors, divided in 4 clusters (HOXA to HOXD), that during normal development regulate cell proliferation and specific cell fate. In the present study it was investigated whether genes of the HOXB cluster play a role in oral cancer. We showed that most of the genes in the HOXB network are inactive in oral tissues, with exception of HOXB2, HOXB7 and HOXB13. Expression of HOXB7 was significantly higher in oral squamous cell carcinomas (OSCC) compared to normal oral mucosas. We further demonstrated that HOXB7 overexpression in HaCAT human epithelial cell line promoted proliferation, whereas downregulation of HOXB7 endogenous levels in human oral carcinoma cells (SCC9 cells) decreased proliferation. In OSCCs, expression of HOXB7 and Ki67, a marker of proliferation, correlate strongly with each other (rs=0.79, p<0.006). High immunohistochemical expression of HOXB7 was correlated with T stage (p=0.06), N stage (p=0.07), disease stage (p=0.09) and Ki67 expression (p=0.01), and patients with tumors showing high number of HOXB7-positive cells had shorter overall survival (p=0.08) and shorter disease-free survival after treatment (p=0.10) compared with patients with tumors exhibiting low amount of HOXB7-positive cells. Our data suggest that HOXB7 may contribute to oral carcinogenesis by increasing tumor cell proliferation, and imply that HOXB7 may be an important determinant of OSCC patient prognosis.
Lange, Alexander W.; Sridharan, Anusha; Xu, Yan; Stripp, Barry R.; Perl, Anne-Karina; Whitsett, Jeffrey A.
2015-01-01
The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. PMID:25480985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Yukiko; Morimoto, Mayuka; Toda, Ken-ichi
2015-07-03
Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed,more » because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun
2009-06-26
Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a rolemore » in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.« less
The Cytoplasmic Zinc Finger Protein ZPR1 Accumulates in the Nucleolus of Proliferating Cells
Galcheva-Gargova, Zoya; Gangwani, Laxman; Konstantinov, Konstantin N.; Mikrut, Monique; Theroux, Steven J.; Enoch, Tamar; Davis, Roger J.
1998-01-01
The zinc finger protein ZPR1 translocates from the cytoplasm to the nucleus after treatment of cells with mitogens. The function of nuclear ZPR1 has not been defined. Here we demonstrate that ZPR1 accumulates in the nucleolus of proliferating cells. The role of ZPR1 was examined using a gene disruption strategy. Cells lacking ZPR1 are not viable. Biochemical analysis demonstrated that the loss of ZPR1 caused disruption of nucleolar function, including preribosomal RNA expression. These data establish ZPR1 as an essential protein that is required for normal nucleolar function in proliferating cells. PMID:9763455
Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway
Grisanti, Laura; Revenkova, Ekaterina; Gordon, Ronald E.
2016-01-01
Primary cilia have been linked to signaling pathways involved in cell proliferation, cell motility and cell polarity. Defects in ciliary function result in developmental abnormalities and multiple ciliopathies. Patients affected by severe ciliopathies, such as Meckel syndrome, present several ocular surface disease conditions of unclear pathogenesis. Here, we show that primary cilia are predominantly present on basal cells of the mouse corneal epithelium (CE) throughout development and in the adult. Conditional ablation of cilia in the CE leads to an increase in proliferation and vertical migration of basal corneal epithelial cells (CECs). A consequent increase in cell density of suprabasal layers results in a thicker than normal CE. Surprisingly, in cilia-deficient CE, cilia-mediated signaling pathways, including Hh and Wnt pathways, were not affected but the intensity of Notch signaling was severely diminished. Although Notch1 and Notch2 receptors were expressed normally, nuclear Notch1 intracellular domain (N1ICD) expression was severely reduced. Postnatal development analysis revealed that in cilia-deficient CECs downregulation of the Notch pathway precedes cell proliferation defects. Thus, we have uncovered a function of the primary cilium in maintaining homeostasis of the CE by balancing proliferation and vertical migration of basal CECs through modulation of Notch signaling. PMID:27122169
Abrams, John M; White, Michael A
2004-12-01
In development and in the adult, complex signaling pathways operate within and between cells to coordinate proliferation and cell death. These networks can be viewed as coupling devices that link engines driving the cell cycle and the initiation of apoptosis. We propose three simple frameworks for modeling the effects of proliferative drive on apoptotic propensity. This perspective offers a potentially useful foundation for predicting group behaviors of cells in normal and pathological settings.
Johnson, M Cecilia; Torres, Marisa; Alves, Alessandra; Bacallao, Ketty; Fuentes, Ariel; Vega, Margarita; Boric, M Angélica
2005-01-01
Background Endometriosis is a common gynaecological disorder characterized by the presence of endometrial tissue outside of the uterus. The fragments in normal menstruation are composed of necrotic and living cells, which do not survive in ectopic locations because of programmed cell death. The aim of this study was to evaluate if the balance between cell proliferation and apoptosis is changed in eutopic endometrium from women with endometriosis throughout the menstrual cycle by studying bax (pro-apoptotic), c-myc (regulator of cell cycle) and TGF-beta1 (involved in cell differentiation) genes. Methods Eutopic endometrium was obtained from: 30 women with endometriosis (32.8 +/- 5 years) and 34 fertile eumenorrheic women (36 +/- 5.3 years). We analyzed apoptosis (TUNEL: DNA fragmentation); cell proliferation (immunohistochemistry (IHC) for Ki67); c-myc, bax and TGF-beta1 mRNA abundance (RT-PCR) and TGF-beta1 protein (IHC) in endometrial explants. Results Cell proliferation strongly decreased from proliferative to late secretory phases in glands, but not in stroma, in both endometria. Positive staining in glands and stroma from proliferative endometrium with endometriosis was 1.9- and 2.2-fold higher than control endometrium, respectively (p < 0.05). Abundance of c-myc mRNA was 65% higher in proliferative endometrium from endometriosis than normal tissue (p < 0.05). TGF-beta1 (mRNA and protein) augmented during mid secretory phase in normal endometrium, effect not observed in endometrium with endometriosis. In normal endometrium, the percentage of apoptotic epithelial and stromal cells increased more than 30-fold during late secretory phase. In contrast, in endometrium from endometriosis, not only this increase was not observed, besides bax mRNA decreased 63% versus normal endometrium (p < 0.05). At once, in early secretory phase, apoptotic stromal cells increased 10-fold with a concomitant augment of bax mRNA abundance (42%) in endometria from endometriosis (p < 0.05). Conclusion An altered expression of c-myc, TGF-beta1 and bax was observed in eutopic endometrium from endometriosis, suggesting its participation in the regulation of cell survival in this disease. The augmented cell viability in eutopic endometrium from these patients as a consequence of a reduction in cell death by apoptosis, and also an increase in cell proliferation indicates that this condition may facilitate the invasive feature of the endometrium. PMID:16150151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissell, Mina J.; Radisky, Derek
2001-10-01
The interactions between cancer cells and their micro- and macroenvironment create a context that promotes tumor growth and protects it from immune attack. The functional association of cancer cells with their surrounding tissues forms a new 'organ' that changes as malignancy progresses. Investigation of this process might provide new insights into the mechanisms of tumorigenesis and could also lead to new therapeutic targets. Under normal conditions, ORGANS are made up of TISSUES that exchange information with other cell types via cell-cell contact, cytokines and the EXTRACELLULAR MATRIX (ECM). The ECM, which is produced by collaboration between STROMAL fibroblasts and EPITHELIALmore » cells, provides structural scaffolding for cells, as well as contextual information. The endothelial vasculature provides nutrients and oxygen, and cells of the immune system combat pathogens and remove apoptotic cells. Epithelial cells associate into intact, polarized sheets. These tissues communicate through a complex network of interactions: physically, through direct contact or through the intervening ECM, and biochemically, through both soluble and insoluble signalling molecules. In combination, these interactions provide the information that is necessary to maintain cellular differentiation and to create complex tissue structures. Occasionally, the intercellular signals that define the normal context become disrupted. Alterations in epithelial tissues can lead to movement of epithelial sheets and proliferation - for example, after activation of mesenchymal fibroblasts due to wounding.Normally, these conditions are temporary and reversible, but when inflammation is sustained, an escalating feedback loop ensues.Under persistent inflammatory conditions, continual upregulation of enzymes such as matrix metalloproteinases (MMPs) by stromal fibroblasts can disrupt the ECM, and invading immune cells can overproduce factors that promote abnormal proliferation. As this process progresses, the normal organization of the organ is replaced by a functional disorder. If there are pre-existing epithelial cells within this changing context that possess tumorigenic potential, they can start to proliferate. Alternatively, the abnormal interactions might lead to genomic instability within the epithelial cells and the acquisition of tumorigenic potential. The proliferating cancer cells can then interact with their microenvironment and enhance the abnormal interactions. At this point, the tumor has become its own organ, with a distinct context that now defines all its cellular responses. Here, we will examine how the mechanisms that contribute to the normal context also act to suppress developing tumors, how disruption of this context initiates and supports the process of tumorigenicity, and how some cells with a tumorigenic genotype can become phenotypically normal if the context is appropriately manipulated.« less
Possible carcinogenic potential of dimethyl dimethoxy biphenyl dicarboxylate in experimental animals
Botros, Sanaa Sabet; El-Lakkany, Naglaa Mohamed; Hammam, Olfat Ali; Sabra, Abdel-Naser Abdel-Aal; Taha, Alaa Awad
2016-01-01
Dimethyl dimethoxy biphenyl dicarboxylate (DDB) has been extensively used in the treatment of liver diseases accounting for 1–6% of the global disease burden. Cell replication, DNA synthesis, and proliferation, providing significant information about behavior of cells were examined in mice exposed to subchronic administration with DDB. Conventional liver functions specifically gamma-glutamyltransferase (γ-GT), a marker expressing liver canceration was also investigated. Normal mice were allocated into two groups each of 10 mice. The 1st and 2nd groups were treated with DDB in a dose of 50 mg/kg/day, 5 days/week for 1 month and 3 months, respectively. Comparable groups of normal mice were left without treatment as controls. Compared to normal control group, animals receiving DDB for 3 months showed marked elevations of both alanine aminotransferase and γ-GT, significant inhibition in cytochrome P450, a significant increase in the mean ploidy and 4C with moderate to marked increase in S-phase populations and the number of proliferating cell nuclear antigen-positive cells. In conclusion, this is the first report on the potential relationship between the subchronic administration of DDB and the increase in the hepatocyte proliferation, cell replication and DNA synthesis that may raise an alarm regarding possible DDB insult on the biological behavior of cells. PMID:27144153
Blum, Walter; Pecze, László; Felley-Bosco, Emanuela; Schwaller, Beat
2015-12-22
The Ca(2+)-binding protein calretinin is currently used as a positive marker for identifying epithelioid malignant mesothelioma (MM) and reactive mesothelium, but calretinin's likely role in mesotheliomagenesis remains unclear. Calretinin protects immortalized mesothelial cells in vitro from asbestos-induced cytotoxicity and thus might be implicated in mesothelioma formation. To further investigate calretinin's putative role in the early steps of MM generation, primary mesothelial cells from calretinin knockout (CR-/-) and wildtype (WT) mice were compared. Primary mouse mesothelial cells from WT and CR-/- mice were investigated with respect to morphology, marker proteins, proliferation, cell cycle parameters and mobility in vitro. Overexpression of calretinin or a nuclear-targeted variant was achieved by a lentiviral expression system. CR-/- mice have a normal mesothelium and no striking morphological abnormalities compared to WT animals were noted. Primary mouse mesothelial cells from both genotypes show a typical "cobblestone-like" morphology and express mesothelial markers including mesothelin. In cells from CR-/- mice in vitro, we observed more giant cells and a significantly decreased proliferation rate. Up-regulation of calretinin in mesothelial cells of both genotypes increases the proliferation rate and induces a cobblestone-like epithelial morphology. The length of the S/G2/M phase is unchanged, however the G1 phase is clearly prolonged in CR-/- cells. They are also much slower to close a scratch in a confluent cell layer (2D-wound assay). In addition to a change in cell morphology, an increase in proliferation and mobility is observed, if calretinin overexpression is targeted to the nucleus. Thus, both calretinin and nuclear-targeted calretinin increase mesothelial cell proliferation and consequently, speed up the scratch-closure time. The increased rate of scratch closure in WT cells is the result of two processes: an increased proliferation rate and augmented cell mobility of the border cells migrating towards the empty space. We hypothesize that the differences in proliferation and mobility between WT and CR-/- mesothelial cells are the likely result from differences in their developmental trajectories. The mechanistic understanding of the function of calretinin and its putative implication in signaling pathways in normal mesothelial cells may help understanding its role during the processes that lead to mesothelioma formation and could possibly open new avenues for mesothelioma therapy, either by directly targeting calretinin expression or indirectly by targeting calretinin-mediated downstream signaling.
The role of MiR-324-3p in polycystic ovary syndrome (PCOS) via targeting WNT2B.
Jiang, Y-C; Ma, J-X
2018-06-01
To investigate the expression of microRNA-324-3p (miR-324-3p) in polycystic ovary syndrome (PCOS) and its effects on the proliferation and apoptosis of ovarian granulosa cells. A total of 60 Sprague-Dawley (SD) rats were randomly divided into normal group (n=30) and experimental group (n=30). Rats in the experimental group were intramuscularly injected with dehydroepiandrosterone (DHEA) (6 mg/100 g of body weight) and 0.2 mL oil for injection, while those in normal group were intramuscularly injected with 0.2 mL oil for injection. The ovarian tissues of PCOS model rats were removed to extract the total ribose nucleic acid (RNA). The expression of miR-324-3p was detected via reverse transcription-polymerase chain reaction (RT-PCR). Primary ovarian granulosa cells were isolated and cultured, and NC-miRNA and miR-324-3p mimic were transfected into cells. After 48 h, cell proliferation and apoptosis were detected via cell counting kit 8 (CCK-8) and flow cytometry assay, respectively. The targeted molecule of miR-324-3p was explored using bioinformatics, and dual-luciferase assay was performed to verify the effect of miR-324-3p on WNT2B expression. Granulosa cells were co-transfected with WNT2B-small-interfering RNA (siRNA) and miR-324-3p mimic, and then cell proliferation and apoptosis were detected via CCK-8 and flow cytometry assay, respectively. The expression of miR-324-3p in ovarian tissues of PCOS group was significantly lower than that of normal group (p < 0.01). After transfection with miR-324-3p mimic into granulosa cells, cell proliferation was significantly inhibited and cell apoptosis was promoted (p < 0.01). MiR-324-3p exerted its effect on granulosa cells by directly targeting WNT2B. Silencing WNT2B expression could reverse the effects of miR-324-3p on proliferation and apoptosis of granulosa cells (p < 0.05). The expression of miR-324-3p in the ovary of PCOS rats is decreased significantly. Overexpression of miR-324-3p can reduce the proliferation and induce the apoptosis of granulosa cells via targeting of WNT2B.
Wu, Dong-Mei; Zhang, Yu-Tong; Lu, Jun; Zheng, Yuan-Lin
2018-09-01
This study aims to investigate the effect of microRNA-129 (miR-129) on proliferation and apoptosis of hippocampal neurons in epilepsy rats by targeting c-Fos via the MAPK signaling pathway. Thirty rats were equally classified into a model group (successfully established as chronic epilepsy models) and a normal group. Expression of miR-129, c-Fos, bax, and MAPK was detected by RT-qPCR and Western blotting. Hippocampal neurons were assigned into normal, blank, negative control (NC), miR-129 mimic, miR-129 inhibitor, siRNA-c-Fos, miR-129 inhibitor+siRNA-c-Fos groups. The targeting relationship between miR-129 and c-Fos was predicted and verified by bioinformatics websites and dual-luciferase reporter gene assay. Cell proliferation after transfection was measured by MTT assay, and cell cycle and apoptosis by flow cytometry. c-Fos is a potential target gene of miR-129. Compared with the normal group, the other six groups showed a decreased miR-129 expression; increased expression of expression of c-Fos, Bax, and MAPK; decreased proliferation; accelerated apoptosis; more cells arrested in the G1 phase; and fewer cells arrested in the S phase. Compared with the blank and NC groups, the miR-129 mimic group and the siRNA-c-Fos group showed decreased expression of c-Fos, Bax, and MAPK, increased cells proliferation, and decreased cell apoptosis, fewer cells arrested in the G1 phase and more cells arrested in the S phase. However, the miR-129 inhibitor groups showed reverse consequences. This study suggests that miR-129 could inhibit the occurrence and development of epilepsy by repressing c-Fos expression through inhibiting the MAPK signaling pathway. © 2017 Wiley Periodicals, Inc.
FAK Regulates Intestinal Epithelial Cell Survival and Proliferation during Mucosal Wound Healing
Tilghman, Robert W.; Casanova, James E.; Bouton, Amy H.
2011-01-01
Background Following damage to the intestinal epithelium, restoration of epithelial barrier integrity is triggered by a robust proliferative response. In other tissues, focal adhesion kinase (FAK) regulates many of the cellular processes that are critical for epithelial homeostasis and restitution, including cell migration, proliferation and survival. However, few studies to date have determined how FAK contributes to mucosal wound healing in vivo. Methodology and Principal Findings To examine the role of FAK in intestinal epithelial homeostasis and during injury, we generated intestinal epithelium (IE)-specific conditional FAK knockout mice. Colitis was induced with dextran-sulfate-sodium (DSS) and intestinal tissues were analyzed by immunohistochemistry and immunoblotting. While intestinal development occurred normally in mice lacking FAK, FAK-deficient animals were profoundly susceptible to colitis. The loss of epithelial FAK resulted in elevated p53 expression and an increased sensitivity to apoptosis, coincident with a failure to upregulate epithelial cell proliferation. FAK has been reported to function as a mechanosensor, inducing cyclin D1 expression and promoting cell cycle progression under conditions in which tissue/matrix stiffness is increased. Collagen deposition, a hallmark of inflammatory injury resulting in increased tissue rigidity, was observed in control and FAK knockout mice during colitis. Despite this fibrotic response, the colonic epithelium in FAK-deficient mice exhibited significantly reduced cyclin D1 expression, suggesting that proliferation is uncoupled from fibrosis in the absence of FAK. In support of this hypothesis, proliferation of Caco-2 cells increased proportionally with matrix stiffness in vitro only under conditions of normal FAK expression; FAK depleted cells exhibited reduced proliferation concomitant with attenuated cyclin D1 expression. Conclusions In the colon, FAK functions as a regulator of epithelial cell survival and proliferation under conditions of mucosal injury and a mechanosensor of tissue compliance, inducing repair-driven proliferation in the colonic epithelium through upregulation of cyclin D1. PMID:21887232
New toxicity testing approaches will rely on in vitro assays to assess chemical effects at the cellular and molecular level. Cell proliferation is imperative to normal development, and chemical disruption of this process can be detrimental to the organism. As part of an effort to...
The effect of nutritional status on myogenic satellite cell proliferation and differentiation.
Powell, D J; McFarland, D C; Cowieson, A J; Muir, W I; Velleman, S G
2013-08-01
Early posthatch satellite cell (SC) mitotic activity is a critical component of muscle development and growth. Satellite cells are stem cells that can be induced by nutrition to follow other cellular developmental pathways. The objective of the current study was to determine the effect of restricting protein synthesis on the proliferation and differentiation of SC, using variable concentrations of Met and Cys to modulate protein synthesis. Broiler pectoralis major SC were cultured and treated with 1 of 6 different Met/Cys concentrations: 60/192, 30/96 (control), 7.5/24, 3/9.6, 1/3.2, or 0/0 mg/L. The effect of Met/Cys concentration on SC proliferation and differentiation was measured, and myonuclear accretion was measured by counting the number of nuclei per myotube during differentiation. The 30/96 mg/L Met/Cys treatment resulted in the highest rate of proliferation compared with all other treatments by 72 h of proliferation (P < 0.05). Differentiation was measured with Met/Cys treatments only during proliferation and the cultures receiving normal differentiation medium (R/N), normal proliferation medium and differentiation medium with variable Met/Cys (N/R), or both proliferation and differentiation receiving variable Met/Cys treatments (R/R). Differentiation responded in a dose-dependent manner to Met/Cys concentration under all 3 of these treatment regimens, with a degree of recovery in the R/N regimen cells following reinstatement of the control medium. Reductions in both proliferation and differentiation were more pronounced as Met/Cys concentrations were further reduced, whereas increased differentiation was observed under the increased Met/Cys concentration treatment when applied during differentiation in the N/R and R/R regimens. The number of nuclei per myotube was significantly decreased in the severely Met/Cys restricted treatments (P < 0.05). These data demonstrate the sensitivity of pectoralis major SC to nutritional availability and the importance of optimal nutrition during both proliferation and differentiation for maximizing SC activity, which will affect subsequent muscle mass accretion.
Jiang, Xiuxiu; Ye, Xiaolei; Ma, Junyan; Li, Wen; Wu, Ruijin; Jun, Lin
2015-01-01
G protein-coupled estrogen receptor 1 (GPER-1, formerly known as GPR30) has been proposed as the receptor for estrogen-induced, growth of leiomyomas though its precise mechanisms of action are not clear. We obtained leiomyoma cells (LC) and normal smooth muscle cells from 28 women (n = 28, median age 38 years, median parity 1.0). We incubated them with 17-β estradiol (E(2)), after blocking, or upregulating, expression of GPER-1 with ICI182,780 (a GPER-1 agonist) and siGPR30, respectively. We evaluated the role of GPER-1 in the mitogen-activated protein kinase (MAPK) signaling pathway using Western blot analysis. We studied cell proliferation with 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide, and, mitotic activity with phosphohistone H3 (PPH3) expression in leiomyoma, and, matched, normal, smooth muscle tissues using standard immunohistochemistry. Downregulation of GPER-1 expression with siGPR30 partially attenuated the E(2)-activated MAPK signaling pathway (p < 0.01). Upregulation of GPER-1 with ICI182,780 enhanced the E(2)-activated MAPK signaling pathway (p < 0.01). ICI182,780 enhanced E(2)-induced proliferation of LC (p < 0.01), while knock down of the GPER-1 gene with GPER-1 small interfering RNA partially inhibited E(2)-induced cell proliferation (p < 0.01). There were no significant differences in PPH3 expression between LCs and normal smooth muscle tissues (p > 0.05). Neither ICI182,780 nor siGPR30 increased mitosis in LCs (p > 0.05). Our results indicate that GPER-1 mediates proliferation of estrogen-induced, LC by activating the MAPK pathway, and, not by promoting mitosis.
Correlation of lung surface area to apoptosis and proliferation in human emphysema.
Imai, K; Mercer, B A; Schulman, L L; Sonett, J R; D'Armiento, J M
2005-02-01
Pulmonary emphysema is associated with alterations in matrix proteins and protease activity. These alterations may be linked to programmed cell death by apoptosis, potentially influencing lung architecture and lung function. To evaluate apoptosis in emphysema, lung tissue was analysed from 10 emphysema patients and six individuals without emphysema (normal). Morphological analysis revealed alveolar cells in emphysematous lungs with convoluted nuclei characteristic of apoptosis. DNA fragmentation was detected using terminal deoxynucleotide transferase-mediated dUTP nick-end labelling (TUNEL) and gel electrophoresis. TUNEL revealed higher apoptosis in emphysematous than normal lungs. Markers of apoptosis, including active caspase-3, proteolytic fragment of poly (ADP-ribose) polymerase, Bax and Bad, were detected in emphysematous lungs. Linear regression showed that apoptosis was inversely correlated with surface area. Emphysematous lungs demonstrated lower surface areas and increased cell proliferation. There was no correlation between apoptosis and proliferation, suggesting that, although both events increase during emphysema, they are not in equilibrium, potentially contributing to reduced lung surface area. In summary, cell-based mechanisms associated with emphysematous parenchymal damage include increased apoptosis and cell proliferation. Apoptosis correlated with airspace enlargement, supporting epidemiological evidence of the progressive nature of emphysema. These data extend the understanding of cell dynamics and structural changes within the lung during emphysema pathogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Yuan-Hung; Ho, Po-Chun; Chen, Min-Shan
Highlights: Black-Right-Pointing-Pointer Proliferating Cell Nuclear Antigen (PCNA) is phosphorylated at Y114. Black-Right-Pointing-Pointer Phospho-Y114 of PCNA is not required for cell proliferation for normal growth. Black-Right-Pointing-Pointer MCE during adipogenesis is abolished in the lack of the phosphorylation. Black-Right-Pointing-Pointer Homozygous Y114F mice are resistant to high fat diet induced obesity. Black-Right-Pointing-Pointer Our results shed light on the interface between proliferation and differentiation. -- Abstract: Clonal proliferation is an obligatory component of adipogenesis. Although several cell cycle regulators are known to participate in the transition between pre-adipocyte proliferation and terminal adipocyte differentiation, how the core DNA synthesis machinery is coordinately regulated in adipogenesismore » remains elusive. PCNA (Proliferating Cell Nuclear Antigen) is an indispensable component for DNA synthesis during proliferation. Here we show that PCNA is subject to phosphorylation at the highly conserved tyrosine residue 114 (Y114). Replacing the Y114 residue with phenylalanine (Y114F), which is structurally similar to tyrosine but cannot be phosphorylated, does not affect normal animal development. However, when challenged with high fat diet, mice carrying homozygous Y114F alleles (PCNA{sup F/F}) are resistant to adipose tissue enlargement in comparison to wild-type (WT) mice. Mouse embryonic fibroblasts (MEFs) harboring WT or Y114F mutant PCNA proliferate at similar rates. However, when subjected to adipogenesis induction in culture, PCNA{sup F/F} MEFs are not able to re-enter the cell cycle and fail to form mature adipocytes, while WT MEFs undergo mitotic clonal expansion in response to the adipogenic stimulation, accompanied by enhanced Y114 phosphorylation of PCNA, and differentiate to mature adipocytes. Consistent with the function of Y114 phosphorylation in clonal proliferation in adipogenesis, fat tissues isolated from WT mice contain significantly more adipocytes than those isolated from PCNA{sup F/F} mice. This study identifies a critical role for PCNA in adipose tissue development, and for the first time identifies a role of the core DNA replication machinery at the interface between proliferation and differentiation.« less
Al-Mayhani, M. Talal F.; Grenfell, Richard; Narita, Masashi; Piccirillo, Sara; Kenney-Herbert, Emma; Fawcett, James W.; Collins, V. Peter; Ichimura, Koichi; Watts, Colin
2011-01-01
Glioblastoma multiforme (GBM) is the most common type of primary brain tumor and a highly malignant and heterogeneous cancer. Current conventional therapies fail to eradicate or curb GBM cell growth. Hence, exploring the cellular and molecular basis of GBM cell growth is vital to develop novel therapeutic approaches. Neuroglia (NG)-2 is a transmembrane proteoglycan expressed by NG2+ progenitors and is strongly linked to cell proliferation in the normal brain. By using NG2 as a biomarker we identify a GBM cell population (GBM NG2+ cells) with robust proliferative, clonogenic, and tumorigenic capacity. We show that a significant proportion (mean 83%) of cells proliferating in the tumor mass express NG2 and that over 50% of GBM NG2+ cells are proliferating. Compared with the GBM NG2− cells from the same tumor, the GBM of NG2+ cells overexpress genes associated with aggressive tumorigenicity, including overexpression of Mitosis and Cell Cycling Module genes (e.g., MELK, CDC, MCM, E2F), which have been previously shown to correlate with poor survival in GBM. We also show that the coexpression pattern of NG2 with other glial progenitor markers in GBM does not recapitulate that described in the normal brain. The expression of NG2 by such an aggressive and actively cycling GBM population combined with its location on the cell surface identifies this cell population as a potential therapeutic target in a subset of patients with GBM. PMID:21798846
[Regulation of airway stem cell proliferation in idiopathic pulmonary fibrosis].
Yang, S X; Wu, Q; Sun, X; Li, X; Li, K; Xu, L; Li, Y; Zhang, Q Y; Zhang, Y C; Chen, H Y
2016-09-01
To investigate the effect of fibroblasts on regulating airway stem cell proliferation in idiopathic pulmonary fibrosis. Lung cell suspension was prepared from β-actin-GFP mice. Airway stem cells were obtained by fluorescence activated cell sorting and co-cultured with lung fibroblasts. The fibroblasts were treated with TGF-β inhibitor SB43142. The expression of growth factors FGF1/2 and the effect of FGF1/2 on stem cell proliferation were observed. The cloning efficiency of airway stem cells, when co-cultured with normal lung fibroblast cells for 8 days, was (3.5±1.1)%, while the cloning efficiency was reduced to (0.04±0.04)% when co-cultured with lung fibroblasts from idiopathic pulmonary fibrosis patients. The difference between the 2 groups was statistically significant(P=0.002 5). TGF-β receptor inhibitor SB431542 increased lung fibroblast growth factors FGF1/2 expression.FGF1 mRNA expression was increased to the experimental group 0.005 5 from 0.000 2 in the control group.FGF2 mRNA expression of the amount raised to the experimental group 0.000 15 from 0.000 8 in the control group.FGF1/2 promoted the growth of airway stem cells. After FGF1/2 was co-cultured with normal lung fibroblast cells for 8 days, the cloning efficiency of airway stem cells was (0.3±0.1)%. During the development of idiopathic pulmonary fibrosis, fibroblast secreted FGF1/2 regulate airway stem cell proliferation.
Lange, Alexander W; Sridharan, Anusha; Xu, Yan; Stripp, Barry R; Perl, Anne-Karina; Whitsett, Jeffrey A
2015-02-01
The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
Effect of mitomycin on normal dermal fibroblast and HaCat cell: an in vitro study
Wang, Yao-wen; Ren, Ji-hao; Xia, Kun; Wang, Shu-hui; Yin, Tuan-fang; Xie, Ding-hua; Li, Li-hua
2012-01-01
Objective: To evaluate the effects of mitomycin on the growth of human dermal fibroblast and immortalized human keratinocyte line (HaCat cell), particularly the effect of mitomycin on intracellular messenger RNA (mRNA) synthesis of collagen and growth factors of fibroblast. Methods: The normal dermal fibroblast and HaCat cell were cultured in vitro. Cell cultures were exposed to 0.4 and 0.04 mg/ml of mitomycin solution, and serum-free culture medium was used as control. The cellular morphology change, growth characteristics, cell proliferation, and apoptosis were observed at different intervals. For the fibroblasts, the mRNA expression changes of transforming growth factor (TGF)-β1, basic fibroblast growth factor (bFGF), procollagen I, and III were detected by reverse transcription polymerase chain reaction (RT-PCR). Results: The cultured normal human skin fibroblast and HaCat cell grew exponentially. A 5-min exposure to mitomycin at either 0.4 or 0.04 mg/ml caused marked dose-dependent cell proliferation inhibition on both fibroblasts and HaCat cells. Cell morphology changed, cell density decreased, and the growth curves were without an exponential phase. The fibroblast proliferated on the 5th day after the 5-min exposure of mitomycin at 0.04 mg/ml. Meanwhile, 5-min application of mitomycin at either 0.04 or 0.4 mg/ml induced fibroblast apoptosis but not necrosis. The apoptosis rate of the fibroblast increased with a higher concentration of mytomycin (p<0.05). A 5-min exposure to mitomycin at 0.4 mg/ml resulted in a marked decrease in the mRNA production of TGF-β1, procollagen I and III, and a marked increase in the mRNA production of bFGF. Conclusions: Mitomycin can inhibit fibroblast proliferation, induce fibroblast apoptosis, and regulate intracellular protein expression on mRNA levels. In additon, mitomycin can inhibit HaCat cell proliferation, so epithelial cell needs more protecting to avoid mitomycin’s side effect when it is applied clinically. PMID:23225855
Zinc oxide nanoparticles as selective killers of proliferating cells
Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred
2011-01-01
Background: It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Methods: Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. Results: In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Conclusion: Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant. PMID:21698081
Zinc oxide nanoparticles as selective killers of proliferating cells.
Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred
2011-01-01
It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant.
Huang, Shengkai; Dong, Xin; Wang, Jia; Ding, Jie; Li, Yan; Li, Dongdong; Lin, Hong; Wang, Wenjie; Zhao, Mei
2018-01-01
Background Ubiquilin-4 (UBQLN4) is a component of the ubiquitin-proteasome system and regulates the degradation of many proteins implicated in pathological conditions. The aim of this study was to determine the role of UBQLN4 in regulating the proliferation and survival of the normal gastric epithelial cell line GES-1. Material/Methods We constructed GES-1 lines stably overexpressing UBQLN4 by lentiviral infection. Cell proliferation, apoptosis, and the cell cycle were analyzed using the MTT assay and flow cytometric assays. Phosphorylation of ERK, JNK, p38, and expression of cyclin D1 were detected by western blot analysis. Results Overexpression of UBQLN4 significantly reduced proliferation and induced G2/M phase arrest and apoptosis in GES-1 cells. Moreover, upregulation of UBQLN4 increased the expression of cyclin D1 and phosphorylated ERK, but not JNK or p38. Conclusions These data suggest that UBQLN4 may induce cell cycle arrest and apoptosis via activation of the ERK pathway and upregulation of cyclin D1 in GES-1 cells. PMID:29807370
Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.
2013-01-01
Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445
Miguel-Hidalgo, Jose J.; Whittom, Angela; Villarreal, Ashley; Soni, Madhav; Meshram, Ashish; Pickett, Jason C.; Rajkowska, Grazyna; Stockmeier, Craig A.
2014-01-01
Background: In major depressive disorder (MDD), lowered neural activity and significant reductions of markers of cell resiliency to degeneration occur in the prefrontal cortex (PFC). It is still unclear whether changes in other relevant markers of cell vulnerability to degeneration and markers of cell proliferation are associated with MDD. Methods: Levels of caspase 8 (C8), X-linked inhibitor of apoptosis protein (XIAP), direct IAP binding protein with low pI (DIABLO), proliferating cell nuclear antigen (PCNA) and density of cells immunoreactive (-IR) for proliferation marker Ki-67 were measured in postmortem samples of the left orbitofrontal cortex (OFC) of subjects with MDD, and psychiatrically-normal comparison subjects. Results: There was significant increase in C8, a higher ratio of DIABLO to XIAP, lower packing density of Ki-67-IR cells, and an unexpected age-dependent increase in PCNA in subjects with MDD vs. controls. PCNA levels were significantly higher in MDD subjects unresponsive to antidepressants or untreated with antidepressants. The DIABLO/XIAP ratio was higher in MDD subjects without antidepressants than in comparison subjects. Limitations: Qualitative nature of responsiveness assessments; Definition of resistance to antidepressant treatment is still controversial; Unclear role of PCNA. Conclusions: Markers of cell vulnerability to degeneration are increased and density of Ki67-positive cells is low MDD, but accompanied by normal XIAP levels. The results suggest increased vulnerability to cell pathology in depression that is insufficient to cause morphologically conspicuous cell death. Persistent but low-grade vulnerability to cell degeneration coexisting with reduced proliferation readiness may explain age-dependent reductions in neuronal densities in the OFC of depressed subjects. PMID:24655767
Does telomere elongation lead to a longer lifespan if cancer is considered?
NASA Astrophysics Data System (ADS)
Masa, Michael; Cebrat, Stanisław; Stauffer, Dietrich
2006-05-01
As cell proliferation is limited due to the loss of telomere repeats in DNA of normal somatic cells during division, telomere attrition can possibly play an important role in determining the maximum life span of organisms as well as contribute to the process of biological ageing. With computer simulations of cell culture development in organisms, which consist of tissues of normal somatic cells with finite growth, we obtain an increase of life span and life expectancy for longer telomeric DNA in the zygote. By additionally considering a two-mutation model for carcinogenesis and indefinite proliferation by the activation of telomerase, we demonstrate that the risk of dying due to cancer can outweigh the positive effect of longer telomeres on the longevity.
Feng, Gege; Zhang, Tianjiao; Liu, Jinqin; Ma, Xiaotang; Li, Bing; Yang, Lin; Zhang, Yue; Xu, Zefeng; Qin, Tiejun; Zhou, Jiaxi; Huang, Gang; Shi, Lihong; Xiao, Zhijian
2017-03-01
Myelodysplasia/myeloid leukemia factor 1-interacting protein (MLF1IP) appears to be an erythroid lineage-specific gene in mice; however, its role in normal erythropoiesis and erythropoietic disorders have not yet been elucidated. Here, we found that MLF1IP is abundantly expressed in human erythroid progenitor cells and that MLF1IP-deficiency reduces cell proliferation resulting from cell cycle arrest. Moreover, MLF1IP expression is exclusively elevated in CFU-E cells from polycythemia vera (PV) patients, and MLF1IP transgenic mice develop a PV-like disorder. Further analyses revealed that the erythroid progenitors and early-stage erythroblasts from these transgenic mice expand by up-regulating cyclin D2 and down-regulating p27 and p21. Thus, our data demonstrate that MLF1IP promotes erythroid proliferation and is involved in the pathogenesis of PV, suggesting that it might be a novel molecular target for erythropoietic disorders. © 2017 Federation of European Biochemical Societies.
Hua, Kun; Schindler, Matthew K; McQuail, Joseph A; Forbes, M Elizabeth; Riddle, David R
2012-01-01
Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically "activated" phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like brain irradiation and represent important end-points for analysis in studies of therapeutic strategies to protect patients from neural dysfunction.
Genistein effects on stromal cells determines epithelial proliferation in endometrial co-cultures.
Sampey, Brante P; Lewis, Terrence D; Barbier, Claire S; Makowski, Liza; Kaufman, David G
2011-06-01
Estrogen is the leading etiologic factor for endometrial cancer. Estrogen-induced proliferation of endometrial epithelial cells normally requires paracrine growth factors produced by stromal cells. Epidemiologic evidence indicates that dietary soy prevents endometrial cancer, and implicates the phytoestrogen genistein in this effect. However, results from previous studies are conflicting regarding the effects of genistein on hormone responsive cancers. The effects of estrogen and genistein on proliferation of Ishikawa (IK) endometrial adenocarcinoma cells were examined in co-cultures of IK cells with endometrial stromal cells, recapitulating the heterotypic cell-to-cell interactions observed in vivo. The roles of estrogen receptor (ER)α and ERβ were evaluated using ERα and ERβ specific agonists. ER activation and cell proliferation in the IK epithelial cells were determined by alkaline phosphatase assay and Coulter counter enumeration, respectively. Both estrogen and genistein increased estrogen receptor-induced gene activity in IK cells over a range of concentrations. Estrogen alone but not genistein increased IK proliferation in co-cultures. When primed by estrogen treatment, increasing concentrations of genistein produced a biphasic effect on IK proliferation: nM concentrations inhibited estrogen-induced proliferation while μM concentrations increased proliferation. Studies with an ERβ-specific agonist produced similar results. Genistein did not influence the effects of estrogen on IK proliferation in monoculture. Our study indicates that nutritionally relevant concentrations (nM) of genistein inhibit the proliferative effects of estrogen on endometrial adenocarcinoma cells presumably through activation of stromal cell ERβ. We believe that sub-micromolar concentrations of genistein may represent a novel adjuvant for endometrial cancer treatment and prevention. Copyright © 2011 Elsevier Inc. All rights reserved.
Kanwar, Jagat R; Kanwar, Rupinder K
2009-01-31
Enprocal is a high-protein micro-nutrient rich formulated supplementary food designed to meet the nutritional needs of the frail elderly and be delivered to them in every day foods. We studied the potential of Enprocal to improve gut and immune health using simple and robust bioassays for gut cell proliferation, intestinal integrity/permeability, immunomodulatory, anti-inflammatory and anti-oxidative activities. Effects of Enprocal were compared with whey protein concentrate 80 (WPC), heat treated skim milk powder, and other commercially available milk derived products. Enprocal (undigested) and digested (Enprocal D) selectively enhanced cell proliferation in normal human intestinal epithelial cells (FHs74-Int) and showed no cytotoxicity. In a dose dependent manner Enprocal induced cell death in Caco-2 cells (human colon adencarcinoma epithelial cells). Digested Enprocal (Enprocal D: gut enzyme cocktail treated) maintained the intestinal integrity in transepithelial resistance (TEER) assay, increased the permeability of horseradish peroxidase (HRP) and did not induce oxidative stress to the gut epithelial cells. Enprocal D upregulated the surface expression of co-stimulatory (CD40, CD86, CD80), MHC I and MHC II molecules on PMA differentiated THP-1 macrophages in coculture transwell model, and inhibited the monocyte/lymphocyte (THP-1/Jurkat E6-1 cells)-epithelial cell adhesion. In cytokine secretion analyses, Enprocal D down-regulated the secretion of proinflammatory cytokines (IL-1beta and TNF-alpha) and up-regulated IFN-gamma, IL-2 and IL-10. Our results indicate that Enprocal creates neither oxidative injury nor cytotoxicity, stimulates normal gut cell proliferation, up regulates immune cell activation markers and may aid in the production of antibodies. Furthermore, through downregulation of proinflammatory cytokines, Enprocal appears to be beneficial in reducing the effects of chronic gut inflammatory diseases such as inflammatory bowel disease (IBD). Stimulation of normal human fetal intestinal cell proliferation without cell cytotoxicity indicates it may also be given as infant food particularly for premature babies.
Evaluation of cell proliferation in malignant and potentially malignant oral lesions
Madan, Mani; Chandra, Shaleen; Raj, Vineet; Madan, Rohit
2015-01-01
Aims: To evaluate the cell proliferation rate by the expression of proliferating cell nuclear antigen (PCNA) and argyrophilic nucleolar organizing region (AgNOR) counts and to assess its usefulness as a marker for malignant potential in oral epithelial lesions. Materials and Methods: The study group included 30 cases of leukoplakia, 15 nondysplastic (NDL), 15 dysplastic (DL), 15 cases of oral squamous cell carcinoma (OSCC) and 5 cases of normal oral mucosa. Formalin fixed paraffin embedded tissues were subjected to immunohistochemical staining for PCNA and AgNOR technique. The PCNA labeling index (LI) and the AgNOR dots were evaluated for the entire sample. Statistical Analysis Used: ANOVA, Tukey honestly significant difference, Pearson's correlation. Results: In this study, the AgNOR count of OSCC was lower than the DL lesions moreover the AgNOR counts were found to be higher in normal mucosa as compared to the DL and the NDL epithelium. The study results also showed that the mean AgNOR count failed to distinguish between DL and NDL lesions. Overall we observed increased PCNA expression from normal epithelium to NDL to DL lesion. Conclusions: Based on the findings of the present study on oral epithelial precancerous and cancerous lesions we conclude that mean AgNOR count alone cannot be a valuable parameter to distinguish between the normal, NDL, DL epithelium and OSCC but, on the other hand, we found out that PCNA can be a useful biomarker for delineating normal epithelium from DL epithelium and OSCC. PMID:26980956
Evaluation of cell proliferation in malignant and potentially malignant oral lesions.
Madan, Mani; Chandra, Shaleen; Raj, Vineet; Madan, Rohit
2015-01-01
To evaluate the cell proliferation rate by the expression of proliferating cell nuclear antigen (PCNA) and argyrophilic nucleolar organizing region (AgNOR) counts and to assess its usefulness as a marker for malignant potential in oral epithelial lesions. The study group included 30 cases of leukoplakia, 15 nondysplastic (NDL), 15 dysplastic (DL), 15 cases of oral squamous cell carcinoma (OSCC) and 5 cases of normal oral mucosa. Formalin fixed paraffin embedded tissues were subjected to immunohistochemical staining for PCNA and AgNOR technique. The PCNA labeling index (LI) and the AgNOR dots were evaluated for the entire sample. ANOVA, Tukey honestly significant difference, Pearson's correlation. In this study, the AgNOR count of OSCC was lower than the DL lesions moreover the AgNOR counts were found to be higher in normal mucosa as compared to the DL and the NDL epithelium. The study results also showed that the mean AgNOR count failed to distinguish between DL and NDL lesions. Overall we observed increased PCNA expression from normal epithelium to NDL to DL lesion. Based on the findings of the present study on oral epithelial precancerous and cancerous lesions we conclude that mean AgNOR count alone cannot be a valuable parameter to distinguish between the normal, NDL, DL epithelium and OSCC but, on the other hand, we found out that PCNA can be a useful biomarker for delineating normal epithelium from DL epithelium and OSCC.
Cell Fusion as a Cause of Prostate Cancer Metastasis
2009-03-01
PC-3 cells? Does XRMV2 transform normal human cells? Does XRMV2 affect cell proliferation or viability? Is XRMV2 present in other prostate cancer...retroviral transduction. pathways regulated by tetraploidy in premalignant cells (Figure 1). In this experimental system, normal diploid human ...or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy
Neto, Marta; Aguilar-Hidalgo, Daniel; Casares, Fernando
2016-10-01
During organ development, the progenitor state is transient, and depends on specific combinations of transcription factors and extracellular signals. Not surprisingly, abnormal maintenance of progenitor transcription factors may lead to tissue overgrowth, and the concurrence of signals from the local environment is often critical to trigger this overgrowth. Therefore, identifying specific combinations of transcription factors/signals promoting -or opposing- proliferation in progenitors is essential to understand normal development and disease. We have investigated this issue using the Drosophila eye as model. Transcription factors hth and tsh are transiently expressed in eye progenitors causing the expansion of the progenitor pool. However, if their co-expression is maintained experimentally, cell proliferation continues and differentiation is halted. Here we show that Hth+Tsh-induced tissue overgrowth requires the BMP2 Dpp and the abnormal hyperactivation of its pathway. Rather than using autocrine Dpp expression, Hth+Tsh cells increase their avidity for Dpp, produced locally, by upregulating extracellular matrix components. During normal development, Dpp represses hth and tsh ensuring that the progenitor state is transient. However, cells in which Hth+Tsh expression is forcibly maintained use Dpp to enhance their proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.
Tutton, P J; Barkla, D H
1986-12-01
Ornithine decarboxylase (ODC) catalyzes the rate-limiting step in the synthesis of polyamines, it has a short half-life, and its synthesis is under hormonal control. Recently, insight into the role of ODC and thus into the physiology of polyamines has been gained by the use of an inhibitor of ODC, difluoromethylornithine (DFMO). In the present report cell proliferation was measured by a stathmokinetic method in the crypt epithelium of the jejunum and colon of normal rats and in dimethylhydrazine-induced colonic tumors. Growth of human colon tumor xenografts in immunosuppressed mice and mouse colon tumor isografts was also assessed. Cell proliferation in primary colonic tumors was substantially suppressed by a single dose of DFMO at 100 mg/kg whereas the normal crypt epithelium of the small and large intestine required two doses at 400 mg/kg to produce a similar magnitude of inhibition of cell proliferation. DFMO was also found to suppress cell proliferation in, and the growth of, the transplantable colon cancers. Because of the apparent selectivity of the antimitotic activity of DFMO towards tumors, ODC inhibitors may prove to be useful anticancer drugs.
Li, Junqin; Li, Xinhua; Hou, Ruixia; Liu, Ruifeng; Zhao, Xincheng; Dong, Feng; Wang, Chunfang; Yin, Guohua; Zhang, Kaiming
2015-09-01
Psoriasis is mediated primarily by T cells, which reduce epidermal turnover time and affect keratinocyte proliferation. We aimed to identify differentially expressed genes (DEG) in T cells from normal, five pairs of monozygotic twins concordant or discordant for psoriasis, to determine whether these DEG may account for the influence to epidermal turnover time and keratinocyte proliferation. The impact of T cells on keratinocyte proliferation and epidermal turnover time were investigated separately by immunohistochemistry and cultured with (3) H-TdR. mRNA expression patterns were investigated by RNA sequencing and verified by real-time reverse transcription polymerase chain reaction. After co-culture with psoriatic T cells, the expression of Ki-67, c-Myc and p53 increased, while expression of Bcl-2 and epidermal turnover time decreased. There were 14 DEG which were found to participate in the regulation of cell proliferation or differentiation. Psoriatic T cells exhibited the ability to decrease epidermal turnover time and affect keratinocyte proliferation because of the differential expression of PPIL1, HSPH1, SENP3, NUP54, FABP5, PLEKHG3, SLC9A9 and CHCHD4. © 2015 Japanese Dermatological Association.
The hormone prolactin (PRL) plays a critical role in normal breast development by stimulating the proliferation of mammary cells, the production of milk proteins, and the formation of new mammary blood vessels. Unfortunately, the same cell and vessel growth pathways controlled by PRL in normal cells also operate in breast cancer cells, and elevated plasma PRL is a risk factor
Anti-colorectal cancer effects of tripolinolate A from Tripolium vulgare.
Chen, Lu; Wang, Wen-Ling; Song, Teng-Fei; Xie, Xin; Ye, Xue-Wei; Liang, Ying; Huang, Hao-Cai; Yan, Shi-Lun; Lian, Xiao-Yuan; Zhang, Zhi-Zhen
2017-08-01
Tripolinolate A (TLA) is recently identified as a new compound from a halophyte plant Tripolium vulgare and has been shown to have significant in vitro activity against the proliferation of colorectal cancer and glioma cells. This study was designed to further investigate the effects of TLA on the proliferation of human normal cells, and the apoptosis and cell cycle in colorectal cancer cells, and the growth of tumors in the colorectal cancer-bearing animals. The data obtained from this study demonstrated that: 1) TLA had much less cytotoxicity in the human normal cells than the colorectal cancer cells; 2) TLA remarkably induced apoptosis in the human colorectal cancer cells and blocked cell cycle at G 2 /M phase, and 3) TLA had significant anti-colorectal cancer activity in the tumor-bearing animals. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.
2014-01-01
Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526
Tokumoto, Masanori; Tsuruya, Kazuhiko; Fukuda, Kyoichi; Kanai, Hidetoshi; Kuroki, Shoji; Hirakata, Hideki; Iida, Mitsuo
2003-06-01
Uraemic patients with advanced secondary hyperparathyroidism (2HPT) have nodular hyperplastic glands with a decreased vitamin D receptor (VDR) density. Previous studies have shown that nodular hyperplasia expressed a significantly lower VDR density as compared with diffuse hyperplasia, and the VDR density negatively correlated with both the glandular weight and the marker of cell proliferation. However, the mechanism by which the decreased VDR density leads to parathyroid cell proliferation remains unclear. In the myelomonocytic cell line, active vitamin D(3) is known to activate the transcription of both p21 and p27, cyclin-dependent kinase inhibitors (CDKIs), regulating the transition from the G(1) to the S phase of the cell cycle, in a VDR-dependent manner. Moreover, the overexpression of p21 and p27 inhibits cell proliferation. In order to elucidate the mechanism of parathyroid cell proliferation, the expression of CDKIs, p21 and p27, and the VDR was analysed immunohistochemically, and compared among nodular and diffuse hyperplastic parathyroid glands, and histologically normal parathyroid glands. The VDR expression in nodular hyperplasias was significantly decreased compared with either diffuse hyperplasias or normal parathyroid glands. The expression of both p21 and p27 was also significantly lower in nodular hyperplasias than in diffuse hyperplasias or normal parathyroid glands. Sections of parathyroid glands with a high expression of nuclear VDR highly expressed both p21 and p27. In nodular hyperplasias, the expression of both p21 and p27 correlated either positively with the nuclear VDR expression or inversely with the glandular weight. Therefore, the reduced expression of p21 and p27, being VDR dependent, is a major pathogenic factor for nodular parathyroid gland growth in advanced 2HPT.
Murai, Kiyohito; Sun, Guoqiang; Ye, Peng; Tian, E.; Yang, Su; Cui, Qi; Sun, Guihua; Trinh, Daniel; Sun, Olivia; Hong, Teresa; Wen, Zhexing; Kalkum, Markus; Riggs, Arthur D.; Song, Hongjun; Ming, Guo-li; Shi, Yanhong
2016-01-01
Dysregulated expression of miR-219, a brain-specific microRNA, has been observed in neurodevelopmental disorders, such as schizophrenia (SCZ). However, its role in normal mammalian neural stem cells (NSCs) and in SCZ pathogenesis remains unknown. We show here that the nuclear receptor TLX, an essential regulator of NSC proliferation and self-renewal, inhibits miR-219 processing. miR-219 suppresses mouse NSC proliferation downstream of TLX. Moreover, we demonstrate upregulation of miR-219 and downregulation of TLX expression in NSCs derived from SCZ patient iPSCs and DISC1-mutant isogenic iPSCs. SCZ NSCs exhibit reduced cell proliferation. Overexpression of TLX or inhibition of miR-219 action rescues the proliferative defect in SCZ NSCs. Therefore, this study uncovers an important role for TLX and miR-219 in both normal neurodevelopment and in SCZ patient iPSC-derived NSCs. Moreover, this study reveals an unexpected role for TLX in regulating microRNA processing, independent of its well-characterized role in transcriptional regulation. PMID:26965827
Murai, Kiyohito; Sun, Guoqiang; Ye, Peng; Tian, E; Yang, Su; Cui, Qi; Sun, Guihua; Trinh, Daniel; Sun, Olivia; Hong, Teresa; Wen, Zhexing; Kalkum, Markus; Riggs, Arthur D; Song, Hongjun; Ming, Guo-li; Shi, Yanhong
2016-03-11
Dysregulated expression of miR-219, a brain-specific microRNA, has been observed in neurodevelopmental disorders, such as schizophrenia (SCZ). However, its role in normal mammalian neural stem cells (NSCs) and in SCZ pathogenesis remains unknown. We show here that the nuclear receptor TLX, an essential regulator of NSC proliferation and self-renewal, inhibits miR-219 processing. miR-219 suppresses mouse NSC proliferation downstream of TLX. Moreover, we demonstrate upregulation of miR-219 and downregulation of TLX expression in NSCs derived from SCZ patient iPSCs and DISC1-mutant isogenic iPSCs. SCZ NSCs exhibit reduced cell proliferation. Overexpression of TLX or inhibition of miR-219 action rescues the proliferative defect in SCZ NSCs. Therefore, this study uncovers an important role for TLX and miR-219 in both normal neurodevelopment and in SCZ patient iPSC-derived NSCs. Moreover, this study reveals an unexpected role for TLX in regulating microRNA processing, independent of its well-characterized role in transcriptional regulation.
Gammaherpesvirus Colonization of the Spleen Requires Lytic Replication in B Cells.
Lawler, Clara; de Miranda, Marta Pires; May, Janet; Wyer, Orry; Simas, J Pedro; Stevenson, Philip G
2018-04-01
Gammaherpesviruses infect lymphocytes and cause lymphocytic cancers. Murid herpesvirus-4 (MuHV-4), Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus all infect B cells. Latent infection can spread by B cell recirculation and proliferation, but whether this alone achieves systemic infection is unclear. To test the need of MuHV-4 for lytic infection in B cells, we flanked its essential ORF50 lytic transactivator with loxP sites and then infected mice expressing B cell-specific Cre (CD19-Cre). The floxed virus replicated normally in Cre - mice. In CD19-Cre mice, nasal and lymph node infections were maintained; but there was little splenomegaly, and splenic virus loads remained low. Cre-mediated removal of other essential lytic genes gave a similar phenotype. CD19-Cre spleen infection by intraperitoneal virus was also impaired. Therefore, MuHV-4 had to emerge lytically from B cells to colonize the spleen. An important role for B cell lytic infection in host colonization is consistent with the large CD8 + T cell responses made to gammaherpesvirus lytic antigens during infectious mononucleosis and suggests that vaccine-induced immunity capable of suppressing B cell lytic infection might reduce long-term virus loads. IMPORTANCE Gammaherpesviruses cause B cell cancers. Most models of host colonization derive from cell cultures with continuous, virus-driven B cell proliferation. However, vaccines based on these models have worked poorly. To test whether proliferating B cells suffice for host colonization, we inactivated the capacity of MuHV-4, a gammaherpesvirus of mice, to reemerge from B cells. The modified virus was able to colonize a first wave of B cells in lymph nodes but spread poorly to B cells in secondary sites such as the spleen. Consequently, viral loads remained low. These results were consistent with virus-driven B cell proliferation exploiting normal host pathways and thus having to transfer lytically to new B cells for new proliferation. We conclude that viral lytic infection is a potential target to reduce B cell proliferation. Copyright © 2018 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Kai, E-mail: gk161@163.com; Department of Respiration, 161th Hospital, PLA, Wuhan 430015; Jin, Faguang, E-mail: jinfag@fmmu.edu.cn
2015-09-25
The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5more » also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.« less
Keratinocyte Motility Is Affected by UVA Radiation-A Comparison between Normal and Dysplastic Cells.
Niculiţe, Cristina M; Nechifor, Marina T; Urs, Andreea O; Olariu, Laura; Ceafalan, Laura C; Leabu, Mircea
2018-06-07
UVA radiation induces multiple and complex changes in the skin, affecting epidermal cell behavior. This study reports the effects of UVA exposure on normal (HaCaT) and dysplastic (DOK) keratinocytes. The adherence, spreading and proliferation were investigated by time-lapse measurement of cell layer impedance on different matrix proteins. Prior to UVA exposure, the time required for adherence and spreading did not differ significantly for HaCaT and DOK cells, while spreading areas were larger for HaCaT cells. Under UVA exposure, HaCaT and DOK cells behavior differed in terms of movement and proliferation. The cells' ability to cover the denuded surface and individual cell trajectories were recorded by time-lapse videomicroscopy, during wound healing experiments. Dysplastic keratinocytes showed more sensitivity to UVA, exhibiting transient deficiencies in directionality of movement and a delay in re-coating the denuded area. The actin cytoskeleton displayed a cortical organization immediately after irradiation, in both cell lines, similar to mock-irradiated cells. Post-irradiation, DOK cells displayed a better organization of stress fibers, persistent filopodia, and new, stronger focal contacts. In conclusion, after UVA exposure HaCaT and DOK cells showed a different behavior in terms of adherence, spreading, motility, proliferation, and actin cytoskeleton dynamics, with the dyplastic keratinocytes being more sensitive.
Colle, Dirleise; Farina, Marcelo; Ceccatelli, Sandra; Raciti, Marilena
2018-06-01
Pesticide exposure has been linked to the pathogenesis of neurodevelopmental and neurodegenerative disorders including autism spectrum disorders, attention deficit/hyperactivity, and Parkinson's disease (PD). Developmental exposure to pesticides, even at low concentrations not harmful for the adult brain, can lead to neuronal loss and functional deficits. It has been shown that prenatal or early postnatal exposure to the herbicide paraquat (PQ) and the fungicide maneb (MB), alone or in combination, causes permanent toxicity in the nigrostriatal dopamine system, supporting the idea that early exposure to these pesticides may contribute to the pathophysiology of PD. However, the mechanisms mediating PQ and MB developmental neurotoxicity are not yet understood. Therefore, we investigated the neurotoxic effect of low concentrations of PQ and MB in primary cultures of rat embryonic neural stem cells (NSCs), with particular focus on cell proliferation and oxidative stress. Exposure to PQ alone or in combination with MB (PQ + MB) led to a significant decrease in cell proliferation, while the cell death rate was not affected. Consistently, PQ + MB exposure altered the expression of major genes regulating the cell cycle, namely cyclin D1, cyclin D2, Rb1, and p19. Moreover, PQ and PQ + MB exposures increased the reactive oxygen species (ROS) production that could be neutralized upon N-acetylcysteine (NAC) treatment. Notably, in the presence of NAC, Rb1 expression was normalized and a normal cell proliferation pattern could be restored. These findings suggest that exposure to PQ + MB impairs NSCs proliferation by mechanisms involving alterations in the redox state.
Understanding the Warburg effect: the metabolic requirements of cell proliferation.
Vander Heiden, Matthew G; Cantley, Lewis C; Thompson, Craig B
2009-05-22
In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed "the Warburg effect." Aerobic glycolysis is an inefficient way to generate adenosine 5'-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.
MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Donglin, E-mail: caodlgz@sina.com; Hu, Liangshan; Lei, Da
Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partiallymore » blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation.« less
Paciello, O; Borzacchiello, G; Varricchio, E; Papparella, S
2007-10-01
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a ligand-activated transcriptional factor belonging to the steroid receptor superfamily. PPAR-gamma is expressed in multiple normal and neoplastic tissues, such as the breast, colon, lung, ovary and placenta. In addition to adipogenic and anti-inflammatory effects, PPAR-gamma activation has been shown to be anti-proliferative by its differentiation-promoting effect, suggesting that activation of PPAR-gamma may be useful in slowing or arresting the proliferation of de-differentiated tumour cells. In this study, we investigated the expression of PPAR-gamma in normal and neoplastic canine nasal epithelium. Twenty-five samples composed of five normal nasal epithelia and 20 canine nasal carcinomas, were immunohistochemically stained for PPAR-gamma. The specificity of the antibody was verified by Western Blot analysis. Confocal laser scanning microscopical investigation was also performed. In normal epithelium, the staining pattern was cytoplasmic and polarized at the cellular free edge. In carcinomas, the neoplastic cells showed mainly strong cytoplasmatic PPAR-gamma expression; moreover, perinuclear immunoreactivity was also detected and few neoplastic cells exhibited a nuclear positivity. Our results demonstrate different patterns of PPAR-gamma expression in normal canine nasal epithelium when compared with canine nasal carcinoma. The importance of this transcription factor in the pathophysiology of several different tumours has stimulated much research in this field and has opened new opportunities for the treatment of the tumours.
Cai, Rong; Kawazoe, Naoki; Chen, Guoping
2015-02-01
Preparation of surfaces modified with biomimetic extracellular matrices (ECMs) is important for investigation of the interaction between ECMs and cells. In the present study, surfaces modified with ECMs from normal somatic cells, stem cells and tumor cells were prepared by cell culture method. The ECMs derived from bone marrow-derived mesenchymal stem cells (MSCs), dermal fibroblasts (FBs), osteoblasts (OBs) and MG63 osteosarcoma cells were deposited on the surfaces of cell-culture polystyrene plates (TCPS). The ECMs from different cell types had different compositions. The effects of the ECM-deposited surfaces on the adhesion, spreading and proliferation of MSCs and MG63 human osteosarcoma cells were dependent on the type of both ECMs and cells. The surfaces deposited with ECMs from MSCs, FBs and OBs promoted cell adhesion more strongly than surfaces deposited with ECMs from MG63 cells and TCPS. Compared to TCPS, the ECM-deposited surfaces promoted proliferation of MSCs while they inhibited the proliferation of MG63 cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Methionine sulfoxide reductase A regulates cell growth through the p53-p21 pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Seung Hee; Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr
2011-12-09
Highlights: Black-Right-Pointing-Pointer Down-regulation of MsrA inhibits normal cell proliferation. Black-Right-Pointing-Pointer MsrA deficiency leads to an increase in p21 by enhanced p53 acetylation. Black-Right-Pointing-Pointer Down-regulation of MsrA causes cell cycle arrest at the G{sub 2}/M stage. Black-Right-Pointing-Pointer MsrA is a regulator of cell growth that mediates the p53-p21 pathway. -- Abstract: MsrA is an oxidoreductase that catalyzes the stereospecific reduction of methionine-S-sulfoxide to methionine. Although MsrA is well-characterized as an antioxidant and has been implicated in the aging process and cellular senescence, its roles in cell proliferation are poorly understood. Here, we report a critical role of MsrA in normal cellmore » proliferation and describe the regulation mechanism of cell growth by this protein. Down-regulation of MsrA inhibited cell proliferation, but MsrA overexpression did not promote it. MsrA deficiency led to an increase in p21, a major cyclin-dependent kinase inhibitor, thereby causing cell cycle arrest at the G{sub 2}/M stage. While protein levels of p53 were not altered upon MsrA deficiency, its acetylation level was significantly elevated, which subsequently activated p21 transcription. The data suggest that MsrA is a regulator of cell growth that mediates the p53-p21 pathway.« less
Kimbrough-Allah, Mawiyah N; Millena, Ana C; Khan, Shafiq A
2018-04-01
Transforming growth factor-β (TGF-β) acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. PI3-kinase pathway mediates TGF-β effects on prostate cancer cell migration and invasion. PTEN inhibits PI3-kinase pathway and is frequently mutated in prostate cancers. We investigated possible role(s) of PTEN in TGF-β effects on proliferation and migration in prostate cancer cells. Expression of PTEN mRNA and proteins were determined using RT-PCR and Western blotting in RWPE1 and DU145 cells. We also studied the role of PTEN in TGF-β effects on cell proliferation and migration in DU145 cells after transient silencing of endogenous PTEN. Conversely, we determined the role of PTEN in cell proliferation and migration after over-expression of PTEN in PC3 cells which lack endogenous PTEN. TGF-β1 and TGF-β3 had no effect on PTEN mRNA levels but both isoforms increased PTEN protein levels in DU145 and RWPE1 cells indicating that PTEN may mediate TGF-β effects on cell proliferation. Knockdown of PTEN in DU145 cells resulted in significant increase in cell proliferation which was not affected by TGF-β isoforms. PTEN overexpression in PC3 cells inhibited cell proliferation. Knockdown of endogenous PTEN enhanced cell migration in DU145 cells, whereas PTEN overexpression reduced migration in PC3 cells and reduced phosphorylation of AKT in response to TGF-β. We conclude that PTEN plays a role in inhibitory effects of TGF-β on cell proliferation whereas its absence may enhance TGF-β effects on activation of PI3-kinase pathway and cell migration. © 2018 Wiley Periodicals, Inc.
Wen, Liping; Yuan, Qingqing; Sun, Min; Niu, Minghui; Wang, Hong; Fu, Hongyong; Zhou, Fan; Yao, Chencheng; Wang, Xiaobo; Li, Zheng; He, Zuping
2017-01-01
Sertoli cells are required for normal spermatogenesis and they can be reprogrammed to other types of functional cells. However, the number of primary Sertoli cells is rare and human Sertoli cell line is unavailable. In this study, we have for the first time reported a stable human Sertoli cell line, namely hS1 cells, by overexpression of human telomerase. The hS1 cells expressed a number of hallmarks for human Sertoli cells, including SOX9, WT1, GDNF, SCF, BMP4, BMP6, GATA4, and VIM, and they were negative for 3β-HSD, SMA, and VASA. Higher levels of AR and FSHR were observed in hS1 cells compared to primary human Sertoli cells. Microarray analysis showed that 70.4% of global gene profiles of hS1 cells were similar to primary human Sertoli cells. Proliferation assay demonstrated that hS1 cells proliferated rapidly and they could be passaged for more than 30 times in 6 months. Neither Y chromosome microdeletion nor tumorgenesis was detected in this cell line and 90% normal karyotypes existed in hS1 cells. Collectively, we have established the first human Sertoli cell line with phenotype of primary human Sertoli cells, an unlimited proliferation potential and high safety, which could offer sufficient human Sertoli cells for basic research as well as reproductive and regenerative medicine. PMID:28152522
The thorny path linking cellular senescence to organismalaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, Christopher K.; Mian, Saira; Campisi, Judith
2005-08-09
Half a century is fast approaching since Hayflick and colleagues formally described the limited ability of normal human cells to proliferate in culture (Hayflick and Moorhead, 1961). This finding--that normal somatic cells, in contrast to cancer cells, cannot divide indefinitely--challenged the prevailing idea that cells from mortal multicellular organisms were intrinsically ''immortal'' (Carrell, 1912). It also spawned two hypotheses, essential elements of which persist today. The first held that the restricted proliferation of normal cells, now termed cellular senescence, suppresses cancer (Hayflick, 1965; Sager, 1991; Campisi, 2001). The second hypothesis, as explained in the article by Lorenzini et al., suggestedmore » that the limited proliferation of cells in culture recapitulated aspects of organismal aging (Hayflick, 1965; Martin, 1993). How well have these hypotheses weathered the ensuing decades? Before answering this question, we first consider current insights into the causes and consequences of cellular senescence. Like Lorenzini et al., we limit our discussion to mammals. We also focus on fibroblasts, the cell type studied by Lorenzini et al., but consider other types as well. We suggest that replicative capacity in culture is not a straightforward assessment, and that it correlates poorly with both longevity and body mass. We speculate this is due to the malleable and variable nature of replicative capacity, which renders it an indirect metric of qualitative and quantitative differences among cells to undergo senescence, a response that directly alters cellular phenotype and might indirectly alter tissue structure and function.« less
Bogazzi, F; Russo, D; Locci, M T; Chifenti, B; Ultimieri, F; Raggi, F; Viacava, P; Cecchetti, D; Cosci, C; Sardella, C; Acerbi, G; Gasperi, M; Martino, E
2005-11-01
Expression of peroxisome proliferator-activated receptor (PPAR)gamma in normal pituitary seems to be restricted to ACTH-secreting cells. The aim of the study was to evaluate the expression of PPARgamma in normal human pituitary tissue and to study its localization in the pituitary secreting cells. Normal pituitary tissue samples were obtained form 11 patients with non-secreting adenoma who underwent surgical excision of the tumor. Expression of PPARgamma was evaluated by immunostaining and western blotting; localization of PPARgamma in each pituitary secreting cell lineage was evaluated by double immunofluorescence using confocal microscopy. Pituitary non-functioning adenomas served as Controls. PPARgamma was highly expressed in all pituitary samples with a (mean +/- SD) 81 +/- 6.5% of stained cells; expression of PPARgamma was confirmed by western blotting. Non-functioning pituitary adenomas had 74 +/- 11% PPARgamma positive cells. Expression of PPARy was either in cytoplasm or nuclei. In addition, treatment of GH3 cells, with a PPARgamma ligand was associated with traslocation of the receptor from cytoplasm into the nucleus. Double immunostaining revealed that every pituitary secreting cell (GH, TSH, LH, FSH, PRL and ACTH) had PPARgamma expressed. The present study demonstrated that PPARgamma is highly expressed in every normal pituitary secreting cell lineage. It can translocate into the nucleus by ligand binding; however, its role in pituitary hormone regulation remains to be elucidated.
Wang, Xiaolei; Xu, Huanbin; Pahar, Bapi; Alvarez, Xavier; Green, Linda C; Dufour, Jason; Moroney-Rasmussen, Terri; Lackner, Andrew A; Veazey, Ronald S
2010-11-18
Infants infected with HIV have a more severe course of disease and persistently higher viral loads than HIV-infected adults. However, the underlying pathogenesis of this exacerbation remains obscure. Here we compared the rate of CD4(+) and CD8(+) T-cell proliferation in intestinal and systemic lymphoid tissues of neonatal and adult rhesus macaques, and of normal and age-matched simian immunodeficiency virus (SIV)-infected neonates. The results demonstrate infant primates have much greater rates of CD4(+) T-cell proliferation than adult macaques, and that these proliferating, recently "activated" CD4(+) T cells are infected in intestinal and other lymphoid tissues of neonates, resulting in selective depletion of proliferating CD4(+) T cells in acute infection. This depletion is accompanied by a marked increase in CD8(+) T-cell activation and production, particularly in the intestinal tract. The data indicate intestinal CD4(+) T cells of infant primates have a markedly accelerated rate of proliferation and maturation resulting in more rapid and sustained production of optimal target cells (activated memory CD4(+) T cells), which may explain the sustained "peak" viremia characteristic of pediatric HIV infection. Eventual failure of CD4(+) T-cell turnover in intestinal tissues may indicate a poorer prognosis for HIV-infected infants.
Valero, María Ll; Mello de Queiroz, Fernanda; Stühmer, Walter; Viana, Félix; Pardo, Luis A
2012-01-01
Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.
NASA Astrophysics Data System (ADS)
Abrahamse, Heidi
2009-09-01
Stem cells are characterized by the qualities of self-renewal, long term viability, and the ability to differentiate into various cell types. Historically, stem cells have been isolated from the inner cell mass of blastocysts and harvesting these cells resulted in the death of the embryo leading to religious, political and ethical issues. The identification and subsequent isolation of adult stem cells from bone marrow stroma have been welcomed as an alternate source for stem cells. The clinical use of Mesenchymal Stem Cells (MSCs) presented problems such as limited cell number, pain and morbidity upon isolation. Adipose tissue is derived from the mesenchyme, is easily isolated, a reliable source of stem cells and able to differentiate into different cell types including smooth muscle. Over the past few years, the identification and characterization of stem cells has led the potential use of these cells as a promising alternative to cell replacement therapy. Smooth muscle is a major component of human tissues and is essential for the normal functioning of many different organs. Low intensity laser irradiation has been shown to increase viability, protein expression and migration of stem cells in vitro, and to stimulate proliferation of various types of stem cells. In addition, the use of laser irradiation to stimulate differentiation in the absence of growth factors has also been demonstrated in normal human neural progenitor cells (NHNPCs) in vitro where NHNPCs are not only capable of being sustained by light in the absence of growth factors, but that they are also able to differentiate normally as assessed by neurite formation. Our work has focused on the ability of laser irradiation to proliferate adipose derived stem cells (ADSCs), maintain ADSC character and increase the rate and maintenance of differentiation of ADSCs into smooth muscle and skin fibroblast cells. Current studies are also investigating the effect of different irradiation wavelengths and fluences on ADSC viability and proliferation. This paper reviews the development of MSCs as potential therapeutic interventions such as autologous grafts as well as the contribution of low intensity laser irradiation on the maintenance of these cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minami, Yukiko; Department of Surgery and Clinical Oncology, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Osaka; Ikeda, Wataru
2007-01-26
Normal cells show contact inhibition of cell movement and proliferation, but this is lost following transformation. We found that Necl-5, originally identified as a poliovirus receptor and up-regulated in many cancer cells, enhances growth factor-induced cell movement and proliferation. We showed that when cells contact other cells, Necl-5 interacts in trans with nectin-3 and is removed by endocytosis from the cell surface, resulting in a reduction of cell movement and proliferation. We show here that up-regulation of the gene encoding Necl-5 by the oncogene V12-Ki-Ras causes enhanced cell movement and proliferation. Upon cell-cell contact, de novo synthesis of Necl-5 exceedsmore » the rate of Necl-5 endocytosis, eventually resulting in a net increase in the amount of Necl-5 at the cell surface. In addition, expression of the gene encoding nectin-3 is markedly reduced in transformed cells. Thus, up-regulation of Necl-5 following transformation contributes to the loss of contact inhibition in transformed cells.« less
Bravo, Rafael; Axelrod, David E
2013-11-18
Normal colon crypts consist of stem cells, proliferating cells, and differentiated cells. Abnormal rates of proliferation and differentiation can initiate colon cancer. We have measured the variation in the number of each of these cell types in multiple crypts in normal human biopsy specimens. This has provided the opportunity to produce a calibrated computational model that simulates cell dynamics in normal human crypts, and by changing model parameter values, to simulate the initiation and treatment of colon cancer. An agent-based model of stochastic cell dynamics in human colon crypts was developed in the multi-platform open-source application NetLogo. It was assumed that each cell's probability of proliferation and probability of death is determined by its position in two gradients along the crypt axis, a divide gradient and in a die gradient. A cell's type is not intrinsic, but rather is determined by its position in the divide gradient. Cell types are dynamic, plastic, and inter-convertible. Parameter values were determined for the shape of each of the gradients, and for a cell's response to the gradients. This was done by parameter sweeps that indicated the values that reproduced the measured number and variation of each cell type, and produced quasi-stationary stochastic dynamics. The behavior of the model was verified by its ability to reproduce the experimentally observed monocolonal conversion by neutral drift, the formation of adenomas resulting from mutations either at the top or bottom of the crypt, and by the robust ability of crypts to recover from perturbation by cytotoxic agents. One use of the virtual crypt model was demonstrated by evaluating different cancer chemotherapy and radiation scheduling protocols. A virtual crypt has been developed that simulates the quasi-stationary stochastic cell dynamics of normal human colon crypts. It is unique in that it has been calibrated with measurements of human biopsy specimens, and it can simulate the variation of cell types in addition to the average number of each cell type. The utility of the model was demonstrated with in silico experiments that evaluated cancer therapy protocols. The model is available for others to conduct additional experiments.
Canonical Wnt Signaling as a Specific Mark of Normal and Tumorigenic Mammary Stem Cells
2011-02-01
aggressive mammary tumors. 15. SUBJECT TERMS Breast cancer stem cells, Wnt signaling, canonical Wnt signaling, B-catenin, normal stem cells, adult stem...Wnt pathway is associated with abnormal mouse mammary development, tumorigenesis, and human breast cancer. In addition, increasing evidence suggests...activation occurs in human breast cancer and is required for proliferation of various other stem cell compartments, addressing how Wnt signaling promotes
Downregulation of SASH1 correlates with tumor progression and poor prognosis in ovarian carcinoma
REN, XIAOYAN; LIU, YIFEI; TAO, YUMEI; ZHU, GUOXIANG; PEI, MEILAN; ZHANG, JIANGUO; LIU, JIAN
2016-01-01
SAM- and SH3-domain containing 1 (SASH1) is a recently identified tumor suppressor gene that is required in the tumorigenesis of breast and other solid carcinomas. The SASH1 protein contains SH3 and SAM domains, indicating that it may serve an important role in intracellular signal transduction. The purpose of the present study was to investigate the expression of SASH1 in ovarian carcinoma and the correlation between its expression with clinical pathological features and clinical significance, and the effect of SASH1 on cell proliferation, apoptosis and migration of ovarian SKOV3 cells. The human ovarian carcinoma tissues and adjacent normal tissues were collected following surgery. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to detect the expression levels of SASH1 mRNA and protein, respectively. The expression levels of SASH1 mRNA and protein in ovarian carcinoma tissues were significantly lower than that observed in adjacent normal tissues (P<0.05). The expression levels of SASH1 in samples from patients without lymph nodes metastasis and patients with early FIGO stage was lower than those with lymph nodes metastasis and patients with advanced FIGO stage (P<0.05). Flow cytometry analysis and Transwell invasion chamber experiments were used to investigate the effect of SASH1 on the cell proliferation, apoptosis and migration of SKOV3 cells. The recombinant plasmid pcDNA3.1-SASH1 was constructed and transfected into SKOV3 cells. In addition, the SKOV3 cells in the pcDNA3.1-SASH1 group exhibited significantly reduced cell growth, proliferation, and migration ability compared to the empty vector group and normal group (P<0.01). There were a greater number of apoptotic cells in the pcDNA3.1-SASH1 group compared to the empty vector group and normal group (P<0.01). Taken together, these results indicated that SASH1 may be a tumor suppressor gene in ovarian carcinoma, and SASH1 expression inhibited growth, proliferation and migration, and enhanced apoptosis of SKOV3 cells. PMID:27123075
Downregulation of SASH1 correlates with tumor progression and poor prognosis in ovarian carcinoma.
Ren, Xiaoyan; Liu, Yifei; Tao, Yumei; Zhu, Guoxiang; Pei, Meilan; Zhang, Jianguo; Liu, Jian
2016-05-01
SAM- and SH3-domain containing 1 (SASH1) is a recently identified tumor suppressor gene that is required in the tumorigenesis of breast and other solid carcinomas. The SASH1 protein contains SH3 and SAM domains, indicating that it may serve an important role in intracellular signal transduction. The purpose of the present study was to investigate the expression of SASH1 in ovarian carcinoma and the correlation between its expression with clinical pathological features and clinical significance, and the effect of SASH1 on cell proliferation, apoptosis and migration of ovarian SKOV3 cells. The human ovarian carcinoma tissues and adjacent normal tissues were collected following surgery. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to detect the expression levels of SASH1 mRNA and protein, respectively. The expression levels of SASH1 mRNA and protein in ovarian carcinoma tissues were significantly lower than that observed in adjacent normal tissues (P<0.05). The expression levels of SASH1 in samples from patients without lymph nodes metastasis and patients with early FIGO stage was lower than those with lymph nodes metastasis and patients with advanced FIGO stage (P<0.05). Flow cytometry analysis and Transwell invasion chamber experiments were used to investigate the effect of SASH1 on the cell proliferation, apoptosis and migration of SKOV3 cells. The recombinant plasmid pcDNA3.1-SASH1 was constructed and transfected into SKOV3 cells. In addition, the SKOV3 cells in the pcDNA3.1-SASH1 group exhibited significantly reduced cell growth, proliferation, and migration ability compared to the empty vector group and normal group (P<0.01). There were a greater number of apoptotic cells in the pcDNA3.1-SASH1 group compared to the empty vector group and normal group (P<0.01). Taken together, these results indicated that SASH1 may be a tumor suppressor gene in ovarian carcinoma, and SASH1 expression inhibited growth, proliferation and migration, and enhanced apoptosis of SKOV3 cells.
Cao, Ting-Ting; Zhang, Yu-Qing
2015-09-01
Cell cultures often require the addition of animal serum and other supplements. In this study, silk sericin, a bioactive protein, recovered from the waste of silk floss production was hydrolysed into three pepsin-degraded sericin peptides with different ranges of molecular mass. Normal animal cells, tumour cells and hybridoma cells were cultured systematically in FBS culture media containing sericin as a supplement or serum substitute. The culture test and microscopic observation of L929 cells showed that the smaller molecular weight of the degraded sericin is most suitable for cell culture. The cell culture results showed that with the degradation of sericin, for normal mouse fibroblast L929 cells, addition of 0.75 % sericin into FBS culture medium yields cell viability that is superior to FBS culture medium alone. When all serum was replaced by sericin, cell viability in the sericin medium could reach about one half of that in FBS medium. When in a medium containing a mixture of FBS: sericin (6:4, v/v), the cell culture effect is about 80 %. For the cultures of four tumour and one hybridoma cells, regardless of the molecular weight range, these degraded sericin peptides could substitute all serum in FBS media. The cell viability and proliferation of these tumour and hybridoma cells are equivalent or superior to that in FBS medium. In other words, cell viability and proliferation of these tumour and hybridoma cells in sericin media are more preferable to serum media. The mechanism of the sericin protein to promote cell growth and proliferation will be further investigated later.
Risal, Prabodh; Shrestha, Nirajan; Chand, Lokendra; Sylvester, Karl G; Jeong, Yeon Jun
2017-04-01
Liver regenerates remarkably after toxic injury or surgical resection. In the case of failure of resident hepatocytes to restore loss, repopulation is carried out by induction, proliferation, and differentiation of the progenitor cell. Although, some signaling pathways have been verified to contribute oval cell-mediated liver regeneration, role of Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1(Pin1) in the oval cells proliferation is unknown. In the present study, we evaluate the role of Pin1 in oval cells proliferation. In our study, the expression of Pin1 in the mice liver increased after three weeks feeding of 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine (DDC) diet along with the proliferation of oval cells. The expression of Pin1 was higher in oval cells compared to the hepatocytes.Pin1 inhibition by Juglone reduced oval cell proliferation, which was restored to normal when oval cells were treated with IGF-1. Consistent with increased cell growth, expression of Pin1, β-catenin and PCNA were increased in IGF-1 treated cells in a time dependent manner. In FACS analysis, siRNA-mediated knockdown of the Pin1 protein in the oval cells significantly increased the numbers of cells in G0/G1 phase. Furthermore, hepatocyte when treated with TGF-β showed marked reduction in cell proliferation and expression of Pin1 whereas this effect was not seen in the oval cells treated with TGF-β. In conclusion, Pin1 plays important role in the cell cycle progression and increase oval cells proliferation which may be crucial in chronic liver injury. Copyright © 2017 Elsevier GmbH. All rights reserved.
Liu, Ming-Hao; Li, Ya; Han, Lu; Zhang, Yao-Yuan; Wang, Di; Wang, Zhi-Hao; Zhou, Hui-Min; Song, Ming; Li, Yi-Hui; Tang, Meng-Xiong; Zhang, Wei; Zhong, Ming
2017-07-01
Atherosclerosis (AS) is the most common and serious complication of type 2 diabetes mellitus (T2DM) and is accelerated via chronic systemic inflammation rather than hyperglycemia. Adipose tissue is the major source of systemic inflammation in abnormal metabolic state. Pro-inflammatory CD4 + T cells play pivotal role in promoting adipose inflammation. Adipose-derived stem cells (ADSCs) for fat regeneration have potent ability of immunosuppression and restricting CD4 + T cells as well. Whether T2DM ADSCs are impaired in antagonizing CD4 + T cell proliferation and polarization remains unclear. We constructed type 2 diabetic ApoE -/- mouse models and tested infiltration and subgroups of CD4 + T cell in stromal-vascular fraction (SVF) in vivo. Normal/T2DM ADSCs and normal splenocytes with or without CD4 sorting were separated and co-cultured at different scales ex vivo. Immune phenotypes of pro- and anti-inflammation of ADSCs were also investigated. Flow cytometry (FCM) and ELISA were applied in the experiments above. CD4 + T cells performed a more pro-inflammatory phenotype in adipose tissue in T2DM ApoE -/- mice in vivo. Restriction to CD4 + T cell proliferation and polarization was manifested obviously weakened after co-cultured with T2DM ADSCs ex vivo. No obvious distinctions were found in morphology and growth type of both ADSCs. However, T2DM ADSCs acquired a pro-inflammatory immune phenotype, with secreting less PGE2 and expressing higher MHC-II and co-stimulatory molecules (CD40, CD80). Normal ADSCs could also obtain the phenotypic change after cultured with T2DM SVF supernatant. CD4 + T cell infiltration and pro-inflammatory polarization exist in adipose tissue in type 2 diabetic ApoE -/- mice. T2DM ADSCs had impaired function in restricting CD4 + T lymphocyte proliferation and pro-inflammatory polarization due to immune phenotypic changes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua
2016-10-23
BACKGROUND This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. MATERIAL AND METHODS A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3'UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. RESULTS MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (P<0.05). We found significantly more positively expressed CTGF protein in ESCC tissues was than in normal adjacent esophageal tissues (P<0.01). Dual luciferase reporter gene assay showed that miR-145 can specifically bind with the 3'UTR of CTGF and significantly inhibit the luciferase activity by 55% (P<0.01). Up-regulation of miR-145 or down-regulation of CTGF can suppress the proliferation, migration, invasion, and EMT process of ESCC cells. CONCLUSIONS MiR-145 was significantly down-regulated in ESCC tissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression.
The RhoA-ROCK-PTEN pathway as a molecular switch for anchorage dependent cell behavior.
Yang, Seungwon; Kim, Hyun-Man
2012-04-01
The proliferation of anchorage-dependent cells of mesenchymal origin requires the attachment of the cells to substrates. Thus, cells that are poorly attached to substrates exhibit retarded cell cycle progression or apoptotic death. A major disadvantage of most polymers used in tissue engineering is their hydrophobicity; hydrophobic surfaces do not allow cells to attach firmly and, therefore, do not allow normal proliferation rates. In this study, we investigated the molecular mechanism underlying the reduced proliferation rate of cells that are poorly attached to substrates. There was an inverse relationship between the activity of the small GTPase RhoA (RhoA) and the cell proliferation rate. RhoA activity correlated inversely with the strength of cell adhesion to the substrates. The high RhoA activity in the cells poorly attached to substrates caused an increase in the activity of Rho-associated kinase (ROCK), a well-known effector of RhoA that upregulated the activity of phosphatase and tensin homolog (PTEN). The resulting activated PTEN downregulated Akt activity, which is essential for cell proliferation. Thus, the cells that were poorly attached to substrates showed low levels of cell proliferation because the RhoA-ROCK-PTEN pathway was hyperactive. In addition, RhoA activity seemed to be related to focal adhesion kinase (FAK) activity. Weak FAK activity in these poorly attached cells failed to downregulate the high RhoA activity that restrained cell proliferation. Interestingly, reducing the expression of any component of the RhoA-ROCK-PTEN pathway rescued the proliferation rate without physico-chemical surface modifications. Based on these results, we suggest that the RhoA-ROCK-PTEN pathway acts as a molecular switch to control cell proliferation and determine anchorage dependence. In cells that are poorly attached to substrates, its inhibition is sufficient to restore cell proliferation without the need for physico-chemical modification of the material surface. Copyright © 2012 Elsevier Ltd. All rights reserved.
Klein, Andreas; Guhl, Eva; Zollinger, Raphael; Tzeng, Yin-Jeh; Wessel, Ralf; Hummel, Michael; Graessmann, Monika; Graessmann, Adolf
2005-05-01
Microarray studies revealed that as a first hit the SV40 T/t antigen causes deregulation of 462 genes in mammary gland cells (ME cells) of WAP-SVT/t transgenic animals. The majority of deregulated genes are cell proliferation specific and Rb-E2F dependent, causing ME cell proliferation and gland hyperplasia but not breast cancer formation. In the breast tumor cells a further 207 genes are differentially expressed, most of them belonging to the cell communication category. In tissue culture breast tumor cells frequently switch off WAP-SVT/t transgene expression and regain the morphology and growth characteristics of normal ME cells, although the tumor-revertant cells are aneuploid and only 114 genes regain the expression level of normal ME cells. The profile of retransformants shows that only 38 deregulated genes are tumor-specific, and that none of them is considered to be a typical breast cancer gene.
Baeten, Coen I M; Castermans, Karolien; Lammering, Guido; Hillen, Femke; Wouters, Bradly G; Hillen, Harry F P; Griffioen, Arjan W; Baeten, Cornelius G M I
2006-11-15
We and others have shown that angiogenesis and leukocyte infiltration are important prognostic factors in rectal cancer. However, little is known about its possible changes in response to radiotherapy (RTX), which is frequently given to rectal tumors as a neoadjuvant treatment to improve the prognosis. We therefore investigated the biologic effects of RTX on these parameters using fresh-frozen biopsy samples of tumor and normal mucosa tissue before and after RTX. Biopsy samples were taken from a total of 34 patients before and after either a short course or long course of RTX combined with chemotherapy. The following parameters were analyzed by immunohistochemistry, flow cytometry, or quantitative real-time polymerase chain reaction: Microvessel density, leukocyte infiltration, proliferating epithelial and tumor cells, proliferating endothelial cells, adhesion molecule expression on endothelial cells, and the angiogenic mRNA profile. The tumor biopsy samples taken after RTX treatment demonstrated a significant decrease in microvessel density and the number of proliferating tumor cells and proliferating endothelial cells (p < 0.001). In contrast, the leukocyte infiltration, the levels of basic fibroblast growth factor in carcinoma tissue, and the adhesion molecule expression on endothelial cells in normal as well as carcinoma tissue increased significantly (p < 0.05). Our data show that together with an overall decrease in tumor cell and endothelial cell proliferation, RTX results in an increase in the expression of adhesion molecules that stimulate leukocyte infiltration. This suggests the possibility that, in addition to its direct cytotoxic effect, radiation may also stimulate an immunologic tumor response that could contribute to the documented improvement in local tumor control and distal failure rate of rectal cancers.
Evaluation of advanced glycation end-products in diabetic and inherited canine cataracts.
Bras, I Dineli; Colitz, Carmen M H; Kusewitt, Donna F; Chandler, Heather; Lu, Ping; Gemensky-Metzler, Anne J; Wilkie, David A
2007-02-01
The receptor for advanced glycation end-products (RAGE) increases in the human cataract and should correlate with increased DNA damage and proliferation of lens epithelial cells (LECs). The purpose of this study was to measure and immunolocalize RAGE in normal and cataractous canine LECs, and to determine whether there was a correlation between RAGE and DNA damage (gadd45), cell-cycle regulation (p21), and LEC proliferation (proliferating cell nuclear antigen, PCNA). Thirty-two anterior lens capsules from 22 dogs that underwent cataract surgery and 10 lenses from dogs with normal eyes were evaluated. Eleven of the cataractous lenses were from diabetic patients (n=16), and eleven were from patients with inherited cataracts (n=16). Standard immunohistochemical staining was performed using antibodies against RAGE, gadd45, p21, PCNA, alpha-smooth muscle actin, and TGF-beta. Immunostaining intensity for each antibody was given a score of 0-4+. Standard Western blot analysis on normal and cataractous lens capsules was performed using the same antibodies as in the immunohistochemical staining. Comparisons were also made based on age and sex. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) was performed for RAGE. There was an increase in RAGE expression with age in normal LECs, but no significant difference was seen when normal adult LECs were compared to cataractous LECs. The stage of the cataract and the presence of LIU were not associated with a significant increase in RAGE expression. There was no age-dependent difference in the normal lenses for gadd45, p21, or PCNA. Significant up-regulation of p21 (P < 0.05) and PCNA (P < 0.05) was seen in diabetic cataracts compared to inherited cataracts. RAGE and PCNA expression did not increase with cataractogenesis, possibly due to overexpression associated with normal aging and constant exposure to oxidative stress from sunlight-related ultraviolet irradiation, respectively. However, p21 and PCNA increased in diabetic cataractogenesis suggesting cell cycle and proliferation dysregulation. This may be related to the rapid onset in this type of cataract compared with the more chronic and slower-to-develop inherited cataracts.
Holmes, Katie E.; Thompson, Victoria; Piskun, Caroline M.; Kohnken, Rebecca A.; Huelsmeyer, Michael K.; Fan, Timothy M.; Stein, Timothy J.
2013-01-01
Osteosarcoma is an aggressive malignancy and represents the most frequent primary bone malignancy of dogs and humans. Prognostic factors reported for osteosarcoma include tumor size, presence of metastatic disease, and serum alkaline phosphatase (ALP) concentration at the time of diagnosis. To date, there have been no studies to determine whether the behavior of osteosarcoma cells differ based on serum ALP concentration. Here we report on the generation of six canine osteosarcoma cell lines from osteosarcoma-bearing dogs with differences in serum ALP concentration. To determine whether in vitro behavior differs between primary osteosarcoma cell lines generated from patients with normal or increased serum ALP assays were performed to evaluate proliferation, migration, invasion, and chemosensitivity. There were no significant differences in cell proliferation, migration, invasion, or chemosensitivity between cell lines associated normal or increased serum ALP concentration. PMID:23489774
Holmes, K E; Thompson, V; Piskun, C M; Kohnken, R A; Huelsmeyer, M K; Fan, T M; Stein, T J
2015-09-01
Osteosarcoma is an aggressive malignancy and represents the most frequent primary bone malignancy of dogs and humans. Prognostic factors reported for osteosarcoma include tumour size, presence of metastatic disease and serum alkaline phosphatase (ALP) concentration at the time of diagnosis. To date, there have been no studies to determine whether the behaviour of osteosarcoma cells differ based on serum ALP concentration. Here, we report on the generation of six canine osteosarcoma cell lines from osteosarcoma-bearing dogs with differences in serum ALP concentration. To determine whether in vitro behaviour differs between primary osteosarcoma cell lines generated from patients with normal or increased serum ALP, assays were performed to evaluate proliferation, migration, invasion and chemosensitivity. There were no significant differences in cell proliferation, migration, invasion or chemosensitivity between cell lines associated with normal or increased serum ALP concentration. © 2013 Blackwell Publishing Ltd.
Dose-Dependent Dual Role of PIT-1 (POU1F1) in Somatolactotroph Cell Proliferation and Apoptosis
Jullien, Nicolas; Roche, Catherine; Brue, Thierry; Figarella-Branger, Dominique; Graillon, Thomas; Barlier, Anne; Herman, Jean-Paul
2015-01-01
To test the role of wtPIT-1 (PITWT) or PIT-1 (R271W) (PIT271) in somatolactotroph cells, we established, using inducible lentiviral vectors, sublines of GH4C1 somatotroph cells that allow the blockade of the expression of endogenous PIT-1 and/or the expression of PITWT or PIT271, a dominant negative mutant of PIT-1 responsible for Combined Pituitary Hormone Deficiency in patients. Blocking expression of endogenous PIT-1 induced a marked decrease of cell proliferation. Overexpressing PITWT twofold led also to a dose-dependent decrease of cell proliferation that was accompanied by cell death. Expression of PIT271 induced a strong dose-dependent decrease of cell proliferation accompanied by a very pronounced cell death. These actions of PIT271 are independent of its interaction/competition with endogenous PIT-1, as they were unchanged when expression of endogenous PIT-1 was blocked. All these actions are specific for somatolactotroph cells, and could not be observed in heterologous cells. Cell death induced by PITWT or by PIT271 was accompanied by DNA fragmentation, but was not inhibited by inhibitors of caspases, autophagy or necrosis, suggesting that this cell death is a caspase-independent apoptosis. Altogether, our results indicate that under normal conditions PIT-1 is important for the maintenance of cell proliferation, while when expressed at supra-normal levels it induces cell death. Through this dual action, PIT-1 may play a role in the expansion/regression cycles of pituitary lactotroph population during and after lactation. Our results also demonstrate that the so-called “dominant-negative” action of PIT271 is independent of its competition with PIT-1 or a blockade of the actions of the latter, and are actions specific to this mutant variant of PIT-1. PMID:25822178
Tiwari, A; Punshon, G; Kidane, A; Hamilton, G; Seifalian, A M
2003-10-01
Magnetic beads (Dynabeads) have been used for the purification of endothelial cells. One application for this procedure may be for single-stage seeding of bypass grafts. The number of endothelial cells (EC) isolated is crucial and therefore to increase the number of cells extracted, a higher number of Dynabeads per cell may need to be used. The effect of large numbers of CD31 Dynabeads on cell proliferation/metabolism is unknown. We undertook this study using CD31-coated Dynabeads and EC from human umbilical vein. EC were coated at concentrations of 4, 10, or 50 beads per cell. The cells were cultured for 6 days with control being normal EC. Cellular proliferation was assessed by trypsinization of cells and metabolism assessed with an Alamar blue viability assay. In a further experiment a compliant polyurethane graft was single-stage seeded with both coated Dynabeads and normal EC. The results showed that using a higher number of beads per cell resulted in a reduction in cell proliferation and a reduction in cell metabolism. The total number of Dynabeads-coated cells in culture compared to controls (%) by day 6 were 30.7 +/- 2.56, 41.3 +/- 9.8 and 59.2 +/- 7.3 for 50, 10, and 4 beads per cell, respectively. The corresponding results for Alamar blue were 43.7 +/- 1.2, 61.8 +/- 1.4, and 72.1 +/- 4.3. The seeded grafts showed reduced metabolism with the Dynabeads-coated EC. In conclusion, high numbers of beads per cell have a late detrimental effect on cell proliferation and metabolism. Therefore for single-stage seeding lower numbers of Dynabeads will need to be used with resultant reduction in the number of available EC.
Chevalier, Nicolas; Vega, Aurélie; Bouskine, Adil; Siddeek, Bénazir; Michiels, Jean-François; Chevallier, Daniel; Fénichel, Patrick
2012-01-01
Testicular germ cell tumours are the most frequent cancer of young men with an increasing incidence all over the world. Pathogenesis and reasons of this increase remain unknown but epidemiological and clinical data have suggested that fetal exposure to environmental endocrine disruptors (EEDs) with estrogenic effects, could participate to testicular germ cell carcinogenesis. However, these EEDs (like bisphenol A) are often weak ligands for classical nuclear estrogen receptors. Several research groups recently showed that the non classical membrane G-protein coupled estrogen receptor (GPER/GPR30) mediates the effects of estrogens and several xenoestrogens through rapid non genomic activation of signal transduction pathways in various human estrogen dependent cancer cells (breast, ovary, endometrium). The aim of this study was to demonstrate that GPER was overexpressed in testicular tumours and was able to trigger JKT-1 seminoma cell proliferation. We report here for the first time a complete morphological and functional characterization of GPER in normal and malignant human testicular germ cells. In normal adult human testes, GPER was expressed by somatic (Sertoli cells) and germ cells (spermatogonia and spermatocytes). GPER was exclusively overexpressed in seminomas, the most frequent testicular germ cell cancer, localized at the cell membrane and triggered a proliferative effect on JKT-1 cells in vitro, which was completely abolished by G15 (a GPER selective antagonist) and by siRNA invalidation. These results demonstrate that GPER is expressed by human normal adult testicular germ cells, specifically overexpressed in seminoma tumours and able to trigger seminoma cell proliferation in vitro. It should therefore be considered rather than classical ERs when xeno-estrogens or other endocrine disruptors are assessed in testicular germ cell cancers. It may also represent a prognosis marker and/or a therapeutic target for seminomas.
Jørgensen, A; Young, J; Nielsen, J E; Joensen, U N; Toft, B G; Rajpert-De Meyts, E; Loveland, K L
2014-05-13
Testicular germ cell tumours of young adults, seminoma or non-seminomas, are preceded by a pre-invasive precursor, carcinoma in situ (CIS), understood to arise through differentiation arrest of embryonic germ cells. Knowledge about the malignant transformation of germ cells is currently limited by the lack of experimental models. The aim of this study was to establish an experimental tissue culture model to maintain normal and malignant germ cells within their niche and allow investigation of treatment effects. Human testis and testis cancer specimens from orchidectomies were cultured in 'hanging drops' and effects of activin A and follistatin treatment were investigated in seminoma cultures. Testis fragments with normal spermatogenesis or CIS cells were cultured for 14 days with sustained proliferation of germ cells and CIS cells and without increased apoptosis. Seminoma cultures survived 7 days, with proliferating cells detectable during the first 5 days. Activin A treatment significantly reduced KIT transcript and protein levels in seminoma cultures, thereby demonstrating a specific treatment response. Hanging drop cultures of human testis and testis cancer samples can be employed to delineate mechanisms governing growth of normal, CIS and tumorigenic germ cells retained within their niche.
Alternol induces an S-phase arrest of melanoma B16F0 cells.
Liu, Liangliang; Zhang, Bo; Yuan, Xuan; Wang, Penglong; Sun, Xiling; Zheng, Qiusheng
2014-03-01
Alternol is a novel compound purified from the fermentation products of a microorganism in the yew tree bark. This study looks at the effects of alternol on the proliferation and cell cycle distribution of mouse melanoma cells. The inhibition of cell proliferation and changes in cell cycle distribution were analysed by sulforhodamine B and flow cytometry assays, respectively. mRNA expression of cyclin A, cyclin-dependent kinase 2 (CDK2), proliferating cell nuclear antigen (PCNA) and CDK inhibitor1A (p21) were measured by real-time reverse transcription PCR (RT-PCR). The protein levels of cyclin A, CDK2 and PCNA were analysed by Western blot analysis. p21 was measured by ELISA. Alternol treatment caused a significant decrease in the proliferation rate of B16F0 and B16F10 cells, which were significantly arrested in S phase, but this treatment had less effect on normal human embryonic kidney 293T cells. The mechanism by which alternol inhibits B16F0 proliferation in vitro may be associated with the inhibition of CDK2 and PCNA, and the activation of p21. © 2013 International Federation for Cell Biology.
Bartkova, J; Rajpert-de Meyts, E; Skakkebaek, N E; Bartek, J
1999-04-01
D-type cyclins are proto-oncogenic components of the 'RB pathway', a G1/S regulatory mechanism centred around the retinoblastoma tumour suppressor (pRB) implicated in key cellular decisions that control cell proliferation, cell-cycle arrest, quiescence, and differentiation. This study focused on immunohistochemical and immunochemical analysis of human adult testis and 32 testicular tumours to examine the differential expression and abundance of cyclins D1, D2, and D3 in relation to cell type, proliferation, differentiation, and malignancy. In normal testis, the cell type-restricted expression patterns were dominated by high levels of cyclin D3 in quiescent Leydig cells and the lack of any D-type cyclin in the germ cells, the latter possibly representing the only example of normal mammalian cells proliferating in the absence of these cyclins. Most carcinoma-in-situ lesions appeared to gain expression of cyclin D2 but not D1 or D3, while the invasive testicular tumours showed variable positivity for cyclins D2 and D3, but rarely D1. An unexpected correlation with differentiation rather than proliferation was found particularly for cyclin D3 in teratomas, a conceptually significant observation confirmed by massive up-regulation of cyclin D3 in the human teratocarcinoma cell line NTera2/D1 induced to differentiate along the neuronal lineage. These results suggest a possible involvement of cyclin D2 in the early stages of testicular oncogenesis and the striking examples of proliferation-independent expression point to potential dual or multiple roles of the D-type cyclins, particularly of cyclin D3. These findings extend current concepts of the biology of the cyclin D subfamily, as well as of the biology and oncopathology of the human adult testis. Apart from practical implications for the assessment of proliferation and oncogenic aberrations in human tissues and tumours, this study may inspire further research into the emerging role of the cyclin D proteins in the establishment and/or maintenance of the differentiated phenotypes. Copyright 1999 John Wiley & Sons, Ltd.
Wang, Ying; Chen, Jiarui; Tang, Weiqing; Zhang, Yanping; Li, Xiaoyan
2017-01-01
FABP4 is widely expressed in both normal and pathologic tissues. It promotes cell proliferation, survival and migration of endothelial cells, and therefore, angiogenesis. However, the role of FABP4 in hemangioma or hemangioma endothelial cells (HemECs) has not been explored. In this study, we investigated whether FABP4 directly regulates the proliferation of HemECs. The expression of cell cycle checkpoint genes was analyzed with the microarray data of human dermal microvascular endothelial cells (HDVECs) and infantile hemangioma endothelial cells. Real-time RT-PCR and western blotting were used to examine the expression of FABP4 in HemECs. Next, the FABP4 expression was inhibited in HemECs using siRNA or rapamycin and upregulated using retroviral transduction of HemECs to assess its influence on proliferation of HemECs. The microarray data showed that cell cycle checkpoint genes were upregulated in HemECs. Moreover, HemECs showed significantly higher proliferation rates than HDVECs. The expression of FABP4 and mTOR was increased in the HemECs. While FABP4 knockdown reduced the BrdU incorporation and cell number of HemECs as expected, cell proliferation was accelerated by FABP4 over-expression. Moreover, rapamycin (10nM) inhibited mTOR-FABP4 signaling and HemEC proliferation. Taken together, these results indicated that mTOR signaling pathway-activated FABP4 directly regulates the proliferation of endothelial cells in hemangioma. Rapamycin and inhibitors of FABP4 have therapeutic potential for treating infantile hemangiomas. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
The cell proliferation antigen Ki-67 organises heterochromatin
Sobecki, Michal; Mrouj, Karim; Camasses, Alain; Parisis, Nikolaos; Nicolas, Emilien; Llères, David; Gerbe, François; Prieto, Susana; Krasinska, Liliana; David, Alexandre; Eguren, Manuel; Birling, Marie-Christine; Urbach, Serge; Hem, Sonia; Déjardin, Jérôme; Malumbres, Marcos; Jay, Philippe; Dulic, Vjekoslav; Lafontaine, Denis LJ; Feil, Robert; Fisher, Daniel
2016-01-01
Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression. DOI: http://dx.doi.org/10.7554/eLife.13722.001 PMID:26949251
Madhurantakam, Sasya; Jayanth Babu, K; Balaguru Rayappan, John Bosco; Krishnan, Uma Maheswari
2017-01-15
Glucose, a chief energy source in cellular metabolism, has a significant role in cell proliferation. Cancer cells utilize more glucose than normal cells to meet the energy demand arising due to their uncontrolled proliferation. The present work reports the development of a nano-interfaced amperometric biosensor for rapid and accurate monitoring of glucose utilization by cancer cells. A hybrid nano-interface comprising a blend of carbon nanotubes (CNTs) and graphene (GR) was employed to enhance the surface area of the working electrode and favour direct electron transfer. Glucose oxidase (GOx) immobilized on the interface serves as the sensing element due to its high selectivity and sensitivity towards glucose. Utilization of glucose was monitored at pre-determined time intervals in MiaPaCa-2 cancer cells. The results obtained from the amperometric technique were compared with the values obtained from a commercial glucometer. Alamar blue assay was performed to check the proliferation rate of the cells. A good correlation was obtained between the proliferation rate and glucose utilization. The designed biosensor was found to be unaffected by the presence of potential interferents and hence may serve as a novel in vitro tool to rapidly quantify the proliferation rates of cancer cells in response to different treatment strategies. Copyright © 2016 Elsevier B.V. All rights reserved.
Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts
Gupta, Manoj K.; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F.; Windmueller, Rebecca; Wagers, Amy J.
2015-01-01
The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. Significance The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. PMID:26253715
Bad seeds produce bad crops: a single stage-process of prostate tumor invasion
Man, Yan-gao; Gardner, William A.
2008-01-01
It is a commonly held belief that prostate carcinogenesis is a multi-stage process and that tumor invasion is triggered by the overproduction of proteolytic enzymes. This belief is consistent with data from cell cultures and animal models, whereas is hard to interpret several critical facts, including the presence of cancer in “healthy” young men and cancer DNA phenotype in morphologically normal prostate tissues. These facts argue that alternative pathways may exist for prostate tumor invasion in some cases. Since degradation of the basal cell layer is the most distinct sign of invasion, our recent studies have attempted to identify pre-invasive lesions with focal basal cell layer alterations. Our studies revealed that about 30% of prostate cancer patients harbored normal appearing duct or acinar clusters with a high frequency of focal basal cell layer disruptions. These focally disrupted basal cell layers had significantly reduced cell proliferation and tumor suppressor expression, whereas significantly elevated degeneration, apoptosis, and infiltration of immunoreactive cells. In sharp contrast, associated epithelial cell had significantly elevated proliferation, expression of malignancy-signature markers, and physical continuity with invasive lesions. Based on these and other findings, we have proposed that these normal appearing duct or acinar clusters are derived from monoclonal proliferation of genetically damaged stem cells and could progress directly to invasion through two pathways: 1) clonal in situ transformation (CIST) and 2) multi-potential progenitor mediated “budding” (MPMB). These pathways may contribute to early onset of prostate cancer at young ages, and to clinically more aggressive prostate tumors. PMID:18725981
The hormone prolactin (PRL) plays a critical role in normal breast development by stimulating the proliferation of mammary cells, the production of milk proteins, and the formation of new mammary blood vessels. Unfortunately, the same cell and vessel growth pathways controlled by PRL in normal cells also operate in breast cancer cells, and elevated plasma PRL is a risk factor for breast cancer, especially in post-menopausal women.
Terzi, F.; Maunoury, R.; Colucci-Guyon, E.; Babinet, C.; Federici, P.; Briand, P.; Friedlander, G.
1997-01-01
Proliferation and dedifferentiation of tubular cells are the hallmark of early regeneration after renal ischemic injury. Vimentin, a class III intermediate filament expressed only in mesenchymal cells of mature mammals, was shown to be transiently expressed in post-ischemic renal tubular epithelial cells. Vimentin re-expression was interpreted as a marker of cellular dedifferentiation, but its role in tubular regeneration after renal ischemia has also been hypothesized. This role was evaluated in mice bearing a null mutation of the vimentin gene. Expression of vimentin, proliferating cell nuclear antigen (a marker of cellular proliferation), and villin (a marker of differentiated brush-border membranes) was studied in wild-type (Vim+/+), heterozygous (Vim+/-), and homozygous (Vim-/-) mice subjected to transient ischemia of the left kidney. As expected, vimentin was detected by immunohistochemistry at the basal pole of proximal tubular cells from post-ischemic kidney in Vim+/+ and Vim+/- mice from day 2 to day 28. The expression of the reporter gene beta-galactosidase in Vim+/- and Vim-/- mice confirmed the tubular origin of vimentin. No compensatory expression of keratin could be demonstrated in Vim-/- mice. The intensity of proliferating cell nuclear antigen labeling and the pattern of villin expression were comparable in Vim-/-, Vim+/- and Vim+/+ mice at any time of the study. After 60 days, the structure of post-ischemic kidneys in Vim-/- mice was indistinguishable from that of normal non-operated kidneys in Vim+/+ mice. In conclusion, 1) the pattern of post-ischemic proximal tubular cell proliferation, differentiation, and tubular organization was not impaired in mice lacking vimentin and 2) these results suggest that the transient tubular expression of vimentin is not instrumental in tubular regeneration after renal ischemic injury. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 PMID:9094992
Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts.
Kabiri, Zahra; Greicius, Gediminas; Madan, Babita; Biechele, Steffen; Zhong, Zhendong; Zaribafzadeh, Hamed; Edison; Aliyev, Jamal; Wu, Yonghui; Bunte, Ralph; Williams, Bart O; Rossant, Janet; Virshup, David M
2014-06-01
Wnt/β-catenin signaling supports intestinal homeostasis by regulating proliferation in the crypt. Multiple Wnts are expressed in Paneth cells as well as other intestinal epithelial and stromal cells. Ex vivo, Wnts secreted by Paneth cells can support intestinal stem cells when Wnt signaling is enhanced with supplemental R-Spondin 1 (RSPO1). However, in vivo, the source of Wnts in the stem cell niche is less clear. Genetic ablation of Porcn, an endoplasmic reticulum resident O-acyltransferase that is essential for the secretion and activity of all vertebrate Wnts, confirmed the role of intestinal epithelial Wnts in ex vivo culture. Unexpectedly, mice lacking epithelial Wnt activity (Porcn(Del)/Villin-Cre mice) had normal intestinal proliferation and differentiation, as well as successful regeneration after radiation injury, indicating that epithelial Wnts are dispensable for these processes. Consistent with a key role for stroma in the crypt niche, intestinal stromal cells endogenously expressing Wnts and Rspo3 support the growth of Porcn(Del) organoids ex vivo without RSPO1 supplementation. Conversely, increasing pharmacologic PORCN inhibition, affecting both stroma and epithelium, reduced Lgr5 intestinal stem cells, inhibited recovery from radiation injury, and at the highest dose fully blocked intestinal proliferation. We conclude that epithelial Wnts are dispensable and that stromal production of Wnts can fully support normal murine intestinal homeostasis.
Amarger, Valérie; Lecouillard, Angèle; Ancellet, Laure; Grit, Isabelle; Castellano, Blandine; Hulin, Philippe; Parnet, Patricia
2014-10-14
Maternal diet during pregnancy and early postnatal life influences the setting up of normal physiological functions in the offspring. Epigenetic mechanisms regulate cell differentiation during embryonic development and may mediate gene/environment interactions. We showed here that high methyl donors associated with normal protein content in maternal diet increased the in vitro proliferation rate of neural stem/progenitor cells isolated from rat E19 fetuses. Gene expression on whole hippocampi at weaning confirmed this effect as evidenced by the higher expression of the Nestin and Igf2 genes, suggesting a higher amount of undifferentiated precursor cells. Additionally, protein restriction reduced the expression of the insulin receptor gene, which is essential to the action of IGFII. Inhibition of DNA methylation in neural stem/progenitor cells in vitro increased the expression of the astrocyte-specific Gfap gene and decreased the expression of the neuron-specific Dcx gene, suggesting an impact on cell differentiation. Our data suggest a complex interaction between methyl donors and protein content in maternal diet that influence the expression of major growth factors and their receptors and therefore impact the proliferation and differentiation capacities of neural stem cells, either through external hormone signals or internal genomic regulation.
Paulsen, J. E.; Capowski, E. E.; Strome, S.
1995-01-01
mes-3 is one of four maternal-effect sterile genes that encode maternal components required for normal postembryonic development of the germ line in Caenorhabditis elegans. mes-3 mutant mothers produce sterile progeny, which contain few germ cells and no gametes. This terminal phenotype reflects two problems: reduced proliferation of the germ line and germ cell death. Both the appearance of the dying germ cells and the results of genetic tests indicate that germ cells in mes-3 animals undergo a necrotic-like death, not programmed cell death. The few germ cells that appear healthy in mes-3 worms do not differentiate into gametes, even after elimination of the signaling pathway that normally maintains the undifferentiated population of germ cells. Thus, mes-3 encodes a maternally supplied product that is required both for proliferation of the germ line and for maintenance of viable germ cells that are competent to differentiate into gametes. Cloning and molecular characterization of mes-3 revealed that it is the upstream gene in an operon. The genes in the operon display parallel expression patterns; transcripts are present throughout development and are not restricted to germ-line tissue. Both mes-3 and the downstream gene in the operon encode novel proteins. PMID:8601481
MiR-32 promotes gastric carcinoma tumorigenesis by targeting Kruppel-like factor 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Chao; Yu, Jianchun, E-mail: yu_jchpumch@163.com; Liu, Yuqin
Gastric cancer (GC) is a prevalent malignant cancer worldwide and is highly lethal because of its fast growth. Currently, the clinical therapy options for GC remain limited. MiR-32 has been reported as an oncogenic microRNA in many cancers, but its role in GC is unclear. Here, we found that miR-32 was overexpressed in GC tissues compared with adjacent normal tissue, and miR-32 was higher in GC patients' plasma compared with healthy individuals. Furthermore, we have identified miR-32 to be oncogenic, by promoting gastric cell proliferation, migration and invasion. We also identified Kruppel-like factor 4 (KLF4) as a direct target ofmore » miR-32. Knockdown of KLF4 promoted proliferation, migration and invasion of GC cells. We conclude that miR-32 promotes GC cell proliferation, migration and invasion by targeting KLF4, suggesting that the miR-32-KLF4 pathway may be useful in clinical diagnosis and therapeutics. - Highlights: • miR-32 was overexpression in GC tissues than adjacent normal tissue. • miR-32 was higher in GC patients' plasma compared with healthy people. • miR-32 promotes GC cell proliferation, migration and invasion by targeting KLF4.« less
Keratinocyte differentiation is regulated by the Rho and ROCK signaling pathway.
McMullan, Rachel; Lax, Siân; Robertson, Vicki H; Radford, David J; Broad, Simon; Watt, Fiona M; Rowles, Alison; Croft, Daniel R; Olson, Michael F; Hotchin, Neil A
2003-12-16
The epidermis comprises multiple layers of specialized epithelial cells called keratinocytes. As cells are lost from the outermost epidermal layers, they are replaced through terminal differentiation, in which keratinocytes of the basal layer cease proliferating, migrate upwards, and eventually reach the outermost cornified layers. Normal homeostasis of the epidermis requires that the balance between proliferation and differentiation be tightly regulated. The GTP binding protein RhoA plays a fundamental role in the regulation of the actin cytoskeleton and in the adhesion events that are critically important to normal tissue homeostasis. Two central mediators of the signals from RhoA are the ROCK serine/threonine kinases ROCK-I and ROCK-II. We have analyzed ROCK's role in the regulation of epidermal keratinocyte function by using a pharmacological inhibitor and expressing conditionally active or inactive forms of ROCK-II in primary human keratinocytes. We report that blocking ROCK function results in inhibition of keratinocyte terminal differentiation and an increase in cell proliferation. In contrast, activation of ROCK-II in keratinocytes results in cell cycle arrest and an increase in the expression of a number of genes associated with terminal differentiation. Thus, these results indicate that ROCK plays a critical role in regulating the balance between proliferation and differentiation in human keratinocytes.
Barbieri, Federica; Bajetto, Adriana; Stumm, Ralf; Pattarozzi, Alessandra; Porcile, Carola; Zona, Gianluigi; Dorcaratto, Alessandra; Ravetti, Jean-Louis; Minuto, Francesco; Spaziante, Renato; Schettini, Gennaro; Ferone, Diego; Florio, Tullio
2008-08-15
Hypothalamic or locally produced growth factors and cytokines control pituitary development, functioning, and cell division. We evaluated the expression of the chemokine stromal cell-derived factor 1 (SDF1) and its receptor CXCR4 in human pituitary adenomas and normal pituitary tissues and their role in cell proliferation. The expression of SDF1 and CXCR4 in 65 human pituitary adenomas and 4 human normal pituitaries was determined by reverse transcription-PCR, immunohistochemistry, and confocal immunofluorescence. The proliferative effect of SDF1 was evaluated in eight fibroblast-free human pituitary adenoma cell cultures. CXCR4 mRNA was expressed in 92% of growth hormone (GH)-secreting pituitary adenomas (GHoma) and 81% of nonfunctioning pituitary adenomas (NFPA), whereas SDF1 was identified in 63% and 78% of GHomas and NFPAs, respectively. Immunostaining for CXCR4 and SDF1 showed a strong homogenous labeling in all tumoral cells in both GHomas and NFPAs. In normal tissues, CXCR4 and SDF1 were expressed only in a subset of anterior pituitary cells, with a lower expression of SDF1 compared with its cognate receptor. CXCR4 and SDF1 were not confined to a specific cell population in the anterior pituitary but colocalized with discrete subpopulations of GH-, prolactin-, and adrenocorticorticotropic hormone-secreting cells. Conversely, most of the SDF1-containing cells expressed CXCR4. In six of eight pituitary adenoma primary cultures, SDF1 induced a statistically significant increase in DNA synthesis that was prevented by the treatment with the CXCR4 antagonist AMD3100 or somatostatin. CXCR4 and SDF1 are overexpressed in human pituitary adenomas and CXCR4 activation may contribute to pituitary cell proliferation and, possibly, to adenoma development in humans.
Tsujimura, Mari; Kusamori, Kosuke; Oda, Chihiro; Miyazaki, Airi; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira
2018-04-10
Though cell transplantation is becoming an attractive therapeutic method, uncontrolled cell proliferation or overexpression of cellular functions could cause adverse effects. These unfavorable outcomes could be avoided by regulating the proliferation or functioning of transplanted cells. In this study, we used a combination of the herpes simplex virus thymidine kinase (HSVtk) gene, a suicide gene, and ganciclovir (GCV) to control the proliferation and functioning of insulin-secreting cells after transplantation in diabetic mice. Mouse pancreatic β cell line MIN6 cells were selected as insulin-secreting cells for transfection with the HSVtk gene to obtain MIN6/HSVtk cells. Proliferation of MIN6/HSVtk cells was suppressed by GCV in a concentration-dependent manner; 0.25 μg/mL GCV maintained a constant number of MIN6/HSVtk cells for at least 16 days. MIN6 or MIN6/HSVtk cells were then transplanted to streptozotocin-induced diabetic mice. Mice transplanted with MIN6 cells exhibited hypoglycemia irrespective of GCV administration. In contrast, normal (around 150 mg/dL) blood glucose levels were maintained in mice transplanted with MIN6/HSVtk cells by a daily administration of 50 mg/kg of GCV. These results indicate that controlling the proliferation and functioning of HSVtk gene-expressing cells by GCV could greatly improve the usefulness and safety of cell-based therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resende, R.R.; Alves, A.S.; Britto, L.R.G
2008-04-15
Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) via calcium influx through nAChR channels whereasmore » intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of G{alpha}{sub q/11}-coupled M{sub 1}, M{sub 3} and M{sub 5} receptors and intracellular calcium stores, whereas G{alpha}{sub i/o}-protein coupled M{sub 2} receptor activity mediated neuronal differentiation.« less
Gonzalez, C R; Muscarsel Isla, M L; Fraunhoffer, N A; Leopardo, N P; Vitullo, A D
2012-08-01
Cell proliferation and cell death are essential processes in the physiology of the developing testis that strongly influence the normal adult spermatogenesis. We analysed in this study the morphometry, the expression of the proliferation cell nuclear antigen (PCNA), cell pluripotency marker OCT-4, germ cell marker VASA and apoptosis in the developing testes of Lagostomus maximus, a rodent in which female germ line develops through abolished apoptosis and unrestricted proliferation. Morphometry revealed an increment in the size of the seminiferous cords with increasing developmental age, arising from a significant increase of PCNA-positive germ cells and a stable proportion of PCNA-positive Sertoli cells. VASA showed a widespread cytoplasmic distribution in a great proportion of proliferating gonocytes that increased significantly at late development. In the somatic compartment, Leydig cells increased at mid-development, whereas peritubular cells showed a stable rate of proliferation. In contrast to other mammals, OCT-4 positive gonocytes increased throughout development reaching 90% of germ cells in late-developing testis, associated with a conspicuous increase in circulating FSH from mid- to late-gestation. TUNEL analysis was remarkable negative, and only a few positive cells were detected in the somatic compartment. These results show that the South American plains viscacha displays a distinctive pattern of testis development characterized by a sustained proliferation of germ cells throughout development, with no signs of apoptosis cell demise, in a peculiar endocrine in utero ambiance that seems to promote the increase of spermatogonial number as a primary direct effect of FSH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, M.; Takeishi, Takashi; Geissler, E.N.
1991-07-15
The authors investigated the effects of a newly recognized multifunctional growth factor, the c-kit ligand stem cell factor (SCF), on mouse mast cell proliferation and phenotype. Recombinant rat SCF{sup 164} (rrSCF{sup 164}) induced the development of large numbers of dermal mast cells in normal mice in vivo. Many of these mast cells had features of connective tissue-type mast cells (CTMC), in that they were reactive both with the heparin-binding fluorescent dye berberine sulfate and with safranin. In vitro, rrSCF{sup 164} induced the proliferation of cloned interleukin 3 (IL-3)-dependent mouse mast cells and primary populations of IL-3-dependent, bone marrow-derived cultured mastmore » cells (BMCMC), which represent immature mast cells, and purified peritoneal mast cells, which represent a type of mature CTMC> BMCMC maintained in rrSCF{sup 164} not only proliferated but also matured. These findings identify SCF as a single cytokine that can induce immature, IL-3-dependent mast cells to mature and to acquire multiple characteristics of CTMC. These findings also directly demonstrate that SCF can regulate the development of a cellular lineage expressing c-kit through effects on both proliferation and maturation.« less
Ki-67 expression in early prostate cancer and associated pathological lesions.
Feneley, M R; Young, M P; Chinyama, C; Kirby, R S; Parkinson, M C
1996-01-01
AIM: To assess cell proliferation in early prostate cancer and associated pathological lesions. METHODS: Using the Ki-67 antibody, the cell proliferation index was measured in early stage prostatic carcinoma in 37 incidental tumours diagnosed at transurethral prostatectomy (TURP) and in 20 low volume cancers treated by radical prostatectomy. Proliferation indexes have also been measured in areas of normal peripheral zone, transition zone hyperplasia, atrophic appearing lobules, and high grade prostatic intraepithelial neoplasia in the radical prostatectomy cases. RESULTS: In the TURP series the proliferation index correlated with grade and stage. Logistic regression analysis, however, showed that Gleason grade was the most reliable predictor of biopsy proven residual disease and clinical progression. In the radical series transition zone carcinoma the proliferation index was half that of peripheral zone carcinoma. The atrophic lobules also showed a high proliferation index of the same order as seen in the peripheral zone carcinoma. Normal peripheral zone showed the lowest proliferation index and in hyperplastic transition zone it was also less than the other areas. CONCLUSIONS: There is only limited support for the correlation of proliferation index with grade in early stage prostatic carcinoma. The findings do not suggest that proliferation index adds to the prognostic information given by grade and stage in pT1 disease. The significant difference in proliferation index in transition zone and peripheral zone carcinomas supports the morphological distinction of these tumour types and is consistent with differences in biological behaviour. The high proliferation index in lobules considered morphologically atrophic is reminiscent of previous observations in which carcinoma was spatially associated with atrophy. Images PMID:9038759
Haratifar, Sanaz; Meckling, Kelly A; Corredig, Milena
2014-06-01
Numerous studies have demonstrated that tea catechins form complexes with milk proteins, especially caseins. Much less work has been conducted to understand the metabolic conversions of tea-milk complexes during gastro-duodenal digestion. The objective of this study was to determine the significance of this association on the digestibility of the milk proteins and on the bioaccessibility of the tea polyphenol epigallocatechin gallate (EGCG). An in vitro digestion model mimicking the gastric and duodenal phases of the human gastrointestinal tract was employed to follow the fate of the milk proteins during digestion and determine the bioefficacy of EGCG isolated or encapsulated with the caseins. The samples, before and after digestion, were tested using two parallel colonic epithelial cell lines, a normal line (4D/WT) and its cancerous transformed counterpart (D/v-src). EGCG caused a decrease in proliferation of cancer cells, while in normal cells, neither isolated nor encapsulated EGCG affected cell proliferation, at concentrations <0.15 mg ml(-1). At higher concentrations, both isolated and encapsulated produced similar decreases in proliferation. On the other hand, the bioefficacy on the cancer cell line showed some differences at lower concentrations. The results demonstrated that regardless of the extent of digestion of the nanoencapsulated EGCG, the bioefficacy of EGCG was not diminished, confirming that casein micelles are an appropriate delivery system for polyphenols.
Fan, Yu; Wang, Ye; Wang, Ke
2015-12-18
Cyclooxygenase-2-derived prostaglandin E2 (PGE2), a bioactive eicosanoid, has been implicated in many biological processes including reproduction, inflammation and tumor growth. We previously showed that PGE2 stimulated lung cancer cell growth and progression through PGE2 receptor EP2/EP4-mediated kinase signaling pathways. However, the role of PGE2 in controlling lung airway epithelial cell phenotype remains unknown. We evaluated the effects of c-Jun and 3-phosphoinositede dependent protein kinase-1 (PDK1) in mediating epithelial cell hyperplasia induced by PGE2. The bronchial epithelial cell lines BEAS-2B and HBEc14-KT were cultured and then treated with PGE2. PDK1 small interfering RNA (siRNA) and a PDK1 inhibitor, an antagonist of the PGE2 receptor subtype EP4 and EP4 siRNA, c-Jun siRNA, and overexpressions of c-Jun and PDK1 have been used to evaluate the effects on cell proliferation. We demonstrated that PGE2 increased normal bronchial epithelial cell proliferation through induction of PDK1, an ankyrin repeat-containing Ser/Thr kinase implicated in the induction of apoptosis and the suppression of tumor growth. PDK1 siRNA and a PDK1 inhibitor blocked the effects of PGE2 on normal cell growth. The PGE2-induced PDK1 expression was blocked by an antagonist of the PGE2 receptor subtype EP4 and by EP4 siRNA. In addition, we showed that induction of PDK1 by PGE2 was associated with induction of the transcription factor, c-Jun protein. Silencing of c-Jun using siRNA and point mutations of c-Jun sites in the PDK1 gene promoter resulted in blockade of PDK1 expression and promoter activity induced by PGE2. In contrast, overexpression of c-Jun induced PDK1 gene promoter activity and expression followed increased cell proliferation. PGE2 increases normal bronchial epithelial cell proliferation through increased PDK1 gene expression that is dependent on EP4 and induction of c-Jun. Therewith, our data suggest a new role of c-Jun and PDK1 in mediating epithelial cell hyperplasia induced by PGE2.
Massee, Michelle; Chinn, Kathryn; Lim, Jeremy J.; Godwin, Lisa; Young, Conan S.; Koob, Thomas J.
2016-01-01
Objective: Human amniotic membranes have been shown to be effective for healing diabetic foot ulcers clinically and to regulate stem cell activity in vitro and in vivo; however, diabetic stem cells may be impaired as a sequela of the disease. In this study, dehydrated human amnion/chorion membrane (dHACM) allografts (EpiFix®; MiMedx Group) were evaluated for their ability to regulate diabetic stem cells in vitro. Approach: Human adipose-derived stem cells (ADSCs) from normal, type I diabetic, and type II diabetic donors were treated with soluble extracts of dHACM and evaluated for proliferation after 3 days by DNA assay, chemotactic migration after 1 day by transwell assay, cytokine secretion after 3 days by multiplex ELISA, and gene expression after 5 days by reverse transcription–polymerase chain reaction. Results: Although diabetic ADSCs demonstrated decreased responses compared to normal ADSCs, dHACM treatment stimulated diabetic ADSCs to proliferate after 3 days and enhanced migration over 24 h, similar to normal ADSCs. dHACM-treated diabetic ADSCs modulated secretion of soluble signals, including regulators of inflammation, angiogenesis, and healing. All ADSCs evaluated also responded to dHACM treatment with altered expression of immunomodulatory genes, including interleukins (IL)-1α, IL-1β, and IL-1RA. Innovation: This is the first reported case demonstrating that diabetic ADSCs respond to novel amniotic membrane therapies, specifically treatment with dHACM. Conclusion: dHACM stimulated diabetic ADSCs to migrate, proliferate, and alter cytokine expression suggesting that, despite their diabetic origin, ADSCs may respond to dHACM to accelerate diabetic wound healing. PMID:26862462
Massee, Michelle; Chinn, Kathryn; Lim, Jeremy J; Godwin, Lisa; Young, Conan S; Koob, Thomas J
2016-02-01
Objective: Human amniotic membranes have been shown to be effective for healing diabetic foot ulcers clinically and to regulate stem cell activity in vitro and in vivo ; however, diabetic stem cells may be impaired as a sequela of the disease. In this study, dehydrated human amnion/chorion membrane (dHACM) allografts (EpiFix ® ; MiMedx Group) were evaluated for their ability to regulate diabetic stem cells in vitro . Approach: Human adipose-derived stem cells (ADSCs) from normal, type I diabetic, and type II diabetic donors were treated with soluble extracts of dHACM and evaluated for proliferation after 3 days by DNA assay, chemotactic migration after 1 day by transwell assay, cytokine secretion after 3 days by multiplex ELISA, and gene expression after 5 days by reverse transcription-polymerase chain reaction. Results: Although diabetic ADSCs demonstrated decreased responses compared to normal ADSCs, dHACM treatment stimulated diabetic ADSCs to proliferate after 3 days and enhanced migration over 24 h, similar to normal ADSCs. dHACM-treated diabetic ADSCs modulated secretion of soluble signals, including regulators of inflammation, angiogenesis, and healing. All ADSCs evaluated also responded to dHACM treatment with altered expression of immunomodulatory genes, including interleukins (IL)-1α, IL-1β, and IL-1RA. Innovation: This is the first reported case demonstrating that diabetic ADSCs respond to novel amniotic membrane therapies, specifically treatment with dHACM. Conclusion: dHACM stimulated diabetic ADSCs to migrate, proliferate, and alter cytokine expression suggesting that, despite their diabetic origin, ADSCs may respond to dHACM to accelerate diabetic wound healing.
Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells
NASA Astrophysics Data System (ADS)
Mohades, Soheila; Laroussi, Mounir; Maruthamuthu, Venkat
2017-05-01
Low-temperature plasma has been shown to have diverse biomedical uses, including its applications in cancer and wound healing. One recent approach in treating mammalian cells with plasma is through the use of plasma activated media (PAM), which is produced by exposing cell culture media to plasma. While the adverse effects of PAM treatment on cancerous epithelial cell lines have been recently studied, much less is known about the interaction of PAM with normal epithelial cells. In this paper, non-cancerous canine kidney MDCK (Madin-Darby Canine Kidney) epithelial cells were treated by PAM and time-lapse microscopy was used to directly monitor their proliferation and random migration upon treatment. While longer durations of PAM treatment led to cell death, we found that moderate levels of PAM treatment inhibited proliferation in these epithelial cells. We also found that PAM treatment reduced random cell migration within epithelial islands. Immunofluorescence staining showed that while there were no major changes in the actin/adhesion apparatus, there was a significant change in the nuclear localization of proliferation marker Ki-67, consistent with our time-lapse results.
Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Nam, Seon Young; Kim, Cha Soon
2017-11-01
Low-dose radiation has various biological effects such as adaptive responses, low-dose hypersensitivity, as well as beneficial effects. However, little is known about the particular proteins involved in these effects. Here, we sought to identify low-dose radiation-responsive phosphoproteins in normal fibroblast cells. We assessed genomic instability and proliferation of fibroblast cells after γ-irradiation by γ-H2AX foci and micronucleus formation analyses and BrdU incorporation assay, respectively. We screened fibroblast cells 8 h after low-dose (0.05 Gy) γ-irradiation using Phospho Explorer Antibody Microarray and validated two differentially expressed phosphoproteins using Western blotting. Cell proliferation proceeded normally in the absence of genomic instability after low-dose γ-irradiation. Phospho antibody microarray analysis and Western blotting revealed increased expression of two phosphoproteins, phospho-NFκB (Ser536) and phospho-P70S6K (Ser418), 8 h after low-dose radiation. Our findings suggest that low-dose radiation of normal fibroblast cells activates the expression of phospho-NFκB (Ser536) and phospho-P70S6K (Ser418) in the absence of genomic instability. Therefore, these proteins may be involved in DNA damage repair processes.
Hsieh, Elaine A; Chai, Christine M; de Lumen, Benito O; Neese, Richard A; Hellerstein, Marc K
2004-09-01
A heavy water ((2)H(2)O) labeling method recently developed to measure cell proliferation in vivo is applied here to the measurement of murine epidermal cell turnover and to investigate conditions in which keratinocyte proliferation is either inhibited or stimulated. The technique is based on incorporation of (2)H(2)O into the deoxyribose moiety of deoxyribonucleotides in dividing cells. Label incorporation and die-away studies in cells isolated from C57BL/6J mouse epidermis revealed the replacement rate to be 34%-44% per wk (half-life of 1.6-2 wk). The kinetics provided evidence of a non-proliferative subpopulation of cells (10%-15% of the total) within the epidermis. Topical administration of 7,12-dimethylbenz(a)anthracene and 12-O-tetradecanoylphorbol-13-acetate for 3 wk increased epidermal cell proliferation by 55% in SENCAR mice. Topical addition of lunasin, an anti-mitotic agent from soy, decreased epidermal cell proliferation modestly though significantly (16% given alone, 9% given with carcinogens). Caloric restriction (by 33% of energy intake) for 4 wk decreased the epidermal cell proliferation rate by 45% in C57BL/6J mice. In summary, epidermal cell proliferation can be measured in vivo using (2)H(2)O labeling in normal, hyper- and hypo-proliferative conditions. Potential applications of this inherently safe method in humans might include studies of psoriasis, wound healing, chemopreventive agents, and caloric intake.
Progenitor cell dynamics in the Newt Telencephalon during homeostasis and neuronal regeneration.
Kirkham, Matthew; Hameed, L Shahul; Berg, Daniel A; Wang, Heng; Simon, András
2014-04-08
The adult newt brain has a marked neurogenic potential and is highly regenerative. Ventricular, radial glia-like ependymoglia cells give rise to neurons both during normal homeostasis and after injury, but subpopulations among ependymoglia cells have not been defined. We show here that a substantial portion of GFAP(+) ependymoglia cells in the proliferative hot spots of the telencephalon has transit-amplifying characteristics. In contrast, proliferating ependymoglia cells, which are scattered along the ventricular wall, have stem cell features in terms of label retention and insensitivity to AraC treatment. Ablation of neurons remodels the proliferation dynamics and leads to de novo formation of regions displaying features of neurogenic niches, such as the appearance of cells with transit-amplifying features and proliferating neuroblasts. The results have implication both for our understanding of the evolutionary diversification of radial glia cells as well as the processes regulating neurogenesis and regeneration in the adult vertebrate brain.
Progranulin and its biological effects in cancer.
Arechavaleta-Velasco, Fabian; Perez-Juarez, Carlos Eduardo; Gerton, George L; Diaz-Cueto, Laura
2017-11-07
Cancer cells have defects in regulatory mechanisms that usually control cell proliferation and homeostasis. Different cancer cells share crucial alterations in cell physiology, which lead to malignant growth. Tumorigenesis or tumor growth requires a series of events that include constant cell proliferation, promotion of metastasis and invasion, stimulation of angiogenesis, evasion of tumor suppressor factors, and avoidance of cell death pathways. All these events in tumor progression may be regulated by growth factors produced by normal or malignant cells. The growth factor progranulin has significant biological effects in different types of cancer. This protein is a regulator of tumorigenesis because it stimulates cell proliferation, migration, invasion, angiogenesis, malignant transformation, resistance to anticancer drugs, and immune evasion. This review focuses on the biological effects of progranulin in several cancer models and provides evidence that this growth factor should be considered as a potential biomarker and target in cancer treatment.
Preferential expression of cystein-rich secretory protein-3 (CRISP-3) in chronic pancreatitis.
Liao, Q; Kleeff, J; Xiao, Y; Guweidhi, A; Schambony, A; Töpfer-Petersen, E; Zimmermann, A; Büchler, M W; Friess, H
2003-04-01
Chronic pancreatitis (CP) is a progressive inflammatory process resulting in exocrine and endocrine pancreatic insufficiency in advanced stages. Cysteine-rich secretory protein (CRISP-3) has been identified as a defense-associated molecule with predominant expression in the salivary gland, pancreas and prostate. In this study, we investigated CRISP-3 expression in normal pancreatic tissues, chronic pancreatitis tissues, pancreatic cancer tissues and pancreatic cancer cell lines, as well as in other gastrointestinal organs. 15 normal pancreatic tissues, 14 chronic pancreatitis tissues and 14 pancreatic cancer tissues as well as three pancreatic cancer cell lines were analyzed. Moreover, hepatocellular carcinoma and esophageal, stomach and colon cancers were also analyzed together with the corresponding normal controls. CRISP-3 was expressed at moderate to high levels in chronic pancreatitis tissues and at moderate levels in pancreatic cancer tissues but at low levels in normal pancreatic tissues, and was absent in three pancreatic cancer cell lines. CRISP-3 expression was below the level of detection in all cancerous gastrointestinal tissues and in all normal tissues except 2 of 16 colon tissue samples. CRISP-3 mRNA signals and immunoreactivity were strongly present in the cytoplasm of degenerating acinar cells and in small proliferating ductal cells in CP tissues and CP-like lesions in pancreatic cancer tissues. In contrast, CRISP-3 expression was weak to absent in the cytoplasm of cancer cells as well as in acinar cells and ductal cells in pancreatic cancer tissues and normal pancreatic tissues. These results reveal that the distribution of CRISP-3 in gastrointestinal tissues is predominantly in the pancreas. High levels of CRISP-3 in acinar cells dedifferentiating into small proliferating ductal cells in CP and CP-like lesions in pancreatic cancer suggests a role of this molecule in the pathophysiology of CP.
Saenko, Vladimir; Suzuki, Masatoshi; Matsuse, Michiko; Ohtsuru, Akira; Kumagai, Atsushi; Uga, Tatsuya; Yano, Hiroshi; Nagayama, Yuji; Yamashita, Shunichi
2011-01-01
While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (∼0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases. PMID:21556376
Zhang, Zi-Feng; Wang, Yong-Jian; Fan, Shao-Hua; Du, Shi-Xin; Li, Xue-Dong; Wu, Dong-Mei; Lu, Jun; Zheng, Yuan-Lin
2017-01-01
We investigated the mechanisms by which microRNA (miR)-182 promotes apoptosis and inhibits proliferation in human osteosarcoma (OS) cells. Levels of miR-182 and Homeobox A9 (HOXA9) expression were compared between human OS and normal cells. Subjects were divided into OS and normal groups. We analyzed the target relationship of miR-182 and Homeobox A9 (HOXA9). Cells were then assigned into blank, negative control, miR-182 mimics, miR-182 inhibitors, siRNA-HOXA9, or and miR-182 inhibitors + siRNA-HOXA9 groups. Cell function was assayed by CCK-8, flow cytometry and wound healing assay. Additionally, we analyzed OS tumor growth in a xenograft mouse model. Dual-luciferase reporter assays indicated miR-182 directly targets HOXA9. Reverse transcription quantitative PCR and western blotting revealed elevated expression of miR-182, WIF-1, BIM, and Bax, and reduced expression of HOXA9, Wnt, β-catenin, Survivin, Cyclin D1, c-Myc, Mcl-1, Bcl-xL, and Snail in osteosarcoma cells treated with miR-182 mimic or siRNA-HOXA9 as compared to controls. Osteosarcoma cells also exhibited decreased cell proliferation, migration, and tumor growth, and increased apoptosis when treated with miR-182 mimic or siRNA-HOXA9. Correspondingly, in a xenograft mouse model, osteosarcoma tumor volume and growth were increased when cells were treated with miR-182 inhibitor and decreased by miR-182 mimic or siRNA-HOXA9. These results indicate that miR-182 downregulates Wnt/β-catenin signaling, inhibits cell proliferation, and promotes apoptosis in osteosarcoma cells by suppressing HOXA9 expression. PMID:29254169
Timofeeva, Olga A.; Palechor-Ceron, Nancy; Li, Guanglei; Yuan, Hang; Krawczyk, Ewa; Zhong, Xiaogang; Liu, Geng; Upadhyay, Geeta; Dakic, Aleksandra; Yu, Songtao; Fang, Shuang; Choudhury, Sujata; Zhang, Xueping; Ju, Andrew; Lee, Myeong-Seon; Dan, Han C.; Ji, Youngmi; Hou, Yong; Zheng, Yun-Ling; Albanese, Chris; Rhim, Johng; Schlegel, Richard; Dritschilo, Anatoly; Liu, Xuefeng
2017-01-01
Our previous study demonstrated that conditional reprogramming (CR) allows the establishment of patient-derived normal and tumor epithelial cell cultures from a variety of tissue types including breast, lung, colon and prostate. Using CR, we have established matched normal and tumor cultures, GUMC-29 and GUMC-30 respectively, from a patient's prostatectomy specimen. These CR cells proliferate indefinitely in vitro and retain stable karyotypes. Most importantly, only tumor-derived CR cells (GUMC-30) produced tumors in xenografted SCID mice, demonstrating maintenance of the critical tumor phenotype. Characterization of cells with DNA fingerprinting demonstrated identical patterns in normal and tumor CR cells as well as in xenografted tumors. By flow cytometry, both normal and tumor CR cells expressed basal, luminal, and stem cell markers, with the majority of the normal and tumor CR cells expressing prostate basal cell markers, CD44 and Trop2, as well as luminal marker, CD13, suggesting a transit-amplifying phenotype. Consistent with this phenotype, real time RT-PCR analyses demonstrated that CR cells predominantly expressed high levels of basal cell markers (KRT5, KRT14 and p63), and low levels of luminal markers. When the CR tumor cells were injected into SCID mice, the expression of luminal markers (AR, NKX3.1) increased significantly, while basal cell markers dramatically decreased. These data suggest that CR cells maintain high levels of proliferation and low levels of differentiation in the presence of feeder cells and ROCK inhibitor, but undergo differentiation once injected into SCID mice. Genomic analyses, including SNP and INDEL, identified genes mutated in tumor cells, including components of apoptosis, cell attachment, and hypoxia pathways. The use of matched patient-derived cells provides a unique in vitro model for studies of early prostate cancer. PMID:28009986
Dowdall, Jayme R.; Sadow, Peter M.; Hartnick, Christopher; Vinarsky, Vladimir; Mou, Hongmei; Zhao, Rui; Song, Phillip C.; Franco, Ramon A.; Rajagopal, Jayaraj
2016-01-01
Objectives/Hypothesis A precise molecular schema for classifying the different cell types of the normal human vocal fold epithelium is lacking. We hypothesize that the true vocal fold epithelium has a cellular architecture and organization similar to that of other stratified squamous epithelia including the skin, cornea, oral mucosa, and esophagus. In analogy to disorders of the skin and gastrointestinal tract, a molecular definition of the normal cell types within the human vocal fold epithelium and a description of their geometric relationships should serve as a foundation for characterizing cellular changes associated with metaplasia, dysplasia, and cancer. Study Design Qualitative study with adult human larynges. Methods Histologic sections of normal human laryngeal tissue were analyzed for morphology (hematoxylin and eosin) and immunohistochemical protein expression profile, including cytokeratins (CK13 and CK14), cornified envelope proteins (involucrin), basal cells (NGFR/p75), and proliferation markers (Ki67). Results We demonstrated that three distinct cell strata with unique marker profiles are present within the stratified squamous epithelium of the true vocal fold. We used these definitions to establish that cell proliferation is restricted to certain cell types and layers within the epithelium. These distinct cell types are reproducible across five normal adult larynges. Conclusion We have established that three layers of cells are present within the normal adult stratified squamous epithelium of the true vocal fold. Furthermore, replicating cell populations are largely restricted to the parabasal strata within the epithelium. This delineation of distinct cell populations will facilitate future studies of vocal fold regeneration and cancer. Level of Evidence N/A. PMID:25988619
Dowdall, Jayme R; Sadow, Peter M; Hartnick, Christopher; Vinarsky, Vladimir; Mou, Hongmei; Zhao, Rui; Song, Phillip C; Franco, Ramon A; Rajagopal, Jayaraj
2015-09-01
A precise molecular schema for classifying the different cell types of the normal human vocal fold epithelium is lacking. We hypothesize that the true vocal fold epithelium has a cellular architecture and organization similar to that of other stratified squamous epithelia including the skin, cornea, oral mucosa, and esophagus. In analogy to disorders of the skin and gastrointestinal tract, a molecular definition of the normal cell types within the human vocal fold epithelium and a description of their geometric relationships should serve as a foundation for characterizing cellular changes associated with metaplasia, dysplasia, and cancer. Qualitative study with adult human larynges. Histologic sections of normal human laryngeal tissue were analyzed for morphology (hematoxylin and eosin) and immunohistochemical protein expression profile, including cytokeratins (CK13 and CK14), cornified envelope proteins (involucrin), basal cells (NGFR/p75), and proliferation markers (Ki67). We demonstrated that three distinct cell strata with unique marker profiles are present within the stratified squamous epithelium of the true vocal fold. We used these definitions to establish that cell proliferation is restricted to certain cell types and layers within the epithelium. These distinct cell types are reproducible across five normal adult larynges. We have established that three layers of cells are present within the normal adult stratified squamous epithelium of the true vocal fold. Furthermore, replicating cell populations are largely restricted to the parabasal strata within the epithelium. This delineation of distinct cell populations will facilitate future studies of vocal fold regeneration and cancer. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Need telomere maintenance? Call 911.
Francia, Sofia; Weiss, Robert S; d'Adda di Fagagna, Fabrizio
2007-01-17
"Natura non facit saltum" (nature makes no leap) the Latins used to say, meaning that nature does not like discontinuities. Cells make no exception and indeed any discontinuity in the DNA double helix is promptly detected, triggering an alteration of cell proliferation and an attempt to repair. Yet, linear chromosomes bear DNA ends that are compatible with normal cell proliferation and they escape, under normal conditions, any repair. How telomeres, the chromosomes tips, achieve that is not fully understood. We recently observed that the Rad9/Hus1/Rad1 (911) complex, previously known for its functions in DNA metabolism and DNA damage responses, is constitutively associated with telomeres and plays an important role in their maintenance. Here, we summarize the available data and discuss the potential mechanisms of 911 action at telomeres.
Need telomere maintenance? Call 911
Francia, Sofia; Weiss, Robert S; d'Adda di Fagagna, Fabrizio
2007-01-01
"Natura non facit saltum" (nature makes no leap) the Latins used to say, meaning that nature does not like discontinuities. Cells make no exception and indeed any discontinuity in the DNA double helix is promptly detected, triggering an alteration of cell proliferation and an attempt to repair. Yet, linear chromosomes bear DNA ends that are compatible with normal cell proliferation and they escape, under normal conditions, any repair. How telomeres, the chromosomes tips, achieve that is not fully understood. We recently observed that the Rad9/Hus1/Rad1 (911) complex, previously known for its functions in DNA metabolism and DNA damage responses, is constitutively associated with telomeres and plays an important role in their maintenance. Here, we summarize the available data and discuss the potential mechanisms of 911 action at telomeres. PMID:17229321
Annunziata, Marta; Grande, Cristina; Scarlatti, Francesca; Deltetto, Francesco; Delpiano, Elena; Camanni, Marco; Ghigo, Ezio; Granata, Riccarda
2010-08-01
To determine the effect of the GHRH antagonist JV-1-36 on proliferation and survival of primary ectopic human endometriotic stromal cells (ESCs) and the T HESC cell line. Prospective laboratory study. University hospital. 22 women with endometriosis (aged 34.8+/-5.7 years) undergoing therapeutic laparoscopy. Eutopic (n=10) and ectopic (n=22) endometrial tissues were collected from women who underwent therapeutic laparoscopic surgery for endometriosis (stage III/IV). Expression of GHRH, GHRH receptor (GHRH-R) and GHRH-R splice variant (SV) 1 mRNA was determined by reverse-transcription polymerase chain reaction (RT-PCR). The ESC proliferation was assessed by 5-bromo-2-deoxyuridine incorporation, cell survival by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and Trypan blue assay. The T HESC survival was evaluated by MTT, cyclic adenosine monophosphate (cAMP) levels by ELISA, extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation by Western blot, and insulin-like growth factor (IGF)-2 mRNA by real-time PCR. The ESCs and T HESCs, but not normal endometrial tissues, expressed GHRH-R mRNA; SV1 mRNA was determined in normal endometrial tissues, ESCs, and T HESCs; GHRH mRNAwas found in T HESCs; JV-1-36 inhibited ESC proliferation and ESC and T HESC survival. In T HESCs, JV-1-36 reduced cAMP production and ERK1/2 phosphorylation but had no effect on IGF-2 mRNA expression. The GHRH antagonist JV-1-36 inhibits endometriotic cell proliferation and survival, suggesting that GHRH antagonist may represent promising tools for treatment of endometriosis. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Neural cells derived from adult bone marrow and umbilical cord blood.
Sanchez-Ramos, Juan R
2002-09-15
Under experimental conditions, tissue-specific stem cells have been shown to give rise to cell lineages not normally found in the organ or tissue of residence. Neural stem cells from fetal brain have been shown to give rise to blood cell lines and conversely, bone marrow stromal cells have been reported to generate skeletal and cardiac muscle, oval hepatocytes, as well as glia and neuron-like cells. This article reviews studies in which cells from postnatal bone marrow or umbilical cord blood were induced to proliferate and differentiate into glia and neurons, cellular lineages that are not their normal destiny. The review encompasses in vitro and in vivo studies with focus on experimental variables, such as the source and characterization of cells, cell-tracking methods, and markers of neural differentiation. The existence of stem/progenitor cells with previously unappreciated proliferation and differentiation potential in postnatal bone marrow and in umbilical cord blood opens up the possibility of using stem cells found in these tissues to treat degenerative, post-traumatic and hereditary diseases of the central nervous system. Copyright 2002 Wiley-Liss, Inc.
Galindo, Mario; Pratap, Jitesh; Young, Daniel W.; Hovhannisyan, Hayk; Im, Hee-Jeong; Choi, Je-Yong; Lian, Jane B.; Stein, Janet L.; Stein, Gary S.; van Wijnen, Andre J.
2010-01-01
The Runx2 (CBFA1/AML3/PEBP2αA) transcription factor promotes skeletal cell differentiation, but it also has a novel cell growth regulatory activity in osteoblasts. We addressed here whether Runx2 activity is functionally linked to cell cycle-related mechanisms that control normal osteoblast proliferation and differentiation. We found that the levels of Runx2 gene transcription, mRNA and protein, are each up-regulated with cessation of cell growth (i.e. G0/G1 transition) in preconfluent MC3T3 osteoblastic cells that do not yet express mature bone phenotypic gene expression. Cell growth regulation of Runx2 is also observed in primary calvarial osteoblasts and other osteoblastic cells with relatively normal cell growth characteristics, but not in osteosarcoma cells (e.g. SAOS-2 and ROS17/2.8). Runx2 levels are cell cycle-regulated in MC3T3 cells with respect to the G1/S and M/G1 transitions: expression oscillates from maximal levels during early G1 to minimal levels during early S phase and mitosis. However, in normal or immortalized (e.g. ATDC5) chondrocytic cells, Runx2 expression is suppressed during quiescence, and Runx2 levels are not regulated during G1 and S phase in ATDC5 cells. Antisense or small interfering RNA-mediated reduction of the low physiological levels of Runx2 in proliferating MC3T3 cells does not accelerate cell cycle progression. However, forced expression of Runx2 suppresses proliferation of MC3T3 preosteoblasts or C2C12 mesenchymal cells which have osteogenic potential. Forced elevation of Runx2 in synchronized MC3T3 cells causes a delay in G1. We propose that Runx2 levels and function are biologically linked to a cell growth-related G1 transition in osteoblastic cells. PMID:15781466
Zanin, Juan Pablo; Abercrombie, Elizabeth; Friedman, Wilma J
2016-07-19
Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.
Burke, Mark W; Inyatkin, Alexey; Ptito, Maurice; Ervin, Frank R; Palmour, Roberta M
2016-10-27
Fetal alcohol exposure (FAE) alters hippocampal cell numbers in rodents and primates, and this may be due, in part, to a reduction in the number or migration of neuronal progenitor cells. The olfactory bulb exhibits substantial postnatal cellular proliferation and a rapid turnover of newly formed cells in the rostral migratory pathway, while production and migration of postnatal neurons into the dentate gyrus may be more complex. The relatively small size of the olfactory bulb, compared to the hippocampus, potentially makes this structure ideal for a rapid analysis. This study used the St. Kitts vervet monkey ( Chlorocebus sabeus ) to (1) investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2) determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years). Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group. These data are unique with respect to fetal ethanol effects on progenitor proliferation in the primate brain and suggest that the olfactory bulb may be a useful structure for studies of cellular proliferation.
Crisp, Sarah E R H; Griffin, Jacob B; White, Brett R; Toombs, Candice F; Camporeale, Gabriela; Said, Hamid M; Zempleni, Janos
2004-02-01
Placental transfer of nutrients and secretion of hormones is essential for normal fetal development. To determine whether biotin supply affects biotin homeostasis, proliferation rates, and progesterone secretion in placenta cells. JAr choriocarcinoma cells were cultured in media containing deficient (25 pmol/L), physiological (250 pmol/L), or pharmacological concentrations (10,000 pmol/L) of biotin for three weeks; markers for biotin homeostasis, proliferation, and hormone secretion were quantified. Biotin concentrations in culture media correlated negatively with expression of the biotin transporter SMVT, as judged by cellular transport rates of biotin, abundance of SMVT protein, and transcriptional activity of SMVT reporter-gene constructs. Notwithstanding this homeostatic mechanism, biotin concentrations in media correlated positively with activities of biotin-dependent propionyl-CoA carboxylase, abundance of biotinylated carboxylases, and with biotinylation of histones. Biotin deficiency was associated with decreased rates of thymidine uptake into JAr cells [pmol thymidine/( 10(6) cells x 24 h)]: 1.6 +/- 0.1 (25 pmol/L biotin) versus 2.3 +/- 0.2 (250 pmol/L biotin) versus 3.7 +/- 0.4 (10,000 pmol/L biotin), suggesting that cell proliferation depends on biotin. Secretion of progesterone was reduced in biotin-deficient cells; this effect was caused by reduced generation of new cells in deficient media rather than by an immediate effect of biotin on progesterone secretion at the singlecell-level. This study provides evidence that choriocarcinoma cells cannot maintain normal activities of biotin-dependent metabolic pathways if biotin concentrations in culture media are low. It is uncertain whether activities of biotin-dependent pathways in placenta affect fetal development in vivo.
Proliferation of the human urothelium is induced by atypical β1 -adrenoceptors.
Winder, M; Wasén, C; Aronsson, P; Giglio, D
2015-09-01
We wanted to assess whether β-adrenoceptors mediate proliferation in the normal and malignant urothelial cell lines UROtsa and T24, respectively. Urothelial cells were cultured for 24 h in the presence of the β-adrenoceptor agonists isoprenaline (β1/2/3 ), dobutamine (β1 ), salbutamol (β2 ), BRL 37344 (β3 ), CGP 12177 (a partial β-agonist) or β-adrenoceptor antagonists (metoprolol; β1 , propranolol; β1/2 ). Phosphorylation of kinases was screened with a Human Phospho-Kinase Array Kit (R&D systems). Intracellular pathways activated by proliferation of urothelial cells were characterized by incubating cells with the MEK1/2 inhibitor PD 98,059, the p38 kinase inhibitor losmapimod or with the Akt 1/2 kinase inhibitor. Proliferation was assessed with the MTT proliferation assay (ATCC). Western blot and immunocytochemistry were used for detection of the β1 -adrenoceptor. Isoprenaline and dobutamine induced proliferation, while salbutamol and BRL 37344 did not. Dobutamine-induced proliferation was not affected by metoprolol or propranolol but was instead antagonized by CGP 12177 in T24 but not in UROtsa. In response to stimulation with dobutamine, Akt1/2/3 was phosphorylated in UROtsa, while ERK1/2 and p38 were phosphorylated in T24. MEK1/2 inhibition blocked basal and dobutamine-induced proliferation in T24 but only basal proliferation in UROtsa. Losmapimod slightly inhibited basal proliferation in T24 but not dobutamine-induced proliferation. Akt 1/2 inhibitor blocked basal and dobutamine-induced proliferation in UROtsa. Immunocytochemistry and Western blot revealed expression of β1 -adrenoceptors in both urothelial cell lines. The present data show that the urothelium expresses atypical β1-adrenoceptors that activate intracellular kinases inducing urothelial proliferation. © 2016 John Wiley & Sons Ltd.
Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica
2013-01-01
Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors. PMID:24133411
2011-01-01
Background The transcription factor Foxg1 is an important regulator of telencephalic cell cycles. Its inactivation causes premature lengthening of telencephalic progenitor cell cycles and increased neurogenic divisions, leading to severe hypoplasia of the telencephalon. These proliferation defects could be a secondary consequence of the loss of Foxg1 caused by the abnormal expression of several morphogens (Fibroblast growth factor 8, bone morphogenetic proteins) in the telencephalon of Foxg1 null mutants. Here we investigated whether Foxg1 has a cell autonomous role in the regulation of telencephalic progenitor proliferation. We analysed Foxg1+/+↔Foxg1-/- chimeras, in which mutant telencephalic cells have the potential to interact with, and to have any cell non-autonomous defects rescued by, normal wild-type cells. Results Our analysis showed that the Foxg1-/- cells are under-represented in the chimeric telencephalon and the proportion of them in S-phase is significantly smaller than that of their wild-type neighbours, indicating that their under-representation is caused by a cell autonomous reduction in their proliferation. We then analysed the expression of the cell-cycle regulator Pax6 and found that it is cell-autonomously downregulated in Foxg1-/- dorsal telencephalic cells. We went on to show that the introduction into Foxg1-/- embryos of a transgene designed to reverse Pax6 expression defects resulted in a partial rescue of the telencephalic progenitor proliferation defects. Conclusions We conclude that Foxg1 exerts control over telencephalic progenitor proliferation by cell autonomous mechanisms that include the regulation of Pax6, which itself is known to regulate proliferation cell autonomously in a regional manner. PMID:21418559
Jørgensen, A; Young, J; Nielsen, J E; Joensen, U N; Toft, B G; Rajpert-De Meyts, E; Loveland, K L
2014-01-01
Background: Testicular germ cell tumours of young adults, seminoma or non-seminomas, are preceded by a pre-invasive precursor, carcinoma in situ (CIS), understood to arise through differentiation arrest of embryonic germ cells. Knowledge about the malignant transformation of germ cells is currently limited by the lack of experimental models. The aim of this study was to establish an experimental tissue culture model to maintain normal and malignant germ cells within their niche and allow investigation of treatment effects. Methods: Human testis and testis cancer specimens from orchidectomies were cultured in ‘hanging drops' and effects of activin A and follistatin treatment were investigated in seminoma cultures. Results: Testis fragments with normal spermatogenesis or CIS cells were cultured for 14 days with sustained proliferation of germ cells and CIS cells and without increased apoptosis. Seminoma cultures survived 7 days, with proliferating cells detectable during the first 5 days. Activin A treatment significantly reduced KIT transcript and protein levels in seminoma cultures, thereby demonstrating a specific treatment response. Conclusions: Hanging drop cultures of human testis and testis cancer samples can be employed to delineate mechanisms governing growth of normal, CIS and tumorigenic germ cells retained within their niche. PMID:24781282
Up-regulation of peroxidase proliferator-activated receptor gamma in cholesteatoma.
Hwang, Soon Jae; Kang, Hee Joon; Song, Jae-Jun; Kang, Jae Seong; Woo, Jeong Soo; Chae, Sung Won; Lee, Heung-Man
2006-01-01
To evaluate the localization and expression of peroxidase proliferator-activated receptor (PPAR)gamma in cholesteatoma epithelium. Experimental study. Reverse-transcription polymerase chain reaction was performed on cholesteatoma tissues from 10 adult patients undergoing tympanomastoid surgery for middle ear cholesteatoma and on 10 samples of normal external auditory canal skin tissue. The expression levels of PPARgamma to glyceraldehyde-3-phosphate dehydrogenase transcripts were semiquantified by densitometry. We also characterized the cellular localization of the PPARgamma protein immunohistochemically. Ki-67 was also localized to compare the proliferative activity of cells in cholesteatoma epithelium and in normal external auditory canal skin. PPARgamma mRNA and protein were detected in normal external auditory canal skin and in cholesteatoma epithelium. The expression level of PPARgamma mRNA in cholesteatoma was significantly increased compared with that in normal external auditory canal skin. PPARgamma protein was expressed in cells mainly in the granular and prickle cell layers. However, the intensity of its expression was generally decreased in the parabasal layer of the cholesteatoma epithelium. Ki-67 was expressed in the nuclei of cells in the basal and parabasal layers, and a greater number of cells were Ki-67 immunopositive in cholesteatoma epithelium. PPARgamma is up-regulated in the cholesteatoma epithelium compared with normal external auditory canal skin. These results suggest that PPARgamma may play an important role in the pathogenesis of cholesteatoma.
SIRT3 Enhances Glycolysis and Proliferation in SIRT3-Expressing Gastric Cancer Cells
Cui, Yang; Qin, Lili; Wu, Jing; Qu, Xuan; Hou, Chen; Sun, Wenyan; Li, Shiyong; Vaughan, Andrew T. M.; Li, Jian Jian; Liu, Jiankang
2015-01-01
SIRT3 is a key NAD+-dependent protein deacetylase in the mitochondria of mammalian cells, functioning to prevent cell aging and transformation via regulation of mitochondrial metabolic homeostasis. However, SIRT3 is also found to express in some human tumors; its role in these SIRT3-expressing tumor cells needs to be elucidated. This study demonstrated that the expression of SIRT3 was elevated in a group of gastric cancer cells compared to normal gastric epithelial cells. Although SIRT3 expression levels were increased in the gastric tumor tissues compared to the adjacent non-tumor tissues, SIRT3 positive cancer cells were more frequently detected in the intestinal type gastric cancers than the diffuse type gastric cancers, indicating that SIRT3 is linked with subtypes of gastric cancer. Overexpression of SIRT3 promoted cell proliferation and enhanced ATP generation, glucose uptake, glycogen formation, MnSOD activity and lactate production, which were inhibited by SIRT3 knockdown, indicating that SIRT3 plays a role in reprogramming the bioenergetics in gastric tumor cells. Further analysis revealed that SIRT3 interacted with and deacetylated the lactate dehydrogenase A (LDHA), a key protein in regulating anaerobic glycolysis, enhancing LDHA activity. In consistence, a cluster of glycolysis-associated genes was upregulated in the SIRT3-overexpressing gastric tumor cells. Thus, in addition to the well-documented SIRT3-mediated mitochondrial homeostasis in normal cells, SIRT3 may enhance glycolysis and cell proliferation in SIRT3-expressing cancer cells. PMID:26121691
Wang, Ming; Liu, Gang; Shan, Guo-Ping; Wang, Bing-Bing
2017-08-01
The study investigated the ability of ataxia-telangiectasia mutated (ATM)/Rad3-related (ATR) signaling pathway to influence the proliferation, apoptosis, and radiosensitivity of nasopharyngeal carcinoma (NPC) cells. NPC tissues and corresponding adjacent normal tissues were collected from 143 NPC patients. The NPC CNE2 cells were assigned into a control group, X-ray group, CGK-733 group, and X-ray+CGK-733 group. The mRNA levels of ATM and ATR were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and the protein levels of ATM and ATR using western blotting. The positive expression of ATM and ATR in tissues and nude mouse tumor tissues was determined by immunohistochemistry. Cell proliferation, migration, invasion, and apoptosis rates were analyzed by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, scratch test, transwell assay, and flow cytometry, respectively. A nude mouse model of NPC was established to observe tumor volume and growth. The mRNA levels of ATR and ATM and the expression of ATR and ATM protein in NPC tissues were significantly higher than those in adjacent normal tissues. The colony formation assay showed that the colony-forming rate decreased, showing radiation dose-dependent and CGK-733 concentration-dependent manners. Expression of ATM, ATR, Chk1, and Chk2 was evidently increased in the X-ray, CGK-733, and X-ray+CGK-733groups compared with the control group, and the aforementioned expression was highest in the X-ray+CGK-733 group among the four groups. The cell proliferation, invasion, and migration were decreased, tumor volume decreased and cell apoptosis increased in the X-ray, CGK-733, and X-ray+CGK-733 groups compared with the control group; the X-ray+CGK-733 group exhibited lowest cell proliferation, invasion and migration, smallest tumor volume, and highest cell apoptosis among the four groups. Inhibition of ATM/ATR signaling pathway reduces proliferation and enhances apoptosis and radiosensitivity of NPC cells.
Regulation and Function of Cdt1; A Key Factor in Cell Proliferation and Genome Stability
Pozo, Pedro N.; Cook, Jeanette Gowen
2016-01-01
Successful cell proliferation requires efficient and precise genome duplication followed by accurate chromosome segregation. The Cdc10-dependent transcript 1 protein (Cdt1) is required for the first step in DNA replication, and in human cells Cdt1 is also required during mitosis. Tight cell cycle controls over Cdt1 abundance and activity are critical to normal development and genome stability. We review here recent advances in elucidating Cdt1 molecular functions in both origin licensing and kinetochore–microtubule attachment, and we describe the current understanding of human Cdt1 regulation. PMID:28025526
Exosomes: an overview of biogenesis, composition and role in ovarian cancer
2014-01-01
Exosomes are tiny membrane-bound vesicles that are over produced by most proliferating cell types during normal and pathological states. Their levels are up-regulated during pregnancy and disease states such as cancer. Exosomes contain a wide variety of proteins, lipids, RNAs, non-transcribed RNAs, microRNAs and small RNAs that are representative to their cellular origin and shuttle from a donor cell to a recipient cell. From intercellular communication to tumor proliferation, exosomes carry out a diverse range of functions, both helpful and harmful. Useful as biomarkers, exosomes may be applicable in diagnostic assessments as well as cell-free anti-tumor vaccines. Exosomes of ovarian cancer contain different set of proteins and miRNAs compared to exosomes of normal, cancer-free individuals. These molecules may be used as multiple “barcode” for the development of a diagnostic tool for early detection of ovarian cancer. PMID:24460816
Kishton, Rigel J; Barnes, Carson E; Nichols, Amanda G; Cohen, Sivan; Gerriets, Valerie A; Siska, Peter J; Macintyre, Andrew N; Goraksha-Hicks, Pankuri; de Cubas, Aguirre A; Liu, Tingyu; Warmoes, Marc O; Abel, E Dale; Yeoh, Allen Eng Juh; Gershon, Timothy R; Rathmell, W Kimryn; Richards, Kristy L; Locasale, Jason W; Rathmell, Jeffrey C
2016-04-12
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy associated with Notch pathway mutations. While both normal activated and leukemic T cells can utilize aerobic glycolysis to support proliferation, it is unclear to what extent these cell populations are metabolically similar and if differences reveal T-ALL vulnerabilities. Here we show that aerobic glycolysis is surprisingly less active in T-ALL cells than proliferating normal T cells and that T-ALL cells are metabolically distinct. Oncogenic Notch promoted glycolysis but also induced metabolic stress that activated 5' AMP-activated kinase (AMPK). Unlike stimulated T cells, AMPK actively restrained aerobic glycolysis in T-ALL cells through inhibition of mTORC1 while promoting oxidative metabolism and mitochondrial Complex I activity. Importantly, AMPK deficiency or inhibition of Complex I led to T-ALL cell death and reduced disease burden. Thus, AMPK simultaneously inhibits anabolic growth signaling and is essential to promote mitochondrial pathways that mitigate metabolic stress and apoptosis in T-ALL. Copyright © 2016 Elsevier Inc. All rights reserved.
Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia
NASA Technical Reports Server (NTRS)
Holst, Charles R.; Nuovo, Gerard J.; Esteller, Manel; Chew, Karen; Baylin, Stephen B.; Herman, James G.; Tlsty, Thea D.
2003-01-01
Cultures of human mammary epithelial cells (HMECs) contain a subpopulation of variant cells with the capacity to propagate beyond an in vitro proliferation barrier. These variant HMECs, which contain hypermethylated and silenced p16(INK4a) (p16) promoters, eventually accumulate multiple chromosomal changes, many of which are similar to those detected in premalignant and malignant lesions of breast cancer. To determine the origin of these variant HMECs in culture, we used Luria-Delbruck fluctuation analysis and found that variant HMECs exist within the population before the proliferation barrier, thereby raising the possibility that variant HMECs exist in vivo before cultivation. To test this hypothesis, we examined mammary tissue from normal women for evidence of p16 promoter hypermethylation. Here we show that epithelial cells with methylation of p16 promoter sequences occur in focal patches of histologically normal mammary tissue of a substantial fraction of healthy, cancer-free women.
NASA Astrophysics Data System (ADS)
Curtis, S. B.; Luebeck, E. G.; Hazelton, W. D.; Moolgavkar, S. H.
When applied to the Colorado Plateau miner population, the two-stage clonal expansion (TSCE) model of radiation carcinogenesis predicts that radiation-induced promotion dominates radiation-induced initiation. Thus, according to the model, at least for alpha-particle radiation from inhaled radon daughters, lung cancer induction over long periods of protracted irradiation appears to be dominated by radiation-induced modification of the proliferation kinetics of already-initiated cells rather than by direct radiation-induced initiation (i.e., mutation) of normal cells. We explore the possible consequences of this result for radiation exposures to space travelers on long missions. Still unknown is the LET dependence of this effect. Speculations of the cause of this phenomenon include the suggestion that modification of cell kinetics is caused by a "bystander" effect, i.e., the traversal of normal cells by alpha particles, followed by the signaling of these cells to nearby initiated cells which then modify their proliferation kinetics.
Qiao, Hui; Zhang, Hualei; Zheng, Yuanjie; Ponde, Datta E; Shen, Dinggang; Gao, Fabao; Bakken, Ashley B; Schmitz, Alexander; Kung, Hank F; Ferrari, Victor A; Zhou, Rong
2009-03-01
To use magnetic resonance (MR) imaging and positron emission tomography (PET) dual detection of cardiac-grafted embryonic stem cells (ESCs) to examine (a) survival and proliferation of ESCs in normal and infarcted myocardium, (b) host macrophage versus grafted ESC contribution to serial MR imaging signal over time, and (c) cardiac function associated with the formation of grafts and whether improvement in cardiac function is related to cardiac differentiation of ESCs. All animal procedures were approved by the institutional animal care and use committee. Murine ESCs were stably transfected with a mutant version of herpes simplex virus type 1 thymidine kinase, HSV1-sr39tk, and also were labeled with superparamagnetic iron oxide (SPIO) particles. Cells were injected directly in the border zone of the infarcted heart or in corresponding regions of normal hearts in athymic rats. PET and MR imaging were performed longitudinally for 4 weeks in the same animals. ESCs survived and underwent proliferation in the infarcted and normal hearts, as demonstrated by serial increases in 9-(4-[(18)F]fluoro-3-hydroxymethylbutyl) guanine PET signals. In parallel, the hypointense areas on MR images at the injection sites decreased over time. Double staining for host macrophages and SPIO particles revealed that the majority of SPIO-containing cells were macrophages at week 4 after injection. Left ventricular ejection fraction increased in the ESC-treated rats but decreased in culture media-treated rats, and border-zone function was preserved in ESC-treated animals; however, cardiac differentiation of ESCs was less than 0.5%. Dual-modality imaging permits complementary information in regard to cell survival and proliferation, graft formation, and effects on cardiac function. http://radiology.rsnajnls.org/cgi/content/full/250/3/821/DC1. RSNA, 2009
NASA Astrophysics Data System (ADS)
Lee, Seungyeon; Lee, Hyunkyung; Bae, Hansol; Choi, Eun H.; Kim, Sun Jung
2016-07-01
Cold atmospheric plasma (CAP) has been proposed as a useful cancer treatment option after showing higher induction of cell death in cancer cells than in normal cells. Although a few studies have contributed to elucidating the molecular mechanism by which CAP differentially inhibits cancer cell proliferation, no results are yet to be reported related to microRNA (miR). In this study, miR-19a-3p (miR-19a) was identified as a mediator of the cell proliferation-inhibitory effect of CAP in the MCF-7 breast cancer cell. CAP treatment of MCF-7 induced hypermethylation at the promoter CpG sites and downregulation of miR-19a, which was known as an oncomiR. The overexpression of miR-19a in MCF-7 increased cell proliferation, and CAP deteriorated the effect. The target genes of miR-19a, such as ABCA1 and PTEN, that had been suppressed by miR recovered their expression through CAP treatment. In addition, an inhibitor of reactive oxygen species that is produced by CAP suppressed the effect of CAP on cell proliferation. Taken together, the present study, to the best of authors’ knowledge, is the first to identify the involvement of a miR, which is dysregulated by the CAP and results in the anti-proliferation effect of CAP on cancer cells.
2011-01-01
Background Growth-differentiation factor-15 (GDF-15) is a stress-responsive, transforming growth factor-β-related cytokine, which has recently been reported to be elevated in serum of patients with idiopathic pulmonary arterial hypertension (IPAH). The aim of the study was to examine the expression and biological roles of GDF-15 in the lung of patients with pulmonary arterial hypertension (PAH). Methods GDF-15 expression in normal lungs and lung specimens of PAH patients were studied by real-time RT-PCR and immunohistochemistry. Using laser-assisted micro-dissection, GDF-15 expression was further analyzed within vascular compartments of PAH lungs. To elucidate the role of GDF-15 on endothelial cells, human pulmonary microvascular endothelial cells (HPMEC) were exposed to hypoxia and laminar shear stress. The effects of GDF-15 on the proliferation and cell death of HPMEC were studied using recombinant GDF-15 protein. Results GDF-15 expression was found to be increased in lung specimens from PAH patients, com-pared to normal lungs. GDF-15 was abundantly expressed in pulmonary vascular endothelial cells with a strong signal in the core of plexiform lesions. HPMEC responded with marked upregulation of GDF-15 to hypoxia and laminar shear stress. Apoptotic cell death of HPMEC was diminished, whereas HPMEC proliferation was either increased or decreased depending of the concentration of recombinant GDF-15 protein. Conclusions GDF-15 expression is increased in PAH lungs and appears predominantly located in vascular endothelial cells. The expression pattern as well as the observed effects on proliferation and apoptosis of pulmonary endothelial cells suggest a role of GDF-15 in the homeostasis of endothelial cells in PAH patients. PMID:21548946
Ito, Hideaki; Oga, Atsunori; Furuya, Tomoko; Ikemoto, Kenzo; Amakawa, Genta; Chochi, Yasuyo; Kawauchi, Shigeto; Sasaki, Kohsuke
2013-06-01
Proliferation of tetraploid cells (TCs) emerging from diploid cells is considered to be a critical event toward tumourigenesis, or cancer progression. Recently, several studies have reported that binuclear TCs emerging from normal cells are capable of mitosis, however, it has not been confirmed directly whether mononuclear TCs emerging from normal cells could proliferate, even cancer cells. The aim of this study is to detect mononuclear TCs in vitro, spontaneously emerging from diploid cells and to elucidate their proliferative capability directly. For this purpose, we have developed a novel method. In this study, two completely disomic cell lines were used, TIG-7, a fibroblast cell line and CAL-51, a breast cancer cell line. Cells were cultured on microscope slides and their DNA content was determined using an image cytometer. On the same slides, chromosome numbers were scored using centromere fluorescence in situ hybridization (FISH). For evaluating proliferative capability of TCs, bromodeoxyuridine (BrdUrd) incorporation and colony-forming ability were examined. Using our method, spontaneous emergence of mononuclear TCs was detected in both TIG-7 and CAL-51. Colonies of TIG-7 TCs were not observed, but were observed of CAL-51 TCs. Our method enables detection of mononuclear TCs and elucidation of their proliferative capability, directly; this evidence reveals that mononuclear TIG-7 TCs do not proliferate but that mononuclear CAL-51 TCs are able to. © 2013 Blackwell Publishing Ltd.
Control of proliferation and cancer growth by the Hippo signaling pathway
Ehmer, Ursula; Sage, Julien
2015-01-01
The control of cell division is essential for normal development and the maintenance of cellular homeostasis. Abnormal cell proliferation is associated with multiple pathological states, including cancer. While the Hippo/YAP signaling pathway was initially thought to control organ size and growth, increasing evidence indicates that this pathway also plays a major role in the control of proliferation independent of organ size control. In particular, accumulating evidence indicates that the Hippo/YAP signaling pathway functionally interacts with multiple other cellular pathways and serves as a central node in the regulation of cell division, especially in cancer cells. Here recent observations are highlighted that connect Hippo/YAP signaling to transcription, the basic cell cycle machinery, and the control of cell division. Furthermore, the oncogenic and tumor suppressive attributes of YAP/TAZ are reviewed which emphasizes the relevance of the Hippo pathway in cancer. PMID:26432795
Activins and activin antagonists in the human ovary and ovarian cancer.
Reader, Karen L; Gold, Elspeth
2015-11-05
Activins are members of the transforming growth factor β superfamily that play an important role in controlling cell proliferation and differentiation in many organs including the ovary. It is essential that activin signalling be tightly regulated as imbalances can lead to uncontrolled cell proliferation and cancer. This review describes the expression and function of the activins and their known antagonists in both normal and cancerous human ovaries. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Mesenchymal stem cells do not suppress lymphoblastic leukemic cell line proliferation.
Mousavi Niri, Neda; Jaberipour, Mansooreh; Razmkhah, Mahboobeh; Ghaderi, Abbas; Habibagahi, Mojtaba
2009-12-01
Several studies have demonstrated the immunosuppresive effects of mesenchymal stem cells (MSCs) in allogeneic or mitogenic interactions. Cell-cell contact inhibition and secretion of suppressive soluble factors have been suggested in this regard. To investigate if adipose derived MSCs could inhibit Jurkat lymphoblastic leukemia T cell proliferation during coculture. Adherent cells with the ability of cellular growth were isolated from normal adipose tissues. Initial characterization of growing cells by flow cytometry suggested their mesenchymal stem cell characteristics. Cells were maintained in culture and used during third to fifth culture passages. Jurkat or allogeneic peripheral blood mononuclear cells (PBMCs) were labeled with carboxy fluorescein diacetate succinimidyl ester and cocultured with increasing doses of MSCs or MSC culture supernatant. Proliferation of PBMCs or Jurkat cells under these conditions was assessed by flow cytometry after 2 and 3 days of coculture, respectively. Results showed the expression of CD105, CD166 and CD44, and the absence of CD45, CD34 and CD14 on the surface of MSC like cells. Moreover, initial differentiation studies showed the potential of cell differentiation into hepatocytes. Comparison of Jurkat cell proliferation in the presence and absence of MSCs showed no significant difference, with 70% of cells displaying signs of at least one cell division. Similarly, the highest concentration of MSC culture supernatant (50% vol/vol) had no significant effect on Jurkat cell proliferation (p>0.6). The same MSC lots significantly suppressed the allogeneic PHA activated PBMCs under similar culture conditions. Using Jurkat cells as a model of leukemia T cells, our results indicated an uncertainty about the suppressive effect of MSCs and their inhibitory metabolites on tumor or leukemia cell proliferation. Additional systematic studies with MSCs of different sources are needed to fully characterize the immunological properties of MSCs before planning clinical applications.
Díaz, Lorenza; Ceja-Ochoa, Irais; Restrepo-Angulo, Iván; Larrea, Fernando; Avila-Chávez, Euclides; García-Becerra, Rocío; Borja-Cacho, Elizabeth; Barrera, David; Ahumada, Elías; Gariglio, Patricio; Alvarez-Rios, Elizabeth; Ocadiz-Delgado, Rodolfo; Garcia-Villa, Enrique; Hernández-Gallegos, Elizabeth; Camacho-Arroyo, Ignacio; Morales, Angélica; Ordaz-Rosado, David; García-Latorre, Ethel; Escamilla, Juan; Sánchez-Peña, Luz Carmen; Saqui-Salces, Milena; Gamboa-Dominguez, Armando; Vera, Eunice; Uribe-Ramírez, Marisela; Murbartián, Janet; Ortiz, Cindy Sharon; Rivera-Guevara, Claudia; De Vizcaya-Ruiz, Andrea; Camacho, Javier
2009-04-15
Ether-à-go-go-1 (Eag1) potassium channels are potential tools for detection and therapy of numerous cancers. Here, we show human Eag1 (hEag1) regulation by cancer-associated factors. We studied hEag1 gene expression and its regulation by estradiol, antiestrogens, and human papillomavirus (HPV) oncogenes (E6/E7). Primary cultures from normal placentas and cervical cancer tissues; tumor cell lines from cervix, choriocarcinoma, keratinocytes, and lung; and normal cell lines from vascular endothelium, keratinocytes, and lung were used. Reverse transcription-PCR (RT-PCR) experiments and Southern blot analysis showed Eag1 expression in all of the cancer cell types, normal trophoblasts, and vascular endothelium, in contrast to normal keratinocytes and lung cells. Estradiol and antiestrogens regulated Eag1 in a cell type-dependent manner. Real-time RT-PCR experiments in HeLa cells showed that Eag1 estrogenic regulation was strongly associated with the expression of estrogen receptor-alpha. Eag1 protein was detected by monoclonal antibodies in normal placenta and placental blood vessels. Patch-clamp recordings in normal trophoblasts treated with estradiol exhibited potassium currents resembling Eag1 channel activity. Eag1 gene expression in keratinocytes depended either on cellular immortalization or the presence of HPV oncogenes. Eag1 protein was found in keratinocytes transfected with E6/E7 HPV oncogenes. Cell proliferation of E6/E7 keratinocytes was decreased by Eag1 antibodies inhibiting channel activity and by the nonspecific Eag1 inhibitors imipramine and astemizole; the latter also increased apoptosis. Our results propose novel oncogenic mechanisms of estrogen/antiestrogen use and HPV infection. We also suggest Eag1 as an early indicator of cell proliferation leading to malignancies and a therapeutic target at early stages of cellular hyperproliferation.
Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiying; Rao, Qing, E-mail: raoqing@gmail.com; Wang, Min
2009-09-04
Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation,more » and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.« less
Potential involvement of leptin in carcinogenesis of hepatocellular carcinoma.
Wang, Xiu-Jie; Yuan, Shu-Lan; Lu, Qing; Lu, Yan-Rong; Zhang, Jie; Liu, Yan; Wang, Wen-Dong
2004-09-01
To investigate the potential involvement of leptin in carcinogenesis of hepatocellular carcinoma (HCC) and to elucidate the etiology, carcinogenesis and progress of HCC. Expressions of Ob gene product, leptin and its receptor, Ob-R were investigated in 36 cases of HCC specimens and corresponding adjacent non-tumorous liver tissues with immunohistochemical staining. The effect of leptin on proliferation of Chang liver cell line and liver cancer cell line SMMC-7721 was studied with cell proliferation assay (MTT). Leptin expression was detected in 36 cases of adjacent non-tumorous liver tissues (36/36, 100%) with moderate (++) to strong (+++) intensity; and in 72.22%(26/36) of HCC with weaker (+) intensity (P<0.05). Thirty of 36 (83.33%) cases of adjacent non-tumorous liver tissues were positive for Ob-R, with moderate (++) to strong (+++) intensity. In HCC, 11/36 (30.56%) cases were positive, with weak (+) intensity (P<0.05). In cell proliferation assay, leptin inhibited the proliferation of Chang liver cells. The cell survival rate was 10-13% lower than that of the untreated cells (P>0.05). Leptin had little effect on the proliferation of liver cancer cells (P>0.05). High level expression and decreased or absent expression of leptin and its receptor in adjacent non-tumorous liver cells and HCC cells, inhibitory effect of leptin on the proliferation of normal Chang liver cells and no effect of leptin on proliferation of liver cancer cells, may provide new insights into the carcinogenesis and progression of human HCC. It could be assumed that leptin acting as an inhibitor and/or promoter, is involved in the process of carcinogenesis and progress of human HCC. Copyright 2004 The WJG Press ISSN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furukawa, Kiyoshi; Sato, Toru; Katsuno, Tatsuro, E-mail: katsuno@faculty.chiba-u.jp
2011-02-25
Research highlights: {yields} Smad3{sup -/-} mice showed an increased number of proliferating epithelial cells in colonic crypts. {yields} Proliferating epithelial cells showed activated Wnt/{beta}-catenin pathway. {yields} Smad3{sup -/-} mice also showed intermingling of proliferating cells with differentiated cells. {yields} Loss of EphB receptor expression was observed in the colonic crypts of Smad3{sup -/-} mice. {yields} Loss of EphB receptor expression is likely responsible for cell intermingling. -- Abstract: Deficiency of Smad3, an intracellular mediator of TGF-{beta}, was shown to significantly accelerate re-epithelialization of the colonic mucosa. This study was performed to investigate the molecular mechanisms by which Smad3 controls colonicmore » epithelial cell proliferation and crypt formation. Smad3{sup ex8/ex8} C57BL/6 mice were used in this study and wild-type littermates served as controls. The number of proliferating cells in the isolated colonic epithelium of Smad3{sup -/-} mice was significantly increased compared to that in wild-type littermates. Protein levels of the cell cycle inhibitors p21 and p27 were significantly decreased, while that of c-Myc was increased in the isolated colonic epithelium from Smad3{sup -/-} mice. In the colonic tissue of wild-type mice, cell proliferation was restricted to the bottom of the crypts in accordance with nuclear {beta}-catenin staining, whereas proliferating cells were located throughout the crypts in Smad3{sup -/-} mice in accordance with nuclear {beta}-catenin staining, suggesting that Smad3 is essential for locating proliferating cells at the bottom of the colonic crypts. Notably, in Smad3{sup -/-} mice, there was loss of EphB2 and EphB3 receptor protein expression, critical regulators of proliferating cell positioning, while EphB receptor protein expression was confirmed at the bottom of the colonic crypts in wild-type mice. These observations indicated that disturbance of the EphB/ephrin B system brings about mispositioning of proliferating cells in the colonic crypts of Smad3{sup -/-} mice. In conclusion, Smad3 is essential for controlling number and positioning of proliferating cells in the colonic crypts and contributes to formation of a 'proliferative zone' at the bottom of colonic crypts in the normal colon.« less
Beermann, Julia; Kirste, Dominique; Iwanov, Katharina; Lu, Dongchao; Kleemiß, Felix; Kumarswamy, Regalla; Schimmel, Katharina; Bär, Christian; Thum, Thomas
2018-01-01
The mammalian cell cycle is a complex and tightly controlled event. Myriads of different control mechanisms are involved in its regulation. Long non-coding RNAs (lncRNA) have emerged as important regulators of many cellular processes including cellular proliferation. However, a more global and unbiased approach to identify lncRNAs with importance for cell proliferation is missing. Here, we present a lentiviral shRNA library-based approach for functional lncRNA profiling. We validated our library approach in NIH3T3 (3T3) fibroblasts by identifying lncRNAs critically involved in cell proliferation. Using stringent selection criteria we identified lncRNA NR_015491.1 out of 3842 different RNA targets represented in our library. We termed this transcript Ntep (non-coding transcript essential for proliferation), as a bona fide lncRNA essential for cell cycle progression. Inhibition of Ntep in 3T3 and primary fibroblasts prevented normal cell growth and expression of key fibroblast markers. Mechanistically, we discovered that Ntep is important to activate P53 concomitant with increased apoptosis and cell cycle blockade in late G2/M. Our findings suggest Ntep to serve as an important regulator of fibroblast proliferation and function. In summary, our study demonstrates the applicability of an innovative shRNA library approach to identify long non-coding RNA functions in a massive parallel approach. PMID:29099486
Kutushov, M; Gorelik, O
2013-01-01
Rhodamine-6G is a fluorescent dye binding to mitochondria, thus reducing the intact mitochondria number and inhibiting mitochondrial metabolic activity. Resultantly, the respiratory chain functioning becomes blocked, the cell "suffocated" and eventually destroyed. Unlike normal cells, malignant cells demonstrate a priori reduced mitochondrial numbers and aberrant metabolism. Therefore, a turning point might exist, when Rhodamine-induced loss of active mitochondria would selectively destroy malignant, but spare normal cells. Various malignant vs. non-malignant cell lines were cultured with Rhodamine-6G at different concentrations. In addition, C57Bl mice were implanted with B16-F10 melanoma and treated with Rhodamine-6G at different dosage/time regimens. Viability and proliferation of cultured tumor cells were time and dose-dependently inhibited, up to 90%, by Rhodamine-6G, with profound histological signs of cell death. By contrast, inhibition of normal control cell proliferation hardly exceeded 15-17%. Melanoma-transplanted mice receiving Rhodamine-6G demonstrated prolonged survival, improved clinical parameters, inhibited tumor growth and metastases count, compared to their untreated counterparts. Twice-a-week 10-6M Rhodamine-6G regimen yielded the most prominent results. We conclude that malignant, but not normal, cells are selectively destroyed by low doses of Rhodamine-6G. In vivo, such treatment selectively suppresses tumor progression and dissemination, thus improving prognosis. We suggest that selective anti-tumor properties of Rhodamine-6G are based on unique physiologic differences in energy metabolism between malignant and normal cells. If found clinically relevant, low concentrations of Rhodamine-6G might be useful for replacing, or backing up, more aggressive nonselective chemotherapeutic compounds.
Yang, K; Lamprecht, S A; Liu, Y; Shinozaki, H; Fan, K; Leung, D; Newmark, H; Steele, V E; Kelloff, G J; Lipkin, M
2000-09-01
In this study we investigated the chemopreventive effects of quercetin and rutin when added to standard AIN-76A diet and fed to normal and azoxymethane (AOM)-treated mice. Early changes in colonic mucosa were analyzed, including colonic cell proliferation, apoptotic cell death, cyclin D(1) expression and focal areas of dysplasia (FAD). The findings show that the number of colonic epithelial cells per crypt column increased (P: < 0.01) in each normal mouse group fed the flavonoids; AOM administration increased colonic crypt cell proliferation and resulted in a marked rise of bromodeoxyuridine-labeled cells in the lower proliferative zone of the crypt. Both supplementary dietary quercetin and rutin increased the apoptotic index and caused a redistribution of apoptotic cells along the crypt axis in normal mice fed a standard AIN-76A diet. The number of apoptotic cells/column and apoptotic indices markedly increased (P: < 0.01) in the AOM-treated group compared with untreated animals; apoptotic cells expanded throughout the colonic crypts after flavonoid supplementation and AOM administration. Positive cyclin D(1) expression was detected in mice on diets supplemented either with quercetin (P: < 0.01) or rutin (P: < 0.05). AOM administration resulted in the formation of FAD. Both the number of mice exhibiting FAD and the total numer of FAD observed were significantly reduced (P: < 0.01) in AOM-treated animals fed flavonoids compared with mice maintained on the standard AIN-76A diet. Surprisingly, however, quercetin alone was able to induce FAD in 22% of normal mice fed the standard AIN-76A diet.
Enhancer of Zeste Homolog 2 Induces Pulmonary Artery Smooth Muscle Cell Proliferation
Aljubran, Salman A.; Rajanbabu, Venugopal; Bao, Huynh; Mohapatra, Shyam M.; Lockey, Richard; Kolliputi, Narasaiah
2012-01-01
Introduction Pulmonary Arterial Hypertension (PAH) is a progressively devastating disease characterized by excessive proliferation of the Pulmonary Arterial Smooth Muscle Cells (PASMCs). Studies suggest that PAH and cancers share an apoptosis-resistant state featuring excessive cell proliferation. The proliferation of cancer cells is mediated by increased expression of Enhancer of Zeste Homolog 2 (EZH2), a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes. However, the role of EZH2 in PAH has not been studied. In this study, it is hypothesized that EZH2 could play a role in the proliferation of PASMCs. Methods In the present study, the expression patterns of EZH2 were investigated in normal and hypertensive mouse PASMCs. The effects of EZH2 overexpression on the proliferation of human PASMCs were tested. PASMCs were transfected with EZH2 or GFP using nucleofector system. After transfection, the cells were incubated for 48 hours at 37°C. Proliferation and cell cycle analysis were performed using flow cytometry. Apoptosis of PASMCs was determined using annexin V staining and cell migration was tested by wound healing assay. Results EZH2 protein expression in mouse PASMCs were correlated with an increase in right ventricular systolic pressure and Right Ventricular Hypertrophy (RVH). The overexpression of EZH2 in human PASMCs enhances proliferation, migration, and decrease in the rate of apoptosis when compared to GFP-transfected cells. In the G2/M phase of the EZH2 transfected cells, there was a 3.5 fold increase in proliferation, while there was a significant decrease in the rate of apoptosis of PASMCs, when compared to control. Conclusion These findings suggest that EZH2 plays a role in the migration and proliferation of PASMCs, which is a major hallmark in PAH. It also suggests that EZH2 could play a role in the development of PAH and can serve as a potential target for new therapies for PAH. PMID:22662197
Sääf, Annika M.; Halbleib, Jennifer M.; Chen, Xin; Yuen, Siu Tsan; Leung, Suet Yi
2007-01-01
Posttranslational mechanisms are implicated in the development of epithelial cell polarity, but little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized temporal patterns of gene expression during cell–cell adhesion-initiated polarization of cultured human Caco-2 cells, which develop structural and functional polarity resembling enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts. Comparison to gene expression patterns in normal human colon and colon tumors revealed that the pattern in proliferating, nonpolarized Caco-2 cells paralleled patterns seen in human colon cancer in vivo, including expression of genes involved in cell proliferation. The pattern switched in polarized Caco-2 cells to one more closely resembling that in normal colon tissue, indicating that regulation of transcription underlying Caco-2 cell polarization is similar to that during enterocyte differentiation in vivo. Surprisingly, the temporal program of gene expression in polarizing Caco-2 cells involved changes in signaling pathways (e.g., Wnt, Hh, BMP, FGF) in patterns similar to those during migration and differentiation of intestinal epithelial cells in vivo, despite the absence of morphogen gradients and interactions with stromal cells characteristic of enterocyte differentiation in situ. The full data set is available at http://microarray-pubs.stanford.edu/CACO2. PMID:17699589
Carter, Jennifer C.; Church, Frank C.
2011-01-01
We investigated peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands effect on cell motility and the plasminogen activator system using normal MCF-10A and malignant MCF-10CA1 cell lines. Ciglitazone reduced both wound-induced migration and chemotaxis. However, the effect was not reversed with pretreatment of cells with the PPAR-γ-specific antagonist GW9662. Immunoblot analysis of conditioned media showed ciglitazone decreased plasminogen activator inhibitor-1 (PAI-1) in both cell lines; this effect was also unaltered by PPAR-γ antagonism. Alternatively, treatment with the ω-6 fatty acid arachidonic acid (ArA), but not the ω-3 fatty acid docosahexanoic acid, increased both MCF-10A cell migration and cell surface uPA activity. Pretreatment with a PPAR-γ antagonist reversed these effects, suggesting that ArA mediates its effect on cell motility and uPA activity through PPAR-γ activation. Collectively, the data suggest PPAR-γ ligands have a differential effect on normal and malignant cell migration and the plasminogen activation system, resulting from PPAR-γ-dependent and PPAR-γ-independent effects. PMID:22131991
Huang, Yuan-peng; Du, Jian; Hong, Zhen-feng; Chen, Zhi-qing; Wu, Jin-fa; Zhao, Jin-yan
2009-08-01
To investigate the effects of Kangquan Recipe (KQR) on sex steroids and cell proliferation in an experimental benign prostatic hyperplasia (BPH) model in rats. Seventy-two SD rats were randomly divided into six groups: the normal group, the model group, the finasteride group, and the low-, middle-, and high-dose KQR groups, 12 in each group. Except those in the normal group, the rats were injected with testosterone after castration for the establishment of BPH model and then given respectively with normal saline, finasteride, and low-, middle-, and high-dose of KQR for 30 days. The levels of plasma testosterone (T) and estradiol (E(2)) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression ) of proliferating cell nuclear antigen (PCNA) in prostate tissue was detected by reverse transcription-polymerase chain reaction (RT-PCR) after administration. Compared with the model group, the prostate weight, the plasma T, and the mRNA expression of PCNA were significantly lower, and the plasma E(2) and the ratio of E(2)/T were higher in the three KQR groups (P<0.05 or P<0.01). There was no significant difference in the prostate weight, plasma T and E(2), and ratio of E(2)/T among the finasteride group and the three KQR groups (P>0.05). The mRNA expressions of PCNA were significantly higher in the middle- and low-dose of KQR groups than those in the finasteride group (P<0.05). KQR shows multitarget effects on experimental BPH rats, and the mechanism might be related with regulating the balance of plasma T and E(2) and decreasing the PCNAmRNA expression in prostate tissue to restrain cell proliferation in a dose-dependent manner.
Development of in-vitro models to elucidate mechanisms of intrinsic cellular and tissue fluorescence
NASA Astrophysics Data System (ADS)
Savage, Howard E.; Kolli, Venkateswara; Saha, Sanjoy; Zhang, Jian C.; Glasgold, Mark; Sacks, Peter G.; Alfano, Robert R.; Schantz, Stimson P.
1995-04-01
In vitro cell model systems have been used to study the mechanisms of intrinsic cellular and tissue fluorescence as a potential biomarker for cancer. Phenotypic characteristics of cancer that are different from normal tissue include changes in histoarchitecture, proliferation rates and differentiation. a nitrosmethlybenzylamine (NMBA)/rat esophageal carcinogenesis model (NMBA), a transforming growth factor beta (TGF- (beta) )/normal epithelial cell model, and a retinoic acid (RA)/multicellular tumor spheroid model (RAMTS) were used to assess fluorescence changes associated respectively with changes in histoarchitecture, proliferation rates and differentiation. A xenon based fluorescence spectrophotometer (Mediscience Corp.) was used to collect excitation and emission spectra. Two excitation scans ((lambda) Ex 200-360 nm, (lambda) Em 380 nm; (lambda) Ex 240-430 nm, (lambda) Em 450 nm) and two emission scans ((lambda) Ex 300 nm, (lambda) Em 320-580 nm; (lambda) Ex 340 nm, (lambda) Em 360-660 nm) were used to analyze the three model systems. Using the NMBA model. Differences were seen in the excitation scan ((lambda) Ex 200-360 nm, (lambda) Em 380 nm) and the emission scan ((lambda) Ex 340 nm, (lambda) Em 360-660 nm) when normal rat esophageal tissue was compared to hyperplastic and tumor tissue. In the (TGF-(beta) ) model, differences were seen in the excitation scan ((lambda) Ex 240-430 nm, (lambda) Em 450 nm) when comparing proliferation slowed (TGF-(beta) treated) epithelial cells to their untreated controls. In the RAMTS model, differences were seen with all four scans when RA treated multicellular tumor spheroids (nondifferentiating) were compared to untreated control cells (differentiating). The data indicate that fluorescence changes seen in these model systems may relate to changes in histoarchitecture, proliferation rates and differentiation. Their relationship to in vivo fluorescence changes seen in cancer patients remains to be elucidated.
Narayanan, Sai Shyam; Nath, Lekshmi R.; Thulasidasan, Arun Kumar T.; Soniya, Eppurathu Vasudevan; Anto, Ruby John
2014-01-01
We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer. PMID:25157570
Radhakrishnan, E K; Bava, Smitha V; Narayanan, Sai Shyam; Nath, Lekshmi R; Thulasidasan, Arun Kumar T; Soniya, Eppurathu Vasudevan; Anto, Ruby John
2014-01-01
We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.
Melo-Silveira, Raniere Fagundes; Fidelis, Gabriel Pereira; Costa, Mariana Santana Santos Pereira; Telles, Cinthia Beatrice Silva; Dantas-Santos, Nednaldo; de Oliveira Elias, Susana; Ribeiro, Vanessa Bley; Barth, Afonso Luis; Macedo, Alexandre José; Leite, Edda Lisboa; Rocha, Hugo Alexandre Oliveira
2012-01-01
Xylan is one of most abundant polymer after cellulose. However, its potential has yet to be completely recognized. Corn cobs contain a considerable reservoir of xylan. The aim of this work was to study some of the biological activities of xylan obtained from corn cobs after alkaline extraction enhanced by ultrasonication. Physical chemistry and infrared analyses showed 130 kDa heteroxylan containing mainly xylose:arabinose: galactose:glucose (5.0:1.5:2.0:1.2). Xylan obtained exhibited total antioxidant activity corresponding to 48.5 mg of ascorbic acid equivalent/g of xylan. Furthermore, xylan displayed high ferric chelating activity (70%) at 2 mg/mL. Xylan also showed anticoagulant activity in aPTT test. In antimicrobial assay, the polysaccharide significantly inhibited bacterial growth of Klebsiella pneumoniae. In a test with normal and tumor human cells, after 72 h, only HeLa tumor cell proliferation was inhibited (p < 0.05) in a dose-dependent manner by xylan, reaching saturation at around 2 mg/mL, whereas 3T3 normal cell proliferation was not affected. The results suggest that it has potential clinical applications as antioxidant, anticoagulant, antimicrobial and antiproliferative compounds.
Melo-Silveira, Raniere Fagundes; Fidelis, Gabriel Pereira; Costa, Mariana Santana Santos Pereira; Telles, Cinthia Beatrice Silva; Dantas-Santos, Nednaldo; de Oliveira Elias, Susana; Ribeiro, Vanessa Bley; Barth, Afonso Luis; Macedo, Alexandre José; Leite, Edda Lisboa; Rocha, Hugo Alexandre Oliveira
2012-01-01
Xylan is one of most abundant polymer after cellulose. However, its potential has yet to be completely recognized. Corn cobs contain a considerable reservoir of xylan. The aim of this work was to study some of the biological activities of xylan obtained from corn cobs after alkaline extraction enhanced by ultrasonication. Physical chemistry and infrared analyses showed 130 kDa heteroxylan containing mainly xylose:arabinose: galactose:glucose (5.0:1.5:2.0:1.2). Xylan obtained exhibited total antioxidant activity corresponding to 48.5 mg of ascorbic acid equivalent/g of xylan. Furthermore, xylan displayed high ferric chelating activity (70%) at 2 mg/mL. Xylan also showed anticoagulant activity in aPTT test. In antimicrobial assay, the polysaccharide significantly inhibited bacterial growth of Klebsiella pneumoniae. In a test with normal and tumor human cells, after 72 h, only HeLa tumor cell proliferation was inhibited (p < 0.05) in a dose-dependent manner by xylan, reaching saturation at around 2 mg/mL, whereas 3T3 normal cell proliferation was not affected. The results suggest that it has potential clinical applications as antioxidant, anticoagulant, antimicrobial and antiproliferative compounds. PMID:22312261
Chitambar, C R; Seligman, P A
1986-01-01
We have previously shown that human leukemic cells proliferate normally in serum-free media containing various transferrin forms, but the addition of transferrin-gallium leads to inhibition of cellular proliferation. Because gallium has therapeutic potential, the effects of transferrin-gallium on leukemic cell proliferation, transferrin receptor expression, and cellular iron utilization were studied. The cytotoxicity of gallium is considerably enhanced by its binding to transferrin and cytotoxicity can be reversed by transferrin-iron but not by other transferrin forms. Exposure to transferrin-gallium leads to a marked increase in cell surface transferrin binding sites, but despite this, cellular 59Fe incorporation is inappropriately low. Although shunting of transferrin-gallium to another cellular compartment has not been ruled out, other studies suggest that transferrin-gallium impairs intracellular release of 59Fe from transferrin by interfering with processes responsible for intracellular acidification. These studies, taken together, demonstrate that inhibition of cellular iron incorporation by transferrin-gallium is a prerequisite for inhibition of cellular proliferation. PMID:3465751
NASA Astrophysics Data System (ADS)
Okoro, Elvis; Mann, Vivek; Ellis, Ivory; Mansoor, Elvedina; Olamigoke, Loretta; Marriott, Karla Sue; Denkins, Pamela; Williams, Willie; Sundaresan, Alamelu
2017-08-01
Microgravity and radiation exposure during space flight have been widely reported to induce the suppression of normal immune system function, and increase the risk of cancer development in humans. These findings pose a serious risk to manned space missions. Interestingly, recent studies have shown that benzofuran-2-carboxylic acid derivatives can inhibit the progression of some of these devastating effects on earth and in modeled microgravity. However, these studies had not assessed the impacts of benzofuran-2- carboxylic acid and its derivatives on global gene expression under spaceflight conditions. In this study, the ability of a specific benzofuran-2-carboxylic acid derivative (KMEG) to confer protection from radiation and restore normal immune function was investigated following exposure to space flight conditions on the ISS. Normal human peripheral blood mononuclear cells (lymphocytes) treated with 10 µ g/ml of KMEG together with untreated control samples were flown on Nanoracks hardware on Spacex-3 flight. The Samples were returned one month later and gene expression was analyzed. A 1g-ground control experiment was performed in parallel at the Kennedy spaceflight center. The first overall subtractive unrestricted analysis revealed 78 genes, which were differentially expressed in space flight KMEG, untreated lymphocytes as compared to the corresponding ground controls. However, in KMEG-treated space flight lymphocytes, there was an increased expression of a group of genes that mediate increased transcription, translation and innate immune system mediating functions of lymphocytes as compared to KMEG-untreated samples. Analysis of genes related to T cell proliferation in spaceflight KMEG-treated lymphocytes compared to 1g-ground KMEG- treated lymphocytes revealed six T cell proliferation and signaling genes to be significantly upregulated (p < 0.001) and five related genes were found to be significantly down-regulated. These genes play a significant role in promoting the proliferation of T-lymphocytes, the regulation of membrane trafficking, promote early response, mediating C-myc related proliferation, promote antiapoptotic activity and protects mitochondria from the accumulation of oxidatively damaged membrane proteins. Overall, our analysis indicates that KMEG promotes T- cell proliferation and has an anti-inflammatory effect, thereby increasing immunity and possible protection from chronic inflammation setting which is optimally required during long term space flights.
A long noncoding RNA UCA1 promotes proliferation and predicts poor prognosis in glioma.
Zhao, W; Sun, C; Cui, Z
2017-06-01
Acting as a proto-oncogene, long noncoding RNAs (lncRNAs) urothelial carcinoembryonic antigen 1 (UCA1) plays a key role in the occurrence and development of several human tumors. However, the expression and biological functions of UCA1 in glioma are less known. This study discussed the expression of UCA1 in glioma and its effect on the proliferation and cell cycle of glioma cells. LncRNA UCA1 expressions in 64 glioma samples (Grade I-II in 22 cases and Grade III-IV in 42 cases, according to WHO criteria) and 10 normal brain samples were detected using real-time fluorescence quantitative PCR. On this basis, the correlations of UCA1 to clinicopathological characteristics and prognosis of glioma were assessed. Then, using qPCR, the lncRNA UCA1 expressions in glioma cell lines and astrocytes were detected. UCA1-overexpressing glioma cell lines U87 and U251 were further detected after siRNA transfection of these two cell lines, and the impact on cell proliferation and cell cycle was assessed with CCK-8 (cell counting kit-8) assay and flow cytometry method (FCM), respectively. The expression of cyclin D1, a cell cycle-related protein, was detected using Western Blot. LncRNA UCA1 expression in the glioma samples was obviously higher as compared with the normal brain samples (P < 0.001), and the expression was correlated significantly with grading of the tumors (P < 0.05). However, lncRNA UCA1 expression was not correlated with age, gender, tumor size and KPS score (P > 0.05). After interference of UCA1 expression by siRNA transfection, the proliferation of both U251 and SHG-44 cells was inhibited (P < 0.05), with more cells arrested in G0/G1 (P < 0.05). Moreover, cyclin D1 expression was also downregulated considerably. LncRNA UCA1 can promote the proliferation and cell cycle progression of glioma cells by upregulating cyclin D1 transcription. So UCA1 may serve as an independent prognostic indicator and a novel therapeutic target for glioma.
Springer, Jessica Collins; Harrysson, Ola L A; Marcellin-Little, Denis J; Bernacki, Susan H
2014-10-01
Transdermal osseointegrated prostheses (TOPs) are emerging as an alternative to socket prostheses. Electron beam melting (EBM) is a promising additive manufacturing technology for manufacture of custom, freeform titanium alloy (Ti6Al4V) implants. Skin ongrowth for infection resistance and mechanical stability are critically important to the success of TOP, which can be influenced by material composition and surface characteristics. We assessed viability and proliferation of normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF) on several Ti6Al4V surfaces: solid polished commercial, solid polished EBM, solid unpolished EBM and porous unpolished EBM. Cell proliferation was evaluated at days 2 and 7 using alamarBlue(®) and cell viability was analyzed with a fluorescence-based live-dead assay after 1 week. NHDF and NHEK were viable and proliferated on all Ti6Al4V surfaces. NHDF proliferation was highest on commercial and EBM polished surfaces. NHEK was highest on commercial polished surfaces. All EBM Ti6Al4V discs exhibited an acceptable biocompatibility profile compared to solid Ti6Al4V discs from a commercial source for dermal and epidermal cells. EBM may be considered as an option for fabrication of custom transdermal implants. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Getzin, Tobias; Krishnasamy, Kashyap; Gamrekelashvili, Jaba; Kapanadze, Tamar; Limbourg, Anne; Häger, Christine; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Limbourg, Florian P
2018-02-01
Regeneration of arterial endothelium after injury is critical for the maintenance of normal blood flow, cell trafficking, and vascular function. Using mouse models of carotid injury, we show that the transition from a static to a dynamic phase of endothelial regeneration is marked by a strong increase in endothelial proliferation, which is accompanied by induction of the chemokine CX 3 CL1 in endothelial cells near the wound edge, leading to progressive recruitment of Ly6C lo monocytes expressing high levels of the cognate CX 3 CR1 chemokine receptor. In Cx3cr1 -deficient mice recruitment of Ly6C lo monocytes, endothelial proliferation and regeneration of the endothelial monolayer after carotid injury are impaired, which is rescued by acute transfer of normal Ly6C lo monocytes. Furthermore, human non-classical monocytes induce proliferation of endothelial cells in co-culture experiments in a VEGFA-dependent manner, and monocyte transfer following carotid injury promotes endothelial wound closure in a hybrid mouse model in vivo Thus, CX 3 CR1 coordinates recruitment of specific monocyte subsets to sites of endothelial regeneration, which promote endothelial proliferation and arterial regeneration. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Yu, Sung Hoon; Yu, Jae Myung; Lee, Seong Jin; Kang, Dong Hyun; Cho, Young Jung; Kim, Doo Man
2016-01-01
Purpose Proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in atherosclerosis. Rutin is a major representative of the flavonol subclass of flavonoids and has various pharmacological activities. Currently, data are lacking regarding its effects on VSMC proliferation induced by intermittent hyperglycemia. Here, we demonstrate the effects of rutin on VSMC proliferation and migration according to fluctuating glucose levels. Materials and Methods Primary cultures of male Otsuka Long-Evans Tokushima Fatty (OLETF) rat VSMCs were obtained from enzymatically dissociated rat thoracic aortas. VSMCs were incubated for 72 h with alternating normal (5.5 mmol/L) and high (25.0 mmol/L) glucose media every 12 h. Proliferation and migration of VSMCs, the proliferative molecular pathway [including p44/42 mitogen-activated protein kinases (MAPK), mitogen-activated protein kinase kinase 1/2 (MEK1/2), p38 MAPK, phosphoinositide 3-kinase (PI3K), c-Jun N-terminal protein kinase (JNK), nuclear factor kappa B (NF-κB), and Akt], the migratory pathway (big MAPK 1, BMK1), reactive oxygen species (ROS), and apoptotic pathway were analyzed. Results We found enhanced proliferation and migration of VSMCs when cells were incubated in intermittent high glucose conditions, compared to normal glucose. These effects were lowered upon rutin treatment. Intermittent treatment with high glucose for 72 h increased the expression of phospho-p44/42 MAPK (extracellular signal regulated kinase 1/2, ERK1/2), phospho-MEK1/2, phospho-PI3K, phospho-NF-κB, phospho-BMK1, and ROS, compared to treatment with normal glucose. These effects were suppressed by rutin. Phospho-p38 MAPK, phospho-Akt, JNK, and apoptotic pathways [B-cell lymphoma (Bcl)-xL, Bcl-2, phospho-Bad, and caspase-3] were not affected by fluctuations in glucose levels. Conclusion Fluctuating glucose levels increased proliferation and migration of OLETF rat VSMCs via MAPK (ERK1/2), BMK1, PI3K, and NF-κB pathways. These effects were inhibited by the antioxidant rutin. PMID:26847289
Chevalier, Nicolas; Vega, Aurélie; Bouskine, Adil; Siddeek, Bénazir; Michiels, Jean-François; Chevallier, Daniel; Fénichel, Patrick
2012-01-01
Background Testicular germ cell tumours are the most frequent cancer of young men with an increasing incidence all over the world. Pathogenesis and reasons of this increase remain unknown but epidemiological and clinical data have suggested that fetal exposure to environmental endocrine disruptors (EEDs) with estrogenic effects, could participate to testicular germ cell carcinogenesis. However, these EEDs (like bisphenol A) are often weak ligands for classical nuclear estrogen receptors. Several research groups recently showed that the non classical membrane G-protein coupled estrogen receptor (GPER/GPR30) mediates the effects of estrogens and several xenoestrogens through rapid non genomic activation of signal transduction pathways in various human estrogen dependent cancer cells (breast, ovary, endometrium). The aim of this study was to demonstrate that GPER was overexpressed in testicular tumours and was able to trigger JKT-1 seminoma cell proliferation. Results We report here for the first time a complete morphological and functional characterization of GPER in normal and malignant human testicular germ cells. In normal adult human testes, GPER was expressed by somatic (Sertoli cells) and germ cells (spermatogonia and spermatocytes). GPER was exclusively overexpressed in seminomas, the most frequent testicular germ cell cancer, localized at the cell membrane and triggered a proliferative effect on JKT-1 cells in vitro, which was completely abolished by G15 (a GPER selective antagonist) and by siRNA invalidation. Conclusion These results demonstrate that GPER is expressed by human normal adult testicular germ cells, specifically overexpressed in seminoma tumours and able to trigger seminoma cell proliferation in vitro. It should therefore be considered rather than classical ERs when xeno-estrogens or other endocrine disruptors are assessed in testicular germ cell cancers. It may also represent a prognosis marker and/or a therapeutic target for seminomas. PMID:22496838
Martínez-Hernández, Jesús; Seco-Rovira, Vicente; Beltrán-Frutos, Ester; Quesada-Cubo, Victor; Ferrer, Concepción; Pastor, Luis Miguel
2018-01-01
Sertoli cells, the testicular somatic cells of the seminiferous epithelium, are vital for the survival of the epithelium. They undergo proliferation and apoptosis during fetal, neonatal, and prepubertal development. Apoptosis is increased in certain situations such as exposure to many substances, for example, toxics, or short photoperiod in the non-breeding season of some mammals. Therefore, it has always been considered that Sertoli cells that reach adulthood are quiescent cells, that is to say, nonproliferative, do not die, are terminally differentiated, and whose numbers remain constant. Recently, a degree of both proliferation and apoptosis has been observed in normal adult conditions, suggesting that consideration of this cell as quiescent may be subject to change. All this make it necessary to use histochemical techniques to demonstrate whether Sertoli cells are undergoing proliferation or apoptosis in histological sections and to allow the qualitative and quantitative study of these. In this chapter, we present two double-staining techniques that can be used for identifying Sertoli cells in proliferation or apoptosis by fluorescence microscopy. In both, the Sertoli cells are identified by an immunohistochemistry for vimentin followed by an immunohistochemistry for PCNA or a TUNEL histochemistry.
Mohd Ali, Norlaily; Boo, Lily; Yeap, Swee Keong; Ky, Huynh; Satharasinghe, Dilan A.; Liew, Woan Charn; Cheong, Soon Keng; Kamarul, Tunku
2016-01-01
Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC) is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (<30 years) and aged (>60 years) donors were expanded under hypoxic (5% O2) and normal (20% O2) culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO) and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor’s age group and culture conditions can be categorized in the following order: young (hypoxia) > young (normoxia) > old aged (hypoxia) > old aged (normoxia). PMID:26788424
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.
Lunt, Sophia Y; Vander Heiden, Matthew G
2011-01-01
Warburg's observation that cancer cells exhibit a high rate of glycolysis even in the presence of oxygen (aerobic glycolysis) sparked debate over the role of glycolysis in normal and cancer cells. Although it has been established that defects in mitochondrial respiration are not the cause of cancer or aerobic glycolysis, the advantages of enhanced glycolysis in cancer remain controversial. Many cells ranging from microbes to lymphocytes use aerobic glycolysis during rapid proliferation, which suggests it may play a fundamental role in supporting cell growth. Here, we review how glycolysis contributes to the metabolic processes of dividing cells. We provide a detailed accounting of the biosynthetic requirements to construct a new cell and illustrate the importance of glycolysis in providing carbons to generate biomass. We argue that the major function of aerobic glycolysis is to maintain high levels of glycolytic intermediates to support anabolic reactions in cells, thus providing an explanation for why increased glucose metabolism is selected for in proliferating cells throughout nature.
Zeng, Huawei; Trujillo, Olivia N; Moyer, Mary P; Botnen, James H
2011-01-01
Sulforaphane (SFN) is a naturally occurring chemopreventive agent; the induction of cell cycle arrest and apoptosis is a key mechanism by which SFN exerts its colon cancer prevention. However, little is known about the differential effects of SFN on colon cancer and normal cells. In this study, we demonstrated that SFN (15 μmol/L) exposure (72 h) inhibited cell proliferation by up to 95% in colon cancer cells (HCT116) and by 52% in normal colon mucosa-derived (NCM460) cells. Our data also showed that SFN exposure (5 and 10 μmol/L) led to the reduction of G1 phase cell distribution and an induction of apoptosis in HCT116 cells, but to a much lesser extent in NCM460 cells. Furthermore, the examination of mitogen-activated protein kinase (MAPK) signaling status revealed that SFN upregulated the phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2) in NCM460 cells but not in HCT116 cells. In contrast, SFN enhanced the phosphorylation of stress-activated protein kinase (SAPK) and decreased cellular myelocytomatosis oncogene (c-Myc) expression in HCT116 cells but not NCM460 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic signaling in HCT116 cells may play a critical role in SFN's stronger potential of inhibiting cell proliferation in colon cancer cells than in normal colon cells. Copyright © 2011, Taylor & Francis Group, LLC
BCOR regulates myeloid cell proliferation and differentiation
Cao, Qi; Gearhart, Micah D.; Gery, Sigal; Shojaee, Seyedmehdi; Yang, Henry; Sun, Haibo; Lin, De-chen; Bai, Jing-wen; Mead, Monica; Zhao, Zhiqiang; Chen, Qi; Chien, Wen-wen; Alkan, Serhan; Alpermann, Tamara; Haferlach, Torsten; Müschen, Markus; Bardwell, Vivian J.; Koeffler, H. Phillip
2016-01-01
BCOR is a component of a variant Polycomb group repressive complex 1 (PRC1). Recently, we and others reported recurrent somatic BCOR loss-of-function mutations in myelodysplastic syndrome and acute myelogenous leukaemia (AML). However, the role of BCOR in normal hematopoiesis is largely unknown. Here, we explored the function of BCOR in myeloid cells using myeloid murine models with Bcor conditional loss-of-function or overexpression alleles. Bcor mutant bone marrow cells showed significantly higher proliferation and differentiation rates with upregulated expression of Hox genes. Mutation of Bcor reduced protein levels of RING1B, an H2A ubiquitin ligase subunit of PRC1 family complexes and reduced H2AK119ub upstream of upregulated HoxA genes. Global RNA expression profiling in murine cells and AML patient samples with BCOR loss-of-function mutation suggested that loss of BCOR expression is associated with enhanced cell proliferation and myeloid differentiation. Our results strongly suggest that BCOR plays an indispensable role in hematopoiesis by inhibiting myeloid cell proliferation and differentiation and offer a mechanistic explanation for how BCOR regulates gene expression such as Hox genes. PMID:26847029
Fabrice, Antigny; Benoît, Ranchoux; Valérie, Nadeau; Lau, Edmund; Sébastien, Bonnet; Frédéric, Perros
2015-01-01
5-Ethynyl-2'-deoxyuridine (EdU) incorporation is becoming the gold standard method for in vitro and in vivo visualization of proliferating cells. The small size of the fluorescent azides used for detection results in a high degree of specimen penetration. It can be used to easily detect DNA replication in large tissue samples or organ explants with low proliferation and turnover of cells formerly believed to be in a "terminal" state of differentiation. Here we describe a protocol for the localization and identification of proliferating cells in quiescent or injured pulmonary vasculature, in a model of pulmonary veno-occlusive disease (PVOD). PVOD is an uncommon form of pulmonary hypertension characterized by progressive obstruction of small pulmonary veins. We previously reported that mitomycin-C (MMC) therapy is associated with PVOD in human. We demonstrated that MMC can induce PVOD in rats, which currently represents the sole animal model that recapitulates human PVOD lesions. Using the EdU assay, we demonstrated that MMC-exposed lungs displayed areas of exuberant microvascular endothelial cell proliferation which mimics pulmonary capillary hemangiomatosis, one of the pathologic hallmarks of human PVOD. In vivo pulmonary cell proliferation measurement represents an interesting methodology to investigate the potential efficacy of therapies aimed at normalizing pathologic angioproliferation.
Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard
2016-01-01
The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems.
Iotzova-Weiss, Guergana; Dziunycz, Piotr J.; Freiberger, Sandra N.; Läuchli, Severin; Hafner, Jürg; Vogl, Thomas; French, Lars E.; Hofbauer, Günther F. L.
2015-01-01
Squamous cell carcinoma (SCC) is the most common neoplasm in organ transplant recipients (OTR) on long-term immunosuppression and occurs 60- to 100-fold more frequently than in the general population. Here, we present the receptor for advanced glycation end products (RAGE) and S100A8/A9 as important factors driving normal and tumor keratinocyte proliferation. RAGE and S100A8/A9 were transcriptionally upregulated in SCC compared to normal epidermis, as well as in OTR compared to immunocompetent patients (IC) with SCC. The proliferation of normal and SCC keratinocytes was induced by exposure to exogenous S100A8/A9 which in turn was abolished by blocking of RAGE. The migratory activities of normal and SCC keratinocytes were also increased upon exposure to S100A8/A9. We demonstrated that exogenous S100A8/A9 induces phosphorylation of p38 and SAPK/JNK followed by activation of ERK1/2. We hypothesize that RAGE and S100A8/A9 contribute to the development of human SCC by modulating keratinocyte growth and migration. These processes do not seem to be impaired by profound drug-mediated immunosuppression in OTR. PMID:25811984
Lu, Tan-Min; Lu, Wei; Zhao, Long-Jun
2016-06-06
To investigate the effects of microRNA-137 (miRNA-137) in proliferation and migration of placenta trophoblast cells of preeclampsia and the targeting gene of miRNA-137. A total of 134 cases of puerperants were divided into normal pregnancy (n = 50), mild preeclampsia (n = 38), and severe preeclampsia groups (n = 46). MiRNA-137, estrogen-related receptor α (ERRα), and wingless INT (WNT)11 messenger RNAs (mRNAs) were measured in placental tissue and trophoblast cells after transfection, and ERRα protein in placental tissues was detected by immunohistochemistry. The target genes of miRNA-137, trophoblast cell proliferation, migration, and invasion abilities were detected. Both ERRα and WNT11 proteins in the trophoblast cells were measured after transfection. Relative expressions of miRNA-137 were higher, and positive expression rates and relative expression levels of ERRα protein were lower in mild and severe preeclampsia and early- and late-onset preeclampsia than in normal pregnancy group (all P < .05). MiRNA-137 in the placental tissues was negatively correlated with ERRα protein (P < .05). Luciferase reporter gene assay analysis showed that ERRα was a direct target gene of miRNA-137. Absorbance values, relative scratch-covered areas, cell membrane permeable rate, ERRα, and WNT11 mRNA and protein relative expressions were significantly lower, while cells at G1/G0 phase were higher in miRNA-137 mimic group than those in the blank, negative control, and miRNA-137 inhibitor group. MiRNA-137 significantly reduced the proliferation and migration of placenta trophoblast cells of preeclampsia by targeting ERRα, which might be a potential target for gene therapy. © The Author(s) 2016.
Wang, Juan; Ai, Zhihong; Chen, Jing; Teng, Yincheng; Zhu, Jieping
2018-06-01
Endometrial carcinoma is the most common gynecological malignancy of the female genital tract worldwide (2012). Enhancer of zeste homolog 2 (EZH2), a critical component of the polycomb repressive complex 2, has been found to be associated with multiple biological processes and is overexpressed in multiple types of cancer. Previous studies have demonstrated that EZH2 is associated with endometrial carcinoma. The present study investigated the expression and biology function of EZH2 in endometrial cancer (EC). It was found that EZH2 levels were markedly increased in endometrial cancer tissues compared with that in adjacent normal tissues. EZH2 was significantly overexpressed in 3 separate endometrial cancer cell lines (Ishikawa, RL95-2 and HEC1-A) when compared with the normal endometrial cell line ESC. Additionally, small interfering RNA was used to investigate the role of EZH2 in endometrial carcinoma cell proliferation, and the results showed that EZH2 knockdown suppressed the proliferation of endometrial carcinoma cells in vitro . Furthermore, EZH2 knockdown induced apoptosis of human EC cells by promoting the expression of pro-apoptosis protein caspase 3, caspase 9, BCL2 associated X and decreasing the expression of anti-apoptosis protein Bcl-2. Finally, the present study demonstrated that EZH2 knockdown suppressed the invasion of EC cells through downregulation of the epithelial-mesenchymal transition. Collectively, these data demonstrate that EZH2 is frequently overexpressed in EC cells and its overexpression is associated with promoting the proliferation and invasion and decreasing the apoptosis of EC cells, suggesting that EZH2 may provide potential therapeutic targets for treatment of endometrial carcinoma.
Dosch, H M; Schuurman, R K; Gelfand, E W
1980-08-01
The capacity of the T cell mitogens phytohemagglutinin (PHA), concanavalin A (Con A), pokeweed mitogen (PWM), and Staphylococcus protein A (SpA) to induce B cell proliferation and differentiation was compared with the B cell mitogen, formalinized Staphylococcus aureus (STA). Lymphocyte subpopulations from normal donors and patients with various immunodeficiency diseases were studied. In the presence of the T cell mitogens, irradiated T cells were capable of providing a helper cell activity that enabled co-cultured B lymphocytes to proliferate in response to these mitogens and to differentiate into IgM-secreting (direct) hemolytic plaque-forming cells (PFC). In the PFC response, radioresistant T-helper and radiosensitive T-suppressor cell activities could be demonstrated. T-suppressor cell activity outweighed helper activity only in nonirradiated co-cultures stimulated with Con A. Patients with severe combined immunodeficiency lacked mitogen-induced helper T cells, whereas patients with various forms of humoral immune deficiency were normal in this respect. These findings and the tissue distribution of the helper activity is aquired early in post-thymic T cell differentiation. The data suggest that experiments with cell lineage-specific lymphocyte mitogens should be considered in the context of more complex cell-cell interactions.
Tan, Xin-Yu; Chang, Shi; Liu, Wei; Tang, Hui-Huan
2014-03-01
To evaluate the expression of CXC motif chemokine receptor 4 (CXCR4) in the tissues of patients with hilar cholangiocarcinoma (hilar-CCA) and to investigate the cell proliferation and frequency of neural invasion (NI) influenced by RNAi-mediated CXCR4 silencing. An immunohistochemical technique was used to detect the expression of CXCR4 in 41 clinical tissues, including hilar-CCA, cholangitis, and normal bile duct tissues. The effects of small interference RNA (siRNA)-mediated CXCR4 silencing were detected in the hilar-CCA cell line QBC939. Cell proliferation was determined by MTT. Expression of CXCR4 was monitored by quantitative real time polymerase chain reaction and Western blot analysis. The NI ability of hilar-CCA cells was evaluated using a perineural cell and hilar-CCA cell coculture migration assay. The expression of CXCR4 was significantly induced in clinical hilar-CCA tissue. There was a positive correlation between the expression of CXCR4 and lymph node metastasis/NI in hilar-CCA patients (p<0.05). Silencing of CXCR4 in tumor cell lines by siRNA led to significantly decreased NI (p<0.05) and slightly decreased cell proliferation. CXCR4 is likely correlated with clinical recurrence of hilar-CCA. CXCR4 is involved in the invasion and proliferation of human hilar-CCA cell line QBC939, indicating that CXCR4 could be a promising therapeutic target for hilar-CCA.
Cell proliferation assessment in oncology.
Hofstädter, F; Knüchel, R; Rüschoff, J
1995-01-01
A review of the current knowledge on cell cycle control and the techniques used to assess proliferation of normal and neoplastic cells was the focus of a workshop in Regensburg, Germany, held under the joint auspices of the Graduiertenkolleg: Therapieforschung Onkologie and the Committee on AgNOR Quantification. An overview of the recently discovered group of cyclins and their specific kinases, and of other proliferation-associated antigens, such as Ki67, PCNA and topoiseromase II alpha, was given. The topics continued with a reappraisal of modern imaging and flow-cytometric techniques. An update of the relation of AgNORs to cellular proliferation and differentiation was the link to presentations on clinical data, problems and strategies for standardization, as well as guidelines to establish the prognostic value of marker molecules. These lectures were supported by posters. Bringing together researchers from life sciences, technically oriented workers, pathologists, and clinicians resulted in a lively and constructive discussion, which is briefly summarized in the Concluding remarks.
Expression and function of activin receptors in human endometrial adenocarcinoma cells.
Tanaka, Tetsuji; Toujima, Saori; Otani, Tsutomu; Minami, Sawako; Yamoto, Mareo; Umesaki, Naohiko
2003-09-01
Menstrual cycle-dependent expressions of activin A in normal human endometrial tissues have been reported. Expression of activin receptor mRNAs and increased activin A production were also observed in human endometrial adenocarcinoma tissues, suggesting that activin A might enhance cell proliferation and inhibit apoptotic signaling in endometrial cancer cells. In this study, we have examined the effects of activin A on cell proliferation, anticancer drug-induced apoptosis and Fas-mediated apoptosis in 3 differentiated human endometrial adenocarcinoma cell lines, namely HEC-1, HHUA and Ishikawa. Flow cytometric analyses revealed moderate expressions of all 4 types of activin receptor subunits on the cell surfaces of the 3 cell lines. The proliferations of the 3 endometrial cancer cells were completely unaffected by activin A, whereas it suppressed the cell proliferation of a human ovarian endometrioid adenocarcinoma cell line, OVK-18, in a dose-dependent manner. Moreover, activin A did not affect the apoptotic changes in the 3 endometrial adenocarcinoma cells treated with 4 different anticancer drugs, namely CDDP, paclitaxel, etoposide and SN38. The apoptotic changes in HHUA cells treated with anti-Fas IgM were also unaffected by activin A. These results indicate that the increased activin A production in human endometrial adenocarcinoma tissues in vivo may not stimulate carcinoma cell proliferation or inhibit apoptotic signaling in carcinoma cells. Insensitivity to the usual growth suppression signals induced by activin A might be one of the mechanisms of immortality of human endometrial adenocarcinoma cells.
Wu, Junqing; Liang, Bin; Qian, Yan; Tang, Liyuan; Xing, Chongyun; Zhuang, Qiang; Shen, Zhijian; Jiang, Songfu; Yu, Kang; Feng, Jianhua
2018-05-29
The survival rate of childhood acute lymphoblastic leukemia (ALL) has increased while that of Philadelphia-positive (Ph+) ALL remains low. CD19 is a B-cell specific molecule related to the survival and proliferation of normal B cells. However, there is little information available on the effects of CD19 on the biological behavior of Ph+ ALL cells. In this study, we explored a lentiviral vector-mediated short hairpin RNA (shRNA) expression vector to stably reduce CD19 expression in Ph+ ALL cell line SUP-B15 cells and investigated the effects of CD19 downregulation on cell proliferation, apoptosis, drug sensitivity, cell adhesion, cell migration and cell invasion in vitro. CD19 mRNA and protein expression levels were inhibited significantly by CD19 shRNA. Down-regulation of CD19 could inhibit cell proliferation, adhesion, migration and invasion, and increase cell apoptosis and the efficacy of chemotherapeutic agents and imatinib in SUP-B15 cells. Moreover, we found that down-regulation of CD19 expression inhibits cell proliferation and induces apoptosis in SUP-B15 cells in a p53-dependent manner. Taken together, our results suggest that lentiviral vector-mediated RNA interference of CD19 gene may be a promising strategy in the treatment of Ph+ ALL. This article is protected by copyright. All rights reserved.
Schreier, T; Degen, E; Baschong, W
1993-01-01
During the formation of granulation tissue in a dermal wound, platelets, monocytes and other cellular blood constituents release various peptide growth factors to stimulate fibroblasts to migrate into the wound site and proliferate, in order to reconstitute the various connective tissue components. The effect on fibroblast migration and proliferation of these growth factors, and of Solcoseryl (HD), a deproteinized fraction of calf blood used to normalize wound granulation and scar tissue formation, was quantified in vitro. The presence of basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-beta) and hemodialysate (HD) increased the number of cells in the denuded area, i.e., in the "wound space" of an artificially ruptured monolayer of LM-fibroblasts (mouse lung fibroblasts). When cell proliferation was blocked with Mitomycin C, in the first 24 h all factors, i.e., bFGF, PDGF, TGF-beta and HD, promoted cell migration, whereas after 48 h it became obvious that each factor stimulated both migration and proliferation, each in a characteristic way. The effects were significant and more distinct after 48 h, following the order: PDGF (46%) approximately bFGF (87%) > HD (45%) approximately TGF-beta (40%) > control (62%). The relative contributions of migration after inhibiting proliferation are given in brackets. The modulatory activity of HD was localized in its hydrophilic fraction. It was destroyed by acid hydrolysis. Furthermore, this activity could be blocked by protamine sulfate, an inhibitor blocking peptide growth factor receptor binding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuexia; Li, Xiaohui; Liu, Gang
2015-01-30
Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo.more » We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression.« less
Makhija, Seema; Gupta, Renu; Toteja, Ravi
2015-08-01
Lithium is known to have profound biological effects of varying intensity in different life forms. In the present investigation, the effect of lithium was studied on the spirotrich ciliate Stylonychia lemnae. Lithium treatment brings about quantitative changes in the patterning of ciliary structures in S. lemnae. The dorsal surface of the affected cells develops supernumerary ciliary kineties due to excessive proliferation of the kinetosomes. The ventral surface on the other hand develops fewer than normal cirri formed from reduced numbers of ciliary primordia. The adoral zone of membranelles (AZM) fails to remodel properly as, in certain segments, membranelles become disarranged and misaligned. Lithium-induced changes are transitory as the normal pattern is restored during recovery after the cells are shifted to normal medium, suggesting non-genic regulation of cortical pattern. Lithium also affects the process of cell proliferation as the number of cells undergoing division is negligible as compared to reorganizing cells. The results point to the extremely complex and heterogeneous organization of the cellular cortex (plasma membrane and cytoskeleton) which is capable of exerting autonomous control over the phenotype and cortical pattern. Copyright © 2015 Elsevier GmbH. All rights reserved.
D'Antonio, Maurizio; Droggiti, Anna; Feltri, M Laura; Roes, Jürgen; Wrabetz, Lawrence; Mirsky, Rhona; Jessen, Kristján R
2006-08-16
During development, Schwann cell numbers are precisely adjusted to match the number of axons. It is essentially unknown which growth factors or receptors carry out this important control in vivo. Here, we tested whether the type II transforming growth factor (TGF) beta receptor has a role in this process. We generated a conditional knock-out mouse in which the type II TGFbeta receptor is specifically ablated only in Schwann cells. Inactivation of the receptor, evident at least from embryonic day 18, resulted in suppressed Schwann cell death in normally developing and injured nerves. Notably, the mutants also showed a strong reduction in Schwann cell proliferation. Consequently, Schwann cell numbers in wild-type and mutant nerves remained similar. Lack of TGFbeta signaling did not appear to affect other processes in which TGFbeta had been implicated previously, including myelination and response of adult nerves to injury. This is the first in vivo evidence for a growth factor receptor involved in promoting Schwann cell division during development and the first genetic evidence for a receptor that controls normal developmental Schwann cell death.
Open questions: The disrupted circuitry of the cancer cell
Wiley, H. Steven
2014-10-18
Every new decade of biology brings with it a change in outlook driven by new technologies and fresh perspectives. Such is the case for cancer and how we consider the disease. The advent of molecular biology led to the identification of altered signaling molecules and 'oncogenes' that were proposed to drive uncontrolled cell proliferation. The rise of cell biology and new imaging and culturing technologies led to the idea that disruptions in the extracellular environment prime cells for transformation. In the current genomics era, cancer is most commonly seen as a genetic disorder where an unstable genome gives rise tomore » a variety of different cell variants that are selected for proliferation and survival. All of these views are partially correct, of course, and are simply different ways of saying that genetic alterations in cancer cells result in a loss of growth homeostasis. They also take the view that molecular changes 'drive' a cell to grow uncontrollably, rather than tip the balance from one normal state (quiescence) to another (proliferation). Underlying this oversimplification is a profound ignorance of what controls homeostatic cell growth in the first place and how specific mutations impact it. Normal, proliferation-competent cells can accurately monitor their environment and respond appropriately to perturbation, whether it is a loss of neighbors or an inflammatory stimulus. Cancer cells either proliferate or refuse to die where and when they should not, which clearly indicates that they have problems in detecting or responding to their environment. Thus, an enormous amount of effort has gone into defining the signaling pathways that can trigger a proliferative response and the biochemical mechanisms underlying these pathways. Far less work has focused on understanding the higher-order logic of these pathways and the roles played by all of the components as part of an integrated system. In other words, we do not really understand how cells process information and make decisions and thus cannot predict how any given molecular change will alter what a cell does.« less
Yang, Jia-Yao; Tao, Dong-Qing; Liu, Song; Zhang, Shu; Ma, Wei; Shi, Zhao-Hong
2017-04-01
To investigate the effects of Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang on the cell proliferation and apoptosis of nonalcoholic fatty liver cells through the nonalcoholic fatty liver cell model established by inducing L02 cells with oleic acid. Different concentrations of oleic acid were added into L02 cells to induce the nonalcoholic fatty liver cell model. Oil red O staining was used to observe fatty droplets of fatty liver cells. Automatic biochemical analyzer was used to detect the levels of aspartic transaminase(AST), alanine aminotransferase(ALT), total cholesterol(TC), and triglyceride(TG) in the cell supernatants. There were five groups, namely normal group, model group, model and Sijunzi Tang group, model and Lizhong Tang group, and model and Fuzi Lizhong Tang group. The cell proliferation and apoptosis of the five groups were detected by MTT colorimetry test and flow cytometer. The expressions of PCNA, cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax and Bcl-2 proteins of the five groups were detected by Western blot. The oil red O staining results showed that the optimum concentration of oleic acid that was used to induce nonalcoholic fatty liver cell models was 80 mg•L-1. The levels of AST, ALT, TC and TG in the nonalcoholic fatty liver cell supernatants were higher than that in normal liver cell supernatants(P<0.01). MTT colorimetry test and flow cytometer results showed that all of Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang could effectively promote the cell proliferation, and inhibit the cellular apoptosis of nonalcoholic fatty liver cells(P<0.01). And Fuzi Lizhong Tang showed the best effect. Western blot results showed that Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang could down-regulate the expressions of cleaved caspase-3, cleaved caspase-8, cleaved caspase-9 and Bax proteins, and up-regulate the expressions of PCNA and Bcl-2 proteins of nonalcoholic fatty liver cells. And Fuzi Lizhong Tang showed the best effect. In conclusion, all of Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang could effectively promote the cell proliferation, and inhibit the cellular apoptosis of nonalcoholic fatty liver cells. And Fuzi Lizhong Tang showed the best effect. The pharmacodynamic mechanism may be related to the expressions of key factors in pathways related with proliferation and apoptosis mediated by the three decoctions. Copyright© by the Chinese Pharmaceutical Association.
Fu, Zhenqiang; Luo, Wenzheng; Wang, Jingtao; Peng, Tao; Sun, Guifang; Shi, Jingyu; Li, Zhihong; Zhang, Boai
2017-10-21
The long noncoding RNA Malat1 has been reported to be an oncogene that promotes tumor progress and correlates with prognosis in glioma. Growing evidence shows that autophagy plays a very important role in tumorigenesis and tumor cell survival, but whether Malat1 regulates autophagy in glioma is still unclear. In this study, we found that Malat1 expression and autophagy activity were significantly increased in glioma tissues compared with adjacent normal tissues. Additionally, Malat1 level was positively correlated with the expression of LC3-II (autophagy marker) mRNA in vivo. In vitro assays revealed that Malat1 significantly promoted autophagy activation and cell proliferation in glioma cells. More importantly, inhibition of autophagy by 3-MA relieved Malat1-induced cell proliferation. These data demonstrated that Malat1 activates autophagy and increases cell proliferation in glioma. We further investigated the molecular mechanisms whereby Malat1 functioned on glioma cell autophagy and proliferation. We found that Malat1 served as an endogenous sponge to reduce miR-101 expression by directly binding to miR-101. Moreover, Malat1 abolished the suppression effects of miR-101 on glioma cell autophagy and proliferation, which involved in upregulating the expression of miR-101 targets STMN1, RAB5A and ATG4D. Overall, our study elucidated a novel Malat1-miR-101-STMN1/RAB5A/ATG4D regulatory network that Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Jada Chia-Di; Yau, Suk-Yu; Lee, Tatia M C; Lau, Benson Wui-Man; So, Kwok-Fai
2016-11-01
Adult neurogenesis within the dentate gyrus (DG) of the hippocampus can be increased by voluntary exercise but is suppressed under stress, such as with corticosterone (CORT). However, the effects of exercise and CORT on the cell proliferation of the other traditional neurogenic site, the subventricular zone (SVZ), have been reported with controversial results. In addition, the cotreatment effects of voluntary exercise and CORT have not been investigated. This study aims to determine whether CORT can suppress cell proliferation in the SVZ and whether this can be reversed by voluntary exercise. In the present study, the effect of chronic (4 weeks) CORT treatment and wheel running simultaneously on the SVZ cell proliferation of adult Sprague-Dawley rats was examined. The results showed that cell proliferation indicated by bromodeoxyuridine (BrdU) was increased by voluntary wheel running, whereas it was decreased by CORT treatment within the SVZ of the rats without running. For the rats with both CORT treatment and wheel running, it was found that the number of BrdU-labeled cells was approximately at the same level as the vehicle control group. Furthermore, these proliferating cells expressed doublecortin (DCX), a migrating neuroblast marker. Wheel running increased the percentage of BrdU-labeled cells expressing DCX in the SVZ, whereas CORT treatment decreased this percentage. Thus, chronic injection of CORT can decrease the number of proliferating cells, while wheel running can reverse the decrease in cell proliferation within the SVZ to normal levels. In addition, CORT can suppress the cell differentiation within the SVZ, and this was alleviated by wheel running as indicated by the double labeling of BrdU and DCX.
Upadhya, Dinesh; Ogata, Masato; Reneker, Lixing W.
2013-01-01
The mitogen-activated protein kinases (MAPKs; also known as ERKs) are key intracellular signaling molecules that are ubiquitously expressed in tissues and were assumed to be functionally equivalent. Here, we use the mouse lens as a model system to investigate whether MAPK1 plays a specific role during development. MAPK3 is known to be dispensable for lens development. We demonstrate that, although MAPK1 is uniformly expressed in the lens epithelium, its deletion significantly reduces cell proliferation in the peripheral region, an area referred to as the lens germinative zone in which most active cell division occurs during normal lens development. By contrast, cell proliferation in the central region is minimally affected by MAPK1 deletion. Cell cycle regulators, including cyclin D1 and survivin, are downregulated in the germinative zone of the MAPK1-deficient lens. Interestingly, loss of MAPK1 subsequently induces upregulation of phosphorylated MAPK3 (pMAPK3) levels in the lens epithelium; however, this increase in pMAPK3 is not sufficient to restore cell proliferation in the germinative zone. Additionally, MAPK1 plays an essential role in epithelial cell survival but is dispensable for fiber cell differentiation during lens development. Our data indicate that MAPK1/3 control cell proliferation in the lens epithelium in a spatially defined manner; MAPK1 plays a unique role in establishing the highly mitotic zone in the peripheral region, whereas the two MAPKs share a redundant role in controlling cell proliferation in the central region of the lens epithelium. PMID:23482492
In vitro toxicity of photodynamic antimicrobial chemotherapy on human keratinocytes proliferation.
Migliario, Mario; Rizzi, Manuela; Rocchetti, Vincenzo; Cannas, Mario; Renò, Filippo
2013-02-01
This in vitro experimental study has been designed to assess the effects of photodynamic antimicrobial chemotherapy (PACT) on human keratinocytes proliferation. Human keratinocytes (HaCaT) monolayers (∼0.5 cm(2)) have been irradiated with 635 nm red laser light with a fluence of 82.5 or 112.5 J/cm(2) in the absence or presence of toluidine (TB). Cell proliferation, monolayer area coverage, cytokeratin 5 (K5) and filaggrin (Fil) expression, and metalloproteinase (MMP)-2 and MMP-9 activity were measured after 72 h from laser irradiation. HaCaT proliferation was reduced by TB staining. Cell exposure to both low- and high-fluence laser irradiation in both presence and absence of TB staining reduced their proliferation and monolayer area extension. Moreover both laser treatments were able to reduce K5 and Fil expression and MMP-9 production in keratinocytes not treated with TB. These data indicate that PACT could exert toxic effects on normal proliferating keratinocytes present around parodontal pockets. The observed reduced cell proliferation along with a reduced production of enzymes involved in wound healing could alter the clinical outcome of the patients treated with PACT.
ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.
Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya
2013-01-01
ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.
Long Noncoding RNA PANDA Positively Regulates Proliferation of Osteosarcoma Cells.
Kotake, Yojiro; Goto, Taiki; Naemura, Madoka; Inoue, Yasutoshi; Okamoto, Haruna; Tahara, Keiichiro
2017-01-01
A long noncoding RNA, p21-associated ncRNA DNA damage-activated (PANDA), associates with nuclear transcription factor Y subunit alpha (NF-YA) and inhibits its binding to promoters of apoptosis-related genes, thereby repressing apoptosis in normal human fibroblasts. Here, we show that PANDA is involved in regulating proliferation in the U2OS human osteosarcoma cell line. U2OS cells were transfected with siRNAs against PANDA 72 h later and they were subjected to reverse transcription-polymerase chain reaction (RT-PCR), quantitative RT-PCR and cell-cycle analysis. PANDA was highly expressed in U2OS cells, and its expression was induced by DNA damage. Silencing PANDA caused arrest at the G 1 phase of the cell cycle, leading to inhibition of cell proliferation. Quantitative RT-PCR showed that silencing PANDA increased mRNA levels of the cyclin-dependent kinase inhibitor p18, which caused G 1 phase arrest. These results suggest that PANDA promotes G 1 -S transition by repressing p18 transcription, and thus promotes U2OS cell proliferation. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yea-Jin; Kim, Sung-Jo, E-mail: sungjo@hoseo.edu; Heo, Tae-Hwe, E-mail: thhur92@catholic.ac.kr
Highlights: {yields} Catechin reduces the expression level of ER stress marker protein in type I Gaucher disease cells. {yields} Catechin induces the proliferation rate of GD cells similar levels to normal cells. {yields} Catechin improves wound healing activity. {yields} Catechin-mediated reductions in ER stress may be associated with enhanced cell survival. {yields} We identified catechin as a protective agent against ER stress in GD cells. -- Abstract: Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) and is divided into three phenotypes, I, II, and III. Type I is the most prevalent form and has its onset inmore » adulthood. The degree of endoplasmic reticulum (ER) stress is one of the factors that determine GD severity. It has recently been reported that antioxidants reduce ER stress and apoptosis by scavenging the oxidants that cause oxidative stress. For this report, we investigated the possibility that catechin can act on type I GD patient cells to alleviate the pathogenic conditions of GD. We treated GD cells with catechin and examined the expression level of GRP78/BiP (an ER stress marker) by western blots and fluorescence microscopy, the proliferation rate of GD cells, and scratch-induced wound healing activity. Our results show that catechin reduces the expression level of GRP78/BiP, leads to cell proliferation rates of GD cells similar levels to normal cells, and improves wound healing activity. We conclude that catechin protects against ER stress in GD cells and catechin-mediated reductions in ER stress may be associated with enhanced cell survival.« less
Study of the circadian rhythm in radiation response
USDA-ARS?s Scientific Manuscript database
Gamma-Radiation is often used for the treatment of solid tumors. It induces DNA double-stranded breaks that lead to cell cycle arrest or apoptosis of tumor cells. However, such treatment could also damage normal host tissues that need cell proliferation for function. We have reported previously that...
FoxA and LIPG endothelial lipase control the uptake of extracellular lipids for breast cancer growth
Slebe, Felipe; Rojo, Federico; Vinaixa, Maria; García-Rocha, Mar; Testoni, Giorgia; Guiu, Marc; Planet, Evarist; Samino, Sara; Arenas, Enrique J.; Beltran, Antoni; Rovira, Ana; Lluch, Ana; Salvatella, Xavier; Yanes, Oscar; Albanell, Joan; Guinovart, Joan J.; Gomis, Roger R.
2016-01-01
The mechanisms that allow breast cancer (BCa) cells to metabolically sustain rapid growth are poorly understood. Here we report that BCa cells are dependent on a mechanism to supply precursors for intracellular lipid production derived from extracellular sources and that the endothelial lipase (LIPG) fulfils this function. LIPG expression allows the import of lipid precursors, thereby contributing to BCa proliferation. LIPG stands out as an essential component of the lipid metabolic adaptations that BCa cells, and not normal tissue, must undergo to support high proliferation rates. LIPG is ubiquitously and highly expressed under the control of FoxA1 or FoxA2 in all BCa subtypes. The downregulation of either LIPG or FoxA in transformed cells results in decreased proliferation and impaired synthesis of intracellular lipids. PMID:27045898
Suhovskih, Anastasia V; Kashuba, Vladimir I; Klein, George; Grigorieva, Elvira V
2017-01-02
Microenvironment and stromal fibroblasts are able to inhibit tumor cell proliferation both through secreted signaling molecules and direct cell-cell interactions but molecular mechanisms of these effects remain unclear. In this study, we investigated a role of cell-cell contact-related molecules (protein ECM components, proteoglycans (PGs) and junction-related molecules) in intercellular communications between the human TERT immortalized fibroblasts (BjTERT fibroblasts) and normal (PNT2) or cancer (LNCaP, PC3, DU145) prostate epithelial cells. It was shown that BjTERT-PNT2 cell coculture resulted in significant decrease of both BjTERT and PNT2 proliferation rates and reorganization of transcriptional activity of cell-cell contact-related genes in both cell types. Immunocytochemical staining revealed redistribution of DCN and LUM in PNT2 cells and significant increase of SDC1 at the intercellular contact zones between BjTERT and PNT2 cells, suggesting active involvement of the PGs in cell-cell contacts and contact inhibition of cell proliferation. Unlike to PNT2 cells, PC3 cells did not respond to BjTERT in terms of PGs expression, moderately increased transcriptional activity of junctions-related genes (especially tight junction) and failed to establish PC3-BjTERT contacts. At the same time, PC3 cells significantly down-regulated junctions-related genes (especially focal adhesions and adherens junctions) in BjTERT fibroblasts resulting in visible preference for homotypic PC3-PC3 over heterotypic PC3-BjTERT contacts and autonomous growth of PC3 clones. Taken together, the results demonstrate that an instructing role of fibroblasts to normal prostate epithelial cells is revoked by cancer cells through deregulation of proteoglycans and junction molecules expression and overall disorganization of fibroblast-cancer cell communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Seong-Su, E-mail: seong-su-han@uiowa.edu; Han, Sangwoo; Kamberos, Natalie L.
Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL onmore » the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.« less
ZHAO, BING; HU, MENGCAI
2013-01-01
Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa and HTB-35 human cancer cells with gallic acid decreased cell viability in a dose-dependent manner. BrdU proliferation and tube formation assays indicated that gallic acid significantly decreased human cervical cancer cell proliferation and tube formation in human umbilical vein endothelial cells, respectively. Additionally, gallic acid decreased HeLa and HTB-35 cell invasion in vitro. Western blot analysis demonstrated that the expression of ADAM17, EGFR, p-Akt and p-Erk was suppressed by gallic acid in the HeLa and HTB-35 cell lines. These data indicate that the suppression of ADAM17 and the downregulation of the EGFR, Akt/p-Akt and Erk/p-Erk signaling pathways may contribute to the suppression of cancer progression by Gallic acid. Gallic acid may be a valuable candidate for the treatment of cervical cancer. PMID:24843386
Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection
Zhang, Zhi-Qiang; Notermans, Daan W.; Sedgewick, Gerald; Cavert, Winston; Wietgrefe, Stephen; Zupancic, Mary; Gebhard, Kristin; Henry, Keith; Boies, Lawrence; Chen, Zongming; Jenkins, Marc; Mills, Roger; McDade, Hugh; Goodwin, Carolyn; Schuwirth, Caspar M.; Danner, Sven A.; Haase, Ashley T.
1998-01-01
Potent combinations of antiretroviral drugs diminish the turnover of CD4+ T lymphocytes productively infected with HIV-1 and reduce the large pool of virions deposited in lymphoid tissue (LT). To determine to what extent suppression of viral replication and reduction in viral antigens in LT might lead correspondingly to repopulation of the immune system, we characterized CD4+ T lymphocyte populations in LT in which we previously had quantitated viral load and turnover of infected cells before and after treatment. We directly measured by quantitative image analysis changes in total CD4+ T cell counts, the CD45RA+ subset, and fractions of proliferating or apoptotic CD4+ T cells. Compared with normal controls, we documented decreased numbers of CD4+ T cells and increased proliferation and apoptosis. After treatment, proliferation returned to normal levels, and total CD4+ T and CD45RA+ cells increased. We discuss the effects of HIV-1 on this subset based on the concept that renewal mechanisms in the adult are operating at full capacity before infection and cannot meet the additional demand imposed by the loss of productively infected cells. The slow increases in the CD45RA+ CD4+ T cells are consistent with the optimistic conclusions that (i) renewal mechanisms have not been damaged irreparably even at relatively advanced stages of infection and (ii) CD4+ T cell populations can be partially restored by control of active replication without eradication of HIV-1. PMID:9448301
Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection.
Zhang, Z Q; Notermans, D W; Sedgewick, G; Cavert, W; Wietgrefe, S; Zupancic, M; Gebhard, K; Henry, K; Boies, L; Chen, Z; Jenkins, M; Mills, R; McDade, H; Goodwin, C; Schuwirth, C M; Danner, S A; Haase, A T
1998-02-03
Potent combinations of antiretroviral drugs diminish the turnover of CD4+ T lymphocytes productively infected with HIV-1 and reduce the large pool of virions deposited in lymphoid tissue (LT). To determine to what extent suppression of viral replication and reduction in viral antigens in LT might lead correspondingly to repopulation of the immune system, we characterized CD4+ T lymphocyte populations in LT in which we previously had quantitated viral load and turnover of infected cells before and after treatment. We directly measured by quantitative image analysis changes in total CD4+ T cell counts, the CD45RA+ subset, and fractions of proliferating or apoptotic CD4+ T cells. Compared with normal controls, we documented decreased numbers of CD4+ T cells and increased proliferation and apoptosis. After treatment, proliferation returned to normal levels, and total CD4+ T and CD45RA+ cells increased. We discuss the effects of HIV-1 on this subset based on the concept that renewal mechanisms in the adult are operating at full capacity before infection and cannot meet the additional demand imposed by the loss of productively infected cells. The slow increases in the CD45RA+ CD4+ T cells are consistent with the optimistic conclusions that (i) renewal mechanisms have not been damaged irreparably even at relatively advanced stages of infection and (ii) CD4+ T cell populations can be partially restored by control of active replication without eradication of HIV-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, Yaoguo; Xu, Shidong; Ma, Jianqun
2014-07-18
Highlights: • MiR-429 expression is upregulated in non-small cell lung cancer (NSCLC). • MiR-429 inhibits PTEN, RASSF8 and TIMP2 expression. • MiR-429 promotes metastasis and proliferation. • We report important regulatory mechanisms involved in NSCLC progression. • MiR-429 is a potential therapeutic target and diagnostic marker. - Abstract: Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulatedmore » in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.« less
Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides
NASA Astrophysics Data System (ADS)
Birsoy, Kıvanç; Possemato, Richard; Lorbeer, Franziska K.; Bayraktar, Erol C.; Thiru, Prathapan; Yucel, Burcu; Wang, Tim; Chen, Walter W.; Clish, Clary B.; Sabatini, David M.
2014-04-01
As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here we developed a continuous-flow culture apparatus (Nutrostat) for maintaining proliferating cells in low-nutrient media for long periods of time, and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low-glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNA interference (RNAi) screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the OXPHOS upregulation that is normally caused by glucose limitation as a result of either mitochondrial DNA (mtDNA) mutations in complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, antidiabetic drugs that inhibit OXPHOS, when cancer cells are grown in low glucose or as tumour xenografts. Notably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of complex I function. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.
Identification of cancer genes that are independent of dominant proliferation and lineage programs
Selfors, Laura M.; Stover, Daniel G.; Harris, Isaac S.; Brugge, Joan S.; Coloff, Jonathan L.
2017-01-01
Large, multidimensional cancer datasets provide a resource that can be mined to identify candidate therapeutic targets for specific subgroups of tumors. Here, we analyzed human breast cancer data to identify transcriptional programs associated with tumors bearing specific genetic driver alterations. Using an unbiased approach, we identified thousands of genes whose expression was enriched in tumors with specific genetic alterations. However, expression of the vast majority of these genes was not enriched if associations were analyzed within individual breast tumor molecular subtypes, across multiple tumor types, or after gene expression was normalized to account for differences in proliferation or tumor lineage. Together with linear modeling results, these findings suggest that most transcriptional programs associated with specific genetic alterations in oncogenes and tumor suppressors are highly context-dependent and are predominantly linked to differences in proliferation programs between distinct breast cancer subtypes. We demonstrate that such proliferation-dependent gene expression dominates tumor transcriptional programs relative to matched normal tissues. However, we also identified a relatively small group of cancer-associated genes that are both proliferation- and lineage-independent. A subset of these genes are attractive candidate targets for combination therapy because they are essential in breast cancer cell lines, druggable, enriched in stem-like breast cancer cells, and resistant to chemotherapy-induced down-regulation. PMID:29229826
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Baocan; Li, Wenxi; Guo, Kun
2012-04-27
Highlights: Black-Right-Pointing-Pointer miR-181a and miR-181b, especially, miR-181b could be induced by transforming growth factor-beta 1 (TGF-{beta}1) in hepatic stellate cells. Black-Right-Pointing-Pointer miR-181b could promote HSC-T6 cell proliferation by directly targeting the negative cell regulator-p27 in HSC-T6 cell. Black-Right-Pointing-Pointer miR-181b was identified as potential serum diagnostic marker for liver cirrhosis patients. -- Abstract: MicroRNAs, as a kind of negative gene regulators, were demonstrated to be involved in many types of diseases. In this study, we found that transforming growth factor-beta 1 could induce the expression of miR-181a and miR-181b, and miR-181b increased in the much higher folds than miR-181a. Because ofmore » the important role of transforming growth factor-beta 1 in HSC activation and liver cirrhosis, we investigate the effect of miR-181a and miR-181b on HSC proliferation. The results showed that miR-181b could promote HSC-T6 cell proliferation by regulating cell cycle. Further study showed p27, the cell cycle regulator, was the direct target of miR-181b in HSC-T6 cell. But miR-181a had no effects on HSC-T6 cell proliferation and cell cycle, and did not target p27. Interestingly, miR-181b is elevated significantly in serum of liver cirrhosis cases comparing to that of normal persons, whereas miR-181a expression was in the similar level with that of normal persons. These results suggested that miR-181b could be induced by TGF-{beta}1 and promote the growth of HSCs by directly targeting p27. The elevation of miR-181b in serum suggested that it may be potential diagnostic biomarkers for cirrhosis. As for miR-181a, it may work in TGF-{beta}1 pathway by a currently unknown mechanism.« less
Accelerated proliferation of hepatocytes in rats with iron overload after partial hepatectomy.
An, Shucai; Soe, Kyaw; Akamatsu, Maki; Hishikawa, Yoshitaka; Koji, Takehiko
2012-11-01
Although iron overload is implicated in hepatocarcinogenesis, the precise mechanism was not known yet. In the present study, we investigated the effect of iron overload upon the induction of hepatocyte proliferation after 70% partial hepatectomy (PH) in rats fed with rat chow with 3% carbonyl iron for 3 months. In normal-diet rats, the increase in Ki-67 labeling index (LI) commenced at 24 h post-PH and the LIs of proliferating cell nuclear antigen (PCNA) incorporated 5-bromo-2'-deoxyuridine (BrdU) and phospho-histone H3 reached maximum values at 36 and 48 h after PH, respectively. In iron-overload rats, the above parameters occurred 12 h earlier compared to that of normal-diet rats, shortening the G0-G1 transition. Interestingly, nuclear staining for metallothionein (MT), which is essential for hepatocyte proliferation, was noted even at 0 h in iron-overload rats, while MT expression occurred at 6 h in the normal rats. Moreover, nuclear factor kappa B (NF-κB) expression, which is an essential early event leading to liver regeneration, was detected in Kupffer cells at 0 h in iron-overload rats. These results may indicate that overloaded iron, maybe through the induction of MT and NF-κB, may keep liver as a state ready to regenerate in response to PH, by bypassing signal transduction cascades involved in the initiation of liver regeneration.
Restoration of C/EBPα in dedifferentiated liposarcoma induces G2/M cell cycle arrest and apoptosis
Wu, Yuhsin V.; Okada, Tomoyo; DeCarolis, Penelope; Socci, Nicholas; O’Connor, Rachael; Geha, Rula C.; Somberg, C. Joy; Antonescu, Cristina; Singer, Samuel
2012-01-01
Well differentiated liposarcoma (WDLS) and dedifferentiated liposarcoma (DDLS) represent the most common biological group of liposarcoma, and there is a pressing need to develop targeted therapies for patients with advanced disease. To identify potential therapeutic targets, we sought to identify differences in the adipogenic pathways between DDLS, WDLS, and normal adipose tissue. In a microarray analysis of DDLS (n=84), WDLS (n=79), and normal fat (n=23), C/EBPα, a transcription factor involved in cell cycle regulation and differentiation, was underexpressed in DDLS compared to both WDLS and normal fat (15.2 fold and 27.8 fold, respectively). In normal adipose-derived stem cells, C/EBPα expression was strongly induced when cells were cultured in differentiation media, but in three DDLS cell lines, this induction was nearly absent. We restored C/EBPα expression in one of the cell lines (DDLS8817) by transfection of an inducible C/EBα expression vector. Inducing C/EBPα expression reduced proliferation and caused cells to accumulate in G2/M. Under differentiation conditions, the cell proliferation was reduced further, and 66% of the DDLS cells containing the inducible C/EBPα expression vector underwent apoptosis as demonstrated by annexin V staining. These cells in differentiation conditions expressed early adipocyte-specific mRNAs such as LPL and FABP4, but they failed to accumulate intracellular lipid droplets, a characteristic of mature adipocytes. These results demonstrate that loss of C/EBPα is an important factor in suppressing apoptosis and maintaining the dedifferentiated state in DDLS. Restoring C/EBPα may be a useful therapeutic approach for dedifferentiated liposarcomas. PMID:22170698
Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation.
Zabel, Franziska; Fettelschoss, Antonia; Vogel, Monique; Johansen, Pål; Kündig, Thomas M; Bachmann, Martin F
2017-03-01
Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP + memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP + memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation. © 2016 John Wiley & Sons Ltd.
Gonzaga, Rosemary; Matzinger, Polly; Perez-Diez, Ainhoa
2011-01-01
Here we describe a new population of NK cells that reside in the normal, un-inflamed peritoneal cavity. Phenotypically, they share some similarities with the small population of CD49b negative, CD27 positive immature splenic NK cells, and liver NK cells but differ in their expression of CD62L, TRAIL and EOMES. Functionally, the peritoneal NK cells resemble the immature splenic NK cells in their production of IFN-γ, GM-CSF and TNF-α and in the killing of YAC-1 target cells. We also found that the peritoneum induces different behavior in mature and immature splenic NK cells. When transferred intravenously into RAGγcKO mice, both populations undergo homeostatic proliferation in the spleen, but only the immature splenic NK cells, are able to reach the peritoneum. When transferred directly into the peritoneum, the mature NK cells survive but do not divide, while the immature NK cells proliferate profusely. These data suggest that the peritoneum is not only home to a new subset of tissue resident NK cells but that it differentially regulates the migration and homeostatic proliferation of immature versus mature NK cells. PMID:22079985
Wang, Ruoxing; Guo, Yan-Lin
2012-10-01
Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. Copyright © 2012 Elsevier Inc. All rights reserved.
Gab3 is required for human colorectal cancer cell proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Shihao; Wang, Na; Hui, Pingping
Here, we focused on the potential function of Gab3, an uncommon Gab family protein, in human colorectal cancer (CRC) cells. We found that Gab3 was only expressed in human colon cancer tissues as well as in established (HCT-116 and HT-29 lines) and primary human CRC cells. It was however absent in normal human colon cancer tissues and in FHC colon epithelial cells. Knockdown of Gab3 by targeted-shRNAs inhibited proliferation of the CRC cells. Reversely, exogenous over-expression of Gab3 promoted CRC cell proliferation. At the signaling level, Gab3 co-precipitated with p85 and SHP2 in CRC cells, which was required for subsequentmore » Akt and Erk activation. Gab3 shRNA knockdown inhibited Akt and Erk activation, yet Gab3 over-expression augmented it. In vivo, HCT-116 xenograft tumor growth in severe combined immune deficient (SCID) mice was suppressed following expressing Gab3 shRNAs. Meanwhile, Akt and Erk activation in Gab3 shRNA-expressing tumors was also largely inhibited. Together, our results suggest that Gab3 expression in CRC cells is important for Akt-Erk activation and cell proliferation. - Highlights: • Gab3 is only expressed in colorectal cancer (CRC) cells, but not in colon epithelial cells. • Gab3 shRNA knockdown inhibits CRC cell proliferation. • Exogenous over-expression of Gab3 promotes HCT-116 cell proliferation. • Gab3 co-precipitates with p85 and SHP2 to mediate Akt and Erk activation in CRC cells. • HCT-116 tumor growth in SCID mice is suppressed with expression of Gab3 shRNAs.« less
Miao, L; Fraefel, C; Sia, K C; Newman, J P; Mohamed-Bashir, S A; Ng, W H; Lam, P Y P
2014-01-01
Background: Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy. Methods: Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression. Results: The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively. Conclusion: YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers. PMID:24196790
Juvenile spermatogonial depletion (jsd): a genetic defect of germ cell proliferation of male mice.
Beamer, W G; Cunliffe-Beamer, T L; Shultz, K L; Langley, S H; Roderick, T H
1988-05-01
Adult C57BL/6J male mice homozygous for the mutant gene, juvenile spermatogonial depletion (jsd/jsd), show azoosper4ia and testes reduced to one-third normal size, but are otherwise phenotypically normal. In contrast, adult jsd/jsd females are fully fertile. This feature facilitated mapping the jsd gene to the centromeric end of chromosome 1; the gene order is jsd-Isocitrate dehydrogenase-1 (Idh-1)-Peptidase-3 (Pep-3). Analysis of testicular histology from jsd/jsd mice aged 3-10 wk revealed that these mutant mice experience one wave of spermatogenesis, but fail to continue mitotic proliferation of type A spermatogonial cells at the basement membrane. As a consequence, histological sections of testes from mutant mice aged 8-52 wk showed tubules populated by modest numbers of Sertoli cells, with only an occasional spermatogonial cell. Some sperm with normal morphology and motility were observed in epididymides of 6.5- but not in 8-wk or older mutants. Treatment with retinol failed to alter the loss of spermatogenesis in jsd/jsd mice. Analyses of serum hormones of jsd/jsd males showed that testosterone levels were normal at all ages--a finding corroborated by normal seminal vesicle and vas deferens weights, whereas serum follicle-stimulating hormone levels were significantly elevated in mutant mice from 4 to 20 wk of age. We hypothesize the jsd/jsd male may be deficient in proliferative signals from Sertoli cells that are needed for spermatogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagemaker, G.; Visser, T.P.; van Bekkum, D.W.
alpha-Thalassemic heterozygous (Hbath/+) mice were used to investigate the possible selective advantage of transplanted normal (+/+) hemopoietic cells. Without conditioning by total-body irradiation (TBI), infusion of large numbers of normal bone marrow cells failed to correct the thalassemic peripheral blood phenotype. Since the recipients' stem cells are normal with respect to number and differentiation capacity, it was thought that the transplanted stem cells were not able to lodge, or that they were not stimulated to proliferate. Therefore, a nonlethal dose of TBI was given to temporarily reduce endogenous stem cell numbers and hemopoiesis. TBI doses of 2 or 3 Gymore » followed by infusion of normal bone marrow cells proved to be effective in replacing the thalassemic red cells by normal red cells, whereas a dose of 1 Gy was ineffective. It is concluded that cure of thalassemia by bone marrow transplantation does not necessarily require eradication of thalassemic stem cells. Consequently, the objectives of conditioning regimens for bone marrow transplantation of thalassemic patients (and possibly other nonmalignant hemopoietic disorders) should be reconsidered.« less
Mitchell, Rod T; Camacho-Moll, Maria; Macdonald, Joni; Anderson, Richard A; Kelnar, Christopher JH; O’Donnell, Marie; Sharpe, Richard M; Smith, Lee B; Grigor, Ken M; Wallace, W Hamish B; Stoop, Hans; Wolffenbuttel, Katja P; Donat, Roland
2014-01-01
Testicular germ cell cancer develops from pre-malignant intratubular germ cell neoplasia, unclassified cells that are believed to arise from failure of normal maturation of fetal germ cells from gonocytes (OCT4+/ MAGEA4−) into pre-spermatogonia (OCT4−/MAGEA4+). Intratubular germ cell neoplasia cell subpopulations based on stage of germ cell differentiation have been described, however the importance of these subpopulations in terms of invasive potential has not been reported. We hypothesised that cells expressing an immature (OCT4+/MAGEA4−) germ cell profile would exhibit an increased proliferation rate compared to those with a mature profile (OCT4+/ MAGEA4+). Therefore, we performed triple immunofluorescence and stereology to quantify the different intratubular germ cell neoplasia cell subpopulations, based on expression of germ cell (OCT4, PLAP, AP2γ, MAGEA4, VASA) and proliferation (Ki67) markers, in testis sections from patients with pre-invasive disease, seminoma and non-seminoma. We compared these subpopulations with normal human fetal testis and with seminoma cells. Heterogeneity of protein expression was demonstrated in intratubular germ cell neoplasia cells with respect to gonocyte and spermatogonial markers. It included an embryonic/fetal germ cell subpopulation lacking expression of the definitive intratubular germ cell neoplasia marker OCT4, that did not correspond to a physiological (fetal) germ cell subpopulation. OCT4+/MAGEA4- cells showed a significantly increased rate of proliferation compared with the OCT4+/MAGEA4+ population (12.8 v 3.4%, p<0.0001) irrespective of histological tumour type, reflected in the predominance of OCT4+/MAGEA4− cells in the invasive tumour component. Surprisingly, OCT4+/MAGEA4− cells in patients with pre-invasive disease showed significantly higher proliferation compared to those with seminoma or non-seminoma (18.1 v 10.2 v 7.2%, p<0.05 respectively). In conclusion, this study has demonstrated that OCT4+/MAGEA4− cells are the most frequent and most proliferative cell population in tubules containing intratubular germ cell neoplasia, which appears to be an important factor in determining invasive potential of intratubular germ cell neoplasia to seminomas. PMID:24457464
Proliferation and apoptosis in malignant and normal cells in B-cell non-Hodgkin's lymphomas.
Stokke, T.; Holte, H.; Smedshammer, L.; Smeland, E. B.; Kaalhus, O.; Steen, H. B.
1998-01-01
We have examined apoptosis and proliferation in lymph node cell suspensions from patients with B-cell non-Hodgkin's lymphoma using flow cytometry. A method was developed which allowed estimation of the fractions of apoptotic cells and cells in the S-phase of the cell cycle simultaneously with tumour-characteristic light chain expression. Analysis of the tumour S-phase fraction and the tumour apoptotic fraction in lymph node cell suspensions from 95 B-cell non-Hodgkin's lymphoma (NHL) patients revealed a non-normal distribution for both parameters. The median fraction of apoptotic tumour cells was 1.1% (25 percentiles 0.5%, 2.7%). In the same samples, the median fraction of apoptotic normal cells was higher than for the tumour cells (1.9%; 25 percentiles 0.7%, 4.0%; P = 0.03). The median fraction of tumour cells in S-phase was 1.4% (25 percentiles 0.8%, 4.8%), the median fraction of normal cells in S-phase was significantly lower than for the tumour cells (1.0%; 25 percentiles 0.6%, 1.9%; P = 0.004). When the number of cases was plotted against the logarithm of the S-phase fraction of the tumour cells, a distribution with two Gaussian peaks was needed to fit the data. One peak was centred around an S-phase fraction of 0.9%; the other was centred around 7%. These peaks were separated by a valley at approximately 3%, indicating that the S-phase fraction in NHL can be classified as 'low' (< 3%) or 'high' (> 3%), independent of the median S-phase fraction. The apoptotic fractions were log-normally distributed. The median apoptotic fraction was higher (1.5%) in the 'high' S-phase group than in the 'low' S-phase group (0.8%; P = 0.02). However, there was no significant correlation between the two parameters (P > 0.05). PMID:9667654
Chiasson-MacKenzie, Christine; Morris, Zachary S; Baca, Quentin; Morris, Brett; Coker, Joanna K; Mirchev, Rossen; Jensen, Anne E; Carey, Thomas; Stott, Shannon L; Golan, David E; McClatchey, Andrea I
2015-10-26
The proliferation of normal cells is inhibited at confluence, but the molecular basis of this phenomenon, known as contact-dependent inhibition of proliferation, is unclear. We previously identified the neurofibromatosis type 2 (NF2) tumor suppressor Merlin as a critical mediator of contact-dependent inhibition of proliferation and specifically found that Merlin inhibits the internalization of, and signaling from, the epidermal growth factor receptor (EGFR) in response to cell contact. Merlin is closely related to the membrane-cytoskeleton linking proteins Ezrin, Radixin, and Moesin, and localization of Merlin to the cortical cytoskeleton is required for contact-dependent regulation of EGFR. We show that Merlin and Ezrin are essential components of a mechanism whereby mechanical forces associated with the establishment of cell-cell junctions are transduced across the cell cortex via the cortical actomyosin cytoskeleton to control the lateral mobility and activity of EGFR, providing novel insight into how cells inhibit mitogenic signaling in response to cell contact. © 2015 Chiassson-MacKenzie et al.
Kang, Chang-Won; Kim, Nan-Hee; Jung, Huyn Ah; Choi, Hyung-Wook; Kang, Min-Jae; Choi, Jae-Sue; Kim, Gun-Do
2016-04-01
This study is the first report of the antitumor activities of desmethylanhydroicaritin (DMAI) isolated from Sophora flavescens on U87MG cells. Human glioblastoma is one of the most aggressive malignant type of brain tumors and highly diffuses to around normal brain tissues. DMAI showed anti-proliferation effects on U87MG cells at the concentration of 30μM, however did not affect to HEK-293 cells. DMAI induced anti-proliferation effects via ERK/MAPK, PI3K/Akt/mTOR signal pathway and G2/M phase cell cycle arrest. DMAI led to morphological change and inhibition of filapodia formation through regulation of Rac 1 and Cdc 42. In addition, migration and invasion of U87MG cells were inhibited by DMAI via down-regulation of matrix metalloproteinase (MMP) -2 and MMP -9 expressions and activities. Our results suggest that DMAI has a potential as a therapeutic agent against glioblastoma cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Naitao; Dong, Bai-Jun; Quan, Yizhou; Chen, Qianqian; Chu, Mingliang; Xu, Jin; Xue, Wei; Huang, Yi-Ran; Yang, Ru; Gao, Wei-Qiang
2016-05-10
Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS) in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3) was upregulated in a large subset of benign prostatic hyperplasia (BPH) tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinberger, Florian, E-mail: f.weinberger@uke.de; Mehrkens, Dennis, E-mail: dennis.mehrkens@uk-koeln.de; Starbatty, Jutta, E-mail: starbatty@uke.uni-hamburg.de
Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activitymore » and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.« less
Zhang, Huabing; Ramakrishnan, Sadeesh K.; Triner, Daniel; Centofanti, Brook; Maitra, Dhiman; Győrffy, Balázs; Sebolt-Leopold, Judith S.; Dame, Michael K.; Varani, James; Brenner, Dean E.; Fearon, Eric R.; Omary, M. Bishr; Shah, Yatrik M.
2016-01-01
Yes-associated protein 1 (YAP1) is a transcriptional coactivator in the Hippo signaling pathway. Increased YAP1- activity promotes the growth of tumors, including that of colorectal cancer (CRC). Verteporfin, a drug that enhances phototherapy to treat neovascular macular degeneration, is an inhibitor of YAP1. Here, we found that verteporfin inhibited tumor growth independently of its effects on YAP1 or the related protein TAZ in genetic or chemical-induced mouse models of CRC, in patient-derived xenografts and in enteroid models of CRC. Instead, verteporfin exhibited in vivo selectivity for killing tumor cells in part by impairing the global clearance of high molecular weight oligomerized proteins, particularly p62 (a sequestrome involved in autophagy) and STAT3 (a transcription factor). Verteporfin inhibited cytokine-induced STAT3 activity and cell proliferation and reduced the viabilty of cultured CRC cells. Although verteporfin accumulated to a greater extent in normal cells than in tumor cells in vivo, experiments with cultured cells indicated that the normal cells efficiently cleared verteporfin-induced protein oligomers through autophagic and proteasomal pathways. Culturing CRC cells in hypoxic or nutrient-deprived conditions (modeling a typical CRC microenvironment) impaired the clearance of protein oligomers and resulted in cell death; whereas culturing cells in normoxic or glucose-replete conditions protected cell viability and proliferation in the presence of verteporfin. Furthermore, verteporfin suppressed the proliferation of other cancer cell lines even in the absence of YAP1, suggesting that verteporfin may be effective against multiple types of solid cancers. PMID:26443705
2014-01-01
Background Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Methods Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. Results We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti-proliferative effect of nuclear maspin on breast cancer cells was statistically significant in comparison to cytoplasmic maspin. Conclusions Our results suggest that nuclear maspin localization may be a prognostic factor in breast cancer and may have a strong therapeutic potential in gene therapy. Moreover, these data provide a new insight into the role of cytoplasmic and nuclear fractions of maspin in breast cancer. PMID:24581141
Berta, Ágnes I.; Boesze-Battaglia, Kathleen; Genini, Sem; Goldstein, Orly; O'Brien, Paul J.; Szél, Ágoston; Acland, Gregory M.; Beltran, William A.; Aguirre, Gustavo D.
2011-01-01
A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7–14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labeling, and do not label with markers specific for macrophages/microglia (CD18) or Müller cells (glutamine synthetase, PAX6). Nestin labeling is absent from the ONL although it labels the peripheral retina and ciliary marginal zone equally in normals and mutants. Cell proliferation is associated with increased cyclin A1 and LATS1 mRNA expression, but CRX protein expression is unchanged. Coincident with photoreceptor proliferation is a change in the photoreceptor population. Prior to cell death the photoreceptor mosaic is composed of L/M- and S-cones, and rods. After proliferation, both cone types remain, but the majority of rods are now hybrid photoreceptors that express rod opsin and, to a lesser extent, cone S-opsin, and lack NR2E3 expression. The hybrid photoreceptors renew their outer segments diffusely, a characteristic of cones. The results indicate the capacity for terminally differentiated, albeit mutant, photoreceptors to divide with mutations in this novel retinal degeneration gene. PMID:21980341
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hongsheng; Wu, Fenping; Wang, Yan
2014-08-08
Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found thatmore » Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.« less
Laidlaw, I J; Clarke, R B; Howell, A; Owen, A W; Potten, C S; Anderson, E
1995-01-01
In order to resolve the question of which ovarian steroid stimulates normal human mammary epithelial cell proliferation, we have implanted pieces of normal human breast tissue subcutaneously into athymic nude mice. These mice were then treated with slow-release pellets containing estradiol (E2) or progesterone (P) such that serum levels of E2 and P were increased to those seen in normal women. The proliferative activity of the tissue implants was assessed by uptake of tritiated thymidine and steroid receptor expression was measured immunocytochemically. Insertion of a 2 mg E2 pellet 14 days after tissue implantation increased the thymidine labeling index (TLI) from a median of 0.4% (n = 34) to a median of 2.1% after 7 days (n = 43; P < 0.001 by Mann Whitney U test). In contrast, treatment with a P pellet (4 mg) had no effect upon the TLI whereas P (4 mg) in combination with E2 (2 mg) had no effect over and above that of E2 alone. There was a significant correlation between the increase in TLI and either the E2 content of the pellets (P < 0.001 by linear regression) or the serum E2 levels achieved (P < 0.001). Expression of the P receptor was increased 15- to 20-fold by E2 treatment. We conclude that E2 is sufficient to stimulate human breast epithelial cell proliferation at physiologically relevant concentrations and that P does not affect proliferation either alone or after E2 priming.
Cell cycles and proliferation patterns in Haematococcus pluvialis
NASA Astrophysics Data System (ADS)
Zhang, Chunhui; Liu, Jianguo; Zhang, Litao
2017-09-01
Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, nonmotile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.
Modulation of normal human melanocyte dendricity by growth-promoting agents.
Nakazawa, K; Damour, O; Collombel, C
1993-12-01
Dendrite formation and extension, which comprise a characteristic morphology of human normal melanocytes in the skin, represent one of the functional activities of melanocytes, the ability to transfer melanosomes into neighboring keratinocytes. However, the morphology of the melanocyte in vitro is usually quite different from that observed in vivo. it is probably due to the hyperproliferative condition of the melanocytes in culture. No studies have ever compared the effects of a single factor on both dendricity and proliferation at the same time. Therefore, we have compared the effects of six growth-promoting agents commonly used for melanocyte cultures on dendrite formation and proliferation. The addition of agents that increase the intracellular levels of cyclic adenosine monophosphate (cAMP)--dibutyryl cyclic adenosine monophosphate (db cAMP; 1 mM) or isobutylmethyl xanthine (IBMX; 0.1 mM)--had a strong effect on dendrite formation and a negative effect on proliferation. This was especially true with db cAMP. In the presence of 2% or 5% of heat-inactivated fetal bovine serum (FBS), dendrite formation was significantly increased as was proliferation. The number of dendrites was decreased in the culture with 12-o-tetradecanoylphorbol-13-acetate (TPA), but cell growth was slightly increased. With human recombinant basic fibroblast growth factor (bFGF) (0.5, 1.0 ng/ml) in the presence of bovine pituitary extract (BPE) (60 micrograms/ml), cell growth was increased. With 2 ng/ml of bFGF, however, a strong inhibitory effect on proliferation was observed. However, dendrite formation was constant at all concentrations of bFGF tested (0.5, 1.0 or 2.0 ng/ml) with BPE (30 or 60 micrograms/ml). In this study, we have demonstrated that dendrite formation was suppressed by the reagents that stimulate melanocyte proliferation, and vice versa, with the only exception being heat-inactivated FBS. Both dendrite formation and proliferation were induced by the heat-inactivated FBS. This approach is crucial to the development of an adequate culture system for proliferation and/or dendrite formation of normal human melanocytes. It is necessary to keep these aspects in mind as we further investigate the biology of melanocytes, especially the cell-to-cell interactions between melanocytes and keratinocytes, involved in melanogenesis and melanin pigmentation in vivo. This study also provides practical and important information for a future reconstitutive skin system composed of melanocytes, keratinocytes, and fibroblasts in a single culture medium.
Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage.
Meserve, Joy H; Duronio, Robert J
2015-08-15
Regeneration of damaged tissues typically requires a population of active stem cells. How damaged tissue is regenerated in quiescent tissues lacking a stem cell population is less well understood. We used a genetic screen in the developing Drosophila melanogaster eye to investigate the mechanisms that trigger quiescent cells to re-enter the cell cycle and proliferate in response to tissue damage. We discovered that Hippo signaling regulates compensatory proliferation after extensive cell death in the developing eye. Scalloped and Yorkie, transcriptional effectors of the Hippo pathway, drive Cyclin E expression to induce cell cycle re-entry in cells that normally remain quiescent in the absence of damage. Ajuba, an upstream regulator of Hippo signaling that functions as a sensor of epithelial integrity, is also required for cell cycle re-entry. Thus, in addition to its well-established role in modulating proliferation during periods of tissue growth, Hippo signaling maintains homeostasis by regulating quiescent cell populations affected by tissue damage. © 2015. Published by The Company of Biologists Ltd.
miR-1271 promotes non-small-cell lung cancer cell proliferation and invasion via targeting HOXA5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yongfang; Xu, Lianhong; Jiang, Lixin, E-mail: jianglx66766@163.com
2015-03-13
MicroRNAs (miRNAs) are short, non-coding RNAs (∼22 nt) that play important roles in the pathogenesis of human diseases by negatively regulating numerous target genes at posttranscriptional level. However, the role of microRNAs in lung cancer, particularly non-small-cell lung cancer (NSCLC), has remained elusive. In this study, two microRNAs, miR-1271 and miR-628, and their predicted target genes were identified differentially expressed in NSCLC by analyzing the miRNA and mRNA expression data from NSCLC tissues and their matching normal controls. miR-1271 and its target gene HOXA5 were selected for further investigation. CCK-8 proliferation assay showed that the cell proliferation was promoted by miR-1271more » in NSCLC cells, while miR-1271 inhibitor could significantly inhibited the proliferation of NSCLC cells. Interestingly, migration and invasion assay indicated that overexpression of miR-1271 could significantly promoted the migration and invasion of NSCLC cells, whereas miR-1271 inhibitor could inhibited both cell migration and invasion of NSCLC cells. Western blot showed that miR-1271 suppressed the protein level of HOXA5, and luciferase assays confirmed that miR-1271 directly bound to the 3'untranslated region of HOXA5. This study indicated indicate that miR-1271 regulates NSCLC cell proliferation and invasion, via the down-regulation of HOXA5. Thus, miR-1271 may represent a potential therapeutic target for NSCLC intervention. - Highlights: • Overexpression of miR-1271 promoted proliferation and invasion of NSCLC cells. • miR-1271 inhibitor inhibited the proliferation and invasion of NSCLC cells. • miR-1271 targets 3′ UTR of HOXA5 in NSCLC cells. • miR-1271 negatively regulates HOXA5 in NSCLC cells.« less
JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation
Besancenot, Rodolphe; Roos-Weil, Damien; Tonetti, Carole; Abdelouahab, Hadjer; Lacout, Catherine; Pasquier, Florence; Willekens, Christophe; Rameau, Philippe; Lecluse, Yann; Micol, Jean-Baptiste; Constantinescu, Stefan N.; Vainchenker, William; Solary, Eric
2014-01-01
Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses. PMID:25143485
JAK2 and MPL protein levels determine TPO-induced megakaryocyte proliferation vs differentiation.
Besancenot, Rodolphe; Roos-Weil, Damien; Tonetti, Carole; Abdelouahab, Hadjer; Lacout, Catherine; Pasquier, Florence; Willekens, Christophe; Rameau, Philippe; Lecluse, Yann; Micol, Jean-Baptiste; Constantinescu, Stefan N; Vainchenker, William; Solary, Eric; Giraudier, Stéphane
2014-09-25
Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses. © 2014 by The American Society of Hematology.
Kryza, Thomas; Silva, Lakmali M; Bock, Nathalie; Fuhrman-Luck, Ruth A; Stephens, Carson R; Gao, Jin; Samaratunga, Hema; Lawrence, Mitchell G; Hooper, John D; Dong, Ying; Risbridger, Gail P; Clements, Judith A
2017-10-01
The reciprocal communication between cancer cells and their microenvironment is critical in cancer progression. Although involvement of cancer-associated fibroblasts (CAF) in cancer progression is long established, the molecular mechanisms leading to differentiation of CAFs from normal fibroblasts are poorly understood. Here, we report that kallikrein-related peptidase-4 (KLK4) promotes CAF differentiation. KLK4 is highly expressed in prostate epithelial cells of premalignant (prostatic intraepithelial neoplasia) and malignant lesions compared to normal prostate epithelia, especially at the peristromal interface. KLK4 induced CAF-like features in the prostate-derived WPMY1 normal stromal cell line, including increased expression of alpha-smooth muscle actin, ESR1 and SFRP1. KLK4 activated protease-activated receptor-1 in WPMY1 cells increasing expression of several factors (FGF1, TAGLN, LOX, IL8, VEGFA) involved in prostate cancer progression. In addition, KLK4 induced WPMY1 cell proliferation and secretome changes, which in turn stimulated HUVEC cell proliferation that could be blocked by a VEGFA antibody. Importantly, the genes dysregulated by KLK4 treatment of WPMY1 cells were also differentially expressed between patient-derived CAFs compared to matched nonmalignant fibroblasts and were further increased by KLK4 treatment. Taken together, we propose that epithelial-derived KLK4 promotes tumour progression by actively promoting CAF differentiation in the prostate stromal microenvironment. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Al-Eryani, Kamal; Cheng, Jun; Abé, Tatsuya; Maruyama, Satoshi; Yamazaki, Manabu; Babkair, Hamzah; Essa, Ahmed; Saku, Takashi
2015-07-01
Based on our previous finding that protease-activated receptor 2 (PAR-2) regulates hemophagocytosis of oral squamous cell carcinoma (SCC) cells, which induces their heme oxygenase 1-dependent keratinization, we have formulated a hypothesis that PAR-2 functions in wider activities of SCC cells. To confirm this hypothesis, we investigated immunohistochemical profiles of PAR-2 in oral SCC tissues and its functional roles in cell proliferation and invasion in SCC cells in culture. The PAR-2 expression modes were determined in 48 surgical tissue specimens of oral SCC. Using oral SCC-derived cell systems, we determined both gene and protein expression levels of PAR-2. SCC cell proliferation and invasive properties were also examined in conditions in which PAR-2 was activated by the synthetic peptide SLIGRL. PAR-2 was immunolocalized in oral SCC and carcinoma in situ cells, especially in those on the periphery of carcinoma cell foci (100% of cases), but not in normal oral epithelia. Its expression at both gene and protein levels was confirmed in 3 oral SCC cell lines including ZK-1. Activation of PAR-2 induced ZK-1 cell proliferation in a dose-dependent manner. PAR-2-activated ZK-1 cells invaded faster than nonactivated ones. The expression of PAR-2 is specific to oral malignancies, and PAR-2 regulates the growth and invasion of oral SCC cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Xiaolei; Das, Arpita; Lackner, Andrew A.; Veazey, Ronald S.
2008-01-01
Peripheral blood and thymic double-positive (DP) CD4+CD8+ T cells from neonates have been described earlier, but the function and immunophenotypic characteristics of other tissue-derived DP T cells are not clearly understood. Here, we demonstrate the functional and immunophenotypic characteristics of DP cells in 6 different tissues, including thymus from normal neonatal rhesus macaques (Macaca mulatta) between 0 and 21 days of age. In general, intestinal DP T cells of neonates have higher percentages of memory markers (CD28+CD95+CD45RAlowCD62Llow) and proliferation compared with single-positive (SP) CD4+ and CD8+ T cells. In addition, percentages of DP T cells increase and CD62L expression decreases as animals mature, suggesting that DP cells mature and proliferate with maturity and/or antigen exposure. Consistent with this, intestinal DP T cells in neonates express higher levels of CCR5 and are the primary targets in simian immunodeficiency virus (SIV) infection. Finally, DP T cells produce higher levels of cytokine in response to mitogen stimulation compared with SP CD4+ or CD8+ T cells. Collectively, these findings demonstrate that intestinal DP T cells of neonates are proliferating, activated memory cells and are likely involved in regulating immune responses, in contrast to immature DP T cells in the thymus. PMID:18820133
Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol.
Murata, Mariko; Midorikawa, Kaoru; Kawanishi, Shosuke
2013-10-21
Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.
Regulation of expression of collagenase-3 in normal, differentiating rat osteoblasts
NASA Technical Reports Server (NTRS)
Winchester, S. K.; Bloch, S. R.; Fiacco, G. J.; Partridge, N. C.
1999-01-01
We investigated the regulation of collagenase-3 expression in normal, differentiating rat osteoblasts. Fetal rat calvarial cell cultures showed an increase in alkaline phosphatase activity reaching maximal levels between 7-14 days post-confluence, then declining with the onset of mineralization. Collagenase-3 mRNA was just detectable after proliferation ceased at day 7, increased up to day 21, and declined at later ages. Postconfluent cells maintained in non-mineralizing medium expressed collagenase-3 but did not show the developmental increase exhibited by cells switched to mineralization medium. Cells maintained in non-mineralizing medium continued to proliferate; cells in mineralization medium ceased proliferation. In addition, collagenase-3 mRNA was not detected in subcultured cells allowed to remineralize. These results suggest that enhanced accumulation of collagenase-3 mRNA is triggered by cessation of proliferation or acquisition of a mineralized extracellular matrix and that other factors may also be required. After initiation of basal expression, parathyroid hormone (PTH) caused a dose-dependent increase in collagenase-3 mRNA. Both the cyclic adenosine monophosphate (cAMP) analogue, 8-bromo-cAMP (8-Br-cAMP), and the protein kinase C (PKC) activator, phorbol myristate acetate, increased collagenase-3 expression, while the calcium ionophore, ionomycin, did not, suggesting that PTH was acting through the protein kinase A (PKA) and PKC pathways. Inhibition of protein synthesis with cycloheximide caused an increase in basal collagenase-3 expression but blocked the effect of PTH, suggesting that an inhibitory factor prevents basal expression while an inductive factor is involved with PTH action. In summary, collagenase-3 is expressed in mineralized osteoblasts and cessation of proliferation and initiation of mineralization are triggers for collagenase-3 expression. PTH also stimulates expression of the enzyme through both PKA and PKC pathways in the mineralizing osteoblast. Copyright 1999 Wiley-Liss, Inc.
Hei, Ziqing; Zhang, Ailan; Wei, Jing; Gan, Xiaoliang; Wang, Yanling; Luo, Gangjian; Li, Xiaoyun
2012-07-01
Gap junctions regulate proper kidney function by facilitating intercellular communication, vascular conduction, and tubular purinergic signaling. However, no clear relationship has been described between gap-junction function and acute kidney injury induced by the endotoxin lipopolysaccharide (LPS). Normal rat kidney epithelial cells (NRK52E cells) were seeded at high and low densities to promote or impede gap-junction formation, respectively, and establish distinctive levels of intercellular communication in culture. Cells were then challenged with LPS at various concentrations (10-1,000 ng/mL). LPS-induced formation and function of gap junctions were assessed by measuring changes in cell proliferation and colony-forming rates, fluorescent dye transmission to adjacent cells, expression levels of connexin43, and repositioning of confluent cells in response to the gap junction inhibitor oleamide or agonist retinoic acid. The cell proliferation rate and colony-forming rate of high- and low-density NRK52E cells were decreased upon LPS challenge, in a dose-dependent manner. The colony-forming rate of confluent high-density cells was significantly lower than that of low-density cells. Oleamide treatment raised the LPS-induced colony-forming rate of high-density cells, whereas retinoic acid decreased the rate. Neither oleamide nor retinoic acid significantly affected the LPS-induced colony-forming rate of low-density cells. Fluorescence transmission of high-density cells was reduced by LPS challenge, in a dose-dependent manner, but inclusion of retinoic acid increased the LPS-induced transmission of fluorescence. LPS challenge of either high- or low-density NRK52E cells resulted in down-regulated connexin43 expression. Gap-junction function plays an important role in concentration-dependent cytotoxic effect of LPS on normal rat kidney cells in vitro.
Trazzi, Stefania; Fuchs, Claudia; Valli, Emanuele; Perini, Giovanni; Bartesaghi, Renata; Ciani, Elisabetta
2013-01-01
Intellectual disability in Down syndrome (DS) appears to be related to severe proliferation impairment during brain development. Recent evidence shows that it is not only cellular proliferation that is heavily compromised in DS, but also cell fate specification and dendritic maturation. The amyloid precursor protein (APP), a gene that is triplicated in DS, plays a key role in normal brain development by influencing neural precursor cell proliferation, cell fate specification, and neuronal maturation. APP influences these processes via two separate domains, the APP intracellular domain (AICD) and the soluble secreted APP. We recently found that the proliferation impairment of neuronal precursors (NPCs) from the Ts65Dn mouse model for DS was caused by derangement of the Shh pathway due to overexpression of patched1(Ptch1), its inhibitory regulator. Ptch1 overexpression was related to increased levels within the APP/AICD system. The overall goal of this study was to determine whether APP contributes to neurogenesis impairment in DS by influencing in addition to proliferation, cell fate specification, and neurite development. We found that normalization of APP expression restored the reduced neuronogenesis, the increased astrogliogenesis, and the reduced neurite length of trisomic NPCs, indicating that APP overexpression underpins all aspects of neurogenesis impairment. Moreover, we found that two different domains of APP impair neuronal differentiation and maturation in trisomic NPCs. The APP/AICD system regulates neuronogenesis and neurite length through the Shh pathway, whereas the APP/secreted AP system promotes astrogliogenesis through an IL-6-associated signaling cascade. These results provide novel insight into the mechanisms underlying brain development alterations in DS. PMID:23740250
Tan, Xin-Yu; Chang, Shi; Liu, Wei
2014-01-01
Background/Aims To evaluate the expression of CXC motif chemokine receptor 4 (CXCR4) in the tissues of patients with hilar cholangiocarcinoma (hilar-CCA) and to investigate the cell proliferation and frequency of neural invasion (NI) influenced by RNAi-mediated CXCR4 silencing. Methods An immunohistochemical technique was used to detect the expression of CXCR4 in 41 clinical tissues, including hilar-CCA, cholangitis, and normal bile duct tissues. The effects of small interference RNA (siRNA)-mediated CXCR4 silencing were detected in the hilar-CCA cell line QBC939. Cell proliferation was determined by MTT. Expression of CXCR4 was monitored by quantitative real time polymerase chain reaction and Western blot analysis. The NI ability of hilar-CCA cells was evaluated using a perineural cell and hilar-CCA cell coculture migration assay. Results The expression of CXCR4 was significantly induced in clinical hilar-CCA tissue. There was a positive correlation between the expression of CXCR4 and lymph node metastasis/NI in hilar-CCA patients (p<0.05). Silencing of CXCR4 in tumor cell lines by siRNA led to significantly decreased NI (p<0.05) and slightly decreased cell proliferation. Conclusions CXCR4 is likely correlated with clinical recurrence of hilar-CCA. CXCR4 is involved in the invasion and proliferation of human hilar-CCA cell line QBC939, indicating that CXCR4 could be a promising therapeutic target for hilar-CCA. PMID:24672662
JEDINAK, ANDREJ; SLIVA, DANIEL
2009-01-01
In spite of the global consumption of mushrooms, only two epidemiological studies demonstrated an inverse correlation between mushroom intake and the risk of cancer. Therefore, in the present study we evaluated whether extracts from edible mushrooms Agaricus bisporus (portabella), Flammulina velutipes (enoki), Lentinula edodes (shiitake) and Pleurotus ostreatus (oyster) affect the growth of breast and colon cancer cells. Here, we identified as the most potent, P. ostreatus (oyster mushroom) which suppressed proliferation of breast cancer (MCF-7, MDA-MB-231) and colon cancer (HT-29, HCT-116) cells, without affecting proliferation of epithelial mammary MCF-10A and normal colon FHC cells. Flow cytometry revealed that the inhibition of cell proliferation by P. ostreatus was associated with the cell cycle arrest at G0/G1 phase in MCF-7 and HT-29 cells. Moreover, P. ostreatus induced the expression of the tumor suppressor p53 and cyclin-dependent kinase inhibitor p21(CIP1/WAF1), whereas inhibited the phosphorylation of retinoblastoma Rb protein in MCF-7 cells. In addition, P. ostreatus also up-regulated expression of p21 and inhibited Rb phosphorylation in HT-29 cells, suggesting that that P. ostreatus suppresses the proliferation of breast and colon cancer cells via p53-dependent as well as p53-independent pathway. In conclusion, our results indicated that the edible oyster mushroom has potential therapeutic/preventive effects on breast and colon cancer. PMID:19020765
Kubota, E; McKenzie, D T; Dutton, R W; Swain, S L
1991-01-01
Antigen-unselected helper T-cell hybridomas (Th) which activate normal resting B cells to RNA synthesis and proliferation in the presence of concanavalin A (Con A) have been developed. The response is completely Th cell dependent, and not restricted by the haplotype of the B-cell major histocompatibility complex (MHC). Culture supernatants from the Con A-stimulated Th hybridomas contain interleukin-4 (IL-4) and IL-2, but undetectable level of IL-5. The supernatant alone, however, does not induce B-cell activation or proliferation. Although the Con A-mediated Th cell-dependent B-cell response occurs in an MHC-unrestricted manner, the response of resting B cells can be blocked by monoclonal Ia antibody specific for the surface class II molecules of the responding B cell. The response is also blocked by monoclonal antibody to L3T4. Significant activation and proliferation of resting B cells can also be triggered by glutaraldehyde-fixed Th hybridomas and Con A when exogenous IL-4 is added. The stimulation with fixed Th hybridomas plus IL-4 can be inhibited by monoclonal anti-L3T4 or anti-Ia. These results suggest that maximal B-cell activation requires a direct helper T cell-B cell interaction which depends on availability of Ia on the B cell and L3T4 on the T cell, even when Con A overcomes the requirement for MHC-restricted T-cell recognition. We suggest that this signal, in conjunction with T-cell produced lymphokine IL-4, is responsible for the activation and subsequent proliferation of the B cells which occurs following interaction with T cells.
Gonzaga, Amanda C R; Campolina-Silva, Gabriel H; Werneck-Gomes, Hipácia; Moura-Cordeiro, Júnia D; Santos, Letícia C; Mahecha, Germán A B; Morais-Santos, Mônica; Oliveira, Cleida A
2017-06-01
Estrogens acting through the receptors ERα and ERβ participate in prostate normal growth and cancer. ERβ is highly expressed in the prostate epithelium, playing pro-apoptotic, anti-proliferative, and pro-differentiation roles. Apoptosis is activated by the intrinsic pathway after castration and by the extrinsic pathway after ERβ agonist treatment. This differential activation of apoptotic pathways is important since a major problem in the treatment of prostate cancer is the recurrence of tumors after androgen withdrawal. However, a comprehensive study about the pattern of apoptosis in the aging prostate is lacking, a knowledge gap that we aimed to address herein. Cellular age-related proliferative and apoptotic profiles of prostate tissue obtained from aging Wistar rats were evaluated. Cell death (caspase-3, -8, -9, TNFα) was assessed by immunohistochemistry, immunofluorescence, and TUNEL. Cell proliferation (MCM7) and cell survival factors (ERK1/2, p-ERK1/2, p-Akt, and NF-κB) were determined by immunohistochemistry. As the rats aged, the number of proliferating cells gradually reduced in the normal epithelium of all prostate lobes, while increasing in focal areas of intraepithelial proliferation. Interestingly, in areas of intraepithelial proliferation, we observed a reduction in the number of cells positive for caspase-3, -8, and -9. Regardless the animal's age, few prostate epithelial cells were positive for caspase-3, caspase-9, and TUNEL. In contrast, a progressive increase was seen in the positivity for caspase-8, especially in the atrophic epithelium of ventral prostate, which coincided with a reduction in TNFα immunoreaction. However, morphology of most caspase-8 positive cells suggests that they were not apoptotic. We also found reduced ERβ expression in the same areas. Possibly, low levels of the pro-apoptotic inductors TNFα and ERβ direct caspase-8 activity to an alternative pro-survival role in the atrophic epithelium. This hypothesis is supported by the increased expression of the key survival factors (ERK1/2, p-ERK1/2, p-Akt, and NF-κB) in these areas. Our findings reveal that, as the animals age, there is an increase of proliferation in restricted areas of the prostate epithelium, and a concomitant reduction of the apoptosis rate with an increase in cell survival induced by caspase-8, indicating a focused and spontaneous disruption of tissue homeostasis. © 2017 Wiley Periodicals, Inc.
Cancer cell metabolism: one hallmark, many faces.
Cantor, Jason R; Sabatini, David M
2012-10-01
Cancer cells must rewire cellular metabolism to satisfy the demands of growth and proliferation. Although many of the metabolic alterations are largely similar to those in normal proliferating cells, they are aberrantly driven in cancer by a combination of genetic lesions and nongenetic factors such as the tumor microenvironment. However, a single model of altered tumor metabolism does not describe the sum of metabolic changes that can support cell growth. Instead, the diversity of such changes within the metabolic program of a cancer cell can dictate by what means proliferative rewiring is driven, and can also impart heterogeneity in the metabolic dependencies of the cell. A better understanding of this heterogeneity may enable the development and optimization of therapeutic strategies that target tumor metabolism.
Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard
2016-01-01
The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems. PMID:27575790
Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan
2015-12-01
Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.
Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan
2016-01-01
Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies. PMID:26587712
Ethanol inhibits human bone cell proliferation and function in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friday, K.E.; Howard, G.A.
1991-06-01
The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantlymore » reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.« less
NASA Astrophysics Data System (ADS)
Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan
2015-12-01
Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.
Sun, Y; Wang, D; Ye, F; Hu, D-N; Liu, X; Zhang, L; Gao, L; Song, E; Zhang, D Y
2013-01-01
Purpose Müller cells have important roles in the pathogenesis of diabetic retinopathy by promoting cell proliferation and inducing the production of vascular endothelial growth factor (VEGF) under hyperglycemic conditions. The objective of this study was to determine the potential mechanism of Müller cell proliferation and VEGF production due to high-glucose conditions. Methods Primary cultured rat Müller cells were incubated with medium containing variable concentrations of glucose and/or embelin, a specific inhibitor of X-linked inhibitor of apoptosis protein (XIAP), for 72 h. The proliferation of Müller cells was assessed by the MTT assay. The expression and/or phosphorylation of 146 proteins were assessed using protein pathway array. Results High concentrations of glucose-induced Müller cell proliferation and altered expression and/or phosphorylation of 47 proteins that have been identified to have key roles in several important signaling pathways (XIAP, VEGF, HIF1α, NFκB, etc) and are involved in the regulation of cell survival, proliferation, or apoptosis. However, Müller cell alterations induced by high-glucose conditions were counteracted by the XIAP inhibitor embelin, and 26 proteins/phosphorylations (out of 47) were restored to their normal levels. Nine proteins, including NFκB p65, p-p38, tumor necrosis factor-α, urokinase-type plasminogen activator, CREB, IL-1β, HCAM, estrogen receptor-α, and p-Stat3, were involved in regulatory networks between XIAP and VEGF. Conclusions The current study suggests that XIAP may be a potential regulator that can mediate a series of pathological changes induced by high-glucose conditions in Müller cells. Therefore, embelin could be a potential agent for the prevention and treatment of diabetic retinopathy. PMID:23928877
Wang, Peng; Zhang, Jin-Chao; Zhang, Xiao-Zhou; Liu, Zhi-Qin; Chen, Que-Ting; Sun, Jing; Chen, Zhi-Qing
2009-09-01
To test the Piezoelectric property of novel biological piezoelectric ceramic HALNK and its effect on the proliferation and differentiation of rat osteoblast cells. The biological piezoelectric ceramic HALNK1/9 and HALNK5/5 were prepared by mixing Hydroxyapatite (HA) with lithium sodium potassium niobate (LNK) piezoelectric ceramic at a ratio of 1/9 and 5/5 (wt/wt), respectively. After poling treatment, the piezoelectric constants were measured. The osteoblast cells were then seeded on the surfaces of HALNK. The proliferation and differentiation activities of the osteoblast cells were evaluated by MTT assays, ALP activities and scanning electron microscopy examinations. Cells grown on the surfaces of HALNK showed normal morphology, and had better proliferation and differentiation activities than the control. The growth of osteoblastic cells on the surface of HALNK1/9 was significantly better than others. The surface of HALNK 1/9 possesses better piezoelectric property and osteogenesis potential than HALNK5/5.
Navarro, Antonia; Yin, Ping; Ono, Masanori; Monsivais, Diana; Moravek, Molly B.; Coon, John S.; Dyson, Matthew T.; Wei, Jian-Jun
2014-01-01
Context: Uterine leiomyoma, or fibroids, represent the most common benign tumors of the female reproductive tract. A newly discovered epigenetic modification, 5-hydroxymethylation (5-hmC), and its regulators, the TET (Ten Eleven Translocation) enzymes, were implicated in the pathology of malignant tumors; however, their roles in benign tumors, including uterine fibroids, remain unknown. Objective: To determine the role of 5-hmC and TET proteins in the pathogenesis of leiomyoma using human uterine leiomyoma and normal matched myometrial tissues and primary cells. Design: 5-hmC levels were determined by ELISA and immunofluorescent staining in matched myometrial and leiomyoma tissues. TET expression was analyzed by quantitative RT-PCR and immunoblotting. TET1 or TET3 were silenced or inhibited by small interfering RNA or 2-hydroxyglutarate to study their effects on 5-hmC content and cell proliferation. Results: We demonstrated significantly higher 5-hmC levels in the genomic DNA of leiomyoma tissue compared to normal myometrial tissue. The increase in 5-hmC levels was associated with the up-regulation of TET1 or TET3 mRNA and protein expression in leiomyoma tissue. TET1 or TET3 knockdown significantly reduced 5-hmC levels in leiomyoma cells and decreased cell proliferation. Treatment with 2-hydroxyglutarate, a competitive TET enzyme inhibitor, significantly decreased both 5-hmC content and cell proliferation of leiomyoma cells. Conclusion: An epigenetic imbalance in the 5-hmC content of leiomyoma tissue, caused by up-regulation of the TET1 and TET3 enzymes, might lead to discovery of new therapeutic targets in leiomyoma. PMID:25057885
Developmental Regulation of p66Shc Is Altered by Bronchopulmonary Dysplasia in Baboons and Humans
Lee, Matt K.; Pryhuber, Gloria S.; Schwarz, Margaret A.; Smith, Susan M.; Pavlova, Zdena; Sunday, Mary E.
2005-01-01
Rationale: The p66Shc adapter protein antagonizes mitogen-activated protein, or MAP, kinase, mediates oxidative stress, and is developmentally regulated in fetal mouse lungs. Objectives: To determine if p66Shc is similarly regulated in primates and in bronchopulmonary dysplasia (BPD), which results from oxidative injury to immature lungs. Methods: Normal and injured lungs from humans and baboons were evaluated by Western analysis and immunohistochemistry. Measurements and Main Results: In baboons, p66Shc decreased 80% between 125 and 175 days' gestation (p = 0.025), then doubled after term delivery at 185 days (p = 0.0013). In the hyperoxic 140-day fetal baboon BPD model, p66Shc expression persisted, and its localization shifted from the epithelium of gestational controls to the mesenchyme of diseased lungs, coincident with expression of proliferating cell nuclear antigen and cleaved poly(adenyl ribose) polymerase, a marker of apoptosis. Treatment with the antibombesin antibody 2A11 attenuated BPD, reduced cell proliferation, increased p66Shc expression 10.5-fold, and preserved epithelial p66Shc localization. p66Shc also decreased during normal human lung development, falling 87% between 18 and 24 weeks' gestation (p = 0.02). p66Shc was expressed throughout 18-week human lungs, became restricted to scattered epithelial cells by 24 weeks, and localized to isolated mesenchymal cells after term delivery. In contrast, p66Shc remained prominent in the epithelium of lungs with acute injury or mild BPD, and in the mesenchyme of lungs with severe disease. p66Shc localized to tissues expressing proliferating cell nuclear antigen and cleaved poly(adenyl ribose) polymerase. Conclusions: p66Shc expression, cell proliferation, and apoptosis are concomitantly altered during lung development and in BPD. PMID:15778491
Ji, Xiaoli; Zhang, Zhihui; Han, Ying; Song, Jiangyuan; Xu, Xiangliang; Jin, Jianqiu; Su, Sha; Mu, Dongdong; Liu, Xiaodan; Xu, Si; Cui, Hongwei; Zhao, Zhongfang; Wang, Yixiang; Liu, Hongwei
2016-11-01
The interplay between tumor cells and mesenchymal stem cells (MSCs) within tumor microenvironment plays a significant role in tumor development, and thus might be exploited for therapeutic intervention. In this study, we isolated MSCs from normal gingival tissue (GMSCs), and detected the effect of GMSCs on oral cancer cells via direct co-culture and indirect co-culture systems. The cell proliferation assay of direct co-culture showed that GMSCs could inhibit the growth of oral cancer cells. Conditioned medium derived from GMSCs (GMSCs-CM) also exerted an anticancer effect, which indicates that soluble factors in GMSCs-CM played a dominant role in GMSCs-induced cancer cell growth inhibition. To investigate the mechanism, we performed apoptosis assay by flow cytometry, and confirmed that cancer cell apoptosis induced by GMSCs could be a reason for the effect of GMSCs on the growth of oral cancer cells. Western blotting also confirmed that GMSCs could upregulate expression of pro-apoptotic genes including p-JNK, cleaved PARP, cleaved caspase-3, Bax expression and downregulate proliferation- and anti-apoptosis-related gene expression such as p-ERK1/2, Bcl-2, CDK4, cyclin D1, PCNA and survivin. Importantly, the inhibitory effect of GMSCs on cancer cells can partially be restored by blockade of JNK pathway. Moreover, animal studies showed that GMSCs exerted an anticancer effect after oral cancer cells and GMSCs were co-injected with oral cancer cells. Taken together, our data suggest that GMSCs can suppress oral cancer cell growth in vitro and in vivo via altering the surrounding microenvironment of oral cancer cells, which indicates that GMSCs have a potential use in the management of oral dysplasia and oral cancer in future.
Orynbayeva, Zulfiya; Sensenig, Richard; Polyak, Boris
2015-05-01
To successfully translate magnetically mediated cell targeting from bench to bedside, there is a need to systematically assess the potential adverse effects of magnetic nanoparticles (MNPs) interacting with 'therapeutic' cells. Here, we examined in detail the effects of internalized polymeric MNPs on primary rat endothelial cells' structural intactness, metabolic integrity and proliferation potential. The intactness of cytoskeleton and organelles was studied by fluorescent confocal microscopy, flow cytometry and high-resolution respirometry. MNP-loaded primary endothelial cells preserve intact cytoskeleton and organelles, maintain normal rate of proliferation, calcium signaling and mitochondria energy metabolism. This study provides supportive evidence that MNPs at doses necessary for targeting did not induce significant adverse effects on structural integrity and functionality of primary endothelial cells - potential cell therapy vectors.
Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.; Karlisch, Patricia
1989-01-01
A tissue-culture model system for growing skeletal-muscle cells under more dynamic conditions than found in normal tissue-culture environments is described. A computerized device presented allows mechanical stimulation of the cell's substratum by 300 to 400 pct in length in the horizontal plane. Cell growth rates and skeletal-muscle organogenesis are stimulated in this in vitro system. It is noted that longitudinal myotube growth observed is accompanied by increased rates of cell proliferation and myoblast fusion. Prestretching the collagen-coated substratum before cell plating is shown to lead to increased cell proliferation, myotube orientation, and longitudinal myotube growth. The effects of substratum stretching on myogenesis in the model system are also assessed and attributed to alterations in the cell's extracellular matrix.
The homeodomain transcription factor Cdx1 does not behave as an oncogene in normal mouse intestine.
Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P
2008-01-01
The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.
Tao, K; Chen, D; Tian, Y; Lu, X; Yang, X
2000-01-01
The relationship between the apoptosis and the expression of proliferating cell nuclear antigen (PCNA) and the clinical stages in gastric cancers was studied. By using terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) technique and PCNA immunohistochemical staining, the apoptosis and the expression of PCNA in tissue of gastric carcinoma were assayed in situ, the index of apoptosis (AI), index of PCNA (PI) and the rate of AI/PI were calculated. AI and PI in gastric cancer tissues were (6.5 +/- 3.7)% and (49.8 +/- 15.9)% respectively, and the rate of AI/PI was 0.13 +/- 0.05, which were obviously different from those of normal gastric mucosa in paragastric cancer (P < 0.01). With the advanced TNM stages of gastric carcinoma, the AI was decreased, PI was increased and the rate of AI/PI decreased in gastric carcinoma. There was significant difference in them between the gastric cancer tissues and normal gastric mucosa in pericarcinoma in TNM stage II to IV (P < 0.05). It was suggested that the decreased apoptotic cells and the increased proliferating cells were obviously related to the tumor genesis and tumor progression in gastric carcinoma. The AI, PI and the rate of AI/PI would become the prognostic factors in advanced gastric carcinoma.
Xanthine Oxidoreductase Function Contributes to Normal Wound Healing.
Madigan, Michael C; McEnaney, Ryan M; Shukla, Ankur J; Hong, Guiying; Kelley, Eric E; Tarpey, Margaret M; Gladwin, Mark; Zuckerbraun, Brian S; Tzeng, Edith
2015-04-14
Chronic, nonhealing wounds result in patient morbidity and disability. Reactive oxygen species (ROS) and nitric oxide (NO) are both required for normal wound repair, and derangements of these result in impaired healing. Xanthine oxidoreductase (XOR) has the unique capacity to produce both ROS and NO. We hypothesize that XOR contributes to normal wound healing. Cutaneous wounds were created in C57Bl6 mice. XOR was inhibited with dietary tungsten or allopurinol. Topical hydrogen peroxide (H2O2, 0.15%) or allopurinol (30 μg) was applied to wounds every other day. Wounds were monitored until closure or collected at d 5 to assess XOR expression and activity, cell proliferation and histology. The effects of XOR, nitrite, H2O2 and allopurinol on keratinocyte cell (KC) and endothelial cell (EC) behavior were assessed. We identified XOR expression and activity in the skin and wound edges as well as granulation tissue. Cultured human KCs also expressed XOR. Tungsten significantly inhibited XOR activity and impaired healing with reduced ROS production with reduced angiogenesis and KC proliferation. The expression and activity of other tungsten-sensitive enzymes were minimal in the wound tissues. Oral allopurinol did not reduce XOR activity or alter wound healing but topical allopurinol significantly reduced XOR activity and delayed healing. Topical H2O2 restored wound healing in tungsten-fed mice. In vitro, nitrite and H2O2 both stimulated KC and EC proliferation and EC migration. These studies demonstrate for the first time that XOR is abundant in wounds and participates in normal wound healing through effects on ROS production.
Cozar-Castellano, Irene; Harb, George; Selk, Karen; Takane, Karen; Vasavada, Rupangi; Sicari, Brian; Law, Brian; Zhang, Pili; Scott, Donald K.; Fiaschi-Taesch, Nathalie; Stewart, Andrew F.
2008-01-01
OBJECTIVE—Rodent insulinoma cell lines may serve as a model for designing continuously replicating human β-cell lines and provide clues as to the central cell cycle regulatory molecules in the β-cell. RESEARCH DESIGN AND METHODS—We performed a comprehensive G1/S proteome analysis on the four most widely studied rodent insulinoma cell lines and defined their flow cytometric profiles and growth characteristics. RESULTS—1) Despite their common T-antigen–derived origins, MIN6 and BTC3 cells display markedly different G1/S expression profiles; 2) despite their common radiation origins, RINm5F and INS1 cells display striking differences in cell cycle protein profiles; 3) phosphorylation of pRb is absent in INS1 and RINm5F cells; 4) cyclin D2 is absent in RINm5F and BTC3 cells and therefore apparently dispensable for their proliferation; 5) every cell cycle inhibitor is upregulated, presumably in a futile attempt to halt proliferation; 6) among the G1/S proteome members, seven are pro-proliferation molecules: cyclin-dependent kinase-1, -2, -4, and -6 and cyclins A, E, and D3; and 7) overexpression of the combination of these seven converts arrested proliferation rates in primary rat β-cells to those in insulinoma cells. Unfortunately, this therapeutic overexpression appears to mildly attenuate β-cell differentiation and function. CONCLUSIONS—These studies underscore the importance of characterizing the cell cycle at the protein level in rodent insulinoma cell lines. They also emphasize the hazards of interpreting data from rodent insulinoma cell lines as modeling normal cell cycle progression. Most importantly, they provide seven candidate targets for inducing proliferation in human β-cells. PMID:18650366
Ferrari, D; Lichtler, A C; Pan, Z Z; Dealy, C N; Upholt, W B; Kosher, R A
1998-05-01
During early stages of chick limb development, the homeobox-containing gene Msx-2 is expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the midproximal posterior margin. These domains of Msx-2 expression roughly demarcate the anterior and posterior boundaries of the progress zone, the highly proliferating posterior mesodermal cells underneath the apical ectodermal ridge (AER) that give rise to the skeletal elements of the limb and associated structures. Later in development as the AER loses its activity, Msx-2 expression expands into the distal mesoderm and subsequently into the interdigital mesenchyme which demarcates the developing digits. The domains of Msx-2 expression exhibit considerably less proliferation than the cells of the progress zone and also encompass several regions of programmed cell death including the anterior and posterior necrotic zones and interdigital mesenchyme. We have thus suggested that Msx-2 may be in a regulatory network that delimits the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed. In the present study we show that ectopic expression of Msx-2 via a retroviral expression vector in the posterior mesoderm of the progress zone from the time of initial formation of the limb bud severely impairs limb morphogenesis. Msx-2-infected limbs are typically very narrow along the anteroposterior axis, are occasionally truncated, and exhibit alterations in the pattern of formation of skeletal elements, indicating that as a consequence of ectopic Msx-2 expression the morphogenesis of large portions of the posterior mesoderm has been suppressed. We further show that Msx-2 impairs limb morphogenesis by reducing cell proliferation and promoting apoptosis in the regions of the posterior mesoderm in which it is ectopically expressed. The domains of ectopic Msx-2 expression in the posterior mesoderm also exhibit ectopic expression of BMP-4, a secreted signaling molecule that is coexpressed with Msx-2 during normal limb development in the anterior limb mesoderm, the posterior necrotic zone, and interdigital mesenchyme. This indicates that Msx-2 regulates BMP-4 expression and that the suppressive effects of Msx-2 on limb morphogenesis might be mediated in part by BMP-4. These studies indicate that during normal limb development Msx-2 is a key component of a regulatory network that delimits the boundaries of the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed, thus restricting the outgrowth and formation of skeletal elements and associated structures to the progress zone. We also report that rather large numbers of apoptotic cells as well as proliferating cells are present throughout the AER during all stages of normal limb development we have examined, indicating that many of the cells of the AER are continuously undergoing programmed cell death at the same time that new AER cells are being generated by cell proliferation. Thus, a balance between cell proliferation and programmed cell death may play a very important role in maintaining the activity of the AER. Copyright 1998 Academic Press.
Role of YAP activation in nuclear receptor CAR-mediated proliferation of mouse hepatocytes.
Abe, Taiki; Amaike, Yuto; Shizu, Ryota; Takahashi, Miki; Kano, Makoto; Hosaka, Takuomi; Sasaki, Takamitsu; Kodama, Susumu; Matsuzawa, Atsushi; Yoshinari, Kouichi
2018-06-08
Constitutive androstane receptor (CAR) is a xenobiotic-responsive nuclear receptor that is highly expressed in the liver. CAR activation induces hepatocyte proliferation and hepatocarcinogenesis in rodents, but the mechanisms remain unclear. In this study, we investigated the association of CAR-dependent cell proliferation with Yes-associated protein (YAP), which is a transcriptional cofactor controlling organ size and cell growth through the interaction with various transcriptional factors including TEAD. In mouse livers, TCPOBOP (a mouse CAR activator) treatment increased the nuclear YAP accumulation and mRNA levels of YAP target genes as well as cell-cycle related genes along with liver hypertrophy and verteporfin (an inhibitor of YAP/TEAD interaction) cotreatment tended to attenuate them. Furthermore, in cell-based reporter gene assays, CAR activation enhanced the YAP/TEAD-dependent transcription. To investigate the role of YAP/TEAD activation in the CAR-dependent hepatocyte proliferation, we sought to establish an in vitro system completely reproducing CAR-dependent cell proliferation. Since CAR was only slightly expressed in cultured mouse primary hepatocytes compared to mouse livers and no proliferation was observed after treatment with TCPOBOP, we overexpressed CAR using mouse CAR expressing adenovirus (Ad-mCAR-V5) in mouse primary hepatocytes. Ad-mCAR-V5 infection and TCPOBOP treatment induced hepatocyte proliferation. Similar results were obtained with immortalized normal mouse hepatocytes as well. In the established in vitro system, CAR-dependent proliferation was strongly inhibited by Yap knockdown and completely abolished by verteporfin treatment. Our present results obtained in in vivo and in vitro experiments suggest that YAP/TEAD activation plays key roles in CAR-dependent proliferation of murine hepatocytes.
Pistone Creydt, Virginia; Fletcher, Sabrina Johanna; Giudice, Jimena; Bruzzone, Ariana; Chasseing, Norma Alejandra; Gonzalez, Eduardo Gustavo; Sacca, Paula Alejandra; Calvo, Juan Carlos
2013-02-01
Stromal-epithelial interactions mediate both breast development and breast cancer progression. In the present work, we evaluated the effects of conditioned media (CMs) of human adipose tissue explants from normal (hATN) and tumor (hATT) breast on proliferation, adhesion, migration and metalloproteases activity on tumor (MCF-7 and IBH-7) and non-tumor (MCF-10A) human breast epithelial cell lines. Human adipose tissues were obtained from patients and the conditioned medium from hATN and hATT collected after 24 h of incubation. MCF-10A, MCF-7 and IBH-7 cells were grown and incubated with CMs and proliferation and adhesion, as well as migration ability and metalloprotease activity, of epithelial cells after exposing cell cultures to hATN- or hATT-CMs were quantified. The statistical significance between different experimental conditions was evaluated by one-way ANOVA. Tukey's post hoc tests were performed. Tumor and non-tumor breast epithelial cells significantly increased their proliferation activity after 24 h of treatment with hATT-CMs compared to control-CMs. Furthermore, cellular adhesion of these two tumor cell lines was significantly lower with hATT-CMs than with hATN-CMs. Therefore, hATT-CMs seem to induce significantly lower expression or less activity of the components involved in cellular adhesion than hATN-CMs. In addition, hATT-CMs induced pro-MMP-9 and MMP-9 activity and increased the migration of MCF-7 and IBH-7 cells compared to hATN-CMs. We conclude that the microenvironment of the tumor interacts in a dynamic way with the mutated epithelium. This evidence leads to the possibility to modify the tumor behavior/phenotype through the regulation or modification of its microenvironment. We developed a model in which we obtained CMs from adipose tissue explants completely, either from normal or tumor breast. In this way, we studied the contribution of soluble factors independently of the possible effects of direct cell contact.
Anti-tumor effects of osthole on ovarian cancer cells in vitro.
Jiang, Guoqiang; Liu, Jia; Ren, Baoyin; Tang, Yawei; Owusu, Lawrence; Li, Man; Zhang, Jing; Liu, Likun; Li, Weiling
2016-12-04
Cnidium monnieri (L.) Cusson is a commonly used traditional Chinese medicine to treat gynecological disease in some countries. Osthole, an active O-methylated coumadin isolated from Cnidium monnieri (L.) Cusson, has been shown to induce various beneficial biochemical effects such as anti-seizure and anti-inflammatory effects. However, the anti-tumor mechanism of osthole is not well known. Here, we show that osthole inhibited the proliferation and migration of two widely used ovarian cancer cell lines, A2780 and OV2008 cells, in a dose-dependent manner. The study investigated the molecular mechanisms underlying ovarian cancer cells proliferation, apoptosis, cell cycle arrest and migration triggered by osthole. Ovarian cancer cell lines A2780, OV2008 and normal ovarian cell line IOSE80 were used as experimental model. MTT assay was employed to evaluate cell viability. Flow cytometry assays were performed to confirm apoptosis and cell cycle. We employed wound healing and transwell assays to delineate invasive and migratory potential triggered by osthole. MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with osthole without effect on normal ovarian cells. Flow cytometric analysis revealed that osthole suppressed cells proliferation by promoting G2/M arrest and inducing apoptosis. The underlying mechanisms involved were regulation of the relative apoptotic protein Bcl-2, Bax and Caspase 3/9. In addition, wound healing and transwell assays revealed that the migratory potential and activity of matrix metalloproteinase MMP-2 and MMP-9 were markedly inhibited when cells were exposed to osthole. Our findings suggested that osthole has the potential to be used in novel anti-cancer therapeutic formulations for ovarian cancer treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The mechanism of retrovirus suppression of human T cell proliferation in vitro.
Copelan, E A; Rinehart, J J; Lewis, M; Mathes, L; Olsen, R; Sagone, A
1983-10-01
Immunosuppression is commonly associated with retrovirus-induced animal tumors. Studies in the murine and feline retrovirus systems suggest that the 15,000-dalton envelope protein (p15E) of the virion may contribute to immunosuppression by interfering with normal lymphocyte function. We examined the effect of inactivated feline leukemia virus (UV-FeLV) and p15E derived from this virus on concanavalin A (Con A) driven human T cell proliferation. Virus and p15E markedly suppressed mononuclear cell proliferative response to Con A. Suppression was not due to inhibition of monocyte accessory cell function, or interleukin 1 (IL 1) secretion. In fact, the presence of monocytes partially protected T cells from UV-FeLV suppression. UV-FeLV, however, suppressed T cell secretion of and response to interleukin 2 (IL 2). We conclude that UV-FeLV and derived p15E inhibit T cell proliferation by direct inhibition of T cell function. These findings, extended to the in vivo situations, suggest that retrovirus-associated suppression of the immune response involves the induction of T cell but not monocyte dysfunction.
Rahsaz, Marjan; Geramizadeh, Bita; Kaviani, Maryam; Marzban, Saeed
2015-04-01
Human epidermal keratinocytes are currently established as a treatment for burns and wounds and have laboratory applications. Keratinocyte culture contamination by unwanted cells and inhibition of cell proliferation are barriers in primary keratinocyte culture. According to the recent literature, these cells are hard to culture. The present study was conducted to evaluate the efficacy of gelatin-coated surfaces in keratinocyte cultures. After enzymatic isolation of keratinocytes from normal epidermis by trypsin, the cells were cultured on gelatin-coated flasks in serum-free medium. Another group of cells were cultured as a control group without gelatin coating. We showed positive effects of surface coating with gelatin on the primary culture of keratinocytes. Culture of these cells on a gelatincoated surface showed better proliferation with suitable morphology. By using gelatin, adhesion of these cells to the surface was more efficient and without contamination by small round cells. Successful primary culture of keratinocytes on a gelatin-coated surface may provide better yield and optimal number of cells for research and clinical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos-Solano, Moisés, E-mail: mrsolano84@gmail.com; Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud; Meza-Canales, Ivan D., E-mail: imezacanales@ice.mpg.de
According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviralmore » gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation.« less
Regulators of Intestinal Epithelial Migration in Sepsis.
Meng, Mei; Klingensmith, Nathan J; Liang, Zhe; Lyons, John D; Fay, Katherine T; Chen, Ching-Wen; Ford, Mandy L; Coopersmith, Craig M
2018-02-08
The gut is a continuously renewing organ, with cell proliferation, migration and death occurring rapidly under basal conditions. Since the impact of critical illness on cell movement from crypt base to villus tip is poorly understood, the purpose of this study was to determine how sepsis alters enterocyte migration. Wild type, transgenic and knockout mice were injected with 5-bromo-2'deoxyuridine (BrdU) to label cells in S phase before and after the onset of cecal ligation and puncture and were sacrificed at pre-determined endpoints to determine distance proliferating cells migrated up the crypt-villus unit. Enterocyte migration rate was decreased from 24-96 hours following sepsis. BrdU was not detectable on villi 6 days after sham laparotomy, meaning all cells had migrated the length of the gut and been exfoliated into its lumen. However, BrdU positive cells were detectable on villi 10 days after sepsis. Multiple components of gut integrity altered enterocyte migration. Sepsis decreased crypt proliferation, which further slowed enterocyte transit as mice injected with BrdU after the onset of sepsis (decreased proliferation) had slower migration than mice injected with BrdU prior to the onset of sepsis (normal proliferation). Decreasing intestinal apoptosis via gut-specific overexpression of Bcl-2 prevented sepsis-induced slowing of enterocyte migration. In contrast, worsened intestinal hyperpermeability by genetic deletion of JAM-A increased enterocyte migration. Sepsis therefore significantly slows enterocyte migration, and intestinal proliferation, apoptosis and permeability all affect migration time, which can potentially be targeted both genetically and pharmacologically.
Effect of nickel chloride on cell proliferation.
D'Antò, Vincenzo; Valletta, Rosa; Amato, Massimo; Schweikl, Helmut; Simeone, Michele; Paduano, Sergio; Rengo, Sandro; Spagnuolo, Gianrico
2012-01-01
Metal alloys used in dentistry and in other biomedical fields may release nickel ions in the oral environment. The release of nickel might influence the normal biological and physiological processes, including tissue wound healing, cell growth and proliferation. The aim of this study was to evaluate in vitro the effects of nickel ions on cell cycle, viability and proliferation. Human osteosarcoma cells (U2OS) and human keratinocytes (HaCat) were exposed to different nickel chloride (NiCl(2)) concentrations (0 - 5mM) for various periods exposure. The viability of cultured cells was estimated by flow cytometry using Annexin V-FITC and Propidium Iodide (PI). Cell proliferation was evaluated by using carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and flow cytometry. Finally, the effects of NiCl(2) on cell cycle were assessed and quantified by flow cytometry. Statistical analysis was performed by means of ANOVA followed by Tukey's test. NiCl(2) induced a dose and time dependent decrease in cell viability. After 24h, 1mM NiCl(2) caused a similar and significant reduction of viability in U2OS and HaCat cells, while higher NiCl(2) concentrations and longer exposure times showed a reduced cytotoxic effect in HaCat as compared to U2OS cells. Exposure to NiCl(2) caused a dose- and time-dependent inhibition of cell proliferation in both cell lines tested, with a prominent effect on U2OS cells. Furthermore, both cell lines exposed to NiCl(2) exhibited significant changes in cell cycle distribution after 24h exposure 2mM NiCl2, as compared to untreated cells (p<0.05). Our results indicate that release of nickel ions may affect cell proliferation. The inhibition of cell growth by NiCl2 is mediated by both cell cycle arrest and by induction of cell death.
Effect of Nickel Chloride on Cell Proliferation
D’Antò, Vincenzo; Valletta, Rosa; Amato, Massimo; Schweikl, Helmut; Simeone, Michele; Paduano, Sergio; Rengo, Sandro; Spagnuolo, Gianrico
2012-01-01
Objective: Metal alloys used in dentistry and in other biomedical fields may release nickel ions in the oral environment. The release of nickel might influence the normal biological and physiological processes, including tissue wound healing, cell growth and proliferation. The aim of this study was to evaluate in vitro the effects of nickel ions on cell cycle, viability and proliferation. Materials and Methods: Human osteosarcoma cells (U2OS) and human keratinocytes (HaCat) were exposed to different nickel chloride (NiCl2) concentrations (0 - 5mM) for various periods exposure. The viability of cultured cells was estimated by flow cytometry using Annexin V-FITC and Propidium Iodide (PI). Cell proliferation was evaluated by using carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and flow cytometry. Finally, the effects of NiCl2 on cell cycle were assessed and quantified by flow cytometry. Statistical analysis was performed by means of ANOVA followed by Tukey’s test. Results: NiCl2 induced a dose and time dependent decrease in cell viability. After 24h, 1mM NiCl2 caused a similar and significant reduction of viability in U2OS and HaCat cells, while higher NiCl2 concentrations and longer exposure times showed a reduced cytotoxic effect in HaCat as compared to U2OS cells. Exposure to NiCl2 caused a dose- and time-dependent inhibition of cell proliferation in both cell lines tested, with a prominent effect on U2OS cells. Furthermore, both cell lines exposed to NiCl2 exhibited significant changes in cell cycle distribution after 24h exposure 2mM NiCl2, as compared to untreated cells (p<0.05). Conclusion: Our results indicate that release of nickel ions may affect cell proliferation. The inhibition of cell growth by NiCl2 is mediated by both cell cycle arrest and by induction of cell death. PMID:23198004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Haitao; Du, Yuxuan; Zhang, Xulong
Ahr activation is known to be associated with synovitis and exacerbated rheumatoid arthritis (RA), but its contributions to bone loss have not been completely elucidated. Osteoblast proliferation and differentiation are abnormal at the erosion site in RA. Here, we reported that the expression of Ahr was increased in the hind paws' bone upon collagen-induced arthritis (CIA) in mice, and the levels of Ahr were negatively correlated with bone mineral density (BMD). In addition, immunofluorescent staining showed that the high expression of Ahr was mainly localized in osteoblasts from the CIA mice compared to normal controls. Moreover, the luciferase intensity ofmore » Ahr in the nucleus increased by 12.5% in CIA osteoblasts compared to that in normal controls. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activation of the Ahr inhibited pre-osteoblast MC3T3-E1 cellular proliferation and differentiation in a dose-dependent manner. Interestingly, the levels of alkaline phosphatase (ALP) mRNA expression in the osteoblasts of CIA mice were reduced compared to normal controls. In contrast, decreased ALP expression by activated Ahr was completely reversed after pretreatment with an Ahr inhibitor (CH-223191) in MC3T3-E1 cell lines and primary osteoblasts on day 5. Our data further showed that activation of Ahr promoted the phosphorylation of ERK after 5 days. Moreover, Ahr-dependent activation of the ERK signaling pathway decreased the levels of proliferation cells and inhibited ALP activity in MC3T3-E1 cells. These results demonstrated that the high expression of Ahr may suppress osteoblast proliferation and differentiation through activation of the ERK signaling pathway, further enabling bone erosion in CIA mice. - Highlights: • The upregulation of Ahr was localized in osteoblasts of CIA mice. • The overexpression of Ahr suppressed osteoblast development. • The Ahr activated ERK signaling pathway to exacerbate bone erosion.« less
Mazerolles, Fabienne; Stolzenberg, Marie-Claude; Pelle, Olivier; Picard, Capucine; Neven, Benedicte; Fischer, Alain; Magerus-Chatinet, Aude; Rieux-Laucat, Frederic
2018-01-01
Autoimmune lymphoproliferative syndrome (ALPS) with FAS mutation (ALPS-FAS) is a nonmalignant, noninfectious, lymphoproliferative disease with autoimmunity. Given the central role of natural regulatory T cells (nTregs) in the control of lymphoproliferation and autoimmunity, we assessed nTreg-suppressive function in 16 patients with ALPS-FAS. The proportion of CD25 high CD127 low Tregs was lower in ALPS-FAS patients than in healthy controls. This subset was correlated with a reduced CD25 expression in CD3 + CD4 + T cells from ALPS patients and thus an abnormally low proportion of CD25 high FOXP3 + Helios + T cells. The ALPS patients also displayed a high proportion of naïve Treg (FOXP3 low CD45RA + ) and an unusual subpopulation (CD4 + CD127 low CD15s + CD45RA + ). Despite this abnormal phenotype, the CD25 high CD127 low Tregs' suppressive function was unaffected. Furthermore, conventional T cells from FAS -mutated patients showed normal levels of sensitivity to Treg suppression. An abnormal Treg phenotype is observed in circulating lymphocytes of ALPS patients. However, these Tregs displayed a normal suppressive function on T effector proliferation in vitro . This is suggesting that lymphoproliferation observed in ALPS patients does not result from Tregs functional defect or T effector cells insensitivity to Tregs suppression.
Grineva, N I; Borovkova, T V; Sats, N V; Kurabekova, R M; Rozhitskaia, O S; Solov'ev, G Ia; Pantin, V I
1995-08-01
G11 mouse cells and SH2 rat cells transformed with simian adenovirus SA7 DNA showed inheritable oncogen-specific phenotypic normalization when treated with sense and antisense oligonucleotides complementary to long RNA sequences, plus or minus strands of the integrated adenovirus oncogenes E1A and E1B. Transitory treatment of the cells with the oligonucleotides in the absence of serum was shown to cause the appearance of normalized cell lines with fibroblastlike morphology, slower cell proliferation, and lack of ability to form colonies in soft agar. Proliferative activity and adhesion of the normalized cells that established cell lines were found to depend on the concentration of growth factors in the cultural medium. In some of the cell lines, an inhibition of transcription of the E1 oncogenes was observed. The normalization also produced cells that divided 2 - 5 times and died and cells that reverted to a transformed phenotype in 2 - 10 days. The latter appeared predominantly upon the action of the antisense oligonucleotides.
Selenium in bone health: roles in antioxidant protection and cell proliferation.
Zeng, Huawei; Cao, Jay J; Combs, Gerald F
2013-01-10
Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health.
Selenium in Bone Health: Roles in Antioxidant Protection and Cell Proliferation
Zeng, Huawei; Cao, Jay J.; Combs, Gerald F.
2013-01-01
Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health. PMID:23306191
2008-10-01
recombinant KNG (25 ng/ml) for 24 h period resulted in a 5-fold increase in the levels of phospho- HSP27 and a 3-fold increase in ERK1/2...the levels of phospho- HSP27 . KNG increased normal and pagetic marrow stromal cell proliferation at 1.4-fold and 2.5-fold, respectively. KNG in the...presence of an ERK inhibitor peptide did not stimulate pagetic marrow stromal cell proliferation. Furthermore, siRNA suppression of HSP27 expression
2006-10-01
recombinant KNG (25 ng/ml) for 24 h period resulted in a 5-fold increase in the levels of phospho- HSP27 and a 3-fold increase in ERK1/2 phosphorylation in...levels of phospho- HSP27 . KNG increased normal and pagetic marrow stromal cell proliferation at 1.4-fold and 2.5-fold, respectively. KNG in the presence of...an ERK inhibitor peptide did not stimulate pagetic marrow stromal cell proliferation. Furthermore, siRNA suppression of HSP27 expression
A novel PKC-ι inhibitor abrogates cell proliferation and induces apoptosis in neuroblastoma.
Pillai, Prajit; Desai, Shraddha; Patel, Rekha; Sajan, Mini; Farese, Robert; Ostrov, David; Acevedo-Duncan, Mildred
2011-05-01
Protein Kinase C-iota (PKC-ι), an atypical protein kinase C isoform manifests its potential as an oncogene by targeting various aspects of cancer cells such as growth, invasion and survival. PKC-ι confers resistance to drug-induced apoptosis in cancer cells. The acquisition of drug resistance is a major obstacle to good prognosis in neuroblastoma. The focus of this research was to identify the efficacy of [4-(5-amino-4-carbamoylimidazol-1-yl)-2,3-dihydroxycyclopentyl] methyl dihydrogen phosphate (ICA-1) as a novel PKC-ι inhibitor in neuroblastoma cell proliferation and apoptosis. ICA-1 specifically inhibits the activity of PKC-ι but not that of PKC-zeta (PKC-ζ), the closely related atypical PKC family member. The IC(50) for the kinase activity assay was approximately 0.1μM which is 1000 times less than that of aurothiomalate, a known PKC-ι inhibitor. Cyclin dependent kinase 7 (Cdk7) phosphorylates cyclin dependent kinases (cdks) and promotes cell proliferation. Our data shows that PKC-ι is an in vitro Cdk7 kinase and the phosphorylation of Cdk7 by PKC-ι was potently inhibited by ICA-1. Furthermore, our data shows that neuroblastoma cells proliferate via a PKC-ι/Cdk7/cdk2 cell signaling pathway and ICA-1 mediates its antiproliferative effects by inhibiting this pathway. ICA-1 (0.1μM) inhibited the in vitro proliferation of BE(2)-C neuroblastoma cells by 58% (P=0.01). Additionally, ICA-1 also induced apoptosis in neuroblastoma cells. Interestingly, ICA-1 did not affect the proliferation of normal neuronal cells suggesting its potential as chemotherapeutic with low toxicity. Hence, our results emphasize the potential of ICA-1 as a novel PKC-ι inhibitor and chemotherapeutic agent for neuroblastoma. Published by Elsevier Ltd.
Link between DNA damage and centriole disengagement/reduplication in untransformed human cells.
Douthwright, Stephen; Sluder, Greenfield
2014-10-01
The radiation and radiomimetic drugs used to treat human tumors damage DNA in both cancer cells and normal proliferating cells. Centrosome amplification after DNA damage is well established for transformed cell types but is sparsely reported and not fully understood in untransformed cells. We characterize centriole behavior after DNA damage in synchronized untransformed human cells. One hour treatment of S phase cells with the radiomimetic drug, Doxorubicin, prolongs G2 by at least 72 h, though 14% of the cells eventually go through mitosis in that time. By 72 h after DNA damage we observe a 52% incidence of centriole disengagement plus a 10% incidence of extra centrioles. We find that either APC/C or Plk activities can disengage centrioles after DNA damage, though they normally work in concert. All disengaged centrioles are associated with γ-tubulin and maturation markers and thus, should in principle be capable of reduplicating and organizing spindle poles. The low incidence of reduplication of disengaged centrioles during G2 is due to the p53-dependent expression of p21 and the consequent loss of Cdk2 activity. We find that 26% of the cells going through mitosis after DNA damage contain disengaged or extra centrioles. This could produce genomic instability through transient or persistent spindle multipolarity. Thus, for cancer patients the use of DNA damaging therapies raises the chances of genomic instability and evolution of transformed characteristics in proliferating normal cell populations. © 2014 Wiley Periodicals, Inc.
Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtado, Paola A.; Vora, Siddharth; Sume, Siddika Selva
2008-02-01
Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression.more » In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-{alpha}-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.« less
Geiger, Pamina; Mayer, Barbara; Wiest, Irmi; Schulze, Sandra; Jeschke, Udo; Weissenbacher, Tobias
2016-11-08
Galectin-1 (gal-1) belongs to the family of β-galactoside-binding proteins which primarily recognizes the Galβ1-4GlcNAc sequences of oligosaccharides associated with several cell surface glycoconjugates. The lectin recognizes correspondent glycoepitopes on human breast cancer cells. Galectin-1 is expressed both in normal and malignant tissues. Lymphatic organs naturally possessing high rates of apoptotic cells, express high levels of Galectin-1. Furthermore galectin-1 can initiate T cell apoptosis. Binding of galectin-1 to trophoblast tumor cells presenting the oncofetal Thomsen-Friedenreich (TF) carbohydrate antigen inhibits tumor cell proliferation. In this study we examined the impact galectin-1 has in vitro on cell proliferation, apoptotic potential and metabolic activity of MCF-7 and T-47D breast cancer cells in dependence to their expression of the Thomsen-Friedenreich (TF) tumor antigen. For proliferation and apoptosis assays cells were grown in presence of 10, 30 and 60 μg gal-1/ml medium. Cell proliferation was determined by a BrdU uptake ELISA. Detection of apoptotic cells was done by M30 cyto death staining, in situ nick translation and by a nucleosome ELISA method. Furthermore we studied the impact galectin-1 has on the metabolic activity of MCF-7 and T-47D cells in a homotypic three-dimensional spheroid cell culture model mimicking a micro tumour environment. Gal-1 inhibited proliferation of MCF-7 cells (strong expression of the TF epitope) but did not significantly change proliferation of T-47D cells (weak expression of the TF epitope). The incubation of MCF-7 cells with gal-1 raised number of apoptotic cells significantly. Treating the spheroids with 30 μg/ml galectin-1 in addition to standard chemotherapeutic regimes (FEC, TAC) resulted in further suppression of the metabolic activity in MCF-7 cells whereas T-47D cells were not affected. Our results demonstrate that galectin-1 can inhibit proliferation und metabolic cell activity and induce apoptosis in breast tumor cell lines with high expression levels of the Thomsen-Friedenreich (TF) antigen in monolayer and spheroid cell culture models.
Du, Guohui; Cao, Dongmei; Meng, Lingzheng
2017-05-01
The present study aimed to investigate the role and the molecular mechanisms underlying the effects of microRNA-21 (miR-21) on the proliferation, apoptosis and colony formation of cervical cancer cells, and to examine the role of miR-21 in mediating the sensitivity of cervical cancer cells to paclitaxel (PTX). Reverse transcription‑quantitative polymerase chain reaction was employed to determine the level of miR‑21 in various cervical cancer and normal cervical cells. The results revealed that the expression levels of miR-21 in cervical cancer cells were markedly higher when compared with normal cervical cells. Subsequently, a miR‑21 inhibitor or negative control (NC) was transfected into cervical cancer cells. Cell viability, colony formation and apoptosis were then analyzed using an MTT assay, crystal violet and Annexin V-fluorescein isothiocyanate/propidium iodide staining, respectively. The protein expression level of B-cell lymphoma‑2 (Bcl‑2), Bcl‑2‑associated X (Bax), programmed cell death 4 (PDCD4), survivin, c‑myc, phosphatase and tensin homolog (PTEN) and phosphorylated (p)‑AKT were determined by western blot analysis. The sensitivity of cervical cancer cells to PTX (25, 50 and 100 µg/ml) was characterized using an MTT assay. The results demonstrated that the miR-21 inhibitor promoted apoptosis of cervical cancer cells and suppressed their proliferation and colony formation when compared with the NC. In addition, the expression levels of Bcl‑2, survivin, c‑myc and p‑AKT were significantly downregulated in cells transfected with the miR‑21 inhibitor, whilst the expression levels of Bax, PDCD4 and PTEN were significantly upregulated. Furthermore, the miR‑21 inhibitor significantly enhanced the inhibition efficacy of PTX at a range of concentrations in cervical cancer cells. It was concluded that inhibition of miR‑21 suppressed cell proliferation and colony formation through regulating the PTEN/AKT pathway, and improved PTX sensitivity in cervical cancer cells. The results of the present study may contribute to the development of miRNA‑based cervical cancer therapy in the future.
Quan, Taihao; Xu, Yiru; Qin, Zhaoping; Robichaud, Patrick; Betcher, Stephanie; Calderone, Ken; He, Tianyuan; Johnson, Timothy M; Voorhees, John J; Fisher, Gary J
2014-04-01
Yes-associated protein (YAP) is a transcriptional co-activator of hippo signaling pathway, which plays an important role in organ size control and tumorigenesis. Here we report that YAP and its downstream transcriptional targets CCN1 and CCN2 are markedly elevated in keratinocytes in human skin basal cell carcinoma tumor islands. In human keratinocytes, knockdown of YAP significantly reduced expression of CCN1 and CCN2, and repressed proliferation and survival. This inhibition of proliferation and survival was rescued by restoration of CCN1 expression, but not by CCN2 expression. In basal cell carcinoma stroma, CCN2-regulated genes type I collagen, fibronectin, and α-smooth muscle actin were highly expressed. Furthermore, atomic force microscopy revealed increased tissue stiffness in basal cell carcinoma stroma compared to normal dermis. These data provide evidence that up-regulation of YAP in basal cell carcinoma impacts both aberrant keratinocyte proliferation, via CCN1, and tumor stroma cell activation and stroma remodeling, via CCN2. Targeting YAP and/or CCN1 and CCN2 may provide clinical benefit in basal cell carcinoma. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Cracchiolo, Bernadette M; Heller, Debra S; Clement, Paul M J; Wolff, Edith C; Park, Myung-Hee; Hanauske-Abel, Hartmut M
2004-07-01
The mature eukaryotic translation initiation factor 5A contains the unusual amino acid hypusine, formed post-translationally from a specific lysine residue and essential for proliferation of eukaryotic cells. We hypothesized that the major eIF5A isoform, eIF5A-1, is an in situ biomarker for proliferation. NIH-353, a polyclonal immunoreagent specific for hypusine-containing eIF5A-1, was used to test this proposal in biopsies of vulvar high-grade intraepithelial neoplasia (VIN), characterized by the presence of proliferating cells throughout the thickness of the epithelium. Methods. Formalin-fixed and paraffin-embedded archival samples with an independently established diagnosis of VIN 3 were stained immunohistochemically after antigen retrieval, employing NIH-353 and, for comparison, the standard Ki-67 antibody. NIH-353 labeled neoplastic keratinocytes throughout the thickness of the epithelium in all VIN 3 samples. Malignant cells in a case of focally invasive squamous cell carcinoma also stained strongly for mature, hypusine-containing eIF5A-1. Epithelium adjacent to these lesions, though still of apparently normal morphology, was immunoreactive throughout its full thickness. At inflammatory foci of lesional sites, solitary reactive lymphocytes were positive, as were individual proliferating cells within dermal appendages. The submucosal stroma lacked reactive cells. NIH-353 identifies mature eIF5A-1 as an in situ biomarker for proliferation. Like Ki-67, this immunoreagent promises broad applicability in histopathological diagnosis and may be helpful in outcome prediction. In contrast to Ki-67, NIH-353 visualizes a molecular target for antineoplastic therapy, and thus may guide the development and clinical testing of drugs that, like the fungicide ciclopirox, inhibit hypusine formation and cell proliferation.
Restoration of C/EBPα in dedifferentiated liposarcoma induces G2/M cell cycle arrest and apoptosis.
Wu, Yuhsin V; Okada, Tomoyo; DeCarolis, Penelope; Socci, Nicholas; O'Connor, Rachael; Geha, Rula C; Joy Somberg, C; Antonescu, Cristina; Singer, Samuel
2012-04-01
Well-differentiated liposarcoma (WDLS) and dedifferentiated liposarcoma (DDLS) represent the most common biological group of liposarcoma, and there is a pressing need to develop targeted therapies for patients with advanced disease. To identify potential therapeutic targets, we sought to identify differences in the adipogenic pathways between DDLS, WDLS, and normal adipose tissue. In a microarray analysis of DDLS (n = 84), WDLS (n = 79), and normal fat (n = 23), C/EBPα, a transcription factor involved in cell cycle regulation and differentiation, was underexpressed in DDLS when compared to both WDLS and normal fat (15.2- and 27.8-fold, respectively). In normal adipose-derived stem cells, C/EBPα expression was strongly induced when cells were cultured in differentiation media, but in three DDLS cell lines, this induction was nearly absent. We restored C/EBPα expression in one of the cell lines (DDLS8817) by transfection of an inducible C/EBPα expression vector. Inducing C/EBPα expression reduced proliferation and caused cells to accumulate in G2/M. Under differentiation conditions, the cell proliferation was reduced further, and 66% of the DDLS cells containing the inducible C/EBPα expression vector underwent apoptosis as demonstrated by annexin V staining. These cells in differentiation conditions expressed early adipocyte-specific mRNAs such as LPL and FABP4, but they failed to accumulate intracellular lipid droplets, a characteristic of mature adipocytes. These results demonstrate that loss of C/EBPα is an important factor in suppressing apoptosis and maintaining the dedifferentiated state in DDLS. Restoring C/EBPα may be a useful therapeutic approach for DDLS. Copyright © 2011 Wiley Periodicals, Inc.
Walter C. Shortle; Rakesh Minocha
1999-01-01
Cancer is one of the most feared diseases. It involves the rapid and uncontrolled proliferation of "abnormal" cells in the body. The cancerous cell mass disrupts normal functioning of the organ or tissue in which it is found. Current treatments involve surgery, radiotherapy, and chemotherapy often applied in some combination. Naturally occurring...
BERNAL, SAMUEL D.; ONA, ENRIQUE T.; RIEGO-JAVIER, AILEEN; DE VILLA, ROMULO; CRISTAL-LUNA, GLORIA R.; LAGUATAN, JOSEPHINE B.; BATAC, EUNICE R.; CANLAS, OSCAR Q.
2012-01-01
Hematopoietic stem cells collected by leukapheresis of a patient with metastatic ovarian carcinoma (OVCA) were induced into dendritic cell (DC) differentiation and fused with liposomal constructs of autologous and allogeneic ovarian carcinoma antigens (DC-OVCA). The proliferation of autologous T cells induced by DCs was determined by [3H]-thymidine uptake. Maximal T-cell proliferation was observed in co-cultures of DCs fused with liposomal OVCA constructs compared with intact autologous OVCA cells. The combination of autologous and allogeneic liposomal OVCA constructs induced greater T-cell proliferation than either alone. The cytotoxicity of DC-activated T cells against various target cells were analyzed by a 51Cr-release assay. The combination of autologous and allogeneic liposomal OVCA constructs showed the highest stimulation of T cell-mediated cytotoxicity against OVCA cells, but had minimal cytotoxicity against normal fibroblasts or leukemia cells. The liposomal preparations of DC-OVCA were injected monthly into a patient with metastatic ovarian carcinoma whose tumors progressed following multiple courses of chemotherapy. DCs analyzed from the patient post-immunization showed 2- to 3-fold greater OVCA cytotoxicity compared to pre-immunization DCs. Immunoblots using the patient's serum showed reactivity with a number of proteins from ovarian cancer extracts, but not in normal fibroblasts and breast cancer. Following the DC-OVCA treatment, the metastatic lesions progressively decreased in size to the point of being undetectable by serial CAT scans. Seven years following the initial diagnosis, the patient continues to be free of cancer. This report described the anticancer immune reactivity and anti-tumor response induced by DCs sensitized with liposomal constructs of OVCA antigens. Immune cell therapy may therefore be a useful adjunct to surgery and chemotherapy for the treatment of ovarian cancer. PMID:22740858
Huang, Peng; Chang, Shi; Jiang, Xiaolin; Su, Juan; Dong, Chao; Liu, Xu; Yuan, Zhengtai; Zhang, Zhipeng; Liao, Huijun
2015-01-01
A high rate of glycolytic flux, even in the presence of oxygen, is a key metabolic hallmark of cancer cells. Lactate, the end product of glycolysis, decreases the extracellular pH and contributes to the proliferation, invasiveness and metastasis of tumor cells. CD147 play a crucial role in tumorigenicity, invasion and metastasis; and CD147 also interacts strongly and specifically with monocarboxylate transporter1 (MCT1) that mediates the transport of lactate. The objective of this study was to determine whether CD147 is involved, via its association with MCT1 to transport lactate, in glycolysis, contributing to the progression of thyroid carcinoma. The expression levels of CD147 in surgical specimens of normal thyroid, nodular goiter (NG), well-differentiated thyroid carcinoma (WDTC), and undifferentiated thyroid carcinoma (UDTC) were determined using immunohistochemical techniques. The effects of CD147 silencing on cell proliferation, invasiveness, metastasis, co-localization with MCT1, glycolysis rate and extracellular pH of thyroid cancer cells (WRO and FRO cell lines) were measured after CD147 was knocked-down using siRNA targeting CD147. Immunohistochemical analysis of thyroid carcinoma (TC) tissues revealed significant increases in signal for CD147 compared with normal tissue or NG, while UDTC expressed remarkably higher levels of CD147 compared with WDTC. Furthermore, silencing of CD147 in TC cells clearly abrogated the expression of MCT1 and its co-localization with CD147 and dramatically decreased both the glycolysis rate and extracellular pH. Thus, cell proliferation, invasiveness, and metastasis were all significantly decreased by siRNA. These results demonstrate in vitro that the expression of CD147 correlates with the degree of dedifferentiation of thyroid cancer, and show that CD147 interacts with MCT1 to regulate tumor cell glycolysis, resulting in the progression of thyroid carcinoma. PMID:25755717
MicroRNA-21 promotes proliferation of rat hepatocyte BRL-3A by targeting FASLG.
Li, J J; Chan, W H; Leung, W Y; Wang, Y; Xu, C S
2015-04-27
Rat liver regeneration (RLR) induced by partial hepatectomy involves cell proliferation regulated by numerous factors, including microRNAs (miRNAs). miRNA high-throughput sequencing has been established and used to analyze miRNA expression profiles. This study showed that 39 miRNAs were related to RLR through the analysis of miRNA high-throughput sequencing. Their role toward rat normal hepatocyte line BRL-3A was studied by gain- and loss-of-function analyses, and one of them, microRNA-21 (miR-21), obviously upregulated and promoted BRL-3A cell proliferation. Using bioinformatics to search for miR-21 targets revealed that Fas ligand (FASLG) is one of miR-21's target genes. A dual-luciferase report assay and Western blot assay showed that miR-21 directly targeted the 3'-untranslated region of FASLG and inhibited the expression of FASLG, which suggests that miR-21 promoted BRL-3A cell proliferation by reducing FASLG expression.
Nishioka, Tatsuji; Arima, Naoaki; Kano, Kuniyuki; Hama, Kotaro; Itai, Eriko; Yukiura, Hiroshi; Kise, Ryoji; Inoue, Asuka; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Moolenaar, Wouter H.; Chun, Jerold; Aoki, Junken
2016-01-01
The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation. PMID:27005960
Nishioka, Tatsuji; Arima, Naoaki; Kano, Kuniyuki; Hama, Kotaro; Itai, Eriko; Yukiura, Hiroshi; Kise, Ryoji; Inoue, Asuka; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Moolenaar, Wouter H; Chun, Jerold; Aoki, Junken
2016-03-23
The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, Amrita; Jones, Michael K.; Department of Medicine, University of California, Irvine, CA
2013-08-09
Highlights: •Malignant colonic epithelial cells express VEGF and its receptors. •Cultured colon cancer cells secrete VEGF into the medium. •Inhibition of VEGF receptor significantly decreases colon cancer cell proliferation. •VEGF is critical for colon cancer cell growth. -- Abstract: Vascular endothelial growth factor A (referred to as VEGF) is implicated in colon cancer growth. Currently, the main accepted mechanism by which VEGF promotes colon cancer growth is via the stimulation of angiogenesis, which was originally postulated by late Judah Folkman. However, the cellular source of VEGF in colon cancer tissue; and, the expression of VEGF and its receptors VEGF-R1 andmore » VEGF-R2 in colon cancer cells are not fully known and are subjects of controversy. Material and methods: We examined and quantified expression of VEGF, VEGF-R1 and VEGF-R2 in three different human colonic tissue arrays containing sections of adenocarcinoma (n = 43) and normal mucosa (n = 41). In human colon cancer cell lines HCT116 and HT29 and normal colon cell lines NCM356 and NCM460, we examined expression of VEGF, VEGF-R1 and VEGF-R2 mRNA and protein, VEGF production and secretion into the culture medium; and, the effect of a potent, selective inhibitor of VEGF receptors, AL-993, on cell proliferation. Results: Human colorectal cancer specimens had strong expression of VEGF in cancer cells and also expressed VEGF-R1 and VEGF-R2.In vitro studies showed that human colon cancer cell lines, HCT116 and HT29, but not normal colonic cell lines, express VEGF, VEGF-R1 and VEGF-R2 and secrete VEGF into the medium up to a concentration 2000 pg/ml within 48 h. Furthermore, we showed that inhibition of VEGF receptors using a specific VEGF-R inhibitor significantly reduced proliferation (by >50%) of cultured colon cancer cell lines. Conclusions: Our findings support the contention that VEGF generated by colon cancer cells stimulates their growth directly through an autocrine mechanism that is independent of its primary function in the induction of angiogenesis.« less
Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaca, Pilar; Berna, Genoveva; Araujo, Raquel
2008-03-10
The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice.more » Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells.« less
Lee, Jin; Lim, Kye-Taek
2011-08-01
Di(2-ethylhexyl)phthalate (DEHP) is one of the many environmental chemicals that are widely used in polyvinyl chloride products, vinyl flooring, food packaging and infant toys. They cause cell proliferation or dysfunction of human liver. The purpose of this study is to investigate the inhibitory effect of a glycoprotein (24 kDa) isolated from Zanthoxylum piperitum DC (ZPDC) on proliferation of liver cell in the DEHP-induced BNL CL. 2 cells. [³H]-thymidine incorporation, intracellular reactive oxygen species (ROS), intracellular Ca²⁺ mobilization and activity of protein kinase C (PKC) were measured using radioactivity and fluorescence method respectively. The expression of mitogen-activated protein kinases [extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK)], activator protein (AP)-1 (c-Jun and c-Fos), proliferating cell nuclear antigen (PCNA) and cell cycle-related factors (cyclin D1/cyclin-dependent kinase [CDK] 4) were evaluated using Western blotting or electrophoretic mobility shift assay. The results in this study showed that the levels of [³H]-thymidine incorporation, intracellular ROS, intracellular Ca²⁺ mobilization and activity of PKCα were inhibited by ZPDC glycoprotein (100 µg/ml) in the DEHP-induced BNL CL. 2 cells. Also, activities of ERK, JNK and AP-1 were reduced by ZPDC glycoprotein (100 µg/ml). With regard to cell proliferation, activities of PCNA and cyclin D1/CDK4 were significantly suppressed at treatment with ZPDC glycoprotein (100 µg/ml) in the presence of DEHP. Taken together, these findings suggest that ZPDC glycoprotein significantly normalized activities of PCNA and cyclin D1/CDK4, which relate to cell proliferation factors. Thus, ZPDC glycoprotein appears to be one of the compounds derived from natural products that are able to inhibit cell proliferation in the phthalate-induced BNL CL. 2 cells. Copyright © 2011 John Wiley & Sons, Ltd.
Radyk, Megan D; Burclaff, Joseph; Willet, Spencer G; Mills, Jason C
2018-03-01
Spasmolytic polypeptide-expressing metaplasia (SPEM) develops in patients with chronic atrophic gastritis due to infection with Helicobacter pylori; it might be a precursor to intestinal metaplasia and gastric adenocarcinoma. Lineage tracing experiments of the gastric corpus in mice have not established whether SPEM derives from proliferating stem cells or differentiated, post-mitotic zymogenic chief cells in the gland base. We investigated whether differentiated cells can give rise to SPEM using a nongenetic approach in mice. Mice were given intraperitoneal injections of 5-fluorouracil, which blocked gastric cell proliferation, plus tamoxifen to induce SPEM. Based on analyses of molecular and histologic markers, we found SPEM developed even in the absence of cell proliferation. SPEM therefore did not arise from stem cells. In histologic analyses of gastric resection specimens from 10 patients with adenocarcinoma, we found normal zymogenic chief cells that were transitioning into SPEM cells only in gland bases, rather than the proliferative stem cell zone. Our findings indicate that SPEM can arise by direct reprogramming of existing cells-mainly of chief cells. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Zhang, Tong; Wu, Xiaoai; Cai, Huawei; Liang, Meng; Fan, Chengzhong
2017-04-01
[ 18 F]HX-01, a Fluorine-18 labeled berberine derivative, is a potential positron emission tomography (PET) tumor imaging agent, while [ 19 F]HX-01 is a nonradioactive reference substance with different energy state and has the same physical and chemical properties. In order to collect data for further study of [ 18 F]HX-01 PET imaging of hepatocellular carcinoma in vivo , this study compared the uptake of [ 19 F]HX-01 by human hepatocellular carcinoma and normal hepatocytes in vitro . The target compound, [ 19 F]HX-01, was synthesized in one step using berberrubine and 3-fluoropropyl 4-methylbenzenesulfonate. Cellular uptake and localization of [ 19 F]HX-01 were performed by a fluorescence microscope in human hepatocellular carcinoma HepG2, SMMC-7721 and human normal hepatocyte HL-7702. Cellular proliferation inhibition and cell cytotoxicity assay of the [ 19 F]HX-01 were conducted using cell counting kit-8 (CCK-8) on HepG2, SMMC-7721 and HL-7702 cells. Fluorescent microscopy showed that the combining ability of [ 19 F]HX-01 to the carcinoma SMMC-7721 and HepG2 was higher than that to the normal HL-7702. Cellular proliferation inhibition assay demonstrated that [ 19 F]HX-01 leaded to a dose-dependent inhibition on SMMC-7721, HepG2, and HL-7702 proliferation. Cell cytotoxicity assay presented that the cytotoxicity of [ 19 F]HX-01 to SMMC-7721 and HepG2 was obviously higher than that to HL-7702. This in vitro study showed that [ 19 F]HX-01 had a higher selectivity on human hepatocellular carcinoma cells (SMMC-7721, HepG2) but has less toxicity to normal hepatocytes (HL-7702). This could set up the idea that the radioactive reference substance [ 18 F]HX-01 may be worthy of further development as a potential molecular probe targeting human hepatocellular carcinoma using PET.
Bi-directional signaling: Extracellular Matrix and Integrin Regulation of Breast Tumor Progression
Gehler, Scott; Ponik, Suzanne M.; Riching, Kristin M; Keely, Patricia J.
2016-01-01
Cell transformation and tumor progression involves a common set of acquired capabilities, including increased proliferation, failure of cell death, self-sufficiency in growth, angiogenesis, and tumor cell invasion and metastasis (1). The stromal environment consists of many cell types, including fibroblasts, macrophages, and endothelial cells, in addition to various extracellular matrix (ECM) proteins that function to support normal tissue maintenance, but have also been implicated in tumor progression (2). Both the chemical and mechanical properties of the ECM have been shown to influence normal and malignant cell behavior. For instance, mesenchymal stem cells differentiate into specific lineages that are dependent on matrix stiffness (3), while tumor cells undergo changes in cell behavior and gene expression in response to matrix stiffness (4). ECM remodeling is implicated in tumor progression and includes changes in both the chemical and mechanical properties of the ECM (5) that can be a result of 1.) increased deposition of stromal ECM, 2.) enhanced contraction of ECM fibrils, and 3.) altered collagen alignment and ECM stiffness. In addition, remodeling of the ECM may alter whether tumor cells employ proteolytic degradation mechanisms during invasion and metastasis. Tumor cells respond to such changes in ECM remodeling through altered intracellular signaling and cell cycle control that lead to enhanced proliferation, loss of normal tissue architecture, and local tumor cell migration and invasion into the surrounding stromal tissue (6). This review will focus on the bi-directional interplay between the mechanical properties of the ECM and changes in integrin-mediated signal transduction events in an effort to elucidate cell behaviors during tumor progression. PMID:23582036
Glucose starvation impairs DNA repair in tumour cells selectively by blocking histone acetylation.
Ampferl, Rena; Rodemann, Hans Peter; Mayer, Claus; Höfling, Tobias Tim Alexander; Dittmann, Klaus
2018-03-01
Tumour cells are characterized by aerobic glycolysis and thus have high glucose consumption. Because repairing radiation-induced DNA damage is an energy-demanding process, we hypothesized that glucose starvation combined with radiotherapy could be an effective strategy to selectively target tumour cells. We glucose-starved tumour cells (A549, FaDu) in vitro and analysed their radiation-induced cell responses compared to normal fibroblasts (HSF7). Irradiation depleted intracellular ATP levels preferentially in cancer cells. Consequently, glucose starvation impaired DNA double-strand break (DSB) repair and radiosensitized confluent tumour cells but not normal fibroblasts. In proliferating tumour cells glucose starvation resulted in a reduction of proliferation, but failed to radiosensitize cells. Glucose supply was indispensable during the late DSB repair in confluent tumour cells starting approximately 13 h after irradiation, and glucose starvation inhibited radiation-induced histone acetylation, which is essential for chromatin relaxation. Sirtinol - an inhibitor of histone deacetylases - reverted the effects of glucose depletion on histone acetylation and DNA DSB repair in tumour cells. Furthermore, a glucose concentration of 2.8 mmol/L was sufficient to impair DSB repair in tumour cells and reduced their clonogenic survival under a fractionated irradiation regimen. In resting tumour cells, glucose starvation combined with irradiation resulted in the impairment of late DSB repair and the reduction of clonogenic survival, which was associated with disrupted radiation-induced histone acetylation. However, in normal cells, DNA repair and radiosensitivity were not affected by glucose depletion. Copyright © 2017 Elsevier B.V. All rights reserved.
A role for adult TLX-positive neural stem cells in learning and behaviour.
Zhang, Chun-Li; Zou, Yuhua; He, Weimin; Gage, Fred H; Evans, Ronald M
2008-02-21
Neurogenesis persists in the adult brain and can be regulated by a plethora of external stimuli, such as learning, memory, exercise, environment and stress. Although newly generated neurons are able to migrate and preferentially incorporate into the neural network, how these cells are molecularly regulated and whether they are required for any normal brain function are unresolved questions. The adult neural stem cell pool is composed of orphan nuclear receptor TLX-positive cells. Here, using genetic approaches in mice, we demonstrate that TLX (also called NR2E1) regulates adult neural stem cell proliferation in a cell-autonomous manner by controlling a defined genetic network implicated in cell proliferation and growth. Consequently, specific removal of TLX from the adult mouse brain through inducible recombination results in a significant reduction of stem cell proliferation and a marked decrement in spatial learning. In contrast, the resulting suppression of adult neurogenesis does not affect contextual fear conditioning, locomotion or diurnal rhythmic activities, indicating a more selective contribution of newly generated neurons to specific cognitive functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Timothy J.; Castrucci, Maria R.; Padrick, Ryan C.
To track epitope-specific CD4{sup +} T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA{sub 323-339} epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVA{sub II}, replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4{sup +} T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4{sup +} T cells were recruited to the infected lung both in the presence and absence of the OVA{submore » 323-339} epitope. These data show that, when primed, CD4{sup +} T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection.« less
El-Said, Waleed Ahmed; Yea, Cheol-Heon; Jung, Mi; Kim, Hyuncheol; Choi, Jeong-Woo
2010-05-01
In this study, in situ electrochemical synthesis of polypyrrole nanowires with nanoporous alumina template was described. The formation of highly ordered porous alumina substrate was demonstrated with Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). In addition, Fourier transform infrared analysis confirmed that polypyrrole (PP) nanowires were synthesized by direct electrochemical oxidation of pyrrole. HeLa cancer cells and HMCF normal cells were immobilized on the polypyrrole nanowires/nanoporous alumina substrates to determine the effects of the substrate on the cell morphology, adhesion and proliferation as well as the biocompatibility of the substrate. Cell adhesion and proliferation were characterized using a standard MTT assay. The effects of the polypyrrole nanowires/nanoporous alumina substrate on the cell morphology were studied by AFM. The nanoporous alumina coated with polypyrrole nanowires was found to exhibit better cell adhesion and proliferation than polystyrene petridish, aluminum foil, 1st anodized and uncoated 2nd anodized alumina substrate. This study showed the potential of the polypyrrole nanowires/nanoporous alumina substrate as biocompatibility electroactive polymer substrate for both healthy and cancer cell cultures applications.
Marsch, W C; Muckelmann, R
1985-06-01
We describe two cases of livedo racemosa generalisata with cerebrovascular defects (Sneddon syndrome). The histology is characterized by a proliferation and migration of medial smooth muscle cells in ascending arterioles of the upper subcutis and deep dermis. Migrating smooth muscle cells with a high content of intermediate filaments colonize the sub-endothelial intimal space, with subsequent narrowing of the vessel lumen. Since the discoloration of the skin is provoked by a reactive dilatation of venules, the biopsy should be performed in the adjacent normal-looking skin, taking in the upper subcutis.
Zhou, Yufei; Li, Shaoxia; Li, Jiangtao; Wang, Dongfeng; Li, Quanxing
2017-01-01
This study explored the ability of microRNA-135a (miR-135a) to influence cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer (NSCLC). NSCLC tissues and adjacent normal tissues were collected from 138 NSCLC patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-135a and IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 mRNA; western blotting was used to determine the expression levels of IGF-1, PI3K and Akt protein; and enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression levels of VEGF, bFGF and IL-8 protein. Human NSCLC cell lines (A549, H460, and H1299) and the human bronchial epithelial cell line (HBE) were selected. A549 cells were assigned to blank, negative control (NC), miR-135a mimics, miR-135a inhibitors, IGF-1 siRNA and miR-135a inhibitors + IGF-1 siRNA groups. The following were performed: an MTT assay to assess cell proliferation, a scratch test to detect cell migration, a Transwell assay to measure cell invasion, and a flow cytometry to analyze cell apoptosis. The expression level of miR-135a was lower while those of IGF-1, PI3K and Akt mRNA were higher in NSCLC tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated IGF-1 as a target of miR-135a. The in vitro results showed that compared with the blank group, cell proliferation, migration and invasion were suppressed, mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 were reduced, and cell apoptosis was enhanced in the miR-135a mimics and IGF-1 siRNA groups. Compared with the IGF-1 siRNA group, cells in the miR-135a inhibitors + IGF-1 siRNA group demonstrated increased cell proliferation, migration and invasion, elevated mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 and reduced cell apoptosis. These findings indicated that miR-135a promotes cell apoptosis and inhibits cell proliferation, migration, invasion and tumor angiogenesis by targeting IGF-1 gene through the IGF-1/PI3K/Akt signaling pathway in NSCLC. © 2017 The Author(s). Published by S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walpen, Thomas; Kalus, Ina; Schwaller, Juerg
Highlights: Black-Right-Pointing-Pointer Pim1{sup -/-} endothelial cell proliferation displays increased sensitivity to rapamycin. Black-Right-Pointing-Pointer mTOR inhibition by rapamycin enhances PIM1 cytosolic and nuclear protein levels. Black-Right-Pointing-Pointer Truncation of Pim1 beyond serine 276 results in nuclear localization of the kinase. Black-Right-Pointing-Pointer Nuclear PIM1 increases endothelial proliferation independent of rapamycin. -- Abstract: The PIM serine/threonine kinases and the mTOR/AKT pathway integrate growth factor signaling and promote cell proliferation and survival. They both share phosphorylation targets and have overlapping functions, which can partially substitute for each other. In cancer cells PIM kinases have been reported to produce resistance to mTOR inhibition by rapamycin. Tumormore » growth depends highly on blood vessel infiltration into the malignant tissue and therefore on endothelial cell proliferation. We therefore investigated how the PIM1 kinase modulates growth inhibitory effects of rapamycin in mouse aortic endothelial cells (MAEC). We found that proliferation of MAEC lacking Pim1 was significantly more sensitive to rapamycin inhibition, compared to wildtype cells. Inhibition of mTOR and AKT in normal MAEC resulted in significantly elevated PIM1 protein levels in the cytosol and in the nucleus. We observed that truncation of the C-terminal part of Pim1 beyond Ser 276 resulted in almost exclusive nuclear localization of the protein. Re-expression of this Pim1 deletion mutant significantly increased the proliferation of Pim1{sup -/-} cells when compared to expression of the wildtype Pim1 cDNA. Finally, overexpression of the nuclear localization mutant and the wildtype Pim1 resulted in complete resistance to growth inhibition by rapamycin. Thus, mTOR inhibition-induced nuclear accumulation of PIM1 or expression of a nuclear C-terminal PIM1 truncation mutant is sufficient to increase endothelial cell proliferation, suggesting that nuclear localization of PIM1 is important for resistance of MAEC to rapamycin-mediated inhibition of proliferation.« less
Rudnicka, Caroline; Mochizuki, Satsuki; Okada, Yasunori; McLaughlin, Claire; Leedman, Peter J; Stuart, Lisa; Epis, Michael; Hoyne, Gerard; Boulos, Sherif; Johnson, Liam; Schlaich, Markus; Matthews, Vance
2016-10-01
Prostate cancer is one of the most prevalent cancers in men. It is critical to identify and characterize oncogenes that drive the pathogenesis of human prostate cancer. The current study builds upon previous research showing that a disintegrin and metallproteinase (ADAM)28 is involved in the pathogenesis of numerous cancers. Our novel study used overexpression, pharmacological, and molecular approaches to investigate the biological function of ADAM28 in human prostate cancer cells, with a focus on cell proliferation and migration. The results of this study provide important insights into the role of metalloproteinases in human prostate cancer.The expression of ADAM28 protein levels was assessed within human prostate tumors and normal adjacent tissue by immunohistochemistry. Immunocytochemistry and western blotting were used to assess ADAM28 protein expression in human prostate cancer cell lines. Functional assays were conducted to assess proliferation and migration in human prostate cancer cells in which ADAM28 protein expression or activity had been altered by overexpression, pharmacological inhibition, or by siRNA gene knockdown.The membrane bound ADAM28 was increased in human tumor biopsies and prostate cancer cell lines. Pharmacological inhibition of ADAM28 activity and/or knockdown of ADAM28 significantly reduced proliferation and migration of human prostate cancer cells, while overexpression of ADAM28 significantly increased proliferation and migration.ADAM28 is overexpressed in primary human prostate tumor biopsies, and it promotes human prostate cancer cell proliferation and migration. This study supports the notion that inhibition of ADAM28 may be a potential novel therapeutic strategy for human prostate cancer.
He, Hong; Ding, Hui; Liao, Aiping; Liu, Qiong; Yang, Jun; Zhong, Xingwu
2010-10-01
To investigate the effects of mycophenolate mofetil (MMF) on proliferation and mucin-5AC (MUC5AC) mRNA expression of normal human conjunctival goblet cells (CGCs) in vitro and to understand mechanisms of MMF in treatment of dry eye syndrome at molecular level. Purified human CGCs were treated with a series of graded concentrations of MMF after being confirmed by immunocytochemistry and flow cytometry. Proliferation and MUC5AC mRNA expression of CGCs were measured by Cell Count Kit-8 (CCK-8) and quantitative nested real-time reverse transcription polymerase chain reaction (QNRT-PCR at 24 h after treatment. The cell proliferation and MUC5AC mRNA expressiion were compared among different doses of MMF. MMF induced a dose-dependent upregulation of MUC5AC mRNA expression (F=238.851, p<0.01) but a biphase effect on proliferation of the CGCs over 24 h of co-incubation. This biphase effect manifested as a dose-dependent increase in cell numbers with MMF from 0.25 to 2.5 ng/ml, an unchanged population of the cells from 2.5 to 10 ng/ml and a reduced population of the cells from 25 to 100 ng/ml. MMF exerts biphase effects on cell regeneration and upregulates MUC5AC mRNA expression in CGCs in vitro. It appears that the use of MMF at low concentrations is attractive in dry eye (DE) treatment.
Mao, Gaowei; Goswami, Monali; Kalen, Amanda L; Goswami, Prabhat C; Sarsour, Ehab H
2016-01-01
The rebuilding of the connective tissue during wound healing requires the recruitment of fibroblasts to the wound area as well as reentry of quiescent fibroblasts to the proliferative cycle. Whether this process can be modulated by a small molecular weight thiol antioxidant N-acetyl-L-cysteine (NAC) was tested in normal human skin fibroblasts (NHFs) using a uni-directional wound healing assay. NAC treated cells demonstrated a decreased migration rate but increased number of proliferating cells recruited into the wound area post wounding. Fifteen day quiescent control and NAC treated NHFs were re-plated at a lower density and cell numbers counted at different days post-plating. Interestingly, NAC treated cells exhibited increased cellular proliferation indicated by both decreased cell population doubling time and increased S phase cells. NAC treated cells demonstrated decreased steady state levels of reactive oxygen species as well as increased protein and activity levels of manganese superoxide dismutase (MnSOD). NAC treatment failed to induce proliferation in quiescent cells lacking MnSOD expression. These results demonstrate that NAC enhanced the recruitment of quiescent NHFs into proliferation cycle during wound healing. Our results also suggest that the wound healing properties of NAC might be due to its ability to induce and enhance MnSOD expression and activity. Altogether, these findings suggest NAC might be potentially developed as a dietary intervention to improve tissue injury in animals and humans.
[Neuroendocrine differentiation in prostate adenocarcinoma].
Ramírez-Balderrama, Lázaro; López-Briones, Sergio; Daza-Benítez, Leonel; Macías, Maciste H; López-Gaytán, Teresa; Pérez-Vázquez, Victoriano
2013-01-01
The human prostate is a gland composed of many types of cells and extracellular components with specific functions. The stromal compartment includes nerve tissue, fibroblasts, lymphocytes, macrophages, endothelial cells, and smooth muscular cells. The epithelial compartment is composed of luminal epithelial cells, basal cells, and a lesser number of neuroendocrine cells, which are transcendental in growth regulation, differentiation, and secretory function. In prostate cancer, neuroendocrine cells replicate especially in high grade and advanced stage, and hormonally treated tumoral cells adopt characteristics that make them resistant to hormonal deprivation. Androgen receptors have a crucial role in tumorigenesis of prostate adenocarcinoma. Deprivation hormone therapy blocks the expression of androgen receptors in the prostatic epithelial cells. Neuroendocrine cells lack androgen receptors; their growth is hormonally independent and that is why deprivation hormonal therapy does not eliminate the neoplasic neuroendocrine cells. In contrast, these types of cells proliferate after therapy and make a paracrine network, stimulating the proliferation of androgen-independent neoplastic cells, which finally lead to tumoral recurrence. In this work we describe the neuroendocrine function in normal tissue and in prostatic adenocarcinoma, including neoplasic proliferation stimulation, invasion, apoptosis resistance, and angiogenesis, and describe some molecular pathways involved in this neuroendocrine differentiation.
Eleftheriadis, Theodoros; Pissas, Georgios; Liakopoulos, Vassilios; Stefanidis, Ioannis
2018-07-01
It is generally hypothesized in the literature that indoleamine 2,3‑dioxygenase (IDO), by degrading L‑tryptophan along the kynurenine pathway, suppresses CD4+ T‑cell function by inducing apoptosis, inhibiting proliferation and promoting differentiation towards a regulatory phenotype. These effects are either accompanied or directly lead to alterations in cell metabolism. The present study evaluated the pathways that govern the effect of IDO on the utilization of the three main energy sources in CD4+ T‑cells. Two‑way mixed lymphocyte reactions were performed with or without oleate and/or the IDO inhibitor 1‑methyl‑DL‑tryptophan. In addition, isolated CD4+ T‑cells cultured in an oleate‑containing medium were activated in the presence or not of the general control nonderepressible 2 kinase (GCN2K) activator tryptophanol. L‑tryptophan, glucose and free fatty acid consumption, cell proliferation, apoptosis and the levels of key proteins involved in IDO‑mediated signal transduction, and glucose, glutamine and free fatty acid utilization were assessed. The results indicate that IDO decreased glycolysis and glutaminolysis by activating GCN2K, resulting in activation of AMP‑activated protein kinase (AMPK). In parallel with AMPK activation, IDO‑induced activation of aryl hydrocarbon receptor increased the expression of all carnitine palmitoyltransferase I isoenzymes, leading ultimately to increased free fatty acid oxidation and preservation of CD4+ T‑cell survival and proliferation. Thus, contrary to what is generally hypothesized, in a normal environment containing fatty acids, the immunosuppressive effect of IDO may not be due to a decrease in CD4+ T‑cell survival and proliferation, since IDO supplies the required energy for cell survival and proliferation by increasing free fatty acid oxidation.
Ueda, T; Kawai, Y; Sugiyama, T; Takeuchi, N; Yoshida, A; Iwasaki, H; Wano, Y; Tsutani, H; Kamada, N; Nakamura, T
1993-12-01
A 48-year-old man developed refractory anemia with excess of blasts in transformation. Complete response was achieved by low-dose ara-C therapy, but he relapsed 15 months later, with pancytopenia and 13.0% myeloblasts in normocellular marrow. He was treated unsuccessfully with prednisolone, metenolone, and 1-alpha-hydroxyvitamin D3 for 8 weeks. He then developed life-threatening pneumonia and was treated with recombinant human granulocyte colony-stimulating factor (rhG-CSF Filgrastim; 125 micrograms/day s.c.). The pneumonia resolved and, interestingly, he achieved a partial response, with normal blood cell counts and only a few dysmyelopoietic cells in the marrow. However, thrombocytopenia progressed when rhG-CSF administration was tapered. When the dose was increased again, leukemic blasts were found to proliferate. When rhG-CSF was discontinued, blasts rapidly decreased in the peripheral blood. Chromosomal analysis revealed a complex abnormality during the first relapse, a normal 46,XY karyotype during the partial response, and recurrence of the same complex abnormality during leukemic transformation. The stimulation index of marrow mononuclear cells cultured with rhG-CSF increased with disease progression. These findings suggest that rhG-CSF initially stimulated the selective proliferation of normal hemopoietic cells, but the evolution or selection of a leukemic clone responsive to rhG-CSF appears to have occurred subsequently.
Ramljak, Danica; Romanczyk, Leo J; Metheny-Barlow, Linda J; Thompson, Nicole; Knezevic, Vladimir; Galperin, Mikhail; Ramesh, Arun; Dickson, Robert B
2005-04-01
A naturally occurring, cocoa-derived pentameric procyanidin (pentamer) was previously shown to cause G0/G1 cell cycle arrest in human breast cancer cells by an unknown molecular mechanism. Here, we show that pentamer selectively inhibits the proliferation of human breast cancer cells (MDA MB-231, MDA MB-436, MDA MB-468, SKBR-3, and MCF-7) and benzo(a)pyrene-immortalized 184A1N4 and 184B5 cells. In contrast, normal human mammary epithelial cells in primary culture and spontaneously immortalized MCF-10A cells were significantly resistant. We evaluated whether this differential response to pentamer may involve depolarization of the mitochondrial membrane. Pentamer caused significant depolarization of mitochondrial membrane in MDA MB231 cells but not the more normal MCF-10A cells, whereas other normal and tumor cell lines tested gave variable results. Further investigations, using a proteomics approach with pentamer-treated MDA MB-231, revealed a specific dephosphorylation, without changes in protein expression, of several G1-modulatory proteins: Cdc2 (at Tyr15), forkhead transcription factor (at Ser256, the Akt phosphorylation site) and p53 (Ser392). Dephosphorylation of p53 (at Ser392) by pentamer was confirmed in MDA MB-468 cells. However, both expression and phosphorylation of retinoblastoma protein were decreased after pentamer treatment. Our results show that breast cancer cells are selectively susceptible to the cytotoxic effects of pentameric procyanidin, and suggest that inhibition of cellular proliferation by this compound is associated with the site-specific dephosphorylation or down-regulation of several cell cycle regulatory proteins.
Sun, Pengling; Guo, Xiaoli; Chen, Yujiao; Zhang, Wei; Duan, Huawei; Gao, Ai
2018-02-01
Benzene is widely employed in the field of production, and its toxicity on biological systems has received increasing attention. Cell proliferation is a major life characteristic of living organisms. KLF15 and NOTCH1 are mature and classical genes in cell proliferation studies, particularly in the area of tumor investigation. The aim of this study was to investigate the effect and mechanism of VNN3 on cell proliferation induced by 1,4-benzoquinone (1,4-BQ), an important metabolite of benzene, and obtain a sensitive biomarker for the hazard screening and health care of benzene exposure. Normally growing AHH-1 cells were cultured in vitro and were incubated with different concentrations of 1,4-BQ (0, 10, 20, and 40 μM) for 24 h. A CCK-8 assay was used to assess the cell viability, whereas EdU was used to detect the cell proliferation of AHH-1 cells. The expression of VNN3, KLF15 and NOTCH1 was detected by real-time PCR. Moreover, a lentiviral model was constructed in AHH-1 cells to interfere with VNN3 expression. The results showed that 1,4-BQ clearly increased the expression of VNN3. Moreover, 1,4-BQ dose-dependently inhibited cell proliferation and caused increased KLF15 expression; in contrast, the NOTCH1 expression decreased in AHH-1 cells. Furthermore, following interference with the VNN3 expression, the cell proliferation inhibition and the expression of KLF15 and NOTCH1 were rescued. To further investigate the action of VNN3 in benzene hematotoxicity, we assessed it in benzene-exposed workers. The results showed that there was a remarkable correlation between the VNN3 expression and hemogram, which included RBC, NEUT and HGB. In addition, analysis of the KLF15 and NOTCH1 expression showed that the VNN3 expression was related to cell proliferation, which was consistent with the in vitro results. In conclusion, VNN3 influences cell proliferation induced by 1,4-BQ by regulating the expression of KLF15 and NOTCH1. VNN3 may represent a potential biomarker of benzene toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Unyayar, Ali; Demirbilek, Murat; Turkoglu, Melisa; Celik, Ayla; Mazmanci, Mehmet A; Erkurt, Emrah A; Unyayar, Serpil; Cekic, Ozlem; Atacag, Hatice
2006-01-01
This study examined the in vitro cytotoxic activities of standardized aqueous bioactive extracts prepared from Coriolus versicolor and Funalia trogiiATCC 200800 on HeLa and fibroblast cell lines using a MTT (3-[4,5-dimetiltiazol-2-]-2-5-difeniltetrazolium bromide) cytotoxicity assay. F. trogii and C. versicolor extracts were cytotoxic to both cell lines. At 10 microL treatment level, F. trogii and C. versicolor extracts inhibited proliferation of HeLa cancer cells by 71.5% and 45%, respectively, compared with controls. Toxicity was lower toward normal fibroblasts. In the latter case, treatment at 10 microL level with F. trogii and C. versicolor extracts reduced cell proliferation by 51.3% and 38.7%, respectively. In separate experiments, the mitotic index (MI) obtained with 3 microL treatment level of unheated extracts of the two fungi was comparable to the MI value obtained by treatment with 4 microg/mL MMC (anticancer agent mitomycin-C). A significant induction of sister chromatid exchange (SCE) was observed in normal cultured lymphocytes treated with MMC (4 microg/mL). MMC treatment reduced replication index compared with treatment with unheated F. trogii extract and negative controls (p < 0.001). In contrast to MMC, F. trogii extracts did not affect the proliferation of human lymphocytes compared with controls (p > 0.05). Laccase and peroxidase enzyme activities in F. trogii extract were implicated in their inhibitory effect on cancer cells. F. trogii extract was concluded to have antitumor activity.
Moons, David S; Jirawatnotai, Siwanon; Tsutsui, Tateki; Franks, Roberta; Parlow, A F; Hales, Dale B; Gibori, Geula; Fazleabas, Asgerally T; Kiyokawa, Hiroaki
2002-02-01
Cell cycle progression of granulosa cells is critical for ovarian function, especially follicular maturation. During follicular maturation, FSH induces cyclin D2, which promotes G1 progression by activating cyclin-dependent kinase-4 (Cdk4). Because cyclin D2-deficient mice exhibit a block in follicular growth, cyclin D2/Cdk4 has been hypothesized to be required for FSH-dependent proliferation of granulosa cells. Here we investigate ovarian function in Cdk4-knockout mice we recently generated. Cdk4(-/-) females were sterile, but the morphology of their ovaries appeared normal before sexual maturation. The number of preovulatory follicles and the ovulation efficiency were modestly reduced in gonadotropin-treated Cdk4(-/-) mice. However, unlike cyclin D2-deficient mice, Cdk4(-/-) mice showed no obvious defect in FSH-induced proliferation of granulosa cells. Cdk4(-/-) ovaries displayed normal preovulatory expression of aromatase, PR, and cyclooxygenase-2. Postovulatory progesterone secretion was markedly impaired in Cdk4(-/-) mice, although granulosa cells initiated luteinization with induction of p450 side-chain cleavage cytochrome and p27(Kip1). Progesterone treatment rescued implantation and restored fertility in Cdk4(-/-) mice. Serum PRL levels after mating were significantly reduced in Cdk4(-/-) mice, suggesting the involvement of perturbed PRL regulation in luteal failure. Thus, Cdk4 is critical for luteal function, and some redundant protein(s) can compensate for the absence of Cdk4 in proliferation of granulosa cells.
The "Yin" and "Yang" of Cell Cycle Progression and Differentiation in the Oligodendroglial Lineage
ERIC Educational Resources Information Center
Nguyen, Laurent; Borgs, Laurence; Vandenbosch, Renaud; Mangin, Jean-Marie; Beukelaers, Pierre; Moonen, Gustave; Gallo, Vittorio; Malgrange, Brigitte; Belachew, Shibeshih
2006-01-01
In white matter disorders such as leukodystrophies (LD), periventricular leucomalacia (PVL), or multiple sclerosis (MS), the hypomyelination or the remyelination failure by oligodendrocyte progenitor cells involves errors in the sequence of events that normally occur during development when progenitors proliferate, migrate through the white…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruoxing; Guo, Yan-Lin, E-mail: yanlin.guo@usm.edu
2012-10-01
Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remainsmore » unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black-Right-Pointing-Pointer Oct4 and Nanog are up-regulated via de novo synthesis by cell cycle interruption.« less
Zhang, Qian; Sakamoto, Kazuhito; Wagner, Kay-Uwe
2013-01-01
In response to the ligand-mediated activation of cytokine receptors, cells decide whether to proliferate or to undergo differentiation. D-type Cyclins (Cyclin D1, D2, or D3) and their associated Cyclin-dependent Kinases (CDK4, CDK6) connect signals from cytokines to the cell cycle machinery, and they propel cells through the G1 restriction point and into the S phase, after which growth factor stimulation is no longer essential to complete cell division. D-type Cyclins are upregulated in many human malignancies including breast cancer to promote an uncontrolled proliferation of cancer cells. After summarizing important aspects of the cytokine-mediated transcriptional regulation and the posttranslational modification of D-type Cyclins, this review will highlight the physiological significance of these cell cycle regulators during normal mammary gland development as well as the initiation and promotion of breast cancer. Although the vast majority of published reports focus almost exclusively on the role of Cyclin D1 in breast cancer, we summarize here previous and recent findings that demonstrate an important contribution of the remaining two members of this Cyclin family, in particular Cyclin D3, for the growth of ErbB2-associated breast cancer cells in humans and in mouse models. New data from genetically engineered models as well as the pharmacological inhibition of CDK4/6 suggest that targeting the combined functions of D-type Cyclins could be a suitable strategy for the treatment of ErbB2-positive and potentially other types of breast cancer. PMID:23562856
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yingting, E-mail: yitizhu@yahoo.com; Tissue Tech Inc., Miami, FL 33173; Zhu, Min
2012-08-31
Highlights: Black-Right-Pointing-Pointer Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE{sub 2}. Black-Right-Pointing-Pointer The fibroblasts interact with human colonic epithelial cancer cells. Black-Right-Pointing-Pointer Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. Black-Right-Pointing-Pointer Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulationmore » of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.« less
Palmer, Guy H.; Machado, Joel; Fernandez, Paula; Heussler, Volker; Perinat, Therese; Dobbelaere, Dirk A. E.
1997-01-01
Infection of cattle with the protozoan Theileria parva results in uncontrolled T lymphocyte proliferation resulting in lesions resembling multicentric lymphoma. Parasitized cells exhibit autocrine growth characterized by persistent translocation of the transcriptional regulatory factor nuclear factor κB (NFκB) to the nucleus and consequent enhanced expression of interleukin 2 and the interleukin 2 receptor. How T. parva induces persistent NFκB activation, required for T cell activation and proliferation, is unknown. We hypothesized that the parasite induces degradation of the IκB molecules which normally sequester NFκB in the cytoplasm and that continuous degradation requires viable parasites. Using T. parva-infected T cells, we showed that the parasite mediates continuous phosphorylation and proteolysis of IκBα. However, IκBα reaccumulated to high levels in parasitized cells, which indicated that T. parva did not alter the normal NFκB-mediated positive feedback loop which restores cytoplasmic IκBα. In contrast, T. parva mediated continuous degradation of IκBβ resulting in persistently low cytoplasmic IκBβ levels. Normal IκBβ levels were only restored following T. parva killing, indicating that viable parasites are required for IκBβ degradation. Treatment of T. parva-infected cells with pyrrolidine dithiocarbamate, a metal chelator, blocked both IκB degradation and consequent enhanced expression of NFκB dependent genes. However treatment using the antioxidant N-acetylcysteine had no effect on either IκB levels or NFκB activation, indicating that the parasite subverts the normal IκB regulatory pathway downstream of the requirement for reactive oxygen intermediates. Identification of the critical points regulated by T. parva may provide new approaches for disease control as well as increase our understanding of normal T cell function. PMID:9356483
Li, Jianjun; Zhang, Yinghui; Wang, Xiuchao; Zhao, Ruibo
2017-01-01
The expression level and roles of microRNA-497 (miR-497) have been frequently reported in previous studies on cancer. However, its expression, function and associated molecular mechanisms in retinoblastoma remain unknown. In the present study, miR-497 expression levels in human retinoblastoma tissues, normal retinal tissues and retinoblastoma cell lines were determined using reverse transcription-quantitative polymerase chain reaction. In addition, a Cell Counting Kit-8 assay, cell migration assay, cell invasion assay, western blot analysis and Dual-Luciferase reporter assay were used to explore the expression, functions and molecular mechanisms of miR-497 in human retinoblastoma. It was demonstrated that miR-497 was significantly downregulated in retinoblastoma tissues and cell lines compared with normal retinal tissues. Ectopic expression of miR-497 decreased the proliferation, migration and invasion of retinoblastoma cells. Furthermore, VEGFA was verified as a potential direct target of miR-497 in vitro. Taken together, the results indicate that miR-497 functions as a tumor suppressor in the carcinogenesis and progression of retinoblastoma via targeting VEGFA. miR-497 should be investigated as a potential therapeutic target for the treatment of retinoblastoma. PMID:28588740
Proliferation, differentiation and apoptosis in connexin43-null osteoblasts
NASA Technical Reports Server (NTRS)
Furlan, F.; Lecanda, F.; Screen, J.; Civitelli, R.
2001-01-01
Osteoblasts are highly coupled by gap junctions formed primarily by connexin43 (Cx43). We have shown that interference with Cx43 expression or function disrupts transcriptional regulation of osteoblast genes, and that deletion of Cx43 in the mouse causes skeletal malformations, delayed mineralization, and osteoblast dysfunction. Here, we studied the mechanisms by which genetic deficiency of Cx43 alters osteoblast development. While cell proliferation rates were similar in osteoblastic cells derived from calvaria of Cx43-null and wild type mice, camptothecin-induced apoptosis was 3-fold higher in mutant compared to wild type osteoblasts. When grown in mineralizing medium, Cx43-null cells were able to produce mineralized matrix but it took one week longer to reach the same mineralization levels as in normal cells. Likewise, expression of alkaline phosphatase activity per cell--a marker of osteoblast differentiation--was maximal only 2 weeks later in Cx43-null relative to wild-type cells. These observations suggest that Cx43 is important for a normal and timely development of the osteoblastic phenotype. Delayed differentiation and increase programmed cell death may explain the skeletal phenotype of Cx43-null mice.
Sutton, Selina K.; Koach, Jessica; Tan, Owen; Liu, Bing; Carter, Daniel R.; Wilmott, James S.; Yosufi, Benafsha; Haydu, Lauren E.; Mann, Graham J.; Thompson, John F.; Long, Georgina V.; Liu, Tao; McArthur, Grant; Zhang, Xu Dong; Scolyer, Richard A.; Cheung, Belamy B.; Marshall, Glenn M.
2014-01-01
High basal or induced expression of the tripartite motif protein, TRIM16, leads to reduce cell growth and migration of neuroblastoma and skin squamous cell carcinoma cells. However, the role of TRIM16 in melanoma is currently unknown. TRIM16 protein levels were markedly reduced in human melanoma cell lines, compared with normal human epidermal melanocytes due to both DNA methylation and reduced protein stability. TRIM16 knockdown strongly increased cell migration in normal human epidermal melanocytes, while TRIM16 overexpression reduced cell migration and proliferation of melanoma cells in an interferon beta 1 (IFNβ1)-dependent manner. Chromatin immunoprecipitation assays revealed TRIM16 directly bound the IFNβ1 gene promoter. Low level TRIM16 expression in 91 melanoma patient samples, strongly correlated with lymph node metastasis, and, predicted poor patient prognosis in a separate cohort of 170 melanoma patients with lymph node metastasis. The BRAF inhibitor, vemurafenib, increased TRIM16 protein levels in melanoma cells in vitro, and induced growth arrest in BRAF-mutant melanoma cells in a TRIM16-dependent manner. High levels of TRIM16 in melanoma tissues from patients treated with Vemurafenib correlated with clinical response. Our data, for the first time, demonstrates TRIM16 is a marker of cell migration and metastasis, and a novel treatment target in melanoma. PMID:25333256
Du, Yu; Tu, Yong-Sheng; Tang, Yong-Bo; Huang, Yun-Ying; Zhou, Fang-Min; Tian, Tian; Li, Xiao-Yan
2018-06-01
ClC-3 is involved in the proliferation and migration of several cancer cells. However, ClC-3 expression and its role of cell-cycle control in multiple myeloma (MM) has not yet been investigated. MM cells were treated with different concentrations of IGF (30, 100, 300 ng/mL), and their proliferation was examined by CCK-8. The effects of ClC-3 on cell cycle progression was detected by flow cytometry. Western blot was used to analyze the relative levels of ClC3, CD138, P21, P27, CDK, p-Erk1/2, and t-Erk1/2 protein expression. Transfection of RPMI8226 with gpClC-3 cDNA and siRNA alters the expression of ClC-3. We compared the expression of ClC-3 in primary myeloma cells and in MM cell lines (U266 and RPMI8266) with that in normal plasma cells (PCs) from normal subjects and found that myeloma cells from patients and MM cell lines had significantly higher expression of ClC-3. Additionally, silencing of ClC-3 with the small interfering RNA (siRNA) that targets human ClC-3 decreased proliferation of RPMI8226 after IGF-1 treatment and slowed cell cycle progression from G0/G1 to S phase, which was associated with diminished phosphorylation of ERK1/2, down-expression of cyclin E, cyclin D1 and up-regulation of p27 and p21. By contrast, overexpression of ClC-3 potentiated cell proliferation induced by IGF-1, raised the percentage of S phase cells, enhanced phosphorylation of ERK1/2, downregulated p27 and p21 and upregulated cyclin E and cyclin D1. ClC-3 accelerated G0/G1 to S phase transition in the cell cycle by modulating ERK1/2 kinase activity and expression of G1/S transition related proteins, making ClC-3 an attractive therapeutic target in MM.
Wu, Xiaoli; Ling, Jing; Fu, Ziyi; Ji, Chenbo; Wu, Jiangping; Xu, Qing
2015-04-01
Uterine leiomyoma is the ahead benign tumor of the female genital tract, which resulted in menstrual abnormalities, recurrent pregnancy loss, and other serious gynecological disorders in women. Recently, as the process of exploring the brief molecular mechanisms of tumorgenesis, microRNAs (miRNAs) have attracted much more attention. In this study, we first confirmed that microRNA-197 (miR-197) was down-regulated significantly in human uterus leiomyoma by quantity real-time polymerase chain reaction, compared to normal uterus myometrium. Then we observed the potential effects of miR-197 overexpression on human uterus leiomyoma cells by cell counting kit 8, wound healing assay, and flow cytometric assessment separately. The data showed that miR-197 could inhibit cell proliferation, induce cell apoptosis, and block cell migration in vitro. Coincidently, levonorgestrel (LNG), a well-known uterus leiomyoma therapy, could induce miR-197 expression in human uterus leiomyoma cells, and over-expression of miR-197 showed a synergy effect on human uterus leiomyoma cell proliferation and apoptosis with LNG. In this study, the data showed that miR-197 could play an anti-oncogenic role in human uterus leiomyoma cells, and cooperate with LNG on the cell proliferation and apoptosis, which suggested that miR-197 might be a potential target and provided database for clinical treatment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Luo, Yong; Li, Mingchuan; Zuo, Xuemei; Basourakos, Spyridon P.; Zhang, Jiao; Zhao, Jiahui; Han, Yili; Lin, Yunhua; Wang, Yongxing; Jiang, Yongguang; Lan, Ling
2018-01-01
Hypoxia-inducible factor-1α (HIF-1α) is known to play crucial roles in tumor radioresistance; however, the molecular mechanisms responsible for the promotion of tumor radioresistance by HIF-1α remain unclear. β-catenin is known to be involved in the metastatic potential of prostate cancer (PCa). In this study, to investigate the role of HIF-1α and β-catenin in the radioresistance of PCa, two PCa cell lines, LNCaP and C4-2B, were grouped as follows: Negative control (no treatment), HIF-1α overexpression group (transfected with HIF-1α overexpression plasmid) and β-catenin silenced group (transfected with HIF-1α plasmids and β-catenin-shRNA). Cell proliferation, cell cycle, cell invasion and radiosensitivity were examined under normal or hypoxic conditions. In addition, radiosensitivity was examined in two mouse PCa models (the LNCaP orthotopic BALB/c-nu mice model and the C4-2B subcutaneous SCID mice model). Our results revealed that in both the LNCaP and C4-2B cells, transfection with HIF-1α overexpression plasmid led to an enhanced β-catenin nuclear translocation, while β-catenin silencing inhibited β-catenin nuclear translocation. The enhanced β-catenin nuclear translocation induced by HIF-1α overexpression resulted in an enhanced cell proliferation and cell invasion, an altered cell cycle distribution, decreased apoptosis, and improved non-homologous end joining (NHEJ) repair under normal and irradiation conditions. Similar results were observed in the animal models. HIF-1α overexpression enhanced β-catenin nuclear translocation, which led to the activation of the β-catenin/NHEJ signaling pathway and increased cell proliferation, cell invasion and DNA repair. These results thus suggest that HIF-1α overexpression promotes the radioresistance of PCa cells. PMID:29658569
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo
Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophsmore » taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K-Akt and NF-κB signaling pathways. - Highlights: • In hyperplastic pituitaries, LPS triggered the lactotroph cell proliferation and IL-6 release. • Functional Toll-like receptor 4 (TLR4) is expressed at the plasma membrane of tumoral lactotrophs. • Increases in TLR4 and CD14 intracellular expression levels were detected after an LPS challenge. • The proliferative stimulation and IL-6 release involved the PI3K-Akt pathway and NF-κB activation. • 17β-estradiol attenuated the LPS-evoked tumoral lactotroph proliferation and IL-6 secretion.« less
Diaconeasa, Zoriţa; Ayvaz, Huseyin; Ruginǎ, Dumitriţa; Leopold, Loredana; Stǎnilǎ, Andreea; Socaciu, Carmen; Tăbăran, Flaviu; Luput, Lavinia; Mada, Diana Carla; Pintea, Adela; Jefferson, Andrew
2017-12-01
Anthocyanins are water soluble pigments which have been proved to exhibit health benefits. Several studies have investigated their effects on several types of cancer, but little attention has been given to melanoma. The phytochemical content of nine different berry samples was assessed by liquid chromatography followed by electrospray ionization mass spectrometry (LC-ESI + -MS). Twenty-six anthocyanins were identified, after a previous C 18 Sep-pak clean-up procedure. Chokeberry and red grape anthocyanins rich extracts (C-ARE and RG-ARE) were selected to be tested on normal and melanoma cell lines, due to their different chemical pattern. C-ARE composition consists of cyanidin aglycone glycosylated with different sugars; while RG-ARE contains glucosylated derivatives of five different aglycones. Both C-ARE and RG-ARE anthocyanins reduced proliferation, increased oxidative stress biomarkers and diminished mitochondrial membrane potential in melanoma cells, having no negative influence on normal cells. A synergistic response may be attributed to the five different aglycones present in RG-ARE, which proved to exert greater effects on melanoma cells than the mixture of cyanidin derivatives with different sugars (C-ARE). In conclusion, C-ARE and RG-ARE anthocyanins may inhibit melanoma cell proliferation and increase the level of oxidative stress, with opposite effect on normal cells. Therefore, anthocyanins might be recommended as active ingredients for cosmetic and nutraceutical industry. Graphical Abstract ᅟ.
Ginani, Fernanda; Soares, Diego Moura; Rabêlo, Luciana Maria; Rocha, Hugo Alexandre Oliveira; de Souza, Lélia Batista; Barboza, Carlos Augusto Galvão
2016-11-01
The aim of the present study was to evaluate the influence of a cryopreservation protocol on the proliferation and viability of stem cells from human exfoliated deciduous teeth (SHEDs). Cells from the pulp of three deciduous teeth were isolated and characterized to confirm their stem cell nature. In second passage, part of the cells were submitted to normal conditions of cell culture (Control group), while part of the cells were maintained in 10% DMSO diluted in foetal bovine serum and submitted to the following cryopreservation protocol: 2 h at 4 °C, 18 h at -20 °C and then at -80 °C for two intervals (30 days - Cryopreservation I; and 180 days Cryopreservation II). Cell proliferation and cell cycle were evaluated at intervals of 24, 48 and 72 h after plating, and apoptosis-related events were analyzed at 72 h. All groups exhibited an increase in the number of cells, and no significant differences between the cryopreserved and control groups were observed (p > .05). The distribution of cells in the cell cycle phases was consistent with cell proliferation, and the percentage of viable cells was higher than 99% in all groups, indicating that cell viability was not affected by the cryopreservation protocol throughout the experiment. The proposed cryopreservation protocol is adequate for the storage of SHED, permitting their use in future experimental studies.
Buckle, A. M.; Mottram, R.; Pierce, A.; Lucas, G. S.; Russell, N.; Miyan, J. A.; Whetton, A. D.
2000-01-01
BACKGROUND: Chronic Myeloid Leukaemia (CML) is characterised by the chromosomal translocation resulting in expression of the Bcr-Abl protein tyrosine kinase (PTK) in early stem cells and their progeny. However the precise nature of Bcr-Abl effects in primitive CML stem cells remains a matter of active debate. MATERIALS AND METHODS: Extremely primitive Bcr-Abl fusion positive cells were purified from patients with CML using multiparameter flow cytometric analysis of CD34, Thy, and lineage marker (Lin) expression, plus rhodamine-123 (Rh-123) brightness. Progenitor cells of increasing maturity were examined for cycling status by flow cytometry and their proliferative status directly correlated with cell phenotype. The activation status of a key transcription factor, signal transducers and activators of transcription (STAT-5), was also analyzed by immunocytochemistry. RESULTS: The most primitive stem cells currently defined (CD34+Lin-Thy+ Rh-1231o) were present as a lower proportion of the stem cell compartment (CD34+Lin-) of CML patients at presentation than of normal individuals (2.3% +/- 0.4 compared with 5.1% +/- 0.6 respectively). Conversely there was a significantly higher proportion of the more mature cells (CD34+Lin-Thy-Rh-123 hi) in CML patients than in normal individuals (79.3 +/- 1.8 compared with 70.9 +/- 3.3). No primitive subpopulation of CML CD34+Lin- cells was cycling to a significantly greater degree than cells from normal donors, in fact, late progenitor cells (CD34+Lin+) were cycling significantly less in CML samples than normal samples. STAT5, however, was observed to be activated in CML cells. CONCLUSIONS: We conclude that no subpopulation of CML stem cells displays significantly increased cell cycling. Thus, increased cycling cannot be a direct consequence of Bcr-Abl PTK acquisition in highly enriched stem cells from patients with CML. In vivo CML need not be considered a disease of unbridled stem cell proliferation, but a subtle defect in the balance between self renewal and maturation. PMID:11126203
Gauthaman, Kalamegam; Fong, Chui-Yee; Bongso, Ariff
2010-03-01
The Rho associated coiled coil protein kinase (ROCK) dependent signaling pathway plays an important role in numerous physiological functions such as cell proliferation, adhesion, migration and inflammation. Human embryonic stem cells (hESCs) undergo differentiation and poor survival after single cell dissociation in culture thus limiting their expansion for cell based therapies. We evaluated the role of the selective ROCK inhibitor Y-27632 on hESC colonies and disassociated single hESCs from two different hESC lines. Karyotypically normal hESCs (HES3) and variant hESCs (BG01V) were treated with Y-27632 at 5, 10 and 20 muM concentrations for 72 h and its effects on hESC self renewal, colony morphology, cell cycle and pluripotency were evaluated. Increased cell proliferation of both HES3 and BG01V were observed for all three concentrations compared to untreated controls following passaging of cell clusters or dissociated single cells and some of these increases were statistically significant. Cell cycle assay demonstrated normal cell cycle progression with no peaks evident of apoptosis. No morphological differentiation was evident following treatment with the highest concentration of Y-27632 (20 muM) and the stemness related genes continued to be highly expressed in both HES3 and BG01V cells compared to untreated controls. The results confirmed that Y-27632 is a useful agent that aids in the expansion of undifferentiated hESC numbers for downstream applications in regenerative medicine.
Qiu, Yueqin; Ma, Xianyong; Yang, Xuefen; Wang, Li; Jiang, Zongyong
2017-04-01
Conflicting results have been reported that butyrate in normal piglets leads either to an increase or to a decrease of jejunal villus length, implying a possible effect on the proliferation of enterocytes. No definitive study was found for the biological effects of butyrate in porcine jejunal epithelial cells. The present study used IPEC-J2 cells, a non-transformed jejunal epithelial line to evaluate the direct effects of sodium butyrate on cell proliferation, cell cycle regulation, and apoptosis. Low concentrations (0.5 and 1 mM) of butyrate had no effect on cell proliferation. However, at 5 and 10 mM, sodium butyrate significantly decreased cell viability, accompanied by reduced levels of p-mTOR and PCNA protein. Sodium butyrate, in a dose-dependent manner, induced cell cycle arrest in G0/G1 phase and reduced the numbers of cells in S phase. In addition, relative expression of p21, p27, and pro-apoptosis bak genes, and protein levels of p21Waf1/Cip1, p27Kip1, cyclinD3, CDK4, and Cleave-caspase3 were increased by higher concentrations of sodium butyrate (1, 5, 10 mM), and the levels of cyclinD1 and CDK6 were reduced by 5 and 10 mM butyrate. Butyrate increased the phosphorylated form of the signaling molecule p38 and phosphorylated JNK. In conclusion, the present in vitro study indicated that sodium butyrate inhibited the proliferation of IPEC-J2 cells by inducing cell cycle arrest in the G0/G1 phase of cell cycles and by increasing apoptosis at high concentrations.
Gertych, Arkadiusz; Tajbakhsh, Jian
2013-01-01
This study reports on probing the utility of in situ chromatin texture features such as nuclear DNA methylation and chromatin condensation patterns — visualized by fluorescent staining and evaluated by dedicated three-dimensional (3D) quantitative and high-throughput cell-by-cell image analysis — in assessing the proliferative capacity, i.e. growth behavior of cells: to provide a more dynamic picture of a cell population with potential implications in basic science, cancer diagnostics/prognostics and therapeutic drug development. Two types of primary cells and four different cancer cell lines were propagated and subjected to cell-counting, flow cytometry, confocal imaging, and 3D image analysis at various points in culture. Additionally a subset of primary and cancer cells was accelerated into senescence by oxidative stress. DNA methylation and chromatin condensation levels decreased with declining doubling times when primary cells aged in culture with the lowest levels reached at the stage of proliferative senescence. In comparison, immortal cancer cells with constant but higher doubling times mostly displayed lower and constant levels of the two in situ-derived features. However, stress-induced senescent primary and cancer cells showed similar levels of these features compared with primary cells that had reached natural growth arrest. With regards to global DNA methylation and chromatin condensation levels, aggressively growing cancer cells seem to take an intermediate level between normally proliferating and senescent cells. Thus, normal cells apparently reach cancer-cell equivalent stages of the two parameters at some point in aging, which might challenge phenotypic distinction between these two types of cells. Companion high-resolution molecular profiling could provide information on possible underlying differences that would explain benign versus malign cell growth behaviors. PMID:23562889
Oh, Jin Ho; Gertych, Arkadiusz; Tajbakhsh, Jian
2013-03-01
This study reports on probing the utility of in situ chromatin texture features such as nuclear DNA methylation and chromatin condensation patterns - visualized by fluorescent staining and evaluated by dedicated three-dimensional (3D) quantitative and high-throughput cell-by-cell image analysis - in assessing the proliferative capacity, i.e. growth behavior of cells: to provide a more dynamic picture of a cell population with potential implications in basic science, cancer diagnostics/prognostics and therapeutic drug development. Two types of primary cells and four different cancer cell lines were propagated and subjected to cell-counting, flow cytometry, confocal imaging, and 3D image analysis at various points in culture. Additionally a subset of primary and cancer cells was accelerated into senescence by oxidative stress. DNA methylation and chromatin condensation levels decreased with declining doubling times when primary cells aged in culture with the lowest levels reached at the stage of proliferative senescence. In comparison, immortal cancer cells with constant but higher doubling times mostly displayed lower and constant levels of the two in situ-derived features. However, stress-induced senescent primary and cancer cells showed similar levels of these features compared with primary cells that had reached natural growth arrest. With regards to global DNA methylation and chromatin condensation levels, aggressively growing cancer cells seem to take an intermediate level between normally proliferating and senescent cells. Thus, normal cells apparently reach cancer-cell equivalent stages of the two parameters at some point in aging, which might challenge phenotypic distinction between these two types of cells. Companion high-resolution molecular profiling could provide information on possible underlying differences that would explain benign versus malign cell growth behaviors.
Hart, Jonathan R.; Glebov, Oleg; Ernst, Russell J.; Kirsch, Ilan R.; Barton, Jacqueline K.
2006-01-01
Mismatch repair (MMR) is critical to maintaining the integrity of the genome, and deficiencies in MMR are correlated with cancerous transformations. Bulky rhodium intercalators target DNA base mismatches with high specificity. Here we describe the application of bulky rhodium intercalators to inhibit cellular proliferation differentially in MMR-deficient cells compared with cells that are MMR-proficient. Preferential inhibition by the rhodium complexes associated with MMR deficiency is seen both in a human colon cancer cell line and in normal mouse fibroblast cells; the inhibition of cellular proliferation depends strictly on the MMR deficiency of the cell. Furthermore, our assay of cellular proliferation is found to correlate with DNA mismatch targeting by the bulky metallointercalators. It is the Δ-isomer that is active both in targeting base mismatches and in inhibiting DNA synthesis. Additionally, the rhodium intercalators promote strand cleavage at the mismatch site with photoactivation, and we observe that the cellular response is enhanced with photoactivation. Targeting DNA mismatches may therefore provide a cell-selective strategy for chemotherapeutic design. PMID:17030786
Gautam, Dinesh; Jeon, Jongrye; Starost, Matthew F; Han, Sung-Jun; Hamdan, Fadi F; Cui, Yinghong; Parlow, Albert F; Gavrilova, Oksana; Szalayova, Ildiko; Mezey, Eva; Wess, Jürgen
2009-04-14
The molecular pathways that promote the proliferation and maintenance of pituitary somatotrophs and other cell types of the anterior pituitary gland are not well understood at present. However, such knowledge is likely to lead to the development of novel drugs useful for the treatment of various human growth disorders. Although muscarinic cholinergic pathways have been implicated in regulating somatotroph function, the physiological relevance of this effect and the localization and nature of the receptor subtypes involved in this activity remain unclear. We report the surprising observation that mutant mice that selectively lack the M(3) muscarinic acetylcholine receptor subtype in the brain (neurons and glial cells; Br-M3-KO mice) showed a dwarf phenotype associated with a pronounced hypoplasia of the anterior pituitary gland and a marked decrease in pituitary and serum growth hormone (GH) and prolactin. Remarkably, treatment of Br-M3-KO mice with CJC-1295, a synthetic GH-releasing hormone (GHRH) analog, rescued the growth deficit displayed by Br-M3-KO mice by restoring normal pituitary size and normal serum GH and IGF-1 levels. These findings, together with results from M(3) receptor/GHRH colocalization studies and hypothalamic hormone measurements, support a model in which central (hypothalamic) M(3) receptors are required for the proper function of hypothalamic GHRH neurons. Our data reveal an unexpected and critical role for central M(3) receptors in regulating longitudinal growth by promoting the proliferation of pituitary somatotroph cells.
Expression of cyclooxygenase-2 in transitional cell carcinoma of the urinary bladder in dogs.
Khan, K N; Knapp, D W; Denicola, D B; Harris, R K
2000-05-01
To evaluate expression of cyclooxygenase (COX)-1 and COX-2 in the urinary bladder epithelium of clinically normal dogs and in transitional cell carcinoma cells of dogs. 21 dogs with transitional cell carcinoma of the urinary bladder and 8 dogs with clinically normal urinary bladders. COX-1 and COX-2 were evaluated by use of isoform-specific antibodies with standard immunohistochemical methods. COX-1, but not COX-2, was constitutively expressed in normal urinary bladder epithelium; however, COX-2 was expressed in neoplastic epithelium in primary tumors and in metastatic lesions of all 21 dogs and in new proliferating blood vessels in 3 dogs. Also, COX-1 was expressed in the neoplastic cells. Lack of expression of COX-2 in normal bladder epithelium and its substantial expression in transitional cell carcinoma cells suggest that this isoform may be involved in tumor cell growth. Inhibition of COX-2 is a likely mechanism of the antineoplastic effects of non steroidal antiinflammatory drugs.
A simple non-perturbing cell migration assay insensitive to proliferation effects.
Glenn, Honor L; Messner, Jacob; Meldrum, Deirdre R
2016-08-18
Migration is a fundamental cellular behavior that plays an indispensable role in development and homeostasis, but can also contribute to pathology such as cancer metastasis. Due to its relevance to many aspects of human health, the ability to accurately measure cell migration is of broad interest, and numerous approaches have been developed. One of the most commonly employed approaches, because of its simplicity and throughput, is the exclusion zone assay in which cells are allowed to migrate into an initially cell-free region. A major drawback of this assay is that it relies on simply counting cells in the exclusion zone and therefore cannot distinguish the effects of proliferation from migration. We report here a simple modification to the exclusion zone migration assay that exclusively measures cell migration and is not affected by proliferation. This approach makes use of a lineage-tracing vital stain that is retained through cell generations and effectively reads out migration relative to the original, parental cell population. This modification is simple, robust, non-perturbing, and inexpensive. We validate the method in a panel of cell lines under conditions that inhibit or promote migration and demonstrate its use in normal and cancer cell lines as well as primary cells.
Yan, Weixin; Chen, Shouhui; Zhao, Yiyang; Ye, Xiaoyu
2018-01-01
The present study aimed to investigate the effect of fisetin on proliferation and apoptosis of gastric cancer cells, as well as the underlying mechanism. Proliferation in SGC7901 cancer and GES-1 normal cells was analyzed using a CCK-8 assay. Apoptosis was analyzed using an Annexin V/Propidium Iodide apoptosis kit and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was analyzed by western blot assay. Treatment of SGC7901 cells with various concentrations (1, 5, 10, 15 and 20 µM) of fisetin for 48 h resulted in a concentration dependent reduction in proliferation. Flow cytometry revealed a marked increase in apoptosis from 5 µM concentration of fisetin after 48 h. The percentage of apoptotic cells increased to 87% following treatment with 15 µM fisetin for 48 h, compared with 2% in control. Treatment of SGC7901 cells with fisetin for 48 h resulted in a reduction in the activation of ERK 1/2 in a concentration-dependent manner. The reduction in activation of ERK 1/2 was significant following treatment with 15 µM fisetin for 48 h. The inhibitory effect of fisetin on activation of ERK 1/2 was further demonstrated using the ERK 1/2 inhibitor, PD98059. The results indicated a significant reduction in the proliferation of SGC7901 cells following treatment with PD98059 (P<0.002). The reduction by PD98059 administration was comparable to that observed following fisetin treatment for 48 h. In conclusion, the current study demonstrates that fisetin inhibits the proliferation of gastric cancer cells and induces apoptosis through suppression of ERK 1/2 activation. Thus, fisetin may have therapeutic applications in the treatment of gastric cancer. PMID:29805580
Yan, Weixin; Chen, Shouhui; Zhao, Yiyang; Ye, Xiaoyu
2018-06-01
The present study aimed to investigate the effect of fisetin on proliferation and apoptosis of gastric cancer cells, as well as the underlying mechanism. Proliferation in SGC7901 cancer and GES-1 normal cells was analyzed using a CCK-8 assay. Apoptosis was analyzed using an Annexin V/Propidium Iodide apoptosis kit and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was analyzed by western blot assay. Treatment of SGC7901 cells with various concentrations (1, 5, 10, 15 and 20 µM) of fisetin for 48 h resulted in a concentration dependent reduction in proliferation. Flow cytometry revealed a marked increase in apoptosis from 5 µM concentration of fisetin after 48 h. The percentage of apoptotic cells increased to 87% following treatment with 15 µM fisetin for 48 h, compared with 2% in control. Treatment of SGC7901 cells with fisetin for 48 h resulted in a reduction in the activation of ERK 1/2 in a concentration-dependent manner. The reduction in activation of ERK 1/2 was significant following treatment with 15 µM fisetin for 48 h. The inhibitory effect of fisetin on activation of ERK 1/2 was further demonstrated using the ERK 1/2 inhibitor, PD98059. The results indicated a significant reduction in the proliferation of SGC7901 cells following treatment with PD98059 (P<0.002). The reduction by PD98059 administration was comparable to that observed following fisetin treatment for 48 h. In conclusion, the current study demonstrates that fisetin inhibits the proliferation of gastric cancer cells and induces apoptosis through suppression of ERK 1/2 activation. Thus, fisetin may have therapeutic applications in the treatment of gastric cancer.
Park, Jong-Beom; Park, Chanjoo
2017-10-01
In vitro cell culture model. To investigate the effect of small interfering RNA (siRNA) on Fas expression, apoptosis, and proliferation in serum-deprived rat disc cells. Synthetic siRNA can trigger an RNA interference (RNAi) response in mammalian cells and precipitate the inhibition of specific gene expression. However, the potential utility of siRNA technology in downregulation of specific genes associated with disc cell apoptosis remains unclear. Rat disc cells were isolated and cultured in the presence of either 10% fetal bovine serum (FBS) (normal control) or 0% FBS (serum deprivation to induce apoptosis) for 48 hours. Fas expression, apoptosis, and proliferation were determined. Additionally, siRNA oligonucleotides against Fas (Fas siRNA) were transfected into rat disc cells to suppress Fas expression. Changes in Fas expression were assessed by reverse transcription-polymerase chain reaction and semiquantitatively analyzed using densitometry. The effect of Fas siRNA on apoptosis and proliferation of rat disc cells were also determined. Negative siRNA and transfection agent alone (Mock) were used as controls. Serum deprivation increased apoptosis by 40.3% ( p <0.001), decreased proliferation by 45.3% ( p <0.001), and upregulated Fas expression. Additionally, Fas siRNA suppressed Fas expression in serum-deprived cultures, with 68.5% reduction at the mRNA level compared to the control cultures ( p <0.001). Finally, Fas siRNA-mediated suppression of Fas expression significantly inhibited apoptosis by 9.3% and increased proliferation by 21% in serum-deprived cultures ( p <0.05 for both). The observed dual positive effect of Fas siRNA might be a powerful therapeutic approach for disc degeneration by suppression of harmful gene expression.
The role of prospero homeobox 1 (PROX1) expression in follicular thyroid carcinoma cells
Rudzinska, Magdalena; Ledwon, Joanna K.; Gawel, Damian; Sikorska, Justyna; Czarnocka, Barbara
2017-01-01
The prospero homeobox 1 (Prox1) transcription factor is a key player during embryogenesis and lymphangiogenesis. Altered Prox1 expression has been found in a variety of human cancers, including papillary thyroid carcinoma (PTC). Interestingly, Prox1 may exert tumor suppressive or tumor promoting effect, depending on the tissue context. In this study, we have analyzed Prox1 expression in normal and malignant human thyroid carcinoma cell lines. Moreover, we determined the effect of Prox1 silencing and overexpression on the cellular processes associated with the metastatic potential of tumor cells: proliferation, migration, invasion, apoptosis and anchorage-independent growth, in the follicular thyroid carcinoma (FTC) FTC-133 cell line. We found that Prox1 expression was significantly higher in FTC-derived cells than in PTC-derived cells and normal thyroid, and it was associated with the PI3K/Akt signaling pathway. In the FTC-133 cells, it was associated with cell invasive potential, motility and wound closure capacities, but not with proliferation or apoptosis. Modifying Prox1 expression also induced substantial changes in the cytoskeleton structure and cell morphology. In conclusion, we have shown that Prox1 plays an important role in the development of FTC and that its suppression prevents, whereas its overexpression promotes, the malignant behavior of thyroid follicular cancer cells. PMID:29371975
Gravitational force modulates G2/M phase exit in mechanically unloaded myoblasts
Benavides Damm, Tatiana; Franco-Obregón, Alfredo; Egli, Marcel
2013-01-01
Prolonged spaceflight gives rise to muscle loss and reduced strength, a condition commonly referred to as space atrophy. During exposure to microgravity, skeletal muscle myoblasts are mechanically unloaded and respond with attenuated cell proliferation, slowed cell cycle progression, and modified protein expression. To elucidate the underlying mechanisms by which muscle mass declines in response to prolonged microgravity exposure, we grew C2C12 mouse muscle cells under conditions of simulated microgravity (SM) and analyzed their proliferative capacity, cell cycle progression, and cyclin B and D expression. We demonstrated that the retarded cell growth observed in SM was correlated with an approximate 16 h delay in G2/M phase progression, where cells accumulated specifically between the G2 checkpoint and the onset of anaphase, concomitantly with a positive expression for cyclin B. The effect was specific for gravitational mechanical unloading as cells grown under conditions of hypergravity (HG, 4 g) for similar durations of time exhibited normal proliferation and normal cell cycle progression. Our results show that SM and HG exert phenomenological distinct responses over cell cycle progression. The deficits of SM can be restored by terrestrial gravitational force, whereas the effects of HG are indistinguishable from the 1 g control. This suggests that the mechanotransduction apparatus of cells responds differently to mechanical unloading and loading. PMID:23974110
Mapping of CIP/KIP inhibitors, G1 cyclins D1, D3, E and p53 proteins in the rat term placenta.
Korgun, Emin Turkay; Unek, Gozde; Herrera, Emilio; Jones, Carolyn J; Wadsack, Christian; Kipmen-Korgun, Dijle; Desoye, Gernot
2011-09-01
As cell cycle regulation is fundamental to the normal growth and development of the placenta, the aim of the present study was to determine the immunolocalizations of cell cycle related proteins, which have key roles in proliferation, differentiation and apoptosis during the development of the rat placenta. Here immunohistochemistry has been used to localize G1 cyclins (D1, D3, E), which are major determinants of proliferation, CIP/KIP inhibitors (p21, p27, p57), p53 as a master regulator and proliferating cell nuclear antigen in all cell types of the rat term placenta. The proportion of each cell type immunolabeled was counted. Cyclin D1 and cyclin D3 were present mostly in cells of the fetal aspect of the placenta, whereas the G1/S cyclin E was present only in the spongio- and labyrinthine trophoblast populations. Among the CIP/KIP inhibitors, p21 was present only in cells of the fetal aspect whereas p27 and p57 were found in all cell types studied. p53 was only found in a small proportion of cells with no co-localization of p53 and p21. The data suggest that the cells of the fetal side of the rat placenta still have some proliferation potential which is kept in check by expression of the CIP/KIP cell cycle inhibitors, whereas cells of the maternal aspect have lost this potential. Apoptosis is only marginal in the term rat placenta. In conclusion, proliferation and apoptosis in rat placental cells appears controlled mostly by the CIP/KIP inhibitors in late pregnancy.
Fort, Rafael Sebastián; Mathó, Cecilia; Geraldo, Murilo Vieira; Ottati, María Carolina; Yamashita, Alex Shimura; Saito, Kelly Cristina; Leite, Katia Ramos Moreira; Méndez, Manuel; Maedo, Noemí; Méndez, Laura; Garat, Beatriz; Kimura, Edna Teruko; Sotelo-Silveira, José Roberto; Duhagon, María Ana
2018-02-02
Nc886 is a 102 bp non-coding RNA transcript initially classified as a microRNA precursor (Pre-miR-886), later as a divergent homologue of the vault RNAs (vtRNA 2-1) and more recently as a novel type of RNA (nc886). Although nc886/vtRNA2-1/Pre-miR-886 identity is still controversial, it was shown to be epigenetically controlled, presenting both tumor suppressor and oncogenic function in different cancers. Here, we study for the first time the role of nc886 in prostate cancer. Nc886 promoter methylation status and its correlation with patient clinical parameters or DNMTs levels were evaluated in TCGA and specific GEO prostate tissue datasets. Nc886 level was measured by RT-qPCR to compare normal/neoplastic prostate cells from radical prostatectomies and cell lines, and to assess nc886 response to demethylating agents. The effect of nc886 recovery in cell proliferation (in vitro and in vivo) and invasion (in vitro) was evaluated using lentiviral transduced DU145 and LNCaP cell lines. The association between the expression of nc886 and selected genes was analyzed in the TCGA-PRAD cohort. Nc886 promoter methylation increases in tumor vs. normal prostate tissue, as well as in metastatic vs. normal prostate tissue. Additionally, nc886 promoter methylation correlates with prostate cancer clinical staging, including biochemical recurrence, Clinical T-value and Gleason score. Nc886 transcript is downregulated in tumor vs. normal tissue -in agreement with its promoter methylation status- and increases upon demethylating treatment. In functional studies, the overexpression of nc886 in the LNCaP and DU145 cell line leads to a decreased in vitro cell proliferation and invasion, as well as a reduced in vivo cell growth in NUDE-mice tumor xenografts. Finally, nc886 expression associates with the prostate cancer cell cycle progression gene signature in TCGA-PRAD. Our data suggest a tumor suppressor role for nc886 in the prostate, whose expression is epigenetically silenced in cancer leading to an increase in cell proliferation and invasion. Nc886 might hold clinical value in prostate cancer due to its association with clinical parameters and with a clinically validated gene signature.
2012-01-01
Background Non-small cell lung cancer (NSCLC) is one of the most frequent malignancies and has a high mortality rate due to late detection and lack of efficient treatments. Identifying novel drug targets for this indication may open the way for new treatment strategies. Comparison of gene expression profiles of NSCLC and normal adjacent tissue (NAT) allowed to determine that 5-alpha-reductase type I (SRD5A1) was up-regulated in NSCLC compared to NAT. This raised the question whether SRD5A1 was involved in sustained proliferation and survival of NSCLC. Methods siRNA-mediated silencing of SRD5A1 was performed in A549 and NCI-H460 lung cancer cell lines in order to determine the impact on proliferation, on distribution during the different phases of the cell cycle, and on apoptosis/necrosis. In addition, lung cancer cell lines were treated with 4-azasteroids, which specifically inhibit SRD5A1 activity, and the effects on proliferation were measured. Statistical analyses using ANOVA and post-hoc Tamhane-T2-test were performed. In the case of non-parametric data, the Kruskal-Wallis test and the post-hoc Mann-Whitney-U-test were used. Results The knock-down of SRDA51 expression was very efficient with the SRD5A1 transcripts being reduced to 10% of control levels. Knock-down efficiency was furthermore confirmed at the protein level. However, no effect of SRD5A1 silencing was observed in the proliferation assay, the cell cycle analysis, and the apoptosis/necrosis assay. Treatment of lung cancer cell lines with 4-azasteroids did not significantly inhibit proliferation. Conclusions In summary, the results suggest that SRD5A1 is not a crucial enzyme for the sustained proliferation of NSCLC cell lines. PMID:22257483
Kapp, Friedrich G; Sommer, Anette; Kiefer, Thomas; Dölken, Gottfried; Haendler, Bernard
2012-01-18
Non-small cell lung cancer (NSCLC) is one of the most frequent malignancies and has a high mortality rate due to late detection and lack of efficient treatments. Identifying novel drug targets for this indication may open the way for new treatment strategies. Comparison of gene expression profiles of NSCLC and normal adjacent tissue (NAT) allowed to determine that 5-alpha-reductase type I (SRD5A1) was up-regulated in NSCLC compared to NAT. This raised the question whether SRD5A1 was involved in sustained proliferation and survival of NSCLC. siRNA-mediated silencing of SRD5A1 was performed in A549 and NCI-H460 lung cancer cell lines in order to determine the impact on proliferation, on distribution during the different phases of the cell cycle, and on apoptosis/necrosis. In addition, lung cancer cell lines were treated with 4-azasteroids, which specifically inhibit SRD5A1 activity, and the effects on proliferation were measured. Statistical analyses using ANOVA and post-hoc Tamhane-T2-test were performed. In the case of non-parametric data, the Kruskal-Wallis test and the post-hoc Mann-Whitney-U-test were used. The knock-down of SRDA51 expression was very efficient with the SRD5A1 transcripts being reduced to 10% of control levels. Knock-down efficiency was furthermore confirmed at the protein level. However, no effect of SRD5A1 silencing was observed in the proliferation assay, the cell cycle analysis, and the apoptosis/necrosis assay. Treatment of lung cancer cell lines with 4-azasteroids did not significantly inhibit proliferation. In summary, the results suggest that SRD5A1 is not a crucial enzyme for the sustained proliferation of NSCLC cell lines.
2011-01-01
Background We have previously reported significant downregulation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) in prostate cancer (PCa) compared to the surrounding benign tissue. UCHL1 plays an important role in ubiquitin system and different cellular processes such as cell proliferation and differentiation. We now show that the underlying mechanism of UCHL1 downregulation in PCa is linked to its promoter hypermethylation. Furthermore, we present evidences that UCHL1 expression can affect the behavior of prostate cancer cells in different ways. Results Methylation specific PCR analysis results showed a highly methylated promoter region for UCHL1 in 90% (18/20) of tumor tissue compared to 15% (3/20) of normal tissues from PCa patients. Pyrosequencing results confirmed a mean methylation of 41.4% in PCa whereas only 8.6% in normal tissues. To conduct functional analysis of UCHL1 in PCa, UCHL1 is overexpressed in LNCaP cells whose UCHL1 expression is normally suppressed by promoter methylation and found that UCHL1 has the ability to decrease the rate of cell proliferation and suppresses anchorage-independent growth of these cells. In further analysis, we found evidence that exogenous expression of UCHL1 suppress LNCaP cells growth probably via p53-mediated inhibition of Akt/PKB phosphorylation and also via accumulation of p27kip1 a cyclin dependant kinase inhibitor of cell cycle regulating proteins. Notably, we also observed that exogenous expression of UCHL1 induced a senescent phenotype that was detected by using the SA-ß-gal assay and might be due to increased p14ARF, p53, p27kip1 and decreased MDM2. Conclusion From these results, we propose that UCHL1 downregulation via promoter hypermethylation plays an important role in various molecular aspects of PCa biology, such as morphological diversification and regulation of proliferation. PMID:21999842
Al-Sadoon, Mohamed K; Abdel-Maksoud, Mostafa A; Rabah, Danny M; Badr, Gamal
2012-01-01
We recently demonstrated that the snake venom extracted from Walterinnesia aegyptia (WEV) either alone or combined with silica nanoparticles (WEV+NP) enhanced the proliferation of mice immune cells and simultaneously decreased the proliferation of human breast carcinoma cell line (MDA-MB-231). However, the molecular mechanism of how this venom induced growth arrest of breast cancer cells has not been studied. In this context, we extended our study to evaluate the anti-tumor potential of WEV and WEV+NP on the human breast carcinoma cell lines MDA-MB-231 and MCF-7, as well as their effects on non-tumorigenic normal breast epithelial cells (MCF-10). The IC(50 )values of WEV alone and WEV+NP in these cell lines were determined to be 50 ng/ml and 20 ng/ml, respectively. Interestingly, at these concentrations, the venom did not affect the viability of normal MCF-10 cells and treatment of all these cell lines with NP alone did not affect their viability. Using annexin-V binding assay followed by flow cytometry analysis, we found that combination of WEV with NP strongly induced apoptosis in MDA-MB-231 and MCF-7 cancer cells without significant effect on normal MCF-10 cells. Furthermore, we found that WEV+NP decreased the expression of Bcl2 and enhanced the activation of caspase 3 in MDA-MB-231 and MCF-7 cells. Most importantly, WEV+NP-treated breast cancer cells, but not normal MCF-10 cells, exhibited a significant (P<0.05) reduction in actin polymerization and cytoskeletal rearrangement in response to CXCL12. Our data reveal biological effects of WEV or WEV+NP and the underlying mechanisms to fight breast cancer cells. Copyright © 2012 S. Karger AG, Basel.
A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting
Lindeman, Geoffrey J.; Dagnino, Lina; Gaubatz, Stefan; Xu, Yuhui; Bronson, Roderick T.; Warren, Henry B.; Livingston, David M.
1998-01-01
Homozygous E2F-5 knockout embryos and mice have been generated. Although embryonic development appeared normal, newborn mice developed nonobstructive hydrocephalus, suggesting excessive cerebrospinal fluid (CSF) production. Although the CSF-producing choroid plexus displayed normal cellular organization, it contained abundant electron-lucent epithelial cells, consistent with excessive CSF secretory activity. Moreover, E2F-5 CNS expression in normal animals was largely confined to the choroid plexus. Cell cycle kinetics were not perturbed in homozygous knockout embryo fibroblasts. Thus, E2F-5 is not essential for cell proliferation. Rather, it affects the secretory behavior of a differentiated neural tissue. PMID:9553039
Babkair, Hamzah; Yamazaki, Manabu; Uddin, Md Shihab; Maruyama, Satoshi; Abé, Tatsuya; Essa, Ahmed; Sumita, Yoshimasa; Ahsan, Md Shahidul; Swelam, Wael; Cheng, Jun; Saku, Takashi
2016-11-01
We reported that altered cell contact mediated by E-cadherin is an initial event in the pathogenesis of oral epithelial malignancies. To assess other effects of cell adhesion, we examined the expression levels of tight junction (TJ) molecules in oral carcinoma in situ (CIS) and squamous cell carcinoma (SCC). To identify changes in the expression of TJ molecules, we conducted an analysis of the immunohistochemical profiles of claudin-1 (CLDN-1) and zonula occludens-1 (ZO-1) in surgical specimens acquired from patients with oral SCC containing foci of epithelial dysplasia or from patients with CIS. We used immunofluorescence, Western blotting, reverse-transcription polymerase chain reaction, and RNA interference to evaluate the functions of CLDN-1 and ZO-1 in cultured oral SCC cells. TJ molecules were not detected in normal oral epithelial tissues but were expressed in SCC/CIS cells. ZO-1 was localized within the nucleus of proliferating cells. When CLDN-1 expression was inhibited by transfecting cells with specific small interference RNAs, SCC cells dissociated, and their ability to proliferate and invade Matrigel was inhibited. In contrast, although RNA interference-mediated inhibition of ZO-1 expression did not affect cell morphology, it inhibited cell proliferation and invasiveness. Our findings indicated that the detection of TJ molecules in the oral epithelia may serve as a marker for the malignant phenotype of cells in which CLDN-1 regulates proliferation and invasion. Copyright © 2016 Elsevier Inc. All rights reserved.
Reactive Oxygen Species in Normal and Tumor Stem Cells
Zhou, Daohong; Shao, Lijian; Spitz, Douglas R.
2014-01-01
Reactive oxygen species (ROS) play an important role in determining the fate of normal stem cells. Low levels of ROS are required for stem cells to maintain quiescence and self-renewal. Increases in ROS production cause stem cell proliferation/differentiation, senescence, and apoptosis in a dose-dependent manner, leading to their exhaustion. Therefore, the production of ROS in stem cells is tightly regulated to ensure that they have the ability to maintain tissue homeostasis and repair damaged tissues for the life span of an organism. In this chapter, we discuss how the production of ROS in normal stem cells is regulated by various intrinsic and extrinsic factors and how the fate of these cells is altered by the dysregulation of ROS production under various pathological conditions. In addition, the implications of the aberrant production of ROS by tumor stem cells for tumor progression and treatment are also discussed. PMID:24974178
Bracha, Shay; Viall, Austin; Goodall, Cheri; Stang, Bernadette; Ruaux, Craig; Seguin, Bernard; Chappell, Patrick E
2013-12-12
The significance of the serotonergic system in bone physiology and, more specifically, the importance of the five hydroxytryptamine receptor 2A (5HTR2A) in normal osteoblast proliferation have been previously described; however the role of serotonin in osteosarcoma remains unclear. Particularly, the expression and function of 5HTR2A in canine osteosarcoma has not yet been studied, thus we sought to determine if this indoleamine modulates cellular proliferation in vitro. Using real time quantitative reverse transcription PCR and immunoblot analyses, we explored receptor expression and signaling differences between non-neoplastic canine osteoblasts (CnOb) and an osteosarcoma cell line (COS). To elucidate specific serotonergic signaling pathways triggered by 5HTR2A, we performed immunoblots for ERK and CREB. Finally, we compared cell viability and the induction of apoptosis in the presence 5HTR2A agonists and antagonists. 5HTR2A was overexpressed in the malignant cell line in comparison to normal cells. In CnOb cells, ERK phosphorylation (ERK-P) decreased in response to both serotonin and a specific 5HTR2A antagonist, ritanserin. In contrast, ERK-P abundance increased in COS cells following either treatment. While endogenous CREB was undetectable in CnOb, CREB was observed constitutively in COS, with expression and exhibited increased CREB phosphorylation following escalating concentrations of ritanserin. To determine the influence of 5HTR2A signaling on cell viability we challenged cells with ritanserin and serotonin. Our findings confirmed that serotonin treatment promoted cell viability in malignant cells but not in normal osteoblasts. Conversely, ritanserin reduced cell viability in both the normal and osteosarcoma cells. Further, ritanserin induced apoptosis in COS at the same concentrations associated with decreased cell viability. These findings confirm the existence of a functional 5HTR2A in a canine osteosarcoma cell line. Results indicate that intracellular second messenger signal coupling of 5HTR2A is different between normal and malignant cells, warranting further research to investigate its potential as a novel therapeutic target for canine osteosarcoma.
Liu, C X; Xu, X; Chen, X L; Yang, P B; Zhang, J S; Liu, Y
2015-09-20
The high levels of glutamate might involve in neurogenesis after brain injuries. However, the mechanisms are not fully understood. In this study, we investigated the effect of glutamate on the proliferation of rat embryonic neural stem/progenitor cells (NSCs) through regulating the vascular endothelial growth factor (VEGF) expression of astrocytes (ASTs) in vitro, and the cyclin D1 expression of NSCs. The results showed that glutamate promoted the expression and secretion of VEGF of rat astrocytes by activating group I mGluRs. Astrocyte conditioned medium-containing Glu [ACM (30%)] promoted the proliferation of embryonic NSCs compared with normal astrocyte conditioned medium+Glu [N-ACM (30%)+Glu (30 μM)] by increasing cell activity, diameter of neurospheres, bromodeoxyuridine (BrdU) incorporation and cell division; while ACM+VEGF neutralizing antibody [ACM (30%)+VEGF NAb (15 μg/ml)] significantly inhibited the proliferation of embryonic NSCs compared with ACM (30%). ACM (30%) increased the expressions of cyclin D1 and decreased cell death compared with N-ACM (30%)+Glu (30 μM). ACM (30%)+VEGF NAb (15 μg/ml) decreased the expressions of cyclin D1 and increased cell death compared with ACM (30%). These results demonstrated that glutamate could also indirectly promote the proliferation of rat embryonic NSCs through inducing the VEGF expression of ASTs in vitro, and VEGF may increase the expression of cyclin D1. These finding suggest that glutamate may be a major molecule for regulating embryonic NSC proliferation and facilitate neural repair in the process of NSC transplants after brain injuries.
Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.
Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. Themore » AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.« less
Benson, Don M.; Yu, Jianhua; Becknell, Brian; Wei, Min; Freud, Aharon G.; Ferketich, Amy K.; Trotta, Rossana; Perrotti, Danilo; Briesewitz, Roger
2009-01-01
Stem cell factor (SCF) promotes synergistic cellular proliferation in combination with several growth factors, and appears important for normal natural killer (NK)–cell development. CD34+ hematopoietic precursor cells (HPCs) require interleukin-15 (IL-15) for differentiation into human NK cells, and this effect can be mimicked by IL-2. Culture of CD34+ HPCs or some primary human NK cells in IL-2/15 and SCF results in enhanced growth compared with either cytokine alone. The molecular mechanisms responsible for this are unknown and were investigated in the present work. Activation of NK cells by IL-2/15 increases expression of c-kit whose kinase activity is required for synergy with IL-2/15 signaling. Mitogen-activated protein kinase (MAPK) signaling intermediaries that are activated both by SCF and IL-2/15 are enhanced in combination to facilitate earlier cell-cycle entry. The effect results at least in part via enhanced MAPK-mediated modulation of p27 and CDK4. Collectively the data reveal a novel mechanism by which SCF enhances cellular proliferation in combination with IL-2/15 in primary human NK cells. PMID:19060242
The inhibition of Caco-2 proliferation by astaxanthin from Xanthophyllomyces dendrorhous.
Wayakanon, Kornchanok; Rueangyotchanthana, Kanjana; Wayakanon, Praween; Suwannachart, Chatrudee
2018-04-01
To investigate the efficiency of natural astaxanthin that has been extracted from Xanthophyllomyces dendrorhous in inhibiting the proliferation and viability of colorectal adenocarcinoma cell line (Caco-2; colon cancer cells). Caco-2 cells and normal human oralkeratinocytes (NOKs) were treated with different concentrations of extracted astaxanthin, ranging from 0.075 to 10 mg ml -1 , for 24, 48 and 72 h. The number of cells was determined via MTS assay and the proliferating cells were investigated by bromodeoxyuridine (BrdU) assay.Results/Key findings. Of the Caco-2 cells, 30-50 % remained viable, while the NOKs showed 110-120 % survival when treated with 5 mg ml -1 astaxanthin. The Caco-2 cells showed distinct structural shrinkage when treated with the same concentration of astaxanthin. Fluorescent labelling of the DNA of the proliferative cells with BrdU showed a significant decrease in the number of the proliferative Caco-2 cells when the concentration of astaxanthin was increased to 5 mg ml -1 . The natural astaxanthin from X. dendrorhous, at an appropriate concentration, is effective in terminating the viability of, or retarding the proliferative activity of, Caco-2 cells, without harmful effects on NOKs.
Dunn, S.-J.; Osborne, J. M.; Appleton, P. L.; Näthke, I.
2016-01-01
Curative intervention is possible if colorectal cancer is identified early, underscoring the need to detect the earliest stages of malignant transformation. A candidate biomarker is the expanded proliferative zone observed in crypts before adenoma formation, also found in irradiated crypts. However, the underlying driving mechanism for this is not known. Wnt signaling is a key regulator of proliferation, and elevated Wnt signaling is implicated in cancer. Nonetheless, how cells differentiate Wnt signals of varying strengths is not understood. We use computational modeling to compare alternative hypotheses about how Wnt signaling and contact inhibition affect proliferation. Direct comparison of simulations with published experimental data revealed that the model that best reproduces proliferation patterns in normal crypts stipulates that proliferative fate and cell cycle duration are set by the Wnt stimulus experienced at birth. The model also showed that the broadened proliferation zone induced by tumorigenic radiation can be attributed to cells responding to lower Wnt concentrations and dividing at smaller volumes. Application of the model to data from irradiated crypts after an extended recovery period permitted deductions about the extent of the initial insult. Application of computational modeling to experimental data revealed how mechanisms that control cell dynamics are altered at the earliest stages of carcinogenesis. PMID:27053661
p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation
Brosh, Ran; Shalgi, Reut; Liran, Atar; Landan, Gilad; Korotayev, Katya; Nguyen, Giang Huong; Enerly, Espen; Johnsen, Hilde; Buganim, Yosef; Solomon, Hilla; Goldstein, Ido; Madar, Shalom; Goldfinger, Naomi; Børresen-Dale, Anne-Lise; Ginsberg, Doron; Harris, Curtis C; Pilpel, Yitzhak; Oren, Moshe; Rotter, Varda
2008-01-01
Normal cell growth is governed by a complicated biological system, featuring multiple levels of control, often deregulated in cancers. The role of microRNAs (miRNAs) in the control of gene expression is now increasingly appreciated, yet their involvement in controlling cell proliferation is still not well understood. Here we investigated the mammalian cell proliferation control network consisting of transcriptional regulators, E2F and p53, their targets and a family of 15 miRNAs. Indicative of their significance, expression of these miRNAs is downregulated in senescent cells and in breast cancers harboring wild-type p53. These miRNAs are repressed by p53 in an E2F1-mediated manner. Furthermore, we show that these miRNAs silence antiproliferative genes, which themselves are E2F1 targets. Thus, miRNAs and transcriptional regulators appear to cooperate in the framework of a multi-gene transcriptional and post-transcriptional feed-forward loop. Finally, we show that, similarly to p53 inactivation, overexpression of representative miRNAs promotes proliferation and delays senescence, manifesting the detrimental phenotypic consequence of perturbations in this circuit. Taken together, these findings position miRNAs as novel key players in the mammalian cellular proliferation network. PMID:19034270
Triiodothyronine regulates cell growth and survival in renal cell cancer.
Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary
2016-10-01
Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.
Barx2 is Expressed in Satellite Cells and is Required for Normal Muscle Growth and Regeneration
Meech, Robyn; Gonzalez, Katie N.; Barro, Marietta; Gromova, Anastasia; Zhuang, Lizhe; Hulin, Julie-Ann; Makarenkova, Helen P.
2015-01-01
Muscle growth and regeneration are regulated through a series of spatiotemporally dependent signaling and transcriptional cascades. Although the transcriptional program controlling myogenesis has been extensively investigated, the full repertoire of transcriptional regulators involved in this process is far from defined. Various homeodomain transcription factors have been shown to play important roles in both muscle development and muscle satellite cell-dependent repair. Here, we show that the homeodomain factor Barx2 is a new marker for embryonic and adult myoblasts and is required for normal postnatal muscle growth and repair. Barx2 is coexpressed with Pax7, which is the canonical marker of satellite cells, and is upregulated in satellite cells after muscle injury. Mice lacking the Barx2 gene show reduced postnatal muscle growth, muscle atrophy, and defective muscle repair. Moreover, loss of Barx2 delays the expression of genes that control proliferation and differentiation in regenerating muscle. Consistent with the in vivo observations, satellite cell-derived myoblasts cultured from Barx2−/− mice show decreased proliferation and ability to differentiate relative to those from wild-type or Barx2+/− mice. Barx2−/− myoblasts show reduced expression of the differentiation-associated factor myogenin as well as cell adhesion and matrix molecules. Finally, we find that mice lacking both Barx2 and dystrophin gene expression have severe early onset myopathy. Together, these data indicate that Barx2 is an important regulator of muscle growth and repair that acts via the control of satellite cell proliferation and differentiation. PMID:22076929
Li, Qiang; Tanaka, Yoshiharu; Saitoh, Yasukazu; Miwa, Nobuhiko
2016-05-01
Our previous study demonstrated that platinum nanocolloid (Pt-nc), combined with lower-dose gamma irradiation at 3, 5, and 7 Gy significantly decreased proliferation and accelerated apoptosis of the human esophageal squamous cell carcinoma-derived cell line KYSE-70. The aim of the present study was to determine, under the same conditions as our previous study where gamma rays combined with Pt-nc were carcinostatic to KYSE-70 cells, if we could induce a radioprotective or the radiation-sensitizing effect on the human normal esophageal epithelial cells (HEEpiC). HEEpiC were treated with various Pt-nc concentrations and then irradiated with various gamma-ray doses. The proliferative status of HEEpiC was evaluated using trypan blue dye-exclusion and WST-8 assays. The cellular and nucleic morphological features were determined using crystal violet and Hoechst 33342 stainings, respectively. The intracellular level of reactive oxygen species (ROS) in HEEpiC was evaluated with a nitro blue tetrazolium (NBT) assay. The apoptotic status was detected with caspase-3, Bax, and Bcl-2 by Western blotting. Either Pt-nc or gamma irradiation could inhibit the growth of HEEpiC; however, their combined use exerted a significant proliferation-inhibitory effect in a Pt-nc dose-dependent manner than gamma irradiation alone. Pt-nc resulted in radiation sensitization rather than radiation protection on HEEpiC in vitro similar to KYSE-70 cells, when Pt-nc was administrated alone or combined with gamma irradiation. Thus, Pt-nc has an inhibitory effect on cell proliferation, a facilitative effect on apoptosis, and a certain degree of toxicity against HEEpiC.
Aguiñiga-Sánchez, Itzen; Soto-Hernández, Marcos; Cadena-Iñiguez, Jorge; Ruíz-Posadas, Lucero del Mar; Cadena-Zamudio, Jorge David; González-Ugarte, Ana Karen; Steider, Benny Weiss; Santiago-Osorio, Edelmiro
2015-01-01
The antiproliferative potential of a crude extract from the chayote hybrid H-837-07-GISeM® and its potential for apoptosis induction were assessed in leukaemic cell lines and normal mouse bone marrow mononuclear cells (BM-MNCs). The extract strongly inhibited the proliferation of the P388, J774, and WEHI-3 cell lines (with an IC50 below 1.3 μg·mL(-1)), reduced cell viability, and induced apoptotic body production, phosphatidylserine translocation, and DNA fragmentation. However, the extract had no effect on BM-MNCs. We postulate that these properties make the extract a good candidate for an anti-tumour agent for clinical use.
IGF-II and IGFBP-6 regulate cellular contractility and proliferation in Dupuytren's disease.
Raykha, Christina; Crawford, Justin; Gan, Bing Siang; Fu, Ping; Bach, Leon A; O'Gorman, David B
2013-10-01
Dupuytren's disease (DD) is a common and heritable fibrosis of the palmar fascia that typically manifests as permanent finger contractures. The molecular interactions that induce the development of hyper-contractile fibroblasts, or myofibroblasts, in DD are poorly understood. We have identified IGF2 and IGFBP6, encoding insulin-like growth factor (IGF)-II and IGF binding protein (IGFBP)-6 respectively, as reciprocally dysregulated genes and proteins in primary cells derived from contracture tissues (DD cells). Recombinant IGFBP-6 inhibited the proliferation of DD cells, patient-matched control (PF) cells and normal palmar fascia (CT) cells. Co-treatments with IGF-II, a high affinity IGFBP-6 ligand, were unable to rescue these effects. A non-IGF-II binding analog of IGFBP-6 also inhibited cellular proliferation, implicating IGF-II-independent roles for IGFBP-6 in this process. IGF-II enhanced the proliferation of CT cells, but not DD or PF cells, and significantly enhanced DD and PF cell contractility in stressed collagen lattices. While IGFBP-6 treatment did not affect cellular contractility, it abrogated the IGF-II-induced contractility of DD and PF cells in stressed collagen lattices. IGF-II also significantly increased the contraction of DD cells in relaxed lattices, however this effect was not evident in relaxed collagen lattices containing PF cells. The disparate effects of IGF-II on DD and PF cells in relaxed and stressed contraction models suggest that IGF-II can enhance lattice contractility through more than one mechanism. This is the first report to implicate IGFBP-6 as a suppressor of cellular proliferation and IGF-II as an inducer of cellular contractility in this connective tissue disease. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
CD10/NEP in non-small cell lung carcinomas. Relationship to cellular proliferation.
Ganju, R K; Sunday, M; Tsarwhas, D G; Card, A; Shipp, M A
1994-01-01
The cell surface metalloproteinase CD10/neutral endopeptidase 24.11 (NEP) hydrolyzes a variety of peptide substrates and reduces cellular responses to specific peptide hormones. Because CD10/NEP modulates peptide-mediated proliferation of small cell carcinomas of the lung (SCLC) and normal fetal bronchial epithelium, we evaluated the enzyme's expression in non-small cell lung carcinomas (NSCLC). Bronchoalveolar and large cell carcinoma cell lines had low levels of CD10/NEP expression whereas squamous, adenosquamous, and adenocarcinoma cell lines had higher and more variable levels of the cell surface enzyme. Regional variations in CD10/NEP immunostaining in primary NSCLC specimens prompted us to correlate CD10/NEP expression with cell growth. In primary carcinomas of the lung, clonal NSCLC cell lines and SV40-transformed fetal airway epithelium, subsets of cells expressed primarily CD10/NEP or the proliferating cell nuclear antigen (PCNA). Cultured airway epithelial cells had the lowest levels of CD10/NEP expression when the highest percentage of cells were actively dividing; in addition, these cells grew more rapidly when cell surface CD10/NEP was inhibited. NSCLC cell lines had receptors for a variety of mitogenic peptides known to be CD10/NEP substrates, underscoring the functional significance of growth-related variability in CD10/NEP expression. Images PMID:7962523
Invasive onychocytic carcinoma.
Wang, Lei; Gao, Tianwen; Wang, Gang
2015-05-01
Neoplasms originating from nail matrix keratinocytes are very rare. Onychomatricoma and onychocytic matricoma are benign tumors arising from nail matrix keratinocytes. Only one case of onychocytic carcinoma, the malignant counterpart of onychocytic matricoma, has been reported in the literature. Herein, we describe a case of invasive onychocytic carcinoma. Two biopsy specimens of the tumor, obtained at early and invasive stages, were examined histopathologically. The first biopsy specimen showed a retiform proliferation of eosinophilic and basophilic cells in the nail matrix. The second biopsy specimen showed a retiform basophilic cell proliferation with focal keratinization. Similar to normal nail matrix keratinocytes, the proliferating basophilic cells failed to express cytokeratin (CK)1, CK6 and CK10. Focal expression of hair-specific keratins, including K31, K85 and K86, was observed. On the basis of these findings, the tumor was identified as an invasive malignant tumor originating from nail matrix keratinocytes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Heterogeneity Within Macrophage Populations: A Possible Role for Colony Stimulating Factors
1988-04-04
highest concentration ofriFN-yused (5.0 U/ml), a depression of T cell proliferation induced by the antigen-pulsed rGM-CSF-derived macrophages was...stimulation by rGM-CSF and nCSF-1 in bone marrow cells derived from normal mice and mice 3 and 7 days post-treatment with 5FU . Bone marrow cells
Normal Fibroblasts Induce E-Cadherin Loss and Increase Lymph Node Metastasis in Gastric Cancer
Xu, Wen; Hu, Xinlei; Chen, Zhongting; Zheng, Xiaoping; Zhang, Chenjing; Wang, Gang; Chen, Yu; Zhou, Xinglu; Tang, Xiaoxiao; Luo, Laisheng; Xu, Xiang; Pan, Wensheng
2014-01-01
Background A tumor is considered a heterogeneous complex in a three-dimensional environment that is flush with pathophysiological and biomechanical signals. Cell-stroma interactions guide the development and generation of tumors. Here, we evaluate the contributions of normal fibroblasts to gastric cancer. Methodology/Principal Findings By coculturing normal fibroblasts in monolayers of BGC-823 gastric cancer cells, tumor cells sporadically developed short, spindle-like morphological characteristics and demonstrated enhanced proliferation and invasive potential. Furthermore, the transformed tumor cells demonstrated decreased tumor formation and increased lymphomatic and intestinal metastatic potential. Non-transformed BGC-823 cells, in contrast, demonstrated primary tumor formation and delayed intestinal and lymph node invasion. We also observed E-cadherin loss and the upregulation of vimentin expression in the transformed tumor cells, which suggested that the increase in metastasis was induced by epithelial-to-mesenchymal transition. Conclusion Collectively, our data indicated that normal fibroblasts sufficiently induce epithelial-to-mesenchymal transition in cancer cells, thereby leading to metastasis. PMID:24845259
Varley, Claire Lucy; Stahlschmidt, Jens; Smith, Barbara; Stower, Michael; Southgate, Jennifer
2004-05-01
We observed that in urothelium, both cornifying and noncornifying forms of squamous metaplasia are accompanied by changes in the localization of the nuclear hormone receptors, peroxisome proliferator activated receptor gamma (PPAR-gamma) and retinoid X receptor (RXR-alpha). To obtain objective evidence for a role for PPAR-gamma-mediated signaling in urothelial differentiation, we examined expression of the cytokeratin isotypes CK13, CK20, and CK14 as indicators of transitional, terminal transitional, and squamous differentiation, respectively, in cultures of normal human urothelial cells. In control culture conditions, normal human urothelial cells showed evidence of squamous differentiation (CK14+, CK13-, CK20-). Treatment with the high-affinity PPAR-gamma agonist, troglitazone (TZ), resulted in gain of CK13 and loss of CK14 protein expression. The effect of TZ was significantly augmented when the autocrine-stimulated epidermal growth factor receptor pathway was inhibited and this resulted in induction of CK20 expression. The RXR-specific inhibitors PA452, HX531, and HX603 inhibited the TZ-induced CK13 expression, supporting a role for RXR in the induction of CK13 expression. Thus, signaling through PPAR-gamma can mediate transitional differentiation of urothelial cells and this is modulated by growth regulatory programs.
The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine1
Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P
2008-01-01
The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium. PMID:18231635
[Membrane model of the regulation of proliferation: the theory and interpretation of an experiment].
Volkov, E I
1983-04-01
The role of cell surface physical organization in the cell cycle regulation is analyzed within the framework of the earlier proposed theory (Chernavskii et al., 1982). Two models of cell surface are considered: hard-frame fluid-mosaic model (latticemosaic) and the fluid-mosaic one. The former deals with normal cells. The existence of integral carcasse or "frame" which is formed by the essential part of cross-linked membrane components and may have at least two different conformational states is hypothesized. The second model describes membranes of tumour cells. With the latter theory any mitogen (excluding the restoration of nutrient depletion) reduces the mechanical tensile strength of the frame and stimulates the general structural rearrangement of the plasma membrane. There are only two conformational transitions during the cell cycle which serve as signals for the beginning of S and M phases. If the values of tensile strength are great enough and therefore the conformational transitions are impossible, the cells pass into the resting (prereplicative--G01, or premitotical--G02) state. Three types of experiments are interpreted in the proposed theory: a) on differences in the action of growth factors on normal and tumour cell cycle, b) on the necessary condition for mitogenicity of lectins, c) on the stimulation of proliferation by mechanical deformation of cells.
ERβ inhibits proliferation and invasion of breast cancer cells
Lazennec, Gwendal; Bresson, Damien; Lucas, Annick; Chauveau, Corine; Vignon, Françoise
2001-01-01
Recent studies indicate that the expression of ERβ in breast cancer is lower than in normal breast, suggesting that ERβ could play an important role in carcinogenesis. To investigate this hypothesis, we engineered estrogen-receptor negative MDA-MB-231 breast cancer cells to reintroduce either ERα or ERβ protein with an adenoviral vector. In these cells, ERβ (as ERα) expression was monitored using RT-PCR and Western blot. ERβ protein was localized in the nucleus (immunocytochemistry) and able to transactivate estrogen-responsive reporter constructs in the presence of estradiol. ERβ and ERα induced the expression of several endogenous genes such as pS2, TGFα or the cyclin kinase inhibitor p21, but in contrast to ERα, ERβ was unable to regulate c-myc proto-oncogene expression. The pure antiestrogen ICI 164, 384 completely blocked ERα and ERβ estrogen-induced activities. ERβ inhibited MDA-MB-231 cell proliferation in a ligand-independent manner, whereas ERα inhibition of proliferation is hormone-dependent. Moreover, ERβ and ERα, decreased cell motility and invasion. Our data bring the first evidence that ERβ is an important modulator of proliferation and invasion of breast cancer cells and support the hypothesis that the loss of ERβ expression could be one of the events leading to the development of breast cancer. PMID:11517191
De Marco, N; Campanella, C; Carotenuto, R
2011-05-01
p27BBP/eIF6 (β4 binding protein/eukaryotic initiation factor 6) is a highly conserved protein necessary for cell life. In adult eIF6 mice, a 50% decrease in the protein levels in all tissues is accompanied by a reduction in cell proliferation only in the liver, fat cells and cultured fibroblasts. During X. laevis embryogenesis expression of p27BBP/eIF6 is abundant in high proliferative territories. However, in Xenopus cell proliferation appears unaffected following p27BBP/eIF6 over-expression or down-regulation. Indeed, p27BBP/eIF6 is an anti-apoptotic factor acting upstream of Bcl2 that reduces endogenous apoptosis. We studied p27BBP/eIF6 protein localization in wild type embryos and compared it to proliferation and apoptosis. At the beginning of embryogenesis, high levels of p27BBP/eIF6, proliferation and apoptosis overlap. In later development stages high proliferation levels are present in the same regions where higher p27BBP/eIF6 expression is observed, while apoptosis does not appear specifically concentrated in the same sites. The higher presence of p27BBP/eIF6 would appear related to an increased need of apoptosis control in the regions where cell death is essential for normal development.
Ko, Kwang Suk; Tomasi, Maria Lauda; Iglesias-Ara, Ainhoa; French, Barbara A; French, Samuel W; Ramani, Komal; Lozano, Juan José; Oh, Pilsoo; He, Lina; Stiles, Bangyan L; Li, Tony W H; Yang, Heping; Martínez-Chantar, M Luz; Mato, José M; Lu, Shelly C
2010-12-01
Prohibitin 1 (PHB1) is a highly conserved, ubiquitously expressed protein that participates in diverse processes including mitochondrial chaperone, growth and apoptosis. The role of PHB1 in vivo is unclear and whether it is a tumor suppressor is controversial. Mice lacking methionine adenosyltransferase 1A (MAT1A) have reduced PHB1 expression, impaired mitochondrial function, and spontaneously develop hepatocellular carcinoma (HCC). To see if reduced PHB1 expression contributes to the Mat1a knockout (KO) phenotype, we generated liver-specific Phb1 KO mice. Expression was determined at the messenger RNA and protein levels. PHB1 expression in cells was varied by small interfering RNA or overexpression. At 3 weeks, KO mice exhibit biochemical and histologic liver injury. Immunohistochemistry revealed apoptosis, proliferation, oxidative stress, fibrosis, bile duct epithelial metaplasia, hepatocyte dysplasia, and increased staining for stem cell and preneoplastic markers. Mitochondria are swollen and many have no discernible cristae. Differential gene expression revealed that genes associated with proliferation, malignant transformation, and liver fibrosis are highly up-regulated. From 20 weeks on, KO mice have multiple liver nodules and from 35 to 46 weeks, 38% have multifocal HCC. PHB1 protein levels were higher in normal human hepatocytes compared to human HCC cell lines Huh-7 and HepG2. Knockdown of PHB1 in murine nontransformed AML12 cells (normal mouse hepatocyte cell line) raised cyclin D1 expression, increased E2F transcription factor binding to cyclin D1 promoter, and proliferation. The opposite occurred with PHB1 overexpression. Knockdown or overexpression of PHB1 in Huh-7 cells did not affect proliferation significantly or sensitize cells to sorafenib-induced apoptosis. Hepatocyte-specific PHB1 deficiency results in marked liver injury, oxidative stress, and fibrosis with development of HCC by 8 months. These results support PHB1 as a tumor suppressor in hepatocytes. Copyright © 2010 American Association for the Study of Liver Diseases.
Pontikoglou, Charalampos; Kastrinaki, Maria-Christina; Klaus, Mirjam; Kalpadakis, Christina; Katonis, Pavlos; Alpantaki, Kalliopi; Pangalis, Gerassimos A; Papadaki, Helen A
2013-05-01
The bone marrow (BM) microenvironment has clearly been implicated in the pathogenesis of B-cell chronic lymphocytic leukemia (B-CLL). However, the potential involvement of BM stromal progenitors, the mesenchymal stem cells (MSCs), in the pathophysiology of the disease has not been extensively investigated. We expanded in vitro BM-MSCs from B-CLL patients (n=11) and healthy individuals (n=16) and comparatively assessed their reserves, proliferative potential, differentiation capacity, and immunoregulatory effects on T- and B-cells. We also evaluated the anti-apoptotic effect of patient-derived MSCs on leukemic cells and studied their cytogenetic characteristics in comparison to BM hematopoietic cells. B-CLL-derived BM MSCs exhibit a similar phenotype, differentiation potential, and ability to suppress T-cell proliferative responses as compared with MSCs from normal controls. Furthermore, they do not carry the cytogenetic abnormalities of the leukemic clone, and they exert a similar anti-apoptotic effect on leukemic cells and healthy donor-derived B-cells, as their normal counterparts. On the other hand, MSCs from B-CLL patients significantly promote normal B-cell proliferation and IgG production, in contrast to healthy-donor-derived MSCs. Furthermore, they have impaired reserves, defective cellular growth due to increased apoptotic cell death and exhibit aberrant production of stromal cell-derived factor 1, B-cell activating factor, a proliferation inducing ligand, and transforming growth factor β1, cytokines that are crucial for the survival/nourishing of the leukemic cells. We conclude that ex vivo expanded B-CLL-derived MSCs harbor intrinsic qualitative and quantitative abnormalities that may be implicated in disease development and/or progression.
Wang, Lili; Liu, Hongchen
2016-03-01
microRNA-188 expression is downregulated in several tumors. However, its function and mechanism in human oral squamous cell carcinoma (OSCC) remains obscure. The present study aims to identify the expression pattern, biological roles, and potential mechanism by which miR-188 dysregulation is associated with oral squamous cell carcinoma. Significant downregulation of miR-188 was observed in OSCC tissues compared with paired normal tissues. In vitro, gain-of-function, loss-of-function experiments were performed to examine the impact of miR-188 on cancer cell proliferation, invasion, and cell cycle progression. Transfection of miR-188 mimics suppressed Detroit 562 cell proliferation, cell cycle progression and invasion, with downregulation of cyclin D1, MMP9, and p-ERK. Transfection of miR-188 inhibitor in FaDu cell line with high endogenous expression exhibited the opposite effects. Using fluorescence reporter assays, we confirmed that SIX1 was a direct target of miR-188 in OSCC cells. Transfection of miR-188 mimics downregulated SIX1 expression. SIX1 siRNA treatment abrogated miR-188 inhibitor-induced cyclin D1 and MMP9 upregulation. In addition, we found that SIX1 was overexpressed in 32 of 80 OSCC tissues. In conclusion, this study indicates that miR-188 downregulation might be associated with oral squamous cell carcinoma progression. miR-188 suppresses proliferation and invasion by targeting SIX1 in oral squamous cell carcinoma cells.
Coelho, C M; Zucoloto, S
1999-01-01
Denture-induced fibrous inflammatory hyperplasia (FIH) occurs around the borders of an ill-fitting denture. There has been no report in the literature concerning epithelial proliferative activity in FIH. The purpose of this study was to observe the labeling of proliferating cell nuclear antigen (PCNA) and evaluate its clinicopathologic results. The labeling index (LI) was assessed by using the PCNA, a nuclear protein synthesized mainly in the G1-S stages of the cell cycle that could be detected immunohistochemically by the monoclonal antibody PC10. The PCNA LI was assessed in FIH specimens, in clinically normal specimens 1 cm from the FIH margin (adjacent group), and in clinically normal specimens located at least 2 cm from the adjacent group; the last were considered the control group. The mean PCNA LI values in the basal, parabasal, and overall epithelial layers were similar in FIH and in the adjacent group and were significantly higher than in the control group. These data support the importance of the surgical treatment of FIH with wide excision (about 1 cm) since the clinically normal tissue around the lesion could be histologically altered.
Gil-Sanz, Cristina; Landeira, Bruna; Ramos, Cynthia; Costa, Marcos R; Müller, Ulrich
2014-08-06
Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we show that the adherens junction proteins afadin and CDH2 are critical for the control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telencephalon leads to a phenotype resembling subcortical band heterotopia, also known as "double cortex," a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype. Copyright © 2014 the authors 0270-6474/14/3410475-13$15.00/0.
The Biological Effect of the NanoTiO
Xiao-Feng, Pang; Lewei, Liu; Zhi Hong, Liu; Qiang, Zhao
2005-01-01
The proliferation behavior of the person's liver cell under actions of the nanoTiO
c-Myb is required for progenitor cell homeostasis in colonic crypts
Malaterre, Jordane; Carpinelli, Marina; Ernst, Matthias; Alexander, Warren; Cooke, Michael; Sutton, Susan; Dworkin, Sebastian; Heath, Joan K.; Frampton, Jon; McArthur, Grant; Clevers, Hans; Hilton, Douglas; Mantamadiotis, Theo; Ramsay, Robert G.
2007-01-01
The colonic crypt is the functional unit of the colon mucosa with a central role in ion and water reabsorption. Under steady-state conditions, the distal colonic crypt harbors a single stem cell at its base that gives rise to highly proliferative progenitor cells that differentiate into columnar, goblet, and endocrine cells. The role of c-Myb in crypt homeostasis has not been elucidated. Here we have studied three genetically distinct hypomorphic c-myb mutant mouse strains, all of which show reduced colonic crypt size. The mutations target the key domains of the transcription factor: the DNA binding, transactivation, and negative regulatory domains. In vivo proliferation and cell cycle marker studies suggest that these mice have a progenitor cell proliferation defect mediated in part by reduced Cyclin E1 expression. To independently assess the extent to which c-myb is required for colonic crypt homeostasis we also generated a novel tissue-specific mouse model to allow the deletion of c-myb in adult colon, and using these mice we show that c-Myb is required for crypt integrity, normal differentiation, and steady-state proliferation. PMID:17360438
Okamatsu-Ogura, Yuko; Fukano, Keigo; Tsubota, Ayumi; Nio-Kobayashi, Junko; Nakamura, Kyoko; Morimatsu, Masami; Sakaue, Hiroshi; Saito, Masayuki; Kimura, Kazuhiro
2017-07-27
We previously reported brown adipocytes can proliferate even after differentiation. To test the involvement of mature adipocyte proliferation in cell number control in fat tissue, we generated transgenic (Tg) mice over-expressing cell-cycle inhibitory protein p27 specifically in adipocytes, using the aP2 promoter. While there was no apparent difference in white adipose tissue (WAT) between wild-type (WT) and Tg mice, the amount of brown adipose tissue (BAT) was much smaller in Tg mice. Although BAT showed a normal cellular morphology, Tg mice had lower content of uncoupling protein 1 (UCP1) as a whole, and attenuated cold exposure- or β3-adrenergic receptor (AR) agonist-induced thermogenesis, with a decrease in the number of mature brown adipocytes expressing proliferation markers. An agonist for the β3-AR failed to increase the number of proliferating brown adipocytes, UCP1 content in BAT, and oxygen consumption in Tg mice, although the induction and the function of beige adipocytes in inguinal WAT from Tg mice were similar to WT mice. These results show that brown adipocyte proliferation significantly contributes to BAT development and adaptive thermogenesis in mice, but not to induction of beige adipocytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiao-cai; Xiao, Cui-cui; Li, Hua
Background: Transducin-Like Enhancer of Split protein 4 (TLE4) has been reported to be involved in some subsets of acute myeloid leukemia and colorectal cancer. In the present study, we aimed to explore the role of TLE4 in tumorigenesis and cancer progression in hepatocellular carcinoma (HCC). Methods: The expression pattern of TLE4 in HCC was determined by Western-blot and qRT-PCR, gain-of-function and loss-of-function was used to explore the biological role of TLE4 in HCC cells. A xenograft model was established to confirm its effects on proliferation. Results: The protein expression levels of TLE4 were significantly down-regulated in HCC tissues compared tomore » matched adjacent normal liver tissues. In vitro, down-regulation of TLE4 in Huh7 or SMMC-7721 promoted cell proliferation and ectopical expression of TLE4 in Hep3B or Bel-7404 suppressed cell proliferation. In addition, the cell colony formation ability was enhanced after down-regulation of TLE4 expression in Huh-7 but suppressed after over-expression in Hep3B. Furthermore, down-regulation of TLE4 increased the cell invasion ability, as well as increased the expression level of Vimentin and decreased that of E-cadherin, indicating a phenotype of epithelial-mesenchymal transition (EMT) in HCC cells. On the contrary, ectopical expression of TLE4 in HCC cells decreased the cell invasion ability and inhibited EMT. In vivo, compared to control group, xenograft tumor volumes were significantly decreased in TLE4 overexpression group. Conclusions: These results demonstrated that TLE4 might play important regulatory roles in cellular proliferation and EMT process in HCC. - Highlights: • TLE4 is significantly down-regulated in HCC samples. • Down regulated of TLE4 in HCC cells promotes cell proliferation. • Down regulated of TLE4 in HCC cells promotes epithelial-to-mesenchymal transition.« less
miR-935 suppresses gastric signet ring cell carcinoma tumorigenesis by targeting Notch1 expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Chao; Yu, Jianchun, E-mail: yu_jchpumch@163.com; Kang, Weiming
Gastric signet ring cell carcinoma (GSRCC) is a unique pathological type of gastric carcinoma that is extremely invasive and has a poor prognosis. Expression of microRNAs (miRNAs) has been closely linked to the carcinogenesis of gastric cancer and has been considered as a powerful prognostic marker. The function of miR-935 has never been reported in cancer before. We found, using microRNA array, that expression of miR-935 in GSRCC cell lines is lower than in non-GSRCC cell lines, and enhanced expression of miR-935 in GSRCC cell-lines inhibit cell proliferation, migration and invasion. We also identified Notch1 as a direct target ofmore » miR-935. Knockdown of Notch1 reduced proliferation, migration/invasion of GSRCC cells, and overexpression Notch1's activated form (Notch intracellular domain) could rescue miR-935's tumor suppressive effect on GSRCC. Expression of miR-935 was lower in gastric carcinoma tissue than in paired normal tissue samples, and lower in GSRCC than in non-GSRCC. Our results demonstrate the inverse correlation between the expression of miR-935 and Notch1 in gastric tissues. We conclude that miR-935 inhibits gastric carcinoma cell proliferation, migration and invasion by targeting Notch1, suggesting potential applications of the miR-935-Notch1 pathway in gastric cancer clinical diagnosis and therapeutics, especially in gastric signet ring cell carcinoma. - Highlights: • The expression of miR-935 is lower in GC tissue than in paired normal tissue. • The expression of miR-935 is lower in GSRCC tissue than in non-GSRCC. • Enhanced expression of miR-935 suppresses tumorigenesis of GSRCC. • Notch1 is a direct target of miR-935.« less
Substance P Promotes the Progression of Endometrial Adenocarcinoma.
Ma, Jing; Yuan, Shifa; Cheng, Jianxin; Kang, Shan; Zhao, Wenhong; Zhang, Jie
2016-06-01
It has been demonstrated that substance P (SP) promotes while neurokinin-1 receptor (NK-1R) antagonist inhibits the proliferation of several human cancer cells. Currently, it is still unknown whether such actions exist in human endometrial carcinoma. This study aimed to explore the role of SP/NK-1R signaling in the progression of endometrial adenocarcinoma. The expression levels of SP and NK-1R in endometrial adenocarcinoma tissues and Ishikawa cell line were detected by real-time quantitative PCR and Western blot analysis. The effects of SP on Ishikawa cells proliferation and invasion were analyzed using MTT assay and transwell matrigel invasion assay, respectively. The expression levels of matrix metalloproteinase 9 (MMP-9) and vascular endothelial growth factor C (VEGF-C) in Ishikawa cells after administration of SP were detected by real-time quantitative RCR and Western blot analysis. The expression levels of SP and NK-1R were significantly higher in endometrial adenocarcinoma tissues and Ishikawa cells than in normal endometrium. Substance P significantly enhanced the proliferation and invasion of Ishikawa cells. In addition, SP induced the expression of MMP-9 and VEGF-C in Ishikawa cells, whereas NK-1R antagonist inhibited these effects. Substance P plays an important role in the development of endometrial carcinoma by inducing the expression of MMP-9 and VEGF-C and promoting cancer cell proliferation and metastasis, which can be blocked by NK-1R antagonist.
Long Term Ex Vivo Culture and Live Imaging of Drosophila Larval Imaginal Discs.
Tsao, Chia-Kang; Ku, Hui-Yu; Lee, Yuan-Ming; Huang, Yu-Fen; Sun, Yi Henry
Continuous imaging of live tissues provides clear temporal sequence of biological events. The Drosophila imaginal discs have been popular experimental subjects for the study of a wide variety of biological phenomena, but long term culture that allows normal development has not been satisfactory. Here we report a culture method that can sustain normal development for 18 hours and allows live imaging. The method is validated in multiple discs and for cell proliferation, differentiation and migration. However, it does not support disc growth and cannot support cell proliferation for more than 7 to 12 hr. We monitored the cellular behavior of retinal basal glia in the developing eye disc and found that distinct glia type has distinct properties of proliferation and migration. The live imaging provided direct proof that wrapping glia differentiated from existing glia after migrating to the anterior front, and unexpectedly found that they undergo endoreplication before wrapping axons, and their nuclei migrate up and down along the axons. UV-induced specific labeling of a single carpet glia also showed that the two carpet glia membrane do not overlap and suggests a tiling or repulsion mechanism between the two cells. These findings demonstrated the usefulness of an ex vivo culture method and live imaging.
Xu, Qing-Fu; Pan, Ya-Wen; Li, Li-Chao; Zhou, Zheng; Huang, Qi-Lin; Pang, Jesse Chung-Sean; Zhu, Xiao-Peng; Ren, Yong; Yang, Hui; Ohgaki, Hiroko; Lv, Sheng-Qing
2014-11-01
Medulloblastoma is the most frequent malignant central nervous system tumor in children. MicroRNAs (miRs) are small, non-coding RNAs that target protein-coding and non-coding RNAs, and play roles in a variety of cellular processes through regulation of multiple targets. In the present study, we analyzed miR-22 expression and its effect in cell proliferation and apoptosis in medulloblastomas. Quantitative reverse transcription PCR (RT-PCR) revealed significantly lower expression of miR-22 in 19 out of 27 (70%) medulloblastomas, D341, DAOY, ONS-76 medulloblastoma cell lines, compared with normal cerebellum. Forced expression of miR-22 by lentiviral vector transfection reduced cell proliferation and induced apoptosis, while knockdown of miR-22 increased proliferative activity in DAOY and ONS-76 cells. DAOY cells with miR-22 overexpression in nude mice yielded tumors smaller than those originated from control DAOY cells. Microarray analysis in DAOY cells with forced miR-22 expression showed significant changes in expression profiles, PAPST1 being the most significantly (10 folds) downregulated gene. Quantitative RT-PCR revealed PAPST1 mRNA upregulation in 18 out of 27 (67%) medulloblastomas. In addition, a luciferase reporter assay in ONS-76 and DAOY cells suggested that miR-22 directly targets the PAPST1 gene, and lentivirus-mediated knockdown of PAPST1 suppressed proliferation of DAOY and ONS-76 medulloblastoma cells. These results suggest that frequently downregulated miR-22 expression is associated with cell proliferation in medulloblastomas, and this may be at least in part via PAPST1, which is a novel target of miR-22. © 2014 International Society of Neuropathology.
Zhou, Jinxu; Wang, Hongxiang; Chu, Junsheng; Huang, Qilin; Li, Guangxu; Yan, Yong; Xu, Tao; Chen, Juxiang; Wang, Yuhai
2018-04-24
Recent studies have found circular RNAs (circRNAs) involved in the biological process of cancers. However, little is known about their functional roles in glioblastoma. Human circRNA microarray analysis was performed to screen the expression profile of circRNAs in IDH1 wild-type glioblastoma tissue. The expression of hsa_circ_0008344 in glioblastoma and normal brain samples was quantified by qRT-PCR. Functional experiments were performed to investigate the biological functions of hsa_circ_0008344, including MTT assay, colony formation assay, transwell assay, and cell apoptosis assay. CircRNA microarray revealed a total of 417 abnormally expressed circRNAs (>1.5-fold, P < .05) in glioblastoma tissue compared with the adjacent normal brain. Hsa_circ_0008344, among the top differentially expressed circRNAs, was significantly upregulated in IDH1 wild-type glioblastoma. Further in vitro studies showed that knockdown of hsa_circ_0008344 suppressed glioblastoma cell proliferation, colony formation, migration, and invasion, but increased cell apoptotic rate. Hsa_circ_0008344 is upregulated in glioblastoma and may contribute to the progression of this malignancy. © 2018 Wiley Periodicals, Inc.
Ho, Tsung-Chuan; Chiang, Yi-Pin; Chuang, Chih-Kuang; Chen, Show-Li; Hsieh, Jui-Wen; Lan, Yu-Wen; Tsao, Yeou-Ping
2015-08-01
In response injury, intrinsic repair mechanisms are activated in skeletal muscle to replace the damaged muscle fibers with new muscle fibers. The regeneration process starts with the proliferation of satellite cells to give rise to myoblasts, which subsequently differentiate terminally into myofibers. Here, we investigated the promotion effect of pigment epithelial-derived factor (PEDF) on muscle regeneration. We report that PEDF and a synthetic PEDF-derived short peptide (PSP; residues Ser(93)-Leu(112)) induce satellite cell proliferation in vitro and promote muscle regeneration in vivo. Extensively, soleus muscle necrosis was induced in rats by bupivacaine, and an injectable alginate gel was used to release the PSP in the injured muscle. PSP delivery was found to stimulate satellite cell proliferation in damaged muscle and enhance the growth of regenerating myofibers, with complete regeneration of normal muscle mass by 2 wk. In cell culture, PEDF/PSP stimulated C2C12 myoblast proliferation, together with a rise in cyclin D1 expression. PEDF induced the phosphorylation of ERK1/2, Akt, and STAT3 in C2C12 myoblasts. Blocking the activity of ERK, Akt, or STAT3 with pharmacological inhibitors attenuated the effects of PEDF/PSP on the induction of C2C12 cell proliferation and cyclin D1 expression. Moreover, 5-bromo-2'-deoxyuridine pulse-labeling demonstrated that PEDF/PSP stimulated primary rat satellite cell proliferation in myofibers in vitro. In summary, we report for the first time that PSP is capable of promoting the regeneration of skeletal muscle. The signaling mechanism involves the ERK, AKT, and STAT3 pathways. These results show the potential utility of this PEDF peptide for muscle regeneration. Copyright © 2015 the American Physiological Society.
The secret life of ion channels: Kv1.3 potassium channels and proliferation.
Pérez-García, M Teresa; Cidad, Pilar; López-López, José R
2018-01-01
Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.
Myb proteins: angels and demons in normal and transformed cells.
Zhou, Ye; Ness, Scott A
2011-01-01
A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered.
Radiation effects on the resting and proliferating cells in normal tissue of mouse (in Japanese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, S.
1972-10-01
The investigation was planned to compare the radiosensitivity of callus- forming cells in resting phase with that in proliferating phase and to compare the recovery of sublethal damage of callusforming cells in resting phase with that in proliferating phase. Experimental animals were 8-week-old female I.C.R./ J.C.L. mice. The maximum sizes of callus were nearly constant among control mice without irradiation after fracture. They, however, were inhibited with administered doses and seemed to be reflected by the Proliferating ability of callus-forming cells after irradiation. The analysis was performed by C.I.D. 50 (callus inhibition dose 50) or dose that produced a specifiedmore » inhibition of callus size in half of the subjects. The callus-forming cells in adult mice were in resting phase without any stimulations, but they extensively entered into proliferating phase after fracture. The labeling index rose around 6 hrs after fracture and reached 9% of the maximum value at 72 are after fracture. Mice were followed by x-ray projection until 60 days after irradiation to observe the callus sizes, and the maximum sizes of callus for each mouse were examined by planimetry to calculate the C.I.D. 50. The callus-forming cell was more radioresistant in resting phase by a factor of 1.5 to 2.0 than in proliferating phase. The cell in resting phase demonstrated a marked recovery of sublethal damage in 4 hrs after administration of 1.000 rads, and it showed essentially no more changes in recovery with the increased time interval to 24 hrs, while the cell in proliferating phase demonstrated almost full recovery of sublethal damage is 2 hrs after administration of 300 rads and showed a fluctuated pattern of recovery with a dip at 4 hrs of the time interval in two fractions. (auth)« less
Zoukhri, Driss; Macari, Elizabeth; Kublin, Claire L.
2011-01-01
Emerging studies from our laboratory demonstrate that interleukin-1 (IL-1) family members play a major role in impairing lacrimal gland functions. Here we have extended our investigations to observe the effects of IL-1 on aqueous tear production, lacrimal gland secretion, lacrimal gland histology, and acinar and ductal cell proliferation. We demonstrate that a single injection of IL-1 into the lacrimal glands inhibited neurally- as well as agonist-induced protein secretion resulting in decreased tear output. Meanwhile, IL-1 injection induced a severe, but reversible (7–13 days), inflammatory response that led to destruction of lacrimal gland acinar epithelial cells. Finally, we demonstrate that as the inflammatory response subsided and lacrimal gland secretion and tear production returned to normal levels, there was increased proliferation of acinar and ductal epithelial cells. Our work uncovers novel effects of IL-1 on lacrimal gland functions and the potential regenerative capacity of the mouse lacrimal gland. PMID:17362931
Adenosine A(3) receptor agonist acts as a homeostatic regulator of bone marrow hematopoiesis.
Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Vacek, Antonín; Streitová, Denisa
2007-07-01
The present study was performed to define the optimum conditions of the stimulatory action of the adenosine A(3) receptor agonist, N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), on bone marrow hematopoiesis in mice. Effects of 2-day treatment with IB-MECA given at single doses of 200nmol/kg twice daily were investigated in normal mice and in mice whose femoral bone marrow cells were either depleted or regenerating after pretreatment with the cytotoxic drug 5-fluorouracil. Morphological criteria were used to determine the proliferation state of the granulocytic and erythroid cell systems. Significant negative correlation between the control proliferation state and the increase of cell proliferation after IB-MECA treatment irrespective of the cell lineage investigated was found. The results suggest the homeostatic character of the induced stimulatory effects and the need to respect the functional state of the target tissue when investigating effects of adenosine receptor agonists under in vivo conditions.
Mao, Gaowei; Goswami, Monali; Kalen, Amanda L.; Goswami, Prabhat C.; Sarsour, Ehab H.
2016-01-01
Background The rebuilding of the connective tissue during wound healing requires the recruitment of fibroblasts to the wound area as well as reentry of quiescent fibroblasts to the proliferative cycle. Whether this process can be modulated by a small molecular weight thiol antioxidant N-acetyl-L-cysteine (NAC) was tested in normal human skin fibroblasts (NHFs) in this study. Methods and Results By using a uni-directional wound healing assay, NAC treated cells demonstrated a decreased migration rate but increased number of proliferating cells recruited into the wound area post wounding. Fifteen day quiescent control and NAC treated NHFs were re-plated at a lower density and cell numbers counted at different days post-plating. Interestingly, NAC treated cells exhibited increased cellular proliferation indicated by both decreased cell population doubling time and increased S phase cells. NAC treated cells demonstrated decreased steady state levels of reactive oxygen species as well as increased protein and activity levels of manganese superoxide dismutase (MnSOD). NAC treatment failed to induce proliferation in quiescent cells lacking MnSOD expression. Conclusions These results demonstrate that NAC enhanced the recruitment of quiescent NHFs into proliferation cycle during wound healing. Our results also suggest that the wound healing properties of NAC might be due to its ability to induce and enhance MnSOD expression and activity. Altogether, these findings suggest NAC might be potentially developed as a dietary intervention to improve tissue injury in animals and humans. PMID:26671656
Soldano, S; Montagna, P; Villaggio, B; Parodi, A; Gianotti, G; Sulli, A; Seriolo, B; Secchi, M E; Cutolo, M
2009-01-01
Objective: To evaluate the influence of endothelin-1 (ET-1) and sex hormones on cell proliferation and extracellular matrix (ECM) synthesis (ie, fibronectin, laminin) by cultured normal and scleroderma (SSc) human skin fibroblasts (FBs). Methods: Primary cultures of FBs were treated with ET-1 and sex hormones (17β-oestradiol or testosterone) for 24 h. Cell growth was analysed by methiltetrazolium salt test, ECM synthesis was evaluated by immunocytochemistry and western blot, both at 24 h. Results: In normal FBs, ET-1 and 17β-oestradiol, as well as their combination, increased cell growth (p<0.001, p<0.001, p<0.01 vs untreated cells (control), respectively) and fibronectin synthesis (p<0.05, p<0.05, p<0.01 vs control, respectively). By contrast, testosterone either alone or in combination with ET-1 did not influence cell proliferation, but decreased fibronectin synthesis (p<0.05, testosterone vs control). In SSc FBs, ET-1 and 17β-oestradiol alone or their combination induced an increased fibronectin synthesis (p<0.05, p<0.05, p<0.01 vs control, respectively). Unexpectedly, testosterone induced an increase of fibronectin synthesis (p<0.05 vs control). Conclusions: ET-1 and 17β-oestradiol seem to exert a profibrotic effect in normal and SSc culture FBs and might suggest their synergistic effect in the pathogenesis of the fibrotic process in SSc. PMID:18952637